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ABSTRACT

INVESTIGATION OF PROPAGATION CHARACTERISTICS OF A
COMPOSITE MATERIAL COMPOSED OF A BIANISOTROPIC
METAMATERIAL AND AN ISOTROPIC CONVENTIONAL MATERIAL

BUTE, Musa
M.Sc. in Electrical and Electronics Eng.
Supervisor: Assoc. Prof. Dr. Ugur Cem HASAR
September 2013, 84 pages

It is well-known that metamaterials fabricated by an engineering design possess
electromagnetic properties unavailable in conventional materials such as negative
refractive index and perfect lens. Within the broad scope of metamaterials, bi-
anisotropic metamaterials have properties different than isotropic metamaterials in
that they have different forward and backward wave impedances, different forward
and backward reflection scattering parameters, a wider stop-band compared to
isotropic metamaterials, and a magneto-electric coupling coefficient. In the literature,
wave propagation characteristics of different composite metamaterial media are
investigated. To our best knowledge, wave propagation characteristics of a
composite structure comprising of a bi-anisotropic metamaterial slab and an isotropic
conventional slab has not yet been analyzed. In this thesis, propagation
characteristics of the aforementioned structure is investigated. In the purpose of this
thesis, we analytically derived forward and backward reflection and transmission
scattering parameters of the composite structure, for a uniform plane wave incident
normally to the composite medium. Moreover, analytically derived parameters are
validated by a numerical analysis. Finally, after derivation and validation of
scattering parameters, we analyzed the wave characteristics of the composite
structure fabricated by only split ring resonators using a commercially available
electromagnetic/microwave simulation software package (CST Microwave Studio).

Key Words: Metamaterials, Bianisotropy, Scattering Parameters, Composite
Structures, CST.



OZET

iZOTROPIK KONVENSIiYONEL BiR MALZEME iLE BiANiZOTROPIK BiR
METAMALZEMEDEN OLUSAN KOMPOZIT BiR YAPININ YAYILIM
KARAKTERISTIGININ ANALIiZi

BUTE, Musa
Yiiksek Lisans Tezi, Elektrik-Elektronik Miih. Bolimii
Tez Yoneticisi: Dog. Dr. Ugur Cem HASAR
Eyliil 2013, 84 sayfa

Bilindigi iizere metamalzemeler, normal malzemelerde bulunmayan negatif kirilma
indisi ve milkemmel lens gibi elektromanyetik ozellikleri mithendislik tasarimlari
kazandirilarak Ttretilmektedir. Metamalzemenin genis kapsama alani igerisinde,
bianizotropik  metamalzemeler ileri-geri empedans ve yansima sagilma
parametrelerinin farklilik géstermesi ve kuplaj katsayisina sahip olmasi nedeniyle
normal metamalzemelerden farkli ozellikler gostermektedir. Bildigimiz kadariyla
literatiirde, bianizotropik bir metamalzeme ve normal malzemeden olusan bir
kompozit yapinin elektromanyetik dalga yayillim karakteristigini heniiz inceleyen
olmamustir. Bu tezde, yukarda bahsedilen kompozit yapmin yayilim karakteristigi
incelenmistir. Bu amag dogrultusunda bu kompozit yapinin analitik olarak ileri-geri
yansima ve iletim sagilma parametreleri normal diizlemsel gelen dalga modeli ile
bulunmustur. Bununla birlikte bulunan parametreler niimerik analiz olarak da
dogrulanmigtir.  Son  olarak, sSagilma  parametrelerinin  bulunmasi  ve
dogrulanmasindan sonra yarik halka rezonator yapi ile bu kompozit yapinin dalga
yayilim karakteristigi elektromanyetik yazilim simiilasyon programi olan CST

mikrodalga kiitiiphanesi ile de analiz edilerek desteklenmistir.

Anahtar Kelimeler: Metamalzemeler, Bianizotropi, Sagilma Parametreleri,

Kompozit yapilar, CST.
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CHAPTER 1

INTRODUCTION

1.1 Background

We first present how the metamaterial concept emerged, and then give a brief
literature review of isotropic and bi-anisotropic metamaterial. Finally, we discuss the
motivation of the thesis. Just after World War 11, metamaterials were developed and
history of metamaterials shares a common history with artificial dielectrics in
microwave engineering. However, at the end of the 19" century there are
determining explorations of artificial materials for manipulating electromagnetic

waves.

In the late 1940s, Dr. Winston E. Kock is the first researcher obtaining the materials
having similar characteristics to metamaterials. Later Dr. Victor Veselago described
theoretically materials possessing reversed physical characteristics to be discussed
later on. Approximately 30 years later, in the year 2000, the experimental
demonstration of functioning electromagnetic metamaterials was reported by Smith
et al. with horizontally stacking, periodically, split-ring resonators and thin wire
structures. Utilization of artificial lumped-element loaded transmission lines in
microstrip technology method was provided in 2002 to realize negative index
metamaterials. The first real invisibility cloak was realized in 2006, at microwave

frequencies [1-6].

Several goals must be achieved for metamaterial applications to be realized,
researcher in [7] stated that this suggestion. For finding ways to mass-produce the
metamaterials, reducing energy loss, which is a major limiting factor, keep

developing three-dimensional isotropic materials instead of planar structures [7].


http://en.wikipedia.org/wiki/History_of_radar
http://en.wikipedia.org/wiki/Artificial_dielectrics
http://en.wikipedia.org/wiki/Microwave_engineering
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Winston_E._Kock
http://en.wikipedia.org/wiki/Victor_Veselago
http://en.wikipedia.org/wiki/Negative_index_metamaterial
http://en.wikipedia.org/wiki/Negative_index_metamaterial
http://en.wikipedia.org/wiki/Negative_index_metamaterial
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Split-ring_resonator
http://en.wikipedia.org/wiki/Microstrip
http://en.wikipedia.org/wiki/Isotropic
http://en.wikipedia.org/wiki/Plane_(geometry)

All materials are made of atoms, which are dipoles so that it can also be applied to
the this science. The light velocity of these dipoles is modified by a factor n (the
refractive index). The role of atomic dipoles is done by the ring and wire: the wire
acts as a ferroelectric atom, while the property of inductor is done by ring and the

open section as a capacitor.

It is demonstrated that metallic wires aligned along the direction of propagation

could provide a metamaterial with negative permittivity (¢ <0) [6]. The challenge
was to construct a material which can also showed negative permeability (x<0)

because natural materials (such as ferroelectrics) were already known to exist with

negative permittivity.

The idea that a split ring (C shape) with its axis placed along the direction of wave
propagation could provide a negative permeability was demonstrated in 1999 by
Pendry [7].

1.2 Literature Review
This subsection is divided into two reviews. We first deal with isotropic

metamaterial, and then bi-anisotropic metamaterial.

1.2.1 Isotropic Metamaterial

Metamaterials earn their properties not from their composition, but from their
engineered structures. Creating material properties which are unachievable with
conventional materials can be obtained by the precise shape, geometry, size,

orientation and arrangement [8-10].

Investigation of materials with a negative refractive index is the primary research in
metamaterials [3, 11-12]. The creation of super lenses can be realized by the negative
refractive index materials having a spatial resolution below that of the wavelength. In
addition to the electromagnetic metamaterials acoustic and seismic metamaterials are

also areas of active research [13,14].

Many different applications of metamaterials are possible such as, sensor detection

and infrastructure monitoring, smart solar power management, public safety, high-


http://en.wikipedia.org/wiki/Dipole
http://en.wikipedia.org/wiki/Ferroelectricity
http://en.wikipedia.org/wiki/Superlens
http://en.wikipedia.org/wiki/Optical_resolution
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Acoustic_metamaterials
http://en.wikipedia.org/wiki/Seismic_metamaterials
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Infrastructure_security
http://en.wikipedia.org/wiki/Solar_power
http://en.wikipedia.org/wiki/Public_safety
http://en.wikipedia.org/wiki/Battlespace

frequency battlefield communication and lenses for high-gain antennas, improving
ultrasonic sensors, and even shielding structures from earthquakes [14-18]. Physics
and electromagnetism (especially optics and photonics) have become a new sub-
discipline within metamaterials [19-21].

The huge potential of metamaterials is the possibility to create a structure with a
negative refractive index, since nearly all materials encountered in optics(such as

glass or water) have positive values for both permittivity ¢ and permeability 4 .

Anisotropic starting materials with only negative permittivity can produce negative

refraction due to chirality, although a material having either (but not both) ¢ or u

negative often does not transmit electromagnetic radiation.

Negative ¢ and negative x can be realized by engineering metamaterials, meaning

that negative refractive index for a material is possible. The real parts of both ¢, and
4y do not have to be negative for a passive material to display negative refraction

[22-24].

1.2.2 Bi-anisotropic metamaterials

In many examples of electromagnetic metamaterials, the electric field causes
magnetic polarization, and the magnetic field induces an electrical polarization, i.e.,
they affect each other proportionally (magneto-electric coupling). Such media are
called as being bi-isotropic. Media which shows magneto-electric coupling, and

which are also anisotropic, are referred to as bi-anisotropic [25, 27].

Related to magneto-electric coupling of bi-isotropic media, there are four material
parameters ares, 1, xand y . Here xand y means the strength of chirality and the

Tellegen parameter respectively.

For an bi-isotropic media having different «and y values, it is possible to obtain a
backward wave and a forward wave can occur. Alternatively, two forward waves or
two backward waves can also occur, depending on the strength of the chirality

parameter.
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It is well-known that metamaterials fabricated by an engineering design possess
electromagnetic properties unavailable in conventional materials such as negative
refractive index and perfect lens. Within the broad scope of metamaterials, bi-
anisotropic metamaterials have properties different than isotropic metamaterials in
that they have different forward and backward wave impedances, different forward
and backward reflection scattering parameters, a wider stop-band compared to
isotropic metamaterials, and a magneto-electric coupling coefficient [28-30].
Therefore, it is possible to realize different electromagnetic properties of materials

comparing of bi-anisotropic metamaterials.

1.3 Motivation of the Thesis

In the literature, wave propagation characteristics of different composite
metamaterial media are investigated. To our best knowledge, wave propagation
characteristics of a composite structure comprising of a bi-anisotropic metamaterial
slab and an isotropic conventional slab has not yet been analyzed. In this thesis, our

purpose is to investigate these characteristics of the aforementioned structure.

To achieve our goal, we first define the electromagnetic properties (wave
impedances and propagation constants) of a bi-anisotropic metamaterial slab and a
conventional material slab, and then derive forward and backward scattering
parameters of the composite medium constructed by a cascade connection of these
materials. Next, we analyze propagation characteristics of this composite structure
using a commercial electromagnetic software program (CST Microwave Studio).
Finally, we compare the simulated and numerically obtained results of wave

propagation characteristics.

The aim of Chapter 2 is analytically present forward and backward transmission and
refection scattering parameters, as well as complex power relations of the composite

structure constructed by a cascade connection of these materials.

The major point of Chapter 3 is to compare our derived equations with validation on
Matlab. Then in chapter 4, we obtain forward and backward scattering parameters of
a composite structure with a bianisotropic metamaterial and a conventional material

by using commercial software program CST Microwave Studio.



In the last chapter, a brief summary and discussion of the results obtained during this
thesis work are included. Additionally, future works and further studies for potential

applications of the composite bi-anisotropic metamaterials are also suggested in the

same chapter.



CHAPTER 2

THEORETICAL ANALYSIS OF PROPAGATION CHARACTERISTICS OF
A COMPOSITE STRUCTURE CONSISTING OF A BIANISOTROPIC
METAMATERIAL AND A CONVENTIONAL MATERIAL

2.1 Introduction

In this chapter, our aim is to analyze propagation characteristics of a composite
structure composed of a bi-anisotropic metamaterial slab and a conventional material
as shown in Figure 2.1. Toward this end, we first derive forward and backward
reflection and transmission scattering (S-) parameters and then analyze forward and
backward reflected, transmitted, and loss powers of this composite structure. This
chapter is organized as follows. In Section 2.2, we first present general field and
impedance expressions of a bi-anisotropic metamaterial to put the subsequent
derivations into right respective and to demonstrate the wave characteristics of a
bianisotropic metamaterial slab. Next, in Section 2.3, we derive forward and
backward reflection and transmission S-parameters of the composite structure by
considering two different reference configurations. Finally, in Section 2.4, we give
the derived forward and backward reflected, transmitted, and loss powers using these

reference configurations.

Throughout the theoretical analysis in this Chapter, we assume that bi-anisotropic
metamaterial slab and conventional material (Figure 2.1) both extend to infinity in

y - and z -directions. We also assume that a uniform plane wave is normal incident
to the composite structure and that time reference in the form exp(—ia)t) is utilized

in all derivations.



e X

Figure 2.1: Composite structure composed of bi-anisotropic and isotropic slab ( The

problem under investigation ).

2.2 General Field Expressions of a Bi-anisotropic Metamaterial Slab

To understand the behavior of forward and backward reflection and transmission S-
parameters as well as power and propagation characteristics, in this chapter we give
general field and impedance expressions in a bi-anisotropic metamaterial slab. For

the assumed time reference, Maxwell’s equations read as

VxE(F)=iwB(F), (2.1)
VxH (F)=-iowD(T), (2.2)
VeD = pg, =0, (2.3)
V.B =0, (2.4)

where it has been assumed that there is no-free charge density inside the slab.

