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ABSTRACT 

MODELING OF SHEAR STRENGTH OF REINFORCED CONCRETE 

BEAMS WITHOUT WEB REINFORCEMENT BY STEPWISE 

REGRESSION 

 

M. Rashid, Pishtewan Latef 

M.Sc. in Civil Engineering 

Supervisor: Assoc. Prof. Dr. AbdulkadirçEVIK 

May 2013, 99 pages 
 

In this thesis, the availability of soft computing (SC) technique (Stepwise 

Regression), for the prediction and formulation of shear strength of RC beams 

without web reinforcement was investigated.Literature survey on previous 

experimental studies has also been carried out regarding shear strength of RC beams 

without web reinforcement and a wide range of experimental database (398 tests) has 

been gathered from literature from 46 separate studies.New expressions are proposed 

based on the database taking into account the observed behavior for the design of 

normal-strength reinforced concrete beams without web reinforcement. The database 

is used for studying parameters that affect shear behavior/strength and for evaluating 

and comparing four national shear design provision (ACI 318-02, CSA A23.3 2004 

edition (Collins, 2003), Euro code EC2 Part 1 (1994, 2003) and the German Code 

(DIN, 2001)) as well as for identifying research needs. 

 

Keywords:RC beams, shear strength, Soft Computing, Stepwise Modeling



 

 

ÖZET 

ADIMSAL REGRESYON YÖNTEMİYLE KESME DONATISIZ 

BETONARME KİRİŞLERİN KESME DAYANIMININ MODELLENMESİ 

 
M. Rashid, Pishtewan Latef 

İnşaat Mühendisliği Yüksek Lisans 

Danışman: Doç. Dr. AbdulkadirçEVIK 

May 2013, 99 sayfa 

 

Bu tezde, esnek hesaplama tekniklerinin (Aşamalı regresyon) etriyesiyesiz 

betonarme kirişlerin kesme dayanımının tahmini ve formule edilmesinde 

kullanılması  incelenmektedir. Betonarme kirişlerin kesme dayanımı konusunda daha 

once yapılan çalışmalar konusunda literatür taraması yapılmış ve 46 farklı 

çalışmadan alınan 398 testten oluşan geniş bir deneysel veritabanı 

oluşturulmuştur.Bu veritabanını esas alarak  betonarme kirişlerin kesme dayanımı 

konusunda  yeni formuller önerilmiştir.Ayrıca bu deneysel veritabanı kullanılarak 4 

farklı ulusal tasarım kodundaki(ACI 318-02, CSA A23.3 2004 (Collins, 2003), Euro 

code EC2 Kısım 1 (1994, 2003) ve Alman Kodu (DIN, 2001))  kesme dayanımı 

yaklaşımları değerlendirilmiştir 

 

 

Anahtar kelimeler: Betonarme kirişler,Esnek hesaplama, Aşamalı modelleme.
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CHAPTER ONE 

INTRODUCTION 

1.1 Statement of the problem 

Concrete members are routinely used by the profession for building different types of 

structures. The axial and flexural behavior of these members is well understood. 

However, shear failure is still an area of research. Shear failure is generally initiated 

by inclined cracks that are caused not only by shear force, but by shear force in 

combination with moments and axial loads. Shear failure depends on numerous 

factors such as the dimensions, geometry, loading and the structural properties of 

members. Since shear cracks are inclined and shear failure depends on a large 

number of factors, shear design must consider the response of a finite length of the 

member, rather than the response of a single section. Due to the complications of 

shear behavior and the difficulties of shear design, the shear behavior and strength of 

members have been the major areas of research in reinforced and prestressed 

concrete structures for decades. 

These shortcomings in shear design practice are not due to a lack of experimental 

research effort. Over the last century, a few thousand beam shear tests have been 

conducted. Unfortunately, these efforts have not produced the data necessary to 

develop a sufficiently complete understanding of shear strength and behavior.  

The goal of the dissertation is to make specific recommendations that can be used in 

the codified approaches for improved shear design based on the proposed model 

Thus, central to the work discussed in this dissertation is modeling of shear behavior 

of reinforced concrete without shear reinforcement, through a unified approach..
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1.2 Objective and Scope of Study 

The primary objective of this study is to make specific recommendations that can be 

used in the codified approaches for improved shear design. To meet this objective 

,the shear behavior of reinforced concrete without shear reinforcement is modeled 

through a unified approach. The primary objective was met with the help of the 

following four objectives. 

  Objective 1: Study the existing codes of practice and their associated 

theoretical models for prediction of shear strength. Evaluate and compare the 

shear strength prediction of these codes of practice for reinforced concrete 

beams without shear reinforcement. 

 Objective 2: Develop a rational model for modeling of shear behavior of rein-

forced concrete beams without shear reinforcement. 

 Objective 3: Evaluate the proposed rational model using the large shear 

database and compare it with the codes of practice. 

 Objective 4: To develop a shear test database by conducting an extensive and 

detailed literature review. 

1.3 Outline of the thesis 

To meet the primary objective comprehensively, the study consists of two parts 

representing 5 chapters, an appendix and a list of references. 

The first part consists of the first two chapters. Chapter 1 is an introductory chapter. 

It includes the statement of the problem, objective and scope of research and Outline 

of the thesis, Chapter 2 contains a comprehensive literature review on the available 

theoretical models for understanding shear behavior and existing shear design 

provisions in national codes of practice. 

The second part consists of two chapters, Chapters 3 and 4. In Chapter 3, effect of 

influencing parameters on shear strength. In Chapter 4, numerical application and 

result, Comparison of current design codes and equations with stepwise model, 

parametric study. Summary and conclusions of the study are presented in Chapter 5. 

A comprehensive list of references is also included at the end of this thesis. 
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CHAPTER 2 

LITERACTURE REVIEW 

2.1 Introduction to shear: 

The shear stress acts parallel or tangential to the section of a material. When a simple 

beam is subjected to bending, the fibers above the neutral axis are in compression 

and the fibers located below  the neutral axis are in tension. A concrete beam with 

longitudinal steel when subjected  to external loads will develop diagonal tensile 

stresses which will tend to produce cracks. These cracks are vertical at the center of  

the span and will become inclined as they reach the support of the beam as shown in 

Figure 2.1. The stress that causes the inclined cracks in the beam is called diagonal 

tension stresses (Jose, 2002). 

Shear in concrete is a complex problem. In order to establish a basic understanding 

of the problem, this chapter initially provides an introductory explanation on shear 

behavior of concrete. This is followed by a discussion of different theoretical models 

including 45◦ truss model, variable-angle truss model, compression field theory, 

modified compression field theory, and truss model with crack friction. Then, the 

shear design provisions of several national codes of practice based on these 

theoretical models are discussed (Anuja, 2006) .These include ACI 318-02 (2002); 

ASCE-ACI 445 (2003); CSA A23-3-94 (1994); CSA A23-3 2004 edition; Eurocode 

EN 1992-1-1 (2003); German Code DIN 1045-1(2001); (Zsutty, 1968); (Collins and 

Kuchma, 1999) 
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Figure 2.1 Cracks appeared when vertical load is applied at the mid span of a 

beam(Jose.M.A, 2000) 

 

2.1.1 The problem of the shear transfer 

A flexural member supports loads by internal moment and shear forces. Classical 

beam theory, in which plane sections are assumed to remain plain, provides an 

accurate, simple, and effective model for designing a member to resist bending in 

combination with axial forces. The simplicity and rationality of beam theory can be 

kept even after cracking for several reasons. The first reasons is that flexural cracks 

from perpendicular to the axis of bending so that the traditional "plane sections 

remain plane" assumption is valid. The second reason is the weakness of concrete in 

tension, so that tensile stresses can be effectively neglected at a crack. The third 

reason is that flexural failure occurs at the maximum moment location such that a 

consideration of the conditions at the maximum moment section is sufficient for 

flexural design. Shear failure is initiated by inclined cracks that are caused not only 

by shear force but by shear force in combination with moment and axial loads. Shear 

failure depends on numerous factors such as the dimensions, geometry, loading and 

the structural properties of members (Kang, 2004).  

2.1.2 Shear transfer action and mechanism 

Shear transfer actions and mechanisms in concrete beams are complex and difficult. 

The complex stress redistributions that occur after cracking are difficult to model, 

and are influenced by many factors. Different researchers impose different levels of 

relative importance to the basic mechanisms of shear transfer. In this section, 

mechanisms of shear transfer and influencing parameters on shear failure for 

concrete beams with and without transverse reinforcement are discussed. Figure 2.2 
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describes the basic mechanisms of shear transfer that are now generally accepted in 

the research community (Anuja, 2006). In 1973, the ASCE-ACI Committee 426 and 

again in 1998, its current counterpart the ASCE-ACI Committee 445, reported five 

important shear transfer actions: shear in the un cracked compression zone of the 

beam; interface shear transfer due to aggregate interlock or surface roughness of the 

cracks; dowel action of the longitudinal reinforcement; residual tensile stresses 

across the crack; shear transfer of the shear reinforcement (in case of beams with 

transverse reinforcement) and shear transfer of the prestressing reinforcement (in 

case of prestressed concrete beams) (ASCE-ACI Committee 426, 1973; ASCE-ACI 

Committee 445, 1998). Each of these actions are depicted in Figures 2.2 and 2.3. 

They are discussed in more detail next. 

Shear in the Un cracked Concrete Zone (Vcc):The un cracked compression zone 

contributes to shear resistance in a cracked concrete member (i.e., a beam or a 

slab).The relative magnitude of the shear resistance provided by the un cracked 

compression zone is limited by the depth of the compression zone. Consequently, for 

example, in a relatively slender beam without axial compression, the shear 

contribution by the un cracked compression zone becomes relatively small due to the 

small depth of the compression zone (Anuja, 2006). 

Interface shear transfer (Vca): Local roughness in the crack plane provides 

resistance against slip and thus shear transfer across shear cracks. The contribution of 

interface shear transfer to shear is a function of the crack width and aggregate size. 

Thus, its magnitude decreases as the crack opening increases and as the aggregate 

size decreases. This is why it was also called ―aggregate interlock‖. It is also called 

―interface shear transfer‖ or ―friction‖ since this action still exists even if crack 

propagation occurs through the aggregate as it does in high strength concrete where 

the matrix is of a similar strength to the aggregates. Of course, a relatively smooth 

crack plane in high strength concrete reduces interface shear transfer (Anuja, 2006). 
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Figure 2.2. Shear transfer/actions contributing to shear resistance 
 

 

 

 

 

 

Figure 2.3. Distribution of internal shear resistance (ASCE-ACI Committee 

426,1973) 
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Figure 2.4 Response of Concrete in Uniaxial Tension (Gopalaratnam and Shah, 

1985) 
 

 

Dowel Action (Vd): When a crack forms across longitudinal bars, the dowelling 

action of the longitudinal bars provides a resisting shear force. The contribution of 

dowel action to shear resistance is a function of the amount of concrete cover 

beneath the longitudinal bars and the degree to which vertical displacements of those 

bars at the inclined crack are restrained by stirrup reinforcement. Typically, little 

dowel action can be provided by reinforcement that is near the tension face of a 

member without stirrup reinforcement because that action is then limited by the 

tensile strength of the reinforcement (Anuja, 2006). 

Residual Tensile Stress (Vcr): Tensile stresses in concrete are directly transmitted 

across cracks because small pieces of concrete bridge the crack. Gopalaratnam and 

Shah (1985) note that even when concrete is cracked and loaded in uniaxial tension 

figure 2.4,concrete can still transmit tensile stresses up to crack widths of 0.06 mm; 

other researchers report stresses up to maximum crack width values of 0.16 mm. 

When a crack opening is small, the resistance provided by residual tensile stresses is 

significant .However, in a large member, the contribution of residual tensile stresses 

to shear resistance is less significant due to the large crack widths that often occur 

before failure in such members (Anuja, 2006). 
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Shear Reinforcement (Vs): In members with shear reinforcement, a large portion of 

the shear is carried by the shear reinforcement after diagonal cracking has occurred. 

The contribution of shear reinforcement to shear resistance is typically modeled 

either with a 45◦ truss plus a concrete term, or a variable-angle truss with or without 

a concrete term. Shear reinforcement also provides a certain level of restraint against 

the growth of inclined cracks and thus helps to ensure a more ductile behavior. 

Finally, shear reinforcement provides dowelling resistance to shear displacements 

along the inclined crack. For these reasons, the presence of shear reinforcement 

changes the relative contributions of the different mechanisms of shear resistances 

(Anuja, 2006).For beams with transverse reinforcement, the basic model to explain 

the mechanism for carrying the shear was proposed by Ritter (1899). The load was 

assumed to flow down the concrete diagonal struts and then lifted to the compression 

chord by transverse tension ties on its way to support as shown in Figure 2.5 below 

(Attaullah, 2009). 

