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ABSTRACT 

 

THERMOELASTIC ANALYSIS OF THICK PRESSURIZED 

CYLINDERS 
 

KANLIKAMA, Begüm 

M.Sc. in Mechanical Engineering 

Supervisors:  Prof. Dr. İbrahim H. GÜZELBEY 

   Assist. Prof. Dr. Ayşegül ABUŞOĞLU 

Jul 2013, 80 pages 

 

 

In this work, the thermoelastic analyses of the thick-walled cylinder and the 

nuclear reactor pressure vessel problems are studied using Finite Element Method. 

The two-dimensional finite element code for coupled thermoelasticity with 

conductive, convective, and radiative boundary conditions is generated, which is 

used to analyze the thick-walled cylinder and nuclear reactor pressure vessel cases. 

The elements are 8-noded quadrilateral for both thermal and mechanical solids. The 

mesh finery rates of the models for the thick-walled cylinder and the nuclear reactor 

pressure vessel are determined according to the agreement of the results with the 

ones obtained by ANSYS. To verify the obtained results, geometric models of the 

cases are generated within ANSYS and corresponding finite element types are 

utilized. Results are compared with ANSYS results. 

 

 

 

Key Words: Finite Element Method, thermoelasticity, thick-walled cylinder, reactor 

vessel. 

 
 

 

 



 

 

  

 

 

 

 

 

ÖZET 

KALIN CİDARLI BASINÇLI SİLİNDİRLERİN TERMOELASTİK 

ANALİZİ  
 

KANLIKAMA, Begüm 

Yüksek Lisans Tezi, Makine Mühendisliği Bölümü 

Tez Yöneticileri: Prof. Dr. İbrahim H. GÜZELBEY 

Yrd. Doç. Dr. Ayşegül ABUŞOĞLU 

Temmuz 2013, 80 sayfa 

 

Bu çalışmada, kalın cidarlı silindir ve nükleer reaktör basınç kabı 

problemlerinin termoelastik analizi sonlu elemanlar yöntemi ile çalışılmıştır. 

Birleştirilmiş termoelastisite için iki boyutlu sonlu elemanlar kodu, iletim, taşınım ve 

ışınım sınır koşulları ile kalın cidarlı silindir ve nükleer reaktör basınç kabı 

problemlerinin analizinde kullanılmak üzere oluşturulmuştur. Elemanlar termal ve 

mekanik katılar için kullanılabilen 8 düğümlü dörtgen elemanlardır. Kalın cidarlı 

silindir ve nükleer reaktör basınç kabı modellerinin ağ sıklığı oranları, ANSYS’den 

elde edilen sonuçlarla uyuşmasına göre belirlenmiştir. Elde edilen sonuçları 

doğrulamak için problemlerin geometrik modelleri ANSYS’de oluşturulmuş ve 

tutarlı sonlu eleman tipleri kullanılmıştır. Sonuçlar ANSYS sonuçlarıyla 

karşılaştırılmıştır. 

 

 

 

Anahtar Kelimeler: Sonlu elemanlar yöntemi, termoelastisite, kalın cidarlı silindir, 

reaktör kabı. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 GENERAL INTRODUCTION 

 

 Thermoelasticity is the subdivision of science which is coping with the coupled 

effects associated with the deformation of a substance resulting from a variation of 

the internal heat and, thus, a variation of the temperature of the substance. A 

variation in the temperature leads to a strain. Hence, the internal energy of the 

substance becomes dependent on both temperature and deformation. 

 

 Engineering problems associated with thermoelasticity problems are given by 

PDEs for displacement, stress, strain, and conduction with known or assumed 

boundary conditions. It is quite challenging to obtain a solution which satisfies such 

differential equations through the problem domain. 

 

 In spite of the fact that there have been studies concerning thermoelasticity for 

over a century, many corresponding problems are difficult if their solutions are 

attempted by means of classical methods. Hence, researchers prefer to use numerical 

methods and finite element techniques in order to solve problems of thermal 

deformation. Initial studies of the method compassed the transient temperature 

distribution of the solid, and later on, the mechanical loading process of the body was 

carried on due to obtained temperature and mechanical loading results. These 

separate mechanical and thermal effects are the procedures for uncoupled 

thermoelasticity. 

 

 FEM is known as a protean method in handling most engineering problems. 

The finite element method is based on partitioning a region into a lot of smaller 
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regions. These smaller regions are called as finite elements. Each of these smaller 

regions is governed by a simpler function that can be rather easily handled in 

comparison to the undivided region. The element boundary conditions of each finite 

element not only should be consistent with the boundary conditions of each of its 

neighbors, but also should satisfy overall region boundary conditions. Most consider 

the finite elements method as the most successful numerical method. But, it’s most 

important drawback is excessive number of fruitless equations and elements that can 

be formed after the analyses, in particular for complex three-dimensional structures. 

 

 Cylindrical-shaped vessels can be considered as the most common type of 

vessels. Pressurized vessels, heat exchangers, reactors, and other nuclear equipments 

are some examples for the cylindrical vessels. Present study investigated the radial 

displacements, radial and circumferential stresses, temperature distributions, and 

thermodynamic potentials distributions throughout the cylindrical vessel cross-

section using the Finite Elements Method. The present study considers the effect of 

the pressure and temperature for plane strain condition with conductive, convective, 

radiative, and mechanical boundary conditions, simultaneously. The present research 

proposes two sets of results obtained by numerical methods for two-dimensional 

analysis of a thick-walled cylinder and a nuclear reactor vessel. The latter solution 

considers the effect of outlet nozzles of cylinder.  

 

1.2 RESEARCH OBJECTIVES AND TASKS 

 

 Main research objective of this study is to analyze the thick-walled cylinders in 

terms of thermoelasticity. Tasks can be listed as following; 

 

I. To revise the thick-walled cylinders and thermoelasticity analyses in the 

literature. 

 

II. To develop the theory and a computer code which can carry on finite element 

analyses in two-dimensional and axisymmetric options for transient coupled 

thermoelasticity with conductive, convective, and radiative boundary 

conditions with 10 different finite elements. The code should read the 

http://encyclopedia2.thefreedictionary.com/Dimensional+analysis
http://encyclopedia2.thefreedictionary.com/Dimensional+analysis
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temperature distribution and use the data for stress analyses. Improved code 

must handle other loading conditions like pressure as well. 

 

III. To adapt a wide range of thermal and structural data files to our case studies. 

 

IV. To disentangle the thermoelasticity problems by utilizing written computer 

code and adapted data files. Gained results should be collated with analytical 

results. 

 

V. To collate the results with finite element software ANSYS in order to certify 

improved computer code. 

 

1.3 LAYOUT OF THESIS 

 

 In chapter two, literature surveys for the thermoelasticity analyses and 

thermoelasticity with thermodynamics are presented. 

 

 In chapter three, the main concepts of pressurized cylinders are presented. 

 

 In chapter four, the main concepts for the coupled thermoelasticity are 

presented. 

 

 In chapter five, thermodynamic potentials for linear thermoelasticity are 

considered. 

 

 In chapter six, results and discussion for different case studies are presented. 

 

 In chapter seven, conclusions are summarized. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1. INTRODUCTION 

 

 In this chapter, the literature review concerning thick-walled pressurized 

cylinders and thermoelasticity analyses are presented. In section 2.2., some papers 

about pressurized cylinders are briefly reviewed. In section 2.3., some papers 

concerning thermodynamic potentials analysis are reviewed. 

 

2.2. PRESSURIZED CYLINDERS 

 

 Since the thermal stresses in pressure vessels are very important in most 

applications, corresponding research in this field has a great significance for both 

theoretical and practical terms. When the thick-walled cylinders are exposed to 

internal and external temperatures and pressures, it becomes so important foreseeing 

the amount of deformation generated by applied load. 

 

 Shahani and Nabavi (2007) proposed an analytical solution for the thick 

thermoelastic cylinder using finite Hankel transform. Inside wall of the cylinder was 

subjected to transient thermal boundary conditions.  

  

 Simply supported beams whose thicknesses are changing along the lengths of 

the beams were subjected to thermal and mechanical loads simultaneously and their 

thermoelastic analyses in two-dimensional frame were carried out by Xu and Zhou 

(2012). The boundary conditions at their beam ends were the harmonic series with 

unknown coefficients and used to obtain the stress and displacement component 

series. 