To describe the macroscopic behavior of the slab, the following constitutive relations
can be utilized [29],

D=sE+£H, (2.5)



B = ueH + CE, (2.6)

where

_ &x 0 0 _ Hxx 0 0
e=g| 0 &y OJ, p=po| 0 gy O |, 2.7)
0 0 &4 0 0 4y
0 0 0 00 0
=Yoo o of, Z=Yo 0 ig| (2.8)
“lo —ig o “lo o o

In (2.7) and (2.8), &yx (uxx ), €yy (#yy), and &5, (445, ) are the relative complex

permittivities (permeabilities) in x-, y -, and z -directions, respectively; &g, g, and
c are, respectively, the permittivity and permeability of free-space and the phase

velocity of light in free-space; and &, is the magneto-electric coupling coefficient.

Substitution of (2.7) and (2.8) into (2.5) and (2.6), we obtain

Dy ExxEx
Dy |=¢0 sy Ey , (2.9)
D, £1E; '§OHy/(5OC)
B, ,UxxH_);
|
By |= 4o ,uyyHy+—(::EZ . (2.10)
B Ho
z HzH,

Using (2.9) and (2.10) and after some manipulations, the following relations can be

found

oE, OEy . :
Ez_a_zy =lwBy =lwpgyHy, (2.11)
oH
_y_aH_X:_WDZ, w—§0+2 Hy—aHX =—lwepe,, E,. (2.12)
ox oy c X oy



In our theoretical analysis, we assume that a uniform plane wave with a linear

polarization in z -direction impinges onto the slab. Because, electric field in free-
space, EO, has only a tangential component and no axial (longitudinal) component,
according to the boundary conditions (continuity of tangential (normal) component
of E(D) over the free-space-metamaterial slab interface must be continues), no

axial component of electric field inside the metamaterial slab, Eg, results in
8,{Ds—Dp)=0, Dgy=Dpy, Dgy=coexEsx =0 = Eg=0. (213)

Here, E, is the component of electric field of the slab in X -direction.

In addition, according to the continuity of tangential component over the boundary,
vanishing of EO in y -direction in free-space forces vanishing of Es in y -direction

in the slab; that is Egy =0.

Despite the fact that in free-space wave propagates only in x-direction, we have
0/oy=0/0z=0 due to the fact that the slab extends to infinity in y- and z-
directions. Reflecting this condition into (2.11) and (2.12), we find

oy He =0, Hgy =0, (2.14)
wé&y 0 .
{TO + &} Hyy = —iwege; Es,. (2.15)

Besides, incorporating Egy =0 and Egy =0 into (2.14) and (2.15), we determine

Msz _g H, =0 2.16
o sz (2.16)

w&y O .
{TO + &} Hgy = —lwgge, Eg;. (2.17)



Because Eg, does not vanish inside the slab, we could determine a dispersion

relation based on this term as follows. From (2.17) and (2.16)

82
l:ax—2+k)%}:0. ky =kon, n:1fgzzyyy—§g, (2.18)

where k, is the propagation constant of the bianisotropic metamaterial slab (in x -

direction).

The solution of (2.18) is in the form

(D2 +k§) E, =0, Eg =E&e* +Ege X, (2.19)

In a similar fashion, from (2.16) and (2.17), we get

1 wsy O ||w&y O .
—lweye,, { c 6X}[ c x| ¥ Hoyy sy (2.20)
2 2

(20 0 2
—= | ———= |Hy, =k &,,Hey, 2.21
{( c j 8X2] sy = Ko HyyézzMsy ( )
H, = HaeMoX 4 gk (2.22)

sy = Mgy sy - .

In addition to expressions of electric and magnetic fields, it is also instructive to
present the expressions of forward and backward wave impedances to understand the
propagation characteristics of the composite structure in Figure 2.1. To achieve that
goal, substituting (2.19) and (2.22) into (2.16) and assuming only the wave travelling

in +x direction exists, we find

10



sy . + ik x s + Likyx
—= —iky |Es," " =io, Ho e ™", 2.23
( e XJ sz HoHyy Msy ( )

ko (& —in) Eg; =iy Hgy. (2.24)

From (2.24) and (2.18), we obtain the expression of wave impedance in X -direction

(forward) as

+ o,
Sa _ OOl _z MW o zo- [F (225
~Hg, ko (n+i&) (n+i&) £

Zy =Z1g, =

Furthermore, substituting (2.19) and (2.22) into (2.17) and assuming only the wave

travelling in +x -direction exists, we find

(w_go * ikx) H;g/eikxx = —lwege;, E; X, (2.26)
c
—ko (n—i&y) Hey = @505, E;. (2.27)

From (2.27) and (2.18), we obtain

r ky(n-i n—i
Z; ~Zrg, ——2 - o(n-160) 5, (030) 7, [0 (2g)
—Hgy WENE €2z €0

Therefore, from (2.25) and (2.28) , we find

o

11



which validates (2.18).

On the other hand, for waves travelling in —x -direction, from (2.16) and (2.17), we

find the expression of wave impedance in —X -direction (backward) as

By __orody My ky

77 = = g = L, =n, (2.30)
Y Hy (k—ikodo) T (n-ido)’ ko
7o —— ES_Z :kO(n+i§0):ZO(n+i§0). (231)
” —Hgy WEYE; €12

It is seen that the wave impedances in the slab in —x-direction in (2.30) and (2.31)

are equal.

As a result, for waves travelling positive and negative x directions, their respective

normalized wave impedances with respect to air are

r_ My 77 = W (2.32)

12



2.3 Forward and Backward Reflection and Transmission Scattering Parameters

In this chapter, our aim is to derive forward and backward reflection and
transmission S-parameters since these parameters are utilized to analyze the
propagation characteristics of the composite structure in Figure 2.1. Because, as
shown in (2.32), the bi-anisotropic metamaterial slab possesses two different
normalized forward and backward wave impedances, it demonstrates a reflection

asymmetric property (Sqq#Sy, where S;; and Sy, denote, respectively, the

forward and backward reflection S-parameters) [30]. Whereas reflection properties
present an insight into the reflection characteristics, transmission properties
demonstrate propagation characteristics. Therefore, since reflection and transmission
properties are independent properties for electromagnetic characterization of
materials, for a comprehensive and concrete analysis, these two properties must

simultaneously be analyzed.

To better present the derivations in this chapter, we present the derivations in two
sections. In the first section, we concentrate on obtaining forward reflection and
transmission S-parameters of the composite structure in Figure 2.1 while in second
section we focus on determining backward reflection and transmission S-parameters

of the same structure.

2.3.1 Forward Reflection and Transmission Scattering Parameters

In the derivations of forward reflection and transmission S-parameters of the
structure in Figure 2.1, we analyze the problem shown in Figure 2.2. Considering this
problem, we can write the following expressions for electric and magnetic fields for

each medium (here it is assumed that first and fourth media are air).

For 1% medium,

E, =4, (Ere“‘ox + E,—e—”‘ox), (2.33)

Q>

H, = yi(—EreikoerE,—e‘”‘ox). (2.34)
Zg

13



d+L

Figure 2.2: Analysis of composite structure in a forward direction.

For 2™ medium,

+ -
Fi“ =é.y —ﬂelkxx-l-ﬂe_lkxx .
z" A

For 3" medium,
Em = é‘Z (Eﬁ| eikOlX + E|_|| e_ikmx),

5 s 1 ik — ik
Hp :ayz_l(—Eﬁle' 0+ Epe le)-

For 4" medium,

14
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(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
(2.40)



In (2.33)-(2.40), Zy, Z;, Z*, and Z~ are, respectively, the impedances of free-

space, the conventional material, and the bi-anisotropic metamaterial slab (forward

and backward); kg, kg1, and k, are propagation constants (wavenumbers) of free-

space, the conventional material, and the bianisotropic metamaterial slab. In the
analysis, it is presumed that while there is only one travelling wave in fourth medium
(air), there are two waves travelling in opposite direction for other media in Figure
2.2.

Explicit expressions of propagation constants and wave impedances of the

conventional material and the slab are

Ko =@\Jeotg,  Kor =Koy/ersr, (2.41)
Zg= |20, 7=z, %, (2.42)
€0 Ey

where g, and g, are, respectively, the relative complex permittivity and relative

complex permeability of the conventional material. The explicit expressions of
propagation constants and (normalized) wave impedances of the slab can be found in
(2.18) and (2.32).
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Boundary conditions are the conditions that fields of electromagnetic waves must
satisfy only over the boundary. Enforcing the necessary and corresponding boundary
conditions at boundaries x=0, x=d, and x=d+L allows us to determine the
forward reflection and transmission S-parameters (in addition to the field coefficient

in (2.33)-(2.40) if the strength of the source is given/known).

2.3.1.1 Derivation of Forward Reflection Scattering Parameter
In the derivation of reflection S-parameters, the general procedure is to first apply the
boundary conditions at the boundary far distant from the source, and then propagate

toward the boundary at the source region [31]. Using this procedure, we first apply

the boundary conditions at x =d +L and find a relation between Ejj; and E;;, as

Efiy =MEq. Ay _Zo+2y 2ikyy(d+L) (2.43)
Zo-273

Incorporating (2.43) with (2.37) and (2.38), we obtain

Em = éZ Eﬁ| (Aleikmx +e_ik01x), |:i||| = é.y —EZ” (—AleikOlX +e_ikOlX). (244)
1

Then, applying the boundary conditions at x=d and using (2.35), (2.36), and (2.44),
we determine (dividing the boundary conditions obtained from the continuity of

tangential components of electric and magnetic fields at the interface x=d in order

to eliminate the unknown E;; )

Efeld 4 Ereikid = ( Aot 4 e—ik01d) Zl( Ageikord 4 e‘ikmd) e
il i T i o kopd L ikgd &
_ielkxd +ﬂe—|kxd EI“(—Ale'k01d+e_'k01d) —Aqe0rf g7
z* z- Z
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En =AsE)), (2.46)

where
Ay : _
(Z* _1j 2k, d Zl(Alelkmd +e_lk01d)
Ag=-t— Zele&0 A, = : : . (2.47)
3 A |k01d —|k01d
(Zﬂj Ageikord e
7~

We follow the procedure by substituting the relation between Ej; and Ej; in (2.46)

into (2.35) and (2.36) and determine

_ : . - . Ao i
B = 4,5 (M + age ™), Ay =4,Ef (—ie"‘xx+—3e "‘xxj. (2.48)
=

Finally, applying the boundary condition (continuity of the tangential components of
electric and magnetic fields in each respective region) at x=0and using (2.33),

(2.34) and (2.48), we obtain the forward reflection S-parameter (S;4)

Ef+Ef  _ Ej(1+A3) _ 1+Ag (2.49)
1(—E|++E|_) Ef _1+A3J 1 As
ZO Z+ 7 Z+ Z
E|++E|_: 1+ A A, (2.50)
Ef —Ef  Zo_ZoAs
zt  z
=5y = L gr2o(d+t) _(AsD) (2.51)
Ef (Ag+1)
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2.3.1.2 Derivation of Forward Transmission Scattering Parameter

Different from the derivation of reflection S-parameter in the previous subsection, in
the derivation of the forward transmission S-parameter, we apply the necessary and
corresponding boundary conditions in a manner of forward-direction (or in the
direction of wave travel) [31]. It is also possible to utilize backward-direction
concept in the derivation of forward transmission S-parameter. In this subsection, we
derive the transmission S-parameter using backward-direction concept (although the
derived expression of transmission S-parameters is the same for forward and

backward directions).

Toward this end, we first apply the boundary conditions at x=d + L

i(_Eﬁleikm(dﬂ)+Eﬁle—ikm(dﬂ)):_iEK/eikO(dJrL)_ (2.53)
4 Zg

Then, from (2.52) and (2.53) we determine a relation between E;;; and Ejy as

Ef =ELQ, O =1(1+ﬁ}e”‘o(d“)e“km(d“), (2.54)
27" 7,
N e—ik01(d+|_) 2 55
En =Q5E ), Qs = , .
V=222 2 Qleik01(d+L)_ﬁeik0(d+L) (2.55)
Zy

Ei —ELQ,  Q :{_%eiko(dJrL)+Qleik01(d+L)}e+ik01(d+L)_ (2.56)
0

In (2.56) eliminating €; from this equation and letting €, alone, we get

18



Em =ENQ,  Q :%(1—%}e”‘o(d“)e”km(d“). (2.57)
0

Incorporating (2.56) and (2.57) with (2.37) and (2.38), we obtain

E“| = é‘Z Eri/ (Qleikm'x + Qze_ikm'x ) ) (258)
. R kg, X —ikgy X
H||| =ayZ—E|V (—Qle +Q2€ ), (259)
1

We follow the backward direction concept and applying boundary conditions at
x=d , yielding

Eﬁeikxd + Eﬁe_ikxd = ER/ (Qleikmd +Qze_ik01d ), (2-60)

+ . = . . .
_Eilgia B ik _ L py (—Qle'kf’ld + Qe Koud ) (2.61)
zt VA 2

Incorporating (2.60) and (2.61) together, we obtain another single constant Qg3 as

Ei = EnvQs, (2.62)
where

Q=2 |14 Z |ekad o, [1-Z |eknd [gkd  (263)
( Z‘] Zy V4]
1+—
Writing all parameters in a single Q4 parameter makes our equation easier,
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Eﬁ = ER/ Q4, Q4 — (Qleikold + Qze—”(o]_d —Q39+Ikxd )e-HkXd .

