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ABSTRACT 

A SLIDING MODE CONTROL FOR INVERTED PENDULUM SYSTEM 
 

SHARIF, Bakhtyar Abdullah 
M.Sc. in Electrical and Electronics Engineering 

Supervisor:  Prof. Dr. Ahmet UÇAR  
July 2013 
65 pages 

 
The main aim of this study is to design sliding mode control for both linear and 

nonlinear systems; an inverted pendulum system is selected as an example to 

illustrate the advantage of sliding mode control for linear and nonlinear systems with 

uncertainties. The inverted pendulum is linearized for upright and unstable 

equilibrium point and then state feedback and optimal quadratic regulator controllers 

are designed for the system without uncertainties the results are discussed in the 

seminar of thesis. 

In this thesis sliding mode control is designed for the linear systems with 

uncertainties based on Ackermann’s formula and linear matrix inequality (LMI). The 

special problems of the inverted pendulum system such as swing-up and stabilizing 

problems are solved. Furthermore stabilizing cart position with swinging up and 

stabilizing problems of nonlinear inverted pendulum are discussed and a new 

approach is developed.    

 

Key words: Swing up and stabilizing, Inverted pendulum system, State-feedback, 

Sliding mode control. 

 

 



 

ÖZET 

 
TERS SARKAÇ SİSTEMİ İÇİN KAYMA MOD KONTROLÜ 

 
SHARIF, Bakhtyar Abdullah 

Elektrik ve Elektronik Mühendisliği Yüksek Lisans 
Tez Yöneticisi: Prof. Dr. Ahmet UÇAR 

Temmuz 2013 
 65 sayfa 

 
Bu tezin amacı doğrusal ve doğrusal olmayan sistemler için kayma mod kontrolunun 

tasarlanmasıdır; kayma mod kontrolünün belirsizlik içeren doğrusal ve doğrusal 

olmayan sistemler için kullanılmasındaki avantajları görmek için bir ters sarkaç 

sistemi seçilmiştir. Ters sarkaç sistemi düşey doğrultudaki karasız denge noktası için 

doğrusallaştırılmış ve durum geri besleme ve LQR kontrolör tasarlanarak sonuçlar bu 

tezin seminerinde verilmiştir. 

Bu tezde Ackerman formülü ve lineer matris eşitliği (LMI) kullanılarak belirsizlik 

içeren doğrusal sistemler için kayma mod kontrol tasarlanmıştır. Yukarı doğru 

salınım ve kararlılık ters sarkaç sısteminin özel problemleri kayma mod ile çözüldü. 

Ayrıca ters sarkacın yukarı denge noktasına doğru salınımı ve kararlılığı sarkacın 

bulunduğu çekçek sisteminin kararlılığı ile birlikte değerlendirilmiş ve buna yönelik 

yeni bir metot önerilmiştir. 

 
Anahtar kelimeler: sarkaç sistemi salınım ve kararlılığı, Durum geri besleme, 

Kayma mod kontrolü. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

The inverted pendulum system studied in [1] is subject to this thesis. It is well known 

that the inverted pendulum system is a nonlinear system. It has been used to illustrate 

many of the ideas emerging in the field of nonlinear control and leads to develop and 

test control methods. 

The inverted pendulum system that depicted in Figure 1.1 shows the cart-inverted 

pendulum. It consists of a rod mounted on the cart. Thus it can rotate freely around 

its fixed point P. The angle between the vertical axis and the rod is θ. The control 

force applied to the cart is u. Here a two dimensional problem in which the pendulum 

moves in the plane of the page is considered is considered only. In Figure 1.1, l 

represents the half length of rod where its mass m assumed to be at its geometric 

centre. The mass of the cart is represented by M. 

 

 

 

 

 

 

 

 

Figure 1.1: Inverted Pendulum System 

The control problem is discussed in [1] is stabilizing the pendulum nearby upright 

position.
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 Here the control problem is stated as follows;  

Swing-up the pendulum from pendant position and bring it to upright position at first 

stage and then stabilizing the pendulum at unstable equilibrium point (upright 

position θ=0), with the control signal u by moving cart on the direction of 

displacement z. 

Above control problem task is considered for the linearized and nonlinear models of 

inverted pendulum system given in Figure 1.1. In [1] complete state feedback control 

and optimal state feedback namely Linear Quadratic Regulator (LQR) are designed 

for linear case without swing-up. This problem will be considered here again in the 

first phase of this thesis. In the second phase, variable structure system with sliding 

mode control SMC is studied and designed for both swinging up and stabilizing the 

pendulum subsystem with stabilizing the cart subsystem position.  

