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ABSTRACT 

GENETIC ALGORITHM OPTIMIZATION OF SPACE FRAME 

 
Hussein, Ghedan Hamid 

M. Sc. in Civil Engineering 

Supervisor: Asst. Prof. Dr. Nildem TAYŞI 
January 2013, 74 pages 

 

Structural design of space frames requires appropriate form for a structure so that it 

can carry the imposed loads safely and economically. Traditional approaches towards 

the task of finding such forms for structures have been by the use of experimental 

models or by intuition and experience. The main objective of this thesis is to develop 

and use reliable, creative and efficient computational tools for the linearly elastic 

analysis and optimum design of space frame structures under static loads. 

The use of SAP2000 can assist greatly in achieving a safe design. However, 

commercially available programs are not designed as optimization tools. In this study 

for optimization of multistory structures, home written MATLAB code interface 

program is designed to connect SAP2000 which is known as a commercial nonlinear 

finite element program and genetic algorithm optimization program. 

The design algorithm obtains minimum weight frames by selecting suitable sections 

from specified group list, with consideration actual design constraints like, strength, 

lateral displacement, inter story drift according to Load and Resistance Factor Design 

(LRFD). The improved method is tested on different three dimensional multi story 

moment resisting frames. It is concluded that this method can be used as a useful tool 

in engineering design and optimization.  

 

Keywords: Optimum design, Genetic algorithm, Steel structure, SAP2000, OAPI.



 

ÖZET 

UZAY ÇERÇEVELERİN 

GENETİK ALGORİTMA İLE OPTİMİZASYONU 

 

Hussein, Ghedan Hamid 

Yüksek Lisans Tezi, İnşaat Müh. Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Nildem TAYŞİ 

Ocak 2013, 74 sayfa 

 

Uzay çerçevelerin tasarımı, uygulanan yükü güvenli ve ekonomik bir şekilde 

taşıyabilmesi için, uygun bir yapı formu gerektirir. Bu formlar bugüne kadar 

genellikle geleneksel yöntemler olan deneysel modellerin veya deneyimlerin 

sonucunda bulunmaktadır. Bu tezin ana amacı, statik yükler altındaki uzay çerçeve 

yapıların analizi ve optimum tasarımı için güvenilir, yaratıcı ve etkili bir bilgisayar 

programı geliştirip kullanmaktır.  

SAP2000 programı güvenli binalar tasarlamak için büyük oranda yardımcı 

olmaktadır. Fakat bununla birlikte mevcut ticari programlar optimizasyon araçları 

olarak tasarlanmamışlardır. Bu çalışmada çok katlı yapıların optimizasyonu için, 

ticari lineer olmayan sonlu elemanlar programı olarak bilinen SAP2000 programı ile 

genetik algoritma optimizasyon programını, MATLAB kodlarını kullanarak 

birleştiren arayüz programlı geliştirilmiştir.  

Tasarım algoritması, minimum ağırlıklı çerçeveleri, uygun kesit listelerinden 

seçerek, yük ve mukavemet faktörü ilkesi (LRFD)’ne göre, gerilme ve deplasman 

gibi gerçek tasarım kısıtlayıcılarını kullanarak elde eder. Geliştirilen yöntem farklı üç 

boyutlu, çok katlı çerçeve yapılar üzerinde test edilmiştir ve bu yöntemin 

mühendislik tasarımı ve optimizasyonu için kullanışlı bir yöntem olduğu sonucuna 

varılmıştır. 

Anahtar kelimeler: Optimum tasarım, Genetik algoritma, Çelik yapılar, SAP2000, 

OAPI. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Structural design has always been a very interesting and creative segment in a large 

variety of engineering projects. Structures should be designed such that they can 

resist applied forces (stress constraints) and do not exceed certain deformations 

(displacement constraints) [1]. 

The development and validation of methods for obtaining optimal steel frame 

designs has merited significant attention for several decades. The objective of steel 

frame optimization is the minimization of the cost of frame design, subject typically 

to strength and serviceability constraints. The wide-flange shapes provided in the 

AISC steel construction manual constitute the variable space in steel optimizations. 

As steel shapes do not exist on a continuous scale of cross-sectional area, moment of 

inertia, or any other section parameter, frame optimization problems are typically 

conducted on discrete spaces, rendering deterministic gradient-based methods 

impractical. Also, as structural system response is the result of complicated 

interaction between various members, steel frame optimizations are also highly 

nonlinear. Despite these inherent difficulties, the development of innovative 

stochastic algorithms and increase in computing capability has enabled optimal 

designs for large, discrete structural optimization problems with various constraints 

to be obtained within reasonable computational expense. 
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The structural steel design is a process based on many contributing aspects such as; 

past successful and unsuccessful experience of construction, laboratory tests and 

search results. Structures can be used safely and efficiently but at the same time must 

be economically built and maintained therefore the design process must satisfy two 

conflicting aims safety and economy. Achieving this compromise is not easy, 

consequently codes of practice have evolved to assist and guide the designer. 

Different international codes, such as, American and British codes treat differently. 

This may be due to the methods of design are still at an elementary stage of 

development. So the problem of design is much less specific than analysis. 

In this thesis more robust, improved and faster algorithm is presented for analysis 

and optimization of different space moment steel structures of practical interest. 

Wind, gravity loads, and stress constraints with total interstory drifts according to 

construction code requirements are considered. Other practicable structure 

constraints are considered by including grouped members; a unique AISC W-section 

is assigned to the entire member of groups. Also, variety of W-section or size can be 

limited, for reducing the variety of sections and number of parameters. 

Genetic Algorithm (GA), interfaced with a SAP2000 commercial package program, 

is utilized to produce the optimal solutions. SAP2000 structure analysis program is a 

well-known integrated Finite Element (FE) structural analysis tool which already 

used for modelling and designing structures according to different design codes. The 

Open Application Programming Interface (OAPI) in SAP2000 is a free service in 

some versions of it, to export and import data files from and to SAP2000. In 

SAP2000 after input file being opened, SAP2000 will analyse, save result and design 

all members. From one of output files, any required data’s, like element stress and 
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joint displacements can be found to check strength and serviceability constraints [2]. 

 

1.2 Thesis Objectives 

The main objective of the thesis is to develop and demonstrate the use of a reliable, 

creative, efficient and competitive computational tool for the optimum design of 

space buildings under static loads.  

Different kinds of meta-heuristic algorithms have been recently utilized to overcome 

the complex nature of optimum design of structures. In this thesis, an integrated 

optimization procedure of real size structures is simply performed interfacing 

SAP2000 and MATLAB® software’s in the form of single computing. The meta-

heuristic algorithm chosen here is GA. 

The optimization refers to weight optimization according to different design codes. 

The requirement is that the algorithm only proposes frames that consists of elements 

taken from an available profiles list, and that it satisfies the relevant constraints given 

in different design codes, like American Institute of Steel Construction (AISC-

LRFD) and (AISC-ASD) specifications. 

Different space moment frames under strength constraints of the AISC-ASD and 

AISC-LRFD specifications, geometric limitations and displacement constraints are 

optimized. New integrated optimization procedure proposed involving the SAP2000 

by its OAPI functions is validated on several inclusive steel structures and the results 

show that using the parallel computing besides the reliable SAP2000 analyser 

efficiently optimizes typical structural systems for practical purposes. 
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1.3 Layout of the Thesis 

In present work main attention is focused on optimization of steel moment frame 

under wind and gravity loads. Stress constraints with total story drifts according to 

American construction code requirements are considered. For optimization the 

application of SAP2000 in the form of interfacing program is employed. The main 

goal of the study is to reduce the total weight in such way that they can resist applied 

forces and do not exceed certain deformations.  

The organization of the study and the layout of the thesis is now pronounced: 

Chapter 2 is the literature review in application of GA and SAP2000 in structural 

optimization field. 

Chapter 3 illustrates the fundamental formulation for 2D and 3D analysis methods. 

The primary assumption as well as matrix analysis is also presented. 

Chapter 4 deals with various aspects of the optimization process including the 

definition and selection of the design variables (cross sections) and the application of 

SAP2000 in structural optimization to help achieving safe design. 

Chapter 5 this chapter deals with numerical applications of optimization examples 

of space moment frames. 

Chapter 6, finally in this chapter some brief conclusions are presented together with 

some suggestions for future works. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

Many mathematical programming methods have been developed during the last three 

decades [3, 4]. Most design applications in civil engineering involve selecting values 

for a set of design variables. Mathematically these design variables are the cross 

sectional area of structure members and they are discrete for most design problems. 

However, generally mathematical optimization applications are suitable for 

continuous design variables. In structural optimization with discrete design variables, 

searching for optimal solution becomes a difficult task. These methods include 

complete enumeration techniques. Different optimization methods and their 

development progresses as discussed in Chapter 4 were used by researchers to 

illustrate the performance of space moment frame structures under service loads. 

These techniques are also discussed in the different design codes to restrict the 

optimization techniques.  