Finally applying the boundary conditions at x =0, we obtain

Ef+E/ =E\ +E;,

+ —
i(—Er+Er)=—ﬂ+ﬂ.
Zy zt z~

Eliminating E,” from (2.65) and (2.66), we determine

Ef 1 =M [1+Z—0J+ = (1—EJ}.
2 z* AN

Incorporating (2.62) and (2.64) into (2.67), we derive

Ef =Efy, 1 93(1+ﬁj+94( —ﬁj},
2 z* VAN

+ . +2iky (d+L
Spy = Ewv e+2|k0(d+L) 2e ol )

v .
Ey 93(1+ZOJ+Q4( —Zoj
z* VA
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2.3.2 Backward Reflection and Transmission Scattering Parameter

Here, in the derivations of backward reflection and transmission S-parameters of the

structure in Figure 2.1, we analyze the problem shown in Figure 2.3. Considering this

problem, we can write the following expressions for electric and magnetic fields for

each medium (here it is assumed that first and fourth media are air)

(\Y}

Figure 2.3: Analysis of composite structure in a backward direction.

For 1% medium,

For 2" medium,
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For 3" medium,

Enp =4, (Eﬁlbe_ikxx + Eﬁlbeﬂkxx)y (2.74)
- [ Efn i = :
Hyjup =4y —Z“_Ib e o Z”+Ib erXXJ- (2.75)
For 4™ medium,
Evp = 4, Epe k0¥, (2.76)
Hivp =4y zi EfypeoX. (2.77)
0

In (2.70)-(2.77), Zy, Zy, Z*, and Z~ are, respectively, the impedances of free-

space, the conventional material, and the bi-anisotropic metamaterial slab (forward

and backward); kg, kgp, and k, are propagation constants (wavenumbers) of free-

space, the conventional material, and the bianisotropic metamaterial slab. In the
analysis, it is presumed that while there is only one travelling wave in fourth medium
(air), there are two waves travelling in opposite direction for other media in Figure
2.3.

Propagation constants, wave impedances and other parameters of the conventional
material and the slab are taken the same with previous section. Boundary conditions
are the conditions that fields of electromagnetic waves must satisfy only over the
boundary. Enforcing the necessary and corresponding boundary conditions at
boundaries x=0, x=d, and x=d+L allows us to determine the backward
reflection and transmission S-parameters (in addition to the field coefficient in (2.70)

-(2.77) if the strength of the source is given/known).

2.3.2.1 Derivation of Backward Reflection Scattering Parameter

In the derivation of reflection S-parameters, the general procedure is to first apply the

boundary conditions at the boundary far distant from the source, and then propagate
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toward the boundary at the source region [31]. As you followed previous subsection
the same procedures also can be applied in this subsection. Using this procedure, we

first apply the boundary conditions at x=d +L and find a relation between Ej,

and Ejjp as

-
Eqiip =+ 1 Efilb- (2.78)

Then, applying the boundary conditions at x=d and using(2.72), (2.73), and (2.78),
we determine (dividing the boundary conditions obtained from the continuity of

tangential components of electric and magnetic fields at the interface x=d in order

to eliminate the unknown E;; )

s (1+ 1+je—|kxd +( 1__1]e+ikxd
Ejp = —2— 2 Ejje 2kod - A= z z . (2.79)
(Ag+1) 1, 1) ikd a1 ) sikd
z” z" 27\ z”

Finally, applying the boundary condition (continuity of the tangential components of
electric and magnetic fields in each respective region) at x=0and using(2.70),

(2.71) and (2.79), we obtain the backward reflection S-parameter (S,,)

Ejpeko(d+b) 4 g gtiko(d+L) (Ag+1)+(Ag —1)e 2kt
Q@) g, go(ar) 10 A0 ik (280)
Ejpe © —Epe” 0 (Ag+1)—(Ag—1)e™ o1
" — _+2ikg(d+L
Eip _ (A10-1) -2iky(d+L) S, Ejpetiko(d+L) _Mo-l e
Ep (A0 +1) Ef Apo+1
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2.3.2.2 Derivation of Backward Transmission Scattering Parameter

Different from the derivation of reflection S-parameter in the previous subsection, in

the derivation of the backward transmission S-parameter, we apply the necessary and

corresponding boundary conditions in a manner of forward-direction (or in the

direction of wave travel) [31]. It is also possible to utilize backward-direction

concept in the derivation of backward transmission S-parameter. In this subsection,

we derive the transmission S-parameter using backward-direction concept (although

the derived expression of transmission S-parameters is the same for forward and

backward directions).

Toward this end, we first apply the boundary conditions at x=0 for the Figure 2.3

we obtain from equation (2.76)-(2.77) and (2.74)-(2.75),

Eivb = Eilib + Enip»

+ p—
e+ _ Efb _ Eip
Vb = —_ t
z z

Getting Ejyp, and Ejyp dependent with Ejy, in a different equation,

= Z_(1+Z+) —ik, X Z+(1_Z_) +ik, X +
Eip=8;| 70— & " +7———¢ " |Ew
(z +7 ) (z +7 )

3 A 1 z (1+Z ) —ik, X 1 Z (1_2 ) +iky X +
Hyp =ay | — e T -— e Eivb
Z" (zt+z ) z (z++z )
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Then, applying the boundary conditions at x=d and using (2.72), (2.85) and (2.86)

we obtain

_(l+z+) _ +(1—Z_) - - -
———re et IR, — Efpe ol 1 ettt (2.87)

ikd 1 Z+(l_z_) ik, d iko d ikqd

(2.88)

Eliminating Efl and En from each other and writing them in a separately it gives us

E :l Z_(1+Z+) 144 |-k Z+(1 : ) 1— otikyd Efvp etikold (5 gg

b =5 —(z++z‘) = e (z* ) g , (2.89)

_ z(Z£1:ZZ+)) {1_ % (1+ ZZ_E He—ikxd . Z(+Z El;z)) {1_ % [1_ zz_i H el g oot
(2.90)

Finally, applying the boundary condition (continuity of the tangential components of
electric and magnetic fields in each respective region) at x=d +L and using (2.70)-
(2.71) and (2.89)-(2.90),

Efe Ho(dh) 1 grpetioldeb) _ g o konl(dob) g etihan(dh) (o 1y

—ikg(d+L) Ere +iko(d+L) _ 1 (E* o tkor(d+L) _ Eipe +|k01(d+L))’ (2.92)

Eife
Ib 2
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£ (1+1Je—ik01(d+L) JEn (1_1]e+ik01(d+L)
Z

—i Z
2 Iko(d+L) _ 1 — 1 (293)
Eib

Dividing the fourth region forward electric field over first region forward electric

field we obtain long equation of

EK/b _ Ze—iko(d+L)
+ i . .
Eib (1+1]K1+21j/\5 +(1—21]A6}e_'k01l' +[1_1]K _leAs +(1+21jA6}e+|k01L
a z z" 4 7 z*
(2.94)

Therefore, using substituent of As and A remain us a little short equation,

Ag = ﬂe—ikxd . Ag= Me”kxd , (2.95)
2(2+ + z_)

from here, we obtain the backward reflection S-parameter (S;,) as

2

Spp = .
S N e
1 7 7" 74l 7 7t

(2.96)

26



2.4 Power Analysis
Firstly, we found all necessary relations about the electric field and magnetic fields.
Therefore, here our main purpose is obtaining the exact complex power relation for

each medium.

For 1% Region:

Using the below equation for the electric and magnetic field intensity of first

medium,
E _ A + ikoX — —ikoX
| =4, E| e +E| e , (297)
H =4, Zi(—Ere”(oX + E,—e‘”‘ox), (2.98)
0

§| =—E| XH| (299)

From equation (2.97) and (2.98) we get
g, :%éz (E,*e”‘ox + E,—e‘”‘ox)x a, Zi(—E,**e“‘OX n E,—*e‘”‘ox), (2.100)
0

Multiplying the equation (2.100) we get,

§I i 1 [Er*e'kOXEre'koxEr*e'k°XE|e'kOX

———3ay . . . ;
2Z, +Ef e—IkOXEil-eIKOX +Ef e—lkoxEI—e—lkox

J. (2.101)

Multiplication of complex variable with its conjugate always gives us magnitude of
its square. Therefore,

e
| 220 X

)

Ef

2 5 * * 2 .
20X _ el 4By E|++‘E|_‘ e‘z'koxj (2.102)
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Finally applying the boundary conditions at x =0, we get

4 2 12 :
§, (x:O):—éX%UEr‘ —‘Er‘ +EEf —EjEf j (2.103)

When we run the Matlab code in appendix S, (x=0). It gives the value of

S| (x =0)=351.233344613523e-006 - 5.54801202230450e-003i .

As a consequence, eliminating the E; in (2.103), with the S-parameter relation S;;

leads to,

2 _
‘, Ef =S;Ef.  (2.104)

—_ A 1 2 *
St (x=0)=—a ———(|Sna|" +S11-S11 -1)|Ef
22,

For 2" region:

Using the below equation (2.105) and (2.106) belongs to the electric and magnetic

field intensity of second medium,

By =, (Effe™+ By, (2.105)
= E) ik, x  Eqn ik, x
Hy =4y L glX  ZIL g =IReX (2.106)
z" Z"

1 =
S” =§E|| XH” (2107)
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. . +* o x —* . *x
§“ =£éz(Eﬁe'kXXJrEﬁe_'kXX)xéy _E;uelkxx+i|ike—|kxx ’ (2.108)
2 z* z"

The equation (2.108) can be written as,

~ 1* ; 2ei(kx—kx)x N Eﬁ* Eﬁei(kx+kx)x
- 1= % 1 n + A
S —EEII xHj =5 e _(k k*) . , _(k k*) :
| + X -1 - X
~ge T g e

(2.109)

Applying the boundary conditions at x =d; , we get

2 i(ke—k: ), EnT L i(ke+K;)d
) 1 zi* i el( ) - S'_'* Eﬁel( i
Sj(x=dy)=——— ’
i (x=d) 22y | g Skt a1 2 =ifkeky Jdy
i = ||‘

(2.110)

Writing the propagation constant k, with a refractive index n which is k, =nkp.

1 2 +ikg(Nyign—n")dy  Ep _4 +iKo(Npign+n”)d
. — ﬁ e O( bian ) 1+ |_|* Eﬁe 0( bian ) 1
_ A 3 :
S (x=dp)=-2=—4 |
220 Eﬁ* - _iko(nbia”+n*)d1 - _ik0(nbian_n*)d1
-—=<Eje +— E“‘ e
zt -

(2.111)

Finally, our result leads to
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1 2 ) 1112 .
) _Z+* Eﬁ e 2k Im{npign § 0y +—= E“‘ e+2k0 IM{Npian § 0
b= o & e T |
0 -}-Eﬁ Z|_|* e+|2k0 Re{nbian}dl _ Eﬁ Z:_l* e_|2k0 Re{nbian}dl

(2.112)

When we run the Matlab code in appendix S, (x =dy). It gives the value of

Sy (x=dy) = 7.82513704347104e-006 - 491.612244953627€-009i .

Again applying the boundary conditions at x =0 for second region for validation, we

get

2 2

-, + * *
. .1 ‘Eu Bil e -
S|| (XZO)Z—aX + I_I* Eﬁ — Z:_I* E|| , (2113)

22| 777 Al

In equation (2.113) eliminating Ej, and leave alone E;; gives

2 p—
Enl . Ep = AsE).

2 *
= . 1A 1 A A
Su(X—O)——axEL| of L, A 3}

* * +*
Z

27 7z oz

(2.114)

To present (2.114) with E|” and A5, we obtain

_ +* _* +*
Z L 7 7 —ZO+ZOA3—(1+A3)}
zt z~

2 *
§||(X:O)=éx1[|l\3| 1A A3]{ 2

(2.115)
When we run the Matlab code in appendix §|| (x = 0). It gives the value of

Sy (x=0) =351.233344613524e-006 - 5.54801202230450e-003i.
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Here we derive electric and magnetic field intensity equations with the relation A
parameter. Let us write for second region,

. N (2.116)
H "= éyEﬁ [_ielkxx _{_ﬁe_lkxXJ

) L _ ol (2.117)
H =4 —(—Ere'kox + E,‘e""ox)
Incorporating the (2.116) and (2.117) and leads to

Efj (1+Ag)—Ef =Ef
. (2.118)
= (—ﬁ+ﬂA3j=—Er+E,‘
AN A

Finally, we can write E,j and E| in a single equation which is,

2
E)| =-

Zo , 2o }
20 4 SO AL (14 A
29120 pg- g

=hy (2.119)
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For 3" Region:

Let us obtain general complex power relation for third medium

N 1= %
Sni —EEIII xHy =
1 . . o W (2.120)
_ *éX(Eme'kOlX+Eﬁ|e_'k°1x)(—E|+|| o—kon X+Eﬁ| otikon xj'
1
Writing the equation of (2.120) with a function of thickness gives us
2 4ikg(n"=n)x 2 ikg(n—n")x
4 L [l el g el
S (x)=——x4 ) | ey
ZZ1 4o * +ik0(n +n)x _ 4 * —ikg{n+n )x
+EmmEn e —EmEn e

Applying the boundary conditions at x=d for third region for validation, we get

_ 12 —iky(n-n"}d 2 +iky(n-n")d
_ 1A+‘Em‘e( )_I+Ile( )
S||| (X=d)=——*ax ) . (2122)
ZZ1 b o * +ik0(n+n )d _ g * —iko(n+n )d
+EEm e —EmEn e

Moreover, if we use complex mathematical properties

(n—n")=2Im{n} 2123

(n+n")=2Re{n}

And then, if we corporate the equation of (2.122) and (2.123), it leads to

2 2
. 1 Eﬁl‘ o2k Im{n}d _ Ef e=2ko Im{n}d
S|||(X=d)=——ax . (2124)

27+ _ x 42ikgRelmld  —— —+ * —2iky Relnld
Lo +Ef B e tnj —EmEf e n

When we run the Matlab code in appendix S, (x=d). It gives the value of
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Sui (x=d) =7.82513704347104e-006 - 491.612244953630e-009i .

