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ABSTRACT 
 

FREE VIBRATION OF LAMINATED HYBRID COMPOSITE PLATES 

 

BULUT, MEHMET 

M. Sc. In Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Ahmet ERKLİĞ 

June 2013, 52 Pages 

In this study, effects of fiber types and their arrangements in the lamina on 

natural frequency and damping properties of laminated hybrid composite plates were 

investigated. Carbon (C), Kevlar (K) and S-Glass fibers were used as reinforcements. 

Experimental studies were carried out under the various boundary conditions to 

determine damping and natural frequencies. Finite element analyses using ANSYS 

12.1 software were also performed. Results show that natural frequencies were 

significiantly effected by the fiber types and were increased by using fibers which 

have higher stiffness in the upper layer. In addition, it was concluded that damping 

ratio were considerable increased using fibers which have higher viscoelastic 

properties in the upper layer. 

Keywords: Natural frequency, hybrid composite plate, damping properties 



 

ÖZET 
 

TABAKALI HİBRİT KOMPOZİT PLAKALARIN SERBEST TİTREŞİMİ 

 

BULUT, MEHMET 

Yüksek Lisans Tezi, Makine Mühendisliği 

Tez Yöneticisi: Yrd. Doç. Dr. Ahmet ERKLİĞ 

Haziran 2013, 52 sayfa 

 

Bu çalışmada, fiber tipinin ve fiber dizilimlerinin tabakalı hibrit kompozit plakaların 

doğal frekans ve sönümleme özelliklerine etkileri değişik sınır koşulları altında 

incelenmiştir. Karbon, Kevlar ve S-Glass fiberler güçlendirici olarak kullanılmıştır. 

Doğal frekansları ve sönümleme oranlarını tesbit etmek için değişik sınır koşulları 

altında deneysel çalışmalar yapılmıştır. ANSYS yazılımını kullanarak sonlu 

elemanlar analizi de gerçekleştirilmiştir. Sonuçlar, fiber tipinin doğal frekans ve 

sönümleme oranlarına önemli derecede etkisinin olduğu ve üst tabakalarda yüksek 

rijitlik değerine sahip fiber kulanılmasıyla doğal frekans değerlerinin arttığını 

göstermektedir. Buna ilaveten, üst tabakalarda akışkanlığı fazla olan fiber 

kullanılmasıyla sönüm oranları arttığı sonucuna varılmıştır. 

 

Anahtar kelimeler: Doğal frekans, hibrit kompozit plaka, sönüm özellikleri 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

Composite materials, plastics, and ceramics have been the dominated emerging 

materials over the last forty years. The volume and number of applications of 

composite materials has grown steadily, penetrating and conquering new markets 

relentlessly [1].  

A Composite material is a material system composed of two or more macro 

constituents that differ in shape and chemical composition and which are insoluble in 

each other.  The history of composite materials dates back to early 20th century.  In 

1940, fiber glass was first used to reinforce epoxy.  

A composite material can provide superior and unique mechanical and physical 

properties because it combines the most desirable properties of its constituents while 

suppressing their least desirable properties. At present composite materials play a 

key role in aerospace industry, automobile industry and other engineering 

applications as they exhibit outstanding strength to weight and modulus to weight 

ratio. High performance rigid composites made from Glass, Graphite, Kevlar, Boron 

or Silicon carbide fibers in polymeric matrices have been studied extensively because 

of their application in aerospace and space vehicle technology. Composite materials 

offer diverse design requirements with significant weight savings as well as high 

strength-to-weight ratio as compared to conventional materials. Some advantages of 

composite materials over conventional one are mentioned below: 

 Tensile strength of composites is four to six times greater than that of 

traditional steel or aluminum. 

 Improved torsional stiffness and impact properties 

 Higher fatigue endurance limit (up to 60% of the ultimate tensile strength). 
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 30-45% lighter than aluminum structures designed to the same functional 

requirements 

 Lower embedded energy compared to other structural materials like steel, 

aluminum etc. 

 Composites are less noisy while in operation and provide lower vibration 

transmission than metals 

 Composites are more versatile than metals and can be tailored to meet 

performance needs and complex design requirements 

 Long life offers excellent fatigue, impact, environmental resistance and 

reduced maintenance 

 Composites exhibit excellent corrosion resistance and fire retardancy 

 Composite parts can eliminate joints/fasteners, providing part simplification 

and integrated design compared to conventional metallic parts 

There are several types of composite materials. Traditional examples are reinforced 

concrete, thermoplastics reinforced with short fibers, honeycomb composites, 

sandwich panels. Some of the most common types of composites are those made of 

layers, each of these layers is composed of long fibers embedded in a resin. Using 

various approaches (e.g., mixture theory), each layer can be represented at a macro-

scale as an orthotropic material. These laminated composites are widely used in the 

aerospace industry and are receiving attention in other industries like automotive and 

medical equipment [2]. 

Dynamic behavior of laminated composite plates has been intensively studied for 

many years due to importance of engineering applications. Plates which are 

subjected to dynamic loading are important parts of automotive, aerospace, marine 

and bridge structures. Dynamic analysis of composite plates has great importance in 

scope of transportation vehicles and manufacturing machine structures such as pump 

cogs, pressure gauge devices and vibration isolation systems. 

Hybrid composite is composed of two or more different types of fibers in the same 

composite structure. It is suitable for development of new composites. For instance, 

Kevlar has great toughness and low cost, but low compressive strength. However, 

Graphite has low toughness, but high cost and high compressive strength. 
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1.2 Scope and Outline of the Study 

In this study, damping and free vibrations of laminated hybrid composite plates are  

determined by considering different fiber types and their arrangements in the lamina. 

Experimental studies are carried out to determine natural frequency and damping 

properties of laminated hybrid composite plates under the different boundary 

conditions. Finite element studies are also carried out for validation and for high 

frequency modes. 

Chapter 2 presents a comprehensive literature survey on natural frequency of 

rectangular plates. Literature survey is given under the three outlines: Free vibration 

of isotropic plates, free vibration of laminated composite plates and free vibration of 

laminated hybrid composite plates. 

Chapter 3 deals with derivation of fundamental equation for free vibration of 

isotropic and orthotropic rectangular plate by using Kirchhoff’s thin plate theory. 

Exact solution for free vibration is derived for only simply supported (SS) boundary 

condition.  