There are fascinating algorithms, the name came from the way in which they loosely 

mimic the process of evolution of organisms, where a problem solution stands in for 

organism’s genetic string. Features include a survival of the fittest mechanism in 

which potential solutions in a population are pitted against each other, as well as 

recombination of solutions in mating process and random variations. The incredible 

part is that this heuristic can “evolve” better and better solutions without any deep 

understanding of the problem itself. 
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In this study GA technique for optimization design of frames using discrete structural 

elements are presented. The optimum design of space frame structures and the 

application of GA technique have found great attention in literature. In this section 

the literature is observed and classified with related studies work with GAs or 

interfacing with traditional method.  

 

2.2 Structural Optimization Using Genetic Algorithms 

GA, a member of evolutionary algorithm, is a population-based global search 

technique based on the Darwinian Theory [5]. The name came from the way in 

which they loosely mimic the process of evolution of organisms, where a problem 

solution stands in for organism’s genetic string. Professor John Holland at the 

University of Michigan examined GA as search procedures based on natural 

selection and survival of the fittest [6].  

GA is technique which finds the optimal solution through repetitive analysis. 

Therefore it has a lot of computational complexities and lacks the work applicability 

[7]. 

The recent decade scientific publications about application of GA grew at 

approximately 40 % and peaked in year 1995 [8]. David E. Goldberg (one of 

Professor John Holland’s student) [9, 10] seems to be the first one used GA in 

structural optimization. In 1986, he and a graduate student of his used the GA 

technique to minimize the weight of a ten bar aluminium truss. This structure is 

commonly used as a benchmark problem in structural optimization [9].  

Hajela in 1989 [11] seems to be the first one used GA to obtain minimum weight of 
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two grillage beam under elastic design criteria; the structure was subjected to a 

uniformly distributed load.  After that, Hajela (1990) [12] and Hajela and Lin [13] 

published several papers on the use of GAs in structural optimization. Also he 

presented an optimized 10-bar truss structure subjected to a sinusoidal load.  

Genetic programming is an effective search technique based on natural selection. 

The basic idea is to combine good solutions to a certain problem over many 

generations to gradually improve the result. All solutions are initially created 

randomly, and they are individually represented by a binary string with some 

similarities to natural chromosomes, hence the name genetic programming [14]. 

As mentioned in different GA sources, GA operation requires very large computation 

time to converge. Therefore, it requires some modification in which a resizing 

algorithm module is embedded. Se Woon Choi et al [7] used modified GA by 

resizing algorithm model to reduce converge time. The author optimized 2D-3story 

moment space frame under member stress and total interstory drift constraints. He 

concluded that proposed GA has shown more rapid speed of convergence when 

compared to optimum design model using original GA before resizing the algorithm 

model. 

 

2.3 Applications of Genetic Algorithm in Structural Optimization 

In this section the literature is observed some of modified GAs in optimization of 

structural frames. The major application of GAs has been the automated design of 

steel frame structures and has followed several avenues. The first is topology and 

shape optimization, in which the applications have included elastic truss structures 

subjected to static loading [15]. The second and vast majority of this effort has been 
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restricted to the optimized design of two dimensional (2D) moment frame [16].  

Pezeshk et al [17] optimized two steel moment-frame structures using GAs. 

Optimizations were performed for linear, linear P-delta, and nonlinear P-delta 

structural analyse cases. The frames were optimized over a discrete variable domain 

of available wide-flange steel sections.  

Hayalioglu [18] compared the relative efficiency of the LRFD and ASD codes in 

optimizing a trio of space frames using GAs. The frames were constrained by code 

specified design strength and maximum top-story drift requirements.  

The discrete variables linked to the problem of optimal structural design were 

presented by Huang et al [19]. When selecting discontinues value for a variable, 

values must also be selected from a table with other variables linked to it. A major 

application area was such problems of the design steel structures using available 

sections. They made three approaches that link an optimization method of continuous 

variable with a simulated annealing, branch and bound method, and GA, are shown 

and applied in a computer program for their numerical evaluation. The design 

problems solution of three structural explained to study the performance of the 

suggested methods.  

 

2.4 Optimization in the Form of Interfacing Program 

The use of commercial nonlinear FE package which is specially designed for 

analysing of structure can assist vastly in achieving a safe design [2]. 

The main design effort involves sizing the individual beam, column, and bracing 

members after the topology and support conditions are established for a frame 
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structure. Members are categorized into certain groups according to symmetry and 

fabrication conditions known as design variables. A new integrated optimization 

procedure proposed involving the SAP2000 by its OAPI functions is used. Using the 

parallel computing besides the reliable SAP2000 analyser efficiently optimizes 

typical structural systems for practical purposes. 

Since the interfacing of commercial FE analysis programs with GA is possible, it 

will be a good chance for using commercial GA-FEM in the form of combination for 

research [20]. 

Mohammad Ghozi, et al [2, 20, 21] published three different papers on the using of 

GAs in structural optimization by interfacing an evolutionary algorithms (GA) and 

FE commercial structure analysis program.  

In the first paper authors [2], optimized trusses, and compared the results with the 

other researches, with their method, optimization of 3 bench mark trusses has been 

solved by using the number of personal computer as a slave PC in the form of 

parallel and single computing to combine GA and SAP2000 in an open home written 

code  

In the second paper authors [20] optimized 2D steel structure under dead, live and 

wind loads, by combining GA with SAP2000 under theories of strong column weak 

beam concept, concluded that strong column weak beam as constraint is useful and 

should be included in design of steel structure. 

In the third paper authors [21] optimized 2D steel structures by combining GA and 

SAP2000 in an open visual basic code under concept of column failure mechanism. 

The constraints are consisting of fabrication conditions, imposed to group together 



 

10 

the relative sizes of the member cross sections.  

Kaveh et al [22] published an article about optimization of space frame using 

interfaced Cuckoo Search (CS) as a meta-heuristic algorithm with nonlinear finite 

element analysis program (SAP2000) in the form of parallel computing. The 

implemented method is tested on three different braced and un braced multi-storey 

space moment frames, concluded that parallel Computing technique is an effective 

time-saving procedure and the proposed method is effective in optimizing practical 

structures. Undeniably, SAP2000 program enables user to work with any other type 

of structures, international codes, load types and their combinations, as well as linear, 

nonlinear, static and dynamic analysis of structures. 
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CHAPTER 3 

STATIC ANALYSIS OF STEEL SPACE FRAME  

3.1 Introduction 

Frame structures are commonly used in structural engineering applications in 

different forms as plane (2D) and space (3D) frames, which are made of steel, 

reinforced and pre-stressed concrete (RC) or timber [23]. Plane frames are composed 

of arbitrarily oriented beam elements joined together in a plane with distributed 

loading on elements and/or concentrated loads in the same plane. 

Structural analysis, which is an integral part of any structural engineering project, is 

the process of predicting the performance of a given structure under a prescribed 

loading condition. The performance characteristics usually of interest in structural 

design are: (a) stresses or stress resultants (i.e., axial forces, shears, and bending 

moments); (b) deflections; and (c) support reactions. Thus, the analysis of a structure 

typically involves the determination of these quantities as caused by the given loads 

and/or other external effects (such as support displacements and temperature 

changes). 

Space frame is the common to the most types of the framed structures which have 

members oriented in any direction in the 3D space Figure 3.1. The connections may 

be rigid or flexible between elements of the structure and external loads acted in any 

randomly directions and can apply to the joints and the members of space frames 

generally subject to bending moments, shears about both principle axes directions 

and axial force. The analysis of space frames is commonly based on the assumption 
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that the cross-sections of all the members are symmetric about at least two mutually 

perpendicular axes, and are free to warp out of their planes under the action of 

torsion moments. 

 

 

Figure 3.1 Space frame [24] 

 

3.2 Analysis of Space Moment Frame  

Before the computer technology is developed, they have been mostly used in practice 

by modelling a structural system and loading in different planes due to analysis 

simplicity. Today, since the capabilities and capacities of computer are at high level 

and still increasing, the need of simplification of structural system is not essential for 

calculation purposes and more realistic structural models are used by applying 3D 

beam elements from which 2D elements are obtained as special case [23]. 

Linear-elastic analysis of a rigidly-connected space frame system has been carried 

out by using the matrix displacement method. In rigid space frames each joint or 



 

13 

node has 6 DOF and each member has 6 stress-resultants in the local coordinates. 

These are twisting moment or torque, two moments causing curvature in the (z-x) 

plane, two moments causing curvature in the (z–y) plane, and axial tension as shown 

in Figure 3.2 [18]. 

The number of degrees of freedom in the rigid frame element remains constant 

between both two global and local transformations axes. [25]. 

 

 

Figure 3.2 Frame element displaying local coordinate system 

 

In general two beam theories are used in the framed structural analysis: 

 Euler-Bernoulli beam theory. 

 Timoshenko beam theory. 

