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ABSTRACT 

ANALYSIS AND OPTIMUM DESIGN OF CURVED ROOF 

STRUCTUTURES 

 

Saber, Galawezh Braim 

M.Sc. in Civil Engineering 

Supervisor: Asst. Prof. Dr. Nildem TAYŞI 

January 2013, 89 Pages 

 

Curved roof structures are frequently designed to supply the users of the structure 

with ordinary light with a sense of capaciousness as well as grandness in public 

facilities such as stations, buying malls, leisure centers and airports. 

This thesis’ presents a method for analysis and optimum design of 2D and 3D 

curved roof structures subjected to static loading. Here the optimization refers to 

minimization of total weight of curved roof structures such that they can resist 

applied forces (stress constraint) and don’t exceed certain deformations 

(displacement constraints). The finite element formulations are implemented for the 

static analysis of curved roof trusses to determine the stresses and displacements. 

Optimization is an automated design procedure in which the computers are utilized 

to obtain the best results. A program was modified and used to automate analysis 

and optimization of the structure written in FORTRAN language based Finite 

Element analysis and Genetic Algorithm optimization technique. The developed 

method is tested on several examples and compared with previous researches or 

SAP2000 results. It is concluded that this method can serve as a useful tool in 

engineering design and optimization of curved roofs. 

Keywords: curved roof structures, size optimization, finite element method, genetic 

algorithm.  
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Eğrisel çatı yapıları, kullanıcılarına gün ışığından faydalanma imkanı sağladığı gibi 

istasyon, alışveriş merkezi, kültür merkezi ve havaalanları gibi halka açık alanlarda 

da sıklıkla kullanılmaktadır. 

Bu tez statik yükler altındaki iki ve üç boyutlu eğrisel çatıların analizi ve 

optimizasyonu için yöntem sunmaktadır. Burada optimizasyon çatının toplam 

ağırlığının minimize edilmesine karşılık gelmektedir. Böylece yapı uygulanan 

yükleri güvenli bir şekilde taşırken gerilme ve yer değiştirme kısıtlarını aşmaz.  

Otomatik olarak analiz ve optimizasyon yapabilmek için, sonlu elemanlar yöntemi 

ile genetik algoritmayı birleştiren FORTRAN dilinde yazılmış bir bilgisayar 

programı kullanılmaktadır. Geliştirilen yöntem pek çok örnekle test edilmiş ve 

sonuçlar önceki referans çalışmalarla veya SAP2000 program sonuçlarıyla 

karşılaştırılmıştır. Sonuç olarak, bu yöntemin mühendislik tasarımları ve eğrisel çatı 

yapılarının optimizasyonunda güvenli bir şekilde kullanılabileceği gözlemlenmiştir. 

Anahtar kelimeler: eğrisel çatı yapıları, kesit optimizasyonu, sonlu şeritler metodu, 

genetik algoritma 
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CHAPTER 1 

INTRODUCTION 

1.1General 

Curved steel roofing is frequently designed to supply the users of the structure with 

ordinary light with a sense of capaciousness as well as grandness in public facilities 

such as stations, buying malls, leisure centers and airports. These structural 

techniques are advantageous in building costs to span over great distances. 

Curved roofs of course have a number of important benefits, as well as they can be a 

superlative and long-lasting choice. That is where the attractiveness and price of the 

curved roof come into play. Balanced to the standard flat roof instatement, an arched 

roof can be far more durable, providing for superior charge for you. 

In structural design, it is needed to obtain a suitable form in a structure so that it can 

carry the required loads safely and profitably. Traditional approaches to the job of 

discovery such shapes for structures have been using experimental models or by 

intuition with experience.  

However, in many cases, the optimal size for structures is not obvious to experiments 

and experience. There is therefore, a required for best approaches, which submission 

a more public with reliable method for determining optimal size under static cases.  

Bernoulli, Lagrange and Navier are only a great scientist who searched for the “best” 

forms for structural elements to content the given strength needs. 

Optimization is an automated design procedure in which the computers are utilized 

to obtain the best results. The numerical methods of structural optimization with 

applications of computers automatically generate a near optimal design (converge to 

solve) in interactive manner. A program was modified and used to automate analysis 

and optimization of the structure written in FORTRAN language based Finite 

Element (FE) analysis and Genetic Algorithm (GA) optimization technique. After 
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that, this direction increased and became an engineering area recognized as structural 

optimization, which searches for determine the most inexpensive geometrical forms 

satisfying the limitations (e.g. stresses and deflections) required for the design. 

Nowadays computers are playing an important task in the analysis and design of such 

structures. In the past analysis and design were performed by manual calculations 

based on two dimension (2D) stress analysis which is time consuming and laborious. 

The high sophisticated software’s have been developed to automate calculations of 

member forces based on three dimension (3D) FE analyses. Such software’s find out 

critical member forces for a type of loading and a variety of possible curved roof 

structural combination, giving accurate results for analysis and design curved roof 

structures, are progressively used in the new built condition of the world in the final 

decades since they submission aerodynamically effective shapes as well as supply 

architects and designers with and substitute to regular rectangular structure types.  

There are many systems developed by many researchers used for automated design 

of structures. However, most of these systems have same problems due to their 

mathematical origin (most of them are linear programing techniques). They tend to 

deal with structural optimization as a problem in which the search space is endless, 

when it’s truly discontinuous. Only a small number of structural forms are available 

in the trade. 

Although some structural optimization methods can deal with discontinuous search 

spaces, they support a native lack of generality and hence, can’t be readily extended 

to different types of structures. The GA, for its part, is a problem independent. The 

code matured for this work can be reused to solve the unfinished framed structures 

(plane and space frames, plane grids and beams) among little mutation. Eventually, 

the GA has appearance similar to existing techniques, from time to time even 

surpassing them. In this thesis GA optimization techniques are used for the design of 

curved roof structures because GA gives yielding more realistic result when it is 

compared with linear programing methods. 

 

1.2 Objectives 

The ultimate motivation of this thesis is analysis and structural size optimization of 
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2D and 3D curved roofs structures applying optimization program combining FE 

analysis and GA optimization method. The aim of the structural size optimization is 

generally to obtain the minimum weight for the curved roofs; so that it can carry the 

imposed loads safely and economically. 

The specific objectives of this thesis is the linear elastic analysis of 2D and 3D 

curved roof structures which consists of both curved trusses and solid arches and also 

optimum design of the same mentioned structures when they subjects to static 

external loads. Here the optimization refers to minimization of total weight of curved 

roof structures such that they can resist applied forces (stress constraint) and don’t 

exceed certain deformations (displacement constraints). 

 

1.3 Curved Roof 

Structural design is a part of engineering that pacts with systems consisted of a set of 

structural members. These members may be described as either truss or framework 

elements, combined by pined or fixed joints. Truss and arch type curved roof 

structures will be examined in this thesis. 

Trusses: Engineering structures that are composed only of two-force members are 

called a truss structure. Trusses are triangular or pyramidal shapes that are used in the 

structure of buildings in order to make them more stable than structural components 

with 90 degree angles could. 

Arches: An arch is occasionally explained as a curved structural member spanning 

an opening with helping like a support for the loads above mentioned the opening. 

Naturally arches have many important applications in mechanical and civil 

engineering. 

 

1.4 Analysis 

The FE is a powerful numerical method for solving all problem types in engineering 

and mathematical physics. In this study FE method is used for analyzing of 2D and 

3D curved truss and solid arch roofing. The FE analysis of curved beam has been 

given significant attention by researchers in recent years mostly because it is a 

versatile method for solving structural and other mechanical problems [1]. All 
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numeric analyses are carried out in this research have existed behaved using the FE 

software program. 

 

1.5 Genetic Algorithm Optimization 

In this thesis GA is used for optimization of truss type curved roofs and solid arch 

roofing. The advantages of applying GA to optimized design of structures include 

discrete design variables, open format for constraint statements and multiple load 

cases. A GA does not require an explicit relationship between the objective function 

and the constraints. Instead, the objective function for a set of design variables is 

adjusted to reflect any violation of the constraints [2].  

 

1.6 Layout of the Thesis 

In present work main attention is focused on structure optimization of curved roof 

under static loading condition. To do so FORTRAN based analysis and optimization 

tools is employed. The main goal of the study is minimize the total weight of curved 

roof without causing a strength base failure. The organization of the study and the 

layout of the thesis are now pronounced: 

Chapter 2: Is the literature review in analysis as well as design optimization. 

Chapter 3: Deals with various characteristics of 2D and 3D curved roof trusses and 

solid arch roofings.  

Chapter 4: Illustrates the fundamental formulation for 2D and 3D static trusses and 

arches analysis methods. The matrix displacement approaches adopted are depicted. 

The primary assumption as well as matrix analysis is also presented. 

Chapter 5: Deals with various static analysis examples about curved roof structures. 

Chapter 6: Deals with various characteristics of the optimization process, involving 

the description with choice of the design variables as well as the GA method. 

Chapter 7: This chapter deals with numerical applications of GA during various 

examples about curved roof structure are premeditated and demonstrated. 
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Chapter 8: Finally in this section some short conclusions are demonstrated with 

each other with some proposals for future work. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

This literature is studied to have various ideas of the scientific researches about 

curved roof structures. It is a principal section of text that requires to review the 

important points of current knowledge, containing substantive findings as well as 

theoretical with methodological contribution to analysis and size optimization of the 

curved roof. 

Curved beam buildings have been applied in much aerospace, mechanical and civil 

engineering implementations such like tire dynamic, wire, turbo machinery blade, 

curved girder bridges, with stiffeners in aircraft buildings. The thin walled cross 

sections, such as channel, angel and I section, are attractive since they submission a 

high performance in relations of minimum weight for presumption strength [3]. 

Arch's structures supply inexpensive results for crossing great spans with bear higher 

loads for a presumption volume of material when correctly shaped, balanced with 

beams shorter cross parts can be used in arches, like the membrane forces are 

dominant [4]. 

Overall curve can be executed in two various paths depending on the jointing method 

working. In structures by node connections, the curvature is manufactured in the 

shape of cutting kinks at the member-node connections. Though, on the condition 

that the structure contains unbroken members, the members themselves will be 

curved. The action in the latest case is more difficult, similarly the members are bent 

with endless rather than horizontal with pin-ended [5]. 

 

2.2 Static Analysis of Curved Roofs 

FE methods are one of several approximate numerical techniques available for the 
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solution of engineering boundary value problems. Problems in the mechanics of 

materials often lead to equations of this type and FE methods have a number of 

advantages in handling them. The method is particularly well suited to problems with 

irregular geometries and boundary conditions and it can be implemented in general 

computer codes that can be used for many different problems [6]. 

FE methods for Timoshenko beam, circular arch and Mindlin Reissner plate 

problems were discussed by Cheng et al. [7].  

Engineers, executed mathematicians, with another researcher will certainly carry on 

building new implementations. For an extensive bibliography on the FE approach, 

refer to the work of, Clough [8] and Noor [9]. 

 

2.2.1 Trusses 

Skeletal structures can be analyzed by a variety of hand-oriented approaches of 

structural analysis taught in start mechanics of Material's courses: the displacement 

with force approaches. They can also be analyzed by the computer-oriented FE 

method. That versatility causes those constructions a good selection to show the 

transformation from the hand-calculation approaches taught in undergraduate 

courses, to the completely automated FE analysis processes available in commercial 

programs. 

The static analysis of trusses can be carried out surely, as well as the equations of 

even complex trusses can be collected in a matrix shape amenable to numerical 

solution. This access, from time to time named “matrix analysis,” supplied the base 

of early FE development. 

Detailed management of the matrix formulation for the analysis of linearly elastic 

trusses can be found in many textbooks such as Reddy [10], Bathe [11] and Kassimali 

[12]. 