Chapter 4 contains experimental results to determine damping and natural 

frequencies of plates. Hybrid composite plates are produced by hand lay-up method 

under   0.3 MPa pressure with 80
0
C temperature. First two natural frequencies are 

measured for Clamped-Free-Clamped-Free (C-F-C-F), Clamped-Free-Free-Free (C-

F-F-F) and Simply Supported-Free-Simply Supported-Free (SS-F-SS-F) boundary 

conditions. Half power band-width method is introduced in order to determine 

damping ratios of hybrid composite plates. 

Chapter 5 presents finite element analysis of laminated composite plates to predict 

mode shapes and natural frequencies at higher modes. ANSYS 12.1 software is used 

in finite element analysis. Linear layer SHELL 99 element with 40x40 mesh size was 

used for modeling.  

Finally in chapter 6, conclusions drawn from the study are presented. 
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CHAPTER 2 

 

LITERATURE SURVEY 
 

2.1 Introduction 

Vibration characteristics of isotropic and unisotropic plates are investigated by many 

researchers because of increasing importance of vibration of plates in engineering 

applications. In recent years, fiber reinforced materials have been mainly used in 

engineering applications such as  civil, marine and aerospace industry due to their 

excellent features, such as strength ability, high strength and stiffness to weight 

ratios. It is required to predict natural frequency and working optimum frequency in 

structures since system may be failed while working at any natural frequency of the 

system. 

2.2 Free vibration of Isotropic Plates 

A number of researchers have worked on free vibration analysis of isotropic 

rectangular plates. Leissa [3] studied free vibration of rectangular isotropic plates 

under simply supported, free and clamped boundary conditions. Natural frequencies 

were determined in terms of nondimensional frequency parameters by introducing 

Ritz method with 36 terms. Exact solution was obtained for only simply supported 

case.  

Liew et al. [4] investigated vibration analysis of shear deformable plates by using 

Mindlin plate theory. Natural frequencies and mode shapes for moderately thick 

plates were obtained from eigenvalue equations for different boundary conditions, 

aspect ratios (length/width) and thickness (thickness/width) ratios .  
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Moon and Sangbo [5] analyzed free vibtration of rectangular plates with circular and 

rectangular cutout by using independent coordinate coupling method. 

Nondimensional frequency parameters and mode shapes for rectangular plates with 

circular and rectangular cutout were detemined for different boundary conditions. 

Warburton [6] introduced the free transverse vibrations of rectangular plates with all 

possible boundary conditions obtained by combining free, freely-supported, and 

fixed edges. The Rayleigh method was used to derive a simple approximate 

frequency expression for all modes of vibration. 

Shimpi and Patel [7] investigated free vibration of square and rectangular and 

isotropic plates under the various boundary conditions. Nondimensional frequency 

parameters in bending mode were presented for simply supported isotropic square 

plates. 

Bo and Yufeng [8] proposed exact solutions for free vibrations of rectangular plates 

under the combination of simply supported, clamped and free boundary conditions. 

Numerical studies were carried out to determine natural frequencies and mode 

shapes. 

Jiu et al. [9] presented solution of free vibrations of rectangular plates by using bessel 

functions. Classical thin plate theory was used in calculations. Nondimensional 

frequency parameters and mode shapes of square plate were obtained under different 

boundary conditions. 

2.3 Free Vibration of Laminated Composite Plates 
 

Nowadays, materials that are light and high strength have become very popular in the 

structural design. Manufacturing of composite materials is being able to produce 

high strength, light weight, high corrosion resistance. Importance of use of the 

composite materials as structural element are increasing more and more. Previous 

studies on free vibration of laminated composite plates were presented by many 

researchers using a variety of approaches [10-22]. 

Chandrashekhara et al. [10] studied free vibration of symmetrically laminated 

composite beams and derived exact solutions for free vibration. Rotary inertia and 

shear deformation effects were taken into account during calculations. 
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Qatu [11] investigated effects of fiber orientation, edge conditions and material type 

upon the natural frequency and mode shapes for symmetrically laminated composite 

plates. Ritz method including algebraic polynomial displacement functions was 

performed in order to solve vibration problems.  

Narita and Leissa [12] studied free vibration of cantilever and rectangular angle-ply 

and cross-ply laminated composite plates. Natural frequencies were calculated by 

introducing material and fiber angle. Ritz method was proposed for solution of free 

vibration problems.  

Khdeir and Reddy [13] investigated cross-ply laminated composite beams with 

arbitrary boundary conditions. An analytical solution of refined beam theory was 

proposed for solution of free vibration problems. 

Khdeir and Reddy [14] developed a complete set of linear equations for free 

vibration of cross-ply and angle-ply composite plates using second order shear 

deformation theory and obtained exact analytical solutions for moderately thick and 

thin plates. Exact solutions were developed for thick, moderately thick, thin plate and 

plate strips with arbitrary boundary conditions.  

Won and Sung [15] studied free and forced vibration analysis of laminated 

composites. Assumed strain method and constitutive equations were used in the 

analyses. Exact solutions were given for rectangular and isotropic composite plates. 

Aydogdu [16] investigated vibration analysis of angle-ply laminated beams with free, 

clamped and simply supported edge conditions and combination of them. Natural 

frequencies were obtained using Ritz method and three degree of freedom shear 

deformable beam theory.  

Mohammed et al. [17] presented dynamic behavior of composite beams. Numerical 

studies were performed for the prediction of effects of fiber orientation on the natural 

frequency of composite beam using finite element method. In addition, experimental 

studies were done for cantilever composite beam made of fiber glass. First two 

natural frequencies were calculated both using experimental and numerical method.  

Cong et al. [18] investigated free vibration of cross-ply laminated composite plates 

using first order shear deformation theory. Nondimensional frequency values  were 
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determined with different boundary conditions and with different thickness to width 

ratios. Effect of cutout on natural frequency and mode shape  was also handled 

properily.  

Erklig et al. [19] studied free vibration of E-Glass polyester composite plates with 

and without cutouts. Experimental and numerical studies were carried out in order to 

investigate effects of cutout size and position, aspect ratio of the composite plate 

under the clamped-free boundary condition. 

Turvey et al. [20] investigated natural frequencies of square pultruded GRP plates 

including effects of anisotropy, hole size ratio and boundary condition. Natural 

frequencies were determined from experiments with six combinations of clamped, 

free and simply supported cases, and validated with finite element software 

NASTRAN 

Itishree and Shishir [21] studied free vibration response of woven fiber composite 

plates under free-free boundary condition. Experimental studies were carried out to 

determine natural frequencies with different number of layers, aspect ratios and fiber 

orientations. Finite element studies were also performed in order to validate 

experimental results. 

