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ABSTRACT 

INVESTIGATION OF PROPAGATION CHARACTERISTICS OF A 

COMPOSITE MATERIAL COMPOSED OF A BIANISOTROPIC 

METAMATERIAL AND AN ISOTROPIC CONVENTIONAL MATERIAL 

BUTE, Musa 

M.Sc. in Electrical and Electronics Eng. 

Supervisor:  Assoc. Prof. Dr. Uğur Cem HASAR 

September 2013, 84 pages 

 

It is well-known that metamaterials fabricated by an engineering design possess 

electromagnetic properties unavailable in conventional materials such as negative 

refractive index and perfect lens. Within the broad scope of metamaterials, bi-

anisotropic metamaterials have properties different than isotropic metamaterials in 

that they have different forward and backward wave impedances, different forward 

and backward reflection scattering parameters, a wider stop-band compared to 

isotropic metamaterials, and a magneto-electric coupling coefficient. In the literature, 

wave propagation characteristics of different composite metamaterial media are 

investigated. To our best knowledge, wave propagation characteristics of a 

composite structure comprising of a bi-anisotropic metamaterial slab and an isotropic 

conventional slab has not yet been analyzed. In this thesis, propagation 

characteristics of the aforementioned structure is investigated. In the purpose of this 

thesis, we analytically derived forward and backward reflection and transmission 

scattering parameters of the composite structure, for a uniform plane wave incident 

normally to the composite medium. Moreover, analytically derived parameters are 

validated by a numerical analysis. Finally, after derivation and validation of 

scattering parameters, we analyzed the wave characteristics of the composite 

structure fabricated by only split ring resonators using a commercially available 

electromagnetic/microwave simulation software package (CST Microwave Studio). 

 

Key Words: Metamaterials, Bianisotropy, Scattering Parameters, Composite 

Structures, CST. 



 

ÖZET 

ĠZOTROPĠK KONVENSĠYONEL BĠR MALZEME ĠLE BĠANĠZOTROPĠK BĠR 

METAMALZEMEDEN OLUġAN KOMPOZĠT BĠR YAPININ YAYILIM 

KARAKTERĠSTĠĞĠNĠN ANALĠZĠ  

BUTE, Musa 

Yüksek Lisans Tezi, Elektrik-Elektronik Müh. Bölümü 

Tez Yöneticisi:  Doç. Dr. Uğur Cem HASAR 

Eylül 2013, 84 sayfa 

 

Bilindiği üzere metamalzemeler, normal malzemelerde bulunmayan negatif kırılma 

indisi ve mükemmel lens gibi elektromanyetik özellikleri mühendislik tasarımları 

kazandırılarak üretilmektedir. Metamalzemenin geniş kapsama alanı içerisinde, 

bianizotropik metamalzemeler ileri-geri empedans ve yansıma saçılma 

parametrelerinin farklılık göstermesi ve kuplaj katsayısına sahip olması nedeniyle 

normal metamalzemelerden farklı özellikler göstermektedir. Bildiğimiz kadarıyla 

literatürde, bianizotropik bir metamalzeme ve  normal malzemeden oluşan bir 

kompozit yapının elektromanyetik dalga yayılım karakteristiğini henüz inceleyen 

olmamıştır. Bu tezde, yukarda bahsedilen kompozit yapının yayılım karakteristiği 

incelenmiştir. Bu amaç doğrultusunda bu kompozit yapının analitik olarak ileri-geri 

yansıma ve iletim saçılma parametreleri normal düzlemsel gelen dalga modeli ile 

bulunmuştur. Bununla birlikte bulunan parametreler nümerik analiz olarak da 

doğrulanmıştır. Son olarak, saçılma parametrelerinin bulunması ve 

doğrulanmasından sonra yarık halka rezonatör yapı ile bu kompozit yapının dalga 

yayılım karakteristiği elektromanyetik yazılım simülasyon programı olan CST 

mikrodalga kütüphanesi ile de analiz edilerek desteklenmiştir.   

 

Anahtar Kelimeler: Metamalzemeler, Bianizotropi, Saçılma Parametreleri, 

Kompozit yapılar, CST. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

We first present how the metamaterial concept emerged, and then give a brief 

literature review of isotropic and bi-anisotropic metamaterial. Finally, we discuss the 

motivation of the thesis. Just after World War II, metamaterials were developed and 

history of metamaterials shares a common history with artificial dielectrics in 

microwave engineering. However, at the end of the 19
th 

century there are 

determining explorations of artificial materials for manipulating electromagnetic 

waves. 

 

In the late 1940s, Dr. Winston E. Kock is the first researcher obtaining the materials 

having similar characteristics to metamaterials. Later Dr. Victor Veselago described 

theoretically materials possessing reversed physical characteristics to be discussed 

later on. Approximately 30 years later, in the year 2000, the experimental 

demonstration of functioning electromagnetic metamaterials was reported by Smith 

et al. with horizontally stacking, periodically, split-ring resonators and thin wire 

structures. Utilization of artificial lumped-element loaded transmission lines in 

microstrip technology method was provided in 2002 to realize negative index 

metamaterials. The first real invisibility cloak was realized in 2006, at microwave 

frequencies [1-6]. 

 

Several goals must be achieved for metamaterial applications to be realized, 

researcher in [7] stated that this suggestion. For finding ways to mass-produce the 

metamaterials, reducing energy loss, which is a major limiting factor, keep 

developing three-dimensional isotropic materials instead of planar structures [7].  

 

http://en.wikipedia.org/wiki/History_of_radar
http://en.wikipedia.org/wiki/Artificial_dielectrics
http://en.wikipedia.org/wiki/Microwave_engineering
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Winston_E._Kock
http://en.wikipedia.org/wiki/Victor_Veselago
http://en.wikipedia.org/wiki/Negative_index_metamaterial
http://en.wikipedia.org/wiki/Negative_index_metamaterial
http://en.wikipedia.org/wiki/Negative_index_metamaterial
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Split-ring_resonator
http://en.wikipedia.org/wiki/Microstrip
http://en.wikipedia.org/wiki/Isotropic
http://en.wikipedia.org/wiki/Plane_(geometry)
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All materials are made of atoms, which are dipoles so that it can also be applied to 

the this science. The light velocity of these dipoles is modified by a factor n  (the 

refractive index). The role of atomic dipoles is done by the ring and wire: the wire 

acts as a ferroelectric atom, while the property of inductor is done by ring and the 

open section as a capacitor.  

 

It is demonstrated that metallic wires aligned along the direction of propagation 

could provide a metamaterial with negative permittivity ( 0)  [6]. The challenge 

was to construct a material which can also showed negative permeability ( 0)  

because natural materials (such as ferroelectrics) were already known to exist with 

negative permittivity.  

 

The idea that a split ring ( C shape) with its axis placed along the direction of wave 

propagation could provide a negative permeability was demonstrated in 1999 by 

Pendry [7]. 

 

1.2 Literature Review 

This subsection is divided into two reviews. We first deal with isotropic 

metamaterial, and then bi-anisotropic metamaterial. 

 

1.2.1 Isotropic Metamaterial 

Metamaterials earn their properties not from their composition, but from their 

engineered structures. Creating material properties which are unachievable with 

conventional materials can be obtained by the precise shape, geometry, size, 

orientation and arrangement [8-10]. 

 

Investigation of materials with a negative refractive index is the primary research in 

metamaterials [3, 11-12]. The creation of super lenses can be realized by the negative 

refractive index materials having a spatial resolution below that of the wavelength. In 

addition to the electromagnetic metamaterials acoustic and seismic metamaterials are 

also areas of active research [13,14]. 

Many different applications of metamaterials are possible such as, sensor detection 

and infrastructure monitoring, smart solar power management, public safety, high-

http://en.wikipedia.org/wiki/Dipole
http://en.wikipedia.org/wiki/Ferroelectricity
http://en.wikipedia.org/wiki/Superlens
http://en.wikipedia.org/wiki/Optical_resolution
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Acoustic_metamaterials
http://en.wikipedia.org/wiki/Seismic_metamaterials
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Infrastructure_security
http://en.wikipedia.org/wiki/Solar_power
http://en.wikipedia.org/wiki/Public_safety
http://en.wikipedia.org/wiki/Battlespace
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frequency battlefield communication and lenses for high-gain antennas, improving 

ultrasonic sensors, and even shielding structures from earthquakes [14-18]. Physics 

and electromagnetism (especially optics and photonics) have become a new sub-

discipline within metamaterials [19-21]. 

The huge potential of metamaterials is the possibility to create a structure with a 

negative refractive index, since nearly all materials encountered in optics(such as 

glass or water) have positive values for both permittivity  and permeability .  

Anisotropic starting materials with only negative permittivity can produce negative 

refraction due to chirality, although a material having either (but not both)   or   

negative often does not transmit electromagnetic radiation. 

Negative   and negative    can be realized by engineering metamaterials, meaning 

that negative refractive index for a material is possible. The real parts of both r  and 

r  do not have to be negative for a passive material to display negative refraction 

[22-24]. 

 

1.2.2 Bi-anisotropic metamaterials 

In many examples of electromagnetic metamaterials, the electric field causes 

magnetic polarization, and the magnetic field induces an electrical polarization, i.e., 

they affect each other proportionally (magneto-electric coupling). Such media are 

called as being bi-isotropic. Media which shows magneto-electric coupling, and 

which are also anisotropic, are referred to as bi-anisotropic [25, 27]. 

Related to magneto-electric coupling of bi-isotropic media, there are four material 

parameters are ,  ,  and  . Here  and   means the strength of chirality and the 

Tellegen parameter respectively.  

For an bi-isotropic media having different  and   values, it is possible to obtain a 

backward wave and a forward wave can occur. Alternatively, two forward waves or 

two backward waves can also occur, depending on the strength of the chirality 

parameter. 

http://en.wikipedia.org/wiki/Level_sensor
http://en.wikipedia.org/wiki/Earthquake_engineering
http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Photonics
http://en.wikipedia.org/wiki/Permittivity
http://en.wikipedia.org/wiki/Permittivity
http://en.wikipedia.org/wiki/Permeability_(electromagnetism)
http://en.wikipedia.org/wiki/Permeability_(electromagnetism)
http://en.wikipedia.org/wiki/Anisotropy
http://en.wikipedia.org/wiki/Chirality
http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Magnetic
http://en.wikipedia.org/wiki/Bi_isotropic
http://en.wikipedia.org/wiki/Anisotropic
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It is well-known that metamaterials fabricated by an engineering design possess 

electromagnetic properties unavailable in conventional materials such as negative 

refractive index and perfect lens. Within the broad scope of metamaterials, bi-

anisotropic metamaterials have properties different than isotropic metamaterials in 

that they have different forward and backward wave impedances, different forward 

and backward reflection scattering parameters, a wider stop-band compared to 

isotropic metamaterials, and a magneto-electric coupling coefficient [28-30]. 

Therefore, it is possible to realize different electromagnetic properties of materials 

comparing of bi-anisotropic metamaterials. 

1.3 Motivation of the Thesis 

In the literature, wave propagation characteristics of different composite 

metamaterial media are investigated. To our best knowledge, wave propagation 

characteristics of a composite structure comprising of a bi-anisotropic metamaterial 

slab and an isotropic conventional slab has not yet been analyzed. In this thesis, our 

purpose is to investigate these characteristics of the aforementioned structure. 

To achieve our goal, we first define the electromagnetic properties (wave 

impedances and propagation constants) of a bi-anisotropic metamaterial slab and a 

conventional material slab, and then derive forward and backward scattering 

parameters of the composite medium constructed by a cascade connection of these 

materials. Next, we analyze propagation characteristics of this composite structure 

using a commercial electromagnetic software program (CST Microwave Studio). 

Finally, we compare the simulated and numerically obtained results of wave 

propagation characteristics. 

The aim of Chapter 2 is analytically present forward and backward transmission and 

refection scattering parameters, as well as complex power relations of the composite 

structure constructed by a cascade connection of these materials. 

The major point of Chapter 3 is to compare our derived equations with validation on 

Matlab. Then in chapter 4, we obtain forward and backward scattering parameters of 

a composite structure with a bianisotropic metamaterial and a conventional material 

by using commercial software program CST Microwave Studio. 
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In the last chapter, a brief summary and discussion of the results obtained during this 

thesis work are included. Additionally, future works and further studies for potential 

applications of the composite bi-anisotropic metamaterials are also suggested in the 

same chapter. 
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CHAPTER 2 

 

THEORETICAL ANALYSIS OF PROPAGATION CHARACTERISTICS OF 

A COMPOSITE STRUCTURE CONSISTING OF A BIANISOTROPIC 

METAMATERIAL AND A CONVENTIONAL MATERIAL 

 

2.1 Introduction 

In this chapter, our aim is to analyze propagation characteristics of a composite 

structure composed of a bi-anisotropic metamaterial slab and a conventional material 

as shown in Figure 2.1. Toward this end, we first derive forward and backward 

reflection and transmission scattering (S-) parameters and then analyze forward and 

backward reflected, transmitted, and loss powers of this composite structure. This 

chapter is organized as follows. In Section 2.2, we first present general field and 

impedance expressions of a bi-anisotropic metamaterial to put the subsequent 

derivations into right respective and to demonstrate the wave characteristics of a 

bianisotropic metamaterial slab. Next, in Section 2.3, we derive forward and 

backward reflection and transmission S-parameters of the composite structure by 

considering two different reference configurations. Finally, in Section 2.4, we give 

the derived forward and backward reflected, transmitted, and loss powers using these 

reference configurations. 

Throughout the theoretical analysis in this Chapter, we assume that bi-anisotropic 

metamaterial slab and conventional material (Figure 2.1) both extend to infinity in 

y - and z -directions. We also assume that a uniform plane wave is normal incident 

to the composite structure and that time reference in the form  exp i t  is utilized 

in all derivations. 
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Figure 2.1: Composite structure composed of bi-anisotropic and isotropic slab ( The 

problem under investigation ). 

 

2.2 General Field Expressions of a Bi-anisotropic Metamaterial Slab 

To understand the behavior of forward and backward reflection and transmission S-

parameters as well as power and propagation characteristics, in this chapter we give 

general field and impedance expressions in a bi-anisotropic metamaterial slab. For 

the assumed time reference, Maxwell’s equations read as  

  

     ,E r i B r 
   

 (2.1) 

     ,H r i D r  
   

 (2.2) 

 0,evD   
 
  (2.3) 

 0,B 
 
  (2.4) 

 

where it has been assumed that there is no-free charge density inside the slab. 

 

To describe the macroscopic behavior of the slab, the following constitutive relations 

can be utilized [29], 

  

 ,D E H  
  

   (2.5) 

 Bi-anisotropic 

Metamaterial 

 

 

 x  

z  y  

x  

x d L 
 

x d
 

0x   

 

 Conventional 

Material 
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 ,B H E  
  

   (2.6) 

where 

  

 0 0

0 0 0 0

0 0 ,         0 0 ,

0 0 0 0

xx xx

yy yy

zz zz

 

     

 

   
   

    
   
   

 (2.7) 

 0

0

0 0 0 0 0 0
1 1

0 0 0 ,         0 0 .

0 0 0 0 0

i
c c

i

  



   
   

    
     

  (2.8) 

 

In (2.7) and (2.8), xx  ( xx ), yy  ( yy ), and zz  ( zz ) are the relative complex 

permittivities (permeabilities) in x -, y -, and z -directions, respectively; 0 , 0 , and 

c  are, respectively, the permittivity and permeability of free-space and the phase 

velocity of light in free-space; and 0  is the magneto-electric coupling coefficient.  

Substitution of (2.7) and (2.8) into (2.5) and (2.6), we obtain 

  

 

 

0

0 0

,

x xx x

y yy y

z zz z y

D E

D E

D E i H c



 

  

   
   

   
      

  (2.9) 

 0
0

0

.

xx x
x

y yy y z

z
zz z

H
B

i
B H E

c
B

H




 





 
   
       
       

  (2.10) 

 

Using (2.9) and (2.10) and after some manipulations, the following relations can be 

found 

 

 0 ,
yz

x xx x

EE
i B i H

y z
  


  

 
  (2.11) 

 0
0,            .

y x x
z y zz z

H H H
i D H i E

x y c x y


  

   
           

 (2.12) 



9 
 

 

 

In our theoretical analysis, we assume that a uniform plane wave with a linear 

polarization in z -direction impinges onto the slab. Because, electric field in free-

space, 0E


, has only a tangential component and no axial (longitudinal) component, 

according to the boundary conditions (continuity of tangential (normal) component 

of E


( D


) over the free-space-metamaterial slab interface must be continues), no 

axial component of electric field inside the metamaterial slab, sE


, results in 

 

  0 0 0ˆ 0,      ,     0         0.z s sn n sn xx sx sxa D D D D D E E       
 

   (2.13) 

 

Here, sxE  is the component of electric field of the slab in x -direction. 

 

In addition, according to the continuity of tangential component over the boundary, 

vanishing of 0E


 in y -direction in free-space forces vanishing of sE


 in y -direction 

in the slab; that is 0syE  . 

 

Despite the fact that in free-space wave propagates only in x -direction, we have 

0y z       due to the fact that the slab extends to infinity in y - and z -

directions. Reflecting this condition into (2.11) and (2.12), we find 

 

 0 0,       0,xx sx sxi H H      (2.14) 

 0
0 .sy zz szH i E

c x


 

 
    

  (2.15) 

 

Besides, incorporating 0sxE   and 0syE   into (2.14) and (2.15), we determine 

 

 0,      0,sz
sz

H
H

x


 


  (2.16) 

 0
0 .sy zz szH i E

c x


 

 
    

  (2.17) 
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Because szE  does not vanish inside the slab, we could determine a dispersion 

relation based on this term as follows. From (2.17) and (2.16)  

 

 
2

2 2
0 02

0.       ,      ,x x zz yyk k k n n
x

  
 

     
  

  (2.18) 

 

where xk  is the propagation constant of the bianisotropic metamaterial slab (in x -

direction). 

 

The solution of (2.18) is in the form 

 

  2 2 0,         .x xik x ik x
x sz sz sz szD k E E E e E e

       (2.19) 

 

In a similar fashion, from (2.16) and (2.17), we get 

 

 0 0
0

0

1
,sy yy sy

zz

H i H
i c x c x

 
 

 

    
          

  (2.20) 

 

2 2
20
02

,sy yy zz syH k H
c x


 

  
   
   

  (2.21) 

 .x xik x ik x
sy sy syH H e H e

     (2.22) 

 

In addition to expressions of electric and magnetic fields, it is also instructive to 

present the expressions of forward and backward wave impedances to understand the 

propagation characteristics of the composite structure in Figure 2.1. To achieve that 

goal, substituting (2.19) and (2.22) into (2.16) and assuming only the wave travelling 

in x  direction exists, we find 
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 0
0 ,x xik x ik x

x sz yy syik E e i H e
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  (2.23) 

  0 0 0 .sz yy syk in E i H       (2.24) 

 

From (2.24) and (2.18), we obtain the expression of wave impedance in x -direction 

(forward) as 
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Furthermore, substituting (2.19) and (2.22) into (2.17) and assuming only the wave 

travelling in x -direction exists, we find 
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  (2.26) 

  0 0 0 .sy zz szk n i H E        (2.27) 

 

From (2.27) and (2.18), we obtain  
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Therefore, from (2.25) and (2.28) , we find 
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which validates (2.18). 

 

On the other hand, for waves travelling in x -direction, from (2.16) and  (2.17), we 

find the expression of wave impedance in x -direction (backward) as 
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  (2.31) 

 

It is seen that the wave impedances in the slab in x -direction in (2.30) and (2.31) 

are equal. 

 

As a result, for waves travelling positive and negative x directions, their respective 

normalized wave impedances with respect to air are 
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  (2.32) 
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2.3 Forward and Backward Reflection and Transmission Scattering Parameters 

In this chapter, our aim is to derive forward and backward reflection and 

transmission S-parameters since these parameters are utilized to analyze the 

propagation characteristics of the composite structure in Figure 2.1. Because, as 

shown in (2.32), the bi-anisotropic metamaterial slab possesses two different 

normalized forward and backward wave impedances, it demonstrates a reflection 

asymmetric property ( 11 22S S  where 11S  and 22S  denote, respectively, the 

forward and backward reflection S-parameters) [30]. Whereas reflection properties 

present an insight into the reflection characteristics, transmission properties 

demonstrate propagation characteristics. Therefore, since reflection and transmission 

properties are independent properties for electromagnetic characterization of 

materials, for a comprehensive and concrete analysis, these two properties must 

simultaneously be analyzed. 

 

To better present the derivations in this chapter, we present the derivations in two 

sections. In the first section, we concentrate on obtaining forward reflection and 

transmission S-parameters of the composite structure in Figure 2.1 while in second 

section we focus on determining backward reflection and transmission S-parameters 

of the same structure. 

 

2.3.1 Forward Reflection and Transmission Scattering Parameters 

In the derivations of forward reflection and transmission S-parameters of the 

structure in Figure 2.1, we analyze the problem shown in Figure 2.2. Considering this 

problem, we can write the following expressions for electric and magnetic fields for 

each medium (here it is assumed that first and fourth media are air). 

For 1
st  

medium,  

  0 0ˆ ,
ik x ik x

I z I IE a E e E e
  


  (2.33) 

  0 0

0

1
ˆ .

ik x ik x
I y I IH a E e E e

Z

   


  (2.34) 
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Figure 2.2: Analysis of composite structure in a forward direction. 
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In (2.33)-(2.40), 0Z , 1Z , Z , and Z  are, respectively, the impedances of free-

space, the conventional material, and the bi-anisotropic metamaterial slab (forward 

and backward); 0k , 01k , and xk  are propagation constants (wavenumbers) of free-

space, the conventional material, and the bianisotropic metamaterial slab. In the 

analysis, it is presumed that while there is only one travelling wave in fourth medium 

(air), there are two waves travelling in opposite direction for other media in Figure 

2.2. 

 

Explicit expressions of propagation constants and wave impedances of the 

conventional material and the slab are 

 

 0 0 0 01 0,      ,r rk k k        (2.41) 

 0
0 1 0

0

,       ,r

r

Z Z Z
 

 
    (2.42) 

 

where r  and r  are, respectively, the relative complex permittivity and relative 

complex permeability of the conventional material. The explicit expressions of 

propagation constants and (normalized) wave impedances of the slab can be found in 

(2.18) and (2.32). 
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Boundary conditions are the conditions that fields of electromagnetic waves must 

satisfy only over the boundary. Enforcing the necessary and corresponding boundary 

conditions at boundaries 0x  , x d , and x d L   allows us to determine the 

forward reflection and transmission S-parameters (in addition to the field coefficient 

in (2.33)-(2.40) if the strength of the source is given/known). 

 

2.3.1.1 Derivation of Forward Reflection Scattering Parameter 

In the derivation of reflection S-parameters, the general procedure is to first apply the 

boundary conditions at the boundary far distant from the source, and then propagate 

toward the boundary at the source region [31]. Using this procedure, we first apply 

the boundary conditions at x d L   and find a relation between IIIE
 
and IIIE  as 

 

  0120 1
1 1

0 1

,        .
ik d L

III III
Z Z

E E e
Z Z

   
   


  (2.43) 

 

Incorporating (2.43) with (2.37) and (2.38), we obtain 
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Z


      

 
  (2.44) 

 

Then, applying the boundary conditions at x d  and using (2.35), (2.36), and (2.44), 

we determine (dividing the boundary conditions obtained from the continuity of 

tangential components of electric and magnetic fields at the interface x d  in order 

to eliminate the unknown IIIE ) 
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(2.45) 
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 3 ,II IIE E     (2.46) 

 

where 

 
 01 01

01 01

2

1 12
3 2

2 1

1

,         .

1

x

ik d ik d

i k d

ik d ik d

Z e e
Z e

e e

Z








 
   

    
    

 

  (2.47) 

 

We follow the procedure by substituting the relation between IIE  and IIE  in (2.46) 

into  (2.35) and (2.36) and determine 
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  (2.48) 

   

Finally, applying the boundary condition (continuity of the tangential components of 

electric and magnetic fields in each respective region) at 0x  and using (2.33), 

(2.34) and (2.48), we obtain the forward reflection S-parameter ( 11S ) 
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2.3.1.2 Derivation of Forward Transmission Scattering Parameter 

Different from the derivation of reflection S-parameter in the previous subsection, in 

the derivation of the forward transmission S-parameter, we apply the necessary and 

corresponding boundary conditions in a manner of forward-direction (or in the 

direction of wave travel) [31]. It is also possible to utilize backward-direction 

concept in the derivation of forward transmission S-parameter. In this subsection, we 

derive the transmission S-parameter using backward-direction concept (although the 

derived expression of transmission S-parameters is the same for forward and 

backward directions). 

Toward this end, we first apply the boundary conditions at x d L   

 

 
     01 01 0 ,

ik d L ik d L ik d L
III III IVE e E e E e

         (2.52) 

       01 01 0

1 0

1 1
.

ik d L ik d L ik d L
III III IVE e E e E e

Z Z

           (2.53) 

 

Then, from (2.52) and (2.53) we determine a relation between IIIE  and IVE  as  
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  (2.55) 
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  (2.56) 

 

In (2.56) eliminating 1  from this equation and letting  2  alone, we get 
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   0 011
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  (2.57) 

 

Incorporating (2.56) and (2.57) with (2.37) and (2.38), we obtain 
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  (2.59) 

 

We follow the backward direction concept and applying boundary conditions at 

x d  , yielding 
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       (2.61) 

 

Incorporating  (2.60) and  (2.61) together, we obtain another single constant 3  as 

 

 3,II IVE E     (2.62) 

where 
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 (2.63) 

 

Writing all parameters in a single 4  parameter makes our equation easier, 
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  01 01
4 4 1 2 3,       .x xik d ik d ik d ik d

II IVE E e e e e
            (2.64) 

 

Finally applying the boundary conditions at 0x  , we obtain 

 

 ,I I II IIE E E E        (2.65) 
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Eliminating IE
 
from (2.65) and (2.66), we determine 
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Incorporating (2.62) and (2.64) into (2.67), we derive 
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2.3.2 Backward Reflection and Transmission Scattering Parameter 

Here, in the derivations of backward reflection and transmission S-parameters of the 

structure in Figure 2.1, we analyze the problem shown in Figure 2.3. Considering this 

problem, we can write the following expressions for electric and magnetic fields for 

each medium (here it is assumed that first and fourth media are air) 

 

Figure 2.3: Analysis of composite structure in a backward direction. 
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For 3
rd  

medium,  
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For 4
th

  medium,   
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                                 (2.77) 

  

In (2.70)-(2.77), 0Z , 1Z , Z , and Z  are, respectively, the impedances of free-

space, the conventional material, and the bi-anisotropic metamaterial slab (forward 

and backward); 0k , 01k , and xk  are propagation constants (wavenumbers) of free-

space, the conventional material, and the bianisotropic metamaterial slab. In the 

analysis, it is presumed that while there is only one travelling wave in fourth medium 

(air), there are two waves travelling in opposite direction for other media in Figure 

2.3. 

 

Propagation constants, wave impedances and other parameters of the conventional 

material and the slab are taken the same with previous section. Boundary conditions 

are the conditions that fields of electromagnetic waves must satisfy only over the 

boundary. Enforcing the necessary and corresponding boundary conditions at 

boundaries 0x  , x d , and x d L   allows us to determine the backward 

reflection and transmission S-parameters (in addition to the field coefficient in (2.70)

-(2.77) if the strength of the source is given/known). 

 

2.3.2.1 Derivation of Backward Reflection Scattering Parameter 

In the derivation of reflection S-parameters, the general procedure is to first apply the 

boundary conditions at the boundary far distant from the source, and then propagate 
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toward the boundary at the source region [31]. As you followed previous subsection 

the same procedures also can be applied in this subsection. Using this procedure, we 

first apply the boundary conditions at x d L   and find a relation between IIIbE
 

and IIIbE  as 

 

 

1
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1
IIIb IIIb

zE E

z


 



 
 

 
 
 

 

  (2.78) 

 

Then, applying the boundary conditions at x d  and using(2.72), (2.73), and (2.78), 

we determine (dividing the boundary conditions obtained from the continuity of 

tangential components of electric and magnetic fields at the interface x d  in order 

to eliminate the unknown IIIE ) 
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 (2.79) 

 

Finally, applying the boundary condition (continuity of the tangential components of 

electric and magnetic fields in each respective region) at 0x  and using(2.70), 

(2.71) and (2.79), we obtain the backward reflection S-parameter ( 22S ) 
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2.3.2.2 Derivation of Backward Transmission Scattering Parameter 

Different from the derivation of reflection S-parameter in the previous subsection, in 

the derivation of the backward transmission S-parameter, we apply the necessary and 

corresponding boundary conditions in a manner of forward-direction (or in the 

direction of wave travel) [31]. It is also possible to utilize backward-direction 

concept in the derivation of backward transmission S-parameter. In this subsection, 

we derive the transmission S-parameter using backward-direction concept (although 

the derived expression of transmission S-parameters is the same for forward and 

backward directions). 

 

Toward this end, we first apply the boundary conditions at 0x   for the Figure 2.3 

we obtain from equation (2.76)-(2.77) and (2.74)-(2.75),  
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Getting  IIIbE  and IIIbE  dependent with IVbE  in a different equation,  
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Now, we can write third medium equations with respect to IVbE
 as, 
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Then, applying the boundary conditions at x d  and using (2.72), (2.85) and (2.86) 

we obtain 
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Eliminating IIE
and IIE

 from each other and writing them in a separately it gives us 
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  (2.90) 

 

Finally, applying the boundary condition (continuity of the tangential components of 

electric and magnetic fields in each respective region) at x d L   and using (2.70)-

(2.71) and (2.89)-(2.90),  
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Dividing the fourth region forward electric field over first region forward electric 

field we obtain long equation of 

 

 0

01 011 1 1 1
5 6 5 6

1 1

2
.

1 1
1 1 1 1 1 1

ik d L
IVb

ik L ik LIb

E e

z z z zE
e e

z zz z z z

 


 

   


             
                         

             

  (2.94) 

 

Therefore, using substituent of 5  and 6  remain us a little short equation, 
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from here, we obtain the backward reflection S-parameter ( 12S ) as 
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2.4 Power Analysis 

Firstly, we found all necessary relations about the electric field and magnetic fields. 

Therefore, here our main purpose is obtaining the exact complex power relation for 

each medium.  

For 1
st
 Region: 

Using the below equation for the electric and magnetic field intensity of first 

medium, 

  0 0ˆ ,
ik x ik x

I z I IE a E e E e
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General complex power relation is, 

 

 *1

2
I I IS E H 
  

  (2.99) 

 

From equation  (2.97) and (2.98) we get 
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Multiplying the equation (2.100) we get, 
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Multiplication of complex variable with its conjugate always gives us magnitude of 

its square. Therefore, 
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Finally applying the boundary conditions at 0x  , we get 
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When we run the Matlab code in appendix  0IS x 


. It gives the value of  

 

     0IS x 


=351.233344613523e-006 - 5.54801202230450e-003i . 

 

As a consequence, eliminating the IE  in (2.103), with the S-parameter relation 11S  

leads to, 
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For 2
nd

 region: 

Using the below equation (2.105) and (2.106) belongs to the electric and magnetic 

field intensity of second medium, 
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General complex power relation for second medium is 

  

 *1

2
II II IIS E H 
  

  (2.107) 



29 
 

  
* ** *

* *

1
ˆ ˆ ,

2
x x x xik x ik x ik x ik xII II

II z II II y
E E

S a E e E e a e e
Z Z

 
  

 

 
     

 
 


  (2.108) 

 

The equation (2.108) can be written as,  
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Applying the boundary conditions at 1x d , we get 

 

  

   

   

* *
1 1

* *
1 1

*2

* *

1 * 20

* *

1

1
ˆ ,

2 1

x x x x

x x x x

i k k d i k k d
II

II II

II x
i k k d i k k d

II
II II

E
E e E e

z z
S x d a

Z E
E e E e

z z

  

 

     

 

 
  
 

  
 
   
 


            

 (2.110) 

 

Writing the propagation constant xk  with a refractive index n  which is 0xk nk .  
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Finally, our result leads to  
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 (2.112) 

When we run the Matlab code in appendix  1IIS x d


. It gives the value of 

 

 1IIS x d


 = 7.82513704347104e-006 - 491.612244953627e-009i . 

 

Again applying the boundary conditions at 0x   for second region for validation, we 

get 
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In equation (2.113) eliminating IIE  and leave alone IIE  gives 
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To present (2.114) with IE  and 3 , we obtain   
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When we run the Matlab code in appendix  0IIS x 


. It gives the value of  

 0IIS x 


 = 351.233344613524e-006 - 5.54801202230450e-003i. 
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Here we derive electric and magnetic field intensity equations with the relation   

parameter. Let us write for second region, 
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for the first region it has 
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Incorporating the (2.116) and (2.117) and leads to 
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Finally, we can write IIE and IE  in a single equation which is,  
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For 3
rd

 Region: 

Let us obtain general complex power relation for third medium  
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Writing the equation of (2.120)  with a function of thickness gives us 
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Applying the boundary conditions at x d  for third region for validation, we get 
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Moreover, if we use complex mathematical properties  
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And then, if we corporate the equation of (2.122) and (2.123), it leads to 
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When we run the Matlab code in appendix  IIIS x d


. It gives the value of  
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     IIIS x d


 = 7.82513704347104e-006 - 491.612244953630e-009i . 

 

Finally power relation of third region at x d L   can be written from the equation  

(2.124)  just changing the thickness parameter ' 'd . 
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When we run the Matlab code in appendix  IIIS x d L 


. It gives the value of  

 

 IIIS x d L 


 = 800.138543394125e-009 + 13.2348898008484e-024i. 
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For 4
th

 Region: 

The last our purpose is obtaining the power relation of fourth region. Since there is 

no boundary at the end of the region so that we can calculate it easily, 
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Incorporating the (2.39) and (2.40) equation into the (2.126)   
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from (2.127), as you below see 4S


 is independent from the thickness ' 'd  , 
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Finally, 4S


 simplifies into the   
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When we run the Matlab code in appendix 4( )S x d L 


. It gives the value of  

 

4( )S x d L 


 =  800.138543394125e-009.
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CHAPTER 3 

 

NUMERICAL ANALYSIS OF PROPAGATION CHARACTERISTICS OF A 

COMPOSITE MATERIAL WITH A BI-ANISOTROPIC SLAB AND A 

CONVENTIONAL MATERIAL 

 

3.1 Introduction 

In the previous chapter, we focused on the derivation of expression for forward and 

backward reflection and transmission scattering (S -) parameters of a composite 

material with a bi-anisotropic metamaterial slab and a conventional material. In 

addition, we also obtained expressions for transmitted, reflected and loss behavior to 

investigate its propagation characteristics. In this chapter, we turn our attention to 

validation of the derived expressions in the previous chapter. We perform a 

numerical analysis to achieve our goal. In the analysis, we use Lorentz dispersion 

models to simulate artificial bi-anisotropic slab and the conventional material as well 

as to analyze the propagation characteristics of the composite material. In addition to 

this model we utilized transfer matrix method, which is an appropriate method for 

analysis of cascaded structures, to validate derived expressions.  
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3.2 Lorentz Model 

Lorentz medium is a frequency dispersive medium in which the permittivity and 

permeability of the material are the function of the frequency. These materials have 

resonance phenomena caused by the oscillation of the electron and nuclei subject to 

an applied field. Lorentz was the first to study such phenomena when developing the 

theory of the electron. The model conceptually replaces the atoms and molecules of a 

real material by a set of harmonically bound electron oscillators, resonant at some 

frequency o . At frequencies far below o , an applied electric field displaces the 

electrons from the positive core, inducing a polarization in the same direction as the 

applied electric field. At frequencies near the resonance, the induced polarization 

becomes very large, as is typically the case in resonance phenomena; the large 

response represents accumulation of energy over many cycles, such that a 

considerable amount of energy is stored in the medium relative to the driving field. 

So large is this stored energy that even changing the sign of the applied electric field 

has little effect on the polarization near resonance. That is, as the frequency of the 

driving electric field is swept through the resonance, the polarization flips from in-

phase to out-of-phase with the driving field and the material exhibits a negative 

response. If instead of electrons the material response were due to harmonically 

bound magnetic moments, then a negative magnetic response would exist. Though 

somewhat less common than positive materials, negative materials are nevertheless 

easy to find. Materials with   negative include metals (e.g., silver, gold, aluminum) 

at optical frequencies, while materials with   negative include resonant 

ferromagnetic or antiferromagnetic systems [32, 33]. As a result, the shape of the 

dispersive components of the material parameters for DNG metamaterial can be 

described by using Lorentz medium model. 

To model the dispersive behaviour of bianisotropic MM slabs, we consider the 

following expressions based on Lorentzian model [34-36]  

 

 
2 2

e m
z y2 2 2 2

e e m m

F f F f
(f ) 1 , (f ) 1 ,

f f i f f f i f
     

     
  (3.1) 
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2

0 2 2

F f
(f ) 1 .

f f i f



 

  
  

  (3.2) 

 

Here, ef , mf , and f  are electric, magnetic, and magneto-electric resonance 

frequencies; e , m , and   are electric, magnetic, and magneto-electric damping 

frequencies; and eF , mF , and F  coefficients depending on structure of the material 

[34]. Lorentz Model can be applied for both conventional materials and 

metamaterials problems. 

 

3.3 Transfer Matrix Method 

The transfer matrix method (TMM) is a method used in optics and acoustics to 

analyze the propagation of electromagnetic or acoustic waves through a stratified 

(layered) medium [37]. TMM is based on the fact that, according to Maxwell's 

equations, there are simple continuity conditions for the electric field across 

boundaries from one medium to the next. If the field is known at the beginning of a 

layer, the field at the end of the layer can be derived from a simple matrix operation. 

A stack of layers can then be represented as a system matrix, which is the product of 

the individual layer matrices. The final step of the method involves converting the 

system matrix back into reflection and transmission coefficients [38]. 

TMM is a powerful tool for the analysis of periodic structures. It has been used in 

two different ways. One way is to represent the solution of the coupled mode 

equations by a 2x2  transfer matrix, which relates the forward and backward 

propagating field amplitudes [34]. Almost-periodic gratings can be analyzed 

effectively by this method [38]. The grating structure is divided into a number of 

uniform grating sections which have an analytic transfer matrix. The transfer matrix 

for the entire structure can be obtained by multiplying the individual transfer 

matrices together. It should be noted that this method is simply a numerical method 

for solving the coupled mode equations.   

The other way of the TMM is to represent each corrugation section by a transfer 

matrix [39, 29]. The reflection of the propagating modes of a corrugated waveguide 

at the discontinuity of the effective index in the same way as plane waves are 
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reflected. Therefore, the transfer matrix of each corrugation section can be expressed 

in terms of the mode reflection and transmission coefficients and the propagation 

constant, which is similar to the matrix used in the analysis of thin-film optical filters 

[40]. 

Let us try to find TMM of whole multilayer structure through the multiplication of 

cascaded connection of each layer in Figure 3.1 by, 
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    (3.3) 

 

where t
11m , t

12m , t
21m , and t

22m  designate the elements of tM , and sM  denotes 

the transfer matrix of any layer  and is written as  
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Forward and backward reflection and transmission S-parameters of a bianisotropic 

MM slab with length L  [41] are 
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  (3.6) 

 

Here, 1   and 2  are the intrinsic (first) reflection coefficients at the interfaces of 

front and back faces of each MM slab; T  is the propagation factor related to 
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propagation characteristics of the slabs; wz , wz , n , and 0k  are, respectively, the 

normalized wave impedances in forward ( x ) and backward ( x ) directions, the 

refractive index of each bi-anisotropic MM slab, and the free-space wave number; r  

and r  are the relative complex permittivity and complex permeability of  

bianisotropic MM slab in electric and magnetic field directions, respectively; and 0  

is the magneto-electric coupling coefficient (a unitless quantity). 

For a conventional material (n 0) , its expressions for 11S , 21S , 12S , 22S  are 

identical (correspondingly) to those in equation (3.5) if 0 0  . Therefore, its 

expressions are not repeated for convenience.   

After determining  tM  through equation (3.3), expressions of rP , tP , and lP  

normalized to incident power can be calculated from [42,43-45]  
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  (3.7) 
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  (3.8) 

 

where  (1)(1)
r l

P ,P  and  (2)(2)
r l

P ,P   are, respectively, pairs of normalized reflected 

and loss powers from forward and backward directions of the cascaded structure in 

Figure 3.1. We note that because of the reflection asymmetric property of 

bianisotropic MM slabs, (1)
rP  and (2)

rP  (as well as 
(1)
l

P  and 
(2)
l

P ) should be 

different. This point is discussed in what follows by numeric examples. 

 

3.4 Validation of S-Parameters by Transfer Matrix Method (TMM) and 

Lorentzian Model 

In Chapter 2, the value of 11S , 21S , 12S  and 22S  parameters have been found  

analytically, and here in this section we numerically validate these parameters. We 
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achieve this validation of S -parameters using Transfer Matrix Method and 

Lorentzian model (analytical and numerical). To compare two methods we analyze 

the magnitude and phase of S - parameters for a frequency range of 0 and 25 GHz. 

As a particular example, we consider the Lorentzian model parameters discussed 

previous section as 

 

 e mF F 0.4, F 0.15,     (3.9) 

 e mf 6 GHz, f f 5 GHz,     (3.10) 

 e m 0.4 GHz.        (3.11) 

 

Here, we note that there is no specific reason of the selection of above parameters. 

Our purpose is just simulating constitutive parameters of the bianisotropic MM slab 

for validation of derivation. 



41 
 

3.4.1 Validation of 11S
 

As seen from Figure 3.2, the magnitude and phase of forward reflection scattering 

parameter ( 11S ) determined from the TMM method and analytical derivation 

Equation (2.51) are almost equal to each other. This validates our derivations in 

Chapter 2 for 11S . As you see frequency of resonance about 5-6 GHz is clearly seen 

in both magnitude and phase figures.  

 

 

Figure 3.1: Dependencies of magnitudes and phases of forward reflection scattering 

parameter 11S . 
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3.4.2 Validation of 21S  

Here, in Figure 3.3 we compare the magnitude and phase of forward transmission 

coefficient of 21S  parameter. By using Transfer Matrix Method and Equation (2.69). 

Therefore, our second validation of 21S  is done well. 

 

Figure 3.2: Dependencies of magnitudes and phases of forward reflection scattering 

parameter 21S . 
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3.4.3 Validation of 12S  

Here, in Figure 3.4 we compare the magnitude and phase of backward transmission 

coefficient of 12S  parameter. As we analyze the figures of TMM method and  

Equation (2.96) distinctly they are totally the same with each other so that our third 

validation of 12S  is done correctly. However, when we compare the backward 

transmission coefficient of 12S  parameter and forward transmission coefficient of 

21S  parameter they are also the same with each other.  

 

Figure 3.3: Dependencies of magnitudes and phases of forward reflection scattering 

parameter 12S . 
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3.4.4 Validation of 22S  

In Figure 3.5, we compare the magnitude and phase of backward transmission 

coefficient of 22S  parameter. When we look at the figures of TMM method and 

Equation (2.81) distinctly they are totally the same with each other so that our last 

validation of 22S  is done correctly. However, when we compare the forward 

reflection coefficient of 11S  parameter and backward reflection coefficient of 22S  

parameter they are completely different from each other.  

 

 

Figure 3.4: Dependencies of magnitudes and phases of forward reflection scattering 

parameter 22S . 

As a result, we note the following two key points for the bianisotropic metamaterial 

property. First, bi-anisotropy property is symmetric to the transmission coefficient, 

and as a second bi-anisotropy shows an asymmetric property for the reflection 

coefficient. 
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3.5 Power Analysis 

Here, we present numerical results of a two layer multilayer structure to demonstrate 

dependencies of reflection, transmission, and loss powers of a general multilayer 

structure in Figure 3.1. The results are separated into two subsections for better 

presentation. In the first subsection, we analyze aforementioned powers when the 

conventional material is lossless and when the bianisotropic MM slabs are low-loss. 

In the second subsection, we investigate effects of loss present both inside the 

conventional material and bianisotropic MM slab. In each subsection, we also 

investigate the effect of sample thickness on the analyzed powers.  

 

3.5.1 LowLoss Case 

Towards this end, as a particular example, we choose the Lorentzian model 

parameters discussed previous section as in equation  (3.9) - (3.11). We also set 

r 6.0 1i0.0,    r 1.0 i0.0    for the conventional material and 

1 2L L 10.0mm.  For example, Figure 3.6 and 3.7 illustrate the dependencies of 

various reflected, transmitted, and loss powers for the analyzed two-layer structure 

for different 1L and 2L combinations over 0-25 GHz. 

From the dependencies in Figure 3.6 and Figure 3.7, we note the following points. 

First, while the transmitted powers obtained from forward and backward directions 

of bianisotropic metamaterial slab are individually the same (Figures 3.6(c), 3.6(d) 

and Figures 3.7(c), 3.7(d)). The corresponding reflected and loss powers of each slab 

are different (Figures 3.6(a), 3.6(b), 3.6(e), 3.6(f) and Figures 3.7(a), 3.7(b), 3.7(e), 

3.7(f)). For instance, whereas forward transmitted and backward transmitted are the 

same for bianisotropic MM slab, forward reflected and backward reflected powers 

are different for bianisotropic MM slab. The identical transmitted powers are a result 

of reciprocal property of each medium constituting the multilayer structure [25, 46, 

47], and different reflected (and loss) powers comes from the reflection asymmetric 

 11 22S S  nature of bianisotropic MM slabs (see Equation (3.7) and (3.8)). Second, 

reflected and transmitted powers of the conventional material  demonstrate the 

oscillatory behavior over frequency ( Figures 3.6.(a), 3.6.(b), 3.6.(e), 3.6.(f) and 
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Figures 3.7(a), 3.7(b), 3.7(e), 3.7(f) ). This oscillatory behavior of the conventional 

material arises from its lossless nature (Im r 0   and Im r 0  ). 

 

Figure 3.5: Dependencies of a) and b) reflected powers, c) and d) transmitted 

powers, e) and f) loss powers of the two-layer composite structure (L1=L2=10.mm ).  
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Third, transmitted power of the composite structure possesses a null value around 

resonance frequencies ef , mf , and f  ( Figures 3.6(c), 3.6(d) and Figures 3.7(c), 

3.7(d)), indicating the common property of materials that electromagnetic energy is 

absorbed by the material at resonance [30]. In addition, transmitted (or reflected) 

power has a sharp peak at some specific frequencies (e.g., f 13.7  GHz in Figures 

3.6(a), 3.6(b),  3.6(c), and 3.6(d) ) beyond these resonance frequencies. These peaks 

corresponding to thickness-resonance frequencies of the conventional material. At 

those frequencies, the conventional material demonstrates maximum reflection 

property [48,49].  

 

Fourth, the occurrence of peaks in reflected power increases (see Figures 3.6(c), 

3.6(d) and Figures 3.7(c), 3.7(d)), with 2L  due to increased oscillatory behavior of 

the conventional material. Therefore, resonance behavior at f 13.7  GHz and 

f 19.9  GHz in Figures 3.6(a), 3.6(b)) (or additional frequencies in Figures 3.7(a), 

3.7(b)) can be utilized for sensing applications of the conventional materials [50, 51].  

 

Fifth, total loss powers (Figures 3.6(e), 3.6(f), and Figure 3.7(e), 3.7(f),) increase 

drastically around resonance frequencies ef , mf , and f  ( Figures 3.6(e), 3.6(f) and 

Figures 3.7(e), 3.7(f)), as well as at some specific frequencies resulting in a 

decreased reflected powers (e.g., f 13.7  GHz and f 19.9 GHz in Figures 3.6(a), 

3.6.(b). Finally, we note from Figures 3.6.(a), 3.6.(b), 3.7.(a), and 3.7.(b) that forward 

and backward reflected and loss powers are, respectively, different from each other 

over the regions at which bianisotropic feature becomes a key parameter. For 

instance, the effect of 0  parameters is predominant over f 5 7   GHz in Figure 

3.6 and Figure 3.7 [41, 52]. 
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Figure 3.6: Dependencies of a) and b) reflected powers, c) and d) transmitted 

powers, e) and f) loss powers of the two-layer composite structure ( L1=40.mm, 

L2=10.mm ). 
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3.5.2 Lossy Case 

In the previous subsection, we investigated the transmitted, reflected, and loss 

powers of the two-layer composite structure in Figure 3.1 for low-loss bianisotropic 

MM slab and the lossless conventional material. Here, we mainly focus on the effects 

of increased loss inside both the bianisotropic MM slabs and the conventional 

material. In particular, we utilize following parameters to reflect losses inside the 

slabs 

 

 e m 2.0       GHz (3.12) 

 

while we keep other parameters the same in equations (3.9) and (3.10). For example 

Figure 3.8 and Figure 3.9 show the dependencies of tP , rP , and lP  of the 

bianisotropic slab, the conventional material, and the analyzed multilayer structure 

for various r  and r  and thickness combinations. From these figures, we deduce 

the following points. First, the transmitted powers in forward and backward 

directions of the multilayer structure in Figures 3.8(c), 3.8(d), 3.9(c) and 3.9(d) are 

still the same. This is because reciprocity of a medium is not a parameter depending 

on the loss factor of the medium. Second, discrepancy of different reflected and loss 

powers in forward and backward directions of the multilayer structure still holds 

when the loss is included into the analysis (Figures 3.8(a), 3.8(b), 3.9(a) and 3.9(b)). 

This is because reflection asymmetric feature  11 22S S  of the bianisotropic 

metamaterial slabs (producing the reflection asymmetric feature for the multilayer 

structure) is an intrinsic asymmetric nature of the physical constituents (e.g., 

orientation of metallic inclusions) [25, 30, 53], and because loss powers are related to 

reflected powers through the relation in (3.8). Third, the loss in the bianisotropic slab 

in addition to that in the conventional material, as expected, decreases the transmitted 

power of whole structure ( Figures 3.8(c), 3.8(d), 3.9(c) and 3.9(d) ). Fourth, while 

effect of loss in the bianisotropic slab decreases transmitted power around resonance 

frequencies f 5 7  GHz ( Figures 3.8(c) and 3.8(d) ), the effect of loss inside the 

conventional material (only is the dielectric loss considered since inclusion of the 

magnetic loss into the analysis does not change the conclusion drawn here) 

significantly decreases the sharp ripples in the reflected powers beyond resonance 

frequencies (Figures 3.8(a), 3.8(b), 3.9(a) and 3.9(b)). 
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Figure 3.7: Dependencies of a) and b) reflected powers, c) and d) transmitted 

powers, e) and f) loss powers of the two-layer composite structure ( L1= L2=10.mm ). 
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Figure 3.8: Dependencies of a) and b) reflected powers, c) and d) transmitted 

powers, e) and f) loss powers of the two-layer composite structure ( L1=40.mm, 

L2=10.mm ). 
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CHAPTER 4 

 

PROPAGATION CHARACTERISTICS OF A COMPOSITE MATERIAL BY 

SIMULATION PROGRAM CST 

 

4.1 Introduction 

Up to this point, we analytically derived S - parameters in Chapter 2 and then also 

validated by a numerical analysis in Chapter 3.In this validation, we utilized the 

Lorentz dispersion model and some parameters without focusing the structure and 

size of the bianisotropic MM slab and the conventional material. In this chapter, we 

perform a simulation of the composite structure in Figure 3.1 by using split-ring 

resonators (SRRs).  

Figure 4.1 shows a schematic of a commonly used edge coupled split ring resonator. 

The SRR structure consists of two concentric metallic rings that are both interrupted 

by a small gap. When a plane wave is incident in the x direction with an electrical 

field in the z direction and a magnetic field in the y direction, the SRR respond with 

a bianisotropic property. This is because the electrical field in the z direction can 

induce a magnetic dipole in the y direction due to the asymmetry of the inner and 

outer rings, while the magnetic field in the y direction can also induce an electrical 

dipole in the z direction [30]. 

Since the MM slab is bianisotropic, it produce different reflection properties. 

Therefore, forward and backward reflection and transmission S-parameter of the 

whole structure and the MM slab itself (and conventional material) are simulated 

separately to better analyze the simulation results. 
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Figure 4.1: Schematic of a split-ring resonator used to construct metamaterials. 

When a plane wave polarized along the z-axis is incident in the x direction, the 

metamaterial will show bi-anisotropy [30]. 

 

4.2 Analysis of the Isotropic Slab in CST 

An isotropic material is one which looks the same in every direction. We can not 

define any special direction using the material properties. In other words, none of the 

properties depend the orientation; it is perfectly rotationally symmetric. Note that in 

order to be isotropic the material must be homogenous on the length scale of interest; 

i.e, the same at every point in the material. For instance, rubber is a very isotropic 

material. Take a rubber ball, and it will feel the same and bounce the same however 

you rotate it. On the other hand, wood is an anisotropic material: hit it with an axe 

and it will take more force to break of you are cutting across the grain than along it. 

We're thinking about the material rather than the shape of the object [54]. 

An isotropic medium is one such that the permittivity  and permeability   of the 

medium are uniform in all directions of the medium. When the isotropic material 

exposed to electrical field it demonstrates the right handed material properties. As in 

Figure 4.3 electric field is parallel to split in rings so that it behaves as a conventional 

material property [30]. 
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Figure 4.2: Simulation of isotropic slab in CST program 

 

This in turn results in the same forward and backward reflection (and transmission) 

scattering parameters ( 11 22S S  and 12 12S S ). 
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Figure 4.3: Magnitudes( (a), (c), (e), (g) ) and phases ((b), (d), (f), (h) ) of the 

forward(backward) transmission(reflection) constants of the isotropic slab. 
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4.3 Analysis of the Bianisotropic Slab in CST 

Compared to an isotropic material, the most interesting and important feature of a 

bianisotropic material is that the characteristic impedances have different values for 

the waves propagating in the two opposite directions of the x axis [30]. As in Figure 

4.5 splits of rings are rotated 90 degrees so that electric field is now perpendicular to 

the splits. Contrary to isotropic material bianisotropic metamaterial demonstrates the 

left handed property rules. The presentation of electric field is perpendicular to split 

on rings is shown in Figure 4.5. In our numerical validation of S- parameters in 

Chapter 3 we have resonance; however, energy cavity (resonance) also occurs here 

about 3 GHz. 

 

 

Figure 4.4: Simulation of bianisotropic slab in CST program 

 

From the dependencies in Figure 4.5, we note that while forward and backward 

transmission scattering parameters ( 21S  and 12S ) are the same, forward and 

backward reflection scattering parameters ( 11S  and 22S ) are different, demonstrating 

the reflection asymmetric property of bianisotropic MM slabs. 

 

We also notice from Figure 4.5 that the bianisotropic MM slab has a resonance 

behavior around 3 GHz, which can be seen from the sharp nulls of 11S  and rapid 

change in 21S .   
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Figure 4.5: Magnitudes( (a), (c), (e), (g) ) and phases ((b), (d), (f), (h) ) of the 

forward(backward) transmission(reflection) constants of the bianisotropic slab. 
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4.4 Analysis of Composite Structure in CST 

The conventional material and bianisotropic metamaterial slab are combined 

respectively and applied into CST program as in Figure 4.7. When we analyze the 

result of the simulation in Figure 4.8, we see that there is resonance about 3 GHz as 

in bianisotropic metamaterial property in previous subsection. Moreover, the forward 

transmission ( 21S ) and backward transmission ( 12S ) constants are the same; 

however, forward reflection ( 11S ) and backward reflection ( 22S ) constant are 

different. 

 

 

Figure 4.6: The problem under investigation in CST program 

 

Therefore, we note that resonance behaviour of the composite structure is decided by 

the bianisotropic metamaterial with respect to isotropic material.  
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Figure 4.7: Magnitudes( (a), (c), (e), (g) ) and phases ((b), (d), (f), (h) ) of the 

forward(backward) transmission(reflection) constants of the composite structure. 
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CHAPTER 5 

 

CONCLUSION 

 

5.1 Results  

In this Master thesis, in first Chapter we presented how the metamaterial concept 

emerged, and then gave a brief literature review of isotropic and bi-anisotropic 

metamaterials. Then, we discussed the motivation of the thesis. 

In the second Chapter, from the previous studies and using Maxwell equations we 

extracted electromagnetic bianisotropic metamaterial property parameters coupling 

coefficient 0( ) , relative complex permeability ( )yy  and permittivity ( )zz  in terms 

of refractive-index. Towards this end, necessary scattering parameters of forward 

reflection 11( )S , backward transmission 12( )S ,  forward transmission 21( )S  and 

backward reflection 22( )S  coefficients are derived analytically utilizing boundary 

conditions for the investigated two-layer composite structure.  

In addition, from the derived aforementioned constant parameters and boundary 

conditions, we derived complex power relations for a composite structure with a 

bianisotropic metamaterial slab and a conventional material. To the best knowledge 

of us, such derivation are new to the literature.  

In Chapter 3, we turned our attention to validation of the derived expressions in the 

Chapter 2, and also we performed a numerical analysis to achieve our goal. In the 

analysis, we used Lorentz dispersion model to simulate artificial bi-anisotropic slab 

and the conventional material as well as to analyze the propagation characteristics of 

the composite material. In addition to this model we utilized the transfer matrix 

method, 
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which is a appropriate model for analysis of cascaded structures, to validate derived 

expressions. 

In Chapter 4, we simulated a two-layer composite material structure (a bi-anisotropic 

MM slab and a conventional material) by using split ring resonators (SRRs) in a 

computer simulation program CST for comparisons of the results in Chapter 3.  

From analytical model and simulation results, we note that the analyzed composite 

structure has different reflection scattering parameters and then different reflected 

powers, whereas it has the same transmission scattering parameters and the same 

transmitted powers. In addition, we note that bianisotropic metamaterials have 

different loss power behaviors depending on wave propagation direction. 

From the dependencies given in Chapter 3, we note that resonance behaviour of the 

composite structure is managed by the bianisotropic metamaterial with respect to 

isotropic material  

 

5.2 Future Work 

As a future work, we investigate composite structure composed of bianisotropic MM 

sandwiched between two left handed material. In addition, complex power analysis 

will be expanded in detail for realizing the exact transmission, reflection and loss 

powers. 
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APPENDIX 

 

This is a Matlab program for, in addition to calculation of some derived 

expressions in Chapter 2, obtaining scattering parameters and power 

expressions in Chapter 3 (Figures 3.1-3.8) of this thesis.  

clc; 
clear all; 
format long eng; 
format compact; 

  
Eps_zero = (10e-9)/(36*pi); 
Mu_zero = 4*pi*1e-7; 
c = 2.997925e8; 
% 
%---------- We took time reference as exp(-iwt)   -------- 
% 
% ====================== Bianisotropic MM parameters 

====================== 
F_e = 0.4; 
F_m = 0.4; 
F_Xi = 0.15; 

  
f_e = 6e9; 
f_m = 5e9; 
f_Xi = 5e9; 

  
Gamma_e = 2e9; 
Gamma_m = 2e9; 
Gamma_Xi = 2e9; 

  
d1 = 10e-3; 
% 

====================================================================

===== 

  

  

  
% ======================== Isotropic MM parameters 

======================== 
Er1 = 6 + 1i*0.0; 
%Er1=20; 
Mr1 = 1 + 1i*0.0; 

  
d2 = 10e-3; 
% 

====================================================================

===== 

  

  
index = 0; 
Z0 = sqrt(Mu_zero/Eps_zero); 

% for f = 1e9: 50e7: 1e9, 
for f = 0.1e1: 50e7: 25e9, 
    index = index + 1; 
    w = 2*pi*f; 
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    k0 = (w/c); 
    k01=k0*Er1*Mr1; 

     
% ========================= Bianisotropic MM slab 

========================= 
    Eps_z_Values(index) = 1 - (F_e*f^2)/(f^2 - f_e^2 + 

1i*Gamma_e*f); 
    Mu_y_Values(index) = 1 - (F_m*f^2)/(f^2 - f_m^2 + 1i*Gamma_m*f); 
    Xi_zero_Values(index) = 1 - (F_Xi*f^2)/(f^2 - f_Xi^2 + 

1i*Gamma_Xi*f); 
    n_Plus_Values(index) = sqrt( 

Eps_z_Values(index)*Mu_y_Values(index) - ( Xi_zero_Values(index) 

).^2 ); 
    n_Minus_Values(index) = - sqrt( 

Eps_z_Values(index)*Mu_y_Values(index) - ( Xi_zero_Values(index) 

).^2 ); 
    if imag( n_Plus_Values(index) ) >= 0 
        Signal_Values(index) = 1; 
    else 
        Signal_Values(index) = -1; 
    end 
    n_bian = Signal_Values(index)*sqrt( 

Eps_z_Values(index)*Mu_y_Values(index) - ( Xi_zero_Values(index) 

).^2 ); 
    z_Plus = Mu_y_Values(index)/( n_bian + 1i*Xi_zero_Values(index) 

); 
    z_Minus = Mu_y_Values(index)/( n_bian - 1i*Xi_zero_Values(index) 

);     

  
    gamma_x = 1i*k0*n_bian; 
    Gamma_1 = (z_Plus - 1)/(z_Plus + 1); 
    Gamma_2 = (z_Minus - 1)/(z_Minus + 1); 

     

     

     
    %%Scatering parameters below are taken from the paper of 

stepwise technique 
    %%for accurate and unique retrieval of electromagnetic 

properties of 
    %%bianisotropic metamaterials equation of 1&2. 

     
    T_Values(index) = exp( gamma_x*d1 ); 
    S11(index) = Gamma_1*(1 - T_Values(index)^2)/( 1 - 

Gamma_1*Gamma_2*( T_Values(index) )^2 ); 
    S22(index) = Gamma_2*(1 - T_Values(index)^2)/( 1 - 

Gamma_1*Gamma_2*( T_Values(index) )^2 );     
    S21(index) = ( (1 - Gamma_1*Gamma_2)*T_Values(index) )/( 1 - 

Gamma_1*Gamma_2*( T_Values(index) )^2 ); 
    S12(index) = ( (1 - Gamma_1*Gamma_2)*T_Values(index) )/( 1 - 

Gamma_1*Gamma_2*( T_Values(index) )^2 ); 

     

     

     

     
    %%% %%%%%Assuming the Zs and Zl are equal to 1 where the 

reference paper name is  
    %%% Full Extraction Method to Retrieve Effective Refractive 

Index and 
    %%% Parameters of a Bianisotropic Metamaterial 
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    %%%% equation 5 

     
    A = ( (1 + S11(index))*(1 - S22(index)) + S21(index)*S12(index) 

)/(2*S21(index)); 
     A2 = ( (1 + Gamma_1)*(1 - Gamma_2) + ( (1 - Gamma_1*Gamma_2)^2 

+ Gamma_2*(1 - Gamma_1^2) - Gamma_1*(1 - Gamma_2^2) 

)*T_Values(index)^2 ... 
        - Gamma_1*Gamma_2*(1 - Gamma_1)*(1 + 

Gamma_2)*T_Values(index)^4 )/( 2*(1 - Gamma_1*Gamma_2)*( 1 - 

Gamma_1*Gamma_2*T_Values(index)^2 )*T_Values(index) ); 

     
    B = ( (1 + S11(index))*(1 + S22(index) ) - S21(index)*S12(index) 

)/(2*S21(index)); 

     
    B2 = ( (1+ Gamma_1)*(1+Gamma_2)-

(Gamma_1*(1+Gamma_2^2)+Gamma_2*(1+Gamma_1^2)+4*Gamma_1*Gamma_2+(1-

Gamma_1*Gamma_2)^2)*T_Values(index)^2 ... 
    +Gamma_1*Gamma_2*(Gamma_1+1)*(Gamma_2+1)*T_Values(index)^4)/( 

2*(1 - Gamma_1*Gamma_2)*( 1 - Gamma_1*Gamma_2*T_Values(index)^2 

)*T_Values(index)); 

  

     
    C = ( (1 - S11(index))*(1 - S22(index)) - S21(index)*S12(index) 

)/(2*S21(index)); 
    C2 = ( (1 - Gamma_1)*(1 - Gamma_2) + ( Gamma_2*(1 - Gamma_1)^2 + 

Gamma_1*(1 - Gamma_2)^2 - (1 - Gamma_1*Gamma_2)^2 

)*T_Values(index)^2 ... 
        + Gamma_1*Gamma_2*(1 - Gamma_1)*(1 - 

Gamma_2)*T_Values(index)^4 )/(2*(1-Gamma_1*Gamma_2)*(1-

Gamma_1*Gamma_2*T_Values(index)^2)*T_Values(index) ); 

     

     
    D = ( (1 - S11(index))*(1 + S22(index)) + S21(index)*S12(index) 

)/(2*S21(index)); 

     
    D2 = ( (1- Gamma_1)*(1+Gamma_2)+(Gamma_1*(1+Gamma_1*Gamma_2)-

Gamma_2*(1+Gamma_1*Gamma_2)+(1-Gamma_1*Gamma_2)^2)*T_Values(index)^2 

... 
    +Gamma_1*Gamma_2*(Gamma_1*Gamma_2+ Gamma_2-Gamma_1-

1)*T_Values(index)^4)/(2*(1-Gamma_1*Gamma_2)*(1-

Gamma_1*Gamma_2*T_Values(index)^2)*T_Values(index)); 

     
%     A(index)*D(index) - B(index)*C(index);    % yields one 
    M1 = [A B; C D]; 
    % S11_1 = (A + B - C - D)/(A + B + C + D) 

     

     
% 

====================================================================

===== 

  

  

  
% =========================== Isotropic MM slab 

=========================== 
    n = sqrt( Mr1*Er1 ); 
    z = sqrt( Mr1/Er1 );     
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    M2 = [ cos(k0*n*d2) -1i*z*sin(k0*n*d2); -1i*sin(k0*n*d2)/z 

cos(k0*n*d2) ]; 

     

     
        %  ===============composite matrix of two material 

================ 

         

         
    MT = M1*M2; 
    S11_1 = ( MT(1,1) + MT(1,2) - MT(2,1) - MT(2,2) )/( MT(1,1) + 

MT(1,2) + MT(2,1) + MT(2,2) ); %%%reflection from transfer matrix 
    S22_1 = ( -MT(1,1) + MT(1,2) - MT(2,1) + MT(2,2) )/( MT(1,1) + 

MT(1,2) + MT(2,1) + MT(2,2) ); %%%reflection backward from transfer 

matrix 
    S21_1 = 2 /( MT(1,1) + MT(1,2) + MT(2,1) + MT(2,2) );  %%% 

transmission from transfer matrix 
    S12_1 = S21_1; 

  
    Lambda_1 = exp( -2i*k0*n*(d1 + d2) )*(1 + z)/(1 - z); 
    Lambda_2 = ( Lambda_1*exp( 1i*k0*n*d1 ) + exp( -1i*k0*n*d1 ) ) / 

( Lambda_1*exp( 1i*k0*n*d1 ) - exp( -1i*k0*n*d1 ) ); 
    Lambda_3 = exp( 2i*k0*n_bian*d1 )*( Lambda_2*z/z_Plus - 1) / ( 

Lambda_2*z/z_Minus + 1); 
    Lambda_4 = (1 + Lambda_3)/( (1/z_Plus) - Lambda_3/z_Minus ); 
    S11_2 = ( Lambda_4 - 1 )/( Lambda_4 + 1 );%%% reflection from 

thesis document 

     
%     Lambda_5 = exp( -2i*k0*n_bian*(d1 + d2) )*(1 + 

Z0/z_Minus)/(Z0/z_Plus - 1); 
%      
%     Lambda_6 = ( Lambda_5 + exp( -2i*k0*n_bian*(d1) ) ) /(z*( -

Lambda_5/z_Plus+ exp( -2i*k0*n_bian*d1/z_Minus ) ) ); 
%      
%     Lambda_7 = exp( -2i*k0*n*d1 )*( Lambda_6 - 1) / ( Lambda_6 + 

1); 
%      
%     Lambda_8 = (1 + Lambda_7)/( Z0 - Lambda_7*Z0 ); 
%      
%     S22 = ( Lambda_8 - 1 )/( Lambda_8 + 1 ); %%% reflection from 

thesis document 
    Lambda_5 = z_Minus*(1 + z_Plus)/(1 - z_Minus)/z_Plus; 

     
    Lambda_6 = ( Lambda_5 + exp( 2i*k0*n_bian*d2 ) 

)/(z*Lambda_5/z_Minus - z/z_Plus* exp( 2i*k0*n_bian*d2 ) ); 

     
    Lambda_7 = ( Lambda_6 + 1 )/( Lambda_6 - 1)*exp( 2i*k0*n*d2 ); 

     
    Lambda_8 = z*( Lambda_7 + exp(2i*k0*n*(d1+d2) ))/(Lambda_7 - 

exp(2i*k0*n*(d1+d2) ));  

     

     
    Omega_1 = 0.5*(1 + z)*exp( 1i*k0*(d1 + d2) )*exp( -1i*k0*n*(d1 + 

d2) ); 
    Omega_2 = ( -z*exp( 1i*k0*(d1 + d2) ) + Omega_1*exp( 1i*k0*n*(d1 

+ d2) ) )*exp( 1i*k0*n*(d1 + d2) ); 
    Omega_3 = ( 1 / (1 + z_Minus/z_Plus) )*( Omega_1*(1 + 

z_Minus/z)*exp( 1i*k0*n*d1 ) ...  
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        + Omega_2*(1 - z_Minus/z)*exp( -1i*k0*n*d1 ) )*exp( -

1i*k0*n_bian*d1 ); 
    Omega_4 = ( Omega_1*exp( 1i*k0*n*d1 ) + Omega_2*exp( -1i*k0*n*d1 

) - Omega_3*exp( 1i*k0*n_bian*d1 ) )*exp ( 1i*k0*n_bian*d1 ); 

     
    S21_2 = 2*exp( 1i*k0*(d1 + d2) ) /( Omega_3*(1 + 1/z_Plus) + 

Omega_4*( 1 - 1/z_Minus )  );%%% transmission from thesis document 
    S12_2 = S21_2; 

     
%     Omega_5 = ( (1/z_Plus + 1)/(1/z_Plus + 1/z_Minus) )*exp( -

1i*k0*(d1 + d2) )*exp( +1i*k0*n_bian*(d1 + d2) ); 
%     
%     Omega_6 = ( (1/z_Minus - 1)/(1/z_Plus + 1/z_Minus) )*exp( -

1i*k0*n*(d1 + d2) )*exp( -1i*k0*n_bian*(d1 + d2) ); 
%      
%     Omega_7 = (Omega_5*exp( -1i*k0*n_bian*d2 ) + Omega_6*exp( 

1i*k0*n_bian*d2 ) )*( Omega_5*( 1 + z/z_Minus ) + Omega_6*exp( 

+2i*k0*n_bian*d2 )*(1 - z/z_Plus)  )... 
%         / (2*( Omega_5 + Omega_6*exp( +2i*k0*n_bian*d2 ) )  ) * 

exp( +1i*k01*n*d2 ) ; 
%      
%     Omega_8 = (Omega_5*exp( -1i*k0*n_bian*d2 ) + Omega_6*exp( 

+1i*k0*n_bian*d2 ) )*( Omega_5*( 1 - z/z_Minus ) + Omega_6*exp( 

+2i*k0*n_bian*d2 )*(1 + z/z_Plus)  )... 
%         / (2*( Omega_5 + Omega_6*exp( +2i*k0*n_bian*d2 ) )  ) * 

exp( -1i*k01*n*d2 ) ; 
%      
%      
%     S12 = 2*exp( -1i*k0*(d1 + d2) )/( Omega_7*(1 - 1/z)+ 

Omega_8*(1 + 1/z) ); 

     
%          
%     Omega_5 = z_Minus*(1 + z_Plus)*exp( -1i*k0*n_bian*d1 )/( 

2*(z_Plus + z_Minus) ); 
%     Omega_6 = z_Plus*(1 - z_Minus)*exp( +1i*k0*n_bian*d1 )/( 

2*(z_Plus + z_Minus) );     
%     S12 = 2/( (1 + 1/z)*[ (1 + z/z_Minus)*Omega_5 + (1 - 

z/z_Plus)*Omega_6 ]*exp( -1i*k0*n*d2 ) + ... 
%         (1 - 1/z)*[ (1 - z/z_Minus)*Omega_5 + (1 + 

z/z_Plus)*Omega_6 ]*exp( +1i*k0*n*d2 ) ); %%transmission backward 

from thesis 
%       

     

  

  
    Lambda_9 = ( (1 + 1/z_Plus)*exp( -1i*k0*n_bian*d1 ) + (1/z_Minus 

- 1)*exp( +1i*k0*n_bian*d1 ) )... 
        /( (z/z_Minus)*(1 + 1/z_Plus)*exp( -1i*k0*n_bian*d1 ) - 

(z/z_Plus)*(1/z_Minus - 1)*exp( +1i*k0*n_bian*d1 ) ); 
    Lambda_10 = z*( (Lambda_9 + 1) + (Lambda_9 - 1)*exp( +2i*k0*n*d2 

) )... 
        /( (Lambda_9 + 1) - (Lambda_9 - 1)*exp( +2i*k0*n*d2 ) ); 

     
    S22_2 = (Lambda_10 - 1)/(Lambda_10 + 1); 
%%==========================================================00000000

00000000============================================================

====== 

    
    S11_Iso(index) = ( M2(1,1) + M2(1,2) - M2(2,1) - M2(2,2) ) / ( 

M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) ); 
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    S21_Iso(index) = 2 /( M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) ); 

     
    S12_Iso(index) = 2 /( M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) ); 
    S22_Iso(index) = ( -M2(1,1) + M2(1,2) - M2(2,1) + M2(2,2) ) / ( 

M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) ); 

  
%=========FORWARD============ 
    Transmittivity_Bian(index) = abs(S21(index))^2; 
    Transmittivity_Iso(index) = abs(S21_Iso(index))^2; 
    Transmittivity_All(index) = abs( S21_1 )^2;%%===P_transmitted 

     
    Reflectivity_Bian(index) = abs(S11(index))^2; 
    Reflectivity_Iso(index) = abs(S11_Iso(index))^2; 
    Reflectivity_All(index) = abs( S11_1 )^2;%%===P_reflected 

     
    Loss_Bian(index) = 1 - ( Transmittivity_Bian(index) + 

Reflectivity_Bian(index) ); 
    Loss_Iso(index) = 1 - ( Transmittivity_Iso(index) + 

Reflectivity_Iso(index) ); 
    Loss_All(index) = 1 - ( Transmittivity_All(index) + 

Reflectivity_All(index) ); 

     
    %=========BACKWARD============ 

     
    Transmittivity_Bian_2(index) = abs(S12(index))^2; 
    Transmittivity_Iso_2(index) = abs(S12_Iso(index))^2; 
    Transmittivity_All_2(index) = abs( S12_1 )^2;%%===P_transmitted 

     
    Reflectivity_Bian_2(index) = abs(S22(index))^2; 
    Reflectivity_Iso_2(index) = abs(S22_Iso(index))^2; 
    Reflectivity_All_2(index) = abs( S22_1 )^2;%%===P_reflected 

     
    Loss_Bian_2(index) = 1 - ( Transmittivity_Bian_2(index) + 

Reflectivity_Bian_2(index) ); 
    Loss_Iso_2(index) = 1 - ( Transmittivity_Iso_2(index) + 

Reflectivity_Iso_2(index) ); 
    Loss_All_2(index) = 1 - ( Transmittivity_All_2(index) + 

Reflectivity_All_2(index) ); 

     

    
    %================================== 

     
    S21_1_real(index) = abs( S21_1 )^2 
    S21_1_imaginal(index) = imag( S21_1 )^2 
    S21_2_real(index) = abs( S21_1 )^2 
    S21_2_imaginal(index) = imag( S21_1 )^2 

     
    S12_1_real(index) = abs( S12_1 )^2 
    S12_1_imaginal(index) = imag( S12_1 )^2 
    S12_2_real(index) = abs( S12_1 )^2 
    S12_2_imaginal(index) = imag( S12_1 )^2 

     
    S11_1_real(index) = abs( S11_1 )^2 
    S11_1_imaginal(index) = imag( S11_1 )^2 
    S11_2_real(index) = abs( S11_1 )^2 
    S11_2_imaginal(index) = imag( S11_1 )^2 

     
    S22_1_real(index) = abs( S22_1 )^2 
    S22_1_imaginal(index) = imag( S22_1 )^2 
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    S22_2_real(index) = abs( S22_1 )^2 
    S22_2_imaginal(index) = imag( S22_1 )^2 

     

     
    f_Values(index) = f/1e9; 

         
end 

  

  
 % ===================================S-

PARAMETER=========================== 

  
 %=================s11 

  
subplot(2,2,1) 
plot(f_Values,S11_1_real,'b-'  ); 
ylabel('|S11|'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,2); 
plot(f_Values,(180/pi)*atan2(S11_1_imaginal,S11_1_real),'b-'  ); 
ylabel('degrees'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,3); 
plot(f_Values,S11_2_real,'b-'  ); 
xlabel('frequency (GHz)'); 
ylabel('|S11|'); 
title('Analytic'); 
grid on; 
subplot(2,2,4); 
plot(f_Values,(180/pi)*atan2(S11_2_imaginal,S11_2_real),'b-'  ); 
xlabel('frequency (GHz)'); 
ylabel('degrees'); 
title('Analytic'); 
grid on; 

  
figure; 

  
%=================s21 

  
subplot(2,2,1) 
plot(f_Values,S21_1_real,'b-'  ); 
ylabel('|S21|'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,2); 
plot(f_Values,(180/pi)*atan2(S21_1_imaginal,S21_1_real)); 
ylabel('degrees'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 
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subplot(2,2,3); 
plot(f_Values,S21_2_real); 
xlabel('frequency (GHz)'); 
ylabel('|S21|'); 
title('Analytic'); 
grid on; 
subplot(2,2,4); 
plot(f_Values,(180/pi)*atan2(S21_2_imaginal,S21_2_real)); 
xlabel('frequency (GHz)'); 
ylabel('degrees'); 
title('Analytic'); 
grid on; 
figure; 
%=================s12 
subplot(2,2,1) 
plot(f_Values,S12_1_real,'b-'  ); 
ylabel('|S12|'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,2); 
plot(f_Values,(180/pi)*atan2(S12_1_imaginal,S12_1_real)); 
ylabel('degrees'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,3); 
plot(f_Values,S12_2_real); 
xlabel('frequency (GHz)'); 
ylabel('|S12|'); 
title('Analytic'); 
grid on; 
subplot(2,2,4); 
plot(f_Values,(180/pi)*atan2(S12_2_imaginal,S12_2_real)); 
xlabel('frequency (GHz)'); 
ylabel('degrees'); 
title('Analytic'); 
grid on; 
figure; 
%=================s22 
subplot(2,2,1) 
plot(f_Values,S22_1_real,'b-'  ); 
ylabel('|S22|'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,2); 
plot(f_Values,(180/pi)*atan2(S22_1_imaginal,S22_1_real)); 
ylabel('degrees'); 
xlabel({'frequency (GHz)',' '}); 
title('Numeric - TMM'); 
grid on; 

  
subplot(2,2,3); 
plot(f_Values,S22_2_real); 
xlabel('frequency (GHz)'); 
ylabel('|S22|'); 
title('Analytic'); 
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grid on; 
subplot(2,2,4); 
plot(f_Values,(180/pi)*atan2(S22_2_imaginal,S22_2_real)); 
xlabel('frequency (GHz)'); 
ylabel('degrees'); 
title('Analytic'); 
grid on; 

  

  
%%============================complex power 

verification===================== 

  
E1_arti=1; 
E1_eksi = S11_2*E1_arti; 
E2_arti = E1_arti*(1+S11_2)/(1+Lambda_3); 
E2_eksi = Lambda_3*E2_arti; 

  

  
E3_eksi=E2_arti*(Lambda_3*exp(-1i*k0*n_bian*d1)+exp(1i*k0*n_bian*d1) 

)/(Lambda_1*exp(1i*k0*n*d1)+exp(-1i*k0*n*d1)); 
E3_arti=E3_eksi*Lambda_1; 

  
E4_arti=S21_2*E1_arti; 

  

  

  
 % P1 = ( 1/(2*Z0) )*(  ( abs(E2_eksi)^2 )/conj( z_Minus ) - ( 

abs(E2_arti)^2 )/conj( z_Plus ) ... 
  %    + ( conj( E2_eksi)*E2_arti )/conj( z_Minus ) - ( conj( 

E2_arti)*E2_eksi )/conj( z_Plus ) ); 

  
%   P1 = ( 1/(2*Z0) )*( abs( E1_eksi )^2 - abs(E1_arti)^2 - 

conj(E1_eksi)*E1_arti - E1_eksi*conj( E1_arti ) ); 

  

  
p1_0 = (-0.5/Z0)*( -

abs(E1_arti)^2+abs(E1_eksi)^2+E1_arti*conj(E1_eksi)-

E1_eksi*conj(E1_arti)); 
%P1_0 = (-0.5/Z0)*abs(E1_arti)^2*( abs(S11_1)^2+conj(S11_1)-S11_1 - 

1   ) 

  
p2_0 = (-0.5/Z0)*( -

abs(E2_arti)^2/conj(z_Plus)+abs(E2_eksi)^2/conj(z_Minus)... 
     +E2_arti*conj(E2_eksi)/conj(z_Minus)-

E2_eksi*conj(E2_arti)/conj(z_Plus)); 

  

  

  
% P1_01 = (-0.5)*abs(E1_arti)^2*abs(S21(index))^2*(1/conj(z_Plus)); 

  
% P1_01 = 1/(2*Z0)*abs(E1_arti)^2*4*z_Plus/abs(z_Plus+Z0)^2; 

  

  
% p2_d1 = (-0.5/Z0)*( -abs(E2_arti)^2/conj(z_Plus) + 

abs(E2_eksi)^2/conj(z_Minus)... 
%     + E2_arti*conj(E2_eksi)*exp(2i*k0*n_bian*d1)/conj(z_Minus) - 

E2_eksi*conj(E2_arti)*exp(-2i*k0*n_bian*d1)/conj(z_Plus)) 
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p2_d1 =  (-0.5/Z0)*( - ( abs(E2_arti)^2 )*exp( -2*k0*imag(n_bian)*d1 

)/conj(z_Plus) + ( abs(E2_eksi)^2 )*exp( +2*k0*imag(n_bian)*d1 

)/conj(z_Minus)... 
    + E2_arti*conj(E2_eksi)*exp( 2i*k0*real(n_bian)*d1 

)/conj(z_Minus) - E2_eksi*conj(E2_arti)*exp( -2i*k0*real(n_bian)*d1 

)/conj(z_Plus)); 

  
p3_d1 = (-0.5/conj(z*Z0))*( abs(E3_eksi)^2*exp(2*k0*imag(n)*d1) - 

abs(E3_arti)^2*exp(-2*k0*imag(n)*d1) + 

E3_arti*conj(E3_eksi)*exp(+2i*k0*real(n)*d1) ... 
    - E3_eksi*conj(E3_arti)*exp(-2i*k0*real(n)*d1) ); 

  

  
p3_d2 = (-0.5/conj(z*Z0))*( abs(E3_eksi)^2*exp(2*k0*imag(n)*(d1+d2)) 

- abs(E3_arti)^2*exp(-2*k0*imag(n)*(d1+d2)) + 

E3_arti*conj(E3_eksi)*exp(+2i*k0*real(n)*(d1+d2)) ... 
    - E3_eksi*conj(E3_arti)*exp(-2i*k0*real(n)*(d1+d2)) ); 

  
p4_d2 = (0.5/Z0)*(abs(E4_arti)^2); 

     

  
%%=================================== 

  

  

  

  
%%%%%%%%%% 

  
subplot(3,2,1); 
plot(f_Values, Reflectivity_All,'--', f_Values, Reflectivity_Bian,'-

.', f_Values, Reflectivity_Iso,':', 'LineWidth', 1.5); 
ylabel({'Forward Reflected','(normalized)'}); 
% xlabel({'frequency (GHz)'; ' c) ' ;' '}); 
xlabel('Frequency (GHz)'); 
ylim([0,1]); 
grid on; 

  

  
subplot(3,2,2); 

  
plot(f_Values, Reflectivity_All_2,'--', f_Values, 

Reflectivity_Bian_2,'-.', f_Values, Reflectivity_Iso_2,':', 

'LineWidth', 1.5); 
ylabel({'Backward Reflected','(normalized)'}); 
% xlabel({'frequency (GHz)'; ' d) ' ;' '}); 
xlabel('Frequency (GHz)'); 
ylim([0,1]); 
grid on; 

  
%%%%%%%%%%% 

  
subplot(3,2,3); 
plot(f_Values, Transmittivity_All,'--', f_Values, 

Transmittivity_Bian,'-.', f_Values, 

Transmittivity_Iso,':','LineWidth', 1.5); 
ylabel({'Forward Transmitted','(normalized)'}); 
% xlabel({'frequency (GHz)'; ' a) ' ;' '}); 
xlabel('Frequency (GHz)'); 
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ylim([0,1]); 
grid on; 

  

  
subplot(3,2,4); 

  
plot(f_Values, Transmittivity_All_2,'--', f_Values, 

Transmittivity_Bian_2,'-.', f_Values, 

Transmittivity_Iso_2,':','LineWidth', 1.5); 
ylabel({'Backward Transmitted','(normalized)'}); 
% xlabel({'frequency (GHz)'; ' b) ' ;' '}); 
xlabel('Frequency (GHz)'); 
ylim([0,1]); 
grid on; 

  
%%%%%%%%% 
subplot(3,2,5); 

  
plot(f_Values, Loss_All,'--', f_Values, Loss_Bian,'-.', f_Values, 

Loss_Iso,':','LineWidth', 1.5); 
ylabel({'Forward Loss','(normalized)'}); 
% xlabel({'frequency (GHz)'; ' e) ' ;' '}); 
xlabel('Frequency (GHz)'); 
ylim([0,1]); 
grid on; 

  

  
subplot(3,2,6); 
plot(f_Values, Loss_All_2,'--', f_Values, Loss_Bian_2,'-.', 

f_Values, Loss_Iso_2,':','LineWidth', 1.5); 
ylabel({'Backward Loss','(normalized)'}); 
% xlabel({'frequency (GHz)'; ' f) ' ;' '}); 
xlabel('Frequency (GHz)'); 
ylim([0,1]); 
grid on; 
%% 

  
%======================================TRANSMITTANCE================

====================================================== 
figure; 
% plot(f_Values, Transmittivity_All, 'b-','x' , f_Values, 

Transmittivity_Bian, 'r-','o', f_Values, Transmittivity_Iso, 'g-

','k'); 
subplot(2,2,1); 
plot(f_Values,Transmittivity_All,'b-'  ); 
% text(f_Values,Transmittivity_All,'o'  ); 
title('TOTAL TRANSMISSION '); 
xlabel({'frequency (GHz)'; ' a) ' ;' '}); 

  
ylabel('TRANSMITTANCE'); 
grid on; 
% figure, 
subplot(2,2,2); 

  
plot(f_Values,Transmittivity_Bian,'r-'  ); 
% text(f_Values,Transmittivity_All,'*'  ); 
title('TRANSMISSION OF BI-ANISOTROPIC SLAB '); 
xlabel({'frequency (GHz)'; ' b) ';' ' }); 
ylabel('TRANSMITTANCE'); 
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grid on; 
% figure, 

  
subplot(2,2,3); 
plot(f_Values,Transmittivity_Iso,'g-'  ); 
 %text(f_Values,Transmittivity_All,'+'  ); 
title('TRANSMISSION OF ISOTROPIC SLAB'); 
xlabel({'frequency (GHz)'; ' c) ' ;' '}); 
ylabel('TRANSMITTANCE'); 
grid on; 
% figure, 

  

  
subplot(2,2,4); 

  
%  plot(f_Values, Transmittivity_All,'b-', f_Values, 

Transmittivity_Bian,'r-', f_Values, Transmittivity_Iso,'g-'); 
 plot(f_Values, Transmittivity_All,'b-', f_Values, 

Transmittivity_Bian,'r-', f_Values, Transmittivity_Iso,'g-'); 
% text(f_Values, Transmittivity_All,'x'); 
% text(f_Values, Transmittivity_Bian,'*'); 
% text(f_Values, Transmittivity_Iso,'+'); 
title('ALL TRANSMISSION '); 
xlabel({'frequency (GHz)'; ' d) ';' ' }); 
ylabel('TRANSMITTANCE'); 

  
text(6,0.8,'Isotropic'); 
text(9,0.2,'Bianisotropic'); 
text(1.5,0.2,'Total'); 

  
grid on; 

  
%  

  
%%%==================================================REFLECTANCE====

================================================== 
figure; 
% plot(f_Values, Reflectivity_All, 'b-', f_Values, 

Reflectivity_Bian, 'r-', f_Values, Reflectivity_Iso, 'g-'); 
subplot(2,2,1); 
plot(f_Values,Reflectivity_All,'b-'  ); 
%  text(f_Values,Reflectivity_All,'x'  ); 
title('TOTAL REFLECTION '); 
xlabel({'frequency (GHz)'; ' a) ' ;' '}); 
ylabel('REFLECTANCE'); 
grid on; 
% figure, 
subplot(2,2,2); 

  
plot(f_Values,Reflectivity_Bian,'r-'  ); 
%  text(f_Values,Reflectivity_Bian,'*'  ); 
title('REFLECTION OF BI-ANISOTROPIC SLAB'); 
xlabel({'frequency (GHz)'; ' b) ' ;' '}); 
ylabel('REFLECTANCE'); 
grid on; 
% figure, 
subplot(2,2,3); 

  
plot(f_Values,Reflectivity_Iso,'g-'  ); 
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% text(f_Values,Reflectivity_Iso,'+'  ); 
title('REFLECTION OF ISOTROPIC SLAB'); 
xlabel({'frequency (GHz)'; ' c) ' ;' '}); 
ylabel('REFLECTANCE'); 
grid on; 
% figure, 

  

  
subplot(2,2,4); 

  
plot(f_Values, Reflectivity_All,'b-', f_Values, 

Reflectivity_Bian,'r-', f_Values, Reflectivity_Iso,'g-'); 
% text(f_Values, Reflectivity_All,'x'); 
% text(f_Values, Reflectivity_Bian,'*'); 
% text(f_Values, Reflectivity_Iso,'+'); 
title('ALL REFLECTION '); 
xlabel({'frequency (GHz)'; ' d) ' ;' '}); 
ylabel('REFLECTANCE'); 

  
text(15,0.4,'Isotropic'); 
text(9,0.75,'Bianisotropic'); 
text(3,0.8,'Total'); 

  
grid on; 
%  

  
% 

==================================================LOSS==============

======================================== 
figure; 
% plot(f_Values, Loss_All, 'b-', f_Values, Loss_Bian, 'r-', 

f_Values, Loss_Iso, 'g-'); 
% grid on; 

  
subplot(2,2,1); 
plot(f_Values,Loss_All,'b-'  ); 
%  text(f_Values,Loss_All,'x'  ); 
title('TOTAL LOSS '); 
xlabel({'frequency (GHz)'; ' a) ' ;' '}); 
ylabel('LOSS'); 
grid on; 
% figure, 
subplot(2,2,2); 

  
plot(f_Values,Loss_Bian,'r-'  ); 
%  text(f_Values,Loss_Bian,'*'  ); 
title('LOSS OF BI-ANISOTROPIC MEDIUM '); 
xlabel({'frequency (GHz)'; ' b) ' ;' '}); 
ylabel('LOSS'); 
grid on; 
% figure, 
subplot(2,2,3); 

  
plot(f_Values,Loss_Iso,'g-'  ); 
% text(f_Values,Loss_Iso,'+'  ); 
title('LOSS OF ISOTROPIC MEDIUM'); 
xlabel({'frequency (GHz)'; ' c) ' ;' '}); 
ylabel('LOSS'); 
grid on; 
% figure, 
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subplot(2,2,4); 

  

  
plot(f_Values, Loss_All,'b-', f_Values, Loss_Bian,'r-', f_Values, 

Loss_Iso,'g-'); 
% text(f_Values, Loss_All,'x'); 
% text(f_Values, Loss_Bian,'*'); 
% text(f_Values, Loss_Iso,'+'); 
title('ALL LOSS '); 
xlabel({'frequency (GHz)'; ' d) ' ;' '}); 
ylabel('LOSS'); 

  
% text(18,0.54,'Isotropic(+)'); 
% text(12,0.1,'Bianisotropic(*)'); 
% text(3,0.75,'All(x)'); 

  
grid on; 

  
============================FINISH================================ 
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Özet: Among various bi-anisotropic metamaterial (MM) slabs, π-shaped ones can allow 

miscellaneous configurations so that different and exciting electromagnetic properties of bi-

anisotropic MM slabs can be readily achieved. We investigate the constitutive parameters of various 

π-shaped bi-anisotropic composite MM      such as, refractive index ( n ), permittivity ( ), 

permeability (  ) and magneto-electric coupling coefficient ( ). To achieve this purpose we mainly 

focus on the change in the width of continuous wire constituent and width of separated continuous 

wire of  Composite bi-anisotropic MM and supported by simulations, the microwave studio package 

of CST simulation program has been used after obtaining the S-parameters. 

 

1. Introduction 

Artificially fabricated metamaterials (MMs) have drawn considerable attention of scientific 

community since they possess negative refractive index ( n ) and negative refraction at a certain 

frequency band or bands [1]. Bi-anisotropic metamaterials can possess a coupling factor and 

surprisingly can have a backward wave medium property although their real part of n  is not negative. 

Among various bi-anisotropic MM slabs, π-shaped ones can allow miscellaneous configurations so 

that different and exciting electromagnetic properties of bi-anisotropic MM slabs can be readily 

achieved. Because various electromagnetic devices can be produced with miscellaneous MM 

configurations, their compatibility should be investigated. To achieve this goal, electromagnetic 

properties of MM structures should be properly defined and retrieved. In this study, we investigate the 

influence of a change in the width ( 1w ) of continuous wire constituent and width ( 2w ) of separated 

continuous wire of various Composite bi-anisotropic MM slabs (combination of imparted continuous 

wire and π-shaped structure) on their electromagnetic parameters. Fig. 1 demonstrates the analyzed 

Composite slab with dimensions. It is assumed that the slab is periodic over y - z  plane. For the 

geometry and wave configuration, only y , z , and  0  describe wave behavior among other 

constitutive parameters. 

http://tureng.com/search/surprisingly


82 

 

 

 

 

 

 

 

 

 

 

2. Theoretical Background  

To perform aforementioned quantitative analyses the phase unwrapping technique can be applied for 

unique and correct retrieval of electromagnetic properties of π-shaped bi-anisotropic MM slabs. This 

technique was applied for unique extraction of electromagnetic properties of isotropic conventional 

and MM samples [2,3]. Assuming that a uniform plane wave with polarization in the y  direction 

and propagation in x  direction is incident to both MM configuration in Fig. 1, forward and 

backward reflection and transmission S-parameters of each configuration with length L  can be 

written for exp ( )iwt  time reference as 
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Here, 1   and 2  are the intrinsic (first) reflection coefficients at the interfaces of front and back 

faces of each MM slab; T   is the propagation factor related to propagation characteristics of the slabs; 

wz


, wz


, n  , and 0k  are, respectively, the normalized wave impedances in forward ( x ) and 

backward ( x ) directions, the refractive index of each bi-anisotropic MM slab, and the free-space 

wave number; y  is the relative complex permittivity in y direction; z  is the relative complex 

permeability in z direction; and 0  is the magneto-electric coupling coefficient. 

 

 

Fig. 1. Geometrical configuration of the analyzed 

Composite MM slab in addition to wave 

configuration. 
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3. Simulation Results and Discussion 

For performing simulations, the microwave studio package of CST simulation program has been used. 

Geometric and electrical properties of the slab cell in Fig. 1 are as follows. Lattice constants in 

respective directions of each cell are 5.0ax  mm, 12.1ya  mm, and 4.0az  mm. Besides, 

3.1h  mm, 0.7g  mm, 2.0l  mm, 1.17d  mm. The substrate in each cell has the same 

geometry of lattice constants and has a loss-free relative permittivity with a value of 4.3. Perfect 

electric conductors with a thickness of 50 m  are utilized to imitate the response of metallic π-shaped 

inclusion and individual continuous wire of MM slabs to electromagnetic waves. Perfect electric and 

magnetic conductors are, respectively, assumed to be located over x - z  and x - y  planes to obtain the 

periodicity of the slab over y - z  plane. 

After obtaining the simulated S-parameters, we extracted n , y , z , and 0  parameters. For 

example, Figs. 2 and 3, respectively, illustrate these parameters for various bi-anisotropic Composite 

MM slabs with 1 0.1w   mm and 1 1.2w   mm. From the dependencies in Figs. 2 and 3 we note the 

following results. First, it is seen that the value of magneto-electric coupling factor should not be 

omitted in the extraction of electromagnetic properties. Second, for the condition only when 1w > 2w   

magnetic response of the Composite bi-anisotropic MM slab can change, while an increase in either 

1w  or 2w  changes their electric response. Finally, an increase of 2w  ( 1w is constant) of our structure 

negligibly alters their electromagnetic response over the frequency region 4.49 GHz and 

5.12f  GHz in which these slabs have right handed material property. 

  

  

Fig. 2. Extracted electromagnetic properties of various bi-anisotropic Composite MM slabs with 

1 0.1w   mm. 
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Fig. 3. Extracted electromagnetic properties of various bi-anisotropic Composite MM slabs with 

1 1.2w   mm. 

4. Conclusion 

We have investigated effects of a change in width 1( )w of constituent wire of a π-shaped bi-

anisotropic MM slab and width 2( )w  of individual continuous wire of a Composite bi-anisotropic 

MM slab on their electromagnetic properties. After, we derived explicit expressions of (first) 

reflection coefficient and propagation factor in terms of simulated/measured S-parameters and then 

applied the phase unwrapping technique. From our investigation, we note the following key 

conclusions. First, we note that the value of magneto-electric coupling factor should not be omitted in 

the extraction of electromagnetic properties of π-shaped and Composite bi-anisotropic MM slabs 

especially for a frequency region in which measured/simulated S-parameters have significant changes. 

Second, a change in 1w  importantly affects the electromagnetic response of π-shaped bi-anisotropic 

MM slabs over a frequency region in which these slabs possess right-handed material (RHM) 

property. Finally, while either 1w  and 2w   affects electric response of Composite bi-anisotropic MM 

slabs, only for the case 1w > 2w   changes magnetic response of these slabs. 
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