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ABSTRACT 

A NEW WINDOW FUNCTION FOR FIR FILTER DESIGN  

 

ÇEVİK TAŞDEMİR, Derya 

M.Sc. in Electrical and Electronics Engineering 

Supervisor: Prof Dr. Arif NACAROĞLU 

June 2013, 37 pages 

 

FIR (Finite Impulse Response) filter is an important research area in digital signal 

processing and filtering. FIR filters provide easily  design at linear phase, which 

means delay the input signal but is delayed without distorting its phase. In addition to 

these advantages, FIR filters don’t need to feedback. At FIR filters, to design a filter 

means to select the coefficients such that the system has specific characteristics. 

Generally, filter specifications refer to the frequency response of the filter. There are 

different methods to find the coefficients from frequency specifications. One of the 

important method is the series expansion and windowing. The window method for 

digital filter design is fast, convenient, and robust.  

 

In this study, a new window function proposed to calculate the FIR filter coefficients 

obtained by using Fourier Series Method. In  basic, proposed window is a modified 

version of Gaussian window function and Hamming window function. Combination 

of these windows has resulted with more parameters which means the controlling of 

window function is more flexible.  

  

Keywords: Window functions, Gaussian window, Hamming window, Modified 

Gaussian window, Modified Hamming window, Finite Impulse Response (FIR) 

Filter design.  

 

 

 

 

 



 

 

ÖZET 

 

SONLU DARBE TEPKİLİ (SDT) SÜZGEÇ TASARIMI İÇİN YENİ BİR 

PENCERELEME FONKSİYONU  

 

ÇEVİK TAŞDEMİR, Derya 

Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Arif NACAROĞLU 

Haziran 2013, sayfa: 37 

 

 

Sayısal filtre tiplerinden biri olan SDT Filtre (Sonlu Darbe Tepkili) sayısal veri 

işleme ve süzme alanında önemli bir araştırma alanıdır. SDT filtre lineer fazda 

tasarım kolaylığı sunar, şöyle ki veriyi süzerken, sinyali geciktirir fakat fazını 

değiştirmez . Bu avantajlarına ek olarak, SDT filtrelerin geri beslemesi yoktur. SDT 

filtrelerde, filtre tasarlamak sisteme has katsayı belirlemek anlamına gelir. 

Genellikle, filtre özellikleri filtrenin frekans tepkisini işaret eder. Frekans 

özelliklerinden gelen katsayıları bulmak için farklı yöntemler vardır. Seri açılımı ve 

pencereleme bu yöntemlerden önemli birtanesidir. Dijital filtre tasarımı için pencere 

yöntemi, hızlı, rahat ve güvenilirdir.  

Bu çalışmada, SDT Sayısal Süzgeç Tasarımında Fourier Seriler kullanılarak elde 

edilen katsayıların pencerelenmesi için mevcut pencere fonksiyonlarına alternatif 

yeni bir pencere fonksiyonu önerilmiştir. Önerilen fonksiyon temelde Gauss ve 

Hamming Pencerelerinde çalışılarak elde edilmiş bir pencere fonksiyonudur. Bu iki 

fonksiyonunun birleştirilmesi ve etkili değiştirge sayısının arttırılması; ana kulak 

darlığının  ve yan kulak büyüklüğünün daha fazla değişken üzerinden kontrolünü 

kolaylaştırmıştır.  