 

 

 

Figure 2.5 Parallel chord truss model. The struts are intercepted by the stirrups at 

spacing of d (Ritter, 1899) 

 

Prestressing (Vp) : In the early years of prestressed concrete construction, it was be 

lived that draped prestressing tendons would be effective in all situations as shear 

reinforcement. This was because longitudinal reinforcement, bent up at 30◦ or more 

to the longitudinal axis of the beam, extended across the web and anchored on the 

compression side, was used effectively for many years as shear reinforcement in 

reinforced concrete beams. However, the University of Illinois tests (Bulletin 493) 

demonstrated that such reinforcement was effective only in delaying shear cracks 

formed in the web due to principal tensile stresses. Draping the prestressing tendons 

did not delay the formation of inclined cracks that developed out of flexural cracks. 
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Thus, in ACI 318Code (ACI Committee 318, 2002) , the term for the vertical 

component of the pre-stress force appears only in expressions for the shear strength 

for web-shear cracking and does not appear in either the expressions for the shear 

strength for flexure shear cracking or the shear strength contributed by shear 

reinforcement (Anuja, 2006). 

2.1.3 Influencing Parameter for Members without Transverse Reinforcement 

Several parameters have been identified as having a significant influence on the 

contributions of the shear resistance mechanisms and thus the ultimate shear 

capacity. The influence of the most dominant mechanisms is listed in accordance 

with the findings of the state-of-the-art reports by ASCE-ACI Committee 426 (1973) 

and ASCE-ACI Committee 445 (1998).Concrete Strength; Size effect; Shear span to 

depth ratio; Longitudinal Reinforcement ratio; Axial Force (Anuja, 2006). 

Concrete Strength: 

It is traditionally considered that the shear strength increases with concrete material 

strength. Most researchers believe that concrete tensile strength has a greater 

influence on shear strength than does the compressive strength. The concrete 

contribution to shear, in ACI 318-02, for example, is regarded as being due to 

diagonal cracking shear. The concrete compressive strength ƒʹc , is generally used to 

estimate the tensile strength as direct tensile test are difficult to conduct, require 

interpretation of results, and usually have more scatter than do compression test 

results. In major design codes, the shear strength of a member is usually taken as 

directly proportional to ( ƒʹc )
0.25

 or ( ƒʹc )
0.33

 or ( ƒʹc )
0.5

. Those power values indicate 

that the concrete tensile strength is being used as the governing parameter (Kang, 

2004). 
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Figure 2.6 . Influence of concrete compressive strength on shear strength (Kuchma 

and Kim, 2001) 

 

Recent test results have illustrated that the presumed effect of concrete tensile 

strength on shear capacity is largely influenced by the characteristics of the tests 

conducted to examine this influence. Results from two beam test series which show 

very different trends are shown in Figure 2.6. The ACI 318-02 (2002) shear design 

approach in which the shear strength is proportional to the square root of ƒʹc is also 

shown in the same figure. The shear failure stresses of beams tested by Moody et 

al.(1954) increase as the concrete compressive strengths increases. ACI 318-02 is 

shown to provide a reasonable estimate of the influence of ƒʹc for these beams which 

has less height h, were heavily reinforced, and cast with low-to-medium-strength 

concrete. Similarly, the ACI provision is only slightly un conservative for the 

moderately reinforced beams having moderate height that were tested by (Yoon et al. 

1996).However, (Angelakos et al.2001) and (Collins and Kuchma, 1999) did not find 

a similar increase of shear strength for their tests of beams with larger height, light 

reinforcement, and high strength concrete with small aggregates. The explanation 

offered by some researchers for why shear stress at failure does not increase as 

greatly or not at all with increasing concrete compressive strength is that the 
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smoother shear cracks in high-strength concrete members reduce the effectiveness of 

interface shear transfer (Anuja, 2006). 

 

 

Figure 2.7 . Size effect in Shear (Collins and Kuchma, 1998) 

 

Size Effect : 

The shear strength of reinforced and prestressed beams without shear reinforcement 

decreases as member depth, d, increases; this is called the ―size effect‖ in shear. 

Tests performed by both Kani (1967) and Shioya (1989) effectively demonstrated 

this effect. Shioya (1989) tested members with depths ranging from 4 ∼ 120 

inches(102 mm ∼ 3.0 m), as shown in Figure 2.7. The ultimate shear stress of the 

largest member was only about one-third of that of the smallest one, and the ultimate 

shea rstress of the largest beam was less than one half of the value calculated using 

ACI318-02. In 1956, beams in the US Air Force warehouse collapsed under a shear 

forceless than one half of the ACI design value, as shown in Figure 2.7. The depth of 

these beams was 36 inches (914 mm). Investigators examining these failures 

conducted experiments with one-third scale models at the Portland Cement 

Association (PCA).The failure strengths for those model beams are also shown in 

Figure 2.7. Due to the much higher failure strength of PCA test beams than that of 
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the warehouse beams, the investigators concluded that axial tensile stresses due to 

shrinkage restraints by columns were the primary cause for those failures. However, 

it seems more reasonable to explain the results in terms of the size effect in shear. In 

models used to account for the size effect in shear, some researchers explain the size 

effect by fracture mechanics and suggest that the large amount of energy that is 

released in the cracking of large members leads to the faster propagation of inclined 

cracks and lower shear failure stresses (Bazant and Kazemi, 1991; Bazant and 

Kim,1984). Other researchers, like Collins and Kuchma (1998) and Reineck (1990; 

1991a;1991b), explain the size effect by a reduction of the interface shear transfer 

due to the larger crack widths that occur in larger members (Anuja, 2006). 

Shear Span to Depth Ratio: 

ASCE- ACI Committee 326 (1998) has showed  the shear capacity as function of 

shear to moment ratio. The basic equation for the shear strength of RC concrete 

beams proposed by ACI-318-98, makes the shear span to depth ratio as one of the 

basic parameters for calculating the shear capacity of RC section (Attaullah, 2009). 

When the shear span to depth ratio becomes less than 2.5, the shear capacity of the 

RC becomes larger than that of slender beams as the shear is directly transferred to 

supports through compression struts. However the supports condition strongly 

influences the formation of compression strut.  Compressive strut is more likely to 

form when beam is loaded from upper face and supports to the bottom face (Adebar 

1994). 

Kotsovos.M.D ( 1984) studied the effect  of web reinforcement for the RC beams 

having a/d ratio between 1 and 2.5 with the help of nonlinear finite element analysis 

and observed that placement of web reinforcement in the middle third rather than in  

the shear span results in improved ductility and load carrying capacity of RC beams. 

In one of the latest studies by Kotsovos and Pavlovic (2004), they used finite element 

analysis to study the size effect in beams with smaller shear span to depth ratio less 

than 2 and compared the results  of theoretical model with the actual experiment. 

They concluded that the shear and flexural capacity of beams with shear span to 

depth ratio less than 2, is independent of the size of members and the size effect 

vanishes for such beams.  
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The shear span to depth ratio a/d has accounted for by most  of the building and 

bridges codes in the world (Attaullah, 2009). 

Longitudinal Reinforcement Ratio: 

For the same magnitude of loading, as the longitudinal reinforcement ratio decreases, 

flexural stresses and strains increase. Thus, crack widths increase and the shear 

strength is lowered. Further, as the longitudinal reinforcement ratio decreases, dowel 

action also decreases. It has also been reported that members having distributed 

longitudinal bars over the depth of the member have smaller crack spacing and that 

improves shear strength significantly (Collinsand Kuchma, 1999).  

Axial Force : 

 As the axial tension in members increases, shear strength decreases. Since axial 

tension makes the crack angle steeper over almost the full depth of the member, 

longitudinal reinforcement needs to be provided in both the top and bottom  of the 

member. Once appropriate amounts of longitudinal reinforcement are provided, the 

failure of such members may occur in a relatively ductile manner. By contrast ,axial 

compression increases the depth of the un cracked compression zone, decreases the 

width of the shear cracks, and thus the interface shear transfer is increased. All of 

these factors lead to an increase in shear capacity with increase in axial compression. 

However, for members subjected to significant axial compression, brittle failures are 

common (Attaullah, 2009). 

Other Influencing Parameter: 

In a simply supported member, high shear and high moment do not coexist. Thus, in 

high shear region of such members, the effect of moment is relatively small. 

However in a continuous beam, thus negative moment region is subjected to both 

high shear and high moment and, thus, the effect of moment can be significant. In a 

negative moment region, the compression and tension sides are reversed over those 

in a positive moment region. Consequently, the size of the un cracked compressive 

zone in negative moment regions in T beams is reduced because the wide slab is no 

longer in compression. When supports are located on the bottom of the member and 

loads are applied on the top, applied forces can be transmitted directly to supports 
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through an inclined strut. Thus, such a member may have a higher shear capacity 

than a simple beam (Kang, 2004). 

2.1.4 Shear Failure of Members without Shear Reinforcement 

Shear failures of members without transverse reinforcement are initiated by inclined 

cracks, and these cracks are typically divided into two types, i.e., web-shear cracks 

and flexure-shear cracks as shown in Figure 2.8. The web-shear cracking occurs in 

high shear regions when the principal tensile stress reaches the tensile strength of the 

concrete. Flexure-shear cracking occurs in regions of high moment combined with 

significant shear and occurs at slightly higher shear forces than those for flexural 

cracking. As loading increases, flexural cracks form in and near the maximum 

moment region, as shown in Figure 2.8.(Anuja, 2006). 

 

 

Figure 2.8 . Types of inclined cracks 
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(a) Beam 

 

 

 

(b) Moments at cracking and failure 

 

 

 

(c) Shear at cracking and  failure 

 

Figure 2.9 . Effect of shear span to depth ratio (a/d) on shear strength of beams 

without stirrups (MacGregor and Wight, 2004) 
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―Kani‘s Valley of Shear Failures‖ is presented in Figure 2.9 (MacGregor andWight, 

2004). Kani (1964) conducted a very large experimental study on shear and reported 

relationships between the beam capacity and the shear span to depth ratio a/d (where 

a, the shear span, is the distance between a support and the load closest to that 

support, and d is the depth of the member, as shown in Figure 2.9). Kanitested a 

large number of rectangular beams without shear reinforcement and having  various 

a/d ratios, while the rest of the beam details remained the same, as shown in Figure 

2.9(a). Then, the moment and shear at inclined cracking and failure were observed, 

as shown in Figure 2.9(b). In the figure, the flexural capacity, Mn, is the horizontal 

line while the shaded area represents the reduction of strength due to shear. From this 

figure, beams can be classified into four groups by a/d ratios: very short, short, 

slender, and very slender beams. Figure 2.9(c) can be obtained by dividing the 

moment in Figure 2.9(b) by the shear span, a, as the moment is M = V × a for beams 

with two point loads. Kani also tested beams subjected to uniformly distributed load 

and used the a/d ratio as a quarter of the span length, i.e., L/4 (Anuja, 2006). 

2.1.5 Mode of Shear Failure 

The modes of shear failure of beams were also discussed by ASCE-ACI 

Committee426 (1973) with classification of beams by a/d ratios. The failure modes 

of simply supported rectangular beams without shear reinforcement were described 

as follows: 

• In very slender beams (a/d > 6), the members will likely fail in flexure even before 

the formation of inclined cracks. 

• In slender beams (2.5 <a/d< 6), some of the flexural cracks grow and may become 

flexure-shear cracks. The diagonal cracks may continue to propagate toward the top 

and bottom of the beam and cause yielding of the tension steel .The beam may split 

into two pieces at failure. This is called as diagonal tension failure, shown in Figure 

2.10. 
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Figure 2.10 . Diagonal tension failure (ASCE-ACI Committee 426, 1973) 

 

• In short beams (1 <a/d< 2.5), a diagonal crack may propagate along the tension 

steel causing splitting between the concrete and the longitudinal bars This is called a 

shear-tension failure, shown in Figure 2.11(a). The diagonal crack may propagate 

toward the top of the beam resulting in crushing of the compression zone resulting in 

crushing of the compression zone. This is called a shear-compression failure, shown 

in Figure 2.11(b). 

• In very short beams (a/d < 1), inclined cracks occur along the line between load and 

reaction. Thus, most of the shear force is transferred by arch action with a structural 

system, as shown in Figure 2.12. The failure modes possible in this type of deep 

beam are also shown in Figure 2.12. Anchorage failure of tension steel may occur at 

the end of a tension tie. Bearing failure may occur by the crushing of concrete above 

a support. Flexural failure is also possible due to the yielding of tension steel or the 

crushing of the compression zone. Tension failure of ―arch-rib‖ near the top of an 

edge may occur due to the eccentricity of the thrust of the compressive stresses in the 

inclined strut. Compression strut failure is also possible by crushing of the web along 

the crack (Anuja, 2006). 

 

 

(a) Shear-tension failure 
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(b)Shear-compression failure 

Figure 2.11 . Modes of shear failures in short beams (ASCE-ACI Committee 

426,1973) 

 

 

 

Figure 2.12. Modes of shear failures in deep beams (ASCE-ACI Committee 

426,1973) 

 

The failure of I shape beams are somewhat different from those of rectangular beams 

because the shear stresses in the webs are much higher than in rectangular beams. 

Web crushing failures are the most common failure mode for I beams, as shown in 

figure 2.13, although all the failure modes described above for rectangular beams are 

also possible for I beams as well (Kang, 2004). 
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Figure 2.13 Modes of shear failure of I beams (ASCE-ACI Committee 426,1973) 

 

2.1.6 Shear Strength of Normal Strength Reinforced Concrete Beam 

The research on shear strength of concrete has shown that reinforced concrete beams 

without transverse reinforcement can resist the shear and flexure by means of beam 

and arch actions, also sometimes called concrete mechanisms (Russo et al, 2002).  

These forces acting on the beam element in its shear span are shown in Figure 2.14. 

It was assumed  that the resultant  of the aggregates interlocking at the  crack 

interface can be replaced by Va  as shown in the Figure 2.14, whose direction passes 

through the  point of application  of the internal compression force C. The shear 

contribution due to dowel Vd is negligible at the rotation equilibrium. The resultant 

bending moment is given by   

Mc = Vc.x = T.jd                                                                                                      (2.1) 

Where Vc is the shear force due to concrete  resisting contribution, T is tensile force 

in the longitudinal reinforcement and x is the distance between the support and the 

point where crack has been appeared. The shear force is the derivative of the bending 

moment Vc = dMc/dx 

 Vc = jd [
 

  
 T]+T.

 

  
jd                                                                                             (2.2) 
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Forces acting in a beam element within the shear span 

 

 

 

Figure 2.14 Forces acting in a beam element within the shear span and internal 

arches ina RC beam (Kani, 1964., Russo et al., 2004). 

 

The first term in equation 2.2, is the resistance to shear as contribution of the beam 

action, whereas the second part is called arch action. In beam action, the lever arm is 

constant and the tensile force in the steel bars is supposed to vary. The beam action is 

related to the crack pattern in the shear span, in which the tensile zone is generally 

divided into blocks or teeth. Beam action describes shear transfer  by changes in the 

magnitude of the compression-zone concrete and flexural reinforcement actions, with 

a constant lever-arm, requiring load-transfer between  the two forces. In a cracked 

beam, load-transfer from the flexural reinforcement to the compression-zone occurs 

through the ‗‗teeth‘‘ of concrete between cracks, requiring bond between the 

concrete and reinforcement. Bending and failure of this concrete is studied by tooth 

models.  

The second part of the equation shows the  shear resisting contribution due to arch 

action, which is characterized by  the internal variation of the lever arm  jd with the T 

constant. The arch mechanism  transfers the vertical loads to the supports through the 

arch route. Arch action occurs in the un-cracked part of concrete near the end of a 

beam, where load is carried from the compression-zone to the support by a 
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compressive strut. The vertical component of this strut transfers shear to the support, 

while the constant horizontal  component is reacted by the tensile flexural 

reinforcement. Both beam action and arch action can act in the same region 

(Stratford and Burgoyne,2003). Thus shear transfer in the beam can take place by 

one of the two mechanisms i.e. variation in the magnitude of internal actions and 

variation in the lever arm between the actions. The details are shown in Figure 2.15. 

Before cracking of the beams, the shear is resisted by the beam by all the elements of 

the beams shown  in the paths I, II and III ( Figure 2.14). However after the cracks, 

only the un-cracked part of the beams is resisting the shear by transferring it to the 

supports.  

 

 

 

Figure 2.15 Shear in beam with no transverse reinforcement.(Stratford and 

Burgoyne, 2003) 

 

In one of the earliest research on shear failure, at University of Toronto Canada, Kani 

(1964) defined the regions of beam action and arch actions for resisting the shear in 

RC beams, for the first time. It was pointed out by him that initially the shear is 

resisted by the teeth of cracked concrete, but after destruction of the resistance by 

teeth of the cracked beam, a quite different mechanism through tied arches in the 

compression zone occurs. On the basis of actual test results, Kani (1964), reported 

that in the region of low values of shear span to depth ratio (a/d), the shear capacity 

of the structure is determined by the strength of remaining arch, whereas in the 

region with medium value of a/d, the capacity of teeth of cracked concrete 
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determines the  shear capacity of  the beams. He also proposed an expression for the 

boundary point separating the two regions. In Figure 2.16, the boundary for shear 

failure  of the beams tested in Toronto has been given, which shows that up to a/d of 

2.5, shear failure due to arch action is dominant whereas in the region with a/d more 

than 2.5 and up to 5.75 or 6 beam action due to concrete teeth ( beam action) is 

dominant and the shear capacity due to arch action is very small (Attaullah, 2009). 

 

 

Figure 2.16 Comparison of theoretical and test results of shear failure of beams 

(Kani.1964) 

 

2.2 Theoretical Models for Shear Behavior in concrete 

To understand the design specifications of these codes it is essential to understand 

the underlying theoretical models. This section presents the history of development 

of theoretical models followed by some theoretical models for shear behavior in 

concrete as available in literature. The models include 45◦ truss model, variable-

angle truss model, compression field theory, modified compression field theory, and 

truss model with crack friction (Anuja, 2006). 
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2.2.1 Historical Development of Shear Design of Reinforced Concrete Beam 

Since there is a need for research in the area of shear analysis of concrete beams, 

research has already been done at various universities all over the world on this topic 

.Work in this area started as early as the 1900‘s. 

Early researchers did most of the work in reinforced concrete beams with transverse 

reinforcement. Ritter (1899) suggested that after a reinforced concrete beam cracks 

due to diagonal tension stresses, it can be idealized as a parallel chord truss with 

compression diagonals inclined at 45◦ to the longitudinal axis of the beam. Later, 

Mörsch(1909) introduced the use of truss models for torsion in concrete. Withey 

(1907,1908) pointed out that these models gave conservative results and pointed out 

that Mörsch (1909) neglected contribution of concrete in tension. Talbot (1909) 

confirmed Whithey‘s findings. 

In 1950‘s and 1960‘s, a large amount of experimental research was conducted to 

study the contribution of aggregate interlock and dowel action on shear resistance. 

Zwoyer and Siess (1954), Bresler and Pister (1958), Guralnick (1959),and Walther 

(1962) studied the stress conditions in the concrete above flexural cracks of 

reinforced concrete beams without transverse reinforcement assuming that all shear 

would be carried in the flexural compression zone. Kani (1964)introduced the 

―comb‖ model in which the concrete between the flexural cracks is considered as the 

teeth of the comb and un cracked concrete as the backbone of the comb. Based on the 

large amount of available experimental results, the ASCE-ACI Committee 326 

(1962)recommended the use of an empirical expression for shear stress at the 

flexure-shear cracking load which first appeared in the 1963 ACI 318 Code and is 

still present inACI318-02 (2002) as Equation 11-5. 

In the 1950‘s and 1960‘s extensive work at the University of Illinois (Bulletin493) 

and at the Portland Cement Association (PCA) resulted in the development of the 

shear strength provisions for prestressed concrete beams without transverse 

reinforcement that continue to be incorporated into ACI 318-02.While the model 

used for the shear strength provided by the transverse reinforcement was the same as 

that for reinforced concrete beams, the models used for the shear at inclined cracking 

differed considerably from those for reinforced concrete beams. 
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Fenwick and Paulay (1968) suggested that shear resistance carried by the 

compression zone is only about 25% of the total shear and ―aggregate interlock‖ and 

dowel forces carried the remainder of the shear. Kupfer (1964) took a step forward 

for prestressed concrete members with transverse reinforcement in predicting the 

strut angle using minimum energy principles, and Baumann (1972a,b) further 

pursued this concept and presented dimensioning diagrams for plate elements with 

reinforcement in two or even three directions. 

Inspired by this work, and also by Wagner‘s (1929) tension field theory, Collins and 

Mitchell (1980, 1981) developed the Compression Field Theory (CFT). Though CFT 

worked well for members with medium to high percentage of transverse 

reinforcement, it did not work for other cases like members with no transverse 

reinforcement. Hence, Vecchio and Collins (1986) developed the Modified 

Compression Field Theory(MCFT) for widening the scope of applicability. 

Thürlimann et al. (1983) and Nielsen(1984) introduced plasticity methods for 

predicting shear strength. Later in the late1990‘s, shear friction theory and general 

friction theory and design with strut-and-tie system were developed (Anuja, 2006). 
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2.2.2 45◦ Truss Model 

 

 

 

(a) Cross section 

 

 

 

(b) Diagonal stresses and longitudinal equilibrium 

 

 

 

(c) Stirrup force 

 

Figure 2.17 . Equilibrium conditions for 45◦ truss model (Collins and Mitchell, 

1991) 
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Truss models were widely used to understand shear behavior of reinforced concrete 

beams in the early 1900‘s. Ritter (1899) used a 45◦ truss model for the analysis of the 

post-cracking behavior of a reinforced concrete beam. In his model, diagonal 

concrete struts were considered to be the diagonal members of the truss, the stirrups 

were the vertical members of the truss, the longitudinal reinforcement served as the 

bottom chord of the truss, and the flexural compression zone served as the top chord 

of the truss. Mörsch (1909) improved this model by assuming that the diagonal struts 

extended across more than one stirrup. The tensile stresses in cracked concrete were 

neglected in this model and diagonal compression stresses were assumed to remain 

at45◦ after the concrete cracked. 

Equilibrium equations for this model, assuming an angle of diagonal compression of 

θ =45◦ , are shown in Figure 2.17. Assuming a uniform distribution of shear stresses 

in the effective web area, bwjd, the vertical component of the diagonal compressive 

force must be balanced by the applied shear (Collins and Mitchell, 1991): 

f2 = 
  

    
                                                                                                                 (2.3a) 

where, 

f2= principal compressive stress 

V = applied shear 

bw = width of the web of the beam 

jd = flexural lever arm (distance between compressive force and tensile force) 

The horizontal component of the diagonal compressive force also must be balanced 

by the tension in longitudinal reinforcement: 

 

Nv = V                                                                                                                    (2.3b) 

where, 

Nv = tension in longitudinal direction 
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From Figure 2.17, the vertical component of the diagonal compression force must be 

balanced by the tension in the stirrups over the length jd. cot 45◦ = jd: 

     

 
 

 

  
                                                                                                                (2.3c) 

where, 

Av = tension in longitudinal direction 

fv = stress in shear reinforcement 

s = spacing of shear reinforcement 

Equation 2.3c is used to design the required amount of stirrups. Equation 2.3a is used 

to check the compressive stresses in the concrete and this determines the upper limit 

of the shear force or capacity. 

In the middle of the 1960‘s the 45◦ truss model was reexamined because it gives 

overly conservative results for predictions of the shear strength of members with 

shear reinforcement. The model lowers the effectiveness of the stirrups and, 

consequently, efforts were directed towards predicting the actual strut angle, which 

may be flatter than the angle of the inclined cracks (Anuja, 2006). 
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2.2.3 Variable-Angle Truss Model 

 

 

 

(a) Cross section 

 

 

 

(b) Diagonal stresses and longitudinal equilibrium 

 

 

 

(c) Stirrup force 

 

Figure 2.18 . Equilibrium conditions for variable-angle truss model (Collins 

andMitchell, 1991) 
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The variable-angle truss model is a version of the 45◦ truss model modified by 

assuming flatter strut angles, θ ≤ 45◦ (Collins and Mitchell, 1991). In this model, the 

three equilibrium equations can be derived in the same manner as for the 45◦ truss 

model. The equilibrium conditions for this model are shown in Figure 2.18. They 

are: 

   
 

    
 

 

         
  

 

    
                                                                    (2.4a) 

where, 

f2= principal compressive stress 

V = applied shear 

bw = width of the web of the beam 

jd = flexural lever arm (distance between compressive force and tensile force) 

θ = crack angle or the angle of compression strut 

Nv = V cot θ                                                                                                           (2.4b) 

where, 

Nv = tension in longitudinal direction 

θ = crack angle or the angle of compression strut 

     

 
 

 

  
                                                                                                           (2.4c) 

where, 

Av = tension in longitudinal direction 

fv = stress in shear reinforcement 

s = spacing of shear reinforcement 

However, these three equilibrium equations are not sufficient to solve member 

forces, because there are four unknowns: the principal compressive stress, f2 ;the 
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tension in the longitudinal direction, Nv; the stresses in the shear reinforcement, 

f2;and the strut angle or inclination of the principal compressive stresses, θ. 

There have been different approaches to solve for this angle. Kupfer (1964) used 

minimum energy principles to determine the crack angle θ while assuming linear 

elastic behavior of both reinforcement and concrete. Baumann (1972a,b) continued 

this work, which was later taken up by Vecchio and Collins (1982, 1986) in their 

compression field theory. The traditional truss model assumes that the stirrups 

yield(i.e., fv = fy)and θ =45◦ , and uses Equation 2.2c. Plasticity methods assume the 

yield of the stirrups (i.e., fx = fv = fy) and that the maximum compressive stress,f2is 

attained. However, the lower and the upper limit of angle θ is usually specified in the 

model (Anuja, 2006). 

2.2.4 Compression Field Theory (CFT) 

The Compression Field Theory (CFT) uses the same approach for equilibrium 

conditions as described in the variable-angle truss model. Equations 2.4a, 2.4b, and 

2.4ccan be expressed respectively in terms of the stresses as shown below (Mitchell 

and Collins, 1974). These equilibrium equations can also be derived from Figure 

2.19(a) and (b): 

f2 = v(tan θ +cot θ)                                                                                                (2.5a) 

where, 

f2 = principal compressive stress 

v = shear stress 

θ = crack angle or the angle of compression strut 

ρxfsx = v cot θ                                                                                                         (2.5b) 

where, 

ρx= longitudinal reinforcement ratio  

fsx= stress in longitudinal reinforcement 
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ρyfsy = v tan θ                                                                                                         (2.5c) 

where, 

ρy= shear reinforcement ratio 

fsy= stress in shear reinforcement 

In determining the crack angle θ in the variable-angle truss model, Wagner (1929) 

provided an important fundamental in his ―tension field theory‖. In his shear design 

of thin ―stressed-skin‖ aircraft, he assumed shear would be carried by a diagonal 

tension field after buckling of the thin metal web. Then, he considered the 

deformations of the system by assuming that the angle of inclination of the diagonal 

tensile stresses would coincide with the angle of the inclination of the principal 

tensile strain. 

Similar to the tension field theory, CFT utilizes the deformations for reinforced 

concrete by assuming that a diagonal compression field would carry shear after 

cracking. The compatibility condition used in the compression field theory can be 

derived from Mohr‘s circle for strains, as shown in Figure 2.19(c and d). 

From the Figure 2.19(c) and (d), the relationship between crack angle θ and the 

strains can be expressed as follows: 

      
   

     
                                                                                                        (2.6) 

Where, 

γxy = shear strain 

εx = strain in horizontal x direction 

εy = strain in vertical y direction 

The relationship between crack angle θ and the strains can also be expressed as: 

tan
2
 θ =

     

     
                                                                                                           (2.7) 

Where, 
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ε2 = principle compressive strain 

Equation 2.7 is Wagner‘s (1929) and Baumann‘s (1972a; 1972b) compatibility 

equation, which can be applied in cracked concrete using average strains. From 

Equation 2.7, the influence of the crack angle θ on strains can be observed. For steep 

crack angles, the longitudinal strain becomes high and for flattened crack angles, the 

transverse strain becomes high. 

As shown in Figure 2.19(e), the stress-strain relationships for both longitudinal and 

transverse reinforcement were assumed as bilinear in this approach. Stress-strain 

relationships for cracked concrete in compression were proposed by Collins 

(1979),based on experimental test results, as follows: 

   (
   

   
)        max =

       

   
        

   

                                                                           (2.8) 

Where, 

f2 = principal compressive stress 

f2max = maximum compressive stress, a test parameter in softening of compressive 

strength proposed by Vecchio and Collins (1986) 

f'c= compressive strength of concrete 

ε'c = strain corresponding to f'c in a cylinder test 

ε1 = principle tensile strain 

ε2 = principle compressive strain 

In Equation 2.8, the softening of the compressive strength in cracked concrete is 

expressed in terms of the principal tensile strain, ε1 . The principal strain, ε1 ,can be 

derived from Figure 2.19(d) and Equation 2.8 as: 

ε1 = εx + εy − ε2 = εx +(εx − ε2 )cot
2
 θ                                                                      (2.9) 

From Equation 2.9, the longitudinal strain, εx, can be expressed as: 

εx =(ε1 tan
2
 θ + ε2 )/(1 + tan

2
 θ)                                                                            (2.10) 
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A similar expression for εy can be made from Equations 2.9 and 2.10 as: 

εy =(ε1 + ε2 tan
2
 θ)/(1 + tan

2
 θ)                                                                              (2.11) 

 

 

Figure 2.19 . Basic relationships for compression field theory (Mitchell and 

Collins,1974) 

 

Based on the experimental findings, Equation 2.8 was refined by Vecchio and 

Collins (1986) to be as follows 

f2 = f2max[ (
  

   
)  (

  

   
)
 

]                                                                                    (2.12) 

such that, 
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 =

 

         
      

Since the CFT provides the equilibrium conditions, compatibility conditions, and 

constitutive relationships for reinforcement and cracked concrete, it can predict shear 

behavior for any load level as well as the shear strength of members. However, since 

the CFT neglects the tensile stresses in cracked concrete, it gives conservative results 

on the shear behavior of members, meaning that it underestimates both shear 

stiffness and shear strength (Anuja, 2006). 

2.2.5 Modified Compression Field Theory (MCFT) 

The tensile stresses in cracked concrete provide significant shear resistance. The 

Modified Compression Field Theory (MCFT) accounts for the influence of tensile 

stresses on the post-cracking shear behavior. The equilibrium equations for the 

MCFT can be derived in a similar manner to those for CFT with a concrete tensile 

stress term f1 added (Vecchio and Collins, 1986). 

Considering the concrete tensile stress f1in Equations 2.5a, 2.5b, and 2.5c, the 

equilibrium equations are: 

f2 = v(tan θ +cot θ) − f1                                                                                                                                   (2.13a) 

where, 

f1 = principal tensile stress 

f2= principal compressive stress 

v = shear stress 

θ = crack angle or the angle of compression strut 

ρx fsx = v cot θ − f1                                                                                                                                                (2.13b) 

where, 

ρx= longitudinal reinforcement ratio 

fsx = stress in longitudinal reinforcement 
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ρv fsy = v tan θ − f1                                                                                                                                               (2.13c) 

where, 

ρy = shear reinforcement ratio 

fsy= stress in shear reinforcement 

It should be noted that these conditions are expressed in terms of average stresses. 

The average principal tensile stress after cracking, f1 , was suggested by Collins and 

Mitchell (1991) to be as follows: 

f1= 
    

  √     
 (psi)                                                                                                   (2.14) 

where, 

fcr = 4√    

f'c = compressive strength of concrete 

ε1 = principle tensile strain 

It can be seen that the average principal tensile stress f1 decreases as the average 

principal tensile strain ε1 increases. 

Both the CFT and MCFT can predict the shear behavior of members with shear 

reinforcement for all loading histories. However, the CFT predicts no shear strength 

for those members without shear reinforcement as it neglects the contribution of 

tensile stress in cracked concrete. The MCFT can predict shear behavior even for 

those members without shear reinforcement since it accounts for the tensile stress in 

cracked concrete (Anuja, 2006). 

2.2.6 Review of Related Work 

Prior to cracking, the maximum shear stress at the web can be calculated by using the 

traditional theory for homogeneous, elastic and un cracked beams, developed by the 

35year-old Russian railway engineer D.J. Jourawski in 1856 (Collins, 2001):  

  
  

  
                                                                                                                    (2.15)  
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Where I is the moment of inertia of the  cross section, Q the first moment about the 

censorial axis of the part of the cross-sectional area lying farther from the censorial 

axis than the point where the shear stresses are being calculated, and b the width of 

the member where the stresses are being calculated.  

Figure 2.20 shows the principal compressive stress trajectories in an un cracked 

beam and a photograph of a cracked reinforced concrete beam. Although there is a 

similarity between the planes of maximum principal tensile stress and the cracking 

pattern, they are by no means exactly alike. The flexural cracking, which precedes 

the inclined cracking, disrupts the elastic stress field to such an extent that inclined 

cracking occurs at a principal tensile stress, based on the un cracked section, of 

roughly a third of the tensile strength of the concrete (MacGregor and Bartlett 2000). 

In 1902 Mörsch derived the shear stress distribution for a reinforced concrete beam 

containing flexural cracks. Mörsch predicted that shear stress would reach its 

maximum value at the neutral axis and would then remain constant from the neutral 

axis down to the flexural steel (Figure 2.21). The value of this maximum shear stress 

would be: 

  
 

    
                                                                                                                 (2.16)  

where bw is the web width and z the flexural lever arm.  

Mörsch recognized that this was a simplification, as some of the transverse force 

could be resisted by an inclination in the main compression, which would cause the 

ribs of the concrete between flexural cracks to bend, producing dowel forces in the 

main steel (Antoni, 2002). 

Hamadi and Regan (1980), based on extensive experimental work on interface shear, 

published an analysis of a tooth model. It was assumed that the cracks were vertical 

and that their spacing was equal to half the effective depth of a particular beam. 

Reineck (1991) further developed the tooth model, taking all the shear transfer 

mechanisms into account, carrying out a full nonlinear calculation including 

compatibility. Reineck (1991), based on his mechanical model, derived an explicit 

formula for the ultimate shear force, which matched with the results  of the test as 

well as with those of many empirical formulas (Antoni, 2002). 
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Figure 2.20: Principal compressive stress trajectories in an un cracked beam and 

photograph of a cracked reinforced concrete beam. 

 

 

 

Figure 2.21:  Shear stress distribution in a reinforced concrete beam with flexural 

cracks (adapted from Collins and Mitchell, 1997). 

 

The application of simple strut-and-tie models, which have their theoretical basis in 

the lower-bound theorem of plasticity, requires a minimum amount of distributed 

reinforcement in all directions to ensure sufficient ductility in order for internal 

stresses to be redistributed after cracking. However, it is possible to extend this 

simple strut-and-tie model to members without web reinforcement by using a clearly 

different approach. Marti (1980) extended the plasticity approach by using a 

Coulomb-Mohr yield criterion for concrete that includes tensile stresses. In 1987, 
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Schlaich suggested a refined strut-and-tie approach that includes concrete tension 

ties. Reineck showed that such truss models comply with the tooth model he had 

proposed (Antoni, 2002). 

 Empirically derived equations have been very important in the development of 

procedures used for designing members without transverse reinforcement. The 

simplest lower-bound average shear stress at diagonal cracking is given by the 

equation  

  

  
    

√   

 
                                                                                                        (2.17) 

This well-known ACI equation, basis for the Spanish EH-91 shear provisions, is a 

reasonable lower bound for smaller slender beams that are not subjected to axial load 

and have at least 1% longitudinal reinforcement (ACI-ASCE Committee 445, 

1998).However, it may be un conservative for lowly-reinforced members and high-

strength concrete members.   

The CEB-FIP Model Code (1990) suggests a more sophisticated empirical formula 

based on Zsutty‘s (1968, 1971) equation and adding an extra term to account for the 

size effect (equation 2.18). It should be noted that the formula implicitly includes the 

concrete safety factor. To disregard this factor, we should use 0.15 as the constant 

rather than 0.12. 

  

  
      (  √

   

 
) (

  

  
)

 

            
 

        σcd                                                        (2.18) 

 where  σcd equals  Nd/Ac,  Nd being the factored axial force that includes the prestress 

(tensile positive) force and Ac, the cross sectional area of the concrete . 

Zsutty‘s equation took into account the influence of the compression strength of the 

concrete and the longitudinal reinforcement ratio. When the steel ratio is small, 

flexural cracks extend higher into the beam and open wider than would be the case 

with large values of ρw. (Antoni, 2002). 

The MC-90 equation takes the influence of compression force as a factor. However, 

members without shear reinforcement subjected to large axial compression and shear 

may fail in a very brittle manner at the first instance of diagonal cracking (Gupta and 
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Collins, 1993). As a result, a conservative approach should be used for those 

members (Antoni, 2002). 

Gastebled and May (2001) recently developed a fracture mechanic model for the 

flexural-shear failure of reinforced concrete beams without stirrups. They assumed 

that that the ultimate shear load is reached when a splitting crack at the level of the 

longitudinal reinforcement starts to propagate. If we adopt the format of the CEB-FIP 

formula, their equation becomes 

  

  
      

     

√ 
(
  

  
)

 

        
 

 (  √  )
 

                                                     (2.19) 

It is worthy a mention that the analytical and the empirical formulas compare very 

well (Gastebled et al. 2001). However, Gastebled‘s equation gives more importance 

to the size effect than the CEB-FIP formula does (Antoni, 2002). 

Other different fracture mechanic models have been proposed to account for the fact 

that a peak tensile stress is near the tip of a crack and a reduced tensile stress 

(softening) is located in the crack zone. This approach offers a possible explanation 

for the size effect in shear. Two well-known models are the fictitious crack model 

(Hillerborg et al. 1976), and the crack band model (Bazant and Oh, 1983). 

ASCE-ACI Committee 445 (1998) emphasized that, although the refined tooth 

models and the modified compression field theory take different approaches to the 

problem, the end result of these two methods is very similar for members without 

transverse reinforcement. Both methods consider that the ability of diagonal cracks 

to transfer interface shear stress plays an important role in the determination of the 

shear strength of members without transverse reinforcement (Antoni, 2002). 

Shear transfer across cracks by  interlocking particles was first looked  at, in detail, 

by  Fenwick  and  Paulay  in  the  late  1960's  (Fenwick  and  Paulay,  1968).  This  

was aggregate interlock action, and shear displacement (or  shear slip) parallel  to the 

direction of  the  crack  was  a  prerequisite  of shear  transfer  by  aggregate  

interlock.  The authors examined the principal mechanisms of shear resistance in 

reinforced concrete beams.  Two of the parameters studied were the concrete strength 

and the crack width.  The concrete strength ranged  from about  20  MPa to  60 MPa. 

Based on tests done on concrete shearblocks,  the  authors found  that there was  a 
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substantial reduction  in shear  transmitted by aggregate interlock  action when  the  

crack  width  was  increased.  Also,  as the concrete strength  was  increased  to  60  

MPa, the  shear  transmitted  across  the  cracks  increased. However, it is important 

to note that the crack width for the latter tests was fixed at about 0.2 mm and there  

was  no  occurrence of the  aggregate interlock action  breaking  down. The concrete 

shear blocks exhibited both shear and flexural cracks (Dino, 1999). 

Carrasquillo  et  al  (1981)  examined  the  behavior  and  micro cracking  of  high 

strength  concrete  subjected  to  short-term  loading.  The authors  concluded  that  

high- strength  concrete  has  much  less  micro cracking  at al1  stress  levels  than  

normal  strength concrete, but fails more suddenly with fewer planes of failure.  The 

authors looked at the differences in  the  mechanical  properties  of  30,  50  and  70  

MPa  concretes  in  terms  of formation and propagation of micro cracks.  They 

found that  under uniaxial  compression, normal  strength concrete developed  highly  

irregular  failure surfaces  including  numerous instances  of bond  failure between  

the  coarse  aggregates and  mortar.  Medium strength concrete developed a 

mechanism similar to the normal strength concretes but at a higher strain.  The  

failure  mode  of  high-strength  concretes  was  typical  of  that  of  a  nearly 

homogeneous material.  Failure occurred suddenly in a vertical, nearly flat plane 

passing through the aggregate and the mortar (Dino, 1999). 

Walraven  performed  experiments  on  concrete  push-off  specimens  of  various 

concrete  strengths  (Walraven  et  al  1987  and  Walraven  1995).  The highest 

concrete strength examined had a cube strength of 115 MPa.  The crack width and  

normal  stress were also varied in the test program to isolate each parameter.  Figure 

2.22  shows the shear stress and  normal  stress versus the shear slip for various crack 

widths.  As  can be seen in the  figure,  for  a  crack width  of  1 mm  and  a shear  

slip  of about  2  mm,  the  shear  stress transmitted across the crack for the 59 MPa 

and the  115 MPa concretes was 6 MPa and 4 MPa,  respectively.  In general, 

Walraven found that the shear friction capacity of cracks in high-strength concrete is 

significantly reduced due to fracture of the aggregate (Dino, 1999). 

It  could  be  expected  that  the  surface  of  a  diagonal  tension  fracture  in  a  high 

strength concrete beam  would  be relatively smooth,  as obtained  in  uniaxial 

compression,  and   the  smooth  surface  might  be  deficient  in   aggregate  interlock  
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which is  an important component of shear resistance (Elzanaty et al  1986) . 

In  the  present  study,  it  is  expected  that  the  shear  stress  transmitted  across  the 

cracks will decrease as the concrete strength increases, which in turn,  May  be a 

prominent factor in the overall shear capacity of the high strength concrete 

specimens (Dino, 1999). 

 

Figure 2.22  Shear stress, v, normal stress, σ, and shear displacement D at different 

constant crack widths, w,  for 59 MPa (left) and  115 MPa concrete (right) 

 

Eizanaty  et  al  (1986)  investigated  the  shear  capacity  of  18  reinforced  concrete 

beams  (3  of which  contained stirrups) using  high-strength  concrete.  The variables 

were the concrete strength, longitudinal reinforcement ratio, and  shear span-to-depth  

ratio. The concrete strength ranged from 21 MPa to 83 MPa. The beams without 

stirrups were designed  to  investigate  the  effects of  concrete  strength,  shear  span-

to-depth  ratio,  and percentage of longitudinal reinforcement.  Those with stirrups 

had a constant value for the shear span-to-depth  ratio and  were designed to study 

the effects of concrete strength  on the shear capacity of the beams (Dino, 1999). 

The authors concluded that the shear strength of beams without stirrups increased 

when the concrete strength increased.  However,  they  found that the crack surfaces 

were distinctively  smoother  for  the  higher  strength  concretes,  indicating  that  

the  shear  force carried by aggregate interlock decreased with increased concrete 

strength. The  authors  also  concluded  that  for  al1  concrete  strengths,  increasing  

the percentage  of longitudinal  reinforcement  increased  the  shear strength of  the 

test  beams without  stirrups.  It was  observed  that  beams with  high-strength  
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concrete  and  small amounts of longitudinal reinforcement had deficient dowel 

action, and splitting dong the reinforcing bars occurred suddenly (Dino, 1999). 

Apart  from varying the shear span-to-depth  ratio,  the present  study examines the 

same parameters as the study by Elzanaty et al  (1986).  It is expected that the results 

will be very similar.  One significant difference in the two experimental programs, 

however,  is the  size  of  the  specimens.  The  beams tested  by  Elzanaty  et  al  

(1986)  measured approximately 300 mm in height and  175 mm in width-  The 

present study examines beams with a  height  of 1000 mm  and  a width  of 300 mm.  

This size difference in the specimens will influence the crack widths.  Large, lightly 

reinforced beams, relative to smaller ones at the same stress level, exhibit wider 

cracks.  After cracking, shear is resisted  by  aggregate interlock,  dowel action of the  

main  reinforcing bars,  and  resistance of the still un cracked concrete at the top of 

the beam.  If the cracks are wider, the aggregate interlock mechanism will not be as 

effective.  Also, as the concrete strength increases and the crack surfaces become 

smoother and consequently more dowel action is required,  the shear capacity of the 

large lightly reinforced members may not increase for higher concrete strength unless 

the cracks are contained,  either by the addition of stirrups, for example, or increasing 

the percentage of longitudinal reinforcement (Dino, 1999). 

It is expected that  the beams in  the present  study will  yield  results  very  similar to 

those obtained by Stanik (1998).  In this study, a wider range of concrete strengths 

will be examined, relative to that done by Stanik (1998), to try and establish an 

optimum concrete strength  for  the  shear  capacity  of  lightly  reinforced  concrete  

beams  with  and  without stirrups.  With the addition of transverse reinforcement it 

is expected that a sharp increase in strength and ductility will be evident relative to 

beams without stirrups for al1 concrete strengths.  The  variation  of the  longitudinal  

reinforcement  from  0.5  % to  2  % in  the present study may also  shed more light 

on the effects of crack widths on the beam's  shear capacity  (Dino, 1999). 

In  1955, the Wilkins Air Force  Depot warehouse  in  Shelby, Ohio, collapsed due to 

the shear  failure  of  36  in.  (914  mm)  deep  beams  which  did  not  contain  any  

stirrups  at  the location of failure (Collins and Kuchma,  1997 and Collins and 

Mitchell,  1997). These beams had  a  longitudinal  steel  ratio of only 0.45%.  They  

failed at a  shear stress of only about 0.5 MPa whereas the AC1 Building  Code of 
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the time (AC1  Committee 3 18,  1951) permitted  an allowable  working  stress  of  

0.62  MPa  for  the  20  MPa  concrete  used  in  the  beams. Experiments  conducted  

at the  Portland  Cement  Association  (Elstner  and  Hognestad,  1957) on  12 in.  

(305 mm) deep model  beams  indicated that the beams could resist about  1.0  MPa. 

However,  the  application  of an  axial  tension  stress  of  about  1.4  MPa  reduced  

the  shear capacity  by  about  50%.  It  was  thus  concluded  that  tensile  stresses  

caused  by  thermal  and shrinkage movements were the reason for the beam failures 

(Wassim, 1998). 

Kani (1966 and  1967) was amongst the first to investigate the effect of absolute 

member size  on concrete  shear strength after the dramatic warehouse  shear failures 

of  1955 (Collins and  Kuchma,  1997 and  Collins and  Mitchell,  1997).  His  work  

consisted  of beams  without web  reinforcement  with  varying  member  depths,  d,  

longitudinal  steel  percentages,  p,  and shear span-to-depth  ratios, a/d. He 

determined that member depth and  steel percentage had a great  effect on  shear 

strength and that there  is a  transition  point  at a/d=2.5  at which  beams are  shear  

critical  (i.e.  the  value  of the  bending  moment  at  failure  was  minimum)(see  

Fig. 2.23). 

 

 

Figure 2.23:  Relative strength (ultimate moment/flexural moment) vs.  a/d ratio 

(Kani  1967) 
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Kani  found this  value  of a/d to be the transition  point  between  failure  modes and  

is the same  for different  member sizes and  steel  ratios.  Below  an  ―a/d‖ value  of 

about  2.5  the  test beams  developed  arch  action  and  had  a  considerable  reserve  

of  strength  beyond  the  first cracking  point.  For  ―a/d‖  values  greater than  2.5  

failure  was  sudden,  brittle  and  in  diagonal tension  soon  after  the  first  diagonal  

cracks  appeared.  This  transition  point  is  more emphasized  in  test  beams  

containing  higher  reinforcement  ratios  and  almost  disappears  in specimens  with  

lower  reinforcement  ratios.  In  addition.  Kani  found  a  clearly  defined envelope  

bounded  by  limiting  values  of  p  and  a/d.  Inside  this  envelope  diagonal  shear 

failures are predicted  to occur and outside of this envelope  flexural  failures are 

predicted to occur. These conclusions regarding the influence of both  p and a/d were 

similar for all beam depths tested. Kani also looked at the effect of beam  width and 

found no significant effect on shear strength.  Kani's  work  was  summarized in  the  

textbook "Kani  on  Shear  in  Reinforced Concrete" (Kani et al.  1979). 

More  recently,  Bazant  and  Kim  (1984) derived  a shear strength equation  based  

on  the theory of fracture mechanics. This equation accounts for the size effect 

phenomenon  as well as the longitudinal steel ratio and  incorporates the effect of 

aggregate size. This equation  was calibrated  using  296 previous  tests obtained  

from  the  literature and  was  compared  with  the AC1  Code  equations.  It  was  

noted  afler  the  comparison  that  the  practice  used  in  the  AC1 Code of designing 

for diagonal  shear crack  initiation  rather than  ultimate  strength does  not yield  a  

uniform  safety  margin  when  different  beam  sizes are considered.  It  was also 

found. According to the new equation. that for very  large specimen depths the factor 

of safety  in  the AC1  Code  almost  disappears.  However,  no  experimental  

evidence  was  available  yet  to confirm  that  fact  as  al1  the  tests  performed  up  

to  that  time  were  on  relatively  small specimens.  This  equation  was  improved  

by  Bazant  and  Sun  (1987)  to  account  for  the maximum  aggregate  size 

distinctly  from  the  size  effect  phenomenon  and  was  extended  to cover  the  

influence  of stirrups.  This formula  was  calibrated  using  a  larger  set  of test  data 

consisting of 461  test results compiled from the literature (Wassim, 1998). 

Later  on,  Bazant  and  Kazemi  (1991) performed  tests on  geometrically  similar  

beams with  a size range  of  1 : 16 and having a constant ―a/d‖  ratio of 3.0 and a 

constant  longitudinal steel ratio,  p.  Beams tested varied  in depth from  1  inch (25 
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mm) to  1 6 inches (406 mm). The main  failure  mode  of the  specimens tested  was  

diagonal  shear  but  the  smallest  specimen failed  in  flexure.  This  study 

confirmed the  size effect  phenomenon  and  helped  corroborate the previously 

published formula. However, the deepest beam  tested was relatively small and the 

authors concluded that for beams larger than  16 inches (406 mm) additional 

reductions in shear strength due to size effect were  likely (Wassim, 1998). 

Kim  and Park  (1994)  performed  tests  on  beams  with  a  higher  than  normal  

concrete strength (53.7 MPa). Test variables were longitudinal steel ratio, p, shear 

span-to-depth ratio, a/d,  and  effective  depth.  d.  Beam  heights  varied  from  170  

mm  to  1000  mm  while  the longitudinal  steel  ratio  varied  from  0.01  to  0.049  

and  a/d varied  from  1.5  to  6.0.  Their findings were similar to Kani's  from which  

it was concluded that the behavior of the higher strength  concrete  is  similar  to  that  

of  normal-strength  concrete.  However,  since  only  one concrete  strength  was  

investigated  no  general  conclusions  could  be  made  with  respect  to concrete 

strength and shear capacity (Wassim, 1998). 

Shioya (1989) conducted a  number of tests on  large-scale beams in  which the  

influence of member depth and aggregate size on shear strength was  investigated.  In  

this study, lightly reinforced  concrete  beams  containing  no  transverse  

reinforcement  were  tested  under  a uniformly  distributed  load. The beam  depths 

in  this experimental  program  ranged  from  100 mm to 3000 mm.  Shioya found  

that the  shear stress at failure decreased  as the member size increased and  as the 

aggregate size decreased.  It  is  interesting to  note that the  beams tested by  Shioya 

contained about the same amount of longitudinal reinforcement as the roof beams of 

the Air Force  warehouse which collapsed in  1955 (Collins and  Kuchma,  1997 and 

Collins and  Mitchell,  1997). The warehouse beams had  an effective depth of 850 

mm and  failed at a shear stress of about  0.1√    MPa. This shear stress level 

corresponds with the failure shear stress observed in  beams having a depth of  1000 

mm  in  the  Shioya tests.  It  is  important to mention  that  there  was  a  tendency  

for  reduced  shear  stresses  at  failure  even  with  tests including 3000 mm deep 

beams. Figure 2.24 illustrates the results obtained by Shioya (Wassim, 1998). 

Mphonde  and  Frantz  (1984) tested  concrete  beams  without  shear  reinforcement  

with varying  a/d  ratios  from  0.0 15 to 0.036 and  concrete strengths  ranging  from  
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21  to  103  MPa. They  conclude  that  the  effect of concrete  strength  becomes  

more  significant  with  smaller a/d ratios and that failures became more sudden and 

explosive with greater concrete strength (Wassim, 1998). 

Elzanaty  et  al.  (1986)  looked  at  the  problem  of  shear  in  high-strength  

concrete  and observed a smoother failure plane in the higher strength concrete 

specimens. Their study was performed  on a  total  of  18 beams with  concrete 

strengths,  f'c, ranging from  21 to 83 MPa. Apart from concrete strength, test 

variables included p and the shear span-to-depth ratio, dd. The  conclusions  drawn  

from  these  tests  were  that  the  shear  strength  increased  with increasing  f'c  but  

less  than  that  predicted  using  the  AC1 Code  equations. These  equations predict  

an  increase in  shear strength in  proportion  to  √  
 
 . Elzanaty et al. concluded that 

an increase  in  the steel ratio  led to an increase in the shear capacity of the 

specimens regardless of concrete strength.    

 

 

Figure 2.24:  Influence of member depth and aggregate size on shear stress at 

failure for tests carried out by Shioya  1989. taken from Collins and Mitchell,  

1997. 
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It  was  also  found  that  there  is  a  greater  scatter  in  the  results  of specimens  

with  small  a/d ratios due to the possible variations in the failure modes (Wassim, 

1998). 

Ahmad et al. (1986) studied the effects of the a/d  ratio and  longitudinal steel 

percentage on  the  shear  capacity  of  beams  without  web  reinforcement.  For  

their  tests,  the  concrete strength  was  maintained  as  constant  as  possible  with  

f'c in  the  range  of  63  to  70  MPa. Findings were similar to previous experiments 

with a transition in  the failure mode at an a/d ratio of approximately 2.5. The 

envelope involving limits on a/d and p which separates shear failures from flexural 

failures was found to be similar to the envelope for the normal-strength concrete. 

However, more longitudinal steel was required to prevent flexural failures. Ahmad et 

al. found that the shear capacity was proportional to f'c 
0.3

 (Wassim, 1998). 

2.3 Experimental Studies 

In this study an extensive literature survey on experimental studies related to shear 

strength of RC beams without web reinforcement has been carried out and an 

experimental database has been constructed. A total of 398 tests from 46 separate 

studies were included in the database with ranges of variables as shown in details in 

Table 2.1 
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Table 2.1 Experimental database and Range Of Variables (ACI Structural Journal 100 (2003), No.2, March-April, 240-249; Karl-Heinz Reineck; 

Daniel A. Kuchma; Kang Su Kim; and Sina Marx) 

Researcher N* b (mm) d (mm) f'c (Mpa) Pl % a/d 

Ahmad, Kahloo (1986) 

 
16 127 184 to 208 59.3 to 65.5 1.77 to 6.62 2.7 to 4 

Aster. Koch (1974) 9 1000 250 to 750 18.9 to 29.5 0.42 to 0.91 3.65 to 5.50 

Bhal (1968) 8 240 300 to 1200 22.5 to 28.8 0.63 to 1.26 3.0 

Bresler, Scordelis (1963) 3 305 to 310 461 to 466 21.4 to 35.9 1.81 to 2.73 3.97 to 6.93 

Chana (1981) 3 203 356 31.2 to 37 1.74 3.0 

Cossio. Siess (1960) 5 152 254 18.5 to 29.9 0.98 to 3.33 3.0 to 5.0 

Kani (1967) 33 150 to 612 133 to 1097 23.5 to 28 2.59 to 2.84 2.41 to 8.04 

Krefeld, Thurston (1966) 28 152 to 254 238 to 483 15.9 to 36.5 1.34 to 4.51 2.89 to 6.09 

Collins, Kuchma (1997, 1998) 6 300 925 34.2 to 93.1 1.01 2.92 

Podgornaik-Stanik (1998) 7 300 110 to 925 35.2 to 94.1 0.50 to 0.91 2.92 to 3.07 

Elzanaty, Nilson, Slate (1986) 11 178 267 to 273 19.7 to 75.3 1.0 to 3.30 4.0 to 6.0 

SFC
Textbox

SFC
Textbox
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Feldman. Siess (1955) 4 152 252 24.5 to 34.9 3.35 3.02 to 6.04 

Grimm (1997) 12 300 146 to 746 85.6 to 105.4 0.83 to 4.22 3.53 to 3.90 

Hallgren (1994, 1996) 22 150 to 337 191 to 211 29.5 to 87.8 0.57 to 4.10 2.61 to 3.66 

Laupa, Siess (1953) 6 152 262 to 269 14 to 30.7 1.90 to 4.11 4.54 to 4.61 

Leonhardt, Walther (1962) 27 100 to 502 140 to 600 12.2 to 37.2 0.91 to 2.07 2.46 to 6.0 

Mathey, Watstein (1963) 9 203 403 22.3 to 29 0.47 to 2.55 2.84 to 3.78 

Morrow, Viest (1957) 11 305 to 308 356 to 375 14 to 43.4 1.28 to 3.92 2.76 to 5.87 

Hamadi, Regan (1980) 3 100 370 to 372 20.9 to 28.8 1.08 to 1.70 3.44 to 5.97 

Hanson (1958, 1961) 10 152 267 19.9 to 70 1.25 to 4.99 2.48 to 4.95 

M phonde, Frantz (1984) 14 152 298 20.1 to 91.7 2.34 to 3.36 2.50 to 3.58 

Niwa, Yamada (1987) 3 600 1000 to 2000 23.4 to 25.8 0.14 to 0.28 3.0 

Rajagopalan, Fergison(1968) 10 151 to 154 259 to 268 22.5 to 34.7 0.25 to 1.73 3.83 to 4.27 

Reinock, Koch, Schlaich (1978) 3 500 225 to 226 23.5 to 24.6 0.8 to 1.37 2.50 to 3.50 

Remmel(1991) 4 150 160 to 165 80.3 to 80.8 1.87 to 4.09 3.06 to 4.0 

SFC
Textbox
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Ruesch, Haugli (1962) 3 90 to 180 111 to 262 22 to 23.1 2.64 to 2.65 3.6 to 3.62 

Scholz (1994) 3 200 362 to 372 76.6 to 92 0.81 to 1.94 3.0 to 4.0 

Taylor (1968, 1972) 12 200 to 400 370 to 930 20.9 to 40.8 1.03 to 1.54 2.47 to 3.02 

Walraven (1978) 2 200 420 to 720 22.9 to 23.2 0.74 to 0.79 3.0 

Thorenfeldt, Drangshold (1990) 14 150 to 300 207 to 442 51.3 to 92.8 1.82 to 3.24 3.0 to 4.0 

Moody, et al. (1954) 22 152 to 178 262 to 272 14.6 to 39.1 1.6 to 2.37 2.95 to 3.41 

Ferguson (1956) 1 101 189 27.8 2.08 3.23 

Al-Alusi (1957) 4 330 127 24.2 to 27.2 2.62 3.4 to 4.5 

Yoon, Cook, Mitchell (1996) 3 375 655 34.2 to 82.7 2.80 3.28 

Ferguson. Thompson (1953) 20 432 to 483 159 to 210 16.6 to 43.1 2.51 to 4.76 3.0 to 4.48 

Islam, Pam, Kwan (1998) 17 150 203 to 207 25.3 to 79.1 2.02 to 3.22 2.90 to 3.94 

Xie, Ahmad, Yu (1994) 2 127 216 35.8 to 94 2.07 3.0 

Angelakos, Bentz, Collins 

(2000) 
7 300 925 20 to 76 0.50 to 2.09 2.92 to 3.02 

Adebar, Collins (1996) 6 290 to 360 178 to 278 43.9 to 56 1.1 to 3.04 2.88 to 4.49 

SFC
Textbox
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Thorenfeldt (1990) 2 150 207 55.1 3.23 3.0 to 4.0 

Kung (1985) 5 140 200 18 to 19.1 0.56 to 1.82 2.50 

Yoshida, Bentz, Collins (2000) 1 300 1890 34.2 0.49 2.86 

Cederwall, Hedman, Losberg 

(1974) 
1 135 234 27.8 1.07 3.42 

Kulkarni, Shah (1998) 3 102 152 38.5 to 41.4 1.38 3.50 to 5.0 

Lambotte, Taerwa (1990) 2 200 415 32.3 to 35.3 0.97 to 1.45 3.01 

Marti, Pralong, Thurlimann 

(1977) 
1 400 162 28.1 1.38 3.95 

N*: Number of test specimen 

SFC
Textbox
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2.4 Code Review 

2.4.1 Introduction 

The theoretical models for shear behavior in concrete have been discussed in the 

previous section. In this section, the following national codes of practice based on 

these theoretical models are discussed: ACI 318-02 (2002); CSA A23.3-94(Canadian 

Standards: Design of Concrete Structures, 1994); CSA A23.3 2004 edition; Euro 

code EC2, part 1(1991) and (2003);and the German Code DIN 1045-1 (2001). 

2.4.2 Design Codes 

2.4.2.1 ACI 318-02 

Non-prestressed members: As discussed in Section 2.2.2, when the 45
o
 truss model 

was introduced into the American literature, it was observed to be quite conservative. 

For example, the 45
o
 truss model predicts zero shear strength for beams without 

shear reinforcement, clearly underestimating the shear capacity for such beams. To 

account for the concrete contribution to shear resistance, as documented by the 

ASCE-ACI Committee 326 (1962), the concept of a concrete contribution Vc, was 

added to the steel contribution Vs,fromthe45
o
 truss, as shown in Figure 2.25 

In 1963, ACI 318 set the concrete contribution equal to the shear at inclined cracking 

because beams without shear reinforcement often failed simultaneously with inclined 

cracking. The concrete contribution term Vc, for slender members has remained 

unchanged through ACI 318-02 (2002). Except for those members designed with 

strut and tie method, the nominal shear strength Vn, of non-prestressed members is 

the sum of the concrete contribution Vc, and shear reinforcement contribution 

Vs.Thus, 

Vn = Vc + Vs                                                                                                                                                                (2.20) 

where, 

Vn = nominal shear strength of the member 

Vc = concrete contribution towards shear strength 

Vs = transverse steel contribution towards shear strength 
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Figure 2.25 . Concrete and steel contributions on shear 

 

The concrete contribution term Vc, can be calculated by either of following two 

equations: 

     √                     (Ibs) 

    
√   

 
                    (Mpa)                                                                           (2.21) 

where, 

f'c = compressive strength of concrete 

bw = width of the beam 

d = depth of the beam 

   (     √             
   

  
)          √                    (Ibs) 

   (√            
   

  
)

   

  
       √             (mm, Mpa)                (2.22)  

such that  
   

  
 ≤ 1.0 
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where, 

ρl = longitudinal reinforcement ratio 

Vu = factored shear force at section 

Mu = factored moment at section 

2.4.2.2 CSA A23.3-94 (Canadian Standards: Design Of Concrete Structures, 

1994) 

The Canadian Standards CSA A23.3-94 provides two methods for predicting the 

shear strength of reinforced concrete members, the Simplified Method and the 

General Method. The simplified method is similar to ACI 318 except that there is a 

consideration to account for the effect of member size. The general method is based 

on the modified compression field theory (MCFT) and thus has the same background 

as the AASHTO LRFD method. The Canadian code also recommends the use of the 

strut-and-tie method for the design of deep beams and other portion of members in 

which the variation of straining is complex- so called D region. The general method 

is not presented in this chapter. 

The simplified method is based on the 45
0
 truss model. The shear resistance is also 

divided in to two components, Vc and Vs. The concrete contribution, Vc, can be 

taken by: 

       √                                                                                          (2.23) 

                                                                  
     √       

  
             

or     
   

      
√             √                                                  (2.24) 

                     
     √        

  
              

The steel contribution, Vs, is calculated as: 

    
     

 
               √                                                        (2.25) 
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2.4.2.3 Euro code EC2 Part1 (1991) 

The first version of Euro code EC2, Part 1 (1991) is partly based on the Plasticity 

Theory developed by Thürlimann (1975, 1983) and also by Nielsen (1984). It 

provides two methods, the standard method and the variable strut inclination method, 

The standard method is basically a combination of a concrete contribution term and a 

steel contribution term based on the 45
0
 truss model. The method is applicable for 

concretes ranging from 12              

In standard method the total shear resistance consists of the concrete contribution, 

Vcd, and the steel contribution, Vwd. Thus, the total shear resistance VRd3 is: 

VRd3 = Vcd + Vwd  V Rd2,max                                                                                    (2.26) 

Where 

Vcd = concrete contribution and is taken as equal to VRd1 

Vwd= 
              

 
 is the steel contribution  

Asw = area of shear reinforcement within spacing, s 

fywd = yield strength of shear reinforcement 

V Rd2,max = upper limit of the shear resistance as a result of prevent web crushing 

VRd1 is the shear capacity of members without shear reinforcement based on an 

empirical formula: 

VRd1 =                                                                                    (2.27) 

Where 

   
     

 
                is an enhancement factor that can be applied if the 

member is loaded by a concentrated load situated at a distance,  x   2.5 d, from the 

face of the support. Otherwise,      . 

 rd = basic design shear strength(=0.25 fctk0.05) 
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fctk0.05 = lower 5% fractile characteristics tensile strength (=0.7 fctm)  

fctm = mean value of the tensile concrete strength(=0.30(f ck)
2/3

 ) 

fck = characteristic cylinder compressive strength of concrete (          

k = (1.6 – d/1000)  ≥ 1.0 (mm0 

ρl= 
   

   
       

Asl = area of longitudinal reinforcement in tension  

bw = effective web width 

d= effective depth 

Thus, Eq.(2.27) can be simplified as follows: 

VRd1 = 0.0525 k   (fck)
2/3

 (1.2+40ρ) bwd  (mm, Mpa)                                            (2.28) 

2.4.2.4 Euro code EN 1992-1-1 (2003) 

The Eurocode EC2, part 1 (1991) was revised and the final draft was published in 

April 2003 for comments by the different nations. The Eurocode EC2 is applicable 

up to concrete strengths of fck = 90 MPa, which corresponds to about f'c = 91.6MPa. 

