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ABSTRACT 

MINIMIZATION OF THE FINITE WORD LENGTH NOISE IN THE IIR 
DIGITAL FILTERS USING TRUNCATION AND ROUNDATION 

 

DEVECİ, Turgut 

Master Science Thesis, Department of Electrical and Electronics Engineering 

Supervisor: Prof.Dr.Arif NACAROĞLU 

May 2013 

38 Pages 

 

In this thesis, effects of finite word length on Infinite Impulse Response digital filters 
(IIR Digital Filters) are studied and it is tried to approach ideal filter characteristics 
with the aim of using minimum bit number(s) and getting minimum error. The 
coefficients of the filter are changed by using truncation and/or roundation 
approximation to obtain the acceptable gain characteristic with shorter binary 
coefficients. 
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ÖZ 

KESME VE YUVARLAMA İŞLEMLERİNİ KULLANARAK REKÜRSİF 
SAYISAL FİLTRELERDE OLUŞAN SONLU BİT UZUNLUĞU 

GÜRÜLTÜSÜNÜ MİNİMİZE ETME 

 

DEVECİ, Turgut 

Yüksek Lisans Tezi, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof.Dr.Arif NACAROĞLU 

Mayıs 2013 

38 Sayfa 

 

Bu tezde, sonlu bit uzunluğu gürültüsünün sonsuz darbe cevaplı (rekürsif - IIR 
{geribeslemeli}) sayısal filtreler üzerindeki etkileri incelenmiş ve pratikte elde edilen 
alçak geçiren ve bant geçiren filtre özelliklerine, en az bit sayısı ve en az hata 
hedefiyle yaklaşılmaya çalışılmıştır. Ideal filtrede elde edilen katsayılar kesme 
(truncation) ve yuvarlama (round-off) işlemine ayrı ayrı tâbi tutulmuş, verilen filtre 
özelliklerini sağlayan en kısa ikilik katsayılar elde edilmeye çalışılmıştır. 
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CHAPTER 1 

INTRODUCTION 

 

Filters are one of basic component of all signal processing and 

telecommunication systems. The primary functions of a filter are one or more of the 

followings:  

(a) to restrict a signal into a demanded frequency band or channel; as an 

example as in a radio/tv channel selector or anti-aliasing filter,  

(b) to seperate a signal into two or more sub-band signals for subband signal 

processing, as an example in music coding,  

(c) to alter the frequency spectrum of a signal, for example in audio graphic 

equalizers,  

(d) to model the input-output relation of a system such as a voice production, 

musical instruments, mobile communication channel, room acoustics and telephone 

line echo. 

Through computational algorithm, a digital filter performs on input signal to 

produce and output signal. A digital filter can be modelled with digital hardware or 

can be simulated on a general-purpose computer These filters have found important 

applications in an increasing number of fields in science and engineering, and design 

techniques have been developed to achieve desired filter characteristics.  

The price of a digital filter, if carried out as a special-purpose computer, 

contingent on the word length of the coefficients in a heavy manner. In many 

examples of real-time applications, the infinite precision coefficients of digital filters 

derived from their design have to be replaced by finite word length equivalents. 
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Mainly, the word length should be reduced as much as possible. This 

reduction can be done in two ways: Truncation and/or Roundation 

Truncation means deleting digits of a number. In next two examples, numbers 

are truncated to 2 decimal digits. 

12.28392 ~ 12.28 

23.45672 ~ 23.45 

-6.39812 ~ -6.39 

Rounding means dropping digits from a number and modifying the remained 

digits corresponding to some rule. The rule generally is to make the rounded value as 

near to the original value as possible. In next two examples, numbers are rounded-off 

to 2 decimal digits. 

12.28392 ~ 12.28 

23.45672 ~ 23.46 

-6.39812 ~ -6.40 

Our main aim in this thesis is to minimize the finite word length noise in IIR 

filters. This noise occurs due to truncation or roundation. The shorter word length 

results with more error and more noise in the system. Therefore, without losing the 

requirements of the filter gain, it is aimed to use the shortest binary coefficients in 

IIR filter design.    
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CHAPTER 2 

DIGITAL FILTERS 

 

2.1 Introduction 

Filters are widely employed in signal processing and communication systems 

in applications  such  as  channel  equalization,  noise  reduction,  radar,  audio 

processing, video processing, biomedical signal processing, and analysis of 

economic and financial data [1,2,3].  

Owing to the structure of the signal, the filters are designed as analog or 

digital filters. 

 Analog filters use the analog components such as resistors, capacitors, 

inductors and/or active components. 

 Digital filters operate in discrete logic and flow of the signal through 

these networks is discrete with the speed of the clock signal. Digital 

filters employ the logic components like adder, multiplier and parallel 

shift registers. 

2.2 The Digital Filter as a System 

 A digital filter can be represented by the block diagram of Figure 2.1.  

 

Figure 2. 1 Digital Filter Structure 
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Input x(nT) and output y(nT) are the excitation and response of the filter, 

respectively. The response is related to the excitation by some rule of 

correspondence. We can indicate this fact notationally as 

                                                 𝑦(𝑛𝑇) = ℛ ∗ 𝑥(𝑛𝑇)                                                           (2.1) 

where ℛ is an operator.  