Anahtar Kelimeler: Pencere fonksiyonları, Gaussian penceresi, Hamming 

penceresi, Modifiye edilmiş Gauss penceresi, Modifiye edilmiş Hamming penceresi, 

Sonlu Darbe Tepkili (SDT) Filtre Tasarımı. 
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NOMENCLATURE 

 

 

n  Discrete time index 

w  Angular frequency rad/sample 

z  Index for z – frequency domain 

T  Sampling period in rad/ sample 

N  Window or filter length 

S  Sidelobe roll-off ratio in dB 

R  Ripple ratio in dB 

)(w   Phase spectrum 

H(z)  Filter transfer function 

H( jwTe ) Frequency spectrum of filter 

W( jwTe ) Frequency spectrum of window 

sw   Sampling frequency 

 ,  ,   Parameters of Proposed window function 

DSP  Digital Signal Processing 

FIR  Finite Impulse Response 

IIR   Infinite Impulse Response 

CR  Contrast Ratio 

 



 1 

 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

In digital signal processing applications, digital filter [1] is the most important and 

frequently used element, which is classified as finite impulse response (FIR) [1,2]  and 

infinite impulse response (IIR) [1, 3]  filters by the duration of their impulse response. 

Both of  FIR and IIR filters have many advantages and disadvantages, due to they are 

not best for all situations. 

FIR filters can be designed as stable and exact linear phase, due to they are commonly 

used filters. A drawback of nonrecursive filters comparison to recursive filters is their 

application complexity in case the filter order is large. The application of FIR filters can 

be done using either recursive or nonrecursive techniques, however a nonrecursive 

application guarantees a stable filter. 

There are many methods to design nonrecursive digital filters such as Fourier series 

method, discrete Fourier transform, optimization methods and numerical methods. 

Though optimum design can be reached by using the optimization method, a large 

computation is needed and this makes method of optimization unappropriate for real 

time applications. The other side, method of Fourier series [1, 4]  with windowing is the 

most appropriate way to design nonrecursive filters with minimum computation to 

another methods. 

In Fourier series methods, the aim of using window function is to smooth and truncate 

the infinite duration ideal filter’s impulse response.  
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1.2 Problem Definition 

There are many windows proposed in literature better nonrecursive digital filters. They 

are classified as adjustable or fixed according to having number of independent 

parameters in their function. Due to their flexibility property, the adjustable windows are 

preferred for practical applications. There are many windows in literature but the 

problem is that the filters designed by the windows are suboptimal. For example, the 

filter order required to satisfy a given prescribed specifications is not the lowest and, a 

higher degree of filter means more calculations, more components, etc. Hereby, the 

researches focused on providing new windows to develope the filter characteristics. 

1.3 Thesis Objective 

The objective of this thesis research is to find a new window function which enables the 

filter designer to provide a high quality nonrecursive filter. A new window function 

proposed to calculate the FIR filter coefficients obtained by using Fourier Series 

Method.  

Basically, proposed window is a modified version of Gaussian window function and 

Hamming window function.  This new window function presents better performance 

side lobes and main lobe. 

1.4 Literature Summary 

Direct truncation of Fourier series causes the oscillations, and these oscillations were 

first explained mathematician by Gibbs [5] in 1899 and therefore called Gibbs’ 

Oscillations. 

Fejer has dealed with reducing the effects of Gibbs’ Oscillations for practical 

applications in 1900. Then, Lanczos has proposed better approach than Fejer in 1956. 

These  methods considered a function with only one jump discontinuity, but Gibbs’ 

oscillations are characteristics of any truncated Fourier series regardless of the number 

of discontinuities. 
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Window functions are used for better smooting operations. The simplest one is 

rectangular window. Hann, Gaussian, Dolph-Chebysev, Blackman , Hamming, Kaiser, 

Bartlett window functions have different features. 

1.5 Structure of Thesis 

The thesis is organized in five chapters, which can be described as follows: 

Chapter 1. Introduction – This chapter gives an overview of thesis work, problem 

definition, research objective, prior works and thesis structure. 

Chapter 2. Review of Digital Filters – Explained digital filters and some background 

information about digital filter types and comparasion of recursive and nonrecursive 

digital filters. 

Chapter 3. Windowing in Finite Impulse Response Filter Design  –The use of 

Fourier series method in the design of nonrecursive digital filters and then nonrecursive 

digital filters are explained clearly. 

Chapter 4. Proposed Window Functions –Thesis study presents a new window 

function with their application in the design of nonrecursive digital filters.  

