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ABSTRACT 

The determination of eigenvalues of Klein-Gordon equation with Position 

Dependent Mass (PDMKG) for Exponential Type Potentials 

 

Rasul, Nabaz M. 

M.Sc. in Engineering Physics 

Supervisor: Assoc. Prof. Dr. Eser OLĞAR 
52 pages, January 2013 

 

The bound-state solution of Klein-Gordon equation calculated using Asymtotic 

Iteration Method for some exponential-type scalar and vector potential functions 

such as Morse potential and Wood-Saxon potential. The eigenvalues and 

eigenfunctions of corresponding potentials are obtained for constant mass and for the 

exponential type of position dependent mass functions. Also, the eigenvalues are 

analyzed for pure scalar potential and the vector potential in addition to the equal 

scalar and vector potential with respect to  values. The bound state eigenfunctions 

calculated after the operations are obtained in terms of the confluent hypergeometric 

function using the wave function generator. 
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ÖZ 

 

 

Pozisyona bağlı kütle içeren Klein-Gordon Denkleminin üstel tipi potaniyeller 

için özdeğerinin hesaplanması 

 

Yüksek Lisans Tezi, Fizik Mühendisliği, Gaziantep Üniversitesi 

Danışman: Doç. Dr. Eser OLĞAR 

52 sayfa, Ocak 2013 

 

Klein-Gordon denkleminin bağlı durum çözümleri Asimtotik Ġterasyon Metodu 

kullanılarak Morse potansiyeli ve Wood-Saxon potansiyeli gibi bazı üstel fonksiyon 

tipindeki skaler ve vektörel potansiyelleri için hesaplandı. Ġlgili potansiyellerin enerji 

özdeğerleri ve özfonksiyonları sabit kütle ve konuma bağlı kütle fonksiyonları için 

elde edildi. Ayrıca, özdeğerler  değerlerine bağlı olarak eşit skaler ve vektörel 

potansiyellerine ilaveten salt vektörel ve skaler potansiyel için analiz edildi. 

Ġşlemlerin sonunda elde edilen bağlı durum özfonksiyonları, dalga fonksiyonu 

generatörü kullanılarak konfluent hipergeometrik fonksiyonları cinsinden elde edildi. 

 

 

Anahtar Kelimeler: Pozisyona bağlı kütle içeren Klein-Gordon Denklemi, Enerji 

özdeğerleri, özfonksiyon, Asimptotik Ġterasyon metodu, vektör potansiyel, skaler 

potansiyel, üstel potansiyeller, Wood-Saxon potansiyeli. 
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CHAPTER ONE 

1 INTRODUCTION 

One of the important relativistic equations is the Klein-Gordon (KG) equation or 

sometimes it is called Klein-Fock equation. It is used for spineless particles and it is 

the first result of effort spectral relativity to quantum mechanics due to the consisting 

of negative energy solutions. KG equation is also called the relativistic version of the 

Schrödinger equation. The negative energy solution represents the antimatter 

particles solutions. Nonetheless, the KG equation does have serious restriction. It is 

basically a single equation [1]. 

In literature there have been many studies tackle with a solution of KG equation 

exponential type potentials. In most of these studies, the [2-4] vector and scalar 

potential were considered as equal to each other or pure scalar and pure vector form 

[5-7]. In this study, in order to obey the condition for bound-state solution we 

consider the transformation 𝑆  𝑥 = (𝛽 − 1)𝑉 (𝑥)  [8]. With these choices, there is 

no reason to restrict ourselves for the choices of vector and scalar potential. A huge 

part of this study considers for constant mass [9, 10]. The bound-state solutions for 

exponential potential in one dimension have been reported [11-15]. 

In addition to the constant mass solution, position mass applications have a wide 

range in physics. For example impurities in crystal [16-18, 23, 40, 71], the relation of 

nuclear forces to the relative velocity of two nucleons [19, 20] the electrostatic 

properties of quantum wells and quantum dots [21], 𝐻𝑒 clusters [22], quantum 

liquids [23] and semiconductor heterostructures [24].   
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In this we especially focus on the solution of Wood-Saxon potential [25]. This 

potential was introduced study the elastic scattering of 20 Mev proton heavy nuclei. 

The Wood-Saxon potential is a reasonable potential for nuclear shell model and a 

short-range potential. Due to these properties it has a great popularity in nuclear 

physics [26-35] and it is widely used in nuclear, particle, atomic, condensed   matter 

and chemical physics [36, 37]. Recently, the relativistic and non relativistic solutions 

are solved for Wood-Saxon potentials with different methods [38-45]. 

Various methods have been used to obtain the energy eigenvalues and eigenfunction 

for relativistic KG and Dirac equation. These are the super symmetric quantum 

mechanics method [46, 47], Lie algebraic method [48], transformation method [44], 

Nikiforov-Uvarov method [49], series expansion method [46], and function analysis 

method [50]. 

In order to solve the spectrum of same exponential potential forms, in this study we 

use the Asymptotic Iteration method [51] that is introduced to solve second order 

homogeneous differential equation. In the last decade the [AIM] has an increasing 

attention to solving the spectrum of physical systems in both relativistic [52-56] and 

non-relativistic [57] quantum mechanics. 

The organization of the thesis is arranged as follows: The derivation of the KG 

equation in the presence of both vector and scalar potentials is outlined. Additionally, 

there is short definition of Wood-Saxon potential with graphs.  

Chapter 3 deals with the formulation of AIM method to calculate eigenvalues and 

eigenfunction with arbitrary function s0 x  and 0 x . 
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The main part of this thesis is the Chapter 4. It consists of all applications of 

exponential potential in KG with constant and effective mass cases. The eigenvalues 

and eigenfunctions are discussed in accord to the adjusting parameter 𝛽. 

Finally, the last chapter is devoted to the main results of this thesis. 
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CHAPTER 2 

2 KLEIN-GORDON EQUATION 

The Klein-Gordon equation (Klein-Fock-Gordon equation or sometimes Klein-

Gordon-Fock equation) describes a particle with spin 0, which limits its usefulness 

[58]. It is the relativistic version of the Schrödinger equation, which is used to 

describe spin less particles. However, this equation was named after the physicists 

Oskar Klein and Walter Gordon, who in 1927 proposed that it describes relativistic 

electrons [59]. These relativistic equations contain two objects, the vector V(x) and 

scalar potential S(x) [60]. 

2.1 Derivation  of Klein-Gordon Equation  

The Klein-Gordon equation is derived from two types which are from the special 

relativity from and from the quantum mechanical form. The relativistic form deals 

with the relativistic relation between energy, mass, and momentum derived by 

Einstein. And the other form deals with the promotion of measurable quantities 

(observable) to mathematical operators in quantum mechanics.) 

Consider first of all, non-relativistic the Schrödinger equation in the case of one 

spatial dimension as. 

𝐸(ѱ) = −
ℏ2𝜕2ѱ

2𝑚 𝜕 𝑥2
+ 𝑉 ѱ (2.1) 

energy variable 𝐸  is defined in terms of linear momentum as 

𝐸 =  𝑝2 𝑐2 +𝑚2 𝑐4 (2.2) 
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Where 𝐸 is the energy, 𝑝 is the momentum 𝑐 is the speed of light and  𝑚 is the mass 

of the particle. ѱ (𝑥) represents the wave function in one dimension and 𝑉 represents 

the potential. The  

From relation of 𝐸 it is possible to reach the K.G equation. Now, let focus on 

Eq.(2.1) by considering observable mathematical operators for 𝐸and 𝑝. The 

Schrödinger equation can be thought of as a statement of the non-relativistic 

definition of energy. Then instead of constant energy value, the operator form of 𝐸 

takes form as 

𝐸 ѱ = −
ℏ2𝜕2ѱ

2𝑚 𝜕 𝑥2
+ 𝑉 ѱ (2.3) 

where 𝐸 is the energy, ѱ is the wave function, 𝑉 is the potential, and 𝑚 is the mass 

𝜕2ѱ

 𝜕  𝑥2 is the second-order derivative with respect to the spatial coordinate . The 

Schrödinger equation can be thought of as a statement of the non relativistic 

definition of energy  

𝐸 → 𝑖ℏ
𝜕

𝜕𝑡   
 . (2.4) 

That is in ordinary quantum mechanics, momentum 𝑝 is given by a derivative form 

with respect to 𝑥  as,  

𝑝 → − 𝑖ℏ
𝜕

𝜕𝑥  
 (2.5) 

The three dimensional of the 𝑝 is  

𝑝 →  −𝑖ℏ 𝛻 (2.6) 

After giving the corresponding operators, substituting these operators into Einstein 

relation for energy, momentum, and mass Eq. (2.2) and apply it to a wave function 𝜑 

we get in operator form 
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𝐸2 → −ℏ2
𝜕2

𝜕𝑡2  
 

, 

𝑝2 →  −𝑖ℏ2 𝛻2 

and  

−ℏ2
𝜕2

𝜕𝑡2  
 

= −ℏ2𝑐2 𝛻2 +𝑚2𝑐4  (2.7) 

 

 

The operator form equation is not useful. If we consider the wave function depends 

time  ѱ = ѱ  𝑥     , 𝑡 , the equation in operator for K.G equation is transformed to   

ℏ2
𝜕2ѱ

𝜕𝑡2  
 

− ℏ2𝑐2 𝛻2ѱ +𝑚2𝑐4ѱ = 0 (2.8) 

When ℏ = 𝑐 = 1, in particle physics it will be typed in units, 

𝜕2ѱ

𝜕𝑡2  
 

−  𝛻2ѱ +𝑚2ѱ = 0 (2.9) 

Simplify the appearance of the equation a little further by using different notation. 

In fact write it in two different ways. The first is to recall the D’Alembertian 

operator in Minkowski space as  

□ =
𝜕2

𝜕𝑡2  
 

−  𝛻2 

Then Eq. (2.9) is written as following with substituting □ 

 □ +𝑚2 𝜑 = 0 

where □ is a relativistic invariant, that is, it is the same in all inertial reference frames 

because it transforms as a scalar.  

Since the mass   𝑚 is the scalar so the operator given by  

□ +𝑚2 
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is also a scalar. The Klein-Gordon equation will be covariant provided that the 𝜑 

which interprets later as a field also transforms as a scalar. It is possible to write the 

coordinates, 

𝑥 ′ 𝜇 = Λ
𝜇
𝑣𝑥

𝑣  ( 2.10) 

where Λ  is the Lorentz transformation, allows to transform between different inertial 

reference frames. An inertial reference frame  𝑥 ′ 𝜇  moves along the 𝑥 axis with 

respect to another inertial reference frame 𝑥𝜇  with speed 𝑣 < 𝑐. 