 

3.2.1 Euler-Bernoulli beam theory 

Euler-Bernoulli theory is based on simplified linear theory of elasticity and used to 

calculate the load carrying and deflection characteristics of beam in general. The 

Euler Bernoulli theory, depends on assumptions that the planes normal to the midline 
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remain plane and normal, it means that θ1 and θ2 equal μ1 and μ2 respectively [23] 

see Figure 3.3 

 

 
 

Figure 3.3 Euler-Bernoulli beam theory [26] 

 

These assumptions are valid for long, slender and thin beams of isotropic materials 

with solid cross-sections. For short and thick beams the Euler-Bernoulli beam theory 

may be incorrect and misleading since the effect of the transverse shear deformation 

is not included in the transverse shear deformation at the first time. 

As described by Timoshenko (1957) μ = dw/dx so the deflection equation for such a 

beam can be derived from the fact that θ = μ and given as 

   

   
  

 

  
                                                                (3.1) 

By ignoring axial effects, the Strain Energy (SE) per unit length becomes 

  

      
 

 

 
   

   

   
 
 

                                                  (3.2) 
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3.2.2 Timoshenko beam theory 

Timoshenko beam theory is applicable for both thick and thin beams and the Euler 

Bernoulli beam theory is obtained as a special case of the Timoshenko beam theory.  

Timoshenko solved the neglected effect of the transverse shear deformation at the 

first time in the Euler-Bernoulli beam theory by introducing shear coefficient   as a 

correction factor to allow the non-uniform shear strain to be expressed as a constant, 

since according to Timoshenko beam theory’s assumption the shear strain and stress 

are constant over the cross section The shear coefficient approximates the correct 

integrated value of SE due to shear (1/2τγ) as an assumed constant average or 

centreline value [26].This value depends on the shape of the cross section. The plane 

section still remains plane but rotates by an amount, θ, equal to the rotation of the 

neutral axis, μ, minus the shear strain γ Figure 3.4. 

 

 

 

Figure 3.4 Timoshenko beam element [26] 

 

                         θ = μ – γ                                                                               (3.3) 

  μ = dw/dx leads to  
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                                                                       (3.4) 

The SE per unit length is thus 

  

      
 

 

 
   

   

   
 
 

 
 

 
                                                      (3.5) 

 

3.3 Finite Element Analysis of Frames 

Finite Element (FE) Method is a numerical procedure for solving engineering 

problems; this method is widely method in almost all analysis disciplines. Its 

formulations are based on vibration principles. 

The FE analysis consists of some principal steps like: 

1. Discretizing the domain wherein each step involves subdivision of the structure 

into nodes and elements. 

2. Making stiffness matrices for each element in the domain. 

3. Arrangement the global stiffness matrix. 

4. Applying boundary equation consists of specified, force, displacement, and 

support conditions.  

5. Solving equation. 

 

3.3.1 Planar frames 

A plane frame is a 2D assemblage of straight members connected together by rigid 

and/or hinged connections, and subjected to loads and reactions that lie in the plane 

of the structure. Under the action of external loads, the members of a plane frame 

may be subjected to axial forces like the members of plane trusses, as well as 
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bending moments and shears like the members of beams. Therefore, the stiffness 

relations for plane frame members can be conveniently obtained by combining the 

stiffness relations for plane truss and beam members [24]. 

 

3.3.1.1 FEM equations for planar frames in local coordinate system 

In a 2D frame element, there are three DOF at each node in their local coordinate 

systems, which consist of deflection in y-direction v, axial deformation in the 

direction of x-axis, u, and the rotation in the x-y plane with respect to the z-axis, θζ. 

[27] as shown in Figure 3.5. 

 

 
 

Figure 3.5 Planar frame element and the DOFs. 

 

Combining DOF of truss which consist of axial deformation with DOF of beam 

element at each node (transverse deformation and rotation) will give the degree of 

freedom of a frame element. 
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Where 1u  and 2u  are truss axial deformation and 1v , 2v , z1θ  and z2θ  are transverse 

deformation and rotations of beam element in two nodes. 

To obtain the stiffness matrix for truss elements is first extended to a 6 x 6 matrix 

depending on the number of DOF of the truss element in the element displacement 

matrix in Eq. (3.6): 
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Also the stiffness matrix of beam element is extended to a 6 x 6 according to the 

order of the DOF of the beam element in Eq. (3.6) 
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(3.8) 

Combining equation (3.7) and (3.8) makes matrix for the frame element: 
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(3.9) 

Same way as before to obtain element mass matrix of the frame element, by 

extending both truss and beam element mass matrixes ( em ) into 6 x 6 matrices and 

added together.  

 

 

 

                                (3.10) 

 

 

The force vectors of both beam and truss elements are extended into 6 x 1 vectors 

and added together corresponding to their respective DOFs. In case when the element 

is subjected to external distributed loads fx and fy along the x-axis; concentrated 

forces fsx1, fsx2, fsy1 and fsy2; and concentrated moments ms1 and ms2, respectively, at 

nodes 1 and 2, the total nodal force vector becomes. 
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                                                              (3.11) 

 

3.3.1.2 Equations in global coordinate system 

Formulated matrices in the previous section are for a particular frame element in a 

specific orientation. A full frame structure usually consists of numerous frame 

elements which are joined together in different orientations and these orientations are 

different in their local coordinate system. To collect the element matrices together, 

firstly all the matrices must be converted according to its global coordinate system.  

Assume that local nodes 1 and 2 in Figure 3.6 correspond to the global nodes i and j, 

respectively. The displacement at a local node should have a rotational deformation 

with two translational components in the x and y directions (θ, u, v). Also two 

translational components in the X and Y directions and one rotational deformation 

for the displacement at a global node should have (D3i, D3i-2 and D3i-1) for the ith 

node.  
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Figure 3.6 Coordinate transformation 

 

The same sign convention also applies to node j. The coordinate transformation gives 

the relationship between the displacement vector de and the displacement vector De 

for the specified element, based on the global coordinate system. 

ee TDd                                                                                       (3.12) 
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and T is the transformation matrix for the frame element given 
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Where 
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                                                                 (3.16) 

                             
       

  
                                    (3.17) 

                 
       

  
                                                               (3.18) 

   
          

           
 

 
                                                                             (3.19) 

From equation (3.12) can be easily verified that at node i, the displacement (ui) onto 

the local x axis equals the summation of all the projections of D3i-2 and D3i-1, and the 

summation of all the projections of D3i-2 and D3i-1 onto the local y axis equals to v1.  

The same procedure can be said at node j. The matrix T for a frame element 

transforms a 6 x 6 matrix into another 6 x 6 matrix. Using the transformation matrix, 

T, the matrices for the frame element in the global coordinate system becomes 

                                                                                               (3.20) 

                                                                                      (3.21) 

                                                                                      (3.22) 

Note that there is no change in dimension between the matrices and vectors in the 

local and global coordinate systems.  
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3.3.2 Space frames 

3.3.2.1 Equations in local coordinate system 

The 3D frame elements can be taken from the 2D frame elements by developing 

approach. The only difference is that there are more DOFs at a node in a 3D frame 

element than in a 2D frame element. There are altogether 6 DOFs in each node in a 

three-dimensional frame element: three translational displacements and three 

rotations with respect to the x, y and z axes, and it becomes 12 DOFs for an element 

with two nodes, as shown in Figure 3.7. 

 

 
 

Figure 3.7 Frame elements in space with twelve DOFs. 

 

The element displacement vector for a frame element in space can be written as 
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        (3.23) 

Also the element matrices can be obtained from the matrices of the space truss 

element and that of beam elements, and combining them together by same similar 

procedure. 
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Where  

Iy and Iz are moment of inertia of the cross section beam, with respect to the y and z 

axes. The only difference is that the axial deformation is replaced by the torsional 

angular deformation, and axial force is replaced by torque. It means that , the element 

tensile stiffness AE/2a is replaced by the element torsional stiffness GJ/2a, where G 
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and J are shear modules and polar moment of inertia of the cross-section of the bar 

respectively. 

The em  is also shown as follows: 
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Where 

  
  

  

 
                                                                         (3.26) 

 

3.3.2.2 Equations in global coordinate system 

After preparing the element matrices in the local coordinate system, the next thing to 

do is transformation of the element frame matrices from the local coordinate into the 

global coordinate system that are attached on individual frame members. 

Assume that the local nodes 1 and 2 of the element correspond to global nodes i and j 

respectively.  

The displacement at a local node should have three translational components, and 

three rotational components in the x, y and z directions, and sequentially numbered 
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as d1-d12 corresponding to the physical deformations as defined by equation (3.23). 

Also the node displacement at a global coordinate should have three translational and 

three rotational components with respect to global X, Y and Z axes. See Figure 3.8. 

 
 

Figure 3.8 Coordinate transformation for a frame element in space. 

 

ee TDd                                                                                   (3.27) 

Where 
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Where l, m and n with their subscriptions are cosine directions 

           ,                          

           ,             ,              

           ,              ,             . 

 

3.4 Static Analysis of Moment Resisting Space Frame 

To perform the stiffness matrix formulation which is coded in FORTRAN, two 
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examples are considered. Examples include two 3D moment resisting frame with 63 

elements and the results of displacement and stresses are compared with the results 

of used commercial package SAP2000. 