Rath and Sahu [22] studied vibration behavior of woven fiber laminated composite 

plates in hydrothermal environment. Experimental and numerical studies were 

performed in order to investigate effects of moisture and temperature on natural 

frequencies. Natural frequencies were obtained for different boundary conditions and 

aspect ratios. 

2.4 Free vibration of laminated hybrid composite plates 

Hybrid composites are constituted of successive layers of fibers with different 

natures such as Glass fibers, Carbon fibers and Kevlar fibers. They are mainly used 

as structural element in engineering applications since they allow obtaining optimum 

mechanical properties. There are few studies on free vibration of hybrid composite 

plates. Adali and Verijenko [23] studied optimum stacking sequence of symmetric 

laminated hybrid composites under free vibrations. Graphite/Epoxy for outer layers 

and Glass/Epoxy for inner layers were used for multilayered hybrid laminates. 
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Optimum design problems with different fiber angels were studied for evaluation of 

vibration of hybrid laminates. Moreover, effects of hybridization and aspect ratios of 

hybrid composites on natural frequencies were investigated.  

Idicula et al. [24] studied the dynamic behavior of randomly oriented intimately 

mixed short banana/sisal hybrid fiber reinforced polyester composites. Besides 

dynamic behavior of composites such as damping and storage modulus, static and 

impact properties were handled properly. Banana and sisal fibers were preferred for 

hybridization in order to select high performance and low cost composites.  

Chen [25] derived governing equations for vibration and stability of hybrid 

composite plates in arbitrary stress states. Rotary inertia and shear effects were taken 

into consideration. Buckling and natural frequency values were evaluated from 

derived equations. Glass fiber reinforcement polymer and Aluminum were used as a 

constituent material. Simply supported case was considered as boundary condition. 

 Shokrieh and Najafi [26] studied dynamic behavior of metallic reinforcement 

polymer matrix composite plates experimentally. Glass/epoxy was applied to the 

aluminum 2024 T-3 in the analysis. Mode shapes and vibration frequency values of 

the laminated square plates were evaluated for free-free edge condition. First four 

frequency values were obtained for [45/0/90/Al]s and [90/0/+45/-45]s stacking 

sequences respectively.  

Botelho et al. [27] investigated the damping characteristics of continuous fiber/metal 

composite materials using free vibration method. Carbon/Epoxy, Glass/Epoxy and 

combination of them with aluminum 2420 were used for dynamic stability of 

composite plates. Experimental and theoretical studies were performed and 

compared with each other. First three vibration frequency values were obtained with 

clamped-free boundary condition.  

Chen et al. [28] studied parametric vibrations stability of hybrid composite plates 

subjected to periodic uniaxial stress and bending stress. Effects of thickness ratio, 

number of layers, core material, and load parameters on natural frequencies were 
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examined properly. Graphite/Epoxy, Glass/Epoxy and aluminum materials were used 

for production of hybrid composite plates.  

Khan et al. [29] presented damping properties of composite plates containing carbon 

nanotube material under the free and forced vibrations. Experimental studies were 

carried out for prediction of damping ratios under the cantilever boundary condition. 

Damping ratios of hybrid composites were measured by using Half-power bandwidth 

method for different content of carbon nanotubes.  

2.5 Conclusion on Literature Review 

The following conclusions were obtained from the literature reviews; 

 There are a lot of studies on the natural frequency of laminated composite 

plates.  

 Available literature on damping and free vibration of hybrid composites is 

fewer.  

 The  previous  studies  mentioned  here  were investigated  only  the  

laminated  plates  with  a single material. Especially two types of fibers or 

fiber-metal hybrid composites were studied with various boundary 

conditions.  

The main goal of this thesis is to investigate the natural frequencies of the hybrid 

composite plate. The specific objectives are; 

 To find the effects of fiber types (carbon, Kevlar and s-glass fibers) on 

damping and natural frequencies, 

 To investigate the effects of boundary conditions such as C-F-C-F, C-F-F-F 

and SS-F-SS-F boundary conditions.  

 To predict numerically natural frequencies of hybrid composite plates in 

higher modes  
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CHAPTER 3 

THEORY OF FREE VIBRATION OF RECTANGULAR PLATES 
 

3.1 Introduction 

 

Theoretical formulation for transversely vibrating rectangular plate was obtained by 

introducing of Kirchhoff assumptions. Following assumptions have been made  

 No deformations occur in the midplane of the plate 

 Transverse normal stress is not allowed 

 Normals to the undeformed plane remain straight and normal to the deformed 

midplane and unstretched in length 

 The effects of rotary inertia is negligible 

 

As can be seen in Figure 3.1, a plate with thickness of h is clamped at one side, 

simply supported at another side and a third side completely free. Rectangular 

coordinates are shown, where x and y are in-plane coordinate, and z is transverse 

coordinate. Coordinate system is located at the mid-plane of the plate, so that bottom 

and top surfaces of plate are at 2/hz   when the plate is in equilibrium. Figure 3.2 

shows the sketch of element which is in displaced position and deformed shape. xQ  

and yQ  are transverse shearing forces per unit length, xM  and yM  are bending 

moment resultants per unit length, xyM  and yxM are twisting moment resultants per 

unit length and q is distributed pressure per unit area. 
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Figure 3.1 Plate of arbitrary shape and edge conditions [2] 

  

Figure 3.2 Deformed plate element with forces and moments [2] 

 

Deformed mid-surface of plate is characterized by membrane surface. Displacement 

in the z direction is w , density of plate per unit volume is   and distributed force in 

the z direction is q. Summing forces in the z direction yields 
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Summing the moment about an axis parallel to y through to center of the element 

yields 
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After dropping higher order terms involving 
x

Qx




, from equation (3.1) and (3.2) 

yields 
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Displacements in x and y directions are given as u  and v  respectively. 
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Plane strains obtained from u  and v  displacement components are as follows 
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Substituting (3.5) into the (3.6) yields 
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Stress and strain relationship can be written as follows     

  
yxx

E
 

1
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xyy
E

 
1

, 
G

xy

xy


                                      (3.8) 

Where E is modulus of elasticity, 𝜈 is Poisson’s ratio and G is the shear modulus. 