Under a Lorentz transformation, if a field 𝜑  𝑥   is a scalar field, then it transforms 

us  

𝜑  𝑥 = 𝜑(Λ
−1𝑥) (2.11) 

It is applied to scalar particle (actual scalar field) and these particles are spin-0 

particle, which is the first important characteristic of the Klein-Gordon equation . 

Eq. (2.7) can be written in a nice, compact style using the notation developed using 

𝜕𝜇 𝜕𝜇 =
𝜕2

𝜕𝑡2   
−  𝛻2,  it becomes                                          

 𝜕𝜇 𝜕𝜇 +𝑚2 = 0 (2.12) 

Eq. (2.11) describes a free particle solution is given by  

𝜑  𝑥     , 𝑡 = 𝑒−𝑖𝑝 .𝑥  

 By applying special relativity, here so 𝑝 and 𝑥 are 4-vectors given by 𝑝 =  𝐸,𝑝        

and 𝑥 = ( 𝑡, 𝑥     ),  respectively . The scalar product in the exponent is  

𝑝. 𝑥 =  𝑝𝜇 𝑥𝜇 = 𝐸𝑡 − 𝑝      . 𝑥      (2.13) 

The free particle solution implies the relativistic relation between energy, mass, and 

momentum. This is very easy to show, so let’s do it. For simplicity, only one spatial 

dimension is considered. Since  
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𝜕𝜓

𝜕𝑡 
 

=
𝜕

𝜕𝑡 
 

𝑒−𝑖 𝐸𝑡−𝑝𝑥  = −𝑖𝐸𝑒−𝑖 𝐸𝑡−𝑝𝑥  = −𝑖𝐸𝜓 

𝜕𝜓

𝜕𝑡 
 

=
𝜕

𝜕𝑡 
 

𝑒−𝑖 𝐸𝑡−𝑝𝑥  = −𝑖𝑝𝑒−𝑖 𝐸𝑡−𝑝𝑥  = −𝑖𝑝𝜓 

𝜕2𝜓

𝜕𝑡2  
 

−
𝜕2𝜓

𝜕𝑥2  
 

= −𝑖𝐸𝜓 + 𝑝2𝜓 

Therefore, by applying the full Klein-Gordon equation, Eq. (2.8) can be written as 

(𝐸2 − 𝑝2)𝜓 = 𝑚2𝜓 

countermand the wave function and rearranging terms gives 𝐸2 = 𝑝2 +𝑚2, the 

favorable result. Solving for the energy, the square root is taken, existence careful to 

locate both positive and negative square roots. 

𝐸 = ∓ 𝑝2 +𝑚2 (2.14) 

This is dramatic result which is one reason Schrödinger discarded the Klein-Gordon 

equation. The solution for the energy of the particle tells us that it is possible to have 

both positive and negative energy states, a nonphysical result [61]. 

       The vector and scalar couplings mentioned above introduce potential 

interactions by mapping the free KG equations above into following  

 −  𝑖
𝜕

𝜕𝑡
− 𝑉 𝑥  

2

−
𝜕2

𝜕𝑥2
+  𝑆 𝑥 +𝑚 2 𝑓𝐾𝐺 𝑥 = 0 (2.15) 

When we simplify the equation, it turns most common using the form in this thesis 

𝜕2𝑓

𝜕𝑥2
+ (𝐸 − 𝑉(𝑥))2𝑓 − (𝑚 𝑥 + 𝑆(𝑥))2𝑓 = 0. (2.16) 

The radial wavefunction for Eq. (2.15) is expressed as 𝜓 𝑥 =
𝑓(𝑥)

𝑥
 . Rearranging the 

last equation with effective potential 𝑉𝑒𝑓𝑓  𝑥  yields the equation form 

𝜕2𝑓(𝑥)

𝜕𝑥2
+ 𝑉𝑒𝑓𝑓  𝑥 𝑓(𝑥) = 0 (2.17) 
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where  

      𝑉𝑒𝑓𝑓 = 𝐸2 −𝑚2 +  𝑉2 𝑥 − 𝑆2 𝑥  − [𝑚𝑆 𝑥 + 𝐸𝑉(𝑥)] 

When we focus on effective potential, it has seen that the effective potential is energy 

dependent potential and the K.G is reduced to the Schrödinger-like equation form. 

2.2 Woods−Saxon Potential 

A basic problem in the nuclear physics is the motion of the free electrons which have 

a conclusive influx on the abundance of metal inflorescence. These electrons are 

moving in well defined orbits, around the central nucleus and in a mean field 

potential which is produced by the positively charged ions and the rest of the 

electrons. In the mean field potential, the details of the potential are described by 

three parameters such as depth, width and the slope of the potential, which have to be 

fitted to experimental observation. Therefore, a mean field potential is always 

empirical and its an example can be given as the Woods − Saxon potential [25]. 

𝑉 𝑟 =
−𝑉0

1 + 𝑒  
𝑟  − 𝑅0
𝑎

  
 

 

where 𝑉 is the potential depth, 𝑅0  is the width of the potential and its diffuseness 

and 𝑎 is the surface thickness which is usually adjusted to the experimental values of 

ionization energies. 
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Figure 3.1 Woods–Saxon potential for A = 50, relative to V0 with a = 0.5 fm 

In Figure 3.1,  𝑉0 (having dimension of energy) represents the potential well depth, 𝑎 

is a long representing the "surface thickness" of the nucleus, and 𝑅 =
𝑟0  A1  

3
 is the 

nuclear radius where 𝑟0 =  1.25 FM and A is the mass number. 
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CHAPTER 3 

3 THE ASYMTOTIC ITERATION METHOD 

The asymptotic iteration method was presented [63] to get exact and approximate 

solutions of eigenvalue equations [64]. The solve Schrödinger equations first step in 

applying this method is to transform these equations, with the aid of appropriate 

asymptotic forms, to second-order homogeneous linear differential equations of the 

general form. 

In this chapter, the asymptotic iteration method is used for obtaining the 

corresponding spectrum for PDMKG. In addition to the formalism of AIM for 

second order differential equations, also the method is derived to the first order 

differential equations. 

 

3.1 The Asymptotic Iterative Method 

In this part, give a brief delineation of the AIM; particularity of the method can be 

obtained [63]. Let assume, we wish to solve the homogeneous linear second-order 

differential equation of form 

𝑦 ′′ = 𝜆0 𝑥 𝑦
′ + 𝑠0(𝑥)𝑦 (3.1) 

For which 𝜆0 𝑥  and 𝑠0 𝑥  are functions in 𝐶∞(𝑎, 𝑏). Here primes denote the 

derivatives with respect to 𝑥. A key feature of AIM is to note the invariant structure 
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of the right-hand side of Eq. (3.1) under further differentiation. Indeed, if  Eq. (3.1) 

differentiate with respect to x, it can be found that  

𝑦 ′′′ = 𝜆1 𝑥 𝑦
′ + 𝑠1(𝑥)𝑦 (3.2) 

where 

𝜆1(𝑥) = 𝜆0
′ (𝑥) + 𝑠0(𝑥) + 𝜆0

2(𝑥) 

 𝑠1 𝑥 = 𝑠0
′  𝑥 + 𝑠0 𝑥 𝜆0 𝑥  

The derivative of the equation introduced in (3.2) yields 

𝑦 ′′′′ = 𝜆2 𝑥 𝑦
′ + 𝑠2(𝑥)𝑦 (3.3) 

for which 

𝜆2 𝑥 = 𝜆1
′  𝑥 + 𝑠1 𝑥 + 𝜆0 𝑥 𝜆1 𝑥  

and 

𝑠2(𝑥) = 𝑠1
′ (𝑥) + 𝑠0(𝑥)𝜆1(𝑥) 

Thus, generalizing for the (𝑛 + 1)𝑡ℎ  and (𝑛 + 2)𝑡ℎ  derivatives of (3.1), 𝑛 =

1, 2 ,3,….. , we get a relation of form  

𝑦(𝑛+1) = 𝜆𝑛−1 𝑥 𝑦
′ + 𝑠𝑛−1(𝑥)𝑦 (3.4a) 

 

𝑦(𝑛+2) = 𝜆𝑛 𝑥 𝑦
′ + 𝑠𝑛(𝑥)𝑦 (3.4b) 

with the important relation 

𝜆𝑛(𝑥) = 𝜆𝑛−1
′ (𝑥) + 𝑠𝑛−1(𝑥) + 𝜆0(𝑥)𝜆𝑛−1(𝑥) (3.5a) 

𝑠𝑛 𝑥 = 𝑠𝑛−1
′  𝑥 + 𝑠0 𝑥 𝜆𝑛−1 𝑥 . (3.5b) 

From the ratio of the (𝑛 + 2)𝑡ℎ  and (𝑛 + 1)𝑡ℎ  derivative, the Eq. (3.4) will be 

transformed to 

𝑑

𝑑𝑥
𝑙𝑛 𝑦 𝑛+1  =

𝑦(𝑛+2)

𝑦(𝑛+1)
=

𝜆𝑛(𝑥)(𝑦′ +
𝑠𝑛(𝑥)
𝜆𝑛(𝑥)

𝑦)

𝜆𝑛−1(𝑥)(𝑦′ +
𝑠𝑛−1(𝑥)

𝜆𝑛−1(𝑥)
𝑦)

 (3.4) 
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For a sufficiently large n, there is the following asymptotic expression  

𝑠𝑛(𝑥)

𝜆𝑛(𝑥)
=
𝑠𝑛−1(𝑥)

𝜆𝑛−1(𝑥)
= 𝛼 𝑥  (3.5) 

with the termination condition given as 

 ∆𝑘 𝑥 =  
𝑠𝑛(𝑥) 𝜆𝑛(𝑥)
𝑠𝑛−1(𝑥) 𝜆𝑛−1(𝑥)

 = 𝜆𝑛−1 𝑥 𝑠𝑛 𝑥 − 𝜆𝑛(𝑥)𝑠𝑛−1 𝑥  (3.6) 

𝑘 = 1,2,3,…  

Also note that the energy eigenvalues are obtained from the roots of the equation 

(3.3) if the problem is exactly solvable. However, for a specific n principal quantum 

number, a suitable 𝑥0 point will be chosen, determined generally as the maximum 

value of the asymptotes wave function or the minimum value of the potential [64]. 