 

3.4.1 Six story space frame 

This example consists of 6 story space moment resisting frame with 63 elements and 

180 DOF . The structure is subjected to a gravity load of 19.16 kPa on all floor levels 

and a lateral load of 109 kN applied at each unrestrained node in the front elevation 

along the y direction as shown in Figure 3.9. With the square shape (30 x 30) cm, 

cross section for all horizontal and vertical members, the element and joints numbers 

are shown in Figures 3.10 and 3.11. 
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Figure 3.9 Loading of 6 story space frame 

 

 
Figure 3.10 Joint and element number in (a) y=0 m and (b) y=7.32 m 
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Figure 3.11 Joint and element number (a) x=0 m, (b) x=7.32 m and (c) x=14.64 m 

 

Discussion of the results: Analyses are done by the FEM equation which is prepared 

by FORTRAN code and the results are compared with source programme SAP2000. 

Table 3.1 shows the result of displacements in x, y and z directions. Maximum 

displacements occurred in joints (14). Table 3.2 shows the stress of some selected 

members. Maximum compression stress is occurred in member (4) and maximum 

tension stress is occurred in member (1) 

 

Table 3.1 Joint displacement (m) of 6 story space frame 

Joint no. 

x-direction y-direction z-direction 

Present SAP2000 Present SAP2000 Present SAP2000 

9 0.001737 0.001771 0.023738 0.023775 -0.000342 -0.000343 

10 0.004170 0.004272 0.059624 0.059744 -0.000614 -0.000615 

11 0.005869 0.006026 0.091550 0.091743 -0.000815 -0.000816 
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12 0.006902 0.007072 0.116177 0.116403 -0.000952 -0.000953 

13 0.007284 0.007454 0.133155 0.133387 -0.001034 -0.001035 

14 0.007448 0.007617 0.142875 0.143106 -0.001071 -0.001071 

23 0.001742 0.001777 0.019996 0.019975 -0.000381 -0.000381 

24 0.004173 0.004276 0.050102 0.050069 -0.000679 -0.00068 

25 0.005871 0.006029 0.077638 0.077624 -0.000896 -0.000897 

26 0.006904 0.007073 0.101313 0.101315 -0.001036 -0.001036 

27 0.007289 0.007459 0.118431 0.118426 -0.001119 -0.001119 

28 0.007435 0.007604 0.128271 0.12826 -0.001156 -0.001156 

34 0.001745 0.00178 0.015103 0.015048 -0.000159 -0.000159 

35 0.004179 0.004282 0.035949 0.035772 -0.000259 -0.000258 

36 0.005864 0.006022 0.050742 0.050415 -0.000304 -0.000302 

 

Table 3.2 Element stress result (kN/m
2
) of 6 story space frame 

Element no. SAP2000 Present work 

1 209330.03 209253.89 

2 -180155.13 -180066.15 

3 -133351.6 -133436.16 

4 -228078.76 -227897.00 

5 -204712.79 -204606.68 

6 -155487.06 -155600.98 

 

3.4.2 Three story space frame 

This example consists of 3 story space frame with 63 elements Figure 3.12. The 

structure is divided in to 4 groups and arranged as 1
st
 group is the columns of first 

and second storeys, 2
nd

 group is the columns of third story, the third group is the all 

inner beams of all storeys and 4
th

 groups is outer beams of all storeys. The structure 

is subjected to a gravity load of 12. kPa on all 4
th

 group beams, 16 kPa on all 3
rd

 



 

32 

group beams, lateral load of 150 kN in direction of wind in x-direction and 80 kN in 

leeward side. With the (40 x 40) cm, cross section for Group1, (35 x35) cm for 

second group, (40 x30) cm for third group and (40 x25) cm for fourth group, the 

element and joints numbers are shown in Figures 3.13 and 3.14 (a, b, c). 

 
Figure 3.12 3D View of 63 element space frame  

 
 

(a)                                                                 (b) 

 

Figure 3.13 Joint and element number of 3 story space frame (a) y= 0 m, (b) y= 6 m 
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                             (a)                                                          ( b) 

 

 

 
(c) 

 

Figure 3.14 Element number of 3 story space frame at (a) y= 0 m, (b) y= 6 m and (c) 

y=12 m 

 

Discussion of result: Analyses are done by the FEM equation which is prepared by 

FORTRAN code and results are compared with the used source program SAP2000. 

Maximum displacement occurred in joint 24 as shown in Table 3.3 with the value of 

0.011 m. Table 3.4 shows the stress values for some selected vertical elements the 

maximum tension stress occurred at element 4 with the value of 48306.04 kN/m
2 

and 

maximum compression occurred at element 22 with the value of  -56951.03 kN/m
2
 at 

element 22. 
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Table 3.3 Joint displacement (m) of 3 story space frame 

Joint no. 

x-direction 

Present SAP2000 

2 0.0031737 0.003208 

 
3 0.0072170 0.007465 

 
4 0.01104 0.010513 

6 0.0031737 0.003208 

 
7 0.0072170 0.007465 

 
8 0.01104 0.010513 

10 0.0031737 0.003208 

 
11 0.0072170 0.007465 

 
12 0.01104 0.010513 

14 0.0031737 0.003193 

 
15 0.0072170 0.00744 

 
16 0.01104 0.010479 

 
18 0.0031737 0.003193 

 
19 0.0072170 0.00744 

 
20 0.01104 0.010479 

 
22 0.0031737 0.003193 

 
23 

 
0.0072170 0.00744 

 
24 0.01134 0.010479 

 
 

Table 3.4 Element stress (kN/m
2
) of 3 story space frame 

Element no. SAP2000 Present work 

1 45099.26 

 

45099.26 

 

2 18886.36 18886.36 

3 17072.71 

 

17072.71 

 

4 48306.02 

 

48306.00 

 

5 15692.6 15692.6 

6 

 
10388.96 10388.96 

7 45099.26 

 

45099.26 

 

8 18886.36 18886.36 

9 17072.71 

 

17072.71 
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10 -56951.03 -56952.01 

11 -39148.95 -39148.85 

12 -38697.33 -38697.13 

13 -58735.1 -58734.87 

14 -39478.46 -39479.16 

15 -33919.08 -33919.88 

16 -56951.03 -56952.01 

17 -39148.95 -39148.85 

18 -38697.33 -38697.13 

19 -52416 -52413.04 

20 -27353.23 -27352.83 

21 -30328.5 -30329.01 

22 -56951.03 -56952.03 

23 -39148.95 -39148.85 

24 -38697.33 -38697.33 

25 -52416 -52416.28 

26 -27353.23 -27353.13 

27 -30328.5 -30328.4 

 

3.5 Conclusions 

The results obtained from the program are compared with other analysis programs to 

prove the ability and accuracy of FEM analysis in engineering field. This comparison 

helps to improve the written program to give better solutions. 

The close agreement between results is seen the developed FE method program is 

accurate and robust tools for analysis of space frame structures were developed. 
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CHAPTER 4 

STRUCTURAL OPTIMIZATION  

4.1 Introduction 

Most design applications in civil engineering involve selecting values for a set of 

design variables that best describe the behaviour and performance of the particular 

problem while satisfying the requirements and specifications imposed by codes of 

practice. Mathematically these design variables are discrete for most practical design 

problems. In optimization problems with discrete design variables, searching for the 

local or a global optimal solution becomes a difficult task [28]. 

The relation between structural form, stiffness and strength in discrete structures has 

been widely recognized by structural engineers and designers. Such rigid structures 

have higher resistance against deformation and may therefore be considered 

structurally more efficient. 

In structural design weight minimization is a widespread structural design problem, 

in which the structures are subjected to more realistic different constraints, like 

displacements and stresses. These design variables are available in the form of 

continuous or discrete design variables. The use of a continuous design variable in 

structural optimization procedure will lead to obtain a set of non-available cross 

sections and any attempt to substitute those values by the nearest available discrete 

sizes can potentially make the weight is unnecessarily increased or design violated 

[29].
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4.2 Optimization Techniques 

In general, optimization techniques used in structural engineering design can be 

categorized in to three distinct approaches (1) mathematical programming, (2) 

optimality criteria methods and (3) Heuristic search methods. These methods are 

presented in the following sections. 

 

4.2.1 Mathematical programming 

Mathematical programming can be classified into linear and nonlinear programming. 

 

4.2.1.1 Linear programming 

Linear Programming (LP) is a branch of applied mathematics that deals with solving 

optimization problems of a particular form. LP problems consist of a certain number 

of variables in the linear form which is to be minimized or maximized subject to a 

certain number of constraints. To apply linear programming techniques to structural 

optimization, the relationship between the objective function and the constraints to 

the design variables have to be linearized [30]. The main property of LP is that the 

associated constraints and the objective functions are expressed as a linear 

combination of the design variables [31].  

 

4.2.1.2 Nonlinear programming 

In many interesting maximization and minimization problems, the objective function 

may not be a linear function, or some of the constraints may not be linear constraints. 

Such an optimization problem is called a Nonlinear Programming problem (NLP). 