Finally power relation of third region at x=d +L can be written from the equation
(2.124) just changing the thickness parameter 'd".

‘2 o 2ko Im{n}(d+L) _ |+ |2 —2k Im{n}(d-+L)

Ef

Em

+2ikg Re{n}(d+L) *e—2ik0 Re{n}(d+L) .

+E Eny e
(2.125)

-EmEfy

When we run the Matlab code in appendix S, (x=d+L). It gives the value of

Sy (x=d+L) = 800.138543394125¢-009 + 13.2348898008484¢-024i.
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For 4" Region:

The last our purpose is obtaining the power relation of fourth region. Since there is

no boundary at the end of the region so that we can calculate it easily,
§4(x:d+L):%(I§|V XHY). (2.126)
Incorporating the (2.39) and (2.40) equation into the (2.126)

S4= %( 4, Efy eikox) X (—éy zi Ef e‘”‘oxj, (2.127)
0

from (2.127), as you below see Sy is independent from the thickness 'd ",

S4= ;‘TXO (Ef EfelkoXekox), (2.128)

Finally, S4 simplifies into the

2

Sa(x=d+L) =2 (g, ). (2.129)
22,

When we run the Matlab code in appendix S4(x=d +L). It gives the value of

S4(x=d+L) = 800.138543394125e-009.
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CHAPTER 3

NUMERICAL ANALYSIS OF PROPAGATION CHARACTERISTICS OF A
COMPOSITE MATERIAL WITH A BI-ANISOTROPIC SLAB AND A
CONVENTIONAL MATERIAL

3.1 Introduction

In the previous chapter, we focused on the derivation of expression for forward and
backward reflection and transmission scattering (S-) parameters of a composite
material with a bi-anisotropic metamaterial slab and a conventional material. In
addition, we also obtained expressions for transmitted, reflected and loss behavior to
investigate its propagation characteristics. In this chapter, we turn our attention to
validation of the derived expressions in the previous chapter. We perform a
numerical analysis to achieve our goal. In the analysis, we use Lorentz dispersion
models to simulate artificial bi-anisotropic slab and the conventional material as well
as to analyze the propagation characteristics of the composite material. In addition to
this model we utilized transfer matrix method, which is an appropriate method for
analysis of cascaded structures, to validate derived expressions.
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3.2 Lorentz Model

Lorentz medium is a frequency dispersive medium in which the permittivity and
permeability of the material are the function of the frequency. These materials have
resonance phenomena caused by the oscillation of the electron and nuclei subject to
an applied field. Lorentz was the first to study such phenomena when developing the
theory of the electron. The model conceptually replaces the atoms and molecules of a
real material by a set of harmonically bound electron oscillators, resonant at some

frequency o, . At frequencies far below ©,, an applied electric field displaces the

electrons from the positive core, inducing a polarization in the same direction as the
applied electric field. At frequencies near the resonance, the induced polarization
becomes very large, as is typically the case in resonance phenomena; the large
response represents accumulation of energy over many cycles, such that a
considerable amount of energy is stored in the medium relative to the driving field.
So large is this stored energy that even changing the sign of the applied electric field
has little effect on the polarization near resonance. That is, as the frequency of the
driving electric field is swept through the resonance, the polarization flips from in-
phase to out-of-phase with the driving field and the material exhibits a negative
response. If instead of electrons the material response were due to harmonically
bound magnetic moments, then a negative magnetic response would exist. Though
somewhat less common than positive materials, negative materials are nevertheless
easy to find. Materials with ¢ negative include metals (e.g., silver, gold, aluminum)
at optical frequencies, while materials with u negative include resonant
ferromagnetic or antiferromagnetic systems [32, 33]. As a result, the shape of the
dispersive components of the material parameters for DNG metamaterial can be
described by using Lorentz medium model.

To model the dispersive behaviour of bianisotropic MM slabs, we consider the

following expressions based on Lorentzian model [34-36]

Fof?
£2—£2 +iypf

F,f2

e, (f)=1-——5 : (3.1)
z 2 £2 +iyof

. My(f)zl_
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2
&o(f) =1—#. (3.2)

Here, fo, fy, and f. are electric, magnetic, and magneto-electric resonance
frequencies; ve, ym, and y are electric, magnetic, and magneto-electric damping

frequencies; and Ry, Fy, and R coefficients depending on structure of the material

[34]. Lorentz Model can be applied for both conventional materials and

metamaterials problems.

3.3 Transfer Matrix Method

The transfer matrix method (TMM) is a method used in optics and acoustics to
analyze the propagation of electromagnetic or acoustic waves through a stratified
(layered) medium [37]. TMM is based on the fact that, according to Maxwell's
equations, there are simple continuity conditions for the electric field across
boundaries from one medium to the next. If the field is known at the beginning of a
layer, the field at the end of the layer can be derived from a simple matrix operation.
A stack of layers can then be represented as a system matrix, which is the product of
the individual layer matrices. The final step of the method involves converting the

system matrix back into reflection and transmission coefficients [38].

TMM is a powerful tool for the analysis of periodic structures. It has been used in
two different ways. One way is to represent the solution of the coupled mode
equations by a 2x2 transfer matrix, which relates the forward and backward
propagating field amplitudes [34]. Almost-periodic gratings can be analyzed
effectively by this method [38]. The grating structure is divided into a number of
uniform grating sections which have an analytic transfer matrix. The transfer matrix
for the entire structure can be obtained by multiplying the individual transfer
matrices together. It should be noted that this method is simply a numerical method

for solving the coupled mode equations.

The other way of the TMM is to represent each corrugation section by a transfer
matrix [39, 29]. The reflection of the propagating modes of a corrugated waveguide

at the discontinuity of the effective index in the same way as plane waves are
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reflected. Therefore, the transfer matrix of each corrugation section can be expressed
in terms of the mode reflection and transmission coefficients and the propagation
constant, which is similar to the matrix used in the analysis of thin-film optical filters
[40].

Let us try to find TMM of whole multilayer structure through the multiplication of

cascaded connection of each layer in Figure 3.1 by,

t t N N S S
[M(] ‘[mfl m?] =T TIMm;] —H[mil mﬂ, (3.3)

Mp1 My | s=1 s=1| Mp1 M3y

where mi;, miy, mb;, and m}, designate the elements of M, and M denotes

the transfer matrix of any layer and is written as

(1+Sll)(l—822)+821812 (1+Sll)(l+822)—821812

mip mpp | 2571 2571 (34
m$; m$p | | (1=S11)(1-S22)—-Sp1S12  (1-Sp1)(1+Sp2) +S1S1
2591 2591

Forward and backward reflection and transmission S-parameters of a bianisotropic
MM slab with length L [41] are

2 2
r,1-T2) r,1-T2) A-TT)T
Su=—t—=3 Sp=—t——, Su=Sp=—"=%%5, (35
1-II,T 1-IyI,T 1-IyI,T
Zp ) -1 B ik f
r =W - zb=_Z  T=¢" OnL, n=Feny —£35. (3.6
12 Zj\,(_)+l w nTicg Fyer —&p- (3.6)

Here, I'; and I', are the intrinsic (first) reflection coefficients at the interfaces of

front and back faces of each MM slab; T is the propagation factor related to
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propagation characteristics of the slabs; z;,, z,,, n, and k, are, respectively, the
normalized wave impedances in forward (+x) and backward (-x) directions, the

refractive index of each bi-anisotropic MM slab, and the free-space wave number; ¢,
and p, are the relative complex permittivity and complex permeability of
bianisotropic MM slab in electric and magnetic field directions, respectively; and &

is the magneto-electric coupling coefficient (a unitless quantity).

For a conventional material (n>0), its expressions for S;1, Sy1, Sp, Spy are
identical (correspondingly) to those in equation (3.5) if &, =0. Therefore, its

expressions are not repeated for convenience.

After determining [Mt] through equation (3.3), expressions of P,, P, and P

normalized to incident power can be calculated from [42,43-45]

t t t t |2 t t t t |2
p@ _ Mg +Mip = M31 = M3 p(2) _|M22 +Mip = Mag — Mig 3.7)
r—| .t t t t ‘ ' r =l .t t t t ‘ : :
My + Mo + M3 +M3o My + Mo + M3 +M3o
) 2
3 o a——— P2 =1-p2 —p,, (3.8)
My1+ Mo +Mpq +Mpo

where {Pr(l),Pl(l)} and {Pr(z),Pl(z)} are, respectively, pairs of normalized reflected

and loss powers from forward and backward directions of the cascaded structure in

Figure 3.1. We note that because of the reflection asymmetric property of
bianisotropic MM slabs, Pr(l) and Pr(z) (as well as Pl(l) and Pl(z)) should be

different. This point is discussed in what follows by numeric examples.

3.4 Validation of S-Parameters by Transfer Matrix Method (TMM) and

Lorentzian Model

In Chapter 2, the value of S1, S,;, So and S,, parameters have been found

analytically, and here in this section we numerically validate these parameters. We
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achieve this validation of S-parameters using Transfer Matrix Method and
Lorentzian model (analytical and numerical). To compare two methods we analyze
the magnitude and phase of S- parameters for a frequency range of 0 and 25 GHz.
As a particular example, we consider the Lorentzian model parameters discussed

previous section as

Fo=Fn=04, F =015 (3.9)
fo=6GHz, f,=f:=5GHz (3.10)
Ye =Ym=7e =0.4 GHz (3.11)

Here, we note that there is no specific reason of the selection of above parameters.
Our purpose is just simulating constitutive parameters of the bianisotropic MM slab

for validation of derivation.
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3.4.1 Validation of Sy

As seen from Figure 3.2, the magnitude and phase of forward reflection scattering
parameter (S;;) determined from the TMM method and analytical derivation
Equation (2.51) are almost equal to each other. This validates our derivations in
Chapter 2 for S;1. As you see frequency of resonance about 5-6 GHz is clearly seen
in both magnitude and phase figures.

1
T SShSt e ]
, i ' T
1] S AU VS RO S S R — O Eq251) |-
) : : ; :
T e e e -
e e e e -
0o I I I I
0 5 10 15 20 25
frequency (GHz)
50
4 ' ' ' TMM
Ty I 200 S SO + Eq(251)|.._ |
g 1) s e S 4
o
a
=
T 20 e b 4
[+ '
) L SN WO - ......................................... -
0
0 5 10 15 20 25

frequency (GHz)

Figure 3.1: Dependencies of magnitudes and phases of forward reflection scattering

parameter S;q.
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3.4.2 Validation of S,;

Here, in Figure 3.3 we compare the magnitude and phase of forward transmission
coefficient of S,; parameter. By using Transfer Matrix Method and Equation (2.69).

Therefore, our second validation of Sy4 is done well.

MM
o Eq(2.69)

|S21]

20 25

TMM
+ Eq(269) ]

By degrees

______________________________________________________________________________________________________

5 10 15 20 25
frequency (GHz)

Figure 3.2: Dependencies of magnitudes and phases of forward reflection scattering
parameter Syq.
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3.4.3 Validation of S;,

Here, in Figure 3.4 we compare the magnitude and phase of backward transmission

coefficient of S, parameter. As we analyze the figures of TMM method and

Equation (2.96) distinctly they are totally the same with each other so that our third

validation of S;, is done correctly. However, when we compare the backward
transmission coefficient of S;, parameter and forward transmission coefficient of

S,1 parameter they are also the same with each other.

14 T T T T
™M [T T
< Eqg(2.96)
B R s -
&
el :L
20 25
frequency (GHz)
Mumeric - TMM
50 T T T T
e Ay S A b e :
I A :
‘63 ' ' ' '
@
= 1 1 1 1
) e et U -
© H H H .
' ' ' TWVIM
10 - i -+ Eq.(2.96) [t--1--
0 : I I I
0 5 10 15 20 25

frequency (GHz)

Figure 3.3: Dependencies of magnitudes and phases of forward reflection scattering

parameter S;5 .
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3.4.4 Validation of S,

In Figure 3.5, we compare the magnitude and phase of backward transmission

coefficient of Sy, parameter. When we look at the figures of TMM method and

Equation (2.81) distinctly they are totally the same with each other so that our last

validation of Sy, is done correctly. However, when we compare the forward
reflection coefficient of S;; parameter and backward reflection coefficient of Sy,

parameter they are completely different from each other.