Bending moments are derived by integrating the moments of in-plane stresses over 

the plate thickness. 
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From equation (3.8) and (3.9), curvature moments are 
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Where x , y  and xy are curvatures of plate mid-surfaces, and D is flexural rigidity 

of the plate. 
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Equation (3.13) is obtained from (3.3), (3.4) and (3.2) as follows 
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Substituting (3.10) and (3.11) into the (3.12) gives 
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And the other form of equation (3.13) as follows [31] 
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Shear forces in the x- and y- axes are defined as 
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Another form of equation (3.16) is given as follows  
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3.2 Simply Supported Rectangular Plate Along Two Opposing Edges 

 

It is assumed that two opposite sides are simply supported where x = 0 and x = a, 

other sides may be clamped, simply supported, or free as shown in the Figure 3.3.  q 

is zero under the free and undamped vibration. So governing equation is written as 

 q
t

w
hwD 





2

2
4                                                                                   (3.18) 

 

Figure 3.3 Simply supported rectangular plate with opposite sides simply supported 

(SS-F-SS-F) boundary condition 

 

Approximate function of w(x,y,t) is chosen as follows 

 )sin(),(),,( tyxWtyxw                                                                          (3.19) 

By substituting  equation (3.19) into equation (3.18) gives 

 0)( 44  Wk                                                  (3.20) 

Where Dhk /24  . Solution of equation (3.20) was obtained by summing 

solutions of two parts of equation (3.20)  

 0)( 1

22  Wk                                                                                         (3.21) 

 0)( 1

22  Wk                                                                                         (3.22) 

Final solution is obtained by addition of equations of (3.21) and (3.22) 

  W=W1+W2 =0                                                                                           (3.23) 

Functions of W1 and W2  are seperated in two parts as  
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)()(),( 111 yYxXyxW                                                                                 (3.24) 

 

)()(),( 222 yYxXyxW                                                                               (3.25) 

 

Ordinary differential equation can be written as 

02

112

1

2

12

1

2

1  kYX
dy

Yd
X

dx

Xd
Y

                                                              (3.26) 

By separation of variable into the two parts yields 

01

2

12

1

2

 X
dx

Xd


                                                                                     (3.27) 

 

01

2

22

1

2

 Y
dy

Yd


                                                                                        (3.28) 

Where;  

2

2

2

1

2  k                                                                                              (3.29) 

Solution of second order differential equation (3.27) and (3.28) are expressed in the 

form of approximate functions given as follows [30]  

)cos()sin()( 111 xBxAxX                                                                (3.30) 

)cos()sin()( 221 yDyCxY                                                               (3.31) 

Substituting (3.30) and (3.31) into the (3.22) gives 

  )cos()sin()cos()sin(),( 22111 yDyCxBxAyxW                        

)cos()cos()sin()cos(

)cos()sin()sin()sin(

2121

2121

yxDyxC

yxByxA








                                       (3.32) 

Where CAA  , DAB  , CBC  , DBD  . Similarly, by substitution of (3.25) 

into the equation (3.22) yields 

 xFxExX 112 coshsinh)(                                      (3.33) 
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 xHxGyY 222 coshsinh)(                (3.34) 

 

From equation (3.25), (3.33) and (3.34), W2(x, y) was derived as follows 

 
)cos()cos()sin()cos(

)cos()sin()sin()sin(),(

2121

21212

yxHyxG

yxFyxEyxW









           (3.35) 

Solution of ),( yxW was derived from equation (3.32) and (3.35) 

 

)cosh()cos()sinh()cosh(

)cosh()sinh()sinh()sinh(

)cos()cos()sin()cos(

)cos()sin()sin()sin(),(

2121

2121

2121

2121

yxHyxG

yxFyxE

yxDyxC

yxByxAyxW

















          (3.36) 

Constants A, B, C, D, E, F, G and H depend on edge condition of the plate applied to 

the edges. Exact solution of equation (3.36) is resulted in simply supported case  by 

the application of boundary condition as follows  

 0,0
2

2







x

w
Waxandxif                            (3.37) 

 0,0
2

2







y

w
Wbyandyif

                          (3.38)
 

Solution of x-coordinate is derived by separating equation (3.32) in the two parts  

)cosh()sinh()cos()sin(

)()()(

1111

21

xFxExBxA

xXxXxW

 



            (3.39) 

Second derivative of (3.39) is derived as  

xF

xExBxA
x

W
xW

1

2

1

1

2

11

2

11

2

12

2

cosh

sinhcossin)(













           (3.40) 

By applying boundary condition 0)0( W  and 0)( aW  in equation (3.39) yields 

 
0 FB                                                             (3.41) 
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 aFaEaBaA 1111 coshsinhcossin  
            (3.42) 

And putting (3.42) into the (3.39) 0)()0(  aWW yields 

 02

2

2

1  FB                                                                         (3.43)
 

 aFaEaBaA 1

2

11

2

11

2

11

2

1 coshsinhcossin             (3.44)
 

As can be seen from equation (3.41) and (3.44) 0 FB , since 02

1   

 0sinhsin 11  aEaA                                      (3.45)
 

 0sinhsin 1

2

11

2

1  aEaA                           (3.46)
 

Equation (3.45) yields 

 aEaA 11 sinhsin                                       (3.47)
 

Substituting (3.47) into the (3.46) gives 

 0sin 1  aA                                                              (3.48)
 

From equation (3.47) and (3.48), it is concluded that 0E since 0sinh 1 a  

So, )(xW is written as  

 aAxW 1sin)(                                                  (3.49)
 

From equation (3.48) 0A  and 

  
0sin 1 a                                                             (3.50)

 

From equation (3.50) 

 
a

m
 1

                                                             (3.51)
 

Where m=0, 1, 2, 3… 

Equations (3.41), (3.42), (3.43) and (3.44) are written in the form of matrix as  
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coshsinhcossin

00

coshsinhcossin

1010

1

2

11

2
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2

11

2

1

2

1

2

1

1111

F

E

B

A

aaaa

aaaa







          (3.52) 

Determinant of the above matrix is equal to zero for the satisfaction of equation 

(3.52) and could be solved using MATHEMATICA software. When expanding the 

matrix, it is concluded that one equation is directly written as  

 0sinhsin 11 aa                                                  (3.53) 

0sin 1 a , since 0sinh 1 a . So, 
a

m
 1  and m = 0, 1, 2 … 

Similarly, solution of y-coordinate is derived from equation (3.31) and (3.34) 

 yHyGyDyC

yYyYyW

2222

21

coshsinhcossin

)()()(

 



          (3.54) 

)(yW can be written as 

 
bCyW 2sin)(                                                  (3.55) 

Where 0C , so 

 0sin 2 b                                                             (3.56) 

From equation (3.56) 

 
b

n
 2

                                                            (3.57)
 

Where n = 0, 1, 2, 3….. 