Nonlinear mathematical model is developed for nonlinear unconstrained 
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optimization problems, in the case when linear relation is used to nonlinear model of 

structure errors are inevitable., as shown in Figures 4.1 and 4.2 respectively, 

graphically representation for actual optimization and the linear approximated are 

difference. Where F(x) is the objective function with two design variables   ,    and 

      and       are associated constraints.  

 

 
 

Figure 4.1 Actual optimization problem 

 

 
 

Figure 4.2 Linear approximated problem 

 

4.2.2 Optimality criteria methods 

Optimality criteria methods are developed from indirectly applying the Kuhn-Tucker 

conditions of nonlinear mathematical programming combined with lagrangian 
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multipliers [31]. Typically this method used in case when the number of the 

constraints is much less than the number of the design variables and design variables 

are continuous. There are problems associated with the discretization of a continuous 

solution, the use of a continuous design variable in structural optimization procedure 

will lead to obtain a set of non-available cross sections and it is difficult to transfer it 

to discrete one, also any attempt to substitute those values by the nearest available 

discrete sizes can potentially make the weight is unnecessarily increased or design 

violated [29]. The matched discrete design variables may result in a frame having a 

different structural response, which may not satisfy the required performance 

constraints [31]. 

 

4.2.3 Heuristic search methods 

A heuristic is defined as an optimization problem technique in which the most 

appropriate solution of several found is selected at successive stages of a program for 

further refinement. It provides guidance to reach the most appropriate solution, but in 

the end is not infallible or fully proven [32]. 

 

4.3 Genetic Algorithms 

In this study GA is used so detailed explanation is given for this method. There are 

fascinating algorithms. The name came from the way in which they loosely mimic 

the process of evolution of organisms, where a problem solution stands in for 

organism’s genetic string. Features include a survival of the fittest mechanism in 

which potential solutions in a population are pitted against each other, as well as 

recombination of solutions in mating process and random variations. The incredible 

part is that this heuristic can “evolve” better and better solutions without any deep 
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understanding of the problem itself.  

The introduction of the large-scale digital computers allowed the adaptation of 

classic optimization algorithms to realistic engineering problems, as well as the 

advancement of new and more powerful techniques. The investment of time and 

resources required to develop an optimization capability can be considerable and the 

projected results must justify the costs. 

GAs is the most well-known computational technique based on the principles of 

evolution. They have been recently introduced in the engineering fields and in 

architecture as optimization form generation tools, while their algorithmic processes 

more closely resemble natural evolution than other adaptive search algorithms [33].  

 GAs can be applied to any problem that has these two characteristics: (i) a solution 

can be expressed as a string, and (ii) a value representing the worth of the string can 

be calculated.  

 

4.3.1 GAs versus traditional methods 

GA has a couple of important advantages. They are simple to program and they work 

directly with complete solutions: unlike branch and bound, there is no need for 

estimates or for bounding function.  

GA differs substantially from more traditional search and optimization methods. The 

most significant differences are: 

 A population of points is applied to starting the technique instead of a single 

design point. Then a several points are applied as elect results, GAs is less 

probable to catch confined in a local optimum. 
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 The objective function value only is used by GAs. The mathematical forms 

were not applied in the search process. 

 In GAs the design variables are characterized as a binary string variable which 

in normal genetic is related to the chromosomes. So the method of search is 

normally valid to solve integer and discrete examples dealing with 

programming.  

 The string length can be varied to get any preferred solution, for continuous 

design variables. 

 In normal genetics the objective function value relating to a design function 

plays the role of fitness. 

 

4.3.2 Selection of chromosomes 

At this stage the fittest individuals from the present generation are selected. The 

selection of suitable chromosome is the greatest for the possibility of being chosen 

for reproduction. Thus, the basis selection is on the survival-of-the-fittest approach 

with respect to Darwin’s theory of evolution, but the main theory in choosing the 

best individuals in the population.  

 

4.3.3 Problem definition in genetic algorithm 

The GA is used to solve the following problem. 

To minimize    )(F s                                                                       (4.1) 

Subjected to         m1,.......,j             0(s)g j       
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                     u
ii

l
i sss  , n,2,1,i                                         (4.2) 

Where, s  is the vector of design variables, and )(F s  is the objective function to be 

minimized. l
is  and u

is  are the lower and upper bounds on a typical design variable 

is , j(s)g
  
are the behavioural constraints. 

 

4.3.4 Parameters used in genetic algorithm 

In addition to the main GA operators, there are some parameters. Like chromosomes, 

string length and population size.  

 

4.3.4.1 Chromosomes 

Each chromosome which is represented by the binary alphabet (0, 1) is a legal 

solution to the problem and is composed of a string of genes. According to 

application type, chromosomes may be presented as integer or real numbers.  

 

4.3.4.2 String length 

The string length represents each design variable and determines the size of the space 

search, the longer the string length the bigger the search space. In the traditional GA, 

the strings represents as a fixed length binary string [34].  

 

4.3.4.3 Initial population 

Once a suitable representation has been decided upon for the chromosomes, it is 

necessary to create an initial population to serve as the starting point for the genetic 

algorithm. A randomly-generated initial population is usually of fairly low quality, 
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the genetic algorithm will do much better if provided with a relatively high quality 

initial population, but the initial population must also include a certain amount of 

diversity. The population size depends on the type of encoding and the problem, 

usually recommended between 30 and 100. Population size says how many 

chromosomes are in one generation, if there are only few chromosomes, then GA 

would have a few possibilities to perform crossover and only a small part of search 

space is explored. Research shows that after some limit, it is not useful to increase 

population size, because it does not help in solving the problem faster. 

 

4.3.5 Main operators in basic genetic algorithm 

The existing GAs are founded upon three main principles namely selection, 

crossover and mutation. In each iteration, or generation cycle, these operators are 

applied on a population of possible solutions, or individuals in order to improve their 

fitness [35]. 

 

4.3.5.1 The reproduction operator 

The reproduction is equivalent to “survival of the fittest” contest. It determines not 

only which solutions survive, but how many copies of each of the survivors to make. 

This will be important later during the crossover operation. Main objective of this 

process is to allow the stored information in strings with good fitness values to 

survive into the next generation.  

After the reproduction operation, we have an intermediate population known as the 

mating pool that is ready to mix and mingle, akin to the process of mating and 

reproducing children that share some of the genetic material of each parent. This is 
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the function of the crossover operator. 

Many reproduction operators exist and they all essentially do same thing. They pick 

from current population the strings of above average and insert their multiple copies 

in the mating pool in a probabilistic manner. 

However, in reproduction process the features of parent strings does not change, the 

next generation of solution strings are developed from selected pairs of parent’s 

strings and the application of other explorative operators like crossover and mutation 

[28]. 

 

4.3.5.2 Crossover operator (Recombination) 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to 

produce a new chromosome (offspring), it permits the exchange of genetic material 

between the two individuals involved producing two new points in the optimization 

space [36]. The idea behind crossover is that the new chromosome may be better 

than both of the parents if it takes the best characteristics from each of the parents. 

Crossover selects genes from parent chromosomes and creates a new offspring, 

occurs during evolution according to a user-definable crossover probability. 

This happens as follows: 

1. The reproduction operator selects randomly a pair of two individual strings 

for the mating. 

2. Randomly select a cross site in the solution string. This is the point between 

any two positions in the solution string. 
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3. Swap the ends of the two parent strings, from the crossover point to the end 

of the string, to create two new child strings. 

There are numerous crossover schemes, such as one point crossover, Figure 4.3 two 

point crossovers, Figure 4.4 uniform and multi point crossover, Figure 4.5 It should 

be noted that adding further crossover points reduces the performance of the GA 

[34]. However, an advantage of having more crossover points is that the problem 

space may be searched completely, but problem in adding an additional crossover 

points is that building blocks are more likely to be disrupted. 

 

 
 

Figure 4.3 Single point crossover 
 

 
 

Figure 4.4 Two point crossover 
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Parent1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 

Parent2    1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 

Offspring1 11 12 02 11 11 12 
12 02 01 01 02 11 12 11 11 02 

Offspring2  12 11 01 12 12 01 
01 11 02 02 11 12 01 12 12 01 

Figure 4.5 Uniform crossover 

 

4.3.5.3 The mutation operator 

The mutation is a secondary GA operator. The mutation operator is used to randomly 

alter the values of some of the positions in some of the strings based on a parameter 

that determines the level of mutation.  One common choice is a 1 in 1000 chance of 

mutation. This can be implemented as follows. For each position in each string, 

generate a random integer between 1 and 1000. If this number is 1, then the position 

is chosen for mutation, and is randomly switched to any other possible value. 

Mutation is a vital part of the solution process, and the mutation rate can have a big 

impact on the quality of the final solution. It is even possible (though vastly more 

inefficient) to solve problems using only the mutation operator. 