2.3 Linear-Time Invariant (LTI) Digital Filters 

 A digital filter is linear if and only if it satisfies the conditions 

                                                      ℛ𝛼𝑥(𝑛𝑇) = 𝛼ℛ𝑥(𝑛𝑇)                                                  (2.2) 

                 ℛ[𝑥1(𝑛𝑇) + 𝑥2(𝑛𝑇)] = ℛ𝑥1(𝑛𝑇) + ℛ𝑥2(𝑛𝑇)                                            (2.3) 

 On the other hand, a digital filter is said to be time-invariant if its response to 

an arbitrary excitation does not depend on the time of application of the excitation. 

As in other types of system, the response of a digital filter depends on a number of 

internal system parameters. In a time-invariant digital filter, these parameters do not 

change with time. 

 When a digital filter satisfies both the linearity and time invariance conditions 

it is called linear-time invariant (LTI) digital filter [4].  The linear time-invariant 

digital filter can then be described by the linear difference equation: 

    𝑦𝑛 = −𝑎1𝑦𝑛−1 − 𝑎2𝑦𝑛−2 − ⋯− 𝑎𝑁𝑦𝑛−𝑁 + 𝑏0𝑥𝑛 + ⋯+ 𝑏𝑀𝑥𝑛−𝑀                      (2.4) 

                                   = −�𝑎𝑘𝑦𝑛−𝑘

𝑁

𝑘=1

+ �𝑏𝑘𝑥𝑛−𝑘

𝑀

𝑘=0

                                                      (2.5) 

where 𝑎𝑘and 𝑏𝑘 are real. The order of the filter is 𝑁 ≥ 𝑀. 

2.4 Digital Filter Types 

Digital filters can be classified in several different groups, depending on what 

criteria are used for classification. The two major types of digital filters are finite 

impulse response digital filters (FIR Filters) and infinite impulse response digital 

filters (IIR Filters). 
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2.4.1 Finite Impulse Response Filters (FIR Filters) 

In signal processing, a finite impulse response (FIR) filter is a filter whose 

impulse response (or response to any finite length input) is of finite duration, because 

it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) 

filters, which may have internal feedback and may continue to respond indefinitely 

(usually decaying). 

The impulse response of an Nth-order discrete-time FIR filter (i.e., with a 

Kronecker delta impulse input) lasts for N + 1 samples, and then settles to zero. The 

figure of a discrete-time FIR filter of order N is shown in Figure 2.2. 

 

Figure 2. 2 A discrete-time FIR filter of order N. The top part is an N-stage delay line with N + 1 taps. Each unit 
delay is a z−1 operator in Z-transform notation. 

FIR filters can be discrete-time or continuous-time, and digital or analog. 

FIR filters have characteristics that make them useful in many applications: 

• FIR filters can achieve an exactly linear phase frequency response 

• FIR filters cannot be unstable. 

• FIR filters are generally less sensitive to coefficient round-off and finite-

precision arithmetic than IIR filters. 

• FIR filters design methods are generally linear. 

The duration or sequence length of the impulse response of these filters is by 

definition finite; therefore, the output can be written as a finite convolution sum by 

                                        𝑦(𝑛) = � ℎ(𝑚)𝑥(𝑛 −𝑚)
𝑁−1

𝑚=0

                                                     (2.6) 
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where 𝑛 and 𝑚 are are integers, perhaps representing samples in time, and where 

𝑥(𝑛) is the input sequence, 𝑦(𝑛) is the output sequence and ℎ(𝑛)  is the length-N 

impulse response of the filter. With a change of index variables, this can also be 

written as  

  

                                         𝑦(𝑛) = � ℎ(𝑛 −𝑚)𝑥(𝑚)
𝑛−𝑁+1

𝑚=𝑛

                                                (2.7) 

2.4.2 Infinite Impulse Response Filters (IIR Filters) 

A digital filter with impulse response having infinite length (i.e., its values 

outside any finite interval cannot all be zero) is termed infinite impulse response 

(IIR) filter. The most important class of IIR filters can be described by the difference 

equation 

            𝑦(𝑛) = 𝑏0 ∗ 𝑥(𝑛) + 𝑏1 ∗ 𝑥(𝑛 − 1) + ⋯+ 𝑏𝑀 ∗ 𝑥(𝑛 −𝑀) 

                                  −𝑎1 ∗ 𝑦(𝑛 − 1) − 𝑎2 ∗ 𝑦(𝑛 − 2) −⋯− 𝑎𝑁 ∗ 𝑦(𝑛 − 𝑁)         (2.8) 

where  𝑥(𝑛) is the input, 𝑦(𝑛) is the output of the filter, {𝑎1,𝑎2, … , 𝑎𝑁} and 

{𝑏1, 𝑏2, … , 𝑏𝑀} are the filter coefficients. We assume that 𝑎𝑁 ≠ 0. The impulse 

response is the output of the system when it is driven by a unit impulse at n = 0, with 

the system being initially at rest, i.e., the output being zero prior to applying the 

input. We denote the impulse response by h(n). With  x(0) = 1,  x(n) = 0, for n ≠ 0, 

and y(n) = 0 for n < 0, we can compute h(n), n ≤ 0, from above equation in a 

recursive manner. Taking the z-transform of the Equation 2.8, we obtain the system 

function 

                 H(z) =
𝑌(𝑧)
𝑋(𝑧)

=
𝑏0 + 𝑏1 ∗ 𝑧−1 + ⋯+ 𝑏𝑀 ∗ 𝑧−𝑀

1 + 𝑎1 ∗ 𝑧−1 + 𝑎2 ∗ 𝑧−2 + ⋯+ 𝑎𝑁 ∗ 𝑧−𝑁
                      (2.9) 

N is the order of the  filter. The system function and the impulse response are related 

through the z-transform and its inverse, i.e., 

𝐻(𝑧) = � ℎ(𝑛) ∗ 𝑧−𝑛
∞

𝑛=−∞

            ℎ(𝑛) =
1

2𝜋𝑗
�𝐻(𝑧) ∗ 𝑧𝑛−1 ∗ 𝑑𝑧
𝐶

           (2.10 & 2.11) 
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where C is a closed counterclockwise contour in the region of convergence. 