1.2 Aim of this thesis 

One of the old and challenging problems in the nonlinear controller field is swing-up 

and stabilizing of inverted pendulum system. There are many control strategies has 

been introduced and used for both problems [2-12]. 

 Spong and Block [3] have used partial feedback linearization and zero dynamic for 

the swinging up the pendulum from rest position to upright position, however no 

stability analysis was discussed there and the cart position not considered. 

K. Astrom and Furuta [6] have achieved swing-up by energy based control under the 

condition that the pendulum’s input is the cart acceleration. Note that the controller 

doesn’t include the cart displacement.  

Matsuda and et al. [9] have developed an energy controller for swing-up the 

pendulum based on normalized energy model and normalized oscillation model but 

the limitation of the cart rail doesn’t considered. 

Lozano and et al. [7] have presented a control strategy based on total energy of the 

system by using its passivity property for swing-up the pendulum. In this method the 

cart position was restricted.  

Chatterjee et al. [13] have proposed swing-up with restricting cart displacement by 

using a generalized energy control and stabilizing the pendulum at upright position 

based on LQR technique. 
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Mihara and et al. [12] have proposed the two step control strategy based on Saeki’s 

backstepping-like controller. The energy based control was used to swing-up the 

pendulum and potential function-based controller is employed to stabilize the 

inverted pendulum at upright position. 

In this thesis, the controller is designed such that it swing-up the pendulum from its 

downward position to its unstable equilibrium point and controlling the cart position. 

Thus the aim of this thesis are; 

a) Designing the swing up controller by combining the energy-function 

controller with sliding mode controller within the limited region of the cart 

traveling and. 

b) Design the stabilizing controller for pendulum to stay at upright equilibrium 

point at the desired cart position. 

1.3 Structure of thesis 

This thesis consists of five chapters: 

Chapter 1: Contains introduction, thesis objective, and thesis organization. 

Chapter 2: Shows the system mathematical model and control problem formulation. 

Also include the controller design for linearized inverted pendulum system based on 

state feedback and LQR controller, the results are also discussed. 

Chapter 3: In this chapter the basic principle about sliding mode control is discussed 

and inverted pendulum system is considered as an example to explain the designing 

based on Sliding mode control. 

Chapter 4: The swing up pendulum and stabilizing it at upright position is 

considered in this chapter and simulation result is discussed. 

Chapter5: presents conclusion of the thesis and recommendation for future studies 

that can be conducted in this field. 

 

. 
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CHAPTER 2 

INVERTED PENDULUM SYSTEM AND THE CONTROL PROBLEM 

FORMULATION 

2.1 Model of Inverted Pendulum System 

To obtain a mathematical model for the inverted pendulum system as shown in the 

Figure 2.1 where the pendulum is suspended on P point, we assume the centre of 

gravity of the pendulum rod is at the centre of the rod, and its friction is zero. The 

angle between the vertical axis and the rod is defined asθ . The (x, y) coordinates of 

the centre of gravity of the rod are defined as (𝑥𝑥𝐺𝐺  ,𝑦𝑦𝐺𝐺); 

𝑥𝑥𝐺𝐺 = 𝑧𝑧 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑦𝑦𝐺𝐺 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Inverted Pendulum system free body diagram 

Inverted pendulum system’s motion given in Figure 2.1 consists of two subsystems; 

one is the motion of the pendulum about its suspension point with the cart and the 

other is the horizontal motion related to the cart. The motions equations for the 

system are considered to obtain the mathematical model of the system defined in 

Figure 2.1. The rotational motion of the pendulum rod about its centre of gravity can
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 be described by: 

 𝐼𝐼𝜃̈𝜃 = 𝑉𝑉𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐻𝐻𝐻𝐻 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐       (2.1) 

where: I is the moment of inertia of the rod about its center of gravity and I=(ml2/3), 

H is horizontal motion of center of gravity and V is vertical motion of center of 

gravity. 

The linear motion is obtained from Newton’s second law; 𝐹𝐹 = 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑑𝑑2𝑧𝑧
𝑑𝑑𝑡𝑡2     where 

a is acceleration. 