 

4.3.6 Overview of the fundamental GA operation 

At present, that we have seen the fundamental GA operators, we can place the full 

process with each other. In this place are the necessary steps: 

1. Design the algorithm: select the population magnitude n as well as mutation rate; 

select the operators with the stopping surroundings (further on stopping conditions 

later). 
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2. Randomly generate an initial population (further on generating the initial 

population later) also estimate the fitness value for each string. Set the solution 

through the best value of the fitness function in the initial population. 

3. Apply the reproduction operator to the current population to generate a mating 

pool of size n 

4. Apply the crossover operator to the strings in the mating pool to generate a 

tentative new population of size n. 

5. Apply the mutation operator to the experimental new population to produce the 

last new population. Compute the fitness values of the solution strings in the new 

population also renew the incumbent solution if there is a best solution in this 

population. 

6. If the stopping conditions are met, then exit with the incumbent solution like the 

last solution. In other, respects go to Step 3. 

 

4.3.7 Stopping conditions 

At this stage, the individuals resulting from the process of crossover and mutation are 

inserted into the new population [36].  

The convergence can be done in several ways, depending on the problem. The most 

obvious way is simply to stop when the specified number of generation’s has 

evolved. But perhaps it would be better to stop when there is very little change 

between generations, indicating that the evolutionary process has reached a plateau. 

The genetic process will end if there is no change to the population’s best fitness for 

a specified number of generations, but it is not a good idea to stop, since this does not 
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really measure the amount of ferment going on in the current population. To capture 

this, the genetic algorithm is sometimes stopped when the average population 

solution value has not changed for several generations. However even this measure 

does not always represent the amount of change going on in the current population. 

This is perhaps better represented by a surprising measure: stop when the worst 

solution string fitness in the population has not changed for several generations. It is 

the worst solution value that usually changes the most between generations; when it 

settles down it is usually true that the whole population has settled down so that more 

useful new solutions are unlikely to arise.  

 

4.4 Optimization by Using of SAP2000 

Most of available commercially structural analysis programs are not designed for 

optimization but it will be able to achieve this task with preparing open optimization 

designed code and interfacing them together [2].  

 SAP2000 could export or import analysis and design data with extension data base 

file, Microsoft excel text file and Microsoft access. The interaction with it occurs 

through the input (*$2k) and output files (*out).  

 

SAP2000 structure analysis program is a well-known integrated FE structural 

analysis tool which already used for analysing, modelling and design of structures 

according to different design codes. OAPI in SAP2000 is a programming tool which 

aims to offer efficient access to the analysis and design technology of the SAP2000 

structural analysis software, by allowing, during run-time, a direct bind to be 

established, between a third-party application and the analysis software itself Figure 

4.6. Additionally, through the use of this OAPI, one has the option of developing 
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plug-ins, which extend the program's usability and are totally embedded within the 

SAP2000 environment. In terms of computer programming, the OAPI consists of a 

software library that offers access to a collection of objects and functions capable of 

“remotely” controlling the way that the SAP2000 behaves, thus, overriding the 

standard point-and-click procedure. 

 

 
 

Figure 4.6 Interfacing and typical data flow using the SAP2000 OAPI 

 

4.5 Constraints in Structural Optimization 

The introduction of the large-scale digital computers allowed the adaptation of 

classic optimization algorithms to realistic engineering problems, as well as the 

advancement of new and more powerful techniques to obtain the optimum design of 

structural systems. Most of them deal continuous design variables with simple 

constraints. Only a few of these papers deal with the discrete design variables and 

actual design constraints according to different structural design code [37, 38, and 

39], most of them used optimality criteria methods and mathematical programming 

techniques with continuous design variables as an optimization tool [18]. 
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The optimization algorithms of steel structures subjected to the actual constraints is 

done. These constraints are stress and displacement. 

The AISC-LRFD specification combines strength, stability and displacement 

requirements. Displacement constraints are the allowable interstory drift. These 

constraints are implicit constraints because structural responses like stresses, strains, 

and displacements are functions of design variables [17].  

 

4.5.1 Stress constraints 

Traditionally, structural steel design has been based on allowable stress design ASD, 

in ASD allowable stress of a material is compared to calculated working stress 

resulting from service loads. In 1986, AISC introduced a specification based entirely 

on LRFD for design of structures. In 2005, AISC introduced a unified specification 

in which both methods were incorporated, both based on the nominal strength of a 

member, and this principle is continued in the 2010 Specification [40]. 

 

4.5.1.1 Stress constraints according to LRFD 

According to (AISC-LRFD) specification the allowable stress for members subject to 

bending and axial force are [41]. 
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In equation 4.4 and 4.6 if the axial force is in compression or in tension the terms in 

above equations are 

Pu is the required axial strength (tension or compression); Pn nominal axial strength 

(tension or compression), Mux is the required flexural strength about the minor axis, 

Muy is the required flexural strength about the minor axis, Mnx is the nominal flexural 

strength about the major axis, Mny is  nominal flexural strength about the minor axis, 

(for 2D structures, Muy is equal to zero);  = t resistance factor for tension (equal to 

0.90) 

 =c compression resistance factor and b = flexural resistance reduction factor =0.9. 

The nominal compressive strength of a member is computed as 

crgn FAP .                                                                        (4.7) 

  ycr FλcF .658.0 2                                                                        (4.8)

             

Where λc≤1.5              

ycr F
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F .
877.0
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                                                                           (4.9)

 

For λc>1.5              

                       
E

F

rπ

KL
λ

y
c                                                                   (4.10)                                                                                                                      

 

In which  

Ag is the gross cross-sectional area of a member, K = Effective length factor for 
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braced and un braced member [33]. 

E =modulus of elasticity of a member, r = radius of gyration, L = length of member, 

and F y  = yield stress of steel.  

 

4.5.1.2 Stress constraints according to AISC – allowable stress design 

The members subjected to combined (axial compression and flexural stress 

constraints) taken from AISC (1989) must be sized to meet the following constraints 

[42]. 

)11.4(1.0Α
F

f
Α

F

f

F

f
2

by

by
1

bx

bx

a

a 

                    

 

)12.4(1.0
F

f

F

f

0.6F

f

by

by

bx

bx

y

a 

                                                                    

 





























EY

a

my

EX

a

mx

F

f

C

F

f

C

1

      ,    

1

21

                                                .

 

1.0ΑΑ             0.15
F

f
  21

a

a When  

)13.4(1.0
F

f

F

f

F

f

by

by

bx

bx

a

a                                                                     

 

In the equations (4.11 to 4.13) the subscripts x and y, combined with subscripts b and 

m indicate the axis of bending about which a particular stress or design property 

applies. 

Fa = allowable axial stress under axial compression force only, Fb = allowable 

bending compressive stress that would be permitted if bending moment alone 
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existed, 

EXF , EyF  is the Euler stress divided by a factor of safety of 23/12, fa = (P/A) 

represents computed axial stress, fb is the computed flexural bending stress at the 

point under consideration, and Cm = a coefficient whose value is taken as 0.85 for 

compression members in frames subject to sideway [18]. 

 

For members subjected to both axial tension and bending stresses, 
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In equation (4.14), btf  = computed bending tensile stress, f ta  is the computed axial 

tensile stress, btF  is the allowable bending stress and tF  is the governing allowable 

tensile stress. 

 

4.5.2 Serviceability limit states (displacement constraints) 

The increasing use and reliance on probability based limit states design methods, 

such as the recently adopted AISC- LRFD Specification [41], has concentrated new 

attention on the serviceability problems in steel buildings. These methods, along with 

the development of higher-strength building materials and the use of lighter and less 

rigid building materials, have led to more flexible and lightly damped structures than 

ever before, making serviceability problems more prevalent. 

Lateral frame movement or deflection is usually evaluated for the building as a 

whole, where the applicable parameter is total building drift, which is equal to (D/ H) 

where D is total top-story drift and H is the total structure height, and for each floor 
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of building which is known as inter-story drift, and can be defined as the lateral 

deflection of a floor relative to the one immediately below it divided by the distance 

between floors ((dn–(dn–1)/ h) [43]).  

Where dn is the drift of specified floor and h is equal to height of that floor. 

According to the ASCE report [44], normally allowable accepted ranges for lateral 

displacements are restricted between 1/750–1/250 times the building heights with a 

typical value of H/400 and the normally accepted limits on the inter-story drift is 

1/500–1/200 times the story height with a typical value h/300; where h is the height 

of an story. 

Based on Ellingwood [45] the deflection limits for story are selected as: 

Lateral allowable drift is H/400 for the case of service wind load and H/300 for 

interstory drift.  

 

4.5.3 Fabrication constraints 

The fabrication constraint is that, structure elements are available in the form of 

discrete sections; otherwise the algorithm would not have any practical application.  