FE codes are smaller hard than many of the remarks treating, in addition to 

application program packages demonstrate on modern microcomputers. Even so, 

they are difficult enough that mostly users do not find it effective in a schedule their 

own code. A sum of rewritten commercial codes is valid, indicating a broad price 
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variety with compatible through machines from, microcomputers to supercomputers 

[13]. 

Standard FE matrix displacement methods are used in this thesis for 2D and 3D static 

analysis, such as those mentioned in Chandrupatla and Belegundu [14]. 

 

2.2.2 Arches 

Many engineering constructions can be modeled like beam elements, because beams 

are the easiest as well as the majority usually used structural elements. Static analysis 

of naturally curved arch has got many significant implementations in mechanical as 

well as civil engineering. The problem is directly required to be thoroughly studied 

in applied science structures, especially in roof structures connected with curved 

beams.  

The problem is immediately required to be deeply studied in engineering 

constructions, especially in roof structures associated with curved beams. The 

analysis of a curved beam is important also contains obtained considerable attention 

since the end of the nineteenth century. 

Various scientists have tried to solve the arch problem by different methods. It seems 

that FE has been the major tool in this research. If the behavior of the curved beam is 

non-planar, then a usual beam FE model becomes very complicated with many 

degrees of freedom. In these cases, it is evident that a model, which, with a relatively 

few degrees of freedom, offers a good description of the behavior of the curved 

beam, is needed.  

These analytical solutions widely need the solution of regular or partial differential 

equations that, sense of the difficult material properties, geometries, loadings and are 

not generally available. The FE formulation of the problem results in a technique of 

simultaneous algebraic equations for a result, rather than needing the solution of 

differential equations. Briefly, the solution to constructional problems normally 

relates to determining the displacements at each intersection also the stresses inside 

each member construction up to the building that is subjected to apply loads [15].  

Closed form solutions for classical arch geometries under various boundary 
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conditions have been gotten to institute rough guidelines for analysis of complicated 

arch structures various structural analysis processes established on Rayleigh-Ritz; FE 

as well as dissimilar quadrature element approaches has also been used by Tayşi et. 

al. [16].  

There exists greatly literature on structural analysis of curved beam elements, Love 

[17], Parcel and Moorman [18], Washizu [19], Papangelis and Trahair [20], 

Rajasekaran and Padmanabhan [21], Murin and Kutis [22].  

A number of curved beam elements have been advanced. In mainly of the earliest 

elements, the result of shear deformation was not pondered. The elements were 

advanced by applying finite-strain beam assumption of Reissner and geometrically 

exact beam theory.  

Through the progression of computer technology with some programs, the FE has 

been used greatly to solve for further public geometry, also a number of curved 

elements have been advanced. If the action of the arch is non-planar, usual FE or 

finite dissimilarity model changes into very difficult [23]. 

 

2.3 Optimization Algorithms  

The creation of optimization systems can be found over the years of Newton, 

Lagrange and Cauchy. The advancement of differential calculus systems of 

optimization was practicable since of the donations of Newton with Leibnitz to 

calculus. The basis of calculus of varieties, which deals through the minimization of 

functional, was established by Bernoulli, Euler, Lagrange and Weirstrass [24]. 

Spectacular forward movements followed, manufacturing a big literature on 

optimization methods. This progression also followed upon the appearance of some 

well-defined modern areas in optimization assumption. There is no unique approach 

valid for solving all optimization problems effectively. So a sum of optimization 

approaches has existed advanced for solving various kinds of optimization problems.  

In general, optimization methods used in constructional engineering design can be 

classified into four different approaches: (1) mathematical programming; (2) 

optimality criteria methods; (3) heuristic search methods (GA); and (4) evolution 
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strategies. These approaches as well as the literature reviews are demonstrated in the 

following. Between some recommendations on this subject, some of them are 

informed in this thesis.  

The optimum searching for approaches are also recognized as arithmetical 

programming methods with is widely studied like a section of operation's study. 

Operation's investigation is a part of mathematics concerned through the 

implementation of scientific approaches as well as techniques to decision production 

problems in addition to with demonstrating the best otherwise optimal solutions.  

Stochastic operation systems can be used to analyze problems specified by a set of 

random variables having recognized probability distributions. Statistical approaches 

empower one to analyze the experimental data plus construct empirical models to get 

the majority exact performance of the physical situation, [24].  

Many approaches with algorithms have existed advanced for optimum design of 

structural methods in the final three decades. For the most part, of the approaches 

deal through continuous design variables as well as application arithmetical 

programming systems. In the majority of practical design problems, the design 

variables are discontinuous. This is due to the obtain ability of standard sizes plus 

their restrictions for construction in addition to construction reasons. A sum of 

approaches was announced for optimum deign of discontinuous structural systems, 

Templeman and Yates [25] and Zhu [26].  

 

2.3.1 Genetic algorithm 

GAs is one of the type search optimization that used for minimizing the objective 

function (the structure weight) and it is different from many algorithms of 

mathematical programming, is that they do not need the calculation of derivatives of 

the objective function and the constraints. It is search steps depends on the 

mechanics of natural genetics and selection. To represent a robust search mechanism 

it is working on the scheme of the artificial survival of the fittest with genetic 

operators founds from the nature. 

The initial work employing the GA was complete by developing state machines in 

the 1960s. The GA is the oldest also the majority common shape of evolutionary 
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computation. It obtains its action from ordinary evolution plus genetics, following 

Darwin’s great rules of development. This approach depends on random behavior, 

trial with error, as well as survival of the fittest to develop solutions to optimization 

problems. It obtains its strength from the actuality that a large category of problems 

can be driven to extremely excellent solutions at recombining sections of earlier 

good solutions. While engineers with designer's examination for modern 

optimization systems, they determine that the GA can present results not at any time 

before possible, [27].  

The principal characteristics of a GA are established on the principles of endurance 

of the fittest with adaptation. Since its establishment liked an intuitive idea, [28]. 

Many inventors have explored the applicability of GA as well as advanced many 

applicable supplements such as elitist GA. Gero, et al [29], improved augmented 

Lagrangian GA, Adeli and Cheng [30], hybrid algorithms of GA with fuzzy system. 

Tan, et al [31] and with applications of GA and neural network, Grierson and Hajela 

[32]. 

Best design applying GA has been manufactured for various structural elements such 

like beams and grillages. Baronet  et al [33] dealt with planar and space trusses, 

Erbatur et al [34], Sarma and Adeli [35], though, extremely few implementations 

develop to have been demonstrated for shape optimization of arch structures, 

Vanderplaats and Han [36]. 

One characteristic of the GA that categorizes it from another optimization algorithm 

such like gradient-based mathematical programming otherwise simulated annealing 

is that the GA repeats on population of designs rather than on an individual design. 

This graces a present to the GA through the potential for converging to a multiplicity 

of good designs in the last generation [37].  

 

2.3.2 Optimization of curved roof structures 

In Saka and Kameshki [38], an algorithm is demonstrated for the best design of 3D 

strictly jointed frames, which obtains into account the nonlinear response due to the 

import of axial forces in members.  
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The problem of maximization of the critical load or else boundary point of 

changeableness of skin deep space truss of constant volume was presented in [39].  

Pyrz [40] was discussed a discontinuous optimization of trusses considering stability 

restrictions and demonstrated examples of skin deep truss constructions when snap-

through can happen.  

Suleman and Sedaghati [41] were presented a structural optimization algorithm 

which is advanced for truss as well as beam structures bearing large deflections 

versus instability. 

Saka [42] was presented an algorithm which takes into account the nonlinear 

response to the dome structure due to effect of axial forces on the flexural stiffness of 

members, in addition to the best solution to the design problem is gotten applying a 

coupled GA. 

A method for the optimization of stability-constrained geometrically nonlinear 

shallow trusses through snap-trough habits is exhibited applying the arc length 

approach with a strain energy density approach with a discontinuous formulation, 

[43]. 

Degertekin et al [44] demonstrated an algorithm for the perfect design of 

geometrically nonlinear steel space frames applying tabu search plus GA. 
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CHAPTER 3 

CURVED ROOF STRUCTURES 

3.1 Introduction  

There are many types of roofs and for many ages, the majority of roofs were flat. 

However, in the previous few years advancements in roofing engineering have led 

more and more householders, business owners as well as developers to think over the 

induction of a curved roof. 

Curved steel structures are often designed to provide the users of the structure with 

natural light and a sense of capaciousness and grandeur in public facilities such as air 

ports, stations, shopping malls and leisure centers. This has led to forms of structures 

in which relatively light curved steel trusses or arched frames support substantial 

areas of glazing. Even with clad structures, exposing the arching steelwork to view 

can enhance the sense of internal space.  

A lot of researchers have existed planned about curved structures, which examination 

their static result, aesthetic view, transporting the load, which materials may be used, 

etc. 

The addition efficiency and user-friendliness of new computer engineering coupled 

with validity and versatility of lately advanced algorithms in calculative mechanics 

have begun up the probabilities of discovery efficient shapes of many structural 

kinds in a productive and reliable manner. In the field of optimum design of 

structures, the principal emphasis and the majority important advance has existed 

with the volume optimization of stress with arch problems. 

Overall curve can be executed in two various paths depending on the jointing method 

working. In structures by node connections, the curvature is manufactured in the 

shape of cutting kinks at the member-node connections. Though, on the condition 

that the structure contains unbroken members, the members themselves will be 
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curved. The action in the latest case is more difficult, similarly the members are bent 

with endless rather than horizontal with pin-ended, [5]. 

 

3.2 Advantages of Curved Roofs 

There are several advantages of curved roofs and some of them are given below: 

Curved steel roofing are frequently designed to supply the users of the structure with 

ordinary light with a sense of capaciousness as well as grandness in public facilities 

such as stations, buying malls, leisure centers and airports. These structural 

techniques are advantageous in building costs to span over great distances. 

Curved roofs of course have a number of important benefits, as well as they can be a 

superlative and long-lasting choice. That is where the attractiveness and price of the 

curved roof come into play. Balanced to the standard flat roof instatement, an arched 

roof can be far more durable, providing for superior charge for you. Aesthetics, long 

span they submission aerodynamically effective shapes as well as supply architects 

and designers with and substitute to regular rectangular structure types. 

Wide-span space buildings have existed more and more popular in coating great 

unclosed areas with several intermediary supports. Their famous applications subsist 

in all complete the world municipal halls, covering stadiums, show centers with 

many another structures. These buildings are usually curved in one or two directions. 

When curved roof installation compared with the flat roof installation, curved roof 

can be extremely stronger, given for excellent protection for you. 

In addition, a well arranged curved roof induction can supply a greatly higher degree 

of protection versus weather damage, also more and more significant feature to 

appear for any roof. 

Due to the dissimilarities in design, a curved roof is frequently best able to resist high 

winds as well as drive rain than a comparable flat roof. 

Even for industrial and distribution establishments, curved roofs can supply and 

productive results. Curved roofs avoid the aura of austerity that is often associated 

with “industrial warehouse” kind buildings with may supply a result that is appealing 
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to local devisers. Adverse to some hopes, curved steel constructions require not be 

any further costly than another framed structures. 

 

3.3 Disadvantage of Curved Roof 

Curved roofs present a singular challenge. The roof inclines changes from dead flat 

at the highest point. Multiple adjacent, curved roofs produce great valleys where 

snow, water and ice can filter causing long-term roof, wall with structural problems. 

These troubles can be costly and disruptive to correct [45]. 

The extra payment of curving steelwork is generally small in connection to the all-

inclusive cost of the structure and can often be offsetted at stores in ridge line detail 

as well as flashing costs and for spans nether nearly 25 m, by removing the require 

for a peak splice. Roof facing on curved roof beams sometimes does not require to be 

pre-curved, since many panels can go after the curvature of the roof during fixing 

without any specific manipulation. 

A curved exterior appearance can be manufactured by employing faceted horizontal 

members, in addition to by changing depth junctions to the secondary members. 

However, the extra fabrication payments for the faceted solution usually denote that 

a curved solution is further cost-effective in addition to the decorative considerations, 

[46]. 