Chapter 5. Conclusion and Future Works –A brief summary for the results of thesis 

work is presented.  
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CHAPTER 2 

REVIEW OF DIGITAL FILTERS 

2.1 Digital Filters 

Filters are circuits or devices such that their output gain and/or phase vary as a function 

of the frequency of the input. Due to having this frequency sensivity, they are used to 

pass signals at selected frequencies and reject signals at other frequencies. 

In terms of their operations, the filters can mainly be classified as 

 Lowpass filters 

 Highpass filters 

 Bandpass filters 

 Bandstop filters 

The filters are categorized as analog or digital according to their physical make up and 

how they work. In an analog filter, analog electronic circuits which may be made up for 

passive and active components such as resistors, capacitors, operational amplifiers 

(OPAMP) or operational transconductance amplifiers (OTA) are used in order to 

produce the required filtering effect [6, 7]. There are well established standart techniques 

to design an analog filter circuit for a given requirement. The signal being filtered in 

analog filters is an electrical voltage or current, which is the direct analogue of the 

physical quantity such as a sound signal or transducer output. 

As for a digital filter, it uses a digital processor such as a personal computer or special 

digital signal processing chip to perform the filtering effect [8]. Since the operation is 

based on numerical calculations on sampled values of the signal, the analog input signal 
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must first be sampled and digitized using an analog to digital converter. The resulting 

binary numbers representing the input signal are transferred to the processors, which 

carry out numerical calculations on them. Note that the signal in a digital filter is 

represented by a sequence of numbers rather than a voltage or current. 

Main advantages of digital filters over analog filters can be listed as 

 Digital filters are programmable. 

 Digital filters characteristics are extremely stable to the temprature compared to 

analog filters. 

 Digital filters are easily designed, tested and implemented on a processor [9]. 

2.2 Types of Digital Filters 

According to their implementations, the digital filters are classified as finite impulse 

response filters (FIR) and infinite impulse response filters (IIR) [10]. 

2.2.1 Finite Impulse Response (FIR) Filter Design Methods 

Direct methods are used for design of FIR digital filters. Four well known methods are 

used. These methods are: 

 Fourier series method using the window method – It provides closed form 

solutions and, as a result, it is easy to apply and involves only a minimal amount 

of computation. Unfortunately, the designs are suboptimal with respect to filter 

complexity whereby a filter design is said to be optimal if the filter order is the 

lowest that can be achieved for the required specifications [11]. 

 Numerical methods – It uses numerical formulas to design the FIR filters can 

perform interpolation, differentiation or integration. The most commonly used 

interpolation formulas are the Gregory-Newton, Bessel, Everret, Stirling and 

Gauss interpolation formulas. 
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 Optimization methods – It provides optimal solutions for the design of 

nonrecursive filters. But it perform this work at the expence of a large amount of 

computation. The basic idea in the optimization methods is to find the filter 

coefficients until the particular error is minimized. 

 Discrete Fourier transform method -  Unlike the Fourier series method with the 

window method, can be used for any given magnitude response. It is useful for 

the design of non-prototype filters where the desired magnitude response can 

take any irregular shape.  

2.2.2 Infinite Impulse Response (FIR) Filter Design Methods 

The design methods for recursive filters can be classified as indirect or direct. 

Indirect design approaches are based on deriving the discrete-time transfer function 

from a continuous-time transfer function, i.e, converting analog filter into a digital 

filter. However, direct design methods generate the discrete-time transfer function 

directly in z-domain. 

In the indirect approach, first a continuous-time transfer function that satisfies 

certain specifications is obtained using one of the standard analog filter 

approximations such as Butterworth and Chebysev. Then a corresponding discrete 

time transfer function is obtained using one of the following methods. 

 Invariant impulse response method 

 Modified invariant impulse response method 

 Matched z transformation 

 Bilinear transformation 

2.3 Comparison of FIR and IIR Digital Filters  

The main advantages of FIR digital filters over the IIR digital filters can be listed as 

follows: 
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 They are simple to design. 

 They are guaranteed to be stable. 

 They can be guaranteed to have perfect linear phase. This is a desirable property 

for many applications such as music and video processing. 

 They have a low sensivity to filter coefficient quantization errors. This is a 

desirable property to have when implementing a filter on a DSP processor or on 

an integrated circuit. 

The main disadvantages of FIR filters over IIR filters can be listed as follows: 

 They require a higher order to perform the filtering. Higher order means more 

memory, more power and more processing time [12]. 
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CHAPTER 3 

WINDOWING IN FINITE IMPULSE RESPONSE FILTER DESIGN 

3.1 Filter Design Using The Fourier Series 

The idea of using Fourier series in the design of filters comes from the fact that the 

frequency response of a FIR filter is a periodic function of w s  with period w s . 

Therefore, applying Fourier series for the frequency-domain representation of filters, it 

can be written as  

H(e
jwT

)= 




n

n

h(nT) e
-jwnT                                                                                                                                         

(3.1a)
 

where     
 

 h(nT)= dweeH
w

s

s

w

w

jwnTjwT

s




1/

1/

)(
1

 and w
T

s

2
                                                           (3.1b) 

By letting jwTe =z in Eq.(3.1a), the transfer function can be obtained as 

H(z)= 




n

n

h(nT) e
-z                                                               

                                                          (3.2)
    

For a given frequency spectrum, H( jwTe ), a corresponding transfer function can be 

obtained using Eq.(3.1b) and Eq.(3.2). But, the obtained transfer function becomes 

noncasual and has an infinite order. In order to provide a finite order transfer function, 

the series in Eq.(3.2) can be truncated as 

H(z)= 




2/)1(

2/)1(

Nn

Nn

h(nT) z
-n                                                               

                                                      (3.3) 
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where h(nT)=0 is defined for the range 2/)1(  Nn  

By expanding Eq.(3.3), it can be written as 

H(z)= h(0)+ 




2/)1(

1

Nn

n

[h(-nT) z
n 

+h(nT) z
-n

]
                                       

                                          (3.4) 

In order to make the transfer function casual, H(z) is multiplied by z
-(N-1)/2   

.This 

multiplication changes the group delay by an amount of (N-1)T / 2, but it doesn’t affect 

the amplitude response of the obtained filter. [13] 

3.2 FIR Filter Design Using the Windowing Method 

The windowing method using the window functions is applied for reducing undesired 

oscillations.[14] At this stage, the design of FIR filters using the window functions 

involves four general steps as follows: 

 Firstly, an idealized frequency response is assumed. Then using Eq.(3.1) an 

idealized infinite-duration noncasual filter is obtained. 

 To achieve the desired filter specifications, a suitable window is selected. 

 The window function is constructed and applied. 

 At last, the resulting finite-duration noncasual filter is converted into casual 

filter. 

3.3 Windowing Functions 

The windowing method is used to reduce undesired oscillations resulting from the 

truncation of a Fourier series by using a class of time-domain functions – known as 

window functions. Good windows have the following properties: 

 The narrow mainlobe 

 The small ripple ratio 
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 The large sidelobe roll-off ratio [15]. 

3.4 Well-Known Windows in Literature 

There are many windows which have been proposed in the literature, they are classified 

as fixed or adjustable according to having number of independent parameters in their 

functions. Fixed windows have only one parameter, namely, the window length which 

controls the mainlobe width. Adjustable windows have two or more independent 

parameters [16, 17]. 

3.4.1 Fixed Windows 

The most frequently used fixed windows are Rectangular, Triangular, Hanning, 

Hamming and Blackman. They are used for simple signal processing applications. 