1 ' ' TToase
e i st SR e e -
H H H — TMM
]y CCTTETREITEIRRRRRRREE SEEESERRRERRRRRRR o Eq281) -
N ' ' ' i
o
el ; : : :
e e L Tt -
02t _—H- e -
0 I I I |
0 5 10 15 20 25
frequency (GHz)
%0 T T T
! ! ! — TMM
1 by : é| + Eq(281
A0 SRR RORY NURR S 2 j (R = ! - q( }
§ et A — e e o
2 : i | : :
a '
= '
BT e At I ------------------------------------ -
[V SRRSO, ORISR ARpSORONN R | GRRRRpp PR SRR O S 1 ------------------------------------- -
0 I I \
0 5 10 15 20 25

frequency (GHz)

Figure 3.4: Dependencies of magnitudes and phases of forward reflection scattering

parameter Sy, .

As a result, we note the following two key points for the bianisotropic metamaterial
property. First, bi-anisotropy property is symmetric to the transmission coefficient,
and as a second bi-anisotropy shows an asymmetric property for the reflection

coefficient.
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3.5 Power Analysis

Here, we present numerical results of a two layer multilayer structure to demonstrate
dependencies of reflection, transmission, and loss powers of a general multilayer
structure in Figure 3.1. The results are separated into two subsections for better
presentation. In the first subsection, we analyze aforementioned powers when the
conventional material is lossless and when the bianisotropic MM slabs are low-loss.
In the second subsection, we investigate effects of loss present both inside the
conventional material and bianisotropic MM slab. In each subsection, we also

investigate the effect of sample thickness on the analyzed powers.

3.5.1 Low—Loss Case
Towards this end, as a particular example, we choose the Lorentzian model
parameters discussed previous section as in equation (3.9) - (3.11). We also set

gr =6.0+10.0, u =1.0+i0.0  for the conventional  material and
L; =L, =10.0mm.For example, Figure 3.6 and 3.7 illustrate the dependencies of

various reflected, transmitted, and loss powers for the analyzed two-layer structure

for different Lyand L, combinations over 0-25 GHz.

From the dependencies in Figure 3.6 and Figure 3.7, we note the following points.
First, while the transmitted powers obtained from forward and backward directions
of bianisotropic metamaterial slab are individually the same (Figures 3.6(c), 3.6(d)
and Figures 3.7(c), 3.7(d)). The corresponding reflected and loss powers of each slab
are different (Figures 3.6(a), 3.6(b), 3.6(e), 3.6(f) and Figures 3.7(a), 3.7(b), 3.7(e),
3.7(f)). For instance, whereas forward transmitted and backward transmitted are the
same for bianisotropic MM slab, forward reflected and backward reflected powers
are different for bianisotropic MM slab. The identical transmitted powers are a result
of reciprocal property of each medium constituting the multilayer structure [25, 46,
47], and different reflected (and loss) powers comes from the reflection asymmetric

(311 # 822) nature of bianisotropic MM slabs (see Equation (3.7) and (3.8)). Second,

reflected and transmitted powers of the conventional material demonstrate the

oscillatory behavior over frequency ( Figures 3.6.(a), 3.6.(b), 3.6.(e), 3.6.(f) and
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Figures 3.7(a), 3.7(b), 3.7(e), 3.7(f) ). This oscillatory behavior of the conventional

0 and Im{p,}=0).

material arises from its lossless nature (Im {g, }
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Third, transmitted power of the composite structure possesses a null value around

resonance frequencies fg,f,,, and f;’ ( Figures 3.6(c), 3.6(d) and Figures 3.7(c),

3.7(d)), indicating the common property of materials that electromagnetic energy is
absorbed by the material at resonance [30]. In addition, transmitted (or reflected)
power has a sharp peak at some specific frequencies (e.g., f =13.7 GHz in Figures
3.6(a), 3.6(b), 3.6(c), and 3.6(d) ) beyond these resonance frequencies. These peaks
corresponding to thickness-resonance frequencies of the conventional material. At
those frequencies, the conventional material demonstrates maximum reflection
property [48,49].

Fourth, the occurrence of peaks in reflected power increases (see Figures 3.6(c),
3.6(d) and Figures 3.7(c), 3.7(d)), with L, due to increased oscillatory behavior of
the conventional material. Therefore, resonance behavior at f=13.7 GHz and

f =19.9 GHz in Figures 3.6(a), 3.6(b)) (or additional frequencies in Figures 3.7(a),
3.7(b)) can be utilized for sensing applications of the conventional materials [50, 51].

Fifth, total loss powers (Figures 3.6(e), 3.6(f), and Figure 3.7(e), 3.7(f),) increase

drastically around resonance frequencies f,,f,,, and fg ( Figures 3.6(e), 3.6(f) and

Figures 3.7(e), 3.7(f)), as well as at some specific frequencies resulting in a
decreased reflected powers (e.g., f =13.7 GHz and f =219.9GHz in Figures 3.6(a),
3.6.(b). Finally, we note from Figures 3.6.(a), 3.6.(b), 3.7.(a), and 3.7.(b) that forward
and backward reflected and loss powers are, respectively, different from each other
over the regions at which bianisotropic feature becomes a key parameter. For

instance, the effect of &y parameters is predominant over f =5—7 GHz in Figure

3.6 and Figure 3.7 [41, 52].
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3.5.2 Lossy Case

In the previous subsection, we investigated the transmitted, reflected, and loss
powers of the two-layer composite structure in Figure 3.1 for low-loss bianisotropic
MM slab and the lossless conventional material. Here, we mainly focus on the effects
of increased loss inside both the bianisotropic MM slabs and the conventional
material. In particular, we utilize following parameters to reflect losses inside the

slabs
Ye =Ym =Yg =2.0 GHz (3.12)

while we keep other parameters the same in equations (3.9) and (3.10). For example

Figure 3.8 and Figure 3.9 show the dependencies of P;, P,, and P, of the

bianisotropic slab, the conventional material, and the analyzed multilayer structure

for various ¢, and p, and thickness combinations. From these figures, we deduce

the following points. First, the transmitted powers in forward and backward
directions of the multilayer structure in Figures 3.8(c), 3.8(d), 3.9(c) and 3.9(d) are
still the same. This is because reciprocity of a medium is not a parameter depending
on the loss factor of the medium. Second, discrepancy of different reflected and loss
powers in forward and backward directions of the multilayer structure still holds
when the loss is included into the analysis (Figures 3.8(a), 3.8(b), 3.9(a) and 3.9(b)).

This is because reflection asymmetric feature (Sy;#Sy,) of the bianisotropic

metamaterial slabs (producing the reflection asymmetric feature for the multilayer
structure) is an intrinsic asymmetric nature of the physical constituents (e.g.,
orientation of metallic inclusions) [25, 30, 53], and because loss powers are related to
reflected powers through the relation in (3.8). Third, the loss in the bianisotropic slab
in addition to that in the conventional material, as expected, decreases the transmitted
power of whole structure ( Figures 3.8(c), 3.8(d), 3.9(c) and 3.9(d) ). Fourth, while
effect of loss in the bianisotropic slab decreases transmitted power around resonance
frequencies f =5-7GHz ( Figures 3.8(c) and 3.8(d) ), the effect of loss inside the
conventional material (only is the dielectric loss considered since inclusion of the
magnetic loss into the analysis does not change the conclusion drawn here)
significantly decreases the sharp ripples in the reflected powers beyond resonance
frequencies (Figures 3.8(a), 3.8(b), 3.9(a) and 3.9(b)).
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Figure 3.8: Dependencies of a) and b) reflected powers, c) and d) transmitted

powers, e) and f) loss powers of the two-layer composite structure ( L;=40.mm,
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CHAPTER 4

PROPAGATION CHARACTERISTICS OF A COMPOSITE MATERIAL BY
SIMULATION PROGRAM CST

4.1 Introduction

Up to this point, we analytically derived S- parameters in Chapter 2 and then also
validated by a numerical analysis in Chapter 3.In this validation, we utilized the
Lorentz dispersion model and some parameters without focusing the structure and
size of the bianisotropic MM slab and the conventional material. In this chapter, we
perform a simulation of the composite structure in Figure 3.1 by using split-ring

resonators (SRRs).

Figure 4.1 shows a schematic of a commonly used edge coupled split ring resonator.
The SRR structure consists of two concentric metallic rings that are both interrupted
by a small gap. When a plane wave is incident in the x direction with an electrical
field in the z direction and a magnetic field in the y direction, the SRR respond with
a bianisotropic property. This is because the electrical field in the z direction can
induce a magnetic dipole in the y direction due to the asymmetry of the inner and
outer rings, while the magnetic field in the y direction can also induce an electrical

dipole in the z direction [30].

Since the MM slab is bianisotropic, it produce different reflection properties.
Therefore, forward and backward reflection and transmission S-parameter of the
whole structure and the MM slab itself (and conventional material) are simulated

separately to better analyze the simulation results.
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Figure 4.1: Schematic of a split-ring resonator used to construct metamaterials.
When a plane wave polarized along the z-axis is incident in the x direction, the

metamaterial will show bi-anisotropy [30].

4.2 Analysis of the Isotropic Slab in CST

An isotropic material is one which looks the same in every direction. We can not
define any special direction using the material properties. In other words, none of the
properties depend the orientation; it is perfectly rotationally symmetric. Note that in
order to be isotropic the material must be homogenous on the length scale of interest;
I.e, the same at every point in the material. For instance, rubber is a very isotropic
material. Take a rubber ball, and it will feel the same and bounce the same however
you rotate it. On the other hand, wood is an anisotropic material: hit it with an axe
and it will take more force to break of you are cutting across the grain than along it.

We're thinking about the material rather than the shape of the object [54].

An isotropic medium is one such that the permittivitye and permeability p of the

medium are uniform in all directions of the medium. When the isotropic material
exposed to electrical field it demonstrates the right handed material properties. As in
Figure 4.3 electric field is parallel to split in rings so that it behaves as a conventional

material property [30].
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Figure 4.2: Simulation of isotropic slab in CST program

This in turn results in the same forward and backward reflection (and transmission)
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forward(backward) transmission(reflection) constants of the isotropic slab.
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4.3 Analysis of the Bianisotropic Slab in CST

Compared to an isotropic material, the most interesting and important feature of a
bianisotropic material is that the characteristic impedances have different values for
the waves propagating in the two opposite directions of the x axis [30]. As in Figure
4.5 splits of rings are rotated 90 degrees so that electric field is now perpendicular to
the splits. Contrary to isotropic material bianisotropic metamaterial demonstrates the
left handed property rules. The presentation of electric field is perpendicular to split

on rings is shown in Figure 4.5. In our numerical validation of S- parameters in

Chapter 3 we have resonance; however, energy cavity (resonance) also occurs here
about 3 GHz.

T
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|¥
|
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R

Jf
!,

Figure 4.4: Si

From the dependencies in Figure 4.5, we note that while forward and backward

transmission scattering parameters (S,; and S;,) are the same, forward and
backward reflection scattering parameters (S;1 and S,, ) are different, demonstrating

the reflection asymmetric property of bianisotropic MM slabs.

We also notice from Figure 4.5 that the bianisotropic MM slab has a resonance

behavior around 3 GHz, which can be seen from the sharp nulls of S;; and rapid

change in Sy;.
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4.4 Analysis of Composite Structure in CST

The conventional material and bianisotropic metamaterial slab are combined
respectively and applied into CST program as in Figure 4.7. When we analyze the
result of the simulation in Figure 4.8, we see that there is resonance about 3 GHz as
in bianisotropic metamaterial property in previous subsection. Moreover, the forward

transmission (S,1) and backward transmission (S;o) constants are the same;

however, forward reflection (S;;) and backward reflection (Sy,) constant are

different.

[ R

~—air

port 1

bi-anisotropic T

isotropic’ T

port2 t

Figure 4.6: The problem under investigation in CST program

Therefore, we note that resonance behaviour of the composite structure is decided by

the bianisotropic metamaterial with respect to isotropic material.
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forward(backward) transmission(reflection) constants of the composite structure.
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CHAPTER 5
CONCLUSION

5.1 Results

In this Master thesis, in first Chapter we presented how the metamaterial concept
emerged, and then gave a brief literature review of isotropic and bi-anisotropic

metamaterials. Then, we discussed the motivation of the thesis.

In the second Chapter, from the previous studies and using Maxwell equations we

extracted electromagnetic bianisotropic metamaterial property parameters coupling

coefficient (&) , relative complex permeability(yyy) and permittivity (¢,,) in terms

of refractive-index. Towards this end, necessary scattering parameters of forward

reflection (Sy;), backward transmission (S;,), forward transmission (S,) and
backward reflection (S,,) coefficients are derived analytically utilizing boundary

conditions for the investigated two-layer composite structure.

In addition, from the derived aforementioned constant parameters and boundary
conditions, we derived complex power relations for a composite structure with a
bianisotropic metamaterial slab and a conventional material. To the best knowledge

of us, such derivation are new to the literature.