For ease of implementation, it is desirable that the coefficients {𝑎1,𝑎2, … ,𝑎𝑁} and 

{𝑏1, 𝑏2, … , 𝑏𝑀} be real numbers (as opposed to complex numbers), which is another 

assumption that we make, unless it is specified otherwise. 

 A realization of an IIR filter, is shown in Figure 2.3(a), which is called Direct 

Form I. By rearranging the structure, we can obtain Direct Form II, as shown in 

Figure 2.3(b). Through transposition, we can obtain Transposed Direct Form I and 

Transposed Direct Form II as shown in Figure 2.3(c) and (d). 

 

Figure 2. 3 Direct form realizations of IIR filters 

2.5 The Pulse Transfer Function 

The pulse transfer function is the ratio of 𝑧-transform of output to 𝑧-transform 
of input.  

Let the impulse response, for example of an FIR filter, be 𝑎0 at 𝑡 = 0, 𝑎1 at 
𝑡 = 𝑇, … ,𝑎𝑖 at 𝑡 = 𝑖𝑇 with 𝑖 = 0, … ,𝑁. 

Let 𝐺(𝑧) be the z-transform of this sequence: 
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𝐺(𝑧) = 𝑎0 + 𝑎1 ∗ 𝑧−1 + 𝑎2 ∗ 𝑧−2 + ⋯+ 𝑎𝑖 ∗ 𝑧−𝑖 + ⋯+ 𝑎𝑁 ∗ 𝑧−𝑁        (2.12)  

Let 𝑋(𝑧) be an input: 

            𝑋(𝑧) = 𝑥[0] + 𝑥[1] ∗ 𝑧−1 + 𝑥[2] ∗ 𝑧−2 + ⋯+ 𝑥[𝑘] ∗ 𝑧−𝑘                        (2.13) 

The product 𝐺(𝑧)𝑋(𝑧) is: 

 𝐺(𝑧)𝑋(𝑧) = �𝑎0 + 𝑎1 ∗ 𝑧−1 + 𝑎2 ∗ 𝑧−2 + ⋯+ 𝑎𝑖 ∗ 𝑧−𝑖 + ⋯+ 𝑎𝑁 ∗ 𝑧−𝑁� ∗
             (𝑥[0] + 𝑥[1] ∗ 𝑧−1 + 𝑥[2] ∗ 𝑧−2 + ⋯+ 𝑥[𝑘] ∗ 𝑧−𝑘)                                  (2.14) 

in which the coefficient of 𝑧−𝑘 is: 

𝑎0 ∗ 𝑥[𝑘] + 𝑎1 ∗ 𝑥[𝑘 − 1] + ⋯+ 𝑎𝑖 ∗ 𝑥[𝑘 − 𝑖] + ⋯+ 𝑎𝑁 ∗ 𝑥[𝑘 − 𝑁]                (2.15) 

 This is nothing else than the value of the output sample at 𝑡 = 𝑘𝑇. Hence the 
whole sequence is the z-transform of the output, say 𝑌(𝑧), where 𝑌(𝑧) = 𝐺(𝑧)𝑋(𝑧). 
Hence the pulse transfer function, 𝐺(𝑧), is the z-transform of the impulse response. 

For non-recursive filters (FIR Filters): 

                                           𝐺(𝑧) = �𝑎𝑖 ∗ 𝑧−𝑖
𝑁

𝑖=0

                                                               (2.16) 

For recursive filters (IIR Filters) 

                        𝑌(𝑧) = �𝑎𝑖 ∗ 𝑧−𝑖 ∗ 𝑋(𝑧) + �𝑏𝑖 ∗ 𝑧−𝑖 ∗ 𝑌(𝑧)
𝑀

𝑖=1

𝑁

𝑖=0

                             (2.17) 

                                   𝐺(𝑧) =
𝑌(𝑧)
𝑋(𝑧)

=
∑𝑎𝑖 ∗ 𝑧−𝑖

1 − ∑𝑏𝑖 ∗ 𝑧−𝑖
                                                   (2.18) 

 

2.6 Frequency Response of a Digital Filter 

Frequency response of a digital filter can be obtained by evaluating 
the (pulse) transfer function on the unit circle (𝑖. 𝑒. 𝑧 = 𝑒𝑗𝑤𝑇).  