The available steel frame sections do not exist on continuous domains based on 

cross-sectional area or strong-axis moment of inertia, structural optimization 

problems are most commonly formulated on discrete variable spaces. In discrete 

formulations, the design variables are not continuous. The standard available steel 

sections are treated as design variables and the stress and displacement constraints 

are taken from the design codes [46]. Traditionally, in design of space moment 

frames, frame members (column and beams) are usually selected W-sections, so a 
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file with different section property is prepared, for beams and columns. For example, 

consider a framed structure, where the structure is subjected to design stress, 

displacement and fabrication constraints the equation of optimization problem may 

be expressed as 

Minimize      )(
1

ii

N

i
iliAW 



                                                          (4.15) 

Subjected to      )()( 
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                                                         (4.16) 

                          )()( ddd
lu                                                            (4.17) 

                          )()( AAA
lu                                                             (4.18) 

Where  , d , A  are stress, displacement and cross sectional area and subscripts u and 

l refer to prescribed upper and lower boundaries of each constraints. 

i          Index number according to fabrication code 

)( iiA 
    

Is the cross sectional area of element i. 
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CHAPTER 5 

NUMERICAL OPTIMIZATION 

5.1 Space Frame Examples 

In this part 3D moment frame examples are optimized under static loads. The 

objective function is weight minimization under stress and displacement constraints 

according to AISC-LRFD specifications, with the 4 load combinations as shown in 

Table 5.1. 

Table 5.1 Load combination case 

Load case Combinations 

Comb1 1.4Dl 

Comb2 1.2Dl+1.6Ll+0.5Rl 

Comb3 1.2Dl+0.5Ll+1.6Rl 

Comb4 1.2Dl+1.3 Wl+0.5Ll+0.5Rl 

 

 

5.1.1 One bay space moment frame 

This example is consist of 8 member space moment frame as shown in the Figure 

5.1, the structure subjected to Live load (Ll= 2.39 kPa) , Dead load (Dl=2.78 kPa), 

Roof live load (Rl= 2.39) kPa and Wind pressure (p) = CeCqqsI. Where p is design 

wind pressure; Ce is combined height, exposure and gust factor coefficient, Cq is 

pressure coefficient is equal to 0.8 and 0.5 for both windward and leeward faces of 

the structure respectively, qs is wind stagnation pressure is equal to 0.785 kPa, and 

the importance factor I=1. The structure is optimized according to AISC- LRFD
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 Specifications, with maximum drift ratio= 0.004 H, where H= total height of 

structure. The members of the frame are divided into three groups as shown in Figure 

5.1. Joint and element numbers as shown in Figure 5.2 (a) and 5.2 (b) wind load act 

in the x-direction at each unrestrained node. Material properties for the frame are: 

Young’s modulus 610200E kN/m
2
, material density 5.78  kN/m

3
, yield stress 

fy=344.8 MPa and modulus of rigidity G=83 GPa. 

 
 

Figure 5.1 One bay space  moment frame 

 

  
(a) (b) 

 

Figure 5.2 Joint number of one bay space  moment frame (a) x= 0 and (b) x= 7m 

 

X 

Z 

Y 

700 cm 
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Discussion of results: In Table 5.2 the optimal values of group design variables and 

weight for the loading combination is considered. The frame was optimized 

previously by Tabu search [46] the results are compared with other references. 

maximum allowable drift is 0.004 H= ±1.8 cm, as shown in the Table 5.3 maximum 

drift for optimized frame is 0.396 cm which less than the allowable top story drift 

Table 5.2 Design variables and weight reduction result 

Group no. 
Design variables  

Degertekin [46] Present work 

1 W16×31 W14×30 

2 W16×26 W14×26 

3 W8×24 W6×15 

Weight(kg) 1678 1425.5 

 

Table 5.3 Joint displacements (m) for all load combinations 

Joint 

No. 

Load 

Combination 
X-direction- Y-direction  Z-direction 

2 Comb1 0.0096 0.0025 -0.3510 

2 Comb2 0.0190 0.0047 -0.6710 

2 Comb3 0.0190 0.0047 -0.6710 

2 Comb4 3.9880 0.0045 -0.4710 

4 Comb1 0.0096 -0.0025 -0.3510 

4 Comb2 0.0190 -0.0047 -0.6710 

4 Comb3 0.0190 -0.0047 -0.6710 

4 Comb4 3.9880 -0.0045 -0.4710 

6 Comb1 -0.0096 0.0025 -0.3510 

6 Comb2 -0.0190 0.0047 -0.6710 

6 Comb3 -0.0190 0.0047 -0.6710 

6 Comb4 3.9610 0.0022 -0.4830 

8 Comb1 -0.0096 -0.0025 -0.3510 

8 Comb2 -0.0190 -0.0047 -0.6710 

8 Comb3 -0.0190 -0.0047 -0.6710 

8 Comb4 3.9610 -0.0022 -0.4830 

. 

5.1.2 Four story space moment frame  

This example deals with four-story space moment frame shown in Figure 5.3, which 



 

59 

is optimized previously by Tabu-search (TS) [46] and Simulated Annealing (AS) 

[47], the frame members are divided in to 10 groups. The groups were organized as 

follows: 1-st group: outer beams of 4-th storey, 2-nd group: outer beams of 3-rd, 2-

nd and 1-st storeys, 3-rd group: inner beams of 4-th storey, 4-th group: inner beams 

of 3-rd, 

2-nd and 1-st storeys, 5-th group: corner columns of 4-th storey, 6-st group: corner 

columns of 3-rd, 2-nd and 1-st storeys, 7-th group: outer columns of 4-th storey, 8-th 

group: outer columns of 3-rd, 2-nd and 1-st storeys, 9-th group: inner columns of 4-

th storey, 10-th group: inner columns of 3-rd, 2-nd and 1-st storeys. The height and 

span lengths of the structure are as shown in Figure 5.4 and 5.5. 

The structure subjected to same design loads of example 2 and wind loads on the x-

direction for both wind ward and leeward sides. The example is optimized under 

LRFD stress constraints and 4.55 cm and 1.52 cm for top and inter-storey drift 

constraints respectively. Material properties for the frame are: Young’s modulus 

610200E kN/m
2
, material density 7850  kg/m

3
, minimum yield stress 

fy=248.2 MPa and modulus of rigidity G=83 GPa. 
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Figure 5.3 Four story space frame with joint numbers 

 

Figure 5.4 Beam of four story moment frame 
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Discussion of results: The 84 element four story moment frames are optimized 

under AISC-LRFD specification for 4 different load combination cases. The result is 

compared with the other references [46 and 47] and shown in Table 5.5 which is 

more close to other references. 

The maximum inter-story drift occurred between joints 39 and 40 is equal to 0.22 cm 

which is less than maximum allowable drift =1.52 cm, and maximum total story 

drifts occurred in joint 40 =1.4 cm see Table 5.6 which is less than the maximum 

allowable top-story drift = 5.54 cm as recommended by reference [46] and [47].  

 

 

 

 

 

Figure 5.5 Side view, of four story space frame 
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Table 5.5 Optimum design variable of four story space frame 

Group no. 
Design variables 

Degertekin [47] Degertekin et al [46] Present Work 

1 W 16×31 W 18×35 W 12×26 

2 W 16×31 W 18×35 W 16×36 

3 W 18×40 W 18×35 W 18×76 

4 W 18×35 W 18×35 W 18×35 

5 W 8×35 W 8×31 W 12×30 

6 W 14×53 W 12×40 W 16×26 

7 W 8×31 W 10×39 W 12×53 

8 W 8×35 W 12×45 W 14×43 

9 W 8×31 W 8×28 W 6×20 

10 W 14×68 W 12×58 W 14×61 

Weight(kg) 22405 23105 22961.2 

 

Table 5.6 Displacement (mm) of four story space frame for all load combinations 

Joint 

No. 

Load 

Combination 
X-direction- Y-direction  Z-direction 

4 Comb1 -0.0150 -0.0043 -1.3070 

4 Comb2 -0.0290 -0.0083 -2.4340 

4 Comb3 -0.0290 -0.0083 -2.4340 

4 Comb4 8.6650 -0.0032 -1.6270 

5 Comb1 0.0490 0.0140 -1.4290 

5 Comb2 0.0930 0.0260 -2.6640 

5 Comb3 0.0930 0.0260 -2.6640 

5 Comb4 10.3450 0.0240 -1.7870 

9 Comb1 -0.0160 0.0000 -1.9000 

9 Comb2 -0.0280 0.0000 -3.5810 

9 Comb3 -0.0280 0.0000 -3.5810 

9 Comb4 12.0670 0.0000 -2.4270 

10 Comb1 0.0290 0.0000 -2.0690 

10 Comb2 0.0570 0.0000 -3.9000 

10 Comb3 0.0570 0.0000 -3.9000 

10 Comb4 14.4190 0.0000 -2.6510 

14 Comb1 -0.0150 0.0043 -1.3070 

14 Comb2 -0.0290 0.0083 -2.4340 
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14 Comb3 -0.0290 0.0083 -2.4340 

14 Comb4 8.6650 0.0032 -1.6270 

15 Comb1 0.0490 -0.0140 -1.4290 

15 Comb2 0.0930 -0.0260 -2.6640 

15 Comb3 0.0930 -0.0260 -2.6640 

15 Comb4 10.3450 -0.0240 -1.7870 

34 Comb1 0.0150 -0.0043 -1.3070 

34 Comb2 0.0290 -0.0083 -2.4340 

34 Comb3 0.0290 -0.0083 -2.4340 

34 Comb4 8.6990 -0.0075 -1.8650 

35 Comb1 -0.0490 0.0140 -1.4290 

35 Comb2 -0.0930 0.0260 -2.6640 

35 Comb3 -0.0930 0.0260 -2.6640 

35 Comb4 10.2030 0.0150 -2.0330 

39 Comb1 0.0160 0.0000 -1.9000 

39 Comb2 0.0280 0.0000 -3.5810 

39 Comb3 0.0280 0.0000 -3.5810 

39 Comb4 12.0890 0.0000 -2.6890 

40 Comb1 -0.0290 0.0000 -2.0690 

40 Comb2 -0.0570 0.0000 -3.9000 

40 Comb3 -0.0570 0.0000 -3.9000 

40 Comb4 14.3300 0.0000 -2.9210 

44 Comb1 0.0150 0.0043 -1.3070 

44 Comb2 0.0290 0.0083 -2.4340 

44 Comb3 0.0290 0.0083 -2.4340 

44 Comb4 8.6990 0.0075 -1.8650 

45 Comb1 -0.0490 -0.0140 -1.4290 

45 Comb2 -0.0930 -0.0260 -2.6640 

45 Comb3 -0.0930 -0.0260 -2.6640 

45 Comb4 10.2030 -0.0150 -2.0330 

 