As a result, ),( yxW is expressed as follows by combining equation (3.55) and (3.49) 

 yxAyxW 21 sinsin),(                                      (3.58) 

Where CAA   

Substituting values of 1 and 2  in the equation (3.29) gives 
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                         (3.59)
 

Where 2k was the non-dimensionless frequency parameters ( mn ) 

 
h

D

b

n

a

m
mn


































22

2

                         (3.60)
 

And also equation (3.58) can be written as 

 b

yn

a

xm
AyxW


sinsin),( 

                                    (3.61) 

Mode shapes of a simply supported square plate is shown in the Figure 3.4 

 

 

 

 

 

 

 

Figure 3.4 Mode shapes of a simply supported square plate [31] 

Non-dimensionless frequency parameters corresponding to mode shapes for a 

rectangular plate are given in the Table 3.1 
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Table 3.1 Non-dimensional vibration frequencies for SS-F-SS-F case [31] 

m 
n 

1 2 

1 19.72 49.30 

2 49.30 78.88 

 

3.3 Two Opposite Sides Clamped 

 

Non-dimensionless frequency parameters are obtained by the application of  

clamped-clamped boundary as follows 

 
0,0 






x

W
axandxif

                                    (3.62) 

 

0,0
3

3

2

2












y

W

y

W
byandyif

                         (3.63) 

 )cosh()sinh()cos()sin()( 1111 xFxExBxAxW             (3.64) 

 yHyGyDyCyW 2222 coshsinhcossin)(             (3.65) 

By substitution of (3.64) into the boundary condition of (3.62) yields 

 0 FB                                                             (3.66) 

 011   EA                                                 (3.67) 

 0)cosh()sinh()cos()sin( 1111  aFaEaBaA             (3.68) 

 aFaEaBaA 11111111 sinhcoshsincos  
          (3.69) 

 
































































 0

0

0

0

sinhcoshsincos

00

coshsinhcossin

1010

11111111

11

1111

F

E

B

A

aaaa

aaaa







          (3.70) 

Equation (3.70) is satisfied when the determinant of matrix is equal to zero. After the 

expanding the matrix and result is directly written as 
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 01)cosh()cos( 11 aa                                      (3.71) 

Similarly, solution of y-coordinate is obtained by applying boundary condition of 

(3.62) 

 yHyGyDyCyW 2222 coshsinhcossin)(             (3.72) 

 yHyGyDyCyW 22222222 sinhcoshsincos)(  
 (3.73) 

 yHyG

yDyCyW

2

2

22

2

2

2

2

22

2

2

sinhcosh

cossin)(









             (3.74) 

 yHyG

yDyCyW

2

3

22

3

2

2

3

22

3

2

coshsinh

cossin)(









             (3.75) 

 02

2

2

2   HD                                                 (3.76) 

 03

2

3

2   GC                                                 (3.77) 

 0sinhcoshcossin 2

2

22

2

22

2

22

2

2  bHbGbDbC        (3.78) 

 0coshsinhcossin 2

3

22

3

22

3

22

3

2  bHbGbDbC         (3.79) 

 Equations of (3.76), (3.77), (3.78) and (3.79) are expressed in the form of matrix  
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   (3.80) 

 

Determinant of above matrix is equal to zero for the satisfaction of equation of 

(3.80). After the expanding matrix, values of 2 is solved by using following 

equation 

0)cosh()sin()cos()cosh()sin()cos(

)cos()sin()cos()sinh()sinh()sinh(

)cosh()cosh()sinh()sinh(
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         (3.81) 
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1  and 2 values are non-dimensionless frequency parameters and may be obtained 

by the solution of roots of the above equation. Governing equation for free vibration 

of square plates is derived as given in equation (3.82). Non-dimensionless frequency 

parameters for a square plate under the C-F-C-F boundary condition are given in 

Table 3.2 

  
h

D
amn


 22

2

2

1

2                                     (3.82) 

Table 3.2 Non-dimensional vibration frequencies for C-F-C-F case [31] 

m 
n 

1 2 

1 22.272 26.529 

2 61.466 67.549 

 

3.4 Vibration of Orthotropic Plate 

Plate stiffness and compliance equations for a rectangular shaped plate with 

dimensions of a (width), b (length) and h (thickness) are derived by considering 

Kirchhoff’s plate theory assumptions under the plane stress condition. Force and 

moment resultants and lamina coordinates of composite plate were shown in the 

Figure 3.5 and Figure 3.6                 

 

 

 

 

 

 

 

 

Figure 3.5 Force and moment resultants on a flat plate 
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Where; 

Nx and Ny are forces in the x- and y- directions, Mx and My are moment in the x- and 

y- directions and Vx and Vy are shear forces in the z- direction.Strains of any point in 

the plate are presented here as a function of displacements 

 x
z

x

u
zyx x

x











 0),,(

               (3.83) 
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               (3.84) 
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             (3.85) 

Where 0u , 0v  and 0w  are displacements along the x-, y- and z- directions, x and y

are rotation angles after the deformation, ),( yxxy  is shear strain in the x-y plane 

and ),,( zyxx , ),,( zyxx and ),,( zyxx are strains at any point. 

Middle surface strains are 

 x

u
yxx




 00 ),(

                (3.86) 

 y

v
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 00 ),(

                (3.87) 
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u
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 000 ),(

               (3.88) 

Strains at any point in the plate can be written as follows [31] 
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                (3.89) 

Where x and y are curvature of the plate due to bending, xy ias curvature of the 

plate due to twisting and 0

x , 
0

y  and 
0

xy  are middle surface strains which presents 

the stretching and shear of the plate 
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Figure 3.6 Geometrical shape of a laminate 
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Where x , y , xy , yz and xz are stress components of the plate. Constitutive 

equation containing of forces, moments, strains and curvatures can be expressed as in 

the form of the matrix by using (3.90), (3.91) and (3.92)  
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Where  ijA is in-plane stiffness matrix which depends on in plane strains and forces,  

 ijD  is bending stiffness matrix which depends on curvatures and bending moments, 
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 ijB is bending-extension coupling matrix that it relates in plane strains to bending 

moments  
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               (3.96) 

Where ijQ  is the inverse of reduced stiffness matrix. 