Also the approximate energy eigenvalues are obtained from the roots of this equation 

for sufficiently great values of k with iteration. Using Eq. (3.6), Eq. (3.4) reduces to 

𝑑

𝑑𝑥
𝑙𝑛 𝑦𝑛+1 =

𝜆𝑛(𝑥)

𝜆𝑛−1(𝑥)
 (3.7) 

which yields 

𝑦 𝑛+1  𝑥 = 𝐶1 Exp    
𝜆𝑛 𝑡 

𝜆𝑛−1
𝑑𝑡 = 𝐶1𝜆𝑛−1 Exp ( (𝛼 + 𝜆0)𝑑𝑡) (3.8) 

Note that, the relations (3.5a), ( 3.5b) and (3.5)  have been used in obtaining the right 

hand side of Eq. (3.8) and C1 is the integration constant. By substituting Eq. (3.8) 

into Eq. (3.4a), we have the first order differential equation 

𝑦′ + 𝛼𝑦 = 𝐶1Exp( 𝛼 + 𝜆0)𝑑𝑡) (3.9) 

By solving Eq. (3.9), it is possible to obtain the general solution to Eq. (3.1) as 

follows 
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𝑦 𝑥 = Exp  − 𝛼 𝑑𝑡  𝐶2 + 𝐶1  Exp    𝜆0 𝜏 + 2𝛼 𝜏  𝑑𝜏 𝑑𝑡  (3.10) 

For a given potential, the radial Klein-Gordon equation is converted to the form of 

Eq. (3.1). Then, 𝑠0(𝑥) and 𝜆0(𝑥) are determined and 𝑠𝑘 𝑥  and 𝜆𝑘 𝑥  parameters are 

calculated by the recurrence relations given by (3.5a), and (3.5b). The termination 

condition of the method in (3.5) can be arranged as 

 

 ∆𝑘 𝑥 = 𝜆𝑘 𝑥 𝑠𝑘−1 𝑥 − 𝜆𝑘−1(𝑥)𝑠𝑘 𝑥  (3.11) 

where 𝑘 shows the iteration number. For the exactly solvable potentials, the energy 

eigenvalues are obtained from the roots of Eq. (3.11) and the radial quantum number 

n is equal to the iteration number 𝑘 in this case. For nontrivial potentials that have no 

exact solutions, for a specific n principal quantum number, a suitable 𝑥0 point should 

be used, determined generally as the maximum value of the asymptotic wave 

function or the minimum value of the potential [65-69] and the approximate energy 

eigenvalues are obtained from the roots of Eq. (3.11) for sufficiently great values of 

k with iteration for which 𝑘 is always greater than n in these numerical solutions. 

The general solution of Eq. (3.1) is given by (10). The first part of Eq. (10) gives us 

the polynomial solutions that are converging and physical, whereas the second part 

of Eq. (10) gives us non-physical solutions that are divergent. However Eq. (10) is 

the general solution of Eq. (3.1), the coefficient of the second part 𝑐1 = 0 zero is 

taken, in order to find the square integrable solutions. Hence, the corresponding 

eigenfunctions can be derived from the following wave function generator for 

exactly solvable potentials 

𝑦 𝑥 = 𝐶2e− 𝛼𝑑𝑡  



 

15 

 

3.2  Calculation of eigenfunction 

This part, consists of obtaining the eigenfunction by using AIM. The second-order 

differential equation is considered as [70] 

𝑦′′ = 2 𝑡 𝑥 𝑝 𝑥 −
 𝑚 + 1 

𝑥
 𝑦′ − 𝑤 𝑝 𝑥 𝑦, (3.12) 

where 𝑡, 𝑚 and 𝑤 are arbitrary constants. This equation has on exact solution under 

some conditions related with polynomial function 𝑝(𝑥). To get exact result, the 

eq(3.12) has to be second order form as introduced by the outhors in [70].  

y′′ = 2 
𝑡 𝑥𝑁

1− 𝑏𝑥𝑁+2
−
 𝑚 + 1 

𝑥
 𝑦′ −

𝑤𝑥𝑁

1 − 𝑏𝑥𝑁+2
𝑦. (3.13) 

By using AIM, this second order differential equation form produceds 

𝜆0 𝑥 = 2(
𝑎𝑥𝑁+1

1−𝑏𝑥𝑁+2 −
 𝑚+1 

𝑥
)  and  𝑠0 𝑥 = −

𝑤𝑥𝑁

1−𝑏𝑥𝑁+2                               (3.14) 

Using the wave function generator, we reach to the general formula for the exact 

solution 𝑦0 𝑥   as 

𝑦𝑛 𝑥 =  −1 𝑛𝑐2 𝑁 + 3 𝑛 𝜌 𝑛  2𝐹1 −𝑛,𝜌 + 𝑛;  𝜌; 𝑏 𝑥𝑁+2                                         (3.15) 

where the following parameters have been used  

(𝜌)𝑛 =
ᴦ 𝜌 + 𝑛 

ᴦ(𝛼)
 

𝜎 =
2𝑚 + 𝑁 + 3

𝑁 + 2
 

𝜌 =
(2𝑚 + 1)𝑏 + 2𝑎

 𝑁 + 2 𝑏
 

In this equation, the Gauss hypergeometric function 2𝐹1 is defined  

.2 𝑓1 −n, b; c; y =  
 −n k(b)k

(c)k

n

k=0

yn  (3.16) 

for give n degree polynomial function in y. 
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CHAPTER 4 

4 APPLICATION OF  AIM  FOR KLEIN-GORDON EQUATION  

In this chapter, the bound-state solution of KG equation is outlined when the mass is 

constant and it is spatially dependent mass. To get bound-state solution, the 

relationship between scalar potential and vector potential is examined by the form 

introduced in [8]. The energy and wavefunctions of corresponding potentials are 

calculated subsequently.  

4.1  Bound-State Solutions. 

Bound-state solution of KG equation is obtained when the relationship between 

vector and scalar potentials is given as S(x) ≥ V(x)  with S(x) =  𝛽 − 1 V(x).The 

KG equation without taking ћ = 𝑐 = 𝑚 = 1,  is introduce [25] as  

(
𝑑2ѱ

𝑑𝑥2
+
 𝐸𝑛 − 𝑉 

2 −  𝑐2𝑚 + 𝑆 2

𝑐2ћ
2 )ѱ(𝑥) = 0 (4.1) 

by substituting the scalar potentials as   𝛽 − 1 V(x) , in to eq (4.1)                   

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑉𝑒𝑓𝑓  𝑥 𝜓(𝑥) = 0 (4.2)            

where  

      𝑉𝑒𝑓𝑓 =
1

𝑐2ћ
2  𝐸

2 −𝑚2𝑐2 +  2𝑚 − 2𝐸 − 2𝛽𝑚 𝑉 + 𝑉2 𝑥  2𝛽− 𝛽2  . 

The last effective potential states that the effective potential is energy dependent 

potentials. In this case, the KG has a real bound-state solution under this condition
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If 𝑆(𝑥) = 𝑉(𝑥) (when 𝛽 = 2) the KG equation is reduced to the Schrödinger 

equation forms. By using this formula for scalar potential, we can and adjust the 

constant 𝛽 > 2 for real bound-state. In the following section, we consider the mass 

for exponential function, as a constant mass and position dependent mass. 

4.2 Constant- Mass Applications  

4.2.1  𝑽 = 𝑽𝟎ⅇ
−𝜶𝒙 case 

First of all, we take the vector potential V = V0e−αx   and after substituting in to 

Eq.(4.1), we get  

ѱ′′(𝑥) +  𝑒−𝑥𝛼    
 −2𝐸𝑛𝑉0 + 2𝑐2𝑚0𝑉0 − 2𝛽𝑐2𝑚0𝑉0 

𝑐2ћ
2  

+ 𝑒−2𝑥𝛼    
 2𝑏𝑉0

2 − 𝛽2𝑉0
2 

𝑐2ћ
2 +

𝐸𝑛
2 − 𝑐4𝑚0

2

𝑐2ћ
2

  ѱ(𝑥) = 0 

(4.3)                                           

The resulted potential form is similar with the Morse potential for different constants. 

By changing the variables   𝑦 = ⅇ−𝑥𝛼  , the Eq. (4.3) reduces to    

𝑦2𝛼2ѱ′′ 𝑦 + 𝑦𝛼2ѱ′(𝑦)

+  
𝐸𝑛

2 − 𝑐4m0
2

𝑐2ћ
2 +

 −2𝐸𝑛V0 + 2𝑐2m0V0 − 2𝛽𝑐2m0V0 𝑦

𝑐2ћ
2

+
 2𝛽V0

2 − 𝛽2V0
2 𝑦2

𝑐2ћ
2

 ѱ(𝑦) = 0. 

(4.4) 

 

After same algebraic arrangement, we get a second order differential equation in the 

form of           

ѱ′′  𝑦 +
ѱ′(𝑦)

y
+  

−ξ2 − b2
2y− b1

2𝑦2

𝑦2𝛼2
 ѱ 𝑦 = 0 (4.5) 

where  
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−ξ2 =
𝐸𝑛

2 − 𝑐4m0
2

𝑐2ћ2
   

−b2
2 =

 −2𝐸𝑛V0 + 2𝑐2m0V0 − 2𝛽𝑐2m0V0 

𝑐2ћ2
 

−  b1
2 =

 2𝛽V0
2 − 𝛽2V0

2 

𝑐2ћ
2  

At this point, we have to propose the wave function since the Eq. (4.5) should be 

transformed to the form introduction in second order differential form. The wave 

function should be satisfied the boundary conditions i.e., when 𝑦 goes to zero, 

ѱ(0)~𝑠 proportional to 𝑒𝑏1𝑦 𝛼 .  Hence, the physical wave functions for KG equation 

is proposed as    

ѱ(y) = 𝑦ξ 𝛼 (eb1𝑦 𝛼 )𝑓(𝑦) (4.6)                                                                                  

Substituting Eq. (4.6) into Eq.(4.5) yields to the equation from of  

𝑓 ′′ (𝑦) = −
1

𝑦𝛼
 2𝜉 + 2𝑏1𝑦 + 𝛼 𝑓 ′(𝑦) +

1

𝑦𝛼2
 𝑏2

2 − 𝑏1 2𝜉 − 𝛼  𝑓
′(𝑦) (4.7) 

  which is transformed to the form of differential equation to be solved by AIM. By 

comparing the Eq. (4.7) and Eq. (3.1), we easily obtained the function   λ0(y) and 

𝑠0(𝑦) as  

λ0 = −
2ξ + 2b1𝑦 + 𝛼

𝑦𝛼
 

s0 =
b2

2 − b1(2ξ+ 𝛼)

𝑦𝛼2
 

With the aid of  𝜆0(𝑦) and 𝑠0(𝑦), we may calculate   𝜆𝑛(𝑦) and 𝑠𝑛(𝑦) by means of 

Eq.  (3.5b) and Eq.  (3.5a) 

𝜆1 =
4𝜉2 + 𝑏2

2𝑦 + 4𝑏1
2𝑦2 + 3𝑏1𝑦𝛼 + 2𝛼2 + 6𝜉(𝑏1𝑦 + 𝛼)