Proof 

Consider the general filter difference equation is [5] 

                          𝑦[𝑘] = �𝑎𝑖 ∗ 𝑥[𝑘 − 𝑖]
∞

𝑖=0

                                                          (2.19) 

𝐍𝐁: A recursive type can always be expressed as an infinite sum by dividing out: 
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e.g., for 

                                              𝐺(𝑧) =
𝑎0

1 − 𝑏1 ∗ 𝑧−1
                                                          (2.20) 

we have 

                                               𝑦[𝑘] = �𝑎0 ∗ 𝑏1𝑖 ∗ 𝑥[𝑘 − 𝑖]
∞

𝑖=0

                                         (2.21) 

Let input before sampling be cos(𝑤𝑡 + 𝜃), sampled at 𝑡 = 0,𝑇, … , 𝑘𝑇. Therefore 

            𝑥[𝑘] = cos(𝑤𝑘𝑡 + 𝜃) =
1
2
�𝑒𝑗(𝑤𝑘𝑇+𝜃) + 𝑒−𝑗(𝑤𝑘𝑇+𝜃)�                                  (2.22) 

i.e. 

                      
1
2
�𝑎𝑖 ∗ 𝑒𝑗{𝑤[𝑘−𝑖]𝑇+𝜃} + �𝑎𝑖 ∗ 𝑒−𝑗{𝑤[𝑘−𝑖]𝑇+𝜃}

∞

𝑖=0

∞

𝑖=0

                               (2.23) 

           =
1
2
𝑒𝑗(𝑤𝑘𝑇+𝜃) �𝑎𝑖 ∗ 𝑒−𝑗𝑤𝑖𝑇

∞

𝑖=0

+
1
2
𝑒−𝑗(𝑤𝑘𝑇+𝜃) �𝑎𝑖 ∗ 𝑒𝑗𝑤𝑖𝑇

∞

𝑖=0

                      (2.24) 

Now 

                           �𝑎𝑖 ∗ 𝑒−𝑗𝑤𝑖𝑇
∞

𝑖=0

= �𝑎𝑖 ∗ (𝑒𝑗𝑤𝑇)−𝑖
∞

𝑖=0

                                                  (2.25) 

But G(z) for this filter is ∑ 𝑎𝑖 ∗ 𝑧−𝑖∞
𝑖=0  

and so 

                        �𝑎𝑖 ∗ 𝑒−𝑗𝑤𝑖𝑇
∞

𝑖=0

= 𝐺(𝑧)𝑧 = 𝑒𝑗𝑤𝑇                                                            (2.26) 

Let 𝐺(𝑧)𝑧 = 𝑒𝑗𝑤𝑇 = 𝐴𝑒𝑗∅, then 

�𝑎𝑖 ∗ 𝑒𝑗𝑤𝑖𝑇 = 𝐴𝑒−𝑗∅                           (𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒)
∞

𝑖=0

                              (2.27) 

 

 

Hence 

                    𝑦[𝑘] =
1
2
𝑒𝑗(𝑤𝑘𝑇+𝜃)𝐴𝑒𝑗∅ +

1
2
𝑒−𝑗(𝑤𝑘𝑇+𝜃)𝐴𝑒−𝑗∅                                     (2.28) 

or 
𝑦[𝑘] = 𝐴𝑐𝑜𝑠(𝑤𝑘𝑇 + 𝜃 + ∅)            𝑤ℎ𝑒𝑛 𝑥[𝑘] = cos(𝑤𝑘𝑇 + 𝜃)                        (2.29) 

Thus 𝐴 𝑎𝑛𝑑 ∅ represent the gain and phase of the frequency response. i.e. the 
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frequency response (as a complex quantity) is 

                              𝐺(𝑧)|𝑧=𝑒𝑗𝑤𝑇 = 𝐺�𝑒𝑗𝑤𝑇� = 𝐴(𝑤𝑇)𝑒𝑗∅𝑇                                          (2.30) 

 In design process of the digital filters, in general, the gain is given (or phase) 
and the correct coefficients for FIR and/or IIR structures are found [6]. 
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CHAPTER 3 

FINITE WORD LENGTH 

 

3.1 Introduction 

Practical digital filters must be executed with limited length and arithmetic. 

Thus, the coefficients of the filter and the filter signals in input and output are in 

discrete form. This guides to 4 types of finite wordlength effects [8,9,10,11,12,13]. 

Filter coefficients discretization (quantization) has the effect of disordering 

the filter poles and zeroes’ locations. Thus, the real response of filter differs 

delicately from the ideal response of the filter. This decisive frequency response error 

is applied to as coefficient quantization error [14]. 

Using limited length arithmetic makes it require to make discrete filter 

calculations by rounding or truncation. The error seen in filter output which results 

because of rounding or truncating inwith the filter is called as Roundoff noise [15]. 

Quantization (the process of approximating a continuous signal by a set of 

discrete symbols or integer values) of the filter calculations also cause the filter to 

become delicately nonlinear. For huge signals this nonlinearity can be excluded and 

roundoff noise is the main interest. Nevertheless, for infinite impulse response filters 

(recursive filters) with a zero or constant input, this nonlinearity can set off fake 

oscillations called as limit cycles [16]. 

It is possible for filter calculations to exceed with fixed-point arithmetic. A 

high-level oscillation which may be in a different stable filter because of the 

nonlinearity join with the overflow of internal filter calculations is called as overflow 

oscillation which is sometimes also called as adder overflow limit cycle [17]. 

 

3.2 MATLAB “yulewalk” Subroutine 

yulewalk lays out recursive infinite impulse response digital filters using a least-

squares fit to a indicated frequency response. [b,a] = yulewalk(n,f,m) returns row 

vectors b and a containing the n+1 coefficients of the order n infinite impulse 
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response filter whose frequency-magnitude characteristics approximately match 

those given in vectors f and m [7]: 

• f:  vector of frequency points, indicated in the range between 0 and 1, where 

1 corresponds to the Nyquist frequency. The first point of f must be 0 and the 

last point 1, with all intermediate points in increasing order.  