3.4.1.1  Rectangular Window 

The rectangular window is the simplest window, as the name implies, it has a 

rectangular shape. It is defined as 

                                                                             (3.5) 

Figure 3.1 shows the spectral graph of  rectangular window function. It is seen that, the 

rectangular window has the narrow mainlobe width, but also it has large ripple ratio. 
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Figure 3.1 Rectangular window function for N=150 

3.4.1.2 Hann (Von Hann) Window 

Hanning window (or also known as Von Hann) is proposed better ripple ratio than r 

Rectangular window, but its mainlobe is nearly two times wider and defined by 

                                                      (3.8)  

Figure 3.2 shows the spectral graph of  Von Hann window function. It is seen that, the 

Vonn Hann window has better ripple ratio than the Rectangular window function, but its 

mainlobe width is two times wider.  
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Figure 3.2 Von Hann window function for N=150 

3.4.1.3 Hamming Window 

The window is optimized to minimize the maximum (nearest) side lobe, it is similar to 

Hann window.  

                                                              (3.9) 

with 

 
 

Figure 3.3 shows the spectral graph of Hamming window function. It provides better 

ripple ratio than the Von Hann window function, and their mainlobe widths are almost 

the same. 
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Figure 3.3 Hamming window function for N=150 

3.4.1.4 Blackman Window 

The Blackman window has an additional cosine term compared to the Von Hann and 

Hamming windows in order to have a better ripple ratio. It is defined as 

                      (3.10) 

 

By common convention, the unqualified term Blackman window refers to α = 0.16. 
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Figure 3.4 Blackman window function for N=150 

Figure 3.4 shows the spectral graph of  Blackman window function, which has  better 

ripple ratio than the previous fixed window function at the expense of having widest 

mainlobe width. 

3.4.2 Adjustable windows 

The most frequently used adjustable windows are Gaussian, Dolph-chebysev, Kaiser. 

They have two independent parameters 

3.4.2.1  Gaussian window 

Gaussian’s Fourier transform is also Fourier transform’s eigen function. Due to the 

Gaussian function goes to infinity, which must either be truncated at the window’s end, 

or itself windowed with another zero-lasted window [1, 18]. 
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Since Gaussian function’s logarithm generates a parabola. In frequency estimation, this 

could be used for exact quadratic interpolation.  

The Gaussian window function is given in Eq.3.11 

                                                                         (3.11) 

where, 

   

Figure 3.5 shows the spectral graph of  Gaussian window function, which has optium 

mainlobe and ripple ratio, when criticise in well known literature window function. 

 

Figure 3.5 Gaussian window function for N=150 
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3.4.2.2  Dolph–Chebyshev window 

The Dolph–Chebyshev window function w 0 (n) is illustrated in terms of its real valued 

discrete Fourier transform, W 0 (k): 

                                                   (3.12a) 

where defined as,  

α = 5; B = 1.94. 

The window function can be computed from W 0 (k) through discrete inverse Fourier 

transform:  

                                                                (3.12b) 

The window’s lagged version, with 0 ≤ n ≤ N−1, could be obtained via: 

.                                                                              (3.12c) 

Figure 3.6 shows the spectral graph of  Dolph- Chebyshev window function. 
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Figure 3.6 Dolph–Chebyshev  window function for N=150 

3.4.2.3 Kaiser window 

The Kaiser window is discovered by Kaiser. It has two independent parameters, namely 

the window length and the adjustable shape parameter  [19, 20]. The Kaiser window is 

defined by, 

                                                          (3.13) 

 

where α is adjustable parameter, and I 0  is the modified Bessel function of the first kind 

of zero [21]. 

 

Figure 3.7 shows the spectral graph of  Kaiser window function. 
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Figure 3.7 Kaiser window function for N=150 

It is clearly seen that Gaussian window and Hamming window have good performance 

on side lobes and main lobe. And, alternatively, the Gaussian window and Hamming 

window gives reduced passband ripple and increased attenuation relative to other 

windows for a fixed filter length. [22, 23] 
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CHAPTER 4 

PROPOSED WINDOW FUNCTION 

4.1 Introduction 

Window functions are commonly used at design of digital system design. In basic, there 

are two method in digital filter design. Using of Fourier Series Method is a basic 

approach contrary to method of digital approach filter type, known as Finite Impulse 

Response (FIR) filter design and Infinite Impulse Response (IIR) filter design [13, 15]. 