𝑦2𝛼2
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s1 =
2(ξ + b1𝑦 + 𝛼)(−b2

2 + b1(2ξ+ 𝛼))

𝑦2𝛼3
 

λ2 = −
1

𝑦3𝛼3
2(4ξ3 + 4b1

3𝑦3 + 2b2
2𝑦𝛼 + 4b1

2𝑦2𝛼 + 3𝛼3 + 4ξ2(2b1𝑦 + 3𝛼)

+ 2b1𝑦(b2
2𝑦 + 2𝛼2) + ξ(2b2

2𝑦 + 8b1
2𝑦2 + 12b1𝑦𝛼

+ 11𝛼2)) 

  

s2 =
1

𝑦3𝛼4
(4ξ2 + b2

2𝑦 + 6b1ξ𝑦 + 4b1
2𝑦2 + 10ξ𝛼 + 5b1𝑦𝛼 + 6𝛼2)(b2

2 − b1(2ξ

+ 𝛼)) 

λ3 =
1

𝑦4𝛼4
(16ξ4 + b2

4𝑦2 + 16b1
4𝑦4 + 20b1

3𝑦3𝛼 + 27b1
2𝑦2𝛼2 + 30b1𝑦𝛼

3

+ 24𝛼4 + 40ξ3(b1𝑦 + 2𝛼) + 2b2
2𝑦(6b1

2𝑦2 + 10b1𝑦𝛼 + 9𝛼2)

+ 4ξ2(3b2
2𝑦 + 13b1

2𝑦2 + 30b1𝑦𝛼 + 35𝛼2) + 10ξ(4b1
3𝑦3

+ 3b2
2𝑦𝛼 + 8b1

2𝑦2𝛼 + 10𝛼3 + b1𝑦(2b2
2𝑦 + 11𝛼2))) 

s3 = −
1

𝑦4𝛼5
2(b2

2 − b1(2ξ+ 𝛼))(4ξ3 + 4b1
3𝑦3 + 6b1

2𝑦2𝛼 + 2ξ2(4b1𝑦 + 9𝛼)

+ 3𝛼(b2
2𝑦 + 4𝛼2) + b1𝑦(2b2

2𝑦 + 9𝛼2) + 2ξ(b2
2𝑦 + 4b1

2𝑦2

+ 9b1𝑦𝛼 + 13𝛼2)) 

….ect. 

Combining with quantization condition, we get the values of   ξ  for each  𝑛 

λ0

s0
=
λ1

s1
⇒ ξ0 =

b2
2 − 1b1𝛼

2b1
 

λ1

s1
=
λ2

s2
⇒ ξ1 =

b2
2 − 3b1𝛼

2b1
 

λ2

s2
=
λ3

s3
⇒ ξ2 =

b2
2 − 5b1𝛼

2b1
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λ3

s3
=
λ4

s4
⇒ ξ3 =

b2
2 − 7b1𝛼

2b1
 

……………………. 

 

Generalizing these ξ expressions, we can get the general formula for ξ   

ξn =
b2

2 − (2n + 1)b1𝛼

2b1
 

And using the parameters introduced for  𝜉 , b1 and  b2 , one can obtain  

𝐸𝑛
2 −m0

2𝑐4 = −𝑐2ћ2  
b2

2 −  2n + 1 b1𝛼

2b1
        (4.8) 

thus 

𝐸𝑛 = ± m0
2𝑐4 −

𝑐2ћ2

2b1
(b2

2 −  2n + 1 b1𝛼) (4.9) 

4.2.1.1 Obtaining Wave functions 

The corresponding eigenfunction for the Morse potential is obtained by using the 

wave function generator given by the equation, it yields  

𝑓𝑛 𝑟 = Exp (− 
𝑠𝑘
𝜆𝑘

𝑟

 

 𝑑𝑟) 

where 𝑛 represents the radial quantum number. By this procedure, the first few 𝑓(𝑟) 

functions are 

𝑓0   y = 1, 

𝑓1  y =  2b2 − b1
2 

 

 
 

1 −
2b2y

 
b1

2 − 3b2

b2
− 1 

 

 
 

, 
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𝑓2  y =  b1
2 − 4b2  b1

2 − 3b2 (1−
4b2y

 
b1

2 − 5b2

b2
− 1 

+
4b2

2y2

 
b1

2 − 5b2

b2
− 1  

b1
2 − 5b2

b2
− 2 

 

…..etc. 

Using the properties of hypergeometric function, we can write the general formula 

for wave functions form the given function for λ0 and  𝑠0  as 

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

For this formula, substituting y to the radial wave function, we get  

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 ⅇ

−𝑥𝛼 ξn  e−b2ⅇ
−𝑥𝛼

,  2𝐹1 −𝑛, 2ξn

2n−1

k=n

+ 1; 2 b2ⅇ
−𝑥𝛼  . 

4.2.2 𝑽 = 𝑽𝟎ⅇ
𝒙𝜶 case 

When we take the potential in the form of V = V0eαx , and substituting  𝑆 = (𝛽 − 1)𝑉 

in to KG equation, the equation (4.1) transforms to  

ѱ′′  𝑥 +  −
−𝐸𝑛

2 + 𝑐4𝑚0
2

𝑐2ћ2
−
ⅇ𝑥𝛼 2𝐸𝑛𝑉0 − 2𝑐2𝑚0𝑉0 + 2𝛽𝑐2𝑚0𝑉0 

𝑐2ћ2

−
ⅇ2𝑥𝛼 −2𝛽𝑉0

2 + 𝛽2𝑉0
2 

𝑐2ћ2
 ѱ 𝑥 = 0 

(4.10) 

 

similar to the previous example, by changing the variable y = ⅇαx  and substitute into 

Eq. (4.10), we reach to   
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ѱ′′ 𝑦 +
ѱ′(𝑦)

y
−  

ξ
2+b2

2y + b1
2𝑦2

𝑦2𝛼2
 ѱ 𝑦 = 0 (4.11) 

with parameters similar to the previous application except for minus signs as 

ξ
2 =

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

𝑏2
2 =

1

𝑐2ћ
2 (2𝐸𝑛𝑉0 − 2𝑐2𝑚0𝑉0 + 2𝑏𝑐2𝑚0𝑉0) (4.12) 

 𝑏1
2 =

 2𝑏𝑉0
2 − 𝑏2𝑉0

2 

𝑐2ћ
2  

Generalizing these ξ expressions, we can get the general formula for ξ   

𝜉𝑛 =
𝑏2

2 − (2𝑛 + 1)𝑏1𝛼

2𝑏1
 

After this part, all steps for applying the AIM is same with those of  y = ⅇ−αx  . Doing 

same algebraic produce, the energy related to y = ⅇαx  potential is obtained as  

𝐸𝑛 = ± 𝑚0
2𝑐4 −

𝑐2ћ
2

2𝑏1
(𝑏2

2 −  2𝑛 + 1 𝑏1𝛼) (4.13) 

In similar manner, the function 𝑓𝑛   y  

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

and the total radial wavefunction becomes after substituting y, 

𝑅𝑛   x =  −1 n(  b1
2 −  k + 1 b2 yeαx ξn  e−b2eαx

,  2𝐹1 −𝑛, 2ξn + 1; 2 b2eαx .

2n−1

k=n

 

with parameters  
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ξ
2 =

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

b2
2 =

1

𝑐2ћ
2 (2𝐸𝑛V0 − 2𝑐2m0V0 + 2𝑏𝑐2m0V0)  

 b1
2 =

 2𝑏V0
2 − 𝑏2V0

2 

𝑐2ћ
2  

4.3 The Woods-Saxon potential for constant mass 

The standard Woods–Saxon potential, as mean-field nuclear potential is given as,  

𝑉 𝑟 =
−𝑉0

1 + 𝑒
  
𝑥 – 𝑅0
𝑎

  
 (4.14) 

  We take the vector scalar potential S = (β − 1)V  and after substituting (4.14) in to 

Eq. (4.1), we get 

ѱ′′ (𝑥) +
𝐸𝑛

2ѱ(𝑥)

𝑐2ћ2
−
𝑐2𝑚0

2ѱ(𝑥)

ћ2
+

2𝐸𝑛𝑉0ѱ(𝑥)

𝑐2(1 + ⅇ
−𝑅+𝑥
𝛼 )ћ2

−
2𝑚0𝑉0ѱ(𝑥)

(1 + ⅇ
−𝑅+𝑥
𝛼 )ћ2

+
2𝑚0𝑉0𝛽ѱ(𝑥)

(1 + ⅇ
−𝑅+𝑥
𝛼 )ћ2

+
2𝑉0

2𝛽ѱ(𝑥)

𝑐2(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

−
𝑉0

2𝛽2ѱ(𝑥)

𝑐2(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

= 0 

    

(4.15) 

By changing the variables 𝑦 =
1

1+𝑒  𝑥−𝑅 /𝑎
, the Eq. (4.15) 

 
𝐸𝑛

2𝛼2 − 𝑐4m02𝛼2

𝑐2ћ2𝛼2
+
𝑦 2𝐸𝑛V0𝛼

2 + 2𝑐2m0V0𝛼
2 −1 + 𝛽  

𝑐2ћ2𝛼2

−
V0

2𝑦2 −2 + 𝛽 𝛽

𝑐2ћ2
 ѱ(𝑦) +  

𝑦

𝛼2
−

3𝑦2

𝛼2
+

2𝑦3

𝛼2
 ѱ′(𝑦)

+  
𝑦2

𝛼2
−

2𝑦3

𝛼2
+
𝑦4

𝛼2
 ѱ′′  𝑦 = 0 

(4.16) 

After same algebraic arrangement, we get a second order differential equation in the 

form of 
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ѱ′′  𝑥 +
 1− 2𝑦 ѱ′(𝑦)

 1− 𝑦 𝑦
+
 −ξ

2 − b1𝑦 − b2𝑦
2 ѱ(𝑦)

 1− 𝑦 2𝑦2
= 0 (4.17) 

where 

ξ
2 = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ2
 

b2 = −
(2− 𝛽)𝛽V0

2𝛼2

𝑐2ћ2
 

b1 =
(2𝐸𝑛V0𝛼

2 + 2(−1 + 𝛽)𝑐2m0V0𝛼
2)

𝑐2ћ2
 

At this point, we have to propose the wave function since the equation (4.17) should 

be transformed to the form introduction in second order differential form. The wave 

function should be satisfied the boundary conditions. Hence, the physical wave 

functions for KG equation is proposed as    

ѱ(𝑦) = 𝑦𝜉(1− 𝑦) 𝜉
2+𝑏1+𝑏2𝑓(𝑦) (4.18) 

Substituting Eq. (4.18) into Eq. (4.17) yields to the equation form of 

𝑓 ′′  𝑦 =
1

 −1 + 𝑦 𝑦
(−b1𝑓(𝑦) − ξ𝑓(𝑦)− 2ξ

2𝑓(𝑦) − 𝑣𝑓(𝑦) − 2ξ𝑣𝑓(𝑦)

+ 𝑓 ′ 𝑦 2ξ𝜒′ 𝑦 − 2𝑦𝑓 ′ 𝑦 − 2ξ𝑦𝑓 ′ 𝑦 − 2𝑣𝑦𝑓 ′ 𝑦 ) 

(4.19) 

 which is transformed to the form of differential equation to be solved by AIM. By 

comparing the Eq. (4.19) and Eq. (3.1), we easily obtained the function   λ0(y) and 

𝑠0(𝑦) as  

λ0 =
1 − 2ξ(−1 + 𝑦) − 2(1 + 𝑣)𝑦

(−1 + 𝑦)𝑦
 

s0 =
b1 + ξ + 2ξ

2 + 𝑣 + 2ξ𝑣

𝑦 − 𝑦2
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With aid of  λ0(y) and s0(y), we may calculate   𝜆𝑛(𝑦) and 𝑠𝑛(𝑦) by means of Eq.  

(3.5b) and Eq. (3.5a) 

λ1 =
1

(−1 + 𝑦)2𝑦2
(2 + (−6 + b1 − 3𝑣)𝑦 + (6− b1 + 9𝑣 + 4𝑣2)𝑦2 + 3ξ(−1

+ 𝑦)(−2 + (3 + 2𝑣)𝑦) + 2ξ
2(2− 3𝑦 + 𝑦2)) 

𝑠1 =
2(b1 + (1 + 2ξ)(ξ + 𝑣))(−1 + ξ(−1 + 𝑦) + (2 + 𝑣)𝑦)

(−1 + 𝑦)2𝑦2
 

λ2 =
1

(−1 + 𝑦)3𝑦3
2(3 + 4ξ

3(−1 + 𝑦)2 + 2(b1 − 2(3 + 𝑣))𝑦 + (18 + 15𝑣 + 4𝑣2

− 2b1(3 + 𝑣))𝑦2 + 2(2 + 𝑣)(−3 + b1 − 4𝑣 − 2𝑣2)𝑦3 − 4ξ
2(−1

+ 𝑦)(3− 2(3 + 𝑣)𝑦 + (2 + 𝑣)𝑦2) + ξ(−1 + 𝑦)(−11 + (29 − 2b1

+ 12𝑣)𝑦 + 2(−11 + b1 − 12𝑣 − 4𝑣2)𝑦2)) 

𝑠2 =
1

(−1 + 𝑦)3𝑦3
(b1

2(−1 + 𝑦)𝑦 + 2b1(−3 + 2ξ
2(−1 + 𝑦) + (9 + 2𝑣)𝑦 − (9

+ 7𝑣 + 2𝑣2)𝑦2 − ξ(−1 + 𝑦)(−5 + (7 + 2𝑣)𝑦))− (1 + 2ξ)(ξ

+ 𝑣)(6− (18 + 5𝑣)𝑦 + (18 + 15𝑣 + 4𝑣2)𝑦2 + ξ(−1 + 𝑦)(−10

+ 3(5 + 2𝑣)𝑦) + 2ξ
2(2− 3𝑦 + 𝑦2))) 

….etc. 

Combining with quantization condition, we get the values of   ξ  for each  𝑛 

λ0

s0
=
λ1

s1
⇒ ξ0 + 𝑣 = −

1

2
−

1

2
 1 + 4b1 

λ1

s1
=
λ2

s2
⇒ ξ1 + 𝑣 = −

3

2
−

1

2
 1 + 4b1 

λ2

s2
=
λ3

s3
⇒ ξ2 + 𝑣 = −

5

2
−

1

2
 1 + 4b1 

………………………. 
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From this recurrence relation, when we generalize ξ
n
 for nth term,we get 

ξn + 𝑣 = −
2𝑛 + 1

2
−

1

2
 1 + 4b1 (4.20) 

using the parameters introduced for  𝜉 , b1 and  𝑣 , we obtain a more explicit  

𝐸𝑛
2 −m0

2𝑐4 = −𝑐2ћ2  −
2𝑛 + 1

2

−
1

2
 1 + 4

(2𝐸𝑛V0𝛼2 + 2(−1 + 𝛽)𝑐2m0V0𝛼2)

𝑐2ћ2
− 𝑣  

    (4.21) 

By substituting for ξ
n
 and 𝑣 we obtain a more explicit expression for the eigenvalues 

energy as 

                                                 𝐸𝑛 = ±(𝑚0
2𝑐4 − 𝑐2ћ2(−

2𝑛 + 1

2

−
1

2
 1 + 4

(2𝐸𝑛V0𝛼2 + 2(−1 + 𝛽)𝑐2m0V0𝛼2)

𝑐2ћ2
− 𝑣))

1
2 

         

(4.22) 

4.3.1.1 Obtaining Wave Function  

Let us now turn to the calculation of the normalized wave functions.  

𝑡 =
2𝑣 + 1

2
;𝑏 = 1;𝑁 = −1,𝑚 =

2𝜉𝑛 − 1

2
;𝜎 = 2𝜉𝑛 + 1  ;  𝜌 = 2𝜉𝑛 − 2𝑣 + 1.    

Having determined these parameters, we can easily obtain the wave functions as 

𝑓𝑛   𝑦 =  −1 𝑛𝐶2

Г(2𝜉𝑛 + 𝑛 + 1)

Г(2𝜉𝑛 + 1)
  2𝐹1(−𝑛, 2 𝜉𝑛 − 𝑣 + 1 + 𝑛; 2𝜉𝑛 + 1; 𝑦)  

where Г and 2 F1  are the Gamma function and hypergeometric function 

respectively. The total radial wave function can be written as follows: 
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𝑅𝑛   𝑥 =  −1 𝑛𝑁𝑛
(1 + ⅇ

−𝑅+𝑥
𝛼 )𝑣

(1 + ⅇ
−𝑅+𝑥
𝛼 )𝜉

 2𝐹1(−𝑛, 2 𝜉 − 𝑣 + 1 + 𝑛; 2𝜉

+ 1; (1 + ⅇ
−𝑅+𝑥
𝛼 )−1) 

 

where 𝑁𝑛  is the normalization constant and the parameters are 

ξ
2 = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ2
 

b2 = −
(2− 𝛽)𝛽V0

2𝛼2

𝑐2ћ2
 

b1 =
(2𝐸𝑛V0𝛼

2 + 2(−1 + 𝛽)𝑐2m0V0𝛼
2)

𝑐2ћ2
 

 

4.3.2 Discussion 

i) If 𝛽=1, it yields zero scalar potentials with parameters 

ξ =
𝐸𝑛

2𝛼2 − 𝑐4m0
2𝛼2

𝑐2ћ2
 

b1 =
2EnV0𝛼

2

𝑐2ћ2
, b2 = −

V0
2𝛼2

𝑐2ћ2
 

ξn + 𝑣 = −
2𝑛 + 1

2
−

1

2
 1 + 4b1 (4.23) 

𝐸𝑛 = ± 𝑚0
2𝑐4 −

𝑐2ћ2

𝛼2
(−

2𝑛 + 1

2
−

1

2
 1 − 4

2EnV0𝛼2

𝑐2ћ2
− 𝑣) (4.24) 

The eigenfunction of this potential is again  

𝑓𝑛   𝑦 =  −1 𝑛𝐶2

Г(2𝜉𝑛 + 𝑛 + 1)

Г(2𝜉𝑛 + 1)
  2𝐹1(−𝑛, 2 𝜉𝑛 − 𝑣 + 1 + 𝑛; 2𝜉𝑛 + 1;𝑦)  

 

For this formula, the radial wave function is  
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𝑅𝑛   𝑥 =  −1 𝑛𝑁𝑛
(1 + ⅇ

−𝑅+𝑥
𝛼 )𝑣

(1 + ⅇ
−𝑅+𝑥
𝛼 )𝜉

 2𝐹1(−𝑛, 2 𝜉 − 𝑣 + 1 + 𝑛; 2𝜉

+ 1; (1 + ⅇ
−𝑅+𝑥
𝛼 )−1) 

 

ii) For 𝛽 = 2,  we get equal scalar and vector potentials with relations following  

ξ =
𝐸𝑛

2𝛼2 − 𝑐4m0
2𝛼2

𝑐2ћ2
 

b1 =
2(𝐸𝑛 + 𝑐2𝑚0)V0𝛼

2

𝑐2ћ2
, b2 = 0 

ξn + 𝑣 = −
2𝑛 + 1

2
−

1

2
 1 + 4b1 (4.25) 

𝐸𝑛 = ± 𝑚0
2𝑐4 −

𝑐2ћ2

𝛼2
(−

2𝑛 + 1

2
−

1

2
 1− 4

2EnV0𝛼
2

𝑐2ћ2
− 𝑣)  (4.26) 

 

Also, the eigenfunction is again obtained in a similar algebraic procedure with 

previous example. It result radial wave function in same form  

𝑅𝑛   𝑥 =  −1 𝑛𝑁𝑛
(1 + ⅇ

−𝑅+𝑥
𝛼 )𝑣

(1 + ⅇ
−𝑅+𝑥
𝛼 )𝜉

 2𝐹1(−𝑛, 2 𝜉 − 𝑣 + 1 + 𝑛; 2𝜉

+ 1; (1 + ⅇ
−𝑅+𝑥
𝛼 )−1) 

 

 

4.4 Position dependent Mass Application: 

The second application part consists of the solution PDMKG equation  for different 

mass and for different exponential vector and scalar potential.  
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4.4.1 𝑽 = 𝑽𝟎ⅇ
𝜶𝒙 , 𝒎 = 𝒎𝟎ⅇ

𝜶𝒙 case 

The first choices about spatially mass is 𝑚 = 𝑚0ⅇ
𝛼𝑥   and the vector potential is 

𝑉 = 𝑉0ⅇ
𝛼𝑥 . Using the functions forms, the scalar potential becomes 𝑆 = (𝛽 − 1)V 

and the relativistic equation from as  

ѱ′′(𝑥) + (
𝐸𝑛2

𝑐2ћ
2 − (2ⅇ𝑥𝛼𝐸𝑛V0) (𝑐2ћ

2) +
1

𝑐2ћ
2 ⅇ

2𝑥𝛼 (−𝑐4m0
2 + 2𝑐2m0V0

− 2𝛽𝑐2m0V0 + 2𝛽V0
2 − 𝛽2V0

2))ѱ 𝑥 = 0 

(4.27) 