The characteristic value fck for the cylinder compressive strength is defined as a 5% 

fractile, whereas f'c is a 9% fractile, and the relation is fck = f'c − 1.6 (MPa). 

The format of the new EC2 is such that, for many applications, only recommended 

rules or values are given and the values used in different countries are subject to a 

National Annex. In the following the recommended values are given. 

The design value for the uniaxial concrete compressive strength, based on fck,is: 

fcd =  cc fck /  c                                                                                                                                                          (2.29) 

where, 

fcd = design value of uniaxial concrete compressive strength 

fck= characteristic cylinder compressive strength of concrete 
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γc = partial safety factor for concrete (normally γc = 1.50) 

αcc = coefficient taking account of long term effects on the compressive strength and 

of unfavorable effects resulting from the way the load is applied 

The value of αcc for use in each country should lie between 0.8 and 1.0 and may be 

found in its National Annex. The recommended value is 1. 

The value of the design tensile strength, fctd, is defined as: 

fctd = αct fctk,0.05/  c                                                                                                                                                   (2.30) 

where, 

fctd= design value of tensile strength of concrete 

fctk,0.05 = lower 5% fractile characteristic tensile strength of concrete 

αct = coefficient taking account of long term effects on the tensile strength and of 

unfavorable effects resulting from the way the load is applied 

The value of αct for use in each country may be found in its National Annex. The 

recommended value is 1.0. 

Members Not Requiring Shear Reinforcement: The design value for the shear 

resistance VRd,c is given by: 

VRd,c = (0.12 k (100ρl fck)1/3 – 0.15 σcp) bwd                                                         (2.31) 

where, 

VRd,c = shear resistance of members not requiring shear reinforcement (N) 

k = parameter to account for size effect =   
√   

 
                   

ρl = longitudinal reinforcement ratio = Asl/bw d ≤ 0.02 

Asl = area of the tensile reinforcement, which extends ≤ (lbd + d)beyondthesection 

considered (see Figure 2.26). 

bw = smallest width of the cross-section in the tensile area (mm) 
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d = effective depth of member, measured from the extreme compression fiber tothe 

centroid of longitudinal tension reinforcement 

σcp = NEd/Ac > −0.2fcd (MPa)= axial stress in the cross-section due to loading or 

prestressing without considering eccentricity of applied force 

NEd= axial force in the cross-section due to loading or prestressing (N)(NEd< 0 for 

compression). 

Ac = area of concrete cross-section (mm
2
 ) 

VSd = design value of shear resistance 

 

 

Figure 2.26 . Definition of Asl in Equation 2.31 
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2.4.2.5 German Code DIN 1045-1 (2001) 

In 2001 the new German code DIN 1045-1 (DIN 1045-1, 2001) was published and 

thereby replaces the previous codes DIN 1045 (1988) for reinforced structures and 

DIN 4227 (1988) for prestressed concrete structures. The work on this code was 

parallel to that on the new EC 2 Code and many rules are similar. In the case of 

differences the new EC 2 allows different national application rules under same 

principles so that the new German code may also be applied when the Eurocode 

becomes effective. 

The DIN is applicable up to concrete strengths of fck = 100 MPa, which corresponds 

to about f'c = 101.6 MPa. As in the Eurocode, the characteristic value fck for the 

cylinder strength is defined as the 5% fractile, whereas f'c is the 9% fractile, and the 

relation to f'c is about fck = f'c − 1.6 (MPa). The design value for the uniaxial 

concrete compressive strength based on fckis: 

fcd = α.fck/γc                                                                                                                                                                  (2.32) 

where, 

fcd= design value of uniaxial concrete compressive strength 

fck= characteristic cylinder compressive strength of concrete 

γc = partial safety factor for concrete (normally γc = 1.50) 

α = coefficient taking account of long term effects on the compressive strength and 

the difference between cylinder strength and uniaxial compressive strength (prism 

strength). Higher values α< 1 may be used, if justified, for short time loading 

(typically α =0.85) 

Members Not Requiring Shear Reinforcement : 

The design value for the shear resistance VRd,ct is given by: 

VRd,ct =[0.10η1 k(100ρlfck)
1/3

 − 0.12σcd]bwd                                                           (2.33) 

where, 
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VRd,ct = shear resistance of members not requiring shear reinforcement 

η1 = parameter to account shear resistance of concrete having different weight 

η1 = 1 for normal concrete; and 

η1 =0.4+0.6ρ/2200 for lightweight concrete with ρ in kg/m
3
 

k = parameter to account for size effect = 1 + 
√   

 
 ≤ 2.0with d in mm 

ρl = longitudinal reinforcement ratio = Asl/bw d ≤ 0.02 

Asl= area of the tensile reinforcement, which extends d beyond the section considered 

and is anchored there effectively (see Figure 2.27). 

bw= smallest width of the cross-section in the tensile area (mm) 

d = effective depth of member, measured from the extreme compression fiber to the 

centroid of longitudinal tension reinforcement 

σcd = NEd/Ac (MPa)= axial stress in the cross-section due to loading or prestressing 

without considering eccentricity of applied force (NEd< 0 for compression) 

NEd = axial force in the cross-section due to loading or prestressing (N)(NEd< 0 for 

compression). 

Ac = area of concrete cross-section (mm
2
 ) 

 

 

Figure 2.27 . Definition of Asl for determining ρl in Equation 2.33 (1: section 

considered) 
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2.5 Future of research on shear design of RC members 

Shear is one of the most researched properties of RC  members in last 6 decades. 

Regan (1993), classified research on shear into three broad groups; 

i-   The first of kind of research relates to shear sensitive areas like shear in 

fire,  shear connections between members, shear in high strength concrete 

and punching shear. This group of  research aims at filling the knowledge 

gap in the above areas.  

ii- The second group relates to understand the behavior of basic material at 

fundamental level. In this group of research, topics like ― role of 

aggregate interlocking in shear‖ , ― Size effect on shear‖ and other basic 

concepts of fracture mechanics related to shear are  investigated. This 

group of research is related to more basic and fundamental topics in shear 

strength of RC members.  

iii- The third group is engaged in translating the research results into a more 

meaningful tool for the building codes in the form of methods and rules 

for the shear analysis and design of RC members. 

There is a general feeling in the minds of many researchers, that enough research has 

been carried out on this topic and there seems no more room for further research in 

this field. Regan (1993) tried to answer this basic question, where research on shear 

is waste of time or  service to humanity?  After reviewing the research of last 4-5 

decades, Regan (1993), highlighted the significance of the research on the shear of 

RC beams in the following ways;   

i- The research on shear for 40 years  has enabled the structural engineers to 

design the RC members without web reinforcement, pre-stressed beams 

and flat slab buildings more accurately. 

ii- The research on shear has been focused on making the design provisions 

of building codes more rational and comprehensive. Considerable 

achievements have been made in this direction. In these endeavors many 

misconceptions and doubts were also created, which were clarified in 

later works.  
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iii- Most of the proposed models developed in the meanwhile were based on 

the existing data but these models could poorly predict the behavior of 

actual beams, mainly due to the fact that important variables were not 

considered in the models at times.  

iv-  More experimental tests and researches are required for significant 

improvement in the shear design concept for its further rationalization 

involving parametric studies. 

Despite of the fact that research on shear strength of RC beams, has been conducted 

for more than six decades, but  even then the riddle of shear failure initiated by 

Kani(1964) is still unexplained. The exact behavior of RC concrete in shear is still an 

active area in contemporary research.  

Mitchell et al. (2008) in a long term project, reviewed the results of 1849 tests on  the 

shear strength of RC beams to judge the adequacy and safety provided by the shear 

equations used in North America. The findings of the research provide the latest state 

of research on the shear strength the some of the important findings and conclusions 

of the research of Mitchell et al (2008) are given as follows: 

i- The traditional approach to design the shear reinforcing for the region 

where the external shear is exceeding the concrete shear capacity  

    √        may lead to un-conservative results and the chances of 

brittle failure may enhance. Hence there is a need to revised and 

rationalize the shear design equation of ACI and particularly the 

simplified shear design equation.  

ii-  The new load factors introduced in ACI-318-02, have led to increased 

flexural stresses in flexural reinforcement at service loads, which have 

further reduced the safety against shear failure. 

iii- The design engineers must understand that the shear strength of RC 

beams is also affected by member depth, crack roughness and strain in 

longitudinal reinforcement, in addition to concrete strength.  

iv- The recent research data shows that for RC members without web 

reinforcement, the influence of strain in longitudinal steel is more 

pronounced. High strength in the longitudinal steel and wider crack 

widths may decrease the shear strengths of RC members.  
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v- In high strength concrete with  small aggregates sizes, the cracks surfaces 

are relatively smoother and can lead to reduction in the shear capacity of 

RC members. The  equations based on the Modified Compression Field 

Theory ( MCFT) accounts for the strain effect, size   effect, and concrete 

strength in a reliable way, hence it can considered a suitable substitute of 

the traditional ACI equation. However the complexity in application of  

MCFT for the design of RC members would need further simplification 

vi- An attempt to use the Simplified Modified Compression Field theory 

based equations, would reduce the complexity to some extent and it 

seems more advisable that the modified MCFT is used instead of 

traditional ACI equation, which would ensure ductile failure of RC 

structures and at the same time  would also satisfy the basic ACI 

equation.  

To sum up the literature review on the shear design of normal strength RC beams, we 

can infer that research on shear design of RC members will continue to be an area of 

interest for many young researchers to come and the riddle of shear failure will 

continue to be the focus of future research (Attaullah, 2009). 
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CHAPTER 3 

EFFECT OF PARAMETERS ON SHEAR STRENGTH OF CONCRETE 

BEAMS 

3.1 Introduction 

As discussed in detail in Chapter 2, in spite of the development of many advanced 

theoretical models, realistic shear behavior of concrete is not captured. Since shear 

behavior is very complex, to improve our understanding, numerous studies were 

conducted throughout the world. If the database is compiled properly, they can 

provide additional insight in the problem. Hence, the development of a 

comprehensive database of shear test results was initiated. The resulting database is 

the largest database thus far created and is therefore being utilized to gain new 

insight into the factors that affect shear strength as well as to evaluate and compare 

models for shear behavior (Anuja, 2006). 

The development of a comprehensive database of shear test results was initiated in 

order to provide the community with a resource for identifying research needs and 

for developing improved design code provisions. The resulting database is the largest 

database thus far created and therefore is being used to develop new insight in to the 

factors that affect shear strength and for the evaluation/comparison of models for 

shear behavior and of relationships for shear strength (Kang, 2004). 

Existing empirical design code provisions do not provide uniform levels of safety 

against failure. One reason for this is that only a small portion of existing test results 

is typically used to evaluate or develop code provisions. Because the types of 

members in the test database do not well represent the types of structures that will be 

designed using these provisions, a more comprehensive database is needed. 

One of the complications in developing this shear database was that only a brief 

summary of experimental test results is typically published in technical journals. 

Consequently, there is often insufficient information on geometric details and 

material characteristics. For this reason, it takes a considerable amount of time for 
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researchers to do literature surveys, and consequently researchers often review only a 

limited number of test results before engaging in an experimental research program. 

Thus, researchers often repeat previous experiments and focus on studying a 

relatively limited number and range of influencing factors (Anuja, 2006). 

3.2 Effect of Parameters 

The database was used to investigate the influence of dominant parameters on shear 

strength. In this section, the shear strength, vu = Vu/(bwd) or normalized shear 

strength, vu/f'c = Vu/(bwdf'c), is plotted for each primary parameter, namely 

compressive strength f'c, effective depth d, longitudinal reinforcement ratio ρl, shear 

span to depth ratio ―a/d”, and shear reinforcement strength ρvfvy. Then, observations 

are noted from the analysis performed. This section presents those observations for 

RC members without shear reinforcement in this section, 398 RC members without 

shear reinforcement are studied. 

3.2.1 Concrete Strength : 

Figure 3.1 shows the relationship between the shear strength vu,SR and the concrete 

compressive strength f'c for 398 RC members without shear reinforcement in the 

evaluation database. Most of the beams have ultimate shear stresses ranging from 

0.31 to 3.69 Mpa. It is observed in most cases that the shear strength increases as the 

concrete strength increases. In most codes of practice, shear strength is proportional 

to the concrete strength to an exponent between 0.25 to 0.5. 