• m is a vector including the wanted magnitude response at the points indicated 

in f. 

The output filter coefficients are ordered in descending powers of z. 

           
𝐵(𝑧)
𝐴(𝑧)

=
𝑏(1) + 𝑏(2)𝑧−1 + ⋯+ 𝑏(𝑛 + 1)𝑧−𝑚

𝑎(1) + 𝑎(2)𝑧−1 + ⋯+ 𝑎(𝑛 + 1)𝑧−𝑛
                                               (3.16) 

yulewalk performs a least-squares fit in the time domain. It computes the 

denominator coefficients using modified Yule-Walker equations, with correlation 

coefficients computed by inverse Fourier transformation of the specified frequency 

response.  

 

3.3 Truncation & Roundation 

Truncation  is the term for limiting the number of digits right of the decimal 

point, by discarding the least significant ones.  

For example, consider the real numbers: 

1.25987416657955441 

-15.233333333333 

are the outcome of yulewalk representing the coefficients of the IIR digital filter. 

To truncate these numbers to 4 decimal digits, we only consider the 4 digits to 

the right of the decimal point.  

The result would be: 

1.2598 

-15.2333 

With these new values the gain of the filter may change. If this change 

remains in acceptable ranges, we prefer to use the shorter numbers. 

Rounding a numerical value means replacing it by another value that is 

approximately equal but has a shorter, simpler, or more explicit representation.  
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We will take the same examples that we have defined for truncation with a 

different process. To round these numbers to 4 decimal digits, this time we consider 

5 digits to the right of the decimal point. If the 5th digit is equal or greater than 5, we 

will add 1 to 4th digit. If not it will be same as truncation. By this manner the result 

would be: 

1.2599 

-15.2333 

In both cases, there will be errors between the new number and the original 

one. Sometimes truncation sometimes roundation will give less error. The error here 

is the deviation from the ideal characteristics and the new gain may remain in 

tolerances.  
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CHAPTER 4 

APPLICATIONS 

In this chapter, the method of roundation and truncation to limit the 

wordlengths of the coefficients of the IIR filter will be presented as the program 

written for MATLAB. The program will be run for different types of filters such as 

Low Pass Filter and Band Pass Filter.  

4.1 Program 

The program is written in MATLAB environment. MATLAB is a high-level 

technical computing language and interactive environment for algorithm 

development, data visualization, data analysis, and numeric computation. Using the 

MATLAB product, you can solve technical computing problems faster than with 

traditional programming languages, such as C, C++, and Fortran. 

4.2 Designs 

In this section, the main part of the program which applies truncation and 

roundation are given for both Low Pass Filter and Band Pass Filter applications. The 

program is run for different bit lengths.   

4.2.1 Design for Low Pass Filter 

4.2.1.1 Main Program 

This part is the main graphical user interface of the program. It calls other 

subroutine programs and it asks for an input either the user wants to apply truncation 

or roundation. 

close all 
clear all 
clc 
  
selection=input('Enter 0 if you want to make Truncation, enter 1 if you want to make 
Roundation: '); 
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if selection==0 
    [f,m,h,h1,y,z,a,anew,b,bnew]= Truncation(); 
    elseif selection==1 
     [f,m,h,h1,y,z,a,anew,b,bnew]= Roundation(); 
end 
 

4.2.1.2 Program of Truncation Part 

 The theoretical explanation of “yulewalk” command is given in Section 3.2. 

The theoretical explanation of  the truncation and the roundation process is given in 

section 3.3. Here the source code is given, which finds the N-th order recursive filter 

coefficients b and a, convert the coefficients to binary, then make truncation process 

and convert them back to decimal. Finally it draws the figures which are ideal, 

yulewalk found and with the coefficients that are changed by truncation.    

%Truncation 
  
function [f,m,h,h1,y,z,a,anew,b,bnew]= Truncation() 
 
Kp=input('Enter attenuation value in pass band region:'); 
Ks=input('Enter attenuation value in stop band region:'); 
 
X=1/(10^(Kp/20)); 
X1=1/(10^(Ks/20)); 
  
Wp=input('Enter cut-off frequency value:'); 
Wsf=input('Enter sampling frequency value:'); 
  
f=[linspace(0,(Wp/Wsf),64) linspace((Wp/Wsf),1,64)];  
m=[ones(1,64)*((X+1)/2) ones(1,64)*(X1/2)]; 
  
n=5; %order of filter 
nd=input('Enter the desired length of binary number: '); %length of binary number 
  
[b,a]=yulewalk(n,f,m) 
  
signb=sign(b); 
signa=sign(a); 
  
[h,w] = freqz(b,a,128); 
plot(f,m,w/pi,abs(h),'--') 
hold on 
title('Comparison of Frequency Response Magnitudes') 
  