 

3.4 History of Steel Curved Roof  

Although curved iron and steel structures have been in creation since the mid-19th 

Century, to time there has been short guidance covering the design of curved steel 

elements. 

Before steel came into general use during the latter part of the 19th Century, curved 

structures were frequently built from metal, which was thrown in the liquid shape in 

an arched profile or constructed up from wrought-iron parts, either with formed web 

plates otherwise in the shape of grid trusses. Since wrought iron was extremely 

flexible, blacksmiths may curve little parts by hot forging, [46]. 

Throughout the time starting 1930 to 1950, short curved steel parts were as well as 



16 

used in proportionately ordinary building structures. Nissen huts, Dutch barns and 

aircraft hangers generally contained a supporting structure of curved steel corners, 

small rolled I section or tees. 

Apart from the express applies referred to previous, very several building structures 

applying arched steel were built up to the time of the late 1970s. However, through 

the final two groups of ten of the 20th Century, the request for curved steel members 

in building structures added to significantly. 

 

3.5 Types of Curved Roof 

There are two types of curved roof structures according to their shapes, one is 

concave and another is convex, as shown in the Figure 3.1. 

 

 
 

Figure 3.1 Curved beams (concave &convex) shape 

 

There are several possibilities of roof geometries frequently depending also on 

architectural considerations. In this thesis 2D and 3D trusses and solid arch roofing 

considered. 

 

3.5.1 Two and three dimensional curved truss structures 

Trusses determine great application in new erection, for instance, as towers, roofs, 

bridges, etc. In computation to their practical significance like useful structures, truss 

elements have a dimensional ease that will assist us elongate further the ideas of 

mechanics announced in the modules dealing with the uniaxial response, [47]. 
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Trusses, whether 2D or 3D belong to the department of skeletal structures. These 

structures include of extended structural elements named members, joined at joints. 

One of the simplest ways to distinguish various truss kinds is to determine whether 

they exist in a singular plane (2D) or multiple planes (3D).  

Plane trusses (2D), are frequently used in building, especially for roofing of 

residential with trading buildings, as well as in short-span bridges. A plane truss is 

idealized like a method of members lying on a plane and connected at hinged joints. 

As shown in Figure 3.2. All directed forces are adopted to act in the plane of the 

structure, in addition to all exterior pairs have their moment transmitters normal to 

the plane. The loads may include of concentrated forces directed to the joints, as well 

as loads that act as the members themselves. For aims of analysis, the latest loads 

may be put back by statically equivalent loads acting on the connections, [48]. 

 

 
 

Figure 3.2 Hemispherical shape with 2D truss beams 

 

Space truss (3D) a space truss is like to a plane truss other than that the members 

may have any instructions in space. The forces acting on a space truss may be in 

uncontrolled directions; however, any pair acting as a member must have its moment 

transmitter vertical through the axis of the member. The cause for this condition is 

that a truss member is unable to supporting a turning moment [49].A 3D dome over 

exhibition hall is shown in Figure 3.3. 
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Figure 3.3 3D dome over exhibition hall 

 

A 3D truss component contains pair local degrees of freedom with six global degrees 

of freedom and three translational degrees of freedom at each end of the member. 

Figure 3.4 indicates a 3D truss component with its local and global coordinate 

coordination’s, grades of freedom, plus permissible forces. 

 

 
 

Figure 3.4.Truss element in local and global coordinate systems 

 

3.5.2 Solid arch roofing 

The arch is an unbelievable architectural invention, dating backward to old times. 

However, yet in large use today, as, up to the time of the 19th century; it was the just 

known approach for roofing a structure without the application of beams. 

Arch's structures supply inexpensive results for crossing great spans with bear higher 

loads for a presumption volume of material when correctly shaped, balanced with 
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beams shorter cross parts can be used in arches, like the membrane forces are 

dominant, [4]. 

An arch is occasionally explained as a curved structural member spanning an 

opening with helping like a support for the loads abovementioned the opening. This 

definition leaves out an explanation of what kind of constructional component, a 

moment as well as the axial force component, constructs up the arch. Typical metal 

arch bridge on Guilford Avenue in Baltimore is shown in Figure 3.5. 

 

 
 

Figure 3.5 Typical metal arch bridge on Guilford Avenue in Baltimore 

 

The actual or perfect arch, theoretically, is one in which just a compressive force act 

by the centroid of each member of the arch.  

Many engineering constructions can be modeled like beam elements, because beams 

are the easiest as well as the majority usually used structural elements. For that 

reason, static analysis of the naturally arched beam contains many significant 

implementations in mechanical plus civil engineering. 

The problem is immediately required to be deeply studied in engineering 

constructions, especially in roof structures associated with curved beams. The 

analysis of a curved beam is important also contains obtained considerable attention 



20 

since the end of the nineteenth century. 

Curved beam buildings have been apply in much aerospace, mechanical, with civil 

engineering implementations such like tire dynamic, wire, turbo machinery blade, 

curved girder bridges, with stiffeners in aircraft buildings. The thin walled cross-

sections, such as channel, angel and I section, are attractive since they submission a 

high performance in relations of minimum weight for presumption strength [3]. 

Curved beams are further powerful in transfer of loads than horizontal beams since 

the move is infected by bending, shear also membrane activity. Some of the 

constructions such like arch bridges with arches are sculptural applying curved beam 

elements. 

 

3.5.2.1 Additional stiffness requirements 

Members curved in elevation are generally needed to function, at least in the region, 

like arches. Consequentially the deflecting moment in the member is smaller than 

that which would appear if the member enacted like a straight beam. It is very 

significant that the abutment rigidity indicated in Figure 3.6 is proportionately high. 

If this is not completed, the abutments will widen (forced separately by the 

horizontal response of the arch) also the head against the arch will drop importantly, 

as indicated in Figure 3.7. 

 

 
 

Figure 3.6.Curved member acting like an arch 

 

The result of this widen is that the axial compression, with the turning over moment 

on the arch must addition to withstand the load, which might over-stress the arch 
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member. In the inordinate, the expanding deflection of the arch head will reason 

expanding axial compression, which will cause growing to extend of the abutments, 

which might reason the arch to failure entirely. 

 

 
 

Figure 3.7 Reduction of arch height under load 

 

Under axial compression, the member will shorten, which also reduces the height of 

the arch, again leading towards collapse unless the effect is accounted for in design. 

Both effects are more critical in arches with low rises compared with their span. 

In the extreme, a flat arch with very low support stiffness behaves as a simply 

supported beam. This reduction in the height of the arch can be considered in two 

different ways. 

The first and simplest approach is to consider how the reduction in height must be 

limited to ensure that normal first-order (small deflection) frame analysis is 

appropriate. 

The second more complicated, approach is to find the actual deflection and axial 

compression resulting from the increasing spread of the abutments as the arch height 

reduces. This requires a second-order (large deflection) analysis. This publication 

considers only the first approach that of defining a limit such that first-order analysis 

is appropriate. 

The simple check of arch deflection also assumes that a reasonable estimate of 

support stiffness has been used in the analysis, which is matched in the real structure. 

The importance of support stiffness increases as the rise: span ratio decreases. 

Where the apex deflection is greater than 2.5% of the height of the arch, the increase 

in the arch force and the coincident bending moment should be considered. 
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3.6 Load Cases 

The critical load case for an arch is not always easy to identify. It is important that 

the different cases are considered carefully, taking into account both the loading and 

the horizontal stiffness of the abutments. In many cases, the load case with maximum 

bending moment is the critical load case. To allow rapid initial sizing, the calculation 

of approximate maximum axial forces and moments is demonstrated below. 

 

3.6.1 Maximum axial compression 

The maximum axial compression in an arch normally occurs when there is a 

uniformly distributed load across the full span, as shown in Figure 3.8. If the arch is 

parabolic in elevation, with abutments “fixed” in position, the horizontal component, 

Fh, of the compressive force in the arch is approximately. 

   
                                                 

              
 

   

  
                                   (3.1) 

 
 

Figure 3.8 Parabolic arch under full span uniformly distributed load 

 

The maximum compressive force occurs at the springing of the arch and is the vector 

sum of the horizontal component, Fh, of the compressive force and the vertical 

reaction, Fv: 

                                             
                                                                      (3.2) 

Where Fv= wL/2 for the simplified loading shown in Figure 3.8. 
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3.6.2 Maximum bending for gravity loads 

The maximum bending moment from gravity loads normally occurs from partial 

loading, as shown in Figure 3.9, in which the arch is loaded over only half of the 

span. 

 

 

 

Figure 3.9 Parabolic arches with half span loading 

The half span loading of w/unit length can be expressed as the sum of full span 

loading of (w/2)/unit length plus asymmetric loading of downward and upward loads 

of (w/2)/unit length. By considering the applied loads in this way, an approximate 

axial load and bending moment may be calculated for initial sizing. The compressive 

force in the arch is caused by the full-span component of the loading. The bending 

moment on a simply supported beam is shown in Figure 3.10. 

 

 
 

Figure 3.10 Bending moment diagram 
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Therefore, the horizontal component, Fh, of the compressive force in the arch is 

approximately: 

   
                                                 

              
                        (3.3) 

The bending moment in the arch is approximately equal to the bending moment from 

the asymmetric component of the loads, as shown in Figure 3.10. This is at its 

maximum at the quarter points. 

Therefore bending moment, M= wL
2
/64.  

 

3.6.3 Maximum bending from wind loads 

Wind loads on arches are asymmetrical when the wind blows along the span of the 

arch. A possible wind pressure diagram is shown in Figure 3.11. 

 

 
 

Figure 3.11 Possible wind pressure diagram 

 

The point of change from pressure to suction is likely to be uncertain, so more than 

one case, within the envelope of cases shown in Figure 3.12, may need to be 

considered in sensitive designs. 
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Figure 3.12 Possible envelope of wind pressure 

 

As a guide to estimating the magnitude of the bending moments induced, a load case 

with equal pressure and suction is shown in Figure 3.13. 

 

 
 

Figure 3.13 Approximate bending moment from wind loads from one direction 

 

The length of the arch around its curve is taken as “L”, so the approximate bending 

moment is given by: M=WL
2
/32. 

 



26 

CHAPTER 4 

STATIC ANALYSES OF CURVED ROOFS 

4.1 Introduction 

Although the subject of truss and arch roof analysis with optimization had been 

conversed frequently complete current years, this topic was contained to show the 

validity of an analysis program, which is used in the GA optimization program. 

In this section, static matrix displacement analysis and FE methods are explained. 

For truss structures matrix displacement method and for arch structures FE method 

are used, each analysis program was examined versus known basis solutions, other 

literature and commercial package programs.  

FE has become ordinary analyses method in current year. Numerical resolutions to 

be even very complicated structures can at present be analysis ordinarily using FE 

and the system is so significant that in spite of introductory treatments of engineers 

of materials such as these faculties should outline its main features, [6]. 

Most FE computer software is written in FORTRAN and in this thesis FORTRAN 

codes are also used.  

A number of rewritten commercial codes are valid, denoting a broad price range and 

compatible with machines from microcomputers to supercomputers, [13]. Even so, 

users with specialized require should not be unavoidably wary far from code 

advancement; also may find the code origins available in such topics as that by, [49] 

to be a useful beginning point. 

 

4.2 Steps of Finite Element Analysis 

a. Preprocessing: The user concepts a model of the section to be broke down in 

which the geometry is segmented into a number of unattached sub elements, 

combined at discrete points named nodes. Sure of these intersections will have fixed 
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displacements, also others will have recommended loads. These ideals can be very 

time consuming.  

b. Analysis: Trade codes vie accompanied by one another to have the majority user-

friendly graphic "preprocessor” to aid in this very tedious chore. Some of these 

preprocessors can overlay a mesh on a pre-existing CAD file, so that FE can be 

finished easily as section of the computerized drafting and design procedure. 