Specially at FIR filters, obtaining maximum gain of lobes, not only designing high 

degree of filters but also related to design of more suitable window function for same 

degree (N) [13]. 

Mainly, probability of approaching an ideal case increase at window functions with 

using infinite Fourier coefficients as changing coefficient. Specially, spectrums are  

expected to close impulse function with changing of functions’ coefficients. At this 

thesis shown that, as a result of combination of Gauss and Hamming window functions a 

new window function proposed and a new window function’s spectrum is more similar 

to impulse function. 

A proposed new window function is tested on a lot of numeric sample and with 

comparing gain lobes, window function’s efficiency is discussed. 

4.2 Proposed Window Function 

At time domain, mainly combination of Gauss window function and Hamming window 

function, which is developed version of rectangular window, a proposed window 

function is obtained. Hamming window function is a type of fixed window, explained in 
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section 3.4.1.4. Another window is Gaussian window function, which is a type of 

adjustable window, explained in 3.4.2.1. 

When a proposed window function is discovered, set out from windows’ spectrum 

structure. Mainly, using in suitable form of Gaussian and Hamming window function, 

denoted in Equation 3.9 (Hamming window) and Equation 3.11 (Gaussian window), it is 

aimed to reach better result, due to proposed window function reached a good result 

[13]. 

 ))/(cos()( Nnnw * 
2)/( Nn                                                                             (4.2.1) 

Here, N-1 defined as window length and value of n change -N/2≤ n≤ N/2 between as 

integer. Presented in Eq.4.2.1 proposed window function analysed at different filter 

types. Comes from 3 variable proposed window function has better spectrum; narrower 

mainlobe and lower sidelobes. 

4.3 Well Known Window Functions’ Spectrums on Ideal Band Pass Filter  

This part, three variable  proposed window functions’ results of efficiency, defined in 

Eq. 4.2.1, aimed to discuss with constant window length and different filter types and 

different variables. 

In proposed window function the modified model of Hamming and Gaussian window 

functions are used by changing their coefficients.  In this way, the function is formed by 

three variables. Mainlobe and side lobes can be controlled by independent to each 

others. 

In thesis, the quality of proposed window function applying results of not only 

function’s spectrum but also analysed at ideal filter samples to compare well known 

window functions, which are Blackman window function, Hamming window function, 

Kaiser window function, Bartlett window function and Gauss window function. 

With changing different interval of known as three values  ,  ,   observed to 

controllable changings at every three different type of  ideal filter characteristic. A lot of 
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different window functions are tested at ideal band pass filter  and between this 

functions, it is seen that, Hamming window function gives better results. In the light of 

the results of working in   (Denoted in Eq. (4.2.1)) chosen at optimum mainlobe. Same 

filter, at same window length is tested by using the proposed conventional window 

functions. 

 

Figure 4.1  Comparison of proposed window function  and well-known window function 

The spectrums of Blackman window function (green), Hamming window function (red), 

Kaiser window function (light blue), Bartlett window function (violet), Gauss window 

function (black)  are given in Fig. 4.1. Vertical axis points the gain (dB), horizontal axis 

points the normalized frequency (rad/sample). In this study, proposed window function 

is tested for different ideal filter gain lobes and reached similar results. For example, in 

Fig.4.1, the passband frequency is taken as 1/8 of sampling frequency, the bandwidth is 

equated to 1/20 of sampling frequency and the window length  of band pass filter is set 

to 151. 
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Change of  ,  and    in fixed values lead to better performance on mainlobe and 

sidelobes of bandpass filter. To watch over these changings, the conditions of Fig. 4.1. 

are taken on base values =2.4,   = 2,  = 8. This numeric values determined using of 

Tuning method. In other words, using of ‘for loop’ in Matlab,   taken 1 to 10 

periodically increased 0.01, and then doing spectrum analysed and then determined 

 ,likewise   and  . 