5.1.3 10 Story space moment frame  

This example deals with 10-storey space moment frame Figure 5.6 with rectangular 

plane as shown in Figure 5.7. The structure is divided in to 9 groups. The groups are 

organized as follows: 1-st group: outer beams of top storey, 2-nd group: inner beam 

of top storey, 3-rd group: outer beams of storeys from 1 to 9, 4-th group: inner beams 

of storeys from 1 to 9, 5-th group: outer and corner columns of 10-th and 9-th 

storeys, 6-th group: outer and corner columns of 8-th and 7-th storeys, 7-th group: 

outer and corner columns of 6-th and 5-th storeys, 8-th group: outer and corner 

columns of 4-th and 3-rd storeys, 9-th group: outer and corner columns of 2-nd and 
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1-st storeys.. The structure is subjected to the same design loads and load 

combinations. The value of qs is 0.622 kPa with wind load in x-direction, the frame 

joints are as shown in Figure 5.8. The maximum allowable drift is restricted to 18.7 

cm. 

 

 
Figure 5.6 10 Story space moment frame 

 

 

Figure 5.7 Plane of 10 story space moment frame 

 



 

65 

 
                                            (a)                                   (b) 

 
Figure 5.8 Joint number of 10 story space moment frame (a) x= 0 and (b) x= 6.5 m 

 

Discussion of results: The 130 element moment frames are optimized under AISC-

LRFD specification for 4 different load combination cases. A minimum weight of 

39970 kg is found. The results are compared with the other references [18] as shown 

in table 5.7 which is more close to them. The maximum displacement occurred in 

joint 66 which is equal to 15.5 cm is less than the maximum allowable top story drift 

= 18.7 cm. as shown in table 5.8 

 

Table 5.7 Optimum design variable of 10 story space moment frame  

Group no. 
Design variables  

Hayalioglu [18] Present Work 

1 W14×26 W 14×30 

2 W12×40 W 14×34 

3 W12×35 W 14×34 
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4 W12×35 W 14×38 

5 W10×22 W 14×53 

6 W12×35 W14×48 

7 W14×68 W 12×53 

8 W14×68 W 12×53 

9 W14×82 W14×74 

Max. Displacement 

(cm) 
18.1 15.5 

Weight(kg) 40976.3 39970 

 

Table 5.8 Joint displacement (mm) for last three storeys  

Joint 

No. 

Load 

Combination 
X-direction- Y-direction  Z-direction 

40 Comb1 0.0009 0.0110 -3.3410 

40 Comb2 0.0018 0.0220 -6.4810 

40 Comb3 0.0018 0.0220 -6.4810 

40 Comb4 115.8760 0.0055 -6.0730 

41 Comb1 -0.0005 -0.0023 -3.7100 

41 Comb2 -0.0011 -0.0047 -7.2000 

41 Comb3 -0.0011 -0.0047 -7.2000 

41 Comb4 130.1010 -0.0140 -6.6760 

42 Comb1 -0.0009 -0.0021 -3.9870 

42 Comb2 -0.0019 -0.0044 -7.7390 

42 Comb3 -0.0019 -0.0044 -7.7390 

42 Comb4 141.3150 -0.0140 -7.1130 

43 Comb1 0.0096 -0.0058 -4.1510 

43 Comb2 0.0200 -0.0120 -8.0620 

43 Comb3 0.0200 -0.0120 -8.0620 

43 Comb4 149.4650 -0.0200 -7.3660 

44 Comb1 -0.0280 0.0380 -4.2300 

44 Comb2 -0.0580 0.0770 -8.2180 

44 Comb3 -0.0580 0.0770 -8.2180 

44 Comb4 155.0430 0.0430 -7.4840 

51 Comb1 0.0016 0.0000 -6.4300 

51 Comb2 0.0032 0.0000 -12.8760 

51 Comb3 0.0032 0.0000 -12.8760 
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51 Comb4 139.0260 0.0000 -10.8320 

52 Comb1 -0.0009 0.0000 -7.1480 

52 Comb2 -0.0018 0.0000 -14.3170 

52 Comb3 -0.0018 0.0000 -14.3170 

52 Comb4 154.8430 0.0000 -11.9500 

53 Comb1 -0.0015 0.0000 -7.6850 

53 Comb2 -0.0032 0.0000 -15.3960 

53 Comb3 -0.0032 0.0000 -15.3960 

53 Comb4 167.2970 0.0000 -12.7690 

54 Comb1 0.0160 0.0000 -8.0090 

54 Comb2 0.0340 0.0000 -16.0480 

54 Comb3 0.0340 0.0000 -16.0480 

54 Comb4 176.4090 0.0000 -13.2520 

55 Comb1 -0.0470 0.0000 -8.1710 

55 Comb2 -0.0990 0.0000 -16.3790 

55 Comb3 -0.0990 0.0000 -16.3790 

55 Comb4 182.6600 0.0000 -13.4920 

62 Comb1 0.0009 -0.0110 -3.3410 

62 Comb2 0.0018 -0.0220 -6.4810 

62 Comb3 0.0018 -0.0220 -6.4810 

62 Comb4 115.8760 -0.0055 -6.0730 

63 Comb1 -0.0005 0.0023 -3.7100 

63 Comb2 -0.0011 0.0047 -7.2000 

63 Comb3 -0.0011 0.0047 -7.2000 

63 Comb4 130.1010 0.0140 -6.6760 

64 Comb1 -0.0009 0.0021 -3.9870 

64 Comb2 -0.0019 0.0044 -7.7390 

64 Comb3 -0.0019 0.0044 -7.7390 

64 Comb4 141.3150 0.0140 -7.1130 

65 Comb1 0.0096 0.0058 -4.1510 

65 Comb2 0.0200 0.0120 -8.0620 

65 Comb3 0.0200 0.0120 -8.0620 

65 Comb4 149.4650 0.0200 -7.3660 

66 Comb1 -0.0280 -0.0380 -4.2300 

66 Comb2 -0.0580 -0.0770 -8.2180 

66 Comb3 -0.0580 -0.0770 -8.2180 

66 Comb4 155.0430 -0.0430 -7.4840 
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CHAPTER 6 

CONCLUSIONS AND FURTHER WORK 

6.1 Conclusions 

This study utilized for optimization performance of frame structures by interfacing 

GA optimization and SAP2000 FE analysis programs. 

The optimization method used is useful creative design aids for structural engineers. 

It allows a reduction in weight and the optimal structures obtained by introducing the 

cross sections as well as their properties according to more actual constraints based 

on some general design codes. 

Design methodology of space moment frame that combines stiffening sizing 

optimization has been an important role in minimizing the amount of material used in 

the construction of the structure for economic point of view.  

Optimization algorithm starts by the implementation of the analysis of the structure. 

A GA-SAP2000 program which uses the FEMs based numerical analysis was 

combined. To achieve size optimization based on genetic algorithm to perform the 

analysis and design of the space frame which is a complex structure in a 3D system. 

The introduction of moment frames as well as section variation leads to a significant 

improvement in the objective function as demonstrated by several examples. 

Several models are analyzed and optimized based on stress and total story drift 

constraints successfully, and the results are compared with the other researches.
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The use of nonlinear finite element SAP2000 commercial program can assist greatly 

in achieving a safe design and is used to check if the applied inner force, member 

groups and elected sections are corresponded specified code and constraints or not. 

However most of these commercial packages have been developed to be used as 

verification rather than the optimization tool, but it is possible to do it by designing 

an optimization code in an open file to achieve this task and interfaced with them. 

 

6.2 Future Work 

 Continued research is allowed for combining with other FEM programs and 

optimization methods. 

Use the GA-SAP2000 optimization technique in the form of parallel computing by 

using more than one computer instead of one to rapid the convergence time. 
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