In Chapter 3, we turned our attention to validation of the derived expressions in the
Chapter 2, and also we performed a numerical analysis to achieve our goal. In the
analysis, we used Lorentz dispersion model to simulate artificial bi-anisotropic slab
and the conventional material as well as to analyze the propagation characteristics of
the composite material. In addition to this model we utilized the transfer matrix

method,
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which is a appropriate model for analysis of cascaded structures, to validate derived

expressions.

In Chapter 4, we simulated a two-layer composite material structure (a bi-anisotropic
MM slab and a conventional material) by using split ring resonators (SRRs) in a

computer simulation program CST for comparisons of the results in Chapter 3.

From analytical model and simulation results, we note that the analyzed composite
structure has different reflection scattering parameters and then different reflected
powers, whereas it has the same transmission scattering parameters and the same
transmitted powers. In addition, we note that bianisotropic metamaterials have

different loss power behaviors depending on wave propagation direction.

From the dependencies given in Chapter 3, we note that resonance behaviour of the
composite structure is managed by the bianisotropic metamaterial with respect to

isotropic material

5.2 Future Work

As a future work, we investigate composite structure composed of bianisotropic MM
sandwiched between two left handed material. In addition, complex power analysis
will be expanded in detail for realizing the exact transmission, reflection and loss

powers.
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APPENDIX

This is a Matlab program for, in addition to calculation of some derived
expressions in Chapter 2, obtaining scattering parameters and power
expressions in Chapter 3 (Figures 3.1-3.8) of this thesis.

clc;

clear all;
format long eng;
format compact;

Eps_zero = (10e-9)/(36*pi);
Mu zero = 4*pi*le-7;
c = 2.997925e8;

Fm——————— - We took time reference as exp(-iwt) - --------

% ====================== Bianisotropic MM parameters
Fe=20.4;

Fm=0.4;

F Xi = 0.15;

f e = 6e9;

f m = 5e9;

f Xi = 5e9;

Gamma_ e = 2e9;
Gamma m = 2e9;
Gamma Xi = 2e9;

% ======================== Isotropic MM parameters

Erl = 6 + 11i*0.0;
=20;
Mrl =1 + 11*0.0;

o

=

H

i
|

0;
z0 = sqgrt (Mu_zero/Eps zero);
% for £ = 1e9: 50e7: 1le9,
for £ = 0.1lel: 50e7: 25e9,
index = index + 1;
w = 2*pix*f;
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kO = (w/c);
k01=k0*Erl1*Mrl;

Bianisotropic MM slab

Eps_z Values (index) = 1 - (F_e*f"2)/(£72 - f en2 +
li*Gamma_e*f);

Mu y Values(index) = 1 - (F_m*fA2)/(fA2 - f m*2 + li*Gamma m*f);

Xi zero Values (index) = 1 - (F_Xi*£72)/ (£72 - f Xi~2 +
li*Gamma Xi*f);

n_ Plus Values (index) = sqgrt (
Eps_z Values (index) *Mu_y Values (index) - ( Xi zero Values (index)
) .72 )

n Minus Values (index) = - sgrt (
Eps z Values (index)*Mu_y Values (index) - ( Xi zero Values (index)
) .2 ) ;

if imag( n_Plus Values(index) ) >= 0

Signal Values (index) = 1;
else
Signal Values (index) = -1;

end

n bian = Signal Values (index) *sqgrt (
Eps z Values (index) *Mu_y Values (index) - ( Xi zero Values (index)
) .2 )

z Plus = Mu_y_Values(index)/( n bian + 1i*Xi zero Values (index)
)

z Minus = Mu y Values(index)/( n bian - 1i*Xi zero Values (index)
)

gamma_x = 1i*k0*n bian;

Gamma 1 = (z_Plus - 1)/ (z Plus + 1);

Gamma 2 = (z Minus - 1)/(z Minus + 1);

$%Scatering parameters Dbelow are taken from the paper of
stepwise technique

ssfor accurate and unique retrieval of electromagnetic
properties of

$%bianisotropic metamaterials equation of 1&2.

T Values (index) = exp( gamma_ x*dl );

S11 (index) = Gamma_ 1* (1 - T Values (index)"2)/( 1 -
Gamma l*Gamma 2* ( T Values (index) )"2 );

522 (index) = Gamma_2* (1 - T Values (index)"2)/( 1 -
Gamma_ l*Gamma 2*( T Values (index) )"2 );

S21(index) = ( (1 - Gamma l1*Gamma 2)*T Values(index) )/( 1 -
Gamma l*Gamma 2* ( T Values (index) )"2 );

S12(index) = ( (1 - Gamma l1*Gamma 2)*T Values(index) )/( 1 -

Gamma_ l*Gamma 2*( T Values (index) )"2 );

$%% %%%%%Assuming the Zs and Zl1 are equal to 1 where the
reference paper name is

%$%% Full Extraction Method to Retrieve Effective Refractive
Index and

%% Parameters of a Bianisotropic Metamaterial

o\
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%%% equation 5

A = ( (1 + Sll(index))* (1 - S22 (index)) + S21 (index) *S12 (index)
)/ (2*S21 (index) ) ;
A2 = ( (1 + Gamma 1)*(1 - Gamma 2) + ( (1 - Gamma l*Gamma 2)"2
+ Gamma_ 2* (1 - Gamma_1"2) - Gamma_ 1* (1 - Gamma_ 2"2)
) *T_Values (index) "2
- Gamma_ l*Gamma 2* (1 - Gamma 1) * (1 +
Gamma 2)*T Values (index) "4 )/ ( 2% (1 - Gamma 1*Gamma 2)* ( 1 -

Gamma l*Gamma 2*T Values (index) "2 )*T Values (index) );

B = ( (1 + Sll(index))*(1 + S22 (index) ) - S21(index)*S12 (index)
)/ (2*S21 (index) ) ;

B2 = ( (1+ Gamma 1) * (1+Gamma_ 2) -
(Gamma_ 1* (1+Gamma 272)+Gamma 2* (1+Gamma 172)+4*Gamma_ 1*Gamma 2+ (1-
Gamma_ l*Gamma 2)"2)*T Values (index) "2

+Gamma_1*Gamma 2* (Gamma_ 1+1)* (Gamma 2+1) *T Values (index) "4)/ (
2*(1 - Gamma_ l*Gamma_ 2)* ( 1 - Gamma l*Gamma 2*T Values (index) "2
) *T_Values (index));

C = ( (1 - Sll(index))* (1 - S22(index)) - S21 (index) *S12 (index)
)/ (2*S21 (index) ) ;

C2 = ( (1 - Gamma_1)*(1 - Gamma 2) + ( Gamma 2* (1 - Gamma 1)"2 +
Gamma 1* (1 - Gamma_ 2) "2 - (1 - Gamma_l*Gamma 2) "2
) *T_Values (index) "2

+ Gamma_ 1*Gamma 2* (1 - Gamma 1) * (1 -
Gamma_ 2)*T Values (index) "4 )/(2*(1—Gamma_1*Gamma_2)*(1—

Gamma_ l*Gamma 2*T Values (index) "2)*T Values (index) );

D = ( (1 - Sll(index))* (1 + S22(index)) + S21(index)*S12 (index)
)/ (2*S21 (index) ) ;

D2 = ( (1- Gamma_ 1)* (l+Gamma_ 2)+ (Gamma 1* (1+Gamma 1l*Gamma 2) -
Gamma_ 2* (1+Gamma_ l*Gamma_ 2)+ (1-Gamma l*Gamma 2)"2)*T Values (index) "2
+Gamma 1*Gamma 2* (Gamma l1*Gamma 2+ Gamma_ 2-Gamma_ 1-

1) *T Values (index)"4)/ (2* (1-Gamma_ 1*Gamma 2)* (1-
Gamma_ l*Gamma 2*T Values (index)"2)*T Values (index));

% A (index) *D(index) - B(index) *C (index) ; % yields one
M1 = [A B; C DJ;
$s11 1= (+B-C-D)/(A+ B+ C+ D)
% e Isotropic MM slab
n = sqrt( Mrl*Erl );
z = sqrt( Mrl/Erl );
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M2 = [ cos (kO*n*d2) -li*z*sin (kO*n*d2) ; -1li*sin (k0*n*d2) /z
cos (k0*n*d2) ];

% ===============composite matrix of two material

MT = M1*M2;

S11 1 = ( MT(1,1) + MT(1,2) - MT(2,1) - MT(2,2) )/( MT(1,1) +
MT (1,2) + MT(2,1) + MT(2,2) ); %%%reflection from transfer matrix

$22 1 = ( -MT(1,1) + MT(1,2) - MT(2,1) + MT(2,2) )/( MT(1,1) +
MT (1,2) + MT(2,1) + MT(2,2) ); %S%%reflection backward from transfer
matrix

21 1 = 2 /( MT(1,1) + MT(1,2) + MT(2,1) + MT(2,2) ); %%%

transmission from transfer matrix
S12 1 = s21 1;

Lambda 1 = exp( -2i*k0*n* (dl + d2) )*(1 + z)/(1 - z);

Lambda 2 ( Lambda l*exp( 1i*k0*n*dl ) + exp( -1i*kO*n*dl ) ) /
( Lambda l*exp( 1i*kO0*n*dl ) - exp( -1i*k0*n*dl ) );

Lambda 3 = exp( 2i*k0*n bian*dl )*( Lambda 2*z/z Plus - 1) / (
Lambda 2*z/z Minus + 1);

Lambda 4 = (1 + Lambda 3)/( (1/z_Plus) - Lambda 3/z Minus );

S11 2 = ( Lambda 4 - 1 )/ ( Lambda 4 + 1 );%%% reflection from
thesis document

% Lambda 5 = exp ( -21i*k0*n _bian* (dl + d2) )y * (1 +
z0/z Minus)/(20/z Plus - 1);

% Lambda 6 = ( Lambda 5 + exp( -2i*k0*n bian*(dl) ) ) /(z*( -
Lambda 5/z Plus+ exp( -2i*k0*n bian*dl/z Minus ) ) );

% Lambda 7 = exp( -2i*k0*n*dl )*( Lambda 6 - 1) / ( Lambda 6 +
1);

% Lambda 8 = (1 + Lambda 7)/( Z0 - Lambda 7*Z0 );

% S22 = ( Lambda 8 - 1 )/( Lambda 8 + 1 ); %%% reflection from

thesis document
Lambda 5 = z Minus* (1 + z Plus)/ (1 - z Minus)/z Plus;

Lambda 6 = ( Lambda 5 + exp ( 21*k0*n bian*d2 )
)/ (z*Lambda 5/z Minus - z/z Plus* exp( 2i*k0*n bian*d2 ) );

Lambda 7 = ( Lambda 6 + 1 Y/ ( Lambda 6 - 1)*exp( 2i*k0*n*d2 );

Lambda 8 = z*( Lambda 7 + exp(2i*k0*n* (dl1+d2) ))/(Lambda_7 -
exp (21*k0*n* (d1+d2) ));

Omega 1 = 0.5*(1 + z)*exp( 1i*k0*(dl + d2) )*exp( -1i*k0*n*(dl +
dz) );

Omega 2 = ( -z*exp( 1i*k0*(dl + d2) ) + Omega l*exp( 1i*kO0*n* (dl
+ d2) ) )*exp( 1i*k0*n*(dl + d2) );
Omega 3 = ( 1 / (1 + =z Minus/z Plus) )*( Omega 1*(1 +

z Minus/z) *exp( 1i*kO*n*dl )
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+ Omega 2*(1 - z_Minus/z)*eXp( -1i*k0*n*dl ) ) *exp( -
1i*k0*n _bian*dl );
Omega 4 = ( Omega l*exp( 1i*k0*n*dl ) + Omega 2*exp( -1i*k0*n*dl
) - Omega 3*exp( 1i*k0*n bian*dl ) )*exp ( 1i*k0*n bian*dl );

521 2 = 2*exp( 1i*k0*(dl + d2) ) /( Omega 3*(1 + 1/z Plus) +
Omega 4*( 1 - 1/z Minus ) ) ;%%% transmission from thesis document
S12 2 = 821 2;

oe

Omega 5 = ( (1/z _Plus + 1)/(1/z Plus + 1/z Minus) )*exp( -
i*k0* (dl + d2) )*exp( +1i*k0*n bian*(dl + d2) );

oe

oe

Omega 6 = ( (1/z Minus - 1)/(1/z Plus + 1/z Minus) )*exp( -
i*k0*n* (dl + d2) )*exp( -1i*k0*n bian*(dl + d2) );

o°

oe

Omega 7 = (Omega 5*exp( -1i*k0*n bian*d2 ) + Omega 6*exp (
1i*k0*n bian*d2 ) )*( Omega 5*( 1 + =z/z Minus ) + Omega 6*exp (
+2i*k0*n bian*d2 )*(1 - z/z Plus) )...

% / (2*( Omega 5 + Omega 6*exp( +2i*k0O*n bian*d2 ) ) ) *
exp( +1i*k01*n*d2 ) ;

o°

% Omega 8 = (Omega 5*exp( -1i*k0O*n bian*d2 ) + Omega 6*exp (
+1i*k0*n bian*d2 ) )*( Omega 5*( 1 - z/z Minus ) + Omega 6*exp (
+2i*k0*n bian*d2 )*(1 + z/z_Plus) ) e . .