For example, for same condition used  = 2.4 in Fig. 4.2. and  = 3 in Fig. 4.3. For  = 

3, show better result at sidelobes,worse results at mainlobe to the  = 2.4. Discussion of 

these results    determined as 2.4, likewise   and  . Thus, these values on window 

function show better performance to the well known window functions. 

 

Figure 4.2 Comparison with Proposed window function and well known window 

function for   = 2.4 on bandpass filter 
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In Figure 4.2 and 4.3, Bartlett window function is plotted with -.-.-.-. and violet line, 

Gauss window function is plotted with …… and green line , Blackman window function 

is plotted with ---- and red line, Proposed window function is plotted with  ___ and blue 

line. 

 

Figure 4.3 Comparison with Proposed window function and well known window 

function for   = 3 on bandpass filter 

4.4 Using of Different Window Length on Proposed Window Function  

Aim of proposed window function, the efficiency is taken as optimum values for   =2, 

  = 8 and   = 2.4, compared to the well known window function in literature at 

different window length. Results are shown at Fig. 4.4. Fig. 4.5. and Fig.4.6. 
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Figure 4.4 Comparison with Proposed window function and well known window 

functions for window length (N+1) = 51 on bandpass filter 
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Figure 4.5 Comparison with Proposed window function and well known window 

functions for window length (N+1) = 151 on bandpass filter 
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Figure 4.6 Comparison with Proposed window function and well known window 

functions for window length (N+1) = 202 on bandpass filter 

It is clearly seen that proposed window function is more successful comparing to 

literature window function in terms of sidelobes in Fig 4.4, Fig 4.5 and Fig 4.6. In other 

words, conclusion of these comparison is pointed out changing of window length does 

not affect success of proposed window function. 

4.5 Using of Different Filter Types on Proposed Window Function  

Proposed window function gain lobes is anaysed at low pass, band pass and high pass 

filter types and compared with the conventional window functions gain lobes in this 

section.  

Every three samples, used  = 2 ,  = 8  and     =2.4. For the success of study taken as 

window length (N+1) 151. Results are shown in Fig. 4.7, Fig. 4.8. and Fig.  4.9. 
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Figure 4.7 Comparison with gainlobes of Proposed window function and well known 

window on lowpass filter 
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Figure 4.8 Comparison with gainlobes of Proposed window function and well known 

window on high pass filter 
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Figure 4.9 Comparison with gainlobes of Proposed window function and well known 

window on band pass filter 

In the light of the examples results show that in Fig. 4.7, Fig. 4.8. and Fig.  4.9, change 

of filter types does not effect the success of proposed window function when it is 

compared with well known literature window functions. Proposed window function is 

more successful to Bartlett, Gauss and Blackman window funtion. 
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CHAPTER 5 

CONCLUSION AND FUTURE STUDY 

In this chapter, a brief summary for the results of thesis work is presented. This thesis 

presents a new window function and its application in the design of nonrecursive digital 

filters. 

The window characteristic parameters give important information for the resultant filter 

design characteristic. It’s known from the literature that smaller mainlobe width of a 

spectrum causes smaller transition width between the passband and stopband regions in 

a filter; and smaller ripple ratio causes smaller ripples in the passband and stopband 

regions.  

In thesis, a new window function is formed Gaussian window function and Hamming 

window function combining the coefficients of the FIR filter are obtained by using 

Fourier Series Method. Combination of Gaussian and Hamming windows has resulted 

with more free parameters, which means the controlling of window function is more 

flexible, so it  has better performance. 

 

To find the optimum values of the parameters some numerical examples are studied on 

different filter characteristics and different window length. From the result of these 

examples it has been clearly shown that; a new window function reaches narrower main 

lobe and less amplitude side lobes. 
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APPENDIX 

In this section, some MATLAB programs are given which are used in this thesis for 

developing a new window function. Some explanation are given after nomenclature of 

the symbol “%”. Programs calculate and plot the window spectrums and filter amplutude 

responses for Rectangular, Blackman, Hamming, Kaiser, Bartlett, Hann, Gaussian and 

Proposed window function. 

clear all; close all ;clc 

f=[0 0.05 0.1 0.15 .2 .2 .25 .3 0.3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1]; 

%m=[0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] %band pass filter 

%m=[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] % low pass filter 

%m=[0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0] %second order band pass filter 

%m= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1] %high pass filter 

%m is specified filter type, which is lowpass filter, highpass filter and bandpass filter. 

n=150; 

%n is defined window length 

figure(1); 

plot(f,m) 

b1 = fir2(n,f,m,blackman(n+1));  

[h1,w1]=freqz(b1,128); 
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figure(2); 

plot(f,m,w1/pi,20*log(abs(h1*125))); 

%plot rectangular and blackman window function 

b2 = fir2(n,f,m,hamming(n+1)); 

[h2,w2]=freqz(b2,128); 

figure(3); 

plot(f,m,w1/pi,abs(h1*125),w2/pi,20*log(abs(h2*125))); 

%add to plotted hamming window function 

b3 = fir2(n,f,m,kaiser(n+1)); 

[h3,w3]=freqz(b3,128); 

figure (4); plot(f,m,w1/pi,20*log(abs(h1*125)),w2/pi,abs(h2*125),w3/pi,abs(h3*125)); 

% add to plotted kaiser window function 

b4 = fir2(n,f,m,bartlett(n+1)); 

[h4,w4]=freqz(b4,128); 

figure(5); 

plot(f,m,w1/pi,abs(h1*125),w2/pi,abs(h2*125),w3/pi,abs(h3*125),w4/pi,abs(h4*125)); 

%add to bartlett window function 

b5 = fir2(n,f,m,hann(n+1)); 

[h5,w5]=freqz(b5,128); 
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figure (6); 

plot(f,m,w1/pi,abs(h1*125),w2/pi,abs(h2*125),w3/pi,abs(h3*125),w4/pi,abs(h4*125),w

5/pi,abs(h5*125))  

%add hann window function 

b6 = fir2(n,f,m,gausswin(n+1)); [h6,w6]=freqz(b6,128); 

N=n;  

alfa=2  

%increasing alfa value, lead to better side loop and wider main loop. 

beta=8; 

% increasing beta value, lead to better side loop and wider main loop. 

zeta=2.4; 

% increasing zeta value, lead to better side loop and wider main loop.. 

brec = fir2(N,f,m,rectwin(N+1)); [hrec,wrec]=freqz(brec,128); 

for a=1:N+1; n= a-(N+2)/2; 

    w(n+((N+2)/2))=((cos((pi)*(n/N)))^zeta)*alfa^(((-1)*beta)*((n/N)^2)); 

    b(a)=brec(a)*w(n+((N+2)/2)); [h8,w8]=freqz(b,128); 

end 

figure (9);  

plot(f,m,w1/pi,20*log(abs(h1*125)),'r--

',w4/pi,20*log(abs(h4*125)),'m.',w6/pi,20*log(abs(h6*125)),'g:',w8/pi,20*log(abs(h8*1

25)),'b-') 
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xlabel('Normalized Frequency (rad/sample)') 

ylabel('Gain (dB)') 

figure (10); 

plot(f,m,w1/pi,20*log(abs(h1*125)),w2/pi,20*log(abs(h2*125)),w3/pi,20*log(abs(h3*1

25)),w4/pi,20*log(abs(h4*125)),w5/pi,20*log(abs(h5*125)),w6/pi,20*log(abs(h6*125)),

w8/pi,20*log(abs(h8*125))) 

%plots all window function 

xlabel('Normalized Frequency (rad/sample)') 

ylabel('Gain (dB)') 

 

 

 

 

 