%% 
for kk=1:n+1 
    aa=abs(b(kk)) 
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for k=1:nd; 
    aa=aa*2; 
    if (aa<=1) y(kk,k)=0 
    else 
        y(kk,k)=1 
        aa=aa-1; 
    end 
end 
end 
%% 
b=zeros(1,n+1); 
for kk=1:n+1 
sum=0 
for k=1:nd; 
    sum=sum+y(kk,k)*2^(-k); 
end 
b(kk)=sum 
end 
bnew=b.*signb 
%% 
for kk=1:n+1 
    aa1=abs(a(kk)) 
for k=1:nd; 
    aa1=aa1*2; 
    if (aa1<=1) z(kk,k)=0 
    else 
        z(kk,k)=1 
        aa1=aa1-1; 
    end 
end 
end 
 
%% 
 
a=zeros(1,n+1) 
for kk=1:n+1 
sum=0 
for k=1:nd; 
    sum=sum+z(kk,k)*2^(-k); 
end 
a(kk)=sum 
end 
anew=a.*signa 
  
%% 
 
[h1,w] = freqz(bnew,anew,128); 
plot(f,m,w/pi,abs(h1),'*r') 
legend('Ideal','yulewalk Designed','inputs changed') 
title('Comparison of Frequency Response Magnitudes') 
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4.2.1.3 Program of Roundation Part  

 Here the source code which finds the N-th order recursive filter coefficients b 

and a, convert the coefficients to binary, then make roundation process and convert 

them back to decimal is given. It draws the figures which are ideal, yulewalk found 

and with the coefficients that are changed by roundation. 

%Roundation 
  
function [f,m,h,h1,y,z,a,anew,b,bnew]= Roundation() 
  
Kp=input('Enter attenuation value in pass band region:'); 
Ks=input('Enter attenuation value in stop band region:'); 
X=1/(10^(Kp/20)); 
X1=1/(10^(Ks/20)); 
  
Wp=input('Enter cut-off frequency value:'); 
Wsf=input('Enter sampling frequency value:'); 
  
f=[linspace(0,(Wp/Wsf),64) linspace((Wp/Wsf),1,64)];  
m=[ones(1,64)*((X+1)/2) ones(1,64)*(X1/2)]; 
  
n=5; %order of filter 
nd=input('Enter the desired length of binary number: '); %length of binary number 
  
[b,a]=yulewalk(n,f,m) 
  
signb=sign(b); 
signa=sign(a); 
  
[h,w] = freqz(b,a,128); 
plot(f,m,w/pi,abs(h),'--') 
hold on 
title('Comparison of Frequency Response Magnitudes') 
  
%% 
 
for kk=1:n+1 
    aa=abs(b(kk)) 
for k=1:nd+1; 
    aa=aa*2; 
    if (aa<=1) y(kk,k)=0 
    else 
        y(kk,k)=1 
        aa=aa-1; 
    end 
end 
end 
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%% 
 
b=zeros(1,n+1); 
for kk=1:n+1 
sum=0 
for k=1:nd; 
    sum=sum+y(kk,k)*2^(-k); 
end 
b(kk)=sum 
end 
  
%Roundation part 
for i=1:n+1 
    if y(i,nd+1)==1 
        b(i)=b(i)+2^(-(nd+1)) 
    else 
    end 
end 
bnew=b.*signb 
%% 
for kk=1:n+1 
    aa1=abs(a(kk)) 
for k=1:nd+1; 
    aa1=aa1*2; 
    if (aa1<=1) z(kk,k)=0 
    else 
        z(kk,k)=1 
        aa1=aa1-1; 
    end 
end 
end 
%% 
a=zeros(1,n+1) 
for kk=1:n+1 
sum=0 
for k=1:nd; 
    sum=sum+z(kk,k)*2^(-k); 
end 
a(kk)=sum 
end 
  
%Roundation Part 
for i=1:n+1 
    if z(i,nd+1)==1 
        a(i)=a(i)+2^(-(nd+1)) 
    else 
    end 
end 
anew=a.*signa 
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%% 
[h1,w] = freqz(bnew,anew,128); 
plot(f,m,w/pi,abs(h1),'*r') 
legend('Ideal','yulewalk Designed','inputs changed') 
title('Comparison of Frequency Response Magnitudes') 
 
4.2.1.4 Computation of Whole Error 
 
%Error Computation 
 
error=abs(h)-m'; 
errorsq=error.^2; 
 
errornew=sum(errorsq)  %Error Of Yulewalk 
  
errorr=abs(h1)-m'; 
 
errorrsq=errorr.^2; 
errorneww=sum(errorrsq) %Error Of The Inputs We Changed 
 
4.2.1.5 Computation of Error of Passband-Stopband Region 
 
%Error Computation of PassBand&Stopband 
error=abs(h)-m'; 
 
errorsq=error.^2; 
 
error1=sum(errorsq(1:64))  %Error Of Yulewalk PassBand 
 
error2=sum(errorsq(65:128)) %Error Of Yulewalk StopBand 
  
errorr=abs(h1)-m'; 
 
errorrsq=errorr.^2; 
 
errorneww1=sum(errorrsq(1:64)) %Error Of The Inputs We Changed PassBand 
 
errorneww2=sum(errorrsq(65:128)) %Error Of The Inputs We Changed StopBand 
 

4.3 Results for Low Pass Filter 

4.3.1 Truncation Applications for Low Pass Filter 

As a first example, the design of the low pass filter with 7.66 dB maximum 

attenuation in pass-band region, 13.9794 dB minimum attenuation in stop-band 

region, pass-band cut off frequency of 40 rad/sec. and sampling frequency of 100 
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rad/sec. is studied. Ideal gain, the gain with yulewalk (MATLAB subroutine) and the 

gain after coefficients are truncated are sketched.  