Moment and force equations with respect to the neutral plane were reduced to 

following matrix because of extension and bending coupling stiffness matrix  ijB  

was zero from symmetry [31]. 
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Explicit form of moment equations are as follows 

 yyxxxx DDM  1211 
                          (3.98) 

 yyxxyy DDM  2212 
                          (3.99) 

 xyxy DM 33
                                                (3.100) 

Substituting (3.98), (3.99) and (3.100) in the (3.13) gives 
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Where  
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Substituting (3.102), (3.103) and (3.104) in the (3.101) gives 
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        (3.105) 

Exact solution of equation (3.105) can be obtained as equation (3.106) by 

substituting a function of )sin(),(),,( tyxWtyxw   in the equation (3.105) and by 

applying simply supported boundary condition to the edge of the plate 
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CHAPTER 4 

EXPERIMENTAL STUDIES 

 

4.1 Materials and Method 

Hybrid composites are constituted of at least two successive layers made of fibers of 

different mechanical properties such as Glass, Carbon and Kevlar fibers... etc. Since 

each fiber has different mechanical properties, it is necessary to show effects of the 

nature of fiber in the layers for predicting of dynamic behavior of hybrid composite 

laminates.   

In experimental studies, hybrid composite plates were fabricated with 12 layers. 

Woven Carbon, Kevlar and S-Glass fibers were used as reinforcements. Laminated 

fabrics were laid on the flat mold and subjected to 0.3 MPa pressure for 1 hour 

curing time with 90 
0
C under press. Fibers were fabricated with 240x350 mm 

dimensions; epoxy resin was prepared by mixing of epoxy with hardener. Adequate 

epoxy resin was put on the surface of the first layer and uniformly distributed by the 

application of roller through surface of the fiber as seen in Figure 4.1 (b). This 

process was continued for all layers. Produced hybrid composite specimens were cut 

in the desired dimensions of 200x200 mm. Some of produced hybrid composite 

materials and fibers were shown in Figure 4.1. An epoxy resin (MOMENTIVE-MGS 

L285), a hardener as catalyst (MOMENTIVE-MGS H285) and a releasing agent 

(Dost Kimya-OZ 5111) were used in production of hybrid composites. 
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Stacking sequences and fiber configurations of produced test specimens were given 

in Table 4.1 

            

            (a)                                                        (b) 

Figure 4.1 Hybrid composite materials. (a) Hybrid composite plates, (b) Fabric 

fibers 

 

Table 4.1 Lay-up sequence of produced specimens 

 

Material 

Number 

Lay-up sequence 

1 [(0K/90K)3]S 

2 [(0
0

K/90
0

K) /(0
0
C /90

0
C )/(0

0
G /90

0
G)]S 

3 [(0K/90K)/(0G /90G )/(0C /90C)]S 

4 [(0C/90C)/(0K /90K )/(0G /90G)]S 

5 [(0C/90C)3]S 

6 [(0C/90C)/(0G /90G)/(0K /90K)]S 

7 [(0G/90G)/(0K /90K)/(0C /90C)]S 

8 [(0G/90G)/(0C /90C)/(0K /90K)]S 

9 [(0G/90G)3]S 
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4.2 Mechanical Properties of Specimens 

An experimental set-up was used to determine mechanical properties of fabricated 

test specimens as shown in Figure 4.2.  

 

 

Figure 4.2 Experimental set-up 

 

It is essential here to determine mechanical properties of Carbon/Epoxy, 

Kevlar/Epoxy and S-Glass/Epoxy since all of produced hybrid composite specimens 

contain combinations of S-Glass, Kevlar and Carbon fibers. Some of prepared test 

specimens are shown in Figure 4.3. Mechanical properties of Carbon/Epoxy, 

Kevlar/Epoxy and S-Glass/Epoxy materials were determined experimentally as listed 

in Table 4.2 

 

Figure 4.3 Test specimens for strain gauge experiment 
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Table 4.2 Mechanical properties of produced test specimens 

Material 

lay-up sequence )(

2112

Gpa

EE 

 

2112    

)(

2112

Gpa

GG 
 

)/( 3mkg

 

S-Glass/Epoxy 19.5 0.15 3.7 1710 

Carbon/Epoxy 49 0.10 3.2 1440 

Kevlar/Epoxy 26.5 0.09 1.5 1250 

 

4.3 Experimental Modal Analysis 

Bridges, aircraft wings, wind turbines and any other structures have natural 

frequencies. When the natural frequency is excited, the structure resonates. The 

amplitude of vibration will increase significantly, thus the stress of the structure 

increase significantly. The increased stress reduces the life of the machine 

component and structures. Therefore it is important to determine natural frequency 

and eliminate it for safety design of the system. 

Experimental modal analysis is one of the most commonly used method to show 

natural characteristic of the system such as frequency, damping and mode shapes. In 

this section, Experimental Modal Analysis (EMA) was presented in detail by 

introducing Frequency Response Function (FRF) 

4.3.1 Frequency Response Function (FRF) 

FRF is structural response to an applied input force as a function of frequency which 

indicate natural characteristics of the excited structures. It performs as a transfer 

function from the time domain to the frequency domain. The dynamic response of 

the system may be obtained in terms of displacement, velocity or acceleration by 

introducing FRF curve. Consider a linear system as given in Figure 4.4. FRF was 

obtained in terms of acceleration X (ω) by the application of input fore F (ω) and 

transfer function of H (ω). Relationship between input and output functions was 

expressed as [32] 

 

 X (ω) = F (ω) H (ω)                             (4.1) 
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 )F(

)X(
)H(




 

                              (4.2) 

 

 

 

 

Figure 4.4 FRF of the linear system 

 

4.3.2 Impact Testing  

 

Impact testing method is most popular technique today to measure vibration 

characteristics of the machines and structures because of very convenient, fast and 

low cost. Impact testing is simulated as shown in Figure 4.5. Main requirements for 

impact testing method are  

 An impact hammer with a load cell to measure the input force 

 An accelerometer to measure the response of the given input force 

 A 2 or 4 channel FFT analyzer or Data Acquisition Card (DAQ) 

 A suitable modal analysis software  

 

Figure 4.5 Impact testing method  

Acceleration Response 
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Transfer 

Function 
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4.4 Experimental Set-up 

An experimental set-up for modal analysis was used to determine damping ratios and 

natural frequencies of hybrid composite plates under the SS-F-SS-F, C-F-C-F and C-

F-F-F boundary conditions. An accelerometer for output signal acquisition, an 

impact hammer for stimulus force signal, data acquisition card and a suitable 

software for modal analysis were used in the modal analysis as seen in Figure 4.6.  

 

Figure 4.6 Experimental modal analysis set-up. (1) Data acquisition card,  (2) 

Accelerometer, (3) Modal impact hammer 

 

4.4.1 Accelerometer PCB 352C03 

General purpose, PCB 352C03 ceramic shear ICP® accelerometer device was used 

for sensing vibration frequencies of test the specimens once  the excitation was 

begun by the application of impact hammer on the test specimens as shown in the 

Figure 4.7. Its main features are given in Table 4.3 

 

Figure 4.7 PCB 352C03 Ceramic shear accelerometer 

 

3 

2 
1 
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Table 4.3 Main features of ICP® accelerometer 

Sensitivity (± 10 %)  10 mV/g 1.02 mV/(m/s²) 

Measurement Range  ± 500 g pk ± 4900 m/s² pk 

Frequency Range (± 5 %)  0.5 to 10,000 Hz 0.5 to 10,000 Hz 

Frequency Range (± 10 %)  0.3 to 15,000 Hz 0.3 to 15,000 Hz 

Resonant Frequency  ≥ 50 kHz ≥ 50 kHz 

Broadband Resolution (1 to 10,000 Hz)  0.0005 g rms 0.005 m/s² rms 

Non-Linearity  ≤ 1 % ≤ 1 % 

Transverse Sensitivity  ≤ 5 % ≤ 5 % 

 

4.4.2 Modal Impact Hammer PCB 086C03 

PCB 086C03 general purpose modal impact hammer was used in  order to provide 

stimulus input force signal to the plate for the excitation as seen in Figure 4.8. 

Variable impact hammer tips were used in order to better amplitude and band-width 

of excitation. Main properties of the modal impact hammer were given in the Table 

4.4 

 

Figure 4.8 PCB 086C03 modal impact hammer 

 

Table 4.4 Properties of modal impact hammer 

Sensitivity (± 15 %)   2.25 mV/N 

Measurement Range   ± 2224 N pk 

Resonant Frequency   ≥ 22 kHz 

Non-Linearity   ≤ 1 % 
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4.4.3 Data Acquisition Card (DAQ) 

The main function of the DAQ is to receive time varying data kept from 

accelerometer and impact hammer and convert it to the frequency based signals. 

National Instrument product NI 9234 data acquisition device was used for modal 

analysis testing as shown in Figure 4.9 

 

Figure 4.9 Data acquisition card (DAQ) 

 

Specific functions of NI 9234 DAQ are 

 24-bit resolution 

 102 dB dynamic range 

 4 simultaneous analog inputs 

 ±5 V input range 

 Antialiasing filters 

 TEDS read/write 

 Supported in NI CompactDAQ, CompactRIO, and Hi-Speed USB carrier 

 



35 

 

4.5 Experimental Procedure 

 Manufactured test specimens were fixed in the frame as required boundary 

condition, C-F-C-F, C-F-F-F or SS-F-SS-F 

 Accelerometer was fixed on the surface of the test specimens near the fixed 

edge 

 Both impact hammer and accelerometer were connected as an analog input to 

DAQ by connection cables  

 LABVIEW software was run in order to plot  FRF on monitor 

 Impact hammer was struck four or five times on the plate for better 

excitation. Struck points were shown in Figure 4.10 

 FRF and time signal graph were plotted on a computer by using LABVIEW 

software   

 

   

Figure 4.10 Modal impact hammer excitation points for C-F-C-F boundary condition 

 

Natural frequencies were plotted on the screen from FRF curves by the application of 

modal impact hammer as shown in Figure 4.11. First two natural frequencies of 

hybrid composites were measured as given in Table 4.5 
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 (a)                                                                          (b) 

Figure 4.11 (a) Time decaying graph of material 2 under the C-F-F-F case, (b)   

 Frequency response graph of material 2 under the C-F-F-F case 

 

Table 4.5 First two natural frequencies of hybrid composite plates 

Material 

Number 

C-F-C-F C-F-F-F SS-F-SS-F 

Mode 1 

(Hz) 

Mode 2 

(Hz) 

Mode 1 

(Hz) 

Mode 2 

(Hz) 

Mode 1 

(Hz) 

Mode 2 

(Hz) 

1 298.29 337.28 50.77 70.43 150.51 165.92 

2 319.60 345.67 52.13 72.19 157.53 175.67 

3 266.56 285.06 44.61 69.65 128.38 154.50 

4 344.14 386.71 61.50 84.45 173.84a 188.69 

5 370.81 427.43 62.17 99.18 173.19 199.84 

6 337.66 370.48 52.76 90.28 177.03 199.31 

7 262.93 289.00 41.93 73.67 119.85 152.19 

8 286.03 323.81 46.41 85.27 145.71 162.98 

9 224.15 263.19 36.52 70.52 115.41 145.07 
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4.6 Damping Ratio (Half-power bandwidth method)  

Half-power bandwidth method is the most common method for determining damping 

ratio. Firstly maximum amplitude of n
th

 mode frequency was determined from the 

frequency response curve, 1 and 2  frequencies corresponding to Z1 and Z2 points 

were found by dividing maximum amplitude of n
th

 mode in the 2  as shown in 

Figure 4.12.   

n




2

12                               (4.3) 

Where   is the damping ratio, n  is the natural frequency of n
th

 mode and 12    is 

the bandwidth. 

 

 

                         maxA  

         
2

maxA
 

                                            

        

                                                  1         n          2   

Figure 4.12 Half-power bandwidth method 

 

Damping ratio of the hybrid composite plates was given in Figure 4.13. As can be 

seen in Figure 4.13, the maximum damping ratio was obtained from Kevlar/Epoxy 

and the minimum damping ratio was obtained from Carbon/Epoxy. It was also 

reported here that damping ratio was decreased by the increasing in natural 

frequencies.  

Z1 Z2 

Frequency 

(Hz) 

Amplitude 



38 

 

 

(a) 

 
(b) 

 
(c) 

Figure 13 Damping ratios of hybrid composite plates. (a) C-F-C-F, (b) C-F-F-F, (c) 

SS-F-SS-F boundary condition 
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CHAPTER 5 

FINITE ELEMENT MODELLING  

Finite element modeling (FEM) is powerful tool for solution of many engineering 

problems. The prime objective of the FEM is to represent the behavior of the 

physical system in static, dynamic, thermal, buckling and vibration conditions.  

ANSYS 12.1 software was used in numerical studies in order to predict dynamic 

behaviors of hybrid composite plates in the extended mode range. 1600 elements 

were used in the finite element model. Linear layer element SHELL 99 which has 6 

degrees of freedom at each node, translation in x-, y-, z- and rotation in x-, y-, z- 

directions as shown in Figure 5.1. Numerical results were given in Table 5.1. 

 

Figure 5.1 The element of SHELL 99 [33] 
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Table 5.1  Numerical results (a) C-F-C-F, (b) C-F-F-F, (c) SS-F-SS-F 

Mode 

Number 
1 2 

Material 

Number 
Exp. ANSYS %Diff. Exp. ANSYS %Diff. 