% / (2*( Omega 5 + Omega 6*exp( +2i*k0*n bian*d2 ) ) ) *

exp( -11*k01*n*d2 ) ;

o° o

\o

5 512 = 2*exp( -1i*k0O*(dl + d2) )/( Omega 7*(1 - 1/z)+
Omega 8* (1 + 1/z) );

o\

% Omega 5 = =z Minus*(l1 + =z Plus)*exp( -1i*k0*n bian*dl )/(
2*(z Plus + z Minus) );

% Omega 6 = =z Plus* (1 - =z Minus)*exp( +1i*k0*n bian*dl )/ (
2*(z _Plus + z Minus) );

% siz2 = 2/( (1 + 1/z)*[ (1 + =z/z Minus)*Omega 5 + (1 -
z/z Plus)*Omega 6 ]*exp( -1i*k0*n*d2 ) + .

% (1 - 1/z)*[ (1 - z/z Minus)*Omega 5 + (1 +
z/z Plus)*Omega 6 ]*exp( +1i*k0*n*d2 ) ); %%transmission backward
from thesis

o

Lambda 9 = ( (1 + 1/z Plus)*exp( -1i*k0*n bian*dl ) + (1/z Minus
- 1)*exp( +1i*k0*n bian*dl ) )...
/ ( (Z/Z_Minus)*(l + l/z_PluS)*exp( -1i*k0*n _bian*dl ) -
(z/z_Plus)*(1/z Minus - 1)*exp( +1i*k0*n bian*dl ) );

Lambda 10 = z*( (Lambda 9 + 1) + (Lambda 9 - 1)*exp( +2i*k0*n*d2

/( (Lambda 9 + 1) - (Lambda 9 - 1)*exp( +2i*k0*n*d2 ) );
522 2 = (Lambda 10 - 1)/ (Lambda 10 + 1);
O 00000000
00000000=============————ccc—— oo e e e
S11 Iso(index) = ( M2(1,1) + M2(1,2) - M2(2,1) - M2(2,2) ) /

M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) );

71



521 Iso(index) = 2 /( M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) );

S12 Iso(index) = 2 /( M2(1,1) + M2(1,2) + M2(2,1) + M2(2,2) );
S22_Iso(index) = ( -M2(1,1) + M2(1,2) - M2(2,1) + M2(2,2) ) / (
M2(1,1) 4+ M2(1,2) + M2(2,1) + M2(2,2) );

s=========F0ORWARD============
Transmittivity Bian (index) = abs(S21 (index))"2;
Transmittivity Iso(index) = abs(S21 Iso(index))"2;
Transmittivity All(index) = abs( S21 1 )"2;%%===P transmitted
Reflectivity Bian(index) = abs(S1ll(index))"2;
Reflectivity Iso(index) = abs(S11l Iso(index))"2;
Reflectivity All (index) = abs( S11 1 )"2;%%===P reflected
Loss_Bian (index) = 1 - ( Transmittivity Bian (index) +
Reflectivity Bian(index) );
Loss_ Iso(index) = 1 - ( Transmittivity Iso (index) +
Reflectivity Iso(index) );
Loss_All (index) = 1 - ( Transmittivity All (index) +

Reflectivity All (index) );

$=========BACKWARD============

Transmittivity Bian 2 (index) = abs(S12(index))"2;

Transmittivity Iso 2 (index) = abs(S12 Iso(index))"2;

Transmittivity All 2 (index) = abs( S12 1 )"2;%%===P transmitted

Reflectivity Bian 2 (index) = abs (S22 (index))"2;

Reflectivity Iso 2 (index) = abs (S22 Iso(index))"2;

Reflectivity All 2 (index) = abs( S22 1 )"2;%%===P reflected

Loss_Bian 2 (index) = 1 - ( Transmittivity Bian 2 (index) +
Reflectivity Bian 2 (index) );

Loss _Iso 2 (index) = 1 - ( Transmittivity Iso_ 2 (index) +
Reflectivity Iso 2 (index) );

Loss All 2 (index) = 1 - ( Transmittivity All 2 (index) +

Reflectivity All 2 (index) );

S21 1 real(index) = abs( S21 1 )"2
S21 1 imaginal(index) = imag( S21 1 )"2
S21 2 real(index) = abs( S21 1 )"2
S21 2 imaginal(index) = imag( S21 1 )"2
S12 1 real(index) = abs( S12 1 )"2
S12 1 imaginal(index) = imag( S12 1 )"2
S12 2 real(index) = abs( S12 1 )"2
S12 2 imaginal (index) = imag( S12 1 )"2
S11 1 real(index) = abs( S11 1 )"2
S11 1 imaginal (index) = imag( S11 1 )"2
S11 2 real(index) = abs( S11 1 )"2
S11 2 imaginal (index) = imag( S11 1 )"2
S22 1 real(index) = abs( S22 1 )"2
S22 1 imaginal (index) = imag( S22 1 )"2
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S22 2 real(index) = abs( S22 1 )"2
S22 2 imaginal (index) = imag( S22 1 )"2

f Values (index) = f/le9;

end

subplot (2,2,1)

plot (f Values,S11 1 real, 'b-' );
ylabel ("[S11]");

xlabel ({'frequency (GHz)',"' '});
title ('Numeric - TMM');

grid on;

subplot(2,2,2);

plot (f Values, (180/pi)*atan2(S11 1 imaginal,S11 1 real), 'b-' )
ylabel ('degrees');

xlabel ({'frequency (GHz)'," "});

title ("Numeric - TMM');

grid on;

subplot (2,2,3);

plot (£ Values,S11 2 real, 'b-' ) ;
xlabel ('frequency (GHz)'");
ylabel (' |S11]");
title('Analytic');

grid on;

subplot (2,2,4);

plot (f Values, (180/pi)*atan2(S11 2 imaginal,S11 2 real),'b-' );
xlabel ('frequency (GHz)'");

ylabel ('degrees');
title('Analytic'");

grid on;

subplot (2,2,1)

plot (£ Values,S21 1 real, 'b-' )7
ylabel (" [S21]");

xlabel ({'frequency (GHz)'," "});
title ('Numeric - TMM');

grid on;

subplot (2,2,2);

plot (f Values, (180/pi)*atan2(S21 1 imaginal,S21 1 real));
ylabel ('degrees');

xlabel ({'frequency (GHz)',"' '});

title ('Numeric - TMM');

grid on;
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subplot (2,2,3);

plot (£ Values,S21 2 real);
xlabel ('frequency (GHz)'");
ylabel ("[|S211]");
title('Analytic');

grid on;

subplot (2,2,4);

plot (f Values, (180/pi)*atan2(S21 2 imaginal,S21 2 real));
xlabel ('frequency (GHz)"'");
ylabel ('degrees');
title('Analytic');

grid on;

figure;

g=================g5]2

subplot (2,2,1)

plot (f Values,S12 1 real, 'b-' ) ;

ylabel ('[|S12]");

xlabel ({'frequency (GHz)'," '});
title ('Numeric - TMM');

grid on;

subplot (2,2,2);

plot (f Values, (180/pi)*atan2(S12 1 imaginal,S12 1 real));
ylabel ('degrees');

xlabel ({'frequency (GHz)',"' "});

title ('Numeric - TMM');

grid on;

subplot (2,2,3);

plot (f Values,S12 2 real);
xlabel ('frequency (GHz)"'");
ylabel ('[S12]");
title('Analytic');

grid on;

subplot (2,2,4);

plot (f Values, (180/pi)*atan2(S12 2 imaginal,S12 2 real));
xlabel ('frequency (GHz)"'");
ylabel ('degrees');
title('Analytic'");

grid on;

figure;

g=================522

subplot (2,2,1)

plot (£ Values,S22 1 real, 'b-' )7

ylabel ("[S22]");

xlabel ({'frequency (GHz)',' '});
title ('Numeric - TMM');

grid on;

subplot (2,2,2);

plot (f Values, (180/pi)*atan2(S22 1 imaginal, S22 1 real));
ylabel ('degrees');

xlabel ({'frequency (GHz)',"' '});

title ("Numeric - TMM');

grid on;

subplot (2,2,3);

plot (f Values,S22 2 real);
xlabel ('frequency (GHz)");
ylabel (' [522]");
title('Analytic');
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grid on;

subplot (2,2,4);

plot (f Values, (180/pi) *atan2 (S22 2 imaginal, S22 2 real));
xlabel ('frequency (GHz)"'");

ylabel ('degrees');

title('Analytic');

grid on;

< o::::::::::::::::::::::::::::complex power

El arti=1;

El eksi = S11 2*El arti;

E2 arti = El1 arti*(1+S11 2)/(l+Lambda 3);
E2 eksi Lambda 3*E2 arti;

E3 eksi=E2 arti* (Lambda 3*exp (-1i*k0*n bian*dl)+exp(1i*k0*n bian*dl)

)/(Lambda_l*exp(1i*k0*n*d1)+exp(—li*kO*n*dl));
E3 arti=E3 eksi*Lambda 1;

E4 arti=S21 2*El arti;

$ Pl = ( 1/(2*%70) )*( ( abs(E2 eksi)”2 )/conj( z Minus ) - (
abs (E2_arti)”2 )/conj( z_ Plus )
% + ( conj( E2 eksi)*E2 arti )/conj( z Minus ) - ( conj(

E2 arti)*E2 eksi )/conj( z Plus ) );

% P1 = ( 1/(2*zZ0) )*( abs( El eksi )"2 - abs(El arti)”2 -
conj (E1l eksi)*El arti - El eksi*conj( El arti ) );

pl 0 = (-0.5/20) *( -
abs (E1_arti) “2+abs(E1 _eksi)"2+El arti*conj (E1l eksi)-

El eksi*conj (E1 arti));

$P1 0 = (-0.5/20)*abs(El_arti)”~2*( abs(S11 1)~2+conj(S11 1)-S11 1 -
1 )

p2 0 = (=0.5/20) * ( -

abg(E2_arti)A2/conj(z_Plus)+abs(E2_eksi)A2/conj(Z_Minus)...
+E2 _arti*conj (E2 eksi)/conj (z_Minus) -
E2 eksi*conj (E2 arti)/conj(z_Plus));

% Pl 01 (—0.5)*abs(Eliarti)A2*abs(S2l(index))A2*(l/conj(ziPlus));

% Pl 01 1/(2*20)*abs(Eliarti)A2*4*27Plus/abs(ziPlus+ZO)A2;

% p2 dl = (-0.5/20) *( -abs (E2 _arti)”2/conj(z_Plus) +
abs (E2_eksi)"2/conj (z Minus) ...

% + E27arti*conj(E27eksi)*exp(Zi*kO*nibian*dl)/conj(ziMinus) -
E27eksi*conj(E27arti)*exp(—Zi*kO*nibian*dl)/conj(ziPlus))
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(

) *exp
) *exp (

p2 dl = (-0.5/Z0)*(
) /conj (z_Plus) +
) /conj (z_Minus) ...

+ E2 arti*conj (E2_eksi) *exp (
) /conj (z_Minus) E2 eksi*conj (E2_arti) *exp (
) /conj (z_Plus));

( abs (E2_arti) "2
abs (E2 eksi) "2

p3 d1l (-0.5/conj (z*Z0))*( abs(E3_eksi)"2*
abs (E3_arti) *2*exp (-2*k0*imag (n) *dl)

E3 arti*conj (E3_eksi) *exp (+2i*k0*real (n) *dl)

- E3 eksi*conj (E3_arti) *exp(-2i*kO*real (n) *dl)

(-0.5/conj (z*Z0)) *( abs(E3 _eksi) " 2*ex

p3_d2
- abs (E3_arti) "2*exp (-2*k0*imag (n)

( -2*k0O*imag(n_bian)*dl
+2*k0*imag (n_bian) *dl

2i*k0*real (n_bian) *dl
-2i*k0*real (n_bian) *dl

+

exp (2*k0*imag (n) *dl)

) 7

p(2*k0*imag (n) * (d1+d2))
*(d1+d2)) +

E3 arti*conj (E3_eksi) *exp (+2i*k0*real (n)* (d1+d2))

- E3 _eksi*conj (E3_arti) *exp(-2i*k0O*real (n)* (dl+d2))

p4_d2

(0.5/20) * (abs (E4_arti)"2);

subplot (3,2,1);
plot (f Values, Reflectivity All,'--',
', £ Values, Reflectivity Iso,':'

f Value
ylabel ({'Forward Reflected', ' (normalized)'});
% xlabel ({'frequency (GHz)'; ' ¢) ' ;' "});

(GHz) ") ;

xlabel ('Frequency
ylim([0,11);
grid on;

subplot (3,2,2);

'LineWidth',

) 7

s, Reflectivity Bian, '-

1.5);

plot (f Values,
Reflectivity Bian 2,'-."',
'LineWidth', 1.5);

Reflectivity All 2,'--",
f Vvalues,

f Values,
Reflectivity Iso 2,':"',

ylabel ({'Backward Reflected', ' (normalized)'});

o

°

xlabel ({'frequency
xlabel ('Frequency
ylim([0,11);

grid on;

subplot (3,2,3);
plot (£ Values,

Transmittivity Bian, '-
Transmittivity Iso, ':

v
4

(GHz) ';
(GHz) ") ;

', '"LinewWidth',

1 1

d)

o !
’

"1

’

Transmittivity All,'--'", f Values,
f Vvalues,

1.5);

ylabel ({'Forward Transmitted',' (normalized)'});

o

°

xlabel ({'frequency
xlabel ('Frequency

(GHz) ';
(GHz) ") ;

] 1 o !
’

a) "1

’
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ylim ([0, 1]);
grid on;

subplot (3,2,4);

plot (f Values, Transmittivity All 2,'--', f Values,
Transmittivity Bian 2,'-.", f Values,
Transmittivity Iso 2,':','LineWidth', 1.5);

ylabel ({'Backward Transmitted', ' (normalized)'});

% xlabel ({'frequency (GHz)'; ' b) ' ;' "});
xlabel ('Frequency (GHz)'");

ylim([0,1]);

grid on;

plot (f Values, Loss All,'--', £ Values, Loss Bian,'-.', £ Values,
Loss Iso,':','LineWidth', 1.5);

ylabel ({'Forward Loss', ' (normalized)'});

% xlabel ({'frequency (GHz)'; ' e) " ;"' '});
xlabel ('Frequency (GHz)'");

ylim([0,1]);

grid on;

subplot (3,2,6);

plot (£ Values, Loss All 2,'--", f values, Loss Bian 2,'-.",
f Values, Loss Iso 2,':','LineWidth', 1.5);

ylabel ({'Backward Loss',' (normalized)'});

% xlabel ({'frequency (GHz)'; " f) ' ;' '});

xlabel ('Frequency (GHz)'");

ylim([0,1]);

grid on;

F==mmmmmmmmsssssssms=s=sssssss=s===ss=======TRANSMI TTANCE================
figure;

% plot (£ Values, Transmittivity All, 'b-", 'x! , f values,
Transmittivity Bian, 'r-','0", f values, Transmittivity Iso, 'g-
Yotk

subplot (2,2,1);

plot (f Values,Transmittivity All, 'b-' ) ;

% text (f Values,Transmittivity All,'o' )

title ('TOTAL TRANSMISSION ');

xlabel ({'frequency (GHz)'; ' a) ' ;" "});

ylabel ('TRANSMITTANCE'") ;

grid on;

% figure,

subplot(2,2,2);

plot (f Values,Transmittivity Bian, 'r-' ) ;

% text (f Values,Transmittivity All,'*' )

title ('"TRANSMISSION OF BI-ANISOTROPIC SLAB ');

xlabel ({'frequency (GHz)'; " b) ';" ' });

ylabel ('TRANSMITTANCE'") ;
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grid on;

Q

% figure,

subplot (2,2, 3);

plot (f Values,Transmittivity Iso, 'g-' );
$text (f Values,Transmittivity All,'+' );
title ("TRANSMISSION OF ISOTROPIC SLAB');

xlabel ({'frequency (GHz)'; ' c) " ;' "});
ylabel ('TRANSMITTANCE") ;

grid on;

% figure,

subplot (2,2,4);

% plot (f Values, Transmittivity All, 'b-', f Values,
Transmittivity Bian, 'r-', £ Values, Transmittivity Iso,'g-"'");
plot (f Values, Transmittivity All, 'b-', f Vvalues,

Transmittivity Bian, 'r-', f Values, Transmittivity Iso,'g-"');
% text (f Values, Transmittivity All, 'x');

% text (f Values, Transmittivity Bian,'*'");

% text (f Values, Transmittivity Iso,'+');

title ('ALL TRANSMISSION ') ;

xlabel ({'frequency (GHz)'; " d) ';' " });

ylabel ('TRANSMITTANCE'") ;

text (6,0.8, "Isotropic');

text (9,0.2, 'Bianisotropic');

text(1.5,0.2, 'Total');

grid on;

§ Y g =m=m==m=mmmmmmmmm—mm— oo REFLECTANCE====
figure;

% plot (f Values, Reflectivity All, 'b-"', f Values,

Reflectivity Bian, 'r-', f Values, Reflectivity Iso, 'g-'");
subplot(2,2,1);

plot (f Values,Reflectivity All, "b-' ) ;

% text(f Values,Reflectivity All, 'x' )
title ('TOTAL REFLECTION ') ;

xlabel ({'frequency (GHz)'; ' a) " ;" "});
ylabel ('"REFLECTANCE") ;

grid on;

)

% figure,
subplot(2,2,2);

plot (f Values,Reflectivity Bian, 'r-' )7

o)

% text(f Values,Reflectivity Bian,'*' )
title ('REFLECTION OF BI-ANISOTROPIC SLAB'

);

xlabel ({'frequency (GHz)'; ' b) " ;" "});
ylabel ('"REFLECTANCE") ;
grid on;

o)

% figure,
subplot (2,2,3);

plot (f Values,Reflectivity Iso, 'g-' );
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% text (f Values,Reflectivity Iso, '+' ) ;
title ('REFLECTION OF ISOTROPIC SLAB');

xlabel ({'frequency (GHz)'; ' c¢c) " ;" "});
ylabel ('"REFLECTANCE") ;
grid on;

Q

% figure,

subplot (2,2,4);

plot (f Values, Reflectivity All, 'b-"', f Values,
Reflectivity Bian, 'r-', f Values, Reflectivity Iso,'g-");
text (f Values, Reflectivity All, 'x');

% text (f Values, Reflectivity Bian,'*');

% text (f Values, Reflectivity Iso,'+');

title ('ALL REFLECTION ') ;

xlabel ({'frequency (GHz)'; " d) " ;' "});

ylabel ('"REFLECTANCE") ;

oe

text (15,0.4, "Isotropic');
text (9,0.75, 'Bianisotropic');
text (3,0.8, '"Total');

grid on;
S ] 0SS =====—————————=
figure;

% plot (£ Values, Loss All, 'b-"1, f Vvalues, Loss Bian, 'r-"',
f Values, Loss Iso, 'g-');

% grid on;

subplot(2,2,1);

plot (f Values,Loss All, 'b-' )

% text(f Values,Loss All, 'x' ) ;

title ('TOTAL LOSS '");

xlabel ({'frequency (GHz)'; ' a) ' ;' "});
ylabel ("LOSS") ;

grid on;

o)

% figure,
subplot(2,2,2);

plot (f Values,Loss Bian, 'r-' )7

% text(f Values,Loss Bian, '*' )
title ('LOSS OF BI-ANISOTROPIC MEDIUM ')
xlabel ({'frequency (GHz)'; ' b) "' ;"' '}
ylabel ("LOSS") ;

grid on;

% figure,
subplot (2,2, 3);

plot (£ Values,Loss Iso, 'g-' ) ;
% text (f Values,Loss Iso,'+' );

title ('LOSS OF ISOTROPIC MEDIUM');

xlabel ({'frequency (GHz)'; ' c¢c) " ;" "});
ylabel ('LOSS");

grid on;

Q

% figure,
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subplot (2,2,4);

plot (f Values, Loss All,'b-', f Values, Loss Bian,'r-', £ Values,
Loss Iso,'g-");

% text (f Values, Loss All, 'x');
% text (f Values, Loss Bian,' ) ;

% text (f Values, Loss Iso,'+');

title ('ALL LOSS '");

xlabel ({'frequency (GHz)'; ' d) ' ;' '});
ylabel ("LOSS") ;

")

*

% text (18,0.54, '"Isotropic(+)"'");
% text(12,0.1, 'Bianisotropic(*)");
% text(3,0.75,'All(x)");
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Ozet: Among various bi-anisotropic metamaterial (MM) slabs, m-shaped ones can allow
miscellaneous configurations so that different and exciting electromagnetic properties of bi-
anisotropic MM slabs can be readily achieved. We investigate the constitutive parameters of various
m-shaped bi-anisotropic composite MM such as, refractive index (n), permittivity (&),

permeability ( ££) and magneto-electric coupling coefficient (& ). To achieve this purpose we mainly

focus on the change in the width of continuous wire constituent and width of separated continuous
wire of Composite bi-anisotropic MM and supported by simulations, the microwave studio package
of CST simulation program has been used after obtaining the S-parameters.

1. Introduction

Artificially fabricated metamaterials (MMs) have drawn considerable attention of scientific
community since they possess negative refractive index (n) and negative refraction at a certain
frequency band or bands [1]. Bi-anisotropic metamaterials can possess a coupling factor and
surprisingly can have a backward wave medium property although their real part of n is not negative.
Among various bi-anisotropic MM slabs, n-shaped ones can allow miscellaneous configurations so
that different and exciting electromagnetic properties of bi-anisotropic MM slabs can be readily
achieved. Because various electromagnetic devices can be produced with miscellaneous MM
configurations, their compatibility should be investigated. To achieve this goal, electromagnetic
properties of MM structures should be properly defined and retrieved. In this study, we investigate the

influence of a change in the width (w; ) of continuous wire constituent and width (w,) of separated
continuous wire of various Composite bi-anisotropic MM slabs (combination of imparted continuous

wire and m-shaped structure) on their electromagnetic parameters. Fig. 1 demonstrates the analyzed
Composite slab with dimensions. It is assumed that the slab is periodic over y-z plane. For the

geometry and wave configuration, only &,, u,, and &, describe wave behavior among other

y i)
constitutive parameters.
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Fig. 1. Geometrical configuration of the analyzed
Composite MM slab in addition to wave
configuration.

2. Theoretical Background

To perform aforementioned quantitative analyses the phase unwrapping technique can be applied for
unique and correct retrieval of electromagnetic properties of n-shaped bi-anisotropic MM slabs. This
technique was applied for unique extraction of electromagnetic properties of isotropic conventional
and MM samples [2,3]. Assuming that a uniform plane wave with polarization in the +y direction
and propagation in +x direction is incident to both MM configuration in Fig. 1, forward and
backward reflection and transmission S-parameters of each configuration with length L can be
written for exp (—iwt) time reference as

) 2
S11= LT % . Sy = 2T ; , Sp1=Sp= ¢ Flrz)z (1.1)
1-Iy0,T 1-Iy0,T 1-Iy0,T
Z+(_) _1 ﬂ .
r w W SRR PN ~&. (12
1,2) +(0) 1 nFid +4/EyHz 0 1.2)

Here, I’y and I', are the intrinsic (first) reflection coefficients at the interfaces of front and back

faces of each MM slab; T is the propagation factor related to propagation characteristics of the slabs;

z\;, z,, N, and kO are, respectively, the normalized wave impedances in forward (+x) and

backward (—x) directions, the refractive index of each bi-anisotropic MM slab, and the free-space

wave number; &, is the relative complex permittivity in y direction; ., is the relative complex

y
permeability in z direction; and & is the magneto-electric coupling coefficient.
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3. Simulation Results and Discussion

For performing simulations, the microwave studio package of CST simulation program has been used.
Geometric and electrical properties of the slab cell in Fig. 1 are as follows. Lattice constants in

respective directions of each cell are ay =5.0mm, ay, =12.1mm, and a; = 4.0 mm. Besides,

h=31mm, g=07mm, |=20mm, d=117mm. The substrate in each cell has the same

geometry of lattice constants and has a loss-free relative permittivity with a value of 4.3. Perfect
electric conductors with a thickness of 50.m are utilized to imitate the response of metallic n-shaped

inclusion and individual continuous wire of MM slabs to electromagnetic waves. Perfect electric and
magnetic conductors are, respectively, assumed to be located over x-z and x -y planes to obtain the

periodicity of the slab over y -z plane.

After obtaining the simulated S-parameters, we extracted n, &,, u,, and &, parameters. For

y
example, Figs. 2 and 3, respectively, illustrate these parameters for various bi-anisotropic Composite
MM slabs with w; = 0.1 mm and w; =1.2 mm. From the dependencies in Figs. 2 and 3 we note the
following results. First, it is seen that the value of magneto-electric coupling factor should not be
omitted in the extraction of electromagnetic properties. Second, for the condition only when w; >w,
magnetic response of the Composite bi-anisotropic MM slab can change, while an increase in either

w; or w, changes their electric response. Finally, an increase of w, (w is constant) of our structure

negligibly alters their electromagnetic response over the frequency region 4.49GHz and
f =5.12 GHz in which these slabs have right handed material property.
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Fig. 2. Extracted electromagnetic properties of various bi-anisotropic Composite MM slabs with

w =0.1 mm.
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Fig. 3. Extracted electromagnetic properties of various bi-anisotropic Composite MM slabs with
W =1.2 mm.

4. Conclusion

We have investigated effects of a change in width (W) of constituent wire of a m-shaped bi-

anisotropic MM slab and width (Wz) of individual continuous wire of a Composite bi-anisotropic

MM slab on their electromagnetic properties. After, we derived explicit expressions of (first)
reflection coefficient and propagation factor in terms of simulated/measured S-parameters and then
applied the phase unwrapping technique. From our investigation, we note the following key
conclusions. First, we note that the value of magneto-electric coupling factor should not be omitted in
the extraction of electromagnetic properties of n-shaped and Composite bi-anisotropic MM slabs
especially for a frequency region in which measured/simulated S-parameters have significant changes.

Second, a change in W, importantly affects the electromagnetic response of m-shaped bi-anisotropic
MM slabs over a frequency region in which these slabs possess right-handed material (RHM)
property. Finally, while either W, and W, affects electric response of Composite bi-anisotropic MM

slabs, only for the case W, >W, changes magnetic response of these slabs.
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