By changing the variable 𝑦 = ⅇ𝑥𝛼  , one gets  

𝑦2𝛼2ѱ′′ 𝑦 + 𝑦𝛼2ѱ′ 𝑦 +  b2y− ξ
2 − b1

2𝑦2 ѱ 𝑦 = 0   (4.28)     

Where the parameters are take form of 

ξ2 = −
𝐸𝑛

2

𝑐2ћ2
 

b1
2 =

(−𝑐4m0
2 + 2𝑐2m0V0 − 2𝑏𝑐2m0V0 + 2𝑏V0

2 − 𝑏2V0
2)

𝑐2ћ2
 (4.29a) 

 

b2 = − 
2𝐸𝑛V0

𝑐2ћ2
  

Dividing the Eq. (4.28) with b1
2𝑦2, we get  

ѱ′′ y +
ѱ′(𝑦)

𝑦
+
  b2y− ξ

2 − b1
2𝑦2 ѱ(𝑦)

𝑦2𝛼2
= 0          (4.30) 

Let propose the physical function for case (a) as               

ѱ 𝑦 = 𝑦𝜉 𝛼 𝑒−
𝑏1𝑦
𝛼  𝑓  𝑦  

      (4.31) 

 

Substituting the proposed physical functions into Eq. (4.29a) one can gets the 

equation   
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𝑓 ′′ 𝑦 =  
−b2 + b1 2ξ + 𝛼 

𝑦𝛼2
 𝑓 𝑦 + (

2b1

𝛼
−
 2ξ𝛼 + 𝛼2 

𝑦𝛼2
)𝑓 ′(𝑦) (4.32) 

By applying the quantization conditions, we obtain the general solution for ξ as 

ξn =
b2 − (2n + 1)b1𝛼

2b1
 

and using the definitions of   𝜉  b1 and b2, one obtain  the energy values 𝐸𝑛                               

𝐸𝑛
2 = −ћ2c2  

b2 −  2n + 1 b1𝛼

2b1
 

2

 (4.33) 

𝐸𝑛 = ± −ћ2c2  
b2 −  2n + 1 b1𝛼

2b1
 

2

 

 

(4.34) 

 

with parameters introduced in Eq. (4.29a) 

The corresponding eigenfunction of this potential is  

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n

 

with the radial wave function, is obtained as  

𝑅𝑛   x =  −1 n(  b1
2 −  k + 1 b2 ⅇ

𝛼𝑥 ξn  e−b2ⅇ
𝛼𝑥

,  2𝐹1 −𝑛, 2ξn + 1; 2 b2ⅇ
𝛼𝑥  .

2n−1

k=n

 

with parameters  

ξ =
𝐸𝑛

2𝛼2 − 𝑐4m0
2𝛼2

𝑐2ћ2
 

b1 =
2(𝐸𝑛 + 𝑐2𝑚0)V0𝛼

2

𝑐2ћ2
, and b2 = 0 

4.4.2 Discussion 

i) If 𝛽 = 1,  it yields S = 0,  then we get S =  𝛽 − 1 V  the parameters have forms 



 

31 

 

ξ
2 = −

𝐸𝑛
2

𝑐2ћ
2 

−b1
2 =

(−𝑐4m0
2 + V0

2)

𝑐2ћ
2  

b2 = − 
2𝐸𝑛V0

𝑐2ћ
2   

After applying the quantization conditions, we obtain the general solution for  ξ as  

ξn =
b2 − (2n + 1)b1𝛼

2b1
 

the energy values 𝐸𝑛  reduced to 

𝐸𝑛
2 = −ћ

2c2  
b2 −  2n + 1 b1𝛼

2b1
 

2

 
(4.35) 

𝐸𝑛 = ± −ћ
2c2  

b2 −  2n + 1 b1𝛼

2b1
 

2

 

(4.36) 

 

The corresponding eigenfunction gets the similar form for radial wavefunction as 

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

and 

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 yξn  e−b2y ,  2𝐹1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n

 

with parameters  

ξ
2 = −

𝐸𝑛
2

𝑐2ћ
2 

−𝑏1
2 =

(−𝑐4𝑚0
2 + 𝑉0

2)

𝑐2ћ2
, 𝑏2 = − 

2𝐸𝑛𝑉0

𝑐2ћ2
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ii) When 𝛽 = 2  yields, we get equal scalar and vector potential with parameters as 

following. 

ξ
2 = −

𝐸𝑛
2

𝑐2ћ
2 

b1
2 =

(−𝑐4m0
2 + 2𝑐2m0V0

2)

𝑐2ћ2
,  

b2 = − 
2𝐸𝑛V0

𝑐2ћ
2   

 

And the parameters are becomes        

𝐸𝑛
2 = −ћ

2c2  
b2 −  2n + 1 b1𝛼

2b1
 

2

 (4.37) 

𝐸𝑛 = ± −ћ
2c2  

b2 −  2n + 1 b1𝛼

2b1
 

2

 (4.38) 

After the same algebraic procedure, the eigenfunction becomes  

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

For this formula, if we go past to the radial wave function, is obtained as  

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 yξn  e−b2y ,  2𝐹1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n

 

with parameters  

ξ
2 = −

𝐸𝑛
2

𝑐2ћ
2 

𝑏1
2 =

(−𝑐4𝑚0
2 + 2𝑐2𝑚0𝑉0

2)

𝑐2ћ2
, 𝑏2 = − 

2𝐸𝑛𝑉0

𝑐2ћ2
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4.4.3 𝒎 = 𝒎𝟎(𝟏+ 𝒒𝒆−𝜶𝒙) ,     𝑽 = 𝑽𝟎𝒆
−𝜶𝒙    case 

In this case, the vector potential function and mass functions are considered as 

V = V0e−αx  and 𝑚 = m0(1 + e−αx) respectivity [71]. At this line, the scalar 

potentials become V = V0(𝛽 − 1) e−αx   and the KG equation reads  

ѱ′′ (𝑥) +
𝐸𝑛

2ѱ(𝑥)

𝑐2ћ2
−
𝑐2𝑚0

2ѱ(𝑥)

ћ2
−

2𝑐2ⅇ−𝑥𝛼𝑚0
2𝑞ѱ(𝑥)

ћ2
−
𝑐2ⅇ−2𝑥𝛼𝑚0

2𝑞2ѱ(𝑥)

ћ2

−
2ⅇ−𝑥𝛼𝐸𝑛𝑉0ѱ(𝑥)

𝑐2ћ2
+

2ⅇ−𝑥𝛼𝑚0𝑉0ѱ(𝑥)

ћ2
−

2𝛽ⅇ−𝑥𝛼𝑚0𝑉0ѱ(𝑥)

ћ2

+
2ⅇ−2𝑥𝛼𝑚0𝑞𝑉0ѱ(𝑥)

ћ2
−

2𝛽ⅇ−2𝑥𝛼𝑚0𝑞𝑉0ѱ(𝑥)

ћ2

+
2𝛽ⅇ−2𝑥𝛼𝑉0

2ѱ(𝑥)

𝑐2ћ2
−
𝛽2ⅇ−2𝑥𝛼𝑉0

2ѱ(𝑥)

𝑐2ћ2
= 0 

(4.39) 

By changing the variables y = ⅇ−𝑥𝛼 , we get the same equations except for 

parameters ξ , 𝑏1 and 𝑏2 as following; 

ѱ′′ (𝑦) +
ѱ′(𝑦)

𝑦
+ (−𝑏2

2
−
ξ2

𝑦2
+
𝑏1

2

𝑦
)ѱ(𝑦) = 0 (4.40) 

where 

ξ
2  =

−𝐸𝑛
2 + 𝑐4m0

2

𝑐2ћ
2
𝛼2

 

𝑏2 =
(−2𝑐4m0

2𝑞 − 2𝐸𝑛V0 − 2(−1 + 𝛽)𝑐2m0V0)

𝑐2ћ2𝛼2
     

𝑏1
2 =

(𝑐4m0
2𝑞2 − 2 −1 + 𝛽 𝑐2m0𝑞V0 + (2− 𝛽)𝛽V0

2)

𝑐2ћ2𝛼2
 

Let propose the physical function for case (a) is  

ѱ 𝑦 = 𝑦𝜉 𝑒−𝑏2𝑦  𝑓  𝑦  (4.41) 

Substituting Eq. (4.41) into Eq. (4.40), one gets 
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ѱ′′ 𝑦 =
 −𝑏1 2 + 𝑏2  + 2𝑏2 ξ 𝜒(𝑦)

𝑦
+
 −1 − 2ξ + 2𝑏2 𝑦 𝜒′(𝑦)

𝑦
 (4.42) 

which is transformed to the form of differential equation to be solved by AIM. By 

comparing the Eq.  (4.42) with Eq.  (3.1), we easily found that the function as 

λ0 =
−1 − 2ξ− 2b2𝑦

𝑦
 

𝑠0 =
−𝑏1

2 + 𝑏2 + 2𝑏2𝜉

𝑦
 

In this case, the energy relation becomes  

𝜉𝑛 =
𝑏2 − (𝑛 + 1)𝑏1𝛼

2𝑏1
   

and  

𝐸𝑛
2 = −ћ2𝑐2𝛼2  

𝑏2 − (𝑛 + 1)𝑏1𝛼

2𝑏1
   

2

+𝑚0
2𝑐4 (4.43) 

𝐸𝑛 = ± −ћ
2c2𝛼2  

b2 − (𝑛 + 1)b1𝛼

2b1
   

2

+ m0
2c4 (4.44) 

Simplifying the wavefunction equations like previous one, radial wave function, is 

obtained as  

𝑅𝑛   𝑦 =  −1 𝑛(  𝑏1
2 −  𝑘 + 1 𝑏2 𝑦

𝜉𝑛  𝑒−𝑏2𝑦 ,  2𝐹1 −𝑛, 2𝜉𝑛 + 1; 2 𝑏2𝑦 .

2𝑛−1

𝑘=𝑛

 

with parameters  

ξ
2  =

−𝐸𝑛
2 + 𝑐4m0

2

𝑐2ћ
2
𝛼2

 

𝑏2 =
(−2𝑐4m0

2𝑞 − 2𝐸𝑛V0 − 2(−1 + 𝛽)𝑐2m0V0)

𝑐2ћ2𝛼2
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𝑏1
2 =

(𝑐4m0
2𝑞2 − 2 −1 + 𝛽 𝑐2m0𝑞V0 + (2− 𝛽)𝛽V0

2)

𝑐2ћ2𝛼2
 

4.4.4 Discussion 

i) When 𝛽 = 1, again we have zero scalar potential and we have only vector 

potential function. The energy relation is reduced to  

ξ
2  = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

𝑏2 =
(−2𝑐4m0

2𝑞 − 2𝐸𝑛V0)

𝑐2ћ
2      

𝑏1
2 =

(−𝑐4m0
2𝑞2 + V0

2)

𝑐2ћ
2  

These values of each ξ yields a general solution in the form of  

ξ
n

=
b2 − (𝑛 + 1)b1𝛼

2b1
 .  

And the energy values 𝐸𝑛  has form 

En
2 = −ћ

2c2  
b2 − (𝑛 + 1)b1𝛼

2b1
   

2

+ m0
2c4 (4.45) 

 𝐸𝑛 = ± −ћ
2c2  

b2−(𝑛+1)b1𝛼

2b1
   

2

+ m0
2c4 

(4.46) 

The corresponding eigenfunction this potential is  

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

For this formula, if we go past to the radial wave function, it is obtained as  

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 yξn  e−b2y ,  2𝐹1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n

 

with parameters  
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ξ
2  = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

𝑏2 =
(−2𝑐4𝑚0

2𝑞 − 2𝐸𝑛𝑉0)

𝑐2ћ2
, 𝑏1

2 =
(−𝑐4𝑚0

2𝑞2 + 𝑉0
2)

𝑐2ћ2
 

ii) When  𝛽 = 2 , it yields equal vector and scalar potential S = V . 

ξ
2  = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

𝑏2 =
(−2𝑐4m0

2𝑞 − 2𝐸𝑛V0 + 2𝑐2m0V0)

𝑐2ћ
2      

𝑏1
2 =

(𝑐4m0
2𝑞2 + 2𝑐2m0𝑞V0)

𝑐2ћ
2  

These values of each ξ yield a general solution in the form of  

ξ
n

=
b2 − (𝑛 + 1)b1𝛼

2b1
   

the energy values 𝐸𝑛                              

𝐸𝑛
2 = −ћ2𝑐2  

𝑏2 − (𝑛 + 1)𝑏1𝛼

2𝑏1
   

2

+𝑚0
2𝑐4 

and 

(4.47) 

            𝐸𝑛 = ± −ћ2𝑐2  
𝑏2−(𝑛+1)𝑏1𝛼

2𝑏1
   

2

+𝑚0
2𝑐4   (4.48) 

After some algebraic calculation, the corresponding eigenfunction is  

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

and the total radial wave function becomes 

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 yξn  e−b2y ,  2𝐹1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n
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with parameters  

ξ
2  = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

𝑏2 =
(−2𝑐4m0

2𝑞 − 2𝐸𝑛V0 + 2𝑐2m0V0)

𝑐2ћ
2      

𝑏1
2 =

(𝑐4m0
2𝑞2 + 2𝑐2m0𝑞V0)

𝑐2ћ
2  

 

4.4.5 𝒎 = 𝒎𝟎(𝟏+ 𝒒𝒆𝜶𝒙) ,     𝑽 = 𝑽𝟎𝒆
𝜶𝒙, case  

In this case, the vector potential function and mass functions are considered as 

𝑉 = 𝑉0𝑒
𝛼𝑥  and 𝑚 = 𝑚0(1 + 𝑒𝛼𝑥) respectivity. At this line, the scalar potentials 

become V = V0(𝛽 − 1) e−αx   and the KG equation reads 

ѱ′′ 𝑥 +
𝐸𝑛2ѱ(𝑥)

𝑐2ћ
2 −

𝑐2𝑚0
2ѱ(𝑥)

ћ
2 −

2𝑐2ⅇ𝑥𝛼𝑚0
2𝑞ѱ(𝑥)

ћ
2

−
𝑐2ⅇ2𝑥𝛼𝑚0

2𝑞2ѱ(𝑥)

ћ
2 −

2ⅇ𝑥𝛼𝐸𝑛𝑉0ѱ(𝑥)

𝑐2ћ
2 +

2ⅇ𝑥𝛼𝑚0𝑉0ѱ(𝑥)

ћ
2

−
2𝛽ⅇ𝑥𝛼𝑚0𝑉0ѱ(𝑥)

ћ
2 +

2ⅇ2𝑥𝛼𝑚0𝑞𝑉0ѱ(𝑥)

ћ
2

−
2𝛽ⅇ2𝑥𝛼𝑚0𝑞𝑉0ѱ(𝑥)

ћ
2 +

2𝛽ⅇ2𝑥𝛼𝑉0
2ѱ(𝑥)

𝑐2ћ
2 −

𝛽2ⅇ2𝑥𝛼𝑉0
2ѱ(𝑥)

𝑐2ћ
2

= 0 

(4.49) 

Changing the variables y = ⅇ−𝑥𝛼  to get the familiar equations except for parameters 

ξ , 𝑏1 and 𝑏2 as following            

ѱ′′ 𝑦 +
ѱ′ 𝑦 

𝑦
 −𝑏2

2
−

ξ
2

𝑦2
+
𝑏1

2

𝑦
 ѱ 𝑦 = 0 (4.50) 

and 
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ξ
2  = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2
𝛼2

 

𝑏2 =
−𝑐4m0

2𝑞2 − 2(−1 + 𝑏)𝑐2m0𝑞V0 + (2 − 𝑏)𝑏V0
2

𝑐2ћ
2
𝛼2

     

𝑏1
2 =

−2𝑐4m0
2𝑞 − 2EnV0 − 2(−1 + 𝑏)𝑐2m0V0

𝑐2ћ
2
𝛼2

 

We come a point that to propose the physical function for this case                        

ѱ 𝑦 = 𝑦𝜉 𝑒−𝑏2𝑦  𝑓  𝑦  (4.51)    

Substituting Eq. (4.51) in to Eq. (4.50), one gets 

ѱ′′ 𝑦 =
−𝑏2

2
𝜒(𝑦) + 𝑏2𝜒(𝑦) + 2𝑏2ξ𝜒(𝑦)

𝑦
+ (2𝑏2 +

−1− 2ξ

𝑦
)ѱ′(𝑦) (4.52) 

With a similar algebraic calculation, we get  

ξ
n

=
b2 − (𝑛 + 1)b1𝛼

2b1
 

and                     

En
2 = −ћ

2c2  
b2 − (𝑛 + 1)b1𝛼

2b1
   

2

+ m0
2c4 (4.53) 

with   

𝐸𝑛 = ± −ћ
2c2  

b2 − (𝑛 + 1)b1𝛼

2b1
   

2

+ m0
2c4 (4.54)      

4.4.5.1 Obtaining Wave functions 

For this effective mass and exponential potentials form V(x) and S(x), the solution of 

differential equation results in eigenfunction 

𝑓𝑛   𝑦 =  −1 (  𝑏1
2 −  𝑘 + 1 𝑏2 ,  2𝐹1 −𝑛, 2𝜉𝑛 + 1; 2 𝑏2ⅇ

−𝑥𝛼 .

2𝑛−1

𝑘=𝑛
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This function yields a total radial wave function  

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 ⅇ

−𝑥𝛼 ξn  e−b2ⅇ
−𝑥𝛼

,  2𝐹1 −𝑛, 2ξn

2n−1

k=n

+ 1; 2 b2ⅇ
−𝑥𝛼  . 

with parameters  

ξ
2  = −

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2
𝛼2

 

𝑏2 =
−𝑐4m0

2𝑞2 − 2(−1 + 𝑏)𝑐2m0𝑞V0 + (2 − 𝑏)𝑏V0
2

𝑐2ћ
2
𝛼2

     

𝑏1
2 =

−2𝑐4m0
2𝑞 − 2EnV0 − 2(−1 + 𝑏)𝑐2m0V0

𝑐2ћ
2
𝛼2

 

 

4.4.6 Discussion 

 i)If    𝛽 = 1, only vector potentials is included with parameters 

ξ
2 =

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

𝑏1 =
(−𝑐4𝑚0

2𝑞2 + 𝑉0
2)

𝑐2ћ2
, 𝑏2 =

(−2𝑐4𝑚0
2𝑞 − 2𝐸𝑛𝑉0)

𝑐2ћ2
 

 

Then the general form of energy is 

ξ
n

=
b2 − (𝑛 + 1)b1𝛼

2b1
   

the energy values 𝐸𝑛  

𝐸𝑛
2 = ћ

2𝑐2  
𝑏2 − (𝑛 + 1)𝑏1𝛼

2𝑏1
   

2

+𝑚0
2𝑐4 (4.55) 
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𝐸𝑛 = ± ћ2𝑐2  
𝑏2 − (𝑛 + 1)𝑏1𝛼

2𝑏1
   

2

+𝑚0
2𝑐4 (4.56) 

 

and  the radial wave function, it becomes  

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1 b2 yξn  e−b2y ,  2𝐹1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n

 

with parameters  

ξ
2 =

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

b2 =
(−2𝑐4m0

2𝑞 − 2𝐸𝑛v0)

𝑐2ћ
2 , b1 =

(−𝑐4m0
2𝑞2 + v0

2)

𝑐2ћ
2  

  ii) For  𝛽 = 2, we  get  equal scalar and vector potentials with relations as following  

−ξ
2 =

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

b2 =
(−2𝑐4v2𝑞 − 2EnV0 − 2𝑐2m0V0)

𝑐2ћ
2  

−b1
2 =

(−𝑐4m0
2𝑞2 − 2𝑐2m0𝑞V0)

𝑐2ћ
2  

Rearranging these relations, we get 

ξ
n

=
b2 − (𝑛 + 1)b1𝛼

2b1
   

and the energy values 𝐸𝑛  

En
2 = −ћ

2c2  
b2 − (𝑛 + 1)b1𝛼

2b1
   

2

+ m0
2c4 (4.57) 
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𝐸𝑛 = ± −ћ
2c2  

b2 − (𝑛 + 1)b1𝛼

2b1
   

2

+ m0
2c4 (4.58) 

For different parameters and variables y, we get the some form of wavefunction as 

𝑓𝑛   y =  −1 (  b1
2 −  k + 1 b2 ,  2𝐹1 −𝑛, 2ξ

n
+ 1; 2 b2y .

2n−1

k=n

 

and the radial wave function becomes  

𝑅𝑛   y =  −1 n(  b1
2 −  k + 1   2𝐹1yξn  e−b2y ,𝑓1 −𝑛, 2ξn + 1; 2 b2y .

2n−1

k=n

 

with parameters  

−ξ
2 =

𝐸𝑛
2 − 𝑐4m0

2

𝑐2ћ
2  

b2 =
(−2𝑐4v2𝑞 − 2EnV0 − 2𝑐2m0V0)

𝑐2ћ
2  

−b1
2 =

(−𝑐4m0
2𝑞2 − 2𝑐2m0𝑞V0)

𝑐2ћ
2  

4.4.7 The Woods-Saxon Potential For Position Dependent Mass Application 

In this part consists of the solution PDMKG equation for different mass and for 

Wood-Saxon potential. 

𝐸𝑛
2 ѱ 𝑥 

𝑐2ћ2
−

𝑐2m0
2 ѱ 𝑥 

(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

+
2𝐸𝑛V0 ѱ 𝑥 

𝑐2(1 + ⅇ
−𝑅+𝑥
𝛼 )ћ2

−
2m0V0 ѱ 𝑥 

(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

+
2m0V0𝛽 ѱ 𝑥 

(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

+
2V0

2𝛽 ѱ 𝑥 

𝑐2(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

−
V0

2𝛽2𝜙 ѱ 𝑥 

𝑐2(1 + ⅇ
−𝑅+𝑥
𝛼 )2ћ2

+ ѱ′′  𝑥 = 0 

(4.59) 

By changing the variable 𝑦 =
1

𝑒 (𝑥−𝑅)/𝛼  as, 
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𝐸𝑛

2

𝑐2ћ2
+

2𝐸𝑛V0𝑦

𝑐2ћ2

−
𝑦2 𝑐4m0

2 − 2𝑐2m0V0 −1 + 𝛽 + V0
2 −2 + 𝛽 𝛽 

𝑐2ћ2
 ѱ 𝑥 

+  
𝑦

𝛼2
−

3𝑦2

𝛼2
+

2𝑦3

𝛼2
 ѱ′ 𝑥 +  

𝑦2

𝛼2
−

2𝑦3

𝛼2
+
𝑦4

𝛼2
 ѱ′′  𝑥 = 0 

 

(4.60) 

defining following new parameters 

ξ2 = −
𝐸𝑛

2𝛼2

𝑐2ћ2
 

b2 =
(𝑐4m0

2 − 2𝑐2m0V0(−1 + 𝛽) + V0
2(−2 + 𝛽)𝛽)𝛼2

𝑐2ћ2
 

b1 =
2𝐸𝑛V0𝛼

2

𝑐2ћ2
 

Dividing the (4. ) with (
𝑦2

𝛼2 −
2𝑦3

𝛼2 +
𝑦4

𝛼2), we get 

ѱ′′  𝑥 +
(1− 2𝑦)ѱ′(𝑥)

(1 − 𝑦)𝑦
+

(−ξ2 − b1𝑦 − b2𝑦
2)ѱ 𝑥 

(1− 𝑦)2𝑦2
= 0 

The physical wave functions for KG equation is proposed as  

ѱ 𝑥 = 𝑦ξ(1− 𝑦) ξ
2+b1+b2𝑓(𝑥) 

substituting Eq.(4. ) into Eq.(4. ) yields to the equation form of  

𝑓 ′′  𝑦 =
1

(−1 + 𝑦)𝑦
(−b1𝑓 𝑦 − ξ𝑓 𝑦 − 2ξ2𝑓 𝑦 − 𝑣𝑓 𝑦 − 2ξ𝑣𝑓 𝑦 + 𝑓 ′ 𝑦 

+ 2ξ𝑓 ′ 𝑦 − 2𝑦𝑓 ′ 𝑦 − 2ξ𝑦𝑓 ′ 𝑦 − 2𝑣𝑦𝑓 ′ 𝑦 ) 

Similar to the previous applications, by applying the quantization conditions, we 

obtain the general solution for ξ as 

ξn + 𝑣 = −
2𝑛 + 1

2
−

1

2
 1 + 4b1 

using the parameters introduced for  𝜉 , b1 and  𝑣 , we obtain a more explicit  
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𝐸𝑛
2 −m0

2𝑐4 = −𝑐2ћ2  −
2𝑛 + 1

2
−

1

2
 1 + 4

2𝐸𝑛V0𝛼2

𝑐2ћ2
− 𝑣      (4.61) 

By substituting for ξ
n
 and 𝑣 we obtain a more explicit expression for the eigenvalues 

energy as 

𝐸𝑛 = ±(𝑚0
2𝑐4 − 𝑐2ћ2  −

2𝑛 + 1

2
−

1

2
 1 + 4

2𝐸𝑛V0𝛼2

𝑐2ћ2
− 𝑣 )

1
2 (4.62) 

With the same way, the function 𝑓𝑛   y  

𝑓𝑛   𝑥 =  −1 𝑛𝐶2  
Г(2𝜉𝑛 + 𝑛 + 1)

Г(2𝜉𝑛 + 1)
  2𝐹1 (−𝑛, 2 𝜉𝑛 − 𝑣 + 1 + 𝑛; 2𝜉𝑛

+ 1;
1

𝑒(𝑥−𝑅)/𝛼
) 

 

where Г  and 2F1 are the Gamma function and hypergeometric function respectively. 

The total radial wave function can be written as follows: 

𝑅𝑛   x =  −1 nNn

(1 + ⅇ
−𝑅+𝑥
𝛼 )𝑣

(1 + ⅇ
−𝑅+𝑥
𝛼 )ξ

 2𝐹1(−n, 2 ξ − 𝑣 + 1 + n; 2ξ

+ 1; (1 + ⅇ
−𝑅+𝑥
𝛼 )−1) 

 

where Nn  is the normalization constant. 

With parameters  

ξ2 = −
𝐸𝑛

2𝛼2

𝑐2ћ2
 

b2 =
(𝑐4m0

2 − 2𝑐2m0V0(−1 + 𝛽) + V0
2(−2 + 𝛽)𝛽)𝛼2

𝑐2ћ2
 

b1 =
2𝐸𝑛V0𝛼

2

𝑐2ћ2
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4.4.8 Discussion 

i) When 𝛽 = 1, this is the zero scalar potential case. The energy relation is reduced 

to 

ξ2 = −
𝐸𝑛

2𝛼2

𝑐2ћ2
 

𝑏2 =
 −𝑐4𝑚0

2 + 𝑉0
2 

𝑐2ћ2
, 𝑏1 =

2𝐸𝑛𝑉0𝛼
2

𝑐2ћ2
 

 

and the general form of energy is 

ξn + 𝑣 = −
2𝑛 + 1

2
−

1

2
 1 + 4b1 

Using the defined parameters, the energy values 𝐸𝑛  

𝐸𝑛
2 = −

𝑐2ћ2

𝛼2
 −

2𝑛 + 1

2
−

1

2
 1 + 4

2𝐸𝑛V0𝛼2

𝑐2ћ2
− 𝑣      (4.63) 

𝐸𝑛 = ± −
𝑐2ћ2

𝛼2
 −

2𝑛 + 1

2
−

1

2
 1 + 4

2𝐸𝑛V0𝛼2

𝑐2ћ2
− 𝑣  (4.64) 

and the wavefunction 𝑓𝑛   y    

𝑓𝑛   y =  −1 nC2

Г(2ξn + n + 1)

Г(2ξn + 1)
  2𝐹1(−n, 2 ξn − 𝑣 + 1 + n; 2ξn + 1; y)  

At this point, the total radial wave function reduces to 

𝑅𝑛   y =  −1 nNn

(1 + ⅇ
−𝑅+𝑥
𝛼 )𝑣

(1 + ⅇ
−𝑅+𝑥
𝛼 )ξ

 2𝐹1(−n, 2 ξ − 𝑣 + 1 + n; 2ξ

+ 1;  (1 + ⅇ
−𝑅+𝑥
𝛼 )−1) 

 

where Nn  is the normalization constant and the related parameters are 
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ξ2 = −
𝐸𝑛

2𝛼2

𝑐2ћ2
 

𝑏1 =
2𝐸𝑛𝑉0𝛼

2

𝑐2ћ2
, 𝑏2 =

 −𝑐4𝑚0
2 + 𝑉0

2 

𝑐2ћ2
 

ii) When 𝛽 = 2, we get equal vector and scalar potential 𝑆(𝑥) = 𝑉(𝑥) and the 

parameters becomes 

ξ2 = −
𝐸𝑛

2𝛼2

𝑐2ћ2
 

𝑏1 =
2𝐸𝑛𝑉0𝛼

2

𝑐2ћ2
, 𝑏2 =

(−𝑐4𝑚0
2𝛼2 + 2𝑐2𝑚0𝑉0𝛼

2)

𝑐2ћ2
. 

Rearranging these relations, we get 

ξn + 𝑣 = −
2𝑛 + 1

2
−

1

2
 1 + 4b1 

And the energy values 𝐸𝑛  and the wavefunction 𝑓𝑛   y  

𝐸𝑛
2 = −

𝑐2ћ2

𝛼2
 −

2𝑛 + 1

2
−

1

2
 1 + 4

2𝐸𝑛V0𝛼2

𝑐2ћ2
− 𝑣      (4.65) 

𝑓𝑛   y =  −1 nC2

Г(2ξn + n + 1)

Г(2ξn + 1)
  2𝐹1(−n, 2 ξn − 𝑣 + 1 + n; 2ξn + 1; y)  

Substituting the variable y interims of x, the total radial wave function can be written 

as follows: 

𝑅𝑛   y =  −1 nNn

(1 + 𝑞−1ⅇ
−𝑅+𝑥
𝛼 )𝑣

(1 + 𝑞ⅇ
−𝑅+𝑥
𝛼 )ξ

 2𝐹1(−n, 2 ξ − 𝑣 + 1 + n; 2ξ

+ 1; (1 + 𝑞ⅇ
−𝑅+𝑥
𝛼 )−1) 

 

where  

ξ2 = −
𝐸𝑛

2𝛼2

𝑐2ћ2
, 𝑏1 =

2𝐸𝑛𝑉0𝛼
2

𝑐2ћ2
, 𝑏2 =

(−𝑐4𝑚0
2𝛼2 + 2𝑐2𝑚0𝑉0𝛼

2)

𝑐2ћ2
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CHAPTER 5 

5 CONCLUSION 

In this study, by considering an alternative method, the asymptotic iteration method, 

the bound state solution KG equation is solved for exponential type of potential. 

During the calculation of energy eigenfunction and energy eigenvalues, the mass 

function is considered red in two types: i) constant masses and ii) position dependent 

masses. When we consider the vector and scalar potential in the form of ⅇ−xα, the 

transformed effective potential become Morse potential. The eigenfunction for all 

types of potential forms are calculated in terms of hyper geometric functions.  

In addition to the constant mass case of Wood-Saxon potential, it is also analyzed for 

the condition of spatially dependent masses. 

After applying the AIM to the both of mass function, the energy values are analyzed 

and discussed with respect to the values of 𝛽  parameter which adjust the  relation 

between vector and scalar potentials. Since, this relations is important to get bound-

state solutions or scattering-state solutions. 

The obtained spectrums for corresponding potentials show that AIM reproduces the 

exact results more simpler and under stable than other algebraic method which is 

important advantages of AIM. 

As a conclusion, it is possible to extend the type of position dependent mass 

functions to analyze for different system using AIM. 
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