3.2.2 Effective Depth : 

Figure 3.2 shows the relationship between the shear strength vu,SR and the effective 

depth d for 398 RC members without shear reinforcement in the evaluation database. 

Although only a limited number of the tested beams had large depth, the shear 

strength clearly decreases as the effective depth of the member increases. It can be 

also seen that the shear strength of the members having effective depths less than  

300 mm is very high. Many of the major codes and empirical equations account for a 

size effect in shear. In their expressions, the shear strength decreases as a function of 

the member depth. However, the expressions vary, ranging from ―1/d,1/d1/2 ,1/d1/3 

,and1/d1/4― .The CSA considers the size effect relationship for members without 
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shear reinforcement in a somewhat different manner by considering a crack spacing 

parameter, as described in Section 2.4.2.1 ACI 318-02 (2002) still does not include 

any consideration of the size effect. 

 

 

Figure 3.1 . Ultimate shear stress vu,SR at failure versus concrete compressive 

strength f'c for RC members without shear reinforcement (sample size: 398 

members) 

 

 

 

Figure 3.2 . Ultimate shear stress vu,SR at failure versus effective depth d for RC 

members without shear reinforcement (sample size: 398 members) 
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3.2.3 Longitudinal Reinforcement Ratio : 

Figure 3.3 shows the relationship between the shear strength vu,SR and the 

longitudinal reinforcement ratio ρl for 398 RC members without shear reinforcement 

in the evaluation database. As can be seen in Figure 3.3, the shear strength clearly 

increases as the longitudinal reinforcement increases.  

Most building codes or empirical formulae account for the influence of longitudinal 

reinforcement ratio directly or indirectly. For example, CSA considers the influence 

of longitudinal reinforcement by using the longitudinal strain, εx, which is a function 

of the longitudinal reinforcement amount as well as other sectional forces and 

sectional properties. 

 

 

Figure 3.3 . Ultimate shear stress vu,SR  at failure versus longitudinal reinforcement 

ratio ρl for RC members without shear reinforcement (sample size: 398 members) 
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it can be seen that most members having high shear strengths are heavily reinforced. 

Many code provisions and empirical equations consider a variable related to shear 

span to depth ratio, or moment to shear ratio, in their prediction of shear capacity. It 

should be again noted that the ‖a/d―ratio cannot be clearly defined for members 

subjected to uniformly distributed load, and thus it is more appropriate to use the 

moment to shear ratio in the design code expression than an‖ a/d―ratio.  

 

 

Figure 3.4. Ultimate shear stress vu,SR  at failure versus shear span to depth ratio a/d 

for RC members without shear reinforcement (sample size: 398 members) 
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CHAPTER 4 

NUMERICAL APPLICATION AND RESULTS 

In this chapter, it is mentioned about calculation or modeling of shear strength of 

reinforced concrete beams without web reinforcement, current program used for 

finding the equation of shear strength (using stepwise regression), comparison of 

current design codes with the equation found by stepwise regression and finally, 

discussion about parametric study affected on shear strength. 

4.1 Soft computing (stepwise regression) 

While dealing with large number of independent variables, it is of significance 

importance to determine best combination of these variables to predict dependent 

variable. Stepwise regression serves as a robust tool for the selection of best subset 

models i.e. the best combination of independent variables that best fits the dependent 

variable with considerably less computing than is required for all possible 

regressions (Campbell, 2001). 

The determination of subset models is based on adding or deleting the 

variable/variables with the greatest impact on the residual sum of squares. The 

selection of variables may be either forward, backward or a combination of them. In 

forward selection, the subset models are chosen by adding one variable at a time to 

the previously chosen subset. At each successive step, the variable in the subset of 

variables not already in the model that causes the largest decrease in the residual sum 

of squares is added to the subset. Without a termination rule, forward selection  

Continues until all variables are in the model. On the other hand, backward stepwise 

selection of variables chooses the subset models by starting with the full model and 

then eliminating at each step the one variable whose deletion will cause the residual 

sum of squares to increase the least and continues until the subset model contains 

only one variable (Rawlings, 1998, Cevik, 2007). Regarding forward and backward 

procedures, it should be noted that the effect of adding or deleting a variable on the 
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contributions of other variables to the model is not being considered. Thus stepwise 

regression is actually a forward selection process that rechecks at each step the 

importance of all previously included variables. If the partial sums of squares for any 

previously included variables do not meet a minimum criterion to stay in the model, 

the selection procedure changes to backward elimination and variables are dropped 

one at a time until all remaining variables meet the minimum criterion. Stepwise 

selection of variables requires more computing than forward or backward selection 

but has an advantage in terms of the number of potential subset models checked 

before the model for each subset size is decided. It is reasonable to expect stepwise 

selection to have a greater chance of choosing the best subsets in the sample data, but 

selection of the best subset for each subset size is not guaranteed. The stopping rule 

for stepwise selection of variables uses both the forward and backward elimination 

criteria. The variable selection process terminates when all variables in the model 

meet the criterion to stay and no variables outside the model meet the criterion to 

enter (Rawlings, 1998). 

4.2 Comparison of Current Design Codes and Equations with stepwise Model 

Using the experimental database given in table 2.1 stepwise regression (SR) models 

were constructed the results of the proposed SR model are also compared with results 

of current design codes and existing equations summarized in Table 4.1. The overall 

comparison of COV (coefficient of variation) of the proposed Stepwise model, 

current design codes and existing equations of the experimental database used in the 

study are given in Table 4.1. As seen from the results, the overall accuracy of the 

proposed Stepwise model is satisfactory compared to design codes and existing 

equations.
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Table 4.1 Comparison of Current Design Codes and Equations with stepwise Model 

No. Name Current Design Codes and Existing Equation MEAN R2 MSE COV % 

1 
ACI-318-02 (2002) 

Eq.(11-3) 

  = √   
     

 
 

1.37 0.684 5078.6 39.59 

2 
ACI-318-02 (2002) 

Eq.(11-5) 

  =min {( √        ρ 
 

 
)
     

 
 ; 0.30 √    b.d } 

1.41 0.706 3532.2 36.50 

3 ASCE-ACI    445 (2003)   =6.85(
     

 
 ⅓b d 1.46 0.760 1958.6 29.16 

4 CSA (1994) 

  =0.20 √    b.d                                    d     

  =
   

      
√   
  

 b.d                           d     
1.19 0.738 2118.1 36.10 

5 CSA (2005) 

        λ θ √    b.d                                    d     

  =max  {     
   

      
λ θ √    b.d          d     

             Or          λ θ  √    b.d   }    

                       { λ      ; θ        }   

1.99 0.737 2706.7 36.18 

SFC
Textbox
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6 Euro Code (1992) 

     = RD K   (1.2+40ρ) b.d       

     =0.0525 K (fck ⅔        ρ    b d       

            Where   K=1.6-d       (d in m)   

                           fck       f’c 

 

1.01 0.628 2245.9 36.85 

7 Euro Code EN 1992-1-1 (2003) 

   [      K      ρ  ck ⅓-    σcp] b.d      

      fck    0.9f’c 

     k=1+√
   

 
     

     ρ 
   

   
      

1.61 0.808 1854.5 32.38 

8 
German Code DIN  1045-1  

(2001) 

  =[ 0.10    K      ρ  ck ⅓-    σcd] b.d      

      fck       f’c 

 1=1.0 for normal concrete 

     k=1+√
   

 
     

     ρ 
   

   
      

1.94 0.808 2808 32.38 

SFC
Textbox
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9 Zsutty (1968) 

  =2.20 (f’c ρ 
 

 
 ⅓  b d                         

 

 
     

  =2.20 (f’c ρ 
 

 
 ⅓  b d        

 

 
)          

 

 
     

1.04 0.789 2764.4 31.03 

10 

 

 

 

Collins, Kuchma (1999) 

 

 

 

 

  =
   

       
√    b.d    

     SE=
     

    
 

      Sx=0.9 d     

      a=10 mm                           

1.53 0.731 1870.3 35.40 

11 Stepwise Regression   =6.405 +76.3√    ρ
 

 (
   

     
  +

 

 
) 0.99 0.82 862.17 27.31 

SFC
Textbox
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4.3 Parametric Study 

A wide range of parametric studies has been performed by using the SR model to 

investigate the interacting influence of each parameter on shear strength. Influence of 

bon the effects of d, f’c, %Reinforcement and a/don shear strength values are shown 

in figures 4.1 – 4.4. Influence of d on the effects of f'c, %Reinforcement and a/d on 

shear strength values are shown in figures 4.5-4.7.Influence of f'c on the effects of 

%Reinforcement and a/don shear strength value sare shown in figures 4.8-4.9. 

Influence of %Reinforcement on the effect a/don shear strength value is shown in 

figures 4.10.Also to investigate influence of each parameter on shear strength of RC 

beam without web reinforcement calculated by stepwise regression is shown in 

figure (4.11). 

 

 

Figure 4.1. Response of Influence of (b) on the effect of (d) on the shear resistance 

force (Vc) 
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Figure 4.2. Response of Influence of (b) on the effect of (fc) on the shear resistance 

force (Vc) 

 

 

Figure 4.3. Response of Influence of (b) on the effect of (p) on the shear resistance 

force (Vc) 
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Figure4.4. Response of Influence of (b) on the effect of (a/d) on the shear resistance 

force (Vc) 

 

 

Figure 4.5. Response of Influence of (d) on the effect of (fc) on the shear resistance 

force (Vc) 
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Figure 4.6. Response of Influence of (d) on the effect of (p) on the shear resistance 

force (Vc) 

 

 

Figure 4.7.Response of Influence of (d) on the effect of (a/d) on the shear resistance 

force (Vc) 
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Figure 4.8. Response of Influence of (fc) on the effect of (p) on the shear resistance 

force (Vc) 

 

 

 

Figure 4.9. Response of Influence of (fc) on the effect of (a/d) on the shear resistance 

force (Vc) 
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Figure 4.10.Response of Influence of (p) on the effect of (a/d) on the shear resistance 

force (Vc) 

 

  

 

Figure 4.11.Main effect of each parameter on shear strength of RC beam without 

web reinforcement calculated by stepwise regression 
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4.4 Graph of R
2
 in Each Codes and SR Model 

 

 

 

Figure 4.12. German code DIN 1045-1 (2001) 

 

 
 

 

Figure 4.13. Eurocode EN 1992-1-1 (2003) 
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Figure 4.14. Eurocode (1992) 
 

 

 

  

 

Figure 4.15. ACI -318-02 (2002) Equation 11-3 
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Figure 4.16. ACI -318-02 (2002) Equation 11-5 

 

 

 

 

Figure 4.17. ASCE-ACI 445 (2003) 
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Figure 4.18. CSA (1994) 

 

 

 

 

 

Figure 4.19. CSA (2005) 
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Figure 4.20. Collins, Kuchma (1999) 

 

 

 

 

 

Figure 4.21. Zsutty (1968) 
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Figure 4.22. Stepwise Regression 
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CHAPTER FIVE 

CONCLUSION 

5.1 Introduction 

This pioneer thesis presents stepwise regression as an alternative tool for the 

empirical modeling for shear strength of RC beams without web reinforcement. The 

proposed SR model in this paper is actually a realistic empirical model based on a 

wide range of experimental results collected from literature consisting of 398 test 

results belonging to 46 separate studies. The results are also compared with current 

design codes existing equations and are found to be more accurate. The main purpose 

of this research was to improve the understanding of the shear behavior of RC 

members. This research began with an extensive literature review of previous 

experimental research on shear, failure theories, complete models for describing 

shear behavior, and of shear design provisions in national codes of practice. 

5.2 Conclusions 

Based on this study, several important conclusions can be made. They are: 

 Among widely used soft computing techniques stepwise regression is applied 

to shear strength of RC beams without stirrups.  

 The accuracy of proposed SR model is also compared with existing design 

codes and equations available in the literature. The SR model was seen to be 

more accurate. 

 The shear strength increases as the concrete strength increases. In most codes 

of practice, shear strength is proportional to the concrete strength to an 

exponent between 0.25 to 0.5. 

 The shear strength clearly decreases as the effective depth of the member 

increases. Many of the major codes and empirical equations account for a size 

effect in shear .In their expressions, the shear strength decreases as a function 
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of the member depth. However, the expressions vary, ranging from 1/d,1/d
1/2

 

,1/d
1/3

 ,and1/
d1/4

 . 

 The shear strength clearly increases as the longitudinal reinforcement 

increases.  

 Many of the tested beams had an a/d ratio a round 2.5. The shear strengths of 

members with an a/d ratio of 2.5 are clearly higher than that of the members 

with an a/d ratio around 3.0. 

5.3 Recommendations for Future Work 

In this thesis, SR was used to model shear strength of RC beams without stirrups. On 

the other hand SR can also be applied to shear strength modeling of RC beams with 

stirrups, prestressed RC beams or torsion strength modeling of RC beams in further 

studies. Based on the results of the present study, the following future work is 

recommended :The model is verified using experimental results conducted using 

point loads. Thus ,it needs to be verified by other load conditions of practical 

significance, e.g., underuniformly loading conditions. 
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