 

 An experiment of a thermal stress analysis with one transient load was 

proposed by Fruehmann et al (2010). Specimens having different amount of damage 
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were tested and their modified thermoelastic stress analysis method might be 

considered significant as a nondestructive evaluation tool. 

  

  A thick-walled cylinder made of a functionally graded material was studied in 

terms of its thermopiezoelectric behavior by Khoshgoftar et al. (2009). They 

subjected the thick-walled cylinder to internal and external pressures, and also a 

temperature gradient. Heat transfer equation was solved and a symmetric temperature 

distribution was obtained. Stress relations were derived and substituted into 

mechanical equilibrium equations to be solved as nonhomogeneous differential 

equations. 

 

 Analytical solution for thermoelastic finite annular cylinders with functionally 

graded materials which were subjected to internal pressure, axial loading and thermal 

loads were presented by Hosseini Kordkheili and Naghdabadi (2008). Differential 

equilibrium equations were simplified to linear algebraic equations by means of 

Fourier expansion series of the displacement field components. Those simplified 

equations were solved to obtain the thermoelastic behavior of the cylinder.  

 

 Baker and Webber (1982) described a method called thermoelastic stress 

analysis in order to obtain the stress distribution on a body subjected to loads and the 

relation between the stress distribution and strength of the body.  

 

 Oden and Kross (1968) dealt with the formulation of general thermoelasticity 

problem. Their study was relevant to the finite element formulations of coupled 

dynamic thermoelastic problems. 

 

 Carter and Booker (1989) presented a method in order to solve the developed 

governing equations of fully coupled thermoelasticity using finite element 

approximation. Analytical results were then compared with the results obtained by 

the numerical method for some trial cases. It is also shown that the fully coupled 

analyses have a significant effect on results according to the ones of semi-coupled 

analyses.  
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 The uncoupled thermoelasticity behavior of a thick-walled cylinder of finite 

length with internal sources of radiation whose temperature was changing linearly 

was studied by Lamba and Khobragade (2012). The stresses and the temperature 

distribution for uncoupled thermoelasticity problem with radiative boundary 

conditions were obtained. Bessel functions of infinite series can be used in order to 

obtain the solutions.  

 

 An annular cylinder subjected to mechanical and thermal loads was studied by 

Furukawa and Takeuti (1986). According to their study, the mechanical loads have a 

significant effect on stress and temperature distributions that those effects cannot be 

neglected during the analysis. Material and physical properties were considered as 

nondependent on temperature.  

 

 Reddy and Chin (1998) carried on the dynamic thermomechanically coupled 

thermoelastic analysis of FG plates and cylinders by means of finite elements 

method. 

 

 Linear thermoelasticity analysis for FG cylindrical shells which are exposed to 

the transient thermal shock using finite elements method was studied by Santos et al. 

(2008). The three-dimensional equations of motion were simplified into 2D 

equations. 

 

 Jane and Lee (1999) presented a method based on the Laplace transform and 

finite difference method in order to investigate the transient thermoelastic behavior 

of multilayered hollow tubes with infinite lengths exposed to some known 

temperatures at internal and external walls. They found the transient results for the 

thermal stress distributions, displacements, and temperatures. The thermal stress, the 

displacement, and the temperature distributions were seen to change slightly as time 

increases. 

 

 Banas et al. (1987) proposed a finite elements formulation for a coupled 

thermoelastoplastic stress analysis of both a uniaxially loaded solid rod and a thick 

cylinder exposed to an internal pressure. Two numerical cases involving the coupling 
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effect were analyzed. The numerical solutions show that the maximum effective 

strain in solid structures from uncoupled analyses may occur up to 10 % greater than 

that from coupled analyses under the same mechanical or pressure load. 

 

 In order to study a thermomechanical problem, a finite elements method which 

uses both the known computational FEM and the fast Fourier transform technique 

was presented by Cho and Ahn (2002). Since their introduced finite elements method 

reduces the three-dimensional disk brake computations to two-dimensional case, they 

can solve the transient thermoelastic problem simpler. 

 

 Eslami et al. (1994) investigated a thin-walled cylindrical shell subjected to 

general mechanical and thermal shocks. The field of temperature and the field of 

displacement were coupled by means of a system of dynamic thermoelasticity 

equations. They applied their solution technique to the average wall temperature, 

lateral deformation of thin-walled shell, and thermal gradient through the thickness 

of the shell. 

 

 A computational technique in order to solve a dynamic coupled thermoelastic 

problem for an annular long tube was investigated by Li et al. (1983). The external 

wall of the cylinder was exposed to convection heat transfer by an ambient fluid 

temperature. There was not any mechanical load applied on the outer surface. 

However, the internal wall of the cylinder was subjected to both mechanical and 

thermal boundary conditions. The thermoelastic problem was solved by finite 

elements method. Authors proposed the computational results for the stress and 

temperature distributions. 

 

 Shao et al. (2008) developed some analytical solutions for thermal-mechanical 

and nonaxisymmetric behavior of FG annular cylinders which were exposed to time-

dependent thermal loads and nonaxisymmetric mechanical loads. They obtained 

numerical results of stress and temperature in functionally graded annular cylinder 

under proposed thermal-mechanical loads in graphical form. By solving the 2D 

thermal-mechanical problem, they used a complex Fourier series. 
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 Time-dependent behavior of one-dimensional axisymmetric coupled 

thermoelasticity problems with initial interface pressure was dealt by Hung et al. 

(2001). Initial interface pressure in a multilayered cylinder was considered as initial 

boundary condition for the thermoelasticity problem during the solution. 

 

 Time-dependent thermal stresses in a thick-walled annular cylinder was 

investigated by Hosseini and Akhlaghi (2009) for a functionally graded cylinder 

whose material properties were assumed as nonlinear with a power law distribution 

through the radial distance of the cylinder. The thick-walled cylinder was modeled 

with infinite length and plane strain state condition. Stress and displacement 

distributions were found using the analytical solution of governing differential 

equations. 

 

 Pelletier and Vel (2006) investigated the steady-state behavior of a thick-

walled hollow cylinder made of a functionally graded material, which was exposed 

to some steady-state mechanical and thermal loadings. The elastic material properties 

of the functionally graded thick-walled hollow cylinder were considered to be 

randomly variable through the radial direction of the cylinder from its center. The 

governing linear thermoelasticity and the governing steady-state three-dimensional 

heat conduction equations were simplified to the state condition of generalized plane 

strain deformations in axial (longitudinal) direction and then, analytical solutions 

were obtained.  

 

 Shao and Ma (2008) proposed a transient thermomechanical temperature and 

stress analysis for FG annular cylinders which were exposed to linearly increasing 

temperature distribution and mechanical loadings. They assumed the material 

properties as variable through the thickness and independent from temperature. 

Numerical results of thermomechanical stress and transient temperature distributions 

were obtained. 

 

 A general analytical solution for a thermoelastic problem exposed to 2D 

axisymmetric steady-state thermal and mechanical stresses in finite-length annular 

cylinder made of functionally graded material was derived by Jabbari et al. (2009). In 
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this particular study, authors solved the temperature distribution in terms of axial and 

radial directions analytically. The thermoelastic analysis was carried out for two 

cases with different boundary conditions on the ends of cylinder. Their intended 

solution technique might be applied to other kinds of thermomechanical and 

mechanical problems of different geometries, i.e. plates, cylinders of infinite lengths, 

and spheres. 

 

2.3. THERMOELASTICITY WITH THERMODYNAMICS 

 

 Lubarda (2004) derived four thermodynamic potentials including internal 

energy dependent on strain and entropy, Helmholtz free energy dependent on strain 

and temperature, Gibbs energy as a function of stress and temperature, and finally 

enthalpy as a function of stress and entropy by considering the linear dependence of 

specific heat on temperature. All four thermodynamic potentials were proposed in 

order to express them in terms of four possible pairs of independent state variables 

which are strain, entropy, temperature, and stress. 

 

 Some applications of thermoelasticity with developments in the irreversible 

thermodynamic techniques were presented by Biot (1956). General equations of the 

theory of thermoelasticity were given according to the principle of minimum entropy 

production in a variational form. 

 

 A method in order to compute the Gibbs energy and the Helmholtz free energy 

from an analysis of the enthalpy function and the internal energy was presented by 

Phillpot and Rickman (1991). A comparison of the Helmholtz and the Gibbs free 

energies computed by means of their methodology was carried out with the 

Helmholtz and the Gibbs free energies computed by means of a temperature-

integration scheme. 
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2.4. CONCLUSIONS ON LITERATURE SURVEY 

 

 The following conclusions were obtained from the literature reviews; 

 

1. Reactor vessels which cover the reactor cores are exposed to some nuclear 

materials. Hence, they should be constructed of materials which can withstand 

the bombardment with heat which is generated during fission and neutron 

irradiation. A few researchers dealt with the thermoelastic analysis of reactor 

vessels including convection and radiation. 

 

2. The thermal and structural materials were generally analyzed by means of solely 

thermoelasticity or solely thermodynamics. However they can simultaneously be 

investigated by means of both. Coupled analysis of both improves the quality of 

the finite element analysis.  
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CHAPTER 3 

 

PRESSURIZED CYLINDERS 

 

3.1. INTRODUCTION 

 

 This chapter deals with the main concepts of pressurized cylindrical vessels. A 

brief overview of the cylindrical thin pressurized vessels will be given at first. Then 

expressions of stress, strain, and deformations in thick-walled cylindrical vessels will 

be introduced due to solely internal pressure load, solely external pressure load, both 

internal and external pressure loads, solely thermal load, and finally both internal and 

external pressure loads with temperature load.  

 

 Cylindrical pressurized vessels such as pipes, boilers, and hydraulic cylinders 

are commonly utilized in industrial applications in order to carry many types of 

pressurized fluids. Since damage of pressurized vessels can lead to loss of life and 

property, pressurized vessels are designed with special care. Brittle materials such as 

cast iron and ductile materials such as mild steel can be utilized as the pressure vessel 

material. Once an internal pressure is applied to the pressurized cylinder, the pressure 

vessel is subjected to stresses in all directions resulting from pressure. These normal 

stresses are dependent on the dimensions and the shape of the vessel, and the applied 

pressure also.  

 

3.2. REVIEW OF CYLINDRICAL VESSELS 

 

 The pressurized cylinders can be exposed to several mechanical and thermal 

loads and these loads cause mechanical and thermal stresses of different intensities 

within the internal and external cylinder surfaces. Intensity and type of these stresses 

depend on cylindrical vessel geometry and type of applied loads. Some examples of 

the types of loads are the inner and outer pressures, the temperature gradients, weight 

of cylindrical vessel and its interior components, and the dynamic and cyclic 

reactions caused by the temperature and pressure changes. 
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3.2.1. Cylindrical Thin Pressurized Vessels 

 

 Consider a cylindrical vessel with internal diameter, d, and wall thickness, t as 

seen in Figure 3.1. An internal pressure, P , is resulted through the cylindrical vessel 

by the internal working fluid. An infinitesimally small element as seen in Figure 3.1 

is under two types of tensional normal stresses: hoop (circumferential) stress, 
t , 

and longitudinal stress, 
a . Circumferential stress is a kind of mechanical stress in a 

cylindrical body generated by the inner or outer pressures. Circumferential stress is 

the average force generated circumferentially at any point on the cylindrical vessel 

surface. For the case of thin cylindrical vessels, / 10ir t  , hence the change in the 

tangential stress in the radial direction is minimal. Radial stresses are the stresses that 

are perpendicular to the curved plane of the cylindrical vessel. For thin cylindrical 

vessels, their values can be ignored compared to the tangential and longitudinal stress 

values. Finally, the longitudinal stresses occur in the axis that lies through the length 

of the cylinder. The radial stress varies from P  at the inner surface to zero at the 

outer surface, but again is small compared with the other two stresses, and so is  

taken to be zero.  

 

 

 Figure 3.1. Cylindrical pressure vessel 
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 Therefore circumferential stress is nearly twice the longitudinal stress. 

According to strain and stress theory, corresponding tangential strain and 

longitudinal strain, respectively are: 
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        (3.2) 

 

3.2.2. Thick-Walled Cylindrical Vessels 

 

 French mathematician Lame was the first to determine the stresses through 

thick-walled cylindrical vessels in 1833. According to his sensible solution of 

determining the stresses, he assumed that thick-walled cylindrical vessels to consist 

of several thin-walled cylindrical vessels such that every single thin cylinder exerts 

pressure on the next other. His method of solution basically focused on three stress 

components at any point along the thick cylinder. Three stress components 

mentioned are tangential stress, or hoop stress, which is through the circumferential 

direction of the cylinder, longitudinal stress, or axial stress, which is along the 

direction of axis and remains unchanged for any cross-section, and finally, radial 

stress that is along the radial direction of the cylinder and it can be considered as 

pressure on outer or inner walls of the cylinder. The description for longitudinal 

stress is due to the assumption that any planar cross-section of the thick-walled 

cylindrical vessel will remain plane after the pressure loading and the material of the 

cylinder is homogeneous and isotropic. Hence, strains through the longitudinal axis 

remain the same.  
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Figure 3.2. A small section from cylindrical wall 

 

 Three stress components along a thick-walled cylinder wall can be seen from a 

small section of the wall shown in Figure 3.2. a  denotes the axial (longitudinal) 

stress, r  denotes the radial stress, and t  is the tangential (hoop) stress. The 

equilibrium equation without the effect of body forces is 

 

 r
t r

d
r

dr


           (3.3) 

 

 The expressions associating strains with corresponding stresses assuming that 

the planar cross-sections remain planar, and thus axial strain is constant through the 

radial direction, may be given as, 
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      (3.4) 

 

3.2.2.1 Cylinder under Internal Pressure Only 

 

 Some applications for thick-walled cylinders for which there is no any outer 

pressure applied can be gun barrels, gas storage tanks, hydraulic cylinders and liquid 

or gas-carrying pipes. Submarines and pressure vessels are some examples for closed 

cylinders, while shrink fits and gun barrels are certain examples of open cylinders. If 

both an outer and an inner pressure are applied to a cylindrical vessel with constant 

thickness, the deformation through the cylinder will be symmetric with respect to its 

longitudinal axis, and so will not alter through its length. The perpendicularly applied 
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pressure on the cylinder is symmetric, and so each point on the hollow thick-walled 

cylinder surface will be deformed by the same amount which is dependent on radius 

of thick cylinder. The radial shape of the thick cylinder will be maintained. As a 

result, there will not be any shear stresses on radial and circumferential planes and 

the stresses on these planes will be defined as principal stresses. 

 

 For pressurized cylinders of any wall thickness exposed only to an inner 

pressure as shown in Figure 3.3, the external pressure being zero ( 0oP  ) and if the 

thick-walled cylinder is closed-ended, longitudinal stress expression should be 

added, so following expressions are obtained (Poworoznek, 2008): 
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in which r  is the radial distance from the cylinder center, or  is the external radius, 

and ir  is the inner radius of the cylinder. The maximum shear stress occurs on inside 

wall of the cylindrical vessel for the case of inner pressure only. Both compressive 

and tensile stresses are their maximum on inside wall of the vessel. The maximum 

compressive stress is the radial stress, while the maximum tensile stress is the 

tangential one. Hence the maximum shear stress can be written as (Moss, 2004): 
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Figure 3.3. Cross-section of thick-walled cylinder 

 

 In equations (3.5), the tangential stress is numerically greater than the radial 

stress. Radial and tangential stresses are dependent on the radial distance, r . 

However, the longitudinal stress is not a function of the radial distance from the 

center and remains the same along the cylinder thickness. Figure 3.4 depicts the 

radial and tangential stress distributions through the cylinder thickness. For a thick 

cylindrical vessel that is exposed to an inner pressure, both radial and tangential 

stresses possess their maximum on internal wall of the vessel. Because inner pressure 

causes radial compression on the thick cylinder, it is considered as negative radial 

stress. Maximum numerical value for the circumferential stress occurs at the bore 

surface and minimum numerical value for the circumferential stress occurs at the 

external surface of the cylinder for the case of internal pressure only. 

 

 
   (a)     (b) 

Figure 3.4. Radial and tangential stress distributions 
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 Axial strain equals zero for the plane-strain case, and the remaining two strains 

are obtained by means of Hooke’s law as (Poworoznek, 2008): 
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     (3.7) 

 

Then, radial displacement can be calculated as: 

 

 r ru r          (3.8) 
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3.2.2.2 Cylinder under External Pressure Only 

 

 If the thick-walled cylinder is exposed to an outer pressure 
oP  only, the 

tangential and radial stresses can be given as (Poworoznek, 2008) 
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       (3.10) 

 

 The tangential and radial stresses can be seen as compressive stresses from 

equations above. The tangential stress is numerically greater than the radial stress.  

Maximum compressive circumferential stress occurs at inner wall with magnitude 

 
2

,max 2 2

2 o o
t
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r r
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
        (3.11) 

 

However, maximum radial stress occurs at external wall of the cylinder and equals 

oP . Thus, the maximum numerical values of the radial stress and the tangential stress 

do not occur at the same points throughout the thick-walled cylinder for the case of 

external pressure only (Fryer, 1998). If the pressure applied externally is reversed in 
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the opposite direction (outward from the center), 
oP  is replaced by -

oP  in equations 

(3.10) and (3.11). If the thickness ratio /o ir r  is very large, maximum stress 

approaches will be twice the magnitude of the pressure applied externally. 

 

3.2.2.3 Cylinder under both Internal and External Pressures 

 

 For the case including both an inner and an outer pressure on the cylinder 

walls, equations (3.5) may be expanded as (Poworoznek, 2008) 
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where 
iP  is the internal pressure and 

oP  denotes the external pressure. Radial 

displacement of any point in the surface of an open thick-walled cylinder with 

constant temperature is given as 
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where E  is the modulus of elasticity and   is the Poisson’s ratio. Each parameter is 

known in equations above except the radial distance vector r , whose value changes 

between the inner and outer radii. According to the equations (3.12), when the 

external pressure is greater than the internal one, stress increases as the radial 

distance approaches or . On the other hand, when internal pressure is greater than 

external one, the stresses increase as the radial distance approaches ir . Since 

equations (3.12) do not possess any angular position variable, points which are 

located at the same radius but at different angles possess the same radial and 

circumferential stresses. But because of the fact that the radial and circumferential 

stress equations are dependent on the radial distance, points at different radial 

distances from the central line of the cylinder experience different stresses. In section 
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3.2.2.1, it has been stated the stresses at any point on the thick cylinder wall are 

principal stresses. Therefore, the maximum shear stress at any point will be given by 

 

max
2
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


         (3.14) 

 

i.e. half the difference between the tangential and the radial stresses which are the 

greatest and the least principal stresses, respectively, in the case of thick-walled 

cylindrical vessel. 

 

3.2.2.4 Cylinder under Temperature Loads 

 

 If the natural expansion or shrinkage of a body resulting from some change in 

temperature is prevented, there will be thermal stresses induced throughout the body. 

This thermal stresses are induced due to the mechanical constraints applied. When 

internal wall of thick-walled cylinder is exposed to a uniform constant temperature 

and external wall is held at a temperature of oT , temperature distribution as a 

function of the radial distance throughout the thick-walled cylinder is as follows 

(Poworoznek, 2008): 
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 The analytical expressions for the radial, tangential, and axial stresses for the 

case of thermal loading can be calculated for plane-strain cylinder with fixed ends as 

(Poworoznek, 2008): 
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Corresponding radial and circumferential strains are then: 
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Then, radial displacement expression can be given as: 
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3.2.2.5 Cylinder under Pressure with Temperature Change 

 

 Most applications include a cylinder with constant wall thickness through the 

length and exposed to both a uniform inner pressure and a uniform outer pressure 

with a temperature change shown in Figure 3.5.  

 

 
Figure 3.5. Cylinder under inner and outer pressure with temperature change 

 

 The stress-strain-temperature relations for the cylinder material that is assumed 

to be isotropic and linearly elastic are: 
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where E  is the Young’s modulus,    is the linear thermal expansion coefficient, 

T  may be defined as the temperature change from the uniform reference 

temperature, and   is the Poisson’s ratio. The radial displacement, stresses and 

corresponding strains can be obtained by simply adding the expressions of solely 

pressure stresses and solely temperature stresses for the linear elastic cylinder 

concerned. For the plane-strain case, the radial stress, tangential stress and the radial 

displacement may be given as follows (Poworoznek, 2008): 
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 Stresses due to mechanical loads can be obtained from the same governing 

equations except that the temperature part is omitted.  
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CHAPTER 4 

 

COUPLED THERMOELASTIC ANALYSIS 

 

4.1. INTRODUCTION 

 

 This chapter deals with the development of formulations of general problems 

of coupled thermoelasticity.  

 

4.2. GOVERNING EQUATIONS OF COUPLED THERMOELASTICITY 

 

 The deformation of an elastic body may be due to some change in the heat 

content within the body. Thermally loading of elastic bodies leads to not only 

deformation but also change in the temperature field within the body as time 

increases. The displacement of an elastic body is characterized by mutual interaction 

between deformation and temperature fields. The domain of science dealing with the 

mutual interaction of these fields is called the thermoelasticity.  

 

 The temperature field is expressed by the Fourier heat conduction equation and 

there is not any elastic term included in this equation for uncoupled thermoelasticity 

theory. The thermal stresses are due to the corresponding temperature field which is 

governed by the heat conduction equation that is separate from displacement-

temperature field equation in uncoupled thermoelasticity.  

 

 Coupled thermoelastic cases consider the rate of change of the first invariant of 

strain tensor in time in first law of thermodynamics generating a relationship 

between strain and temperature fields. In this manner, the thermal and elastic fields 

become coupled (Hetnarski, 2009).  

 

 Due to the fundamental assumptions taken, it is considered to analyze 

homogeneous isotropic elastic bodies in this part. Under these assumptions, general 

governing equations of thermoelasticity are given. The elastic body shall possess a 
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temperature, 
0T , in its stress- and strain-free  state without the effect of external 

loads. The initial state is defined as reference state. For reference state, entropy is 

assumed to be equal zero. Due to the effects of heating or cooling sources, external 

body loads, and tractions, elastic body is exposed to some amount of temperature 

change and deformation. Thus, displacements occur through the elastic body. The 

change in the temperature may be given as follows 

 

 0T T             (4.1) 

 

in which T  is local absolute temperature at any point on the body. Resulting 

temperature change is expressed by occurred strains and stresses. Displacements, 

stresses, strains, and the temperature change are dependent upon the time and 

position. One of the governing equations of coupled thermoelasticity is the linear 

strain-displacement relations which define the strain components in terms of 

displacement components in matrix form as 
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       (4.2) 

 

in which the strain components in vectorial form is 
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          (4.3) 

 

 

and the displacement components are 
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         (4.4) 

 

Basic equations can be categorized in three groups: 

 

 Equilibrium equation 

 Constitutive law 

 Equation of heat conduction 

 

4.2.1. Equilibrium Equation 

 

 Equilibrium of the isotropic thermoelastic solid including body force intensities 

is governed in Cartesian coordinates as 

  

/ 0 0 / 0 /

0 / 0 / / 0 0

0 0 / 0 / /
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 
       

 (4.5) 

 

in which B  represents the body force intensity and the stress components in vectorial 

form can be expressed as 
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   (4.6)  

 

Stress components are accompanied by symmetry conditions as 

 

           ( , , , )ij ji i j x y z          (4.7) 

 



25 

 

Positive quantities in stress specify the increase in stress compared to the free-stress 

state due to applied thermal effects and mechanical loads. Displacement-strain 

relationship for the case of small displacement is, 

 

, ,

2

i j j i

ij

u u



         (4.8) 

 

in which 
iu  are defined as the displacement components. Strain components are also 

in symmetry relations as 

 

           ( , , , )ij ji i j x y z          (4.9) 

 

4.2.2. Constitutive Law 

 

 The constitutive law for thermoelasticity is governed by the superposition of 

the separate effects of thermal strain which is generated due to the temperature 

gradient from the reference temperature, and mechanical strain which is generated by 

the stress field. So, the total strain may be given as following 

 

, ,ij ij th ij mech            (4.10) 

 

Strain due to applied temperature gradient effects, as mechanical response of the 

body assuming for thermal expansion, in general, may be written as 

 

,ij th ij T            (4.11) 

 

 Coefficient of thermal expansion,  , may be dependent on the temperature. 