 For 3-bits: 

The low pass filter gain characteristic is obtained for 3-bit truncated coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with truncated coefficients are sketched in Figure 4.1. 

 

Figure 4. 1 Comparison of Frequency Response Magnitudes (3-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB; 

 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 1 Errors of Ideal vs. Yulewalk Subroutine Designed  

Total Error Pass-Band Error Stop-Band Error 

10.3390 10.2872 0.0518 

Table 2 Errors of Ideal vs. Input Parameters are Truncated (3-bits) 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Comparison of Frequency Response Magnitudes

 

 
Ideal
yulewalk Designed
inputs changed
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 For 5-bits: 

The low pass filter gain characteristic is obtained for 5-bit truncated coefficients and 

the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 

figure with truncated coefficients are sketched in Figure 4.2. 

 

Figure 4. 2 Comparison of Frequency Response Magnitudes (5-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB; 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 3 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

3.7075 3.6983 0.0093 

Table 4 Errors of Ideal vs. Input Parameters are Truncated (5-bits) 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Comparison of Frequency Response Magnitudes

 

 
Ideal
yulewalk Designed
inputs changed
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 For 8-bits: 

The low pass filter gain characteristic is obtained for 8-bit truncated coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with truncated coefficients are sketched in Figure 4.3. 

 

Figure 4. 3 Comparison of Frequency Response Magnitudes (8-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB: 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 5 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

2.8257 2.8248 8.9811e-004 

Table 6 Comparison of Frequency Response Magnitudes (8-bits) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Comparison of Frequency Response Magnitudes

 

 
Ideal
yulewalk Designed
inputs changed
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 For 16-bits: 

The low pass filter gain characteristic is obtained for 16-bit truncated coefficients 
and the figure with ideal filter characteristic, the figure with yulewalk subroutine and 
the figure with truncated coefficients are sketched in Figure 4.4. 

 

Figure 4. 4 Comparison of Frequency Response Magnitudes (16-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB: 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 7 Errors of Ideal vs. Yulewalk Subroutine Designed 

Total Error Pass-Band Error Stop-Band Error 

2.8596 2.8593 3.1118e-004 

Table 8 Errors of Ideal vs. Input Parameters are Truncated (16-bits) 

 

 

 If we compare the figures and datas taken from MATLAB, it can be said that 
that the errors taken from between 5-8 bits are acceptable. Specifically for our 
datas 8-bit is more acceptable for truncation process for Low Pass Filter. 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.5

0.6

0.7
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Comparison of Frequency Response Magnitudes

 

 
Ideal
yulewalk Designed
inputs changed
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4.3.2 Roundation Applications for Low Pass Filter 

As the second example, the design of the low pass filter with 7.66 dB 
maximum attenuation in pass-band region, 13.9794 dB minimum attenuation in stop-
band region, pass-band cut off frequency of 40 rad/sec. and sampling frequency of 
100 rad/sec. is studied. Ideal gain, the gain with yulewalk (MATLAB subroutine) 
and the gain after coefficients are rounded-off are sketched. 

 For 3-bits: 

The low pass filter gain characteristic is obtained for 3-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.5. 

 

Figure 4. 5 Comparison of Frequency Response Magnitudes (3-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB: 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 9 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

3.6622 3.6265 0.0358 

Table 10 Errors of Ideal vs. Input Parameters are Rounded (3-bits) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8
Comparison of Frequency Response Magnitudes
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inputs changed
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 For 5-bits: 

The low pass filter gain characteristic is obtained for 5-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.6. 

 

Figure 4. 6 Comparison of Frequency Response Magnitudes (5-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB: 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 11 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 12 Errors of Ideal vs. Input Parameters are Rounded (5-bits) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.8
Comparison of Frequency Response Magnitudes

 

 
Ideal
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inputs changed
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 For 8-bits: 

The low pass filter gain characteristic is obtained for 8-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.7. 

 

Figure 4. 7 Comparison of Frequency Response Magnitudes (8-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB: 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 13 Errors of Ideal vs. Yulewalk Subroutine Designed 

Total Error Pass-Band Error Stop-Band Error 

2.8393 2.8390 2.6430e-004 

Table 14 Errors of Ideal vs. Input Parameters are Rounded (8-bits) 
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 For 16-bits: 

The low pass filter gain characteristic is obtained for 16-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.8. 

 

Figure 4. 8 Comparison of Frequency Response Magnitudes (16-bits) x-axis:Frequency y-axis:Gain 

From the datas taken from MATLAB: 

Total Error Pass-Band Error Stop-Band Error 

2.8595 2.8592 3.0993e-004 

Table 15 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

2.8598 2.8595 3.0997e-004 

Table 16 Errors of Ideal vs. Input Parameters are Rounded (16-bits) 

 

 If we compare the figures and datas taken from MATLAB, it can be said that 
the errors taken from between 3-5 bits are acceptable. Specifically for our 
datas 5-bit is more acceptable for roundation process for Low Pass Filter. 
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4.4 Results for Band Pass Filter 

4.4.1 Truncation Applications for Band Pass Filter 

As a first example for Band Pass Filter, the design of the band pass filter with 
7.66 dB maximum attenuation in pass-band region, 13.9794 dB minimum attenuation 
in stop-band region, pass-band cut off frequency of 30 rad/sec. and sampling 
frequency of 70 rad/sec. is studied. Ideal gain, the gain with yulewalk (MATLAB 
subroutine) and the gain after coefficients are truncated are sketched. 