The dataset arranged at the preprocessor is second-hand like input to the FE codes 

itself, which concepts and solves a method of linear otherwise nonlinear algebraic 

equations. 

Kij dj = fi                                                (4.1) 

c.Postprocessing: In the earliest years of FE, the user would pore between reams of 

numbers whipped up by the code, listing displacements with stresses at 

discontinuous locations inside the model. It is simple to miss consequential trends 

and cool positions this way and new codes use graphical presentations to help in 

imagining the results. A characteristic postprocessor show overlay colored characters 

appearing for stress rungs on the model, presentation a full-field picture like to that of 

picture elastic or more trial results. 

 

4.3 Stiffness Matrix Formulation  

Stiffness matrix formulation is done by the principals of virtual work which is the 

area under the force-deflection curve and according linear behavior, displacements 

and forces are proportional by deflection, where single forces varies linearly with 

displacement from zero to its final intensity F1 as shown in the Figure 4.1 [50]. 
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Figure 4.1 Force deflection relations 

 

From Figure 4.1 by calculating the area under the triangle to represent the work done 

by F1 can be written; 

  
     

 
                                                                                               (4.2) 

Matrix approaches are a required implement used in the FE approach for objectives 

of simplifying the formulation of the element stiffness equations, for aims of long 

hand solutions of difference problems, also, most significant, for use in scheduling 

the systems for high-speed electronic digital computers. Therefore, matrix comment 

denotes an uncomplicated and easy to use comment for writing as well as solving 

groups of simultaneous algebraic equations. 

A matrix is a rectangular array of amounts arranged in rows with column that is 

adapted used like and helps in squeezing with solving a method of algebraic 

equations. Force vector (F1x; F1y; F1z; F2x; F2y; F2z; . . . ; Fnx; Fny; Fnz) acting by the 

different nodes or points (1; 2; . . . ; n) on a structure in addition to the analogous set 

of nodal displacements (d1x; d1y; d1z; d2x; d2y; d2z; . . . ; dnx; dny; dnz) can both be 

squeezed like matrices: 
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                                          (4.3) 

 

4.4 Matrix Analysis of Trusses 

Static analysis of trusses can be carried out accurately; also the equations of even 

complex trusses can be collected in a matrix shape amenable to numeric solution. 

This approximation, now and then named “matrix analysis”, provided the basis of 

early FE advancement. 

By considering the stiffness of each truss element one at a time matrix analysis of 

trusses acts and after that applying these stiffnesses by the displacements of the 

joints, generally named “nodes” in FE to determine the forces that are set up in the 

truss. Afterwards noting that the force that is externally contributed by each element 

to a node must equal the sum of force that is applied to that node, we can assemble a 

sequence. Of linear algebraical equations in which the applied nodal forces are 

known amounts, also the nodal displacements are the unknowns. These equations are 

comfortably written in matrix shape, which gives the system its name. 
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                                                   (4.4)

 

Here Fi and dj indicate the force at the i
th

 node and the deflection at the j
th

 node 

(these would actually be vector quantities, with subcomponents along each 

coordinate axis). The Kij is global stiffness matrix, with the ij component. The matrix 

equations can be abbreviated as 

Kij dj = Fi                                                        (4.5) 
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4.4.1 Stiffness matrix for a 2D truss element 

As a first step in advancing a set of matrix equations that define truss methods, we 

require a connection among the forces as well as displacements at each end of an 

individual truss element. In Figure 4.2 consider 2D trusses element angle  is 

measured positive in the counter clockwise direction as of the +x axis. 

 

 
 

Figure 4.2 Global and local coordinates systems for a 2D truss element 

 

The vector v has components (vx, vy) in the global coordinate system and (  x,   y) in 

the local coordinate system, from geometry. 

 

                                           (4.6) 

or in matrix form 

                                           (4.7) 

or 

                                                                                                                                (4.8) 

Where T is transformation matrix, l is cos and m is sin 

                                           (4.9) 
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                                       (4.10) 

 

For the two-node 2D truss element, the relationship between local and global 

displacement is given in Figure 4.3. 

 

 
(a)                                                              (b) 

 

Figure 4.3 2D truss element relationship between local and global displacement 

 

At node 1 

 (4.11) 

At node 2 

                                  (4.12) 

Putting these together 

dTd̂                                                                 (4.13) 
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                                                              (4.15) 
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For the two-node 2D truss element, the relationship between local and global force is 

given in Figure below. 

 

 

 

 

 

 

 

(a)                                                            (b) 

 

Figure 4.4 2D truss elements, the relationship between local and global force 

 

At node 1 

                                                   (4.16) 

  

At node 2  

                                                              (4.17) 

Putting these together 

fTf̂                                                                 (4.18)  
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Putting all the pieces together to obtain global stiffness matrix for 2D truss element 

 fTf̂                                                                            (4.22) 

 

                                         dTd̂                                                           (4.23) 

 

                                              (4.24) 

 

The desired relationship is 
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The element stiffness matrix in the global coordinate system. 
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Where 

                                            (4.30) 

 

For computation of element stress, strain and tension in 2D trusse element. 

For element strain  ε  
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For element stress   

                                                                                                                (4.32) 

 

For element tension force 

                                 (4.33) 

 

4.4.2 Stiffness matrix for a 3D truss element 

Figure 4.5 indicates a 3D truss element. Employing the similarly ideas as those 

characterized in section 4.4.1 it can be easily exhibited that the element stiffness 

matrices for a 3D truss element. 

 

 
 

Figure 4.5 Bar in 3D space 
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                                                (4.35) 

l1, m1 and n1 are the direction cosines of x^ 

Where  

                                                         (4.36)  

 

In local coordinate system 

 

 

(4.37) 

 

 

Transformation matrix T relating the local and global displacement and load vectors 

of the truss element. 

dTd̂                                                                (4.38) 

                                                    fTf̂                                                                 (4.39) 

                                                    (4.40) 

 

Element stiffness matrix in global coordinates. 
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4.5 FE Analysis of Solid Arch Structures 

Consider the Mindlin-Reissner (MR) curved beam element shown in Figure 4.6. The 

displacement components u  and w , are associated with movements in   and n  

directions respectively, expressed in terms of axes which are tangential and normal to 

the arch, may be written in terms of global displacements u and w in the x and y 

directions as 
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Figure 4.6 Definition of curved Mindlin-Reissner543 arch FE 

 

 

 sincos wuu   

 cossin wuw                                           (4.43) 

Where   is shown in Figure 4.6. The radius of curvature R may be obtained from 

the expression. 
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Rd

d 1





                                                         (4.44) 

 

The total potential energy for a typical MR curved beam element resting on elastic 

Winkler type foundation of modulus k shown in Figure 4.6 is given in terms of the 

global displacements u and w and rotation   of the mid surface normal in the n  

plane by expression. 
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Where the membrane (axial) strain is given by the expression 

R

w

d

du
m




                                                            (4.46) 

or re-writing in terms of the global displacements 

 sincos
 d

dw

d

du
m                                              (4.47) 

The bending (flexural) strain or curvature may be written as 

d

d
b


                                                             (4.48) 

and the shear strain is given as  

R

u

d

dw
s




                                                   (4.49) 

or 

                      cossin
 d

dw

d

du
s                                          (4.50) 

Also, note that the membrane, bending and shear rigidities have the form 

EADm                 EIDb  ;               GADs                       (4.51) 
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Where E is the elastic modulus, A is the cross-sectional area, I, is the moment of 

inertia, 

G is the shear modulus and  is the shear modification factor. 

Note that the displacement field vector u has the form 

 ,,  wuu                                                   (4.52) 

and the corresponding distributed loading q may be written as 

  T

wu qqq ,,q                                              (4.53) 

In which the distributed forces are qu and qw and the distributed couples q . 

The loading in Eq (4.45) consists of a distributed pressure loading q, as well as 

couples M, axial forces N or lateral forces Q applied at   . Note that u , w  and  

  are the corresponding displacement and rotation values at   .The detailed 

definition about FE analysis of solid arch roof structure are given [51]. 
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CHAPTER 5 

ANALYSIS EXAMPLES 

5.1 Static Analysis of 2D and 3D Truss 

To perform the previous formulation of the stiffness matrix which is coded in 

FORTRAN, several examples are considered. FE model can be successfully used for 

the static analysis of the structures. Analysis is done by the FE method coded 

program for analysis of 2D and 3D curved truss roofing, results are compared with 

source program (SAP2000). 

 

5.1.1 2D curved truss with 5.75 m height 

This example consists of curved truss with 20 m span length and maximum height at 

the center 5.75 m with 71 elements and 37 joints as shown in Figure 5.1. The 

structure is loaded with a point load of 10 kN on all upper joints in the Z direction as 

shown in the Figure 5.2. The members of the structure are divided into 3 groups; first 

group is bottom chord, second group is top chord and third group is diagonals. Each 

group has same cross sectional area, cross-sectional areas for first group are 

A1=0.000645 m
2
, second group are A2=0.0008973 m

2
 and third group are 

A3=0.00177 m
2
. Material properties are: Young’s modulus, 8100.2 E  kN/m

2
 and 

material density,  76.9729 kN/m
3
. 

 

 
 

Figure 5.1 Dimensions of 2D curved truss with 5.75 m height 
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Figure 5.2 Loadings of 2D curved truss with 5.75 m height 

 

Discussion of the results: Analyses are done by the present study program and 

results are compared with source program (SAP2000). Table 5.1 shows the forces of 

some selected members. Maximum compression forces are occurs in members (2, 

16) and maximum tension forces are existing in members (41, 64). Table 5.2 shows 

the result of displacements in x and z directions. Maximum displacements occurred 

in joints (9, 10 and 28). The close agreement between results is seen. 

 

Table 5.1 Member forces of 2D curved truss with 5.75 m height 

Internal Force (kN) 

Element number SAP2000 Present work 

1 -51.032 -51.475 

2 -65.911 -66.740 

9 -7.034 -7.220 

10 -8.735 -8.935 

16 -65.911 -66.740 

17 -51.032 -51.475 

18 -28.583 -28.685 

19 -7.796 -7.785 

26 -54.763 -55.274 

27 -54.763 -55.274 

41 12.418 13.156 

64 12.418 13.156 
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Table 5.2 Displacements of 2D curved truss with 5.75 m height 

Displacements (m) 

Joint no 
X-direction Z-direction 

Present Sap2000 Present Sap2000 

2 -0.0004 0.0004 -0.0003 -0.0004 

3 -0.0004 -0.0005 -0.0013 -0.0013 

9 0.0000 -0.0001 -0.0068 -0.0069 

10 0.0000 -0.0001 -0.0068 -0.0069 

16 0.0004 0.0003 -0.0013 -0.0013 

17 0.0004 0.0003 -0.0003 -0.0004 

20 -0.0002 -0.0002 -0.0001 -0.0001 

21 -0.0002 -0.0003 -0.0002 -0.0002 

27 0.0004 0.0004 -0.0066 -0.0066 

28 0.0000 -0.0001 -0.0068 -0.0069 

29 -0.0004 -0.0005 -0.0066 -0.0066 

35 0.0002 0.0001 -0.0002 -0.0002 

36 0.0002 0.0001 -0.0001 -0.0001 

 

5.1.2 2D curved truss with 7.5 m height 

This example consists of curved truss with 30.0 m span length and maximum height 

at the center is 7.5 m, with 71 elements and 37 joints as shown in Figure 5.3. The 

structure is loaded with a point load of 10 kN on all upper joints in the Z direction as 

shown in Figure 5.4.  

The members of the structure are divided into 3 groups; first group is bottom chord, 

second group is top chord and third group is diagonals. Cross-sectional areas for first 

group and second group A1=A2=0.000958 m
2
 and third group A3=0.000693 m

2
. 

Material properties are: Young’s modulus, 8100.2 E  kN/m
2
 and material density, 

 76.9729 kN/m
3
. 
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Figure 5.3 Dimensions of 2D curved truss with 7.5 m height 

 

 
 

Figure 5.4 Loadings of 2D curved truss with 7.5 m height 

 

Discussion of the results: Table 5.3 shows the forces of some selected important 

members by using present study program and SAP2000. Maximum compression 

force which is similar to previous example occurred in members (2, 16) and 

maximum tension force occurred in members (41, 64). Table 5.4 is the result of 

displacements in x and z directions. Maximum displacement occurred in joints (9, 

10,). The close agreements between results are seen. 

 

Table 5.3 Member forces of 2D curved truss with 7.5 m height 

Internal Force (kN) 

Frame NO. Present work sap2000 

1 -70.34 -70.33 

2 -78.55 -78.50 

9 -21.90 -21.87 

10 -23.64 -23.61 
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16 -78.55 -78.50 

17 -70.34 -70.33 

18 -29.80 -29.77 

19 -15.10 -15.09 

26 -57.77 -57.76 

27 -57.77 -57.76 

41 9.09 9.03 

64 9.09 9.03 

 

Table 5.4 Displacements of 2D curved truss with 7.5 m height 

Displacement (m) 

Joint no. 
X-direction Z-direction 

Present Sap2000 Present Sap2000 

2 -0.00055 -0.00055 -0.00046 -0.00046 

3 -0.00054 -0.00054 -0.00184 -0.00184 

9 0.00011 0.00011 -0.01125 -0.01125 

10 -0.00011 -0.00011 -0.01125 -0.01125 

16 0.00054 0.00054 -0.00367 -0.00367 

17 0.00055 0.00055 -0.00184 -0.00184 

20 -0.00033 -0.00033 -0.00015 -0.00015 

21 -0.00037 -0.00037 -0.00037 -0.00037 

27 0.00064 0.00064 -0.01082 -0.01082 

28 0.00000 0.00000 -0.01122 -0.01122 

29 -0.00064 -0.00064 -0.01082 -0.01082 

35 0.00037 0.00037 -0.00037 -0.00037 

36 0.00033 0.00033 -0.00015 -0.00015 

 

5.1.3 2D curved truss with 288 inch height 

This example consists of curved truss with 2000 inch span length with 41 elements 

as shown in Figure 5.5. The geometry of this example is taken from [52]. The 

structure is loaded with a point load of 50 kip on all upper joints in the Z direction. 

The members of the structure are divided into 3 groups; first group from element (1-

22) and (40, 41), second group from element (26-36) and third group from element 

(23-25) and (37-39), each group have the same cross sectional area. Cross-sectional 
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areas for first group A1=75.6 in
2
, second group A2=14.7in

2
 and third group 

A3=20in
2
 Material properties are: Young’s modulus, 29000E  kip/in

2
 and material 

density,   2.386*10
-4

 kip/in
3
. 

 

 
 

Figure 5.5 2D curved truss with 288 inch height 

 

Discussion of the results: Analysis is done by the FE method coded program and 

source program (SAP2000). Table 5.5 shows the stress of some important selected 

members. Maximum tension stress occurs in elements (16, 26) and maximum 

compression stress occurs in elements (1, 10). Table 5.6 is the result of 

displacements in x and z directions. Maximum displacement occurs in joints (17, 6). 

The close agreements between results are seen. 

 

Table 5.5 Comparison of stress for 41 bar 2D curved truss with 288 inch height 

Stress (kips) 

Frame NO. SAP2000 Present work 

1 -6.4108 -6.3000 

2 4.4588 4.3000 

5 1.2089 1.2000 

6 -1.2089 -1.2000 

9 -4.4588 -4.3000 

10 -6.4108 -6.3000 

11 1.3440 1.3440 

12 -2.0228 -2.0228 

15 4.6429 4.6429 

16 6.2846 6.2846 

19 2.7162 2.7162 

26 6.2846 6.2846 
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Table 5.6 Displacements for 41 bar 2D curved truss with 288 inch height 

Displacements (in) 

Joint no 
X-direction 

U3 

Z-direction 

U3 Present Sap2000 Present Sap2000 

1 0.0000 0.0000 0.0000 0.0000 

2 -0.0169 -0.0169 -0.1120 -0.1120 

3 -0.0048 -0.0048 -0.3281 -0.3281 

4 0.0051 0.0051 -0.5414 -0.5414 

5 0.0061 0.0061 -0.7038 -0.7038 

6 0.0000 0.0000 -0.7800 -0.7800 

7 -0.0061 -0.0061 -0.7038 -0.7038 

8 -0.0051 -0.0051 -0.5414 -0.5414 

9 0.0048 0.0048 -0.3281 -0.3281 

10 0.0169 0.0169 -0.1120 -0.1120 

11 0.0000 0.0000 0.0000 0.0000 

12 0.0160 0.0160 -0.0067 -0.0067 

13 0.0380 0.0390 -0.1400 -0.1400 

14 0.0560 0.0560 -0.3400 -0.3400 

15 0.0560 0.0550 -0.5500 -0.5500 

16 0.0341 0.0340 -0.7000 -0.7000 

17 0.0000 0.0000 -0.7800 -0.7800 

18 -0.0340 -0.0340 -0.7000 -0.7000 

19 -0.0560 -0.0550 -0.5500 -0.5500 

20 -0.0560 -0.0560 -0.3400 -0.3400 

21 -0.0380 -0.0390 -0.1400 -0.1400 

22 -0.0160 -0.0160 -0.0067 -0.0067 

 

5.1.4 3D dome  

This example consists of space dome truss with 120-bars and 49 joints, dimensions 

of dome are shown in Figure 5.6 [53]. The members are collected into seven 

different groups. The truss joints are subjected to vertical loading except of supported 

joints. These are taken as 13.49 kips at node 1, 6.744 kips from nodes 2 to 14 and 

2.248 kips at rest of the nodes, the dome span and total height shown in the Figure 

5.7. 

Used material properties are: density,  29x10
-4

 kip/in
3
, Young’s modulus 
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29000E  kip/in
2
. Cross-sectional areas for first group A1= 6.11 in

2
, second and 

third group A2=A3= 2.117 in
2
, forth group A4= 2.71 in

2
, fifth group A5= 1.51 in

2
, 

sixth group A6= 5.61 in
2
 and seventh group A7= 4.41 in

2
.  

 

 
 

Figure 5.6 Top view of 3D dome  

 

 
 

Figure 5.7 Heights of 3D dome 
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Discussion of the results: Analysis is done and Table 5.7 shows the stress of 

members by using present study program and SAP2000. Maximum compression 

stress occurred in second group. Table 5.8 is the result of displacements in x, y and z 

directions. Maximum displacement occurred in joints (17). The close agreement 

between results is seen. 

 

Table 5.7 Comparison of stress for 120 bar 3D dome with 275.59 inch height 

Stress kip/in
2
 

GROUP NO. Present Sap2000 

1 -1.160 -1.130 

2 -4.720 -4.820 

3 -1.950 -1.830 

4 -2.290 -2.230 

5 -2.530 -2.530 

6 -1.250 -1.290 

7 -1.940 -1.910 

 

Table 5.8 Displacements for 3D dome with 275.59 in height 

Displacement (in) 

Joint no. 
X-direction Y-direction Z-direction 

Present Sap2000 Present Sap2000 Present Sap2000 

1 0.0000 0.0000 0.0000 -0.0002 0.0998 0.0947 

2 -0.0432 -0.0440 0.0000 -0.0001 -0.0985 -0.1032 

3 -0.0374 -0.0381 -0.0216 -0.0221 -0.0983 -0.1031 

4 -0.0216 -0.0220 -0.0374 -0.0382 -0.0983 -0.1030 

5 0.0000 0.0000 -0.0433 -0.0441 -0.0985 -0.1030 

6 0.0216 0.0220 -0.0374 -0.0382 -0.0984 -0.1031 

7 0.0374 0.0381 -0.0216 -0.0221 -0.0984 -0.1032 

8 0.0432 0.0440 0.0000 -0.0001 -0.0985 -0.1034 

9 0.0374 0.0381 0.0216 0.0219 -0.0985 -0.1036 

10 0.0216 0.0220 0.0374 0.0380 -0.0985 -0.1036 

11 0.0000 0.0000 0.0432 0.0439 -0.0985 -0.1036 

12 -0.0216 -0.0221 0.0374 0.0380 -0.0984 -0.1036 

17 -0.0542 -0.0518 -0.0542 -0.0518 -0.1286 -0.1252 
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5.1.5 3D curved truss with 7.6 m height 

This example consists of 3D curved truss with 30 m span length and maximum 

height at the center 7.6 m, for modeling 138 elements and 56 joints is used as shown 

in Figure 5.8. The structure is loaded with a point load of 20 kN on all upper joints in 

Z direction. The members of the structure are divided into 3 groups; first group is 

bottom chord and top chord, second group is diagonal chord and elements between 

upper chords are the third group. Cross-sectional areas for first and second group 

A1=A2=0.000958 m
2 and third group A3=0.000693 m

2
 Material properties are: 

Young’s modulus, 8100.2 E  kN/m
2
 and material density,  76.9729 kN/m

3
. 

 

 
 

Figure 5.8 3D curved truss with 7.6 m height 

 

Discussion of the results: Analysis is done by the FE method coded program and 

results are compared with source program (SAP2000). Table 5.9 shows the stress of 

some important selected members. Maximum compression stresses occur in elements 

(1, 17) and maximum tensions occur in elements (43, 62, 94 and 113). Table 5.10 is 

the result of displacements in x, y and z directions. Maximum displacement occurred 

in joints (46, 27). The close agreements between results are seen. 
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Table 5.9 Member stresses for 3D curved truss with 7.6 m height 

Frame NO. 
Stress (kN/m

2
) 

Present SAP 2000 

1 -163691.86 -163682.75 

2 -153483.79 -153358.19 

9 -56110.59 -56070.66 

16 -153483.79 -153358.19 

17 -163691.86 -163682.75 

18 -72978.1 -72819.87 

19 -66582.47 -66603.71 

26 -115734.51 -115668.12 

27 -115734.51 -115668.12 

34 -66582.47 -66603.71 

35 -72978.1 -72819.87 

36 -31084.84 -31434.19 

37 14611.09 14822.02 

43 32211.42 32001.24 

44 -50022.71 -49884.11 

45 28227.47 28033.94 

52 -12988.07 -13002.9 

53 -12988.07 -13002.9 

62 32211.42 32001.24 

94 32211.42 32001.24 

113 32211.42 32001.24 

 

Table5.10 Displacements for 138 bar 3D curved truss with 7.6 m height 

Displacement (m) 

Joint 

No 

X-direction Y-direction Z-direction 

Present SAP2000 Present SAP2000 Present SAP2000 

2 -0.0004 -0.0004 -0.0003 0.0000 -0.0019 -0.0019 

3 -0.0003 -0.0003 -0.0008 0.0000 -0.0047 -0.0047 

9 0.0003 0.0003 -0.0005 0.0000 -0.0220 -0.0220 

10 -0.0003 -0.0003 -0.0004 0.0000 -0.0220 -0.0220 
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16 0.0003 0.0003 0.0001 0.0000 -0.0047 -0.0047 

17 0.0004 0.0004 0.0001 0.0000 -0.0019 -0.0019 

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

20 -0.0016 -0.0005 0.0055 0.0000 0.0005 -0.0006 

28 0.0000 0.0000 -0.0003 0.0000 -0.0219 -0.0220 

35 0.0002 0.0001 0.0006 0.0000 -0.0021 -0.0022 

36 0.0003 0.0005 -0.0009 0.0000 -0.0008 -0.0006 

39 0.0006 -0.0005 0.0055 0.0000 -0.0018 -0.0006 

40 -0.0003 -0.0001 -0.0018 0.0000 -0.0018 -0.0022 

46 0.0013 0.0012 0.0034 0.0000 -0.0225 -0.0222 

54 0.0000 0.0001 0.0006 0.0000 -0.0024 -0.0022 

55 0.0007 0.0005 -0.0009 0.0000 -0.0005 -0.0006 

 

5.2 Static Analysis of Solid Arch 

Analysis is done by the FE method coded program for analysis of solid arch roofing; 

results are compared with source program (SAP2000). 