For the thermoelasticity problem, the generalized linear elastic Hooke’s law is 

assumed to be appropriate. However, generally the elastic components, as well, can 

be considered as dependent on the temperature. The mechanical strain components 

for the linear elastic homogeneous isotropic problem may be written with respect to 

the stress components as 
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      (4.12) 

 

where  

 

2(1 )
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         (4.13) 

 

In the equation above, G  denotes the modulus of rigidity, E  is the modulus of 

elasticity, and   denotes the Poisson’s ratio. The thermal strains are additive to 

elastic strains due to local stresses. Hence, the Hooke’s law becomes 
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     (4.14) 

 

Constitutive law for the thermoelasticity problem may, therefore, be written as 

following 
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 ij ijhk hk hkE T            (4.15) 

 

Hooke’s law or the generalized stress-strain relationship for thermoelasticity in linear 

elastic homogeneous isotropic material can be expressed as (Sadd, 2005) 

 

0( )ij ijhk hk ijD T T            (4.16) 

 

in which T  represents the absolute temperature, 
0T  represents the reference 

temperature, thus 
0T T  representing the excess temperature distribution,   is the 

thermal shear modulus and can be written as 
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      (4.17) 

 

in which E  represents the modulus of elasticity, v  is the Poisson’s ratio,    

represents the thermal expansion coefficient, and D  represents the elastic constants 

as 
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    (4.18) 

 

where G  is the modulus of rigidity and   represents the Lamé modulus as 

 

(1 )(1 2 )

E


 


 
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4.2.3. Heat Conduction 

 

  For a body which has a constant thermal conductivity, k , and no internal heat 

generation in steady-state conditions, the conduction equation is the Laplace equation 

(Sadd, 2005). The Laplace equation is an elliptic type of differential equation. This 

equation is a harmonic equation. 

 
2 2 2

2

2 2 2
0

x y z

  


  
    

  
       (4.20) 

 

 Instantaneous absolute temperature is depicted by T , and the difference 

between the instantaneous absolute temperature and the reference temperature 0T T  

by  . Most materials nearly obey Fourier’s law of heat conduction in which area rate 

of heat flux is linearly proportional to temperature gradient, 
x




, which means the 

basic heat conduction equation of thermoelasticity is Fourier’s law and can be given 

as 

 

i ij

j

q k
x


 


         (4.21) 

 

where ijk  are thermal heat conductivity coefficients of the material. Coefficient of 

thermal heat conductivity is, in general, assumed as constant, while it is a function of 

the temperature for real materials. But, for the latter case, resulting nonlinearity will 

be remarkable particularly if temperature gradient is large. The thermal conduction 

equation is 
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   

  
       

    (4.22) 

 

where T  denotes the local temperature,   denotes the density, iq  denotes the area 

rate of the heat flux vector, and C  denotes specific heat at constant volume per unit 

mass. Equation (4.22) is nonlinear because of the terms on the right side of the 

equation. Replacing T  by 0T  on right side of the equation makes it linear. The last 
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term including strain on the right-hand side of the extended equation above is the 

part that contains coupling of temperature field with the deformation one. Dot sign 

above the strain indicates derivative of strain due to time. When heat sources are 

applied on material, there should be addition to equation (4.22) that specifies 

produced heat amount in unit volume and time. In addition to the equation above, 

there can occur some heat generation per unit volume of the material caused by a 

heat source like nuclear reaction. Hence, local temperature should satisfy 

 

2

0(3 2 ) ii

T
C G T k T Q

t
   


    


     (4.23) 

 

in which C  denotes the specific heat and   denotes density. Hence, multiplication 

of them gives heat amount that is needed in order to increase local temperature of 

unit volume one degree. The first term on the right side of the equation above 

denotes net heat flow to material and the latter one denotes heat generation rate per 

unit volume of the material. Their summation gives available heat in order to 

increase local temperature.  

 

 General Navier equation can be derived by implementing the strain-

deformation expressions for small deformation and the general stress-strain 

expressions for thermoelasticity into the general equilibrium equation as 

 

2 ( ) ( ) 0i i

i i

G u G u B
x x


 

 
      

 
     (4.24) 

 

Utilizing the equation above is sensible solely when boundary conditions applied are 

in terms of displacement, u . The generalized Navier equation above is written in 

terms of displacement components, iu  through all three coordinate axes. 

 

4.2.4. Heat Convective Boundary 

 

For the convective boundary, if a region in the boundary must be in touch with 

the fluid which has a temperature of fT  outside the thermal boundary layer. The 

normal component of the heat flux vector can be given as (Al-Rushudi,1991): 
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ˆ ( )n b f

T
q k h T T

n


   


       (4.25) 

 

where h  is the convection heat transfer coefficient. 

 

4.2.5. Radiative Boundary 

 

For the radiative boundary, a body which has a temperature of bT  subjected to a 

heat source at temperature sT  may transfer heat from or to outside, by thermal 

radiation (Al-Rushudi,1991). 

 

4 4ˆ ( ) ( )rad b b B b s

q
q E T G T T

A
           (4.26) 

 

where  is the emissivity and B  is the Stefan-Boltzmann constant and it’s 

numerical value is 
8 2 45.676 10 /W m K  . The boundary condition can be given as: 

 

4 4( ) 0B b s

T
k T T

n

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A body can possess multimode heat transfer conditions. The boundary condition 

for both convective and radiative conditions can be written as: 
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CHAPTER 5 

 

THE THERMODYNAMIC POTENTIALS ANALYSIS 

 

5.1. INTRODUCTION 

 

 Thermodynamic potentials include four quantities that are useful during 

thermodynamic analysis. The four thermodynamic potentials are called Gibbs 

energy, the internal energy, enthalpy, and Helmholtz free energy. The four 

thermodynamic potentials are extensive state variables of the dimensions of the 

energy. The objective in using these thermodynamic potentials is to provide the 

equilibrium for systems that are interacting with environment and to measure energy 

of the system in terms of different variables, thus measuring more state variables of 

the system. Once the thermodynamic potentials are known in terms of specified 

variables, all other variables characterizing system can be determined by partially 

differentiation of the thermodynamic potentials. The thermodynamic potentials are 

state functions which define system equilibrium in terms of natural independent state 

variables. These natural independent variables allow calculating other independent 

state variables by differentiating thermodynamic potentials.  

 

 Gibbs energy can be described as the subtraction of the energy obtained from 

the environment of the system by heating from the summation of the internal energy 

and the work to give the system final volume at a constant pressure P. Internal 

energy can be considered as energy needed in order to obtain system without any 

volume or temperature changes. The body is assumed to be in the reference state 

(free-stress and free-strain state) and have a uniform reference temperature of rT , 

initially. The entropy, s , and the internal energy, u , of the unit element increase 

during heating and deformation. However, for the definition of enthalpy, if system is 

generated from a very small volume to generate room for system, additional amount 

of work should be carried on. For Helmholtz free energy, an environment at a 
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constant temperature adds Ts  amount of energy into the system, while decreasing 

overall energy required for generating a system.  

 

 The useful expressions for four thermodynamic potentials; internal energy, the 

Helmholtz free energy, Gibbs energy, and the enthalpy function in terms of their 

specific independent state variables are reviewed in the section 5.2. 

 

5.2. EQUATIONS OF FOUR THERMODYNAMIC POTENTIALS 

 

 All thermodynamic potentials are the state functions derived from energetic 

form of fundamental equation by means of the Legendre transform, as a function of 

natural variables. Natural variables lead to calculate other state functions by partial 

differentiation of thermodynamic potentials. Thermodynamic potential for a system 

must depend on a thermal variable that may be temperature and entropy, and a 

mechanical one that may be stress and strain. Each of the four fundamental 

thermodynamic potentials provides the most convenient definition depending on the 

type of process involved. All of the four thermodynamic potentials functions have 

the units of energy. Any one of the four thermodynamic potentials may be utilized in 

order to define any system in equilibrium. However, some of them are more 

appropriate for a given system than the others. The expressions are, for all state 

functions, based on the assumption of linear dependence of specific heat upon 

temperature. 