1 298.29 320.76 7.53 337.28 331.16 -1.65 

2 319.60 326.73 2.23 345.67 338.52 -2.07 

3 266.56 292.01 9.55 285.06 305.75 7.26 

4 344.14 373.58 8.55 386.71 387.68 0.25 

5 370.81 406.83 9.71 427.43 422.02 -1.27 

6 337.66 366.91 8.66 370.48 383.59 3.54 

7 262.93 274.35 4.34 289.00 295.06 2.10 

8 286.03 303.00 5.93 323.81 324.10 0.09 

9 224.15 237.78 6.08 263.19 261.74 -0.55 

(a) 

Mode 

Number 

1   2  

Material 

Number 

Exp. ANSYS %Diff. Exp. ANSYS %Diff. 

1 50.77 50.77 -0.01 70.43 70.51 0.11 

2 52.13 51.59 -1.05 72.19 73.46 1.73 

3 44.61 46.06 3.15 69.65 70.17 0.74 

4 61.50 59.07 -4.11 84.45 85.02 0.67 

5 62.17 64.33 3.36 99.18 92.37 -7.37 

6 52.76 58.00 9.04 90.28 87.57 -3.09 

7 41.93 43.24 3.02 73.67 75.73 2.72 

8 46.41 47.79 2.88 85.27 81.61 -4.48 

9 36.52 37.42 2.41 70.52 72.16 2.27 

(b) 
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Mode 

Number 

1   2  

Material 

Number 

Exp. ANSYS %Diff. Exp. ANSYS %Diff. 

1 150.51 142.05 5.62 165.92 160.23 -3.55 

2 157.53 144.37 8.36 175.67 164.84 -6.57 

3 128.38 128.87 -0.38 154.50 152.34 -1.42 

4 173.84 165.30 4.91 188.69 189.67 0.52 

5 173.19 180.02 -3.94 199.84 206.33 3.15 

6 177.03 162.28 8.33 199.31 190.81 -4.45 

7 119.85 120.93 -0.90 152.19 155.13 1.90 

8 145.71 133.68 8.26 162.98 168.73 3.41 

9 115.41 120.93 -4.78 145.07 155.13 6.48 

(c) 
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(a) 

 

(b) 

Figure 5.2 Experimental and ANSYS results for square plates under the C-F-C-F    

edge condition. (a) Natural frequency in mode 1. (b) Natural frequency in 

mode 2 
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(a) 

 

(b) 

Figure 5.3 Experimental and ANSYS results for square plates under the C-F-F-F            

edge condition. (a) Natural frequency in mode 1. (b) Natural frequency in 

mode 2 
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(a) 

 

(b) 

Figure 5.4 Experimental and ANSYS results for square plates under the SS-F-SS-F    

edge condition. (a) Natural frequency in mode 1. (b) Natural frequency in 

mode 2 

 

As can be seen in Table 5.1, Figure 5.2, Figure 5.3 and Figure 5.4, ANSYS finite 

element results were in close agreement with experimental results. Numerical studies 

were extended for first five modes in order to investigate natural frequency 

distrubitions in higher modes. Figure 5.5 shows numerical results of first five modes.  
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(a) 

  

(b) 

 

 

(c) 

Figure 5.5  First five natural frequencies of produced test specimens. (a) C-F-C-F, 

(b) C-F-F-F, (c) SS-F-SS-F 
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Although behavior of curves continues in the same way in the high modes, difference 

between frequencies of the materials are increased. Maximum natural frequency was 

determined in material 5 due to ratio of Carbon fiber and minimum frequency was 

determined in material 9 due to ratio of Glass fiber. It can be easily seen in Figure 

5.5, if Carbon ratio is increased in the laminate, natural frequency is also increasing 

due to stiffness of the Carbon fiber. 

Mode shapes of material 2 were given in Figure 5.6 for C-F-F-F boundary condition. 

As seen from Figure 5.6, first, third and fourth modes are bending mode, other 

modes are twisting mode. 

 

        

Mode 1 (51.59 Hz)                         Mode 2 (73.46 Hz) 

        

Mode 3 (319.98 Hz)                    Mode 4 (348.86 Hz) 

 

Mode 5 (351.52 Hz) 

Figure 5.6 Mode shape plots of material 2 for C-F-F-F boundary condition 
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CHAPTER 6 

RESULTS AND CONCLUSION 

In this study, effects of fiber type and fiber combinations in a lamina on the natural 

frequencies and damping properties of the hybrid composite plates were investigated 

with various boundary conditions. Carbon, Kevlar and S-Glass fibers were used as 

reinforcements. Experimental studies were carried out to determine natural 

frequencies and damping values. In addition, numerical studies were performed for 

validation of experimental results. It was concluded  that both experimental and 

numerical results were in close agreement with each other. Main conclusions from 

this study can be drawn as follows; 

 Natural frequencies and damping properties of laminated hybrid composite 

plates are considerably affected by boundary conditions. The maximum and 

minimum frequency values were recorded in C-F-C-F and C-F-F-F edge 

conditions, respectively, 

 For all modes, material 9 with stacking sequence of [(0G/90G)3]S had 

minimum natural frequency than other materials due to lower bending 

stiffness of the S-glass fiber, 

 For all modes, material 5 with stacking sequence of [(0C/90C)3]S had 

maximum natural frequency than other materials due to higher bending 

stiffness of carbon fibers, 

 Natural frequencies of laminated hybrid composite plates in higher modes are 

considerably effected by replacements of Kevlar, Carbon and Glass fibers in 

the layers,  

 Minimum natural frequency of laminated hybrid composite plates was 

detected by material 7 with stacking sequence of [(0G/90G)/(0K /90K)/(0C 

/90C)]S , 
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 Natural frequencies are increased by the use of fibers which have higher 

stiffness in the upper layer, 

 The maximum and minimum damping ratios were obtained in [(0K/90K)3]S 

and [(0C/90C)3]S stacking sequences respectively since viscoelastic behavior 

of  Kevlar fiber was significantly greater than Carbon and Glass fiber, 

 Damping properties are increased by the use of fibers which have higher 

viscoelastic property in the upper layer, 

 When the damping properties are important for the structural design, Kevlar 

fiber should be used in the upper layer. 
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FUTURE WORKS 

 Composite materials that are different than Carbon, Kevlar and S-Glass fibers 

can be used for combination of different stacking sequence. 

 

 The effects of other boundary conditions on damping and natural frequencies of 

hybrid composites can be investigated for symmetric and antisymmetric 

composites 

 

 Damping and free vibration studies can be extended to the stiffened composite 

plates and shells 
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