 

5.2.1 Arches under point load 

This example involves a series of arches with rectangular cross-sections, which have 

been studied by Litewka and Rakowski [54]. The arches have a radius of curvature of

m4R , the opening angle 3/2   (length 3/8l ), thickness m6.0t  and 

width m4.0b  as shown in Figure 5.9. The following material properties are used: 

elastic modulus GPa30E  and Poisson’s ratio 17.0 . 

The analysis is repeated for, two different boundary conditions: fixed-fixed and 

hinged-hinged and three different loading cases; a) vertical point load at the crown, 

b) horizontal point load at the crown and c) moment at the crown. 
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Figure 5.9 Loading conditions of uniform cross-section arch 

 

Discussion of results: To avoid the possibility of significant discretization error, the 

arches are analyzed using 12 cubic elements. The results for maximum deflections 

are summarized in Tables 5.11 and 5.12 for fixed-fixed and hinged-hinged arches 

respectively. The results of the analyses compare very well with those obtained by 

Litewka and Rakowski [54] based on thick beam model.  

 

Table 5.11 Displacements of uniform cross-section arches for fixed-fixed boundary 

condition ×10
-7

 

 

Table 5.12 Displacements of uniform cross-section arches for hinged-hinged 

boundary condition ×10
-7

 

 

L
o
a
d

 luc /  (Disp. in x-

direct.)
 

lvc / (Disp. in y-direct.)
 

 /c  (Rotation)
 

Presen

t 

Ref. 

[54] 

Sap20

00 
Present 

Ref. 

[54] 

Sap200

0 

Presen

t 

Ref. 

[54] 

Sap200

0 

a 0.006 0.00

0 

0.00 -2.5100 -2.48 -2.380 0.216 0.00 0.00 
b 1.230 1.25 1.55 -0.0060 0.00

0 

0.000 3.620 3.78 3.18 

c 0.909 0.94

9 

-1.16 0.0543 0.00

0 

0.000 10.700 10.80 34.90 

L
o

a
d

 

luc /  (Disp. in x-direct.)
 

lvc / (Disp. in y-direct.)
 

 /c  (Rotation)
 

Present Ref. 

[54] 

Sap2000 Present Ref. 

[54] 

Sap2000 Present Ref. 

[54] 

Sap2000 

a 0.09243 0.000 0.06432 -2.799 3.047 3.51 0.3741 0.000 0.000 

b 2.7650 2.880 3.49000 -0.0924 0.000 0.00 3.6200 7.770 2.464 

c -1.9520 -2.016 -2.36000 -0.0939 0.000 0.00 1.3620 1.361 1.090 
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5.2.2 Solid arches under multi point load 

This example involves analysis of an arches with circle cross-sections and similar 

dimensions of example 5.1.1, the geometry and loadings of arch which has uniform 

cross-section with 20 m span is considered shown in Figure. 5.10 The arches have a 

radius of curvature R = 11.547 m, the angle ω = 2π/3 (span length l = 24.1383 m), 

the cross-section area= 0.008968 m
2
. The following material properties are used: 

Young’s modulus 
610200E kN/m

2
, material density 9729.76  kN/m

3
.  

Discussion of the results: Analysis is done by source program (SAP2000). Table 

5.13 is the result of displacements in x and z directions. Maximum displacement 

occurred in the crown. 

 

 

Figure 5.10 Loading condition of arch 

 

Table 5.13 Displacements of uniform cross-section arches 

J
o
in

t 

luc /  (Disp. in x-direct.) lvc / (Disp. in z-direct.)  /c  (Rotation) 

Crown 0.00000 -0.00264 -0.000705 
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CHAPTER 6 

OPTIMIZATION ALGORITHM 

6.1 Introduction 

Optimization characterized as the method of discovery the conditions that provide 

the minimum or else maximum value of a function, where the function appears upon 

the production needed or else the desired profit. 

Structures are becoming lighter, tougher and cheaper as industry appropriates higher 

shapes of optimization. This kind and product improvement is now an important part 

of the design of problem solving system in today’s engineering industry.  

The subject of optimization has its arithmetical roots setting backward to the 1670s 

with the beginning of different calculus. Its earliest objective is to determine the 

optimum result in a problem given a set of environment. It was not up to the time of 

the early 1950s that computer-based optimization gotten under way itself into the 

engineering production. This was because the subject gives itself to numeric 

computation, which is the one job in which computers have the advantage over 

humans. 

Software engineers shortly started establishing modern optimization approaches such 

as unconstrained optimization, multi-objective optimization and nonlinear 

programming. A new computation to the family of numeric optimization systems is 

that of evolutionary computation. This group of optimization contains the GA. 

 

6.2 Structural Optimization Methods 

There are three types of optimization: ad shown in Figure 6.1 size shape and 

topology. In structural optimization all three classes usually have the purpose of mass 

minimization with optional displacement or stress restrictions. 

Size optimization variance of member cross sectional properties which may be 
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unbroken or disconnected variables. 

Shape optimization relocation of intersections to variation the form of the structure 

without varying the topology: The element-node connectivity remnants intact. 

Topology optimization variation of element-node connectivity to determine an 

optimal design, Problems may appear when a variation truss topology causes the 

structure to change into a mechanism. 

This study applies of size optimization techniques. Employing just size optimization 

avoids the problems related with topological as well as shape optimization while 

permitting substantial variations to the structure. 

 

 
 

Figure 6.1 Three kinds of structural optimization patterns 

 

6.3 Optimization Problem Definition 

Problems of constructional optimization are described by various purposes with 

constraints, which are usually nonlinear functions of the design variables. The 

functions can be indirect, non-convex and discontinuous. Exact preparations of 

realistic optimization problems (i.e. object functions also constraints) change 

between every application. 

 

6.4 Statement of an Optimization Problem 

An optimization or else an arithmetical programming problem can be determined like 
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follows: 

Determine the design parameter x which maximizes (otherwise minimizes) the 

objective function F(x) subject to the behavioral restriction, 0)( xjg , equality 

restrictions, 0)( xkh with explicit geometric restrictions, u

iii xxx  .  

The subscripts i, j and ĸ denote the quantity of design variables, behavioral 

restrictions, with equality restrictions respectively. The terms u

ix  and l

ix  refer to the 

stipulated upper with lower limits on the design variable quantities. For a 

presumption object functions F(x), where x ∈ Rn is the vector of design/decision 

variables, an example structural size optimization problem studies. Determine the set 

of regions x = {A1, A2.     An} which decreases the mass of the structure. 

              
 
                                                       (6.1) 

Where n is the number of bars, as well as i  is the length of the i
th

 bar of the truss. 

When size design variables are thought about the rates of i  change, also the weight 

rests on not just on the rates of Ai, but as well as on the joint coordinates of the 

construction. 

The problem is generally subject to difference constraints. ǥ p (x) ≥ 0, p = 1, 2, ..,n 

and from time to time equality restrictions hq(x) = 0, q = 1, 2, . . . , n. Furthermore, 

the variables are generally subject to bounds, u

iii xxx  i. The mainly common 

restrictions are normal stress restrictions: 

  

    
   ≤ 0, i = 1, 2, . . . , n                                      (6.2) 

Where σmax is the greatest permissible stress and σi is the normal stress at the, i
th

 

member, displacements limitations can also be considered: 

dj |/dmax− 1 ≤ 0, j = 1, 2, . , n                                         (6.3) 

Where dmax is the greatest permissible displacement, dj is the displacement at the j
th

 

global degree of freedom.  
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6.4.1 Design vector 

Refer to variables which express the design solutions and could be swapped during 

the optimization process with upper and lower limit. It represents the selected 

material or geometry. If it represents geometry, it may interact to a shape 

sophisticated interpolation or it may simply be the element cross-section, or the sheet 

thickness [55]. 

 

6.4.2 Objective function F(x)  

The function is an arithmetical function communicated in relations of the design 

transmitter x which measures the worth of any design x. The selection of objective 

function is decided on the nature of the problem. The objective function for 

minimization is widely gotten like weight in aircraft plus aerospace constructional 

design problems. 

For example, consider a structure, where the structure is subjected to design stress, 

displacement a the equation of optimization problem may be expressed as 

Minimize      iliA
N

i
iW 





1

                                                          (6.4) 

Subjected to      )()( 
lu

                                                         (6.5) 

                          )()( ddd
lu                                                            (6.6) 

Where  , d , A  are stress, displacement and cross sectional area and subscripts u and 

l refer to prescribed upper and lower boundaries of each constraints. 

iA
    

Is the cross sectional area of element i. 

In this study the  optimization refers to weight optimization of curved roof structure 

by combining FE analysis program with GA optimization methods as shown in 

Figure 6.2.  
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Figure 6.2 Structural optimization flow chart 

 

An optimization problem requiring various objective functions is recognized as a 

multiobjective programming problem. With various objectives there arises from a 

probability of conflict, as well as one easy method to handle the problem is to build 

an overall objective function like a linear combination of the conflicting various 

objective functions. So if f1(X) also f2(X) indicate two objective functions, build a 

modern (overall) objective function for optimization as. 

F (X) = α1f1(X) + α2f2(X)                                         (6.7) 

Where α1 with α2 are quantities whose costs record the comparative significance of 

one objective function comparative to another. 

 

6.5 GA Optimization Method  

Randomized search with the optimization system guided by the principle of natural 
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genetic systems. Since GA is established on the survival of the fittest principle of 

nature, they attempt to maximize a function named the fitness function. Thus, GAs 

are obviously suitable for solving unconstrained maximization problems. GAs are 

stochastic optimization methods founded upon the mechanism of natural evolution as 

well as endurance of the fittest strategy establishes in biological organizations. 

Characteristics contain a survival of the fittest mechanism in which potential results 

in a population are pitted opposing each other, as well as recombination of solutions 

in a mating operation with random varieties. The unbelievable section is that this 

heuristic rule can “evolve” best and best solutions without any great understanding of 

the problem itself. GA can be executed to any problem that contains these two 

characteristics: (i) a result can be squeezed like a string, in addition to (ii) a rate 

denoting the valued at of the string can be computed. 

GAs is successfully suited for solving such problems, within nearly all cases. They 

can determine the global optimal result by a high possibility. While GAs were initial 

presented methodically by [28]. 

Although randomized, GAs is not easy random exploration systems. They efficiently 

investigate the new combinations by means of the attainable knowledge to determine 

a new generation with best fitness or else objective function rate. 

 

6.5.1 Advantages of GA’s 

GA optimization system does not require any prior knowledge such like derivatives 

of the objective function otherwise constraint functions. 

The probability with flexibility of dealing among complicated structures under 

various loading conditions as well as constraints. 

The capacity of dealing through parts from standard lists sorted like discontinuous 

design variables.  

The ability of obtaining further than one design result.  

The flexibility of formulating the engineer experiences also qualifications to the 

design optimization problem.  
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6.5.2 Genetic operators 

There are three principal operators in a fundamental GA: mutation, crossover and 

reproduction. The solution of an optimization problem by GAs begins through a 

population of random strings indicating a number of (populations of) design 

transmitters. The population magnitude in GAs (n) is generally fixed. Each string (or 

else design transmitter) is estimated to determine its fitness cost. 

The population (of designs) is acted at three operators-crossover mutation, also 

reproduction to manufacture a new population of points (designs). The new 

population is also estimated to determine the fitness rates in addition to experimented 

for the convergence of the operation. 

Single cycle of variation, reproduction with crossover as well as the estimation of the 

fitness values is recognized as a generation in GAs. Whether the convergence 

criterion is not gratified the population is iteratively controlled by the three operators, 

as well as the resulting modern population is valued for the fitness rates. The system 

is continued during some generations up to the time of the convergence criterion is 

satisfied, also the operation is finished. The inside information of the three operations 

of GAs are presumption below. 

 

6.5.2.1 The reproduction operator 

The reproduction is equivalent to the “survival of the fittest” contest. It decides not 

just which solutions survive, although how many duplicates of each of the survivors 

to construct. This will be significant later for the time of the crossover action. The 

possibility of survival of a solution is symmetrical to its solution value; in addition, 

recognized like its fitness (the function that grants values to solution strings is as well 

recognized as the fitness function). 

In generally used reproduction operative, a string is chosen as of the mating pool by 

means of a probability equivalent to its fitness. Thus if Fi indicates the fitness of the 

i
th 

string in the population of size n, the possibility for choosing the i
th

 string for the 

mating pool (Pi) is given by. 
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Pi=




n

i

i

Fi

F

1

        ; i=1, 2, ….., n                                            (6.8) 

Where Fi is the fitness otherwise objective function value of the i
th

 individual (design 

transmitter, xi) also n is the volume of population. Thus, designs (individuals) by 

means of higher fitness values have a larger opportunity of being chosen for mating 

as well as following genetic action. As a result, greatly fit individuals. Live plus 

procreate and fewer fit individuals die (survival of the fittest). 

 

6.5.2.2 Recombination or crossover 

The crossover operation includes the changing of genetic bit strings (materials) 

between the two parents. Choosing randomly a place by this operator (along the two 

chromosomes a bit position) and swaps the sub strings before and after that point 

between two chromosomes to generate two offspring (new generation). There are 

various types of crossover can take place, hence these types are of the simplest is 

explained. 

One-point crossover: The easiest kind of the crossover of all of the available kinds. 

When selecting a pair of individuals to exchange their first few bits and the results 

are a new pair of children. So suppose a selecting parent’s pair from the mating pool 

is displayed in Figure 6.3, [55]. 

 

 

Figure 6.3 Parents before crossover. 

 

Beside a randomly chosen between 1 and the string length of an integer place n along 

the string is taken. The established of two new strings by exchanging each character 

between positions 1 and n inclusively. Assume in selecting a random number 

between 1 and 8, taking n = 5, the results of crossover produces the two new strings 

displayed in Figure 6.4. 

Parents1     0 0 0 0 1 1 1 1 

Parents2      1 1 1 1 0 0 0 0 

 

Parents10 0 0 0 1 1 1 1 

Parents21 1 1 1 0 0 0 0 



61 

 

 

 

                     Figure 6.4 New strings after crossover operation. 

 

The crossover probability (Pc) is an essential parameter in crossover performance. It 

is a parameter to explain how often crossover will be achieved. The off springs are 

exact copies of parents, if there is no crossover. The off springs create from portions 

of both parent’s chromosomes, if there is crossover.  

Then all offspring is created by crossover, if the crossover probability is 100%. All 

new generation is created from exact copies of parent chromosome from old 

population (but this does not mean that the new generation is the same), when it is 

0%. The creation from the crossover is in expected that off springs will include good 

parts of the parents and therefore the off springs will be improved. Though, it is 

better to allow a specific portion of old population survives to the next generation. 

 

6.5.2.3The mutation operator 

The new strings gotten from crossover (off springs) are put in the new population, 

also the procedure is continued. The third operative of the ordinary GA is the 

variation which acts like a secondary part in the action of the GA. Variation is 

required since, in spite of though reproduction as well as crossover effectively 

examination with recombine having to be strings, to permit new genetic parents to be 

shaped progressing towards the search approach. 

In artificial genetic techniques, the variation operator sometimes safeguards some 

effective genetic material imposingly loss. In GAs, mutation is the occasional 

arbitrary alternation of the rate of a string position. 

The mutation operator is directed to the new string with a stipulated mutation 

probability. A mutation is the irregular random transposition of a binary digit 

(allele’s value). Hence in mutation a 0 is changed to 1, as well as vice versa, at a 

random situation. When used sparingly in the company of the generation with 

Parents1   1 1 1 1 0 1 1 1 

Parents2   0 0 0 0 1 0 0 0 

 

Parents11 1 1 1 0 1 1 1 

Parents20 0 0 0 1 0 0 0 
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crossover operators, variation serves like protect against a premature loss of 

significant genetic material by a particular situation. 

 

6.5.3 Overview of the fundamental GA operation 

At present, that we have seen the fundamental GA operators, we can place the full 

process with each other. In this place are the necessary steps: 

0. Design the algorithm: select the population magnitude n as well as mutation rate; 

select the operators with the stopping surroundings (further on stopping conditions 

later). 

1. Randomly generate an initial population (further on generating the initial 

population later) also estimate the fitness value for each string. Set the solution 

through the best value of the fitness function in the initial population. 

2. Apply the reproduction operator to the current population to generate a mating 

pool of size n 

3. Apply the crossover operator to the strings in the mating pool to generate a 

tentative new population of size n. 

4. Apply the mutation operator to the experimental new population to produce the 

last new population. Compute the fitness values of the solution strings in the new 

population also renew the incumbent solution if there is a best solution in this 

population. 

5. If the stopping conditions are met, then exit with the incumbent solution like the 

last solution. In other, respects go to Step 2. 
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CHAPTER 7 

OPTIMIZATION EXAMPLES 

7.1 2D Truss Optimization Examples 

In this part 2D truss examples which are analyzed in chapter 5 are optimized under 

static loads. The objective function is weight minimization under stress and 

displacement constraints. 

 

7.1.1 2D curved truss with 5.75m height 

The 71 bar curved truss in Figure 5.1 of chapter 5 is to be optimized for minimum 

weight. The structure is loaded with a point load of 10 kN on all upper joints in the- 

Z direction. Three design variables are considered by the GA where design variable 

2211 As,As   and 33 As  . Material properties for the truss are: Young’s modulus 

610200E kN/m
2
, material density 9729.76  kN/m

3
, maximum tensile stress 

310120t  kN/m
2
, and maximum compressive stress 310120c kN/ m

2
 and 

maximum xu  and zu  displacement all nodes being 0.015 m.  

Discussion of the results: Table 7.1 shows the displacement of some important 

selected members before and after optimization. It is seen that after optimization 

displacements are smaller than displacement constraints. From the results 

demonstrated in Table 7.2 it can be observed that the optimum values found for the 

final weights. The results got applying the GA for continuous design variable 

quantities. After 238 iterations, minimum weight design was obtained for continuous 

design variables. The weight of the truss is reduced from 11.107 to 2.1812 (80 % 

reduction) for continuous design variables. The iteration record of the optimization 

method is demonstrated in Figures 7.1 for continuous design variables.  
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Table 7.1 Joint displacements before and after optimization 

Displacement (m) 

Joint no. 

X-direction Z-direction 

Before 

optimization 

After 

optimization 

Before 

optimization 

After 

optimization 

2 -0.0004 -0.0008 -0.0003 -0.0002 

3 -0.0004 -0.0007 -0.0013 -0.0015 

9 0.0000 0.0002 -0.0068 -0.0125 

10 0.0000 -0.0002 -0.0068 -0.0125 

16 0.0004 0.0007 -0.0013 -0.0015 

17 0.0004 0.0008 -0.0003 -0.0002 

20 -0.0002 -0.0005 -0.0001 -0.0006 

21 -0.0002 -0.0008 -0.0002 -0.0006 

27 0.0004 0.0004 -0.0066 -0.0122 

28 0.0000 0.0000 -0.0068 -0.0127 

29 -0.0004 -0.0009 -0.0066 -0.0122 

35 0.0002 0.0008 -0.0002 -0.0006 

36 0.0002 0.0005 -0.0001 -0.0006 

 

Table 7.2 Initial and optimum design variables of 2D curved truss with 5.75m height 

Cross sectional area (m
2
)
 

Design 

variables 
Initial Optimum 

S1 0.000645 0.0008 

S2 0.000897 0.0001 

S3 0.001770 0.0001 

Weight 

(kN) 
11.107 2.1812 

P.R                                                        80 % 

 

 
Figure 7.1 Convergence curve for 2D truss with 5.75 m height 
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7.1.2 2D curved truss with 7.5 m height  

The 71 bar curved truss of Figure 5.3 in chapter 5 is to be optimized for minimum 

weight. The structure is loaded with a point load of 10 kN on all upper joints in the Z 

direction. Three design variables are considered by the GA where design variable 

2211 As,As   and
33 As  . Material properties for the truss are: Young’s modulus 

610200E kN/m
2
, material density 9729.76  kN/m

3
, maximum tensile stress 

3
t 10100  kN/m

2
, and maximum compressive stress 3

c 10100 kN/ m
2
 and 

maximum xu  and zu  displacement all nodes is 0.015 m. 

Discussion of the results: Table 7.3 shows the displacement before and after 

optimization of some selected members. The GA optimization satisfied displacement 

constraints. 

From the results demonstrated in Table 7.4 it can be seen that the optimum values 

found for the final weights. The results got applying the GA for continuous design 

variable quantities. After 247 iterations, minimum weight design was obtained for 

continuous design variables. The weight of the truss is reduced from 9.1408 to 

4.0919 (55.3 %reduction) for continuous design variables. The iteration record of the 

optimization method is demonstrated in Figures 7.2 for continuous design variables. 

 

Table 7.3 Joint displacements before and after optimization 

Displacement (m) 

Joint no. 

X-direction Z-direction 

Before 

optimization 

After 

optimization 

Before 

optimization 

After 

optimization 

2 -0.00055 -0.00095 -0.00046 -0.00034 

3 -0.00054 -0.00078 -0.00184 -0.00219 

9 0.00011 0.00027 -0.01125 -0.01738 

10 -0.00011 -0.00027 -0.01125 -0.01738 

16 0.00054 0.00078 -0.00367 -0.00219 

17 0.00055 0.00095 -0.00184 -0.00034 

20 -0.00033 -0.00050 -0.00015 -0.00050 

21 -0.00037 -0.00079 -0.00037 -0.00066 

27 0.00064 0.00105 -0.01082 -0.01692 

28 0.00000 0.00000 -0.01122 -0.01758 
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29 -0.00064 -0.00105 -0.01082 -0.01692 

35 0.00037 0.00079 -0.00037 -0.00066 

36 0.00033 0.00050 -0.00015 -0.00050 

 

Table7.4 Initial and optimum design variables of 2D curved roof truss with 7.5 m 

height 

Cross sectional area (m
2
) 

Design 

variable 
Initial Optimum 

S1 0.000955 0.0010 

S2 0.000955 0.0001 

S3 0.000690 0.0003 

Weight 

(kN) 
9.1408 4.0919 

P.R                                                           55.3 % 

 

 

Figure 7.2 Convergence curve for 2D truss with 7.5 m height 

 

7.1.3 2D curved truss with 288 inch height 

This example consists of curved truss with 2000 inch span with 41 elements in 

Figure 5.5 in chapter 5. The structure is loaded with a point load of 50 kip on all 

upper joints in the Z direction. The members of the structure are divided into 3 

groups, each one having one design variable. 

The objective function is the weight (or volume) minimized. Material properties for 

the truss are: Young’s modulus E=29000 kip/in
2
, material density -4102.386  
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kip/in
3
, maximum tensile stress ksi20t  , maximum compressive stress ksi15c   

and maximum xu  and zu  displacement all nodes being 2 inch. 

Discussion of the results: Table 7.5 shows the displacement before and after 

optimization of some selected members. The GA optimization satisfied displacement 

constraints. From the results demonstrated in Table 7.6 it can be observed that the 

optimum values found for the final weights. The results got applying the GA for 

continuous design variable quantities. After 65 iterations, minimum weight design 

was obtained for continuous design variables. The weight of the truss is reduced 

from 117.1699 to 53.721 (54 %reduction) for continuous design variables. The 

iteration record of the optimization method is demonstrated in Figures 7.3 for 

continuous design variables.  

 

Table 7.5 Displacement result for all members before and after optimization 

Displacement (in) 

Joint 

no. 

X-direction 

U3 

Y-direction 

U3 
Before 

optimization 

After 

optimization 

Before 

optimization 
After optimization 

1 0.0000 0.0000 0.0000 0.0000 

2 -0.0169 -0.0401 -0.1120 -0.2601 

3 -0.0048 -0.0109 -0.3281 -0.7718 

4 0.0051 0.0124 -0.5414 -1.2723 

5 0.0061 0.0144 -0.7038 -1.6524 

6 0.0000 0.0000 -0.7875 -1.8485 

7 -0.0061 -0.0144 -0.7038 -1.6524 

8 -0.0051 -0.0124 -0.5414 -1.2723 

9 0.0048 0.0109 -0.3281 -0.7718 

10 0.0169 0.0401 -0.1120 -0.2601 

11 0.0000 0.0000 0.0000 0.0000 

12 0.0160 0.0361 -0.0067 -0.0156 

13 0.0380 0.0876 -0.1421 -0.3329 

14 0.0565 0.1320 -0.3511 -0.8274 

15 0.0561 0.1311 -0.5636 -1.3244 

16 0.0342 0.0798 -0.7173 -1.6841 

17 0.0000 0.0000 -0.7968 -1.8703 

18 -0.0342 -0.0798 -0.7173 -1.6841 
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19 -0.0561 -0.1311 -0.5636 -1.3244 

20 -0.0565 -0.1320 -0.3511 -0.8274 

21 -0.0380 -0.0876 -0.1421 -0.3329 

22 -0.0160 -0.0361 -0.0067 -0.0156 

 

Table7.6 Initial and optimum design variables of 2D curved truss with 288 inch 

height 

Crosses sectional area (in
2
) 

Design 

variables 
Initial Optimum 

S1 75.6000 34.6667 

S2 14.7000  6.3330 

S3 20.0000 10.0000 

Weight (kip) 117.1699 53.7210 

P.R                                                    54 % 

 

 

Figure 7.3 Convergence curve for 2D truss with 288 inch height 
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vertical loading at all the unsupported joints. These are taken as 13.49 kips at node 1, 

6.744 kips from nodes 2 through 14 and 2.248 kips at rest of the nodes.  

 

 
 

Figure 7.4 Top view of 3D dome  

 

In addition to allowable tensile and compressive stresses, an upper limit for the 

displacement is taken as -0.19 in. at each node. The allowable compressive and 

tensile stresses are -15, 35 kip, Young modulus =290000 kip/in
2
 and density

=0.00029 kip/in
3
. 

Discussion of the results: Table 7.7 shows the displacement before and after 

optimization of some selected members. The GA optimization satisfied displacement 

constraints. From the results demonstrated in Table 7.8 it can be seen that the 

optimum values found for the final weights. The results got applying the GA for 

continuous design variable quantities. After 136 iterations, minimum weight design 

was obtained for continuous design variables. The weight of the truss is reduced 



70 

from 26.644 to 12.8765 (51.6 %reduction). The iteration record of the optimization 

method is demonstrated in Figures 7.5 for continuous design variables.  

 

Table 7.7 Displacement result for all members before and after optimization 

Displacement (inch) 

Joint 

no. 

X-direction Y-direction Z-direction 

Before 

optimizati

on 

After 

optimizati

on 

Before 

optimizati

on 

After 

optimizati

on 

Before 

optimizati

on 

After 

optimizati

on 

1 0.0000 0.000 0.0000 0.000 0.0998 -0.076 

2 -0.0432 -0.045 0.0000 0.000 -0.0985 -0.179 

3 -0.0374 -0.039 -0.0216 -0.022 -0.0983 -0.179 

4 -0.0216 -0.022 -0.0374 -0.039 -0.0983 -0.179 

5 0.0000 0.000 -0.0433 -0.045 -0.0985 -0.179 

6 0.0216 0.022 -0.0374 -0.039 -0.0984 -0.179 

7 0.0374 0.039 -0.0216 -0.022 -0.0984 -0.179 

8 0.0432 0.045 0.0000 0.000 -0.0985 -0.179 

9 0.0374 0.039 0.0216 0.022 -0.0985 -0.179 

10 0.0216 0.022 0.0374 0.039 -0.0985 -0.179 

11 0.0000 0.000 0.0432 0.045 -0.0985 -0.179 

12 -0.0216 -0.022 0.0374 0.039 -0.0984 -0.179 

13 -0.0374 -0.039 0.0216 0.022 -0.0984 -0.179 

 

Table7.8 Initial and optimum design variables of 3D curved roof dome 

Cross sectional area (inch
2
) 

Design 

variables 
Initial Optimum 

S1 6.11 2.3032 

S2 2.21 2.1581 

S3 2.21 0.9806 

S4 2.71 2.1581 

S5 1.51 1.0355 

S6 5.61 1.1290 

S7 4.41 2.1581 

Weight (kip) 26.644 12.8765 

P.R                                                       51.6% 
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Figure 7.5 Convergence curve for 120 bar 3D truss 

 

7.2 Arch Optimization Examples 

7.2.1 Arch under point load 

This example involves optimization of a series of arches with rectangle cross-

sections, which have been analyzed by Litewka and Rakowski [54] and in chapter 5. 

The geometry and loadings of arch which has uniform cross-section with opening 

angle 120 is considered shown in Figure 7.6. The arches have a radius of curvature R 

= 4 m, the angle ω = 2π/3 (span length l = 8π/3), the rectangular cross-section with 

depth h = 0.6 m and width b = 0.4 m. The following material properties are used: 

elastic modulus E = 30, GPa and Poisson’s ratio ν = 0.17. 

Discussion of results: Table 8.9 shows the initial and optimal values of design 

variables and weight for the different loadings considered. In all loading cases there 

is considerable reduction in the magnitude of the weight. The percentage reductions 

obtained in the weight are 64.56, 62.09 and 72.68 % for loading cases a, b and c 

respectively. 
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Figure 7.6 Loading conditions of arch 

 

Table 7.9 For weight minimization of arch, initial and optimum values of design 

variables 

Design variables Optimum 

Type Minimum Initial Maximum Case (a) Case (b) Case (c) 

1t  
0.1 0.6 1.0 0.1992 0.1501 0.2319 

2t  0.1 0.6 1.0 0.1743 0.1932 0.1704 

3t  0.1 0.6 1.0 0.4391 0.4853 0.1836 

Weight  5.009  1.7752 1.8991 1.3682 

P.R 64.56% 62.086% 72.68% 

 

7.2.2 Solid arch under multi point load 

This example involves optimization of an arch with circular cross-sections, the 

geometry and loading of arch which has uniform cross-section with 20 m span is 

considered shown in Figure. 7.7. The arches have a radius of curvature R = 11.547 

m, the angle ω = 2π/3 (span length l = 24.1383 m), the cross-section area = 

0.008968. The following material properties are used: Young’s modulus 

610200E kN/m
2
, material density 9729.76  kN/m

3
, maximum tensile stress 

3
t 10120  kN/m

3
, maximum compressive stress 

3
c 10120 kN/m

3
 and 

maximum xu  and zu  displacement all nodes is 0.015 m.  

Discussion of results: Table 7.10 shows the initial and optimal values of design 

variables and weight. After 42 iterations, minimum weight design was obtained for 

discrete design variables. The weight of the truss is reduced from 20.618 to 9.698 (53 
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%reduction). 

 

 

Figure 7.7 Loading conditions of arch 

 

Table 7.10 Initial and optimum values of design variables 

Crosses sectional area (m
2
) 

Design variables Initial Optimum 

S1 

  Weight(kN) 20.618 9.698 

P.R 53 % 

 

 

Figure 7.8 Convergence curve for solid arches under distributed load 
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CHAPTER 8 

CONCLUSIONS AND FURTHER WORK 

8.1 Conclusions 

A design methodology of 2D and 3D curved roof trusses and solid arch roofing that 

combines stiffening sizing optimization is an important role in minimizing the 

amount of steel used in the construction of the structure for economic point of view. 

The optimization procedure implemented, combined with accurate FE simulation of 

steel curved roof and solid arch roofing, resulted in a robust and efficient 

optimization tool.  

Optimization algorithm is starts following the implementation of the analysis of the 

structure. A FORTRAN program which uses the FEMs based numerical analysis was 

modified. To achieve size optimization based on GA to perform the analysis and 

design. The problem of choosing the sizes of the bars in order to minimize the weight 

of the structure while satisfying stress, displacement, stability. 

To find the best solution under constrains of allowable displacement and stress GA 

searches all the available solution among all available results the best solution is 

selected. Design variables were considered corresponding to the sizing of the cross-

sectional areas of the bars.  

For all design variables significant decrease in weight of material with respect to the 

stress and displacement constraints were get. Finally, it must be emphasized that the 

algorithm proposed is capable of finding the optimum weight or volume with the 

least number of groups possible to make the design practical. Hence, the solution is 

feasible and the construction of the structure is easy. The results obtained on these 

typical problems showed that the accuracy of the concept presented is more than 

those of the other methods. 
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8.1.1 Structural analysis 

The FE method is accurate and robust tools for analysis of curved roof structures 

were developed design variables were considered corresponding to the sizing of the 

cross-sectional areas of the bars. One can observe from the results of the analysis the 

importance of carry out the linear procedures since these analysis can lead to 

different final weights, mainly, the final values of the cross-sectional areas. The 

designer has to be attempt in order to choice the adequate analysis to be conducted. 

The results obtained from the program are compared with other sources to prove the 

ability and accuracy. This comparison helps to improve the written program to give 

better solutions.  

To perform the formulation of the stiffness matrix which is coded in FORTRAN, 

several examples are considered. FE model can be successfully used for the static 

analysis of the structures. Analysis is done by the FE method coded program for 

analysis of 2D and 3D curved truss roofing, results are compared with source 

program (SAP2000). 

 

8.1.2 Structural optimization and design 

A general methodology for structural size optimization of curved roof structures has 

been presented by integrating the tools developed for size definition, FE analysis 

with GA. 

GAS seems to be a good choice for continuous structural optimization. They offer 

several advantages that other techniques lack such as generality and the ability to 

deal directly with discrete search spaces. GAs performed well on a plane truss and 3-

D truss problem as compared to more traditional techniques. We do not claim that 

GAs is the golden key to structural optimization that engineers have sought for 

nearly two centuries. There is no doubt, however, that GAs has potential for 

automating discrete structural optimization.  

Various optimization examples were presented for minimizing the weight of the 

curved roof structures. Crosses section design variables was used. The influence of 

the number of design variable employed was also investigated.  
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Reductions of (80 %, 55.3 %, 54 %, 51.6 % and in arch case a, 64.56 %, for case b, 

62.086 %, for case c, 72.68 %, 53 %) for the six illustrated examples respectively 

give great encouragement to optimize structures. These reductions are important to 

save extra materials in construction projects of curved roof structures consequently 

serving the economical point.  

By comparing the results of two examples in section 7.1.1 and example 7.1.2 in 

optimization of arch with uniform cross section, it’s clear that the curved truss 

structure is stiffer than curved arch. As shown in tables (7.2 and 7.10) for the same 

constraints the curved truss structure is lighter than curved arch for about 77.5%. 

The features of software in the analysis and design of special and complex structures 

with application of FEM is wide used. Using this application without a background 

in analysis and design decreases the degree of accuracy in modeling and obtaining 

correct results.  

 

8.2 Future Work 

Expanding the code in such a way that covers all types of structural members 

subjected to actual constraints of the American Institute of Steel Construction(AISC) 

Load and Resistance Factor Design (LRFD) and Allowable Stress Design (ASD) 

specifications (American Institute of Steel Construction) and also to use actual steel 

section as a discrete design variables. 

Expanding the FORTRAN code in such a way that covers members buckling check, 

this concluded from comparing the results of the source program and GA. 

Another drawback GAs requires large number of response (fitness) function 

evaluations depending on the number of individuals and number of generations. 
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