 

5.2.1. Internal Energy 

 

 The first state variable that may be considered as the first thermodynamic 

potential defined with the units of energy is the internal energy in thermodynamics. 

The starting point in order to describe the other thermodynamic potentials is going to 

be the internal energy (Lubarda, 2004).  

 

 ij ijdu d Tds           (5.1) 

 

 Hence, strain and entropy are the natural independent state variables for 

internal energy. By means of the equation above, increment of the internal energy 
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can be written in terms of increment of entropy and increment of strain. The simple 

form of the differential of the internal energy state function is given above and 

Maxwell relation gives 

 

 
ij

ij s

T

s









 
         (5.2) 

 

The expression for stress, 
ij , in terms of strain and temperature based on Hooke’s 

law, can be given as (Lubarda, 2004) 

 

 02 ( )ij ij kk T ij T ij rT T                 (5.3) 

 

Specific heat, C , is assumed to be linearly proportional to the temperature with the 

relationship 
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C

T


           (5.4) 

 

Using Maxwell relation and carrying on substitutions and joint integrations will lead 

(Lubarda, 2004) 

 

  0 00

1
1r kk TT T s s

C

  
 

    
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      (5.5) 

 

Since a disadvantage of using internal energy as a thermodynamic potential is natural 

variable, entropy, is difficult to control, it is better to replace the entropy by the 

temperature. Dealing with other three thermodynamic potentials which may be 

obtained by utilizing Legendre transform is more convenient in practical manner.  

Other three thermodynamic potentials (enthalpy, Helmholtz free energy, and Gibbs 

function) are Legendre transforms of internal energy in terms of natural independent 

state variables. Expression for the internal energy in terms of its natural state 

variables, ( , )iju s , can be written as (Lubarda, 2004) 
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in which 
S  denotes the isentropic Lamé elastic constant and equals 
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T r
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5.2.2. Helmholtz Free Energy 

 

 One of the most widely used thermodynamic potentials is the Helmholtz 

function. Helmholtz free energy can be described as difference between the internal 

energy and the energy that can be obtained from the environment of the system by 

heating.  

 

 df u Ts           (5.8) 

 

Internal energy can be considered as energy that is necessary in order to create 

system without any volume or temperature change. However, some amount of 

energy may be obtained by spontaneous heat transfer from environment into system, 

if system is generated in an environment having temperature T. The spontaneous heat 

transfer is Ts  in which s  denotes final entropy of system. For such a problem, there 

is no need to add in as much energy. That is, less work will be necessary in order to 

generate system, if a final state of higher entropy is generated. So, Helmholtz free 

energy is the amount of energy that is required to put in to generate a system, when 

instantaneous heat transfer from environment into system is accounted for. 

Helmholtz free energy is the Legendre transform of internal energy with respect to 

entropy, s . Differential of Helmholtz free energy is 

 

 ij ijdf d sdT           (5.9) 

 

and Maxwell relation for independent state variables 
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The entropy expression in terms of strain and temperature (Lubarda, 2004) 

 

0 0

0 0kk T

r

T
s s C C

T
             (5.11) 

 

Helmholtz free energy becomes constant at constant volume and constant 

temperature. The natural independent variables of the Helmholtz free energy are the 

strain and temperature. By replacing the independent variable, entropy, by 

temperature in internal energy expression using the relationship between the internal 

energy and temperature by means of a partial Legendre transform (Lubarda, 2004), 

we define the Helmholtz free energy, f : 
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in which   and T  denote Lamé isothermal elastic constants, 0  denotes volumetric 

thermal expansion coefficient in reference temperature rT , 0s  denotes specific 

entropy at temperature rT , and  

 

 
2

3
T T


            (5.13) 

 

denotes isothermal bulk modulus, and, 0C  denotes specific heat at constant strain and 

rT .  

 

5.2.3. Gibbs Energy 

 

 Gibbs free energy (also known as the Gibbs potential) is Legendre 

transformation of the internal energy with respect to entropy. It should be noted that 

Gibbs energy is naturally dependent on the independent variables stress and 

temperature. Differential form of the Gibbs energy 

 

 ij ijdg sdT d           (5.14) 

 



36 

 

and the Maxwell relation for independent state variables reads 

 

ij

ij T

s

T









 
        (5.15) 

 

Gibbs free energy becomes constant when pressure and temperature are constant. 

Constant pressure and constant temperature are the conditions that phase transitions 

occur. Lubarda (2004) derived an expression for the temperature dependence of the 

Gibbs free energy as: 
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simply states that partial derivatives with respect to temperature and stress can be 

given by: 

 

,          ij

ij T

dg dg
s

d dT 
          (5.17) 

 

 It is obvious that independent variable, temperature, is the ideal variable that 

can be more easily controlled in the lab. Hence both the Helmholtz free energy and 

the Gibbs energy are two thermodynamic potentials that are mostly utilized.  

 

5.2.4. Enthalpy 

 

 The natural independent variables of enthalpy are the stress and the entropy. 

Enthalpy, also, may be considered as a thermodynamic potential. The differential of 

enthalpy in terms of independent state variables is 

 

ij ijdh Tds d           (5.18) 

 

and the Maxwell relation holds 
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By partial differentiation, substitution, and joint integration, the temperature 

expression can be obtained as following (Lubarda, 2004) 
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 Because a small change in length is one third of the change in volume of an 

isotropic substance, coefficient of volumetric thermal expansion, 0 , is three times 

greater than linear thermal expansion coefficient,  . The expressions above lead to 

the enthalpy expression in terms of its natural state variables of entropy and stress; 

that is (Lubarda, 2004) 
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CHAPTER 6 

 

CASE STUDIES AND RESULTS 

 

6.1. INTRODUCTION 

 

 Main concepts of the analyses of thermoelastic cylinders with 

thermomechanical loads are summarized in this particular chapter. Analytical results 

obtained by the analytical formulations for thick-walled cylinder of plane strain with 

thermal and pressure loads are compared with the ones from the computational code 

and ANSYS. In the next section, thermoelasticity analysis of a thick-walled 

cylindrical geometry is presented in brief. In section 6.3., the analysis of the cross-

section of the nozzle region of a nuclear reactor vessel is overviewed in brief. 

 

6.2. COUPLED THERMOELASTIC ANALYSIS OF THICK-WALLED 

CYLINDER 

 

 Uncoupled thermoelastic analyses are more rustic than coupled 

thermoelasticity analyses. In uncoupled thermoelasticity, computation of heat flux 

and temperature for any internal node in the whole region exacts merely the heat flux 

and temperature at the surface nodes. But, in coupled theory of thermoelasticity by 

Biot (1956), the equations of elasticity and of heat conduction are coupled which 

deals with the first defect of the uncoupled theory. 

 

 In order to generate the finite element model, a typical thick-walled cylinder 

was built. Two quarter thermal and structural geometrical models were built with the 

8-noded quadrilateral elements with the element behavior option of plane strain in 

the computer code according to the axisymmetric characteristic of the thick-walled 

cylinder and its boundary conditions. The displacement in x-direction is applied as 

zero for the x=0 line of the geometrical model and also, the displacement in y-

direction is applied as zero for the y=0 line of the geometrical model. The numbers 

of elements and nodes were 480 and 1529, respectively. 
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 The inside radius of the typical thick-walled cylinder was 0.1 m, whereas its 

outside radius is 0.2 m. The internal flowing fluid pressure was 15.7 MPa, and there 

is not any applied pressure externally. The outer surface of the thick-walled cylinder 

was held at a temperature of 232.7 °C, the temperature of the fluid flowing through 

the inside wall was 325 °C, and the temperature from the radiation source which 

affects internally to the cylinder was 1573 K. 

 

 The finite element software that was utilized in order to validate the results 

obtained by the computer code was ANSYS. The coupled thermal-stress analysis 

was carried out using the coupled field method [7] in order to compute the coupled 

thermomechanical stresses of the thick-walled cylinder.  

 

 A sequentially coupled problem analysis is the combination of analyses from 

different engineering disciplines which interact to solve a global engineering 

problem [7]. Solution procedures and the solutions themselves that are associated 

with a specific engineering discipline will be referred to as a field analysis. When the 

input of one field analysis depends on the results from another analysis, the analyses 

are coupled. Thereby, every aloof physics environment should be built loose. Each 

built physics environment might be utilized in order to obtain a coupled field 

solution. But for the whole model, it is fundamental to generate a unique nodal 

arrangement. The model is kept constant by utilizing the physical environment from 

the first one with the next coupled environments. During the analysis, the geometry 

was generated in the thermal environment which contains the thermal parameters and 

boundary conditions. 

 

 Element types might change albeit the model should remain constant. For 

example, structural elements are mandatory in order to determine the stresses in the 

cylinder while for thermal analysis thermal elements are mandatory. But, it is 

material that merely some of the element combinations might be used for coupled 

physics analyses. 

 

 Analysis exacts to generate all mandatory environments. At first hand, 

essentially in preprocessing part environments are generated and written to memory. 
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Then the environments might be combined in order to disentangle coupled analysis 

in the solution part. PLANE77 (2-D 8-node Thermal Solid) element type was used 

for the thermal environment. This 8-noded thermal element is applicable to 2D, 

transient or steady-state thermal analyses. After creating the geometry depicted in 

Figure 6.1 and presenting thermal properties, the thermal environment was already 

fully described. The thermal environment might now be saved in order to be used at 

a later time. In defining structural environment, as the model of the problem has 

already been characterized in thermal environment, merely detailing structural 

variables is mandatory. Because the geometry comprises PLANE77 element type and 

it is also be analyzed structurally, this element type must be switched into its 

corresponding structural element type. For this particular problem, the new element 

type is PLANE183 and merely material properties were required to be modified. 

Geometry was remaining constant. The structural environment was then fully 

described with structural material properties. After saving the structural environment 

and solving the thermal part, the thermal solution had then been obtained. If the 

steady-state temperature on the cylinder is plotted, it will be seen it is approximately 

a uniform 312 ˚C at the inner radius, as expected. This data is saved in a thermal 

results file which has an extension of “.rth”. These results will be used in 

determining the structural effects. 
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Figure 6.1. Finite element mesh for the cylinder consisting of 8-noded quadrilateral 

elements under thermal and pressure loads 

 

 When solving the structural part of the problem, the thermal effects were 

needed to be included. Including thermal effects coupled the data which prescribed in 

structural environment to the results obtained from the solution of thermal 

environment and used it during analysis. For this problem the reference temperature 

was fixed to 298 °K. The basic solution procedure for the coupled-field method was 

carried out as: 

 

 The geometry was created and the thermal properties were defined for the 

thermal environment. 

 The thermal environment which includes geometry and the thermal material 

properties is written to memory to be used at a later time.  

 The physical properties were defined for the structural environment. The 

element types were switched from the thermal element PLANE77 to its 

corresponding mechanical element PLANE183. The element type was 

switched. The element material properties were defined. 
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 The structural environment was written to memory.  

 In the solution phase, the thermal environment is read. The constraints were 

applied. The system was solved. 

 The structural environment is read in. The structural constraints were 

applied. The thermal effects were included. The reference temperature was 

defined. The structural system was solved. 

The temperature distribution, the radial displacement, the radial stress, and 

the circumferential stress distributions through the wall thickness that are obtained 

from the computer code, the finite element software ANSYS, and analytical 

formulations are shown in Figures 6.2., 6.3., 6.4. and 6.5., which proves the close 

agreement between different methods. 
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Figure 6.2. Temperature distributions through the radius of thick-walled cylinder
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Figure 6.3.  Variation of radial displacement of cylinder with radial distance in different methods. 
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Figure 6.4.  Steady-state radial stresses across the radius of a hollow cylinder subjected to pressure and heating on both internal and 

outer surface. 
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Figure 6.5.  Steady-state hoop stress distributions across the radius of a hollow cylinder subjected to constant heating and pressure.
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6.3. COUPLED THERMOELASTIC ANALYSIS OF THE NUCLEAR 

REACTOR VESSEL 

 

 The reactor coolant is transferred from the reactor pressure vessel to the steam 

generators by means of the primary piping system which consists of the hot legs or 

outlet nozzles. Each outlet nozzle connects reactor pressure vessel to the steam 

generator. The thermal loads in reactor vessel occur in normal operating and hot 

shutdown conditions. In this study, only thermal loads for normal operating 

conditions were examined. The reactor vessel can freely undergo some radial 

movement due to the pressure and thermal expansion. A reactor vessel overview 

including A-A which is the cross-section that the whole analysis is carried on within, 

is given in Figure 6.6. 

 

 

Figure 6.6.  Reactor vessel [16]. 

 

 A usual VVER nuclear reactor vessel was constructed to create FE geometry. 

Thermal and structural models were constructed separately with 8-noded 

quadrilateral elements with the element behavior option of plane strain in the 
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computer code. Zero-displacement was applied to x=0 and y=0 lines of the finite 

element model. Node and element numbers used were 1185 and 336, respectively. 

 

 Inner radius of the usual VVER nuclear reactor vessel was 2.116 m and its 

outer radius is 2.3135 m, which leads to a wall thickness of 197.5 mm. External wall 

of the nuclear reactor vessel was held at 232.7 °C. This problem has the same 

convective boundary conditions as the thick-walled cylinder case which is in contact 

with a fluid at a temperature of 325 °C and having a heat convection coefficient of 

550 2/ ( )W m C . Additionally, this problem has the same radiative boundary 

conditions as the previous problem which is exposed to radiation by a source with a 

temperature of 1573 °K. Internally flowing fluid pressure was 15.7 MPa. Outside of 

the reactor vessel was vacuum, thus there was not any pressure applied externally. 

Stephan-Boltzmann constant was taken as 5.67 8 2 410 / ( )W m K   and the emissivity 

was applied as 0.14. 

 

 Comparison of the results obtained from the computer code was carried out by 

means of finite element software package ANSYS. Coupled thermal-structural 

analysis was done by means of the coupled field method [7] of ANSYS. Hence, 

coupled thermomechanical stresses and displacements were determined for the 

nuclear reactor vessel. 

 

 Since element type of PLANE77 is suitable for two-dimensional, transient or 

steady-state thermal analyses, this element type was used during creating the thermal 

environment. After creating the geometry depicted in Figure 6.7 and describing the 

thermal material properties, thermal environment of our problem was ready to be 

saved. According to the thermal results file, the steady-state temperature on the inner 

surface was anticipated approximately as 355 °C. 
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Figure 6.7. Finite element mesh for the nozzle region cross-section consisting of 8-

noded quadrilateral elements 

 

 Thermal effects should be included during the solution of the structural 

problem. Including thermal effects were necessary in order to couple data of the 

structural environment to the thermal environment results. Reference temperature for 

the particular analysis was set to 298 °K. 

 

 The temperature distributions through the wall thickness that are obtained from 

the computer code and finite element software ANSYS are shown in Figures 6.8. and 

6.9., which proves the close agreement between different methods. 
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Figure 6.8.  Comparison of temperature distributions through y=0 surface of the model. 
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Figure 6.9.  Temperature distributions through x=0 surface of the model for plane strain.
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 Radial distributions of displacement for y=0 and x=0 surfaces of the finite 

element model are depicted in Figures 6.10. and 6.11., respectively, and the radial 

stress distributions for y=0 and x=0 surfaces of the finite element model are depicted 

in Figures 6.12. and 6.13., respectively, and the hoop distributions of stress for y=0 

and x=0 surfaces of the finite element model are depicted in Figures 6.14. and 6.15., 

respectively, and it is obvious that the results obtained from different methods are in 

close agreement with each other. 

 

 The results for the radial displacement, the radial stress, and the circumferential 

stress at the inner surface of the nozzle, that is the surface perpendicular to the flow, 

are depicted in Figures 6.16., 6.17., and 6.18., respectively.  
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Figure 6.10.  Radial displacement distributions through the thickness of the model at y=0 cross-section. 
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Figure 6.11.  Radial displacement distributions at x=0 surface of the model by ANSYS and our computational code. 
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Figure 6.12.  Radial stresses through the radial distance by ANSYS and our code at y=0 cross-section. 
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Figure 6.13.  Comparison of radial stresses through the radial distance by ANSYS and our code at x=0 cross-section. 
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Figure 6.14.  Comparison of hoop stresses through the radial distance by ANSYS and our code at y=0 cross-section. 
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Figure 6.15.  Hoop stresses through x=0 edge of the plane strain model. 
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Figure 6.16.  Radial displacements through the inlet nozzle region of the plane strain model. 
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Figure 6.17.  Radial stress distributions through the nozzle flow cross-section of the model by ANSYS and code. 
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Figure 6.18.  Hoop stresses through the nozzle flow cross-section of the plane strain model by ANSYS and our code.
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6.4. THERMODYNAMIC POTENTIALS ANALYSIS OF THE NUCLEAR 

REACTOR VESSEL 

 

 This work demonstrates how four thermodynamic potentials; the internal 

energy, the Helmholtz free energy, the Gibbs energy and the enthalpy are calculated 

separately for a horizontal cross-section that contains four outlet nozzles of a nuclear 

reactor pressure vessel system when thermomechanical loads are applied. The finite 

element model showing a horizontal cross-section of the reactor vessel is generated 

by both our thermoelasticity code and finite element software ANSYS. Thermal and 

mechanical loads are applied to the overall system under plane strain condition. The 

transition to thermodynamic potentials is done by introducing the stress, strain, and 

temperature results from the thermoelasticity code into four thermodynamic 

potentials expressions. The thermodynamic analysis is presented based on the use of 

all thermodynamic potentials (internal energy, Helmholtz free energy, Gibbs free 

energy, and enthalpy) in terms of their natural independent variables; stress, strain, 

temperature, and entropy. The four energy functions commonly used in 

thermodynamics are used to provide results for thermodynamic analysis.  

 

The expressions for all considered thermodynamic potentials are well-known 

from linear thermoelasticity. This section builds on previous work by Lubarda (2004) 

and provides specificity by including a simple case with both thermal and 

mechanical effects. The motivation for this study comes principally from the 

development of thermomechanical model for reactor vessel cross-section subjected 

to temperature and pressure loads. We believe that this framework is sufficiently 

general that realistic models of nuclear reactor vessels can be developed within it. 

The main objective is that once four independent state variables have been specified, 

the thermodynamic potentials distributions for the entire model can be obtained. The 

presented analysis is an extension of the classical thermodynamics analysis by 

including stress and strain tensors besides temperature and entropy. This was the first 

time when all four fundamental thermodynamic potentials have been evaluated for a 

reactor vessel system. 
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 A thermomechanical finite element modeling of the cross-section of the nozzle 

region of a reactor pressure vessel was built in order to certify the solutions from our 

computational code. Due to the axisymmetry characteristic of the nozzle region 

cross-section and its boundary conditions, a one-fourth of the geometrical model as 

depicted in Figure 6.7 was built with the 8-noded thermal elements PLANE77 with 

the element behavior of plane strain and the 8-noded plane elements PLANE183 

with the element behavior of plane strain by means of the finite element software 

ANSYS like in the first case. Again, zero-displacement in x-direction is applied for 

the x=0 line of the geometrical model and zero-displacement in y-direction is applied 

for the y=0 line of the geometrical model. The numbers of elements and nodes were 

336 and 1185, respectively.  

 

Inner radius of the nozzle region cross-section was 2.116 m, whereas its 

outside radius is 2.3135 m. Structural and thermal boundary conditions were applied 

in order to generate a realistic model. The internal flowing fluid pressure was 15.7 

MPa, and there is not any applied pressure externally. The outer temperature was 

232.7 °C, the inner fluid temperature was 325 °C, and the temperature from the 

radiation source which is subjected internally to the cylinder was 1573 K.  

 

Some of the parameters of reactor pressure vessel are as follows: 

 Inner diameter of the cylindrical shell is 4232 mm [16]. 

 Wall thickness of cylindrical shell is 197.5 mm [16]. 

 Operating pressure is 15.7 MPa. 

 Operating temperature is 325 C. 

 Total inside height is 3855 mm [16]. 
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The thermomechanical parameters of each case are listed in Table 1. Some 

thermomechanical properties for the case of reactor vessel were adopted from 

reference [1]. 

 

Table.1. Thermomechanical properties 

 E (Pa)   3( . )kg m   k( /W m C ) (1/ )K  

Reactor 

pressure 

vessel 

112.0577275 10  0.3 7850 48 612 10  

 

E is the Young’s modulus,   is the Poisson’s ratio,   is the density, k is the 

material conductivity, and   is the coefficient of thermal expansion.  

 

Once entropy is considered, the system must accomplish the equilibrium 

between maximizing the entropy while minimizing the Helmholtz free energy as far 

as possible. The Helmholtz free energy will be a minimum if the system reaches the 

equilibrium. It may be easily seen in Figures 6.19 and 6.21. Figure 6.20 shows the 

internal energy as a function of the thickness of the reactor vessel cross-section under 

prescribed boundary conditions. As stated before in Section 5.2.3, the Gibbs energy 

and the Helmholtz free energy are in a simple relationship by Legendre transform. 

Figure 6.22 depicts the Gibbs energy as a function of the radial distance of the 

reactor vessel cross-section under specified thermal and pressure boundary 

conditions. Figure 6.23 depicts the enthalpy function distribution with respect to the 

radial distance of the pressure vessel. Also, the inner surface of the nozzle, which is 

perpendicular to assumed direction of fluid, is investigated and results are shown in 

from Figure 6.24 to Figure 6.28 for entropy, internal energy, Helmholtz free energy, 

Gibbs energy, and enthalpy, respectively. 
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Figure 6.19.  Entropy through the thickness of the cross-section of the plane strain model by the computer code.
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Figure 6.20.  Internal energy through the thickness of the cross-section of the plane strain model by the computer code.
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Figure 6.21.  Helmholtz free energy through the thickness of the cross-section of the plane strain model by the computer code.
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Figure 6.22.  Gibbs energy through the thickness of the cross-section of the plane strain model by the computer code.
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Figure 6.23.  Enthalpy through the thickness of the cross-section of the plane strain model by the computer code.
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Figure 6.24.  Entropy through the tangential angle of the nozzle for the plane strain model by the computer code.
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Figure 6.25.  Internal energy through the tangential angle of the nozzle for the plane strain model by the computer code.
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Figure 6.26.  Helmholtz free energy through the tangential angle of the nozzle for the plane strain model by the computer code.
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Figure 6.27.  Gibbs energy through the tangential angle of the nozzle for the plane strain model by the computer code.
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Figure 6.28.  Enthalpy through the tangential angle of the nozzle for the plane strain model by the computer code.
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CHAPTER 7 

 

CONCLUSIONS 

 

 A finite element computer code was developed for this research. This finite 

element code can carry out coupled thermoelasticity analyses in two dimensional 

systems. The code is not only able to give results for the thermal analysis without 

structural loads or stress analysis without thermal loads, but also can take coupling 

effects into account. Therefore, the code includes three separate programs in it. One 

of them carries out the thermal analysis initially. The second program carries out the 

structural analyses by using the results from the first program. Finally, the last 

program is to couple the programs of thermal and structural analyses and generate a 

coupled thermoelasticity program. 

 

 Two different case studies have been studied and their results obtained by 

means of computer codes developed in this work were compared with those obtained 

by means of analytical solutions if they exist, otherwise they were compared with the 

results of the finite-element package ANSYS. 

 

 Main aims of the present study have been satisfied by generating two-

dimensional finite elements analysis computer code for coupled thermoelastic 

analysis. The computer code satisfies accurate and close results compared to the ones 

obtained by finite elements package ANSYS for such kind of thermoelasticity 

analysis. Steady-state pressure and thermal such as conductive, convective, and 

radiative boundary conditions have been successfully dealt with for coupled 

thermoelasticity problems. 
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FUTURE WORKS 

 

 Although the analyses were only carried out for steady-state analysis, the idea 

can be extended in order to obtain results for transient analysis. So, the overall 

analysis would be more realistic and comprehensive. 

 

 Also, an addition to this study that contains the comparative analysis due the 

variation in the thickness of the reactor vessel and due to the variation in the 

temperature applied on the system concerned can be added for further studies. 

 

 In addition to these, an accident scenario of a nuclear reactor vessel can be 

modeled, simulated, and analyzed for further studies in order to provide a more 

realistic study. 
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