 For 3-bits: 

The band pass filter gain characteristic is obtained for 3-bit truncated coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with truncated coefficients are sketched in Figure 4.9. 

 

Figure 4. 9 Comparison of Frequency Response Magnitudes (3-bits) 
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 For 5-bits: 

The band pass filter gain characteristic is obtained for 5-bit truncated coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with truncated coefficients are sketched in Figure 4.10. 

 

Figure 4. 10 Comparison of Frequency Response Magnitudes (5-bits) 
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Table 19 Errors of Ideal vs. Yulewalk Subroutine Designed 
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 For 8-bits: 

The band pass filter gain characteristic is obtained for 8-bit truncated coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with truncated coefficients are sketched in Figure 4.11. 

 

Figure 4. 11 Comparison of Frequency Response Magnitudes (8-bits) 
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Table 21 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

2.0320 0.0296 2.0024 

Table 22 Errors of Ideal vs. Input Parameters are Truncated (8-bits) 
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 For 16-bits: 

The band pass filter gain characteristic is obtained for 16-bit truncated coefficients 
and the figure with ideal filter characteristic, the figure with yulewalk subroutine and 
the figure with truncated coefficients are sketched in Figure 4.12. 

 

Figure 4. 12 Comparison of Frequency Response Magnitudes (16-bits) 

Total Error Pass-Band Error Stop-Band Error 

2.0635 0.0278 2.0356 

Table 23 Errors of Ideal vs. Yulewalk Subroutine Designed 

Total Error Pass-Band Error Stop-Band Error 

2.0632 0.0279 2.0353 

Table 24 Errors of Ideal vs. Input Parameters are Truncated (16-bits) 

 

 If we compare the figures and datas taken from MATLAB, it can be said that 
all stop-band errors which are taken after coefficients are truncated are less 
than the yulewalk subroutine found. But on the other hand, comparing the 
band-pass errors; we see that 5-8 bit is acceptable. 
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4.4.2 Roundation Applications for Band Pass Filter 

As the second example for Band Pass Filter, the design of the band pass filter 
with 7.66 dB maximum attenuation in pass-band region, 13.9794 dB minimum 
attenuation in stop-band region, pass-band cut off frequency of 30 rad/sec. and 
sampling frequency of 70 rad/sec. is studied. Ideal gain, the gain with yulewalk 
(MATLAB subroutine) and the gain after coefficients are rounded are sketched. 

 For 3-bits: 

The band pass filter gain characteristic is obtained for 3-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.13. 

 

Figure 4. 13 Comparison of Frequency Response Magnitudes (3-bits) 
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Table 25 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

 Total Error Pass-Band Error Stop-Band Error 
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 For 5-bits: 

The band pass filter gain characteristic is obtained for 5-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.14. 

 

Figure 4. 14 Comparison of Frequency Response Magnitudes (5-bits) 
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Table 27  Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

2.0732 0.0271 2.0461 

Table 28 Errors of Ideal vs. Input Parameters are Rounded (5-bits) 
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 For 8-bits: 

The band pass filter gain characteristic is obtained for 8-bit rounded coefficients and 
the figure with ideal filter characteristic, the figure with yulewalk subroutine and the 
figure with rounded coefficients are sketched in Figure 4.15. 

 

Figure 4. 15 Comparison of Frequency Response Magnitudes (8-bits) 
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Table 29 Errors of Ideal vs. Yulewalk Subroutine Designed 

 

Total Error Pass-Band Error Stop-Band Error 

2.0526 0.0290 2.0236 

Table 30 Errors of Ideal vs. Input Parameters are Rounded (8-bits) 
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 For 16-bits: 

The band pass filter gain characteristic is obtained for 16-bit rounded coefficients 
and the figure with ideal filter characteristic, the figure with yulewalk subroutine and 
the figure with rounded coefficients are sketched in Figure 4.16. 

 

Figure 4. 16 Comparison of Frequency Response Magnitudes (16-bits) 
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Table 31 Errors of Ideal vs. Yulewalk Subroutine Designed 

Total Error Pass-Band Error Stop-Band Error 

2.0526 0.0290 2.0236 

Table 32 Errors of Ideal vs. Input Parameters are Rounded (16-bits) 
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CHAPTER 5 

RESULTS AND CONCLUSION 

 

 The correctness of an IIR digital filter is restricted by finite word length in its 
applications. In real life or simulated on a computer we want accurate, fast and cheap 
work. So we need to determine the minimum word length needed for a specified 
performance.  

In this thesis, we have analysed the effects of limited word length on infinite 
impulse response (IIR) filters and tried to determine the best word length for 
designed filter in order to prevent data losses. Problem have been investigated for 
different bits for low pass filter and band pass filter respectively. Particularly, 
statistical mean-squared errors (total, pass-band side & stop-band side) are calculated 
at the output vectors.  

Studies show that when the bit length is increased the error in the output 
decreases and vice versa.  

In this study;  

• Phase is not considered. Phase may affect the accuracy so in future work it 
can be add on this work. 

• Only low pass and band pass filters are considered. There may be different 
results for high pass and band stop filters. 

• Order of the filter is chosen “5”. It may give different results for low and/or 
high order filters.  
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