The horizontal motion of center of gravity, H, of pendulum rod is given by 

𝐻𝐻 = 𝑚𝑚 𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑧𝑧 + 𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)        

𝐻𝐻 = 𝑚𝑚𝑧̈𝑧 + 𝑚𝑚𝑚𝑚 cos𝜃𝜃 𝜃̈𝜃 −𝑚𝑚𝑚𝑚 sin 𝜃𝜃 𝜃̇𝜃2      (2.2) 

The vertical motion of center of gravity, V of pendulum rod is 

𝑉𝑉 −𝑚𝑚𝑚𝑚 = 𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑡𝑡2 (𝑙𝑙 cos𝜃𝜃) 

𝑉𝑉 −𝑚𝑚𝑚𝑚 = −𝑚𝑚𝑚𝑚 sin 𝜃𝜃 𝜃̈𝜃 − 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 𝜃̇𝜃2  

𝑉𝑉 = 𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚 sin𝜃𝜃 𝜃̈𝜃 −𝑚𝑚𝑚𝑚 cos𝜃𝜃 𝜃̇𝜃2       (2.3) 

The horizontal motion of cart is described by 

𝑀𝑀 𝑑𝑑2𝑧𝑧
𝑑𝑑𝑡𝑡2 = 𝑢𝑢 − 𝐻𝐻        (2.4) 

by substituting Equation (2.2) and Equation(2.3) in Equation(2.1), leads. 

𝐼𝐼𝜃̈𝜃 = 𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 𝑧̈𝑧 − 𝑚𝑚𝑙𝑙2𝜃̈𝜃 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝜃̈𝜃 − 𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝜃𝜃 + 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 𝑧̈𝑧 = 0       

𝐽𝐽𝜃̈𝜃 − 𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜃𝜃 + 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 𝑧̈𝑧 = 0       (2.5a) 

where J= (I + ml2) 

𝜃̈𝜃 = 𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝜃𝜃
𝐽𝐽

− 𝑚𝑚𝑚𝑚 cos 𝜃𝜃
𝐽𝐽

𝑧̈𝑧       (2.5b) 

also by substituting Equation (2.2) in Equation (2.4) yields 

𝑀𝑀𝑧̈𝑧 = 𝑢𝑢 − � 𝑚𝑚𝑧̈𝑧 + 𝑚𝑚𝑚𝑚 cos𝜃𝜃 𝜃̈𝜃 −𝑚𝑚𝑚𝑚 sin 𝜃𝜃 𝜃̇𝜃2� 

(𝑀𝑀 + 𝑚𝑚)𝑧̈𝑧 + 𝑚𝑚𝑚𝑚 cos𝜃𝜃 𝜃̈𝜃 −𝑚𝑚𝑚𝑚 sin 𝜃𝜃 𝜃̇𝜃2 = u       (2.6a) 
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Equation (2.5a) represents the pendulum dynamic equation, and Equation (2.6a) is 

represents the cart dynamic equation. 

By substituting Equation (2.6a) in Equation (2.5b) then 

𝜃̈𝜃 = (𝑀𝑀+𝑚𝑚 )𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃−𝑚𝑚2𝑙𝑙2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃̇𝜃2

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃
− 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃
𝑢𝑢    (2.5c) 

By substituting Equation (2.5c) in Equation (2.6a) leads: 

𝑧̈𝑧 = 𝐽𝐽𝐽𝐽𝐽𝐽  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃̇𝜃2−𝑚𝑚2𝑙𝑙2𝑔𝑔  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐽𝐽 (𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃

+ 𝐽𝐽
𝐽𝐽(𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃

 𝑢𝑢             (2.6b) 

Finally the mathematical models of the system governed by Equations (2.5c) and 

Equation (2.6b) have nonlinearity. Hence it needs to be approximated by 

linearization technique to study the behavior of the system nearby an equilibrium 

point or an operation points. 

Substituting the system parameters are given in [14]; the mass of cart M = 2kg, the 

mass of rod m= 0.1kg, l = 0.25 meters g=9.8ms-2   then the nonlinear numerical 

system is: 

𝜃̈𝜃 = 20.58 sin 𝜃𝜃−0.025 sin 𝜃𝜃cos 𝜃𝜃𝜃̇𝜃2

0.7−0.025 cos 2𝜃𝜃
− cos 𝜃𝜃

0.7−0.025cos 2𝜃𝜃
𝑢𝑢             

𝑥̈𝑥 = 0.1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃̇𝜃2−2.94 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
8.4−0.3 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃

+ 4
8.4−0.3 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃

𝑢𝑢   

To write the state space model of the inverted pendulum system, let define a new 

state variables [𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4] = [𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧].  

  

  

 

 

 

 

 

 

Figure 2.2: Equilibrium points of inverted pendulum rod subsystem. 
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The motion of the free inverted pendulum represented in Figure 2.1 physically can be 

divided and studied by two subsystems as depicted in Figure 2.2 (a) and (b) where 

Figure 2.2 (a) represents vertical up position for (x1,x2)=(00,0) and Figure 2.2 (b) 

represents vertical down position, (x1,x2)=(±π,0). It is clear that inverted pendulum 

rod subsystem, shown in Figure 2.2 is unstable at equilibrium point, (x1,x2)=( 00,0) 

and stable at equilibrium point, (x1,x2)=(±π,0). 

Since stabilizing of unstable equilibrium point, (x1,x2)=( 00,0) is a particular interest, 

it is necessary to linearize system for this point. Ones x1=x2=0 then the other 

subsystem, the horizontal motion of cart, is assumed has x3=x4=0 and the system has 

equilibrium point(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = (0,0,0,0). To design the regulator system the 

origin is selected to be the desired point. 

For linearization we assume that the inverted pendulum rod is nearby to the vertical 

position equilibrium point, (x1,x2)=( 00,0) (angle between rod and vertical axis, 𝜃𝜃= x1 

is small quantities).  With this assumption the nonlinearities in equations (2.5b) and 

(2.6b) are approximated such that; 

1. sin θ ≅ θ. 

2. cos θ ≅ 1. 

where the θ  and 1 are the first parameter of the following Taylor series of sin θ and 

cos θ  respectively. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜃𝜃 − 𝜃𝜃3

3!
+ 𝜃𝜃5

5!
− 𝜃𝜃7

7!
+ ⋯ ≑ 𝜃𝜃  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 − 𝜃𝜃2

2!
+ 𝜃𝜃4

4!
− 𝜃𝜃6

6!
+ ⋯ ≑ 1  

Since 𝜃𝜃 is a small quantity 𝜃̇𝜃 is also be small quantities thus any nonlinearity that 

contains 𝜃̇𝜃 can be neglected. Hence 𝜃𝜃𝜃̇𝜃2 = 0 in Equation(2.5c) and (2.6b). 

Then, the linearized form for Equations (2.5c) and Equation (2.6b) are: 

𝜃̈𝜃 = (𝑀𝑀+𝑚𝑚 )𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2 

𝜃𝜃 − 𝑚𝑚𝑚𝑚
𝐽𝐽(𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2 

𝑢𝑢      (2.5d) 

𝑧̈𝑧 = − 𝑚𝑚2𝑙𝑙2𝑔𝑔  
𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2 

𝜃𝜃 + 𝐽𝐽
𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2

 𝑢𝑢             (2.6c) 

Equations (2.5d) and Equation (2.6c) are described the linearized motion of the 

inverted-pendulum-on-the-cart system. 
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The state space model of the inverted pendulum system, with the defined state 

variables[𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4] = [𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧], where θ  and z are outputs, and �
𝑦𝑦1
𝑦𝑦2
� =

�1 0 0 0
0 0 1 0� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�.     

Notice that x1 is the angle indicate the rotation of the pendulum rod about point P, 

and x3 is the position of the cart.  

Then Equations (2.5d) and (2.6c) in the form of the defined state variables have the 

following forms. 

𝑥̇𝑥1 = 𝑥𝑥2 

𝑥̇𝑥2 =
(𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚

𝐽𝐽(𝑀𝑀 + 𝑚𝑚) −𝑚𝑚2𝑙𝑙2 𝑥𝑥1 −
𝑚𝑚𝑚𝑚

𝐽𝐽(𝑀𝑀 + 𝑚𝑚) −𝑚𝑚2𝑙𝑙2 𝑢𝑢 

𝑥̇𝑥3 = 𝑥𝑥4 

𝑥̇𝑥4 = −
𝑚𝑚2𝑙𝑙2𝑔𝑔 

𝐽𝐽(𝑀𝑀 + 𝑚𝑚)−𝑚𝑚2𝑙𝑙2 𝑥𝑥1 +
𝐽𝐽

𝐽𝐽(𝑀𝑀 + 𝑚𝑚)−𝑚𝑚2𝑙𝑙2 𝑢𝑢 

By using the matrix notation, the state space representation; 

�

𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇

� =

⎣
⎢
⎢
⎢
⎡

0 1 0 0
(𝑀𝑀+𝑚𝑚 )𝑚𝑚𝑚𝑚𝑚𝑚

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2  
0 0 0

0 0 0 1
− 𝑚𝑚2𝑙𝑙2𝑔𝑔  

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2  
0 0 0⎦

⎥
⎥
⎥
⎤

�

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� +

⎣
⎢
⎢
⎢
⎡

0
− 𝑚𝑚𝑚𝑚

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2  
0
𝐽𝐽

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )−𝑚𝑚2𝑙𝑙2 ⎦
⎥
⎥
⎥
⎤

𝑢𝑢      (2.7) 

 

Substituting the system parameters; M = 2kg, m= 0.1kg, l = 0.25 meters g=9.8ms-2  

[14] then the numerical state space model of inverted pendulum is: 

�

𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇

� = �

0 1 0 0
30.48 0 0 0

0 0 0 1
−0.362 0 0 0

� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� + �

0
−1.48

0
0.493

�  𝑢𝑢

�
𝑦𝑦1
𝑦𝑦2
� = �1 0 0 0

0 0 1 0� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�                                    

     (2.8) 

The system matrix, A, is: 
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𝐴𝐴 = �

0 1 0 0
30.48 0 0 0

0 0 0 1
−0.362 0 0 0

�  

and solving the characteristic matrix |λI − A|=0 where  I is identity matrix. 

|λI − 𝐴𝐴|=det�

λ −1 0 0
−30.48 λ 0 0

0 0 λ −1
0.362 0 0 λ

�=𝜆𝜆4 − 30.48𝜆𝜆2 = 0 

and has the following eigen values;  

𝜆𝜆1 = 0,𝜆𝜆2 = 0, 𝜆𝜆3 = 5.52, 𝜆𝜆4 = −5.52 . Thus the characteristic equation of the 

system has  one pole in positive real part and the system is unstable.  

2.2. Control problem formulation 

The problems task to be solved here is to swing up the pendulum and bring it from 

rest position to a region near upright position with limit cart displacement where the 

pendulum is swinging and controlling the cart position, and then balancing the 

pendulum at the upright position,θ =0, with the control signal u, by moving cart on 

the direction of displacement z. 

2.3 Complete state feedback for inverted pendulum 

The linearized inverted pendulum system is considered and complete state feedback 

is designed. Note that the inverted pendulum’s open loop system is discussed in 

section 2.1 is unstable. To stabilizing the system and letting the closed-loop poles at 

desired location in λ=-σ±jω complex plain, based on state feedback design a 

controller u=-Kx to drive all system states from any initial conditions to the origin. 

Thus stabilizing and keeping the inverted pendulum rod at upright position θ = 0 is 

the control problem. 

The system block diagram is shown in Figure 2.3 contains the complete sate 

feedback control law is:  

𝑢𝑢 = −𝐾𝐾𝐾𝐾 = −[𝑘𝑘1 𝑘𝑘2 𝑘𝑘2 𝑘𝑘4] �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�       (2.9) 

The state space form of linearized model of inverted pendulum given in 
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Equation(2.8) for (0,0). 

 for regulator case [14]. 

 

 

 

 

 

 

Figure 2.3: Full state feedback control of inverted pendulum control system 

To determine state feedback gain K the following steps are required. First the system 

has to satisfy the following assumptions; 

Assumption A1: The system has to be full state controllable. Thus controllability 

matrix ( [𝐵𝐵 𝐴𝐴𝐴𝐴 … . . 𝐴𝐴𝑛𝑛−1𝐵𝐵] ) is full rank. 

Assumption A2: All the states of the system need to be measurable. i.e observability 

matrix ([𝐶𝐶 𝐶𝐶𝐶𝐶 … . . 𝐶𝐶𝐴𝐴𝑛𝑛−1]𝑇𝑇) is full rank. 

To satisfy the first Assumption A1 and the second Assumption A2, the rank of 

controllability matrix must examine M=[B AB A2B A3B] and observability matrix   

N=[C CA CA2 CA3 ]T ,the rank of matrix M and matrix N is four. Therefore the 

system described by Equation (2.8) is completely state controllable, and all state 

variables are observable.  So pole placement technique is possible. 

Next step to designing controller based on pole-placement for desired closed loop 

poles. To achieve a specific reasonable speed and damping in the response of the 

designed system the following desired poles are selected; 

𝜇𝜇1,2 = −1 ∓ 𝑗𝑗√3   and  µ3,4 = -6 . 

where the settling time is 4 sec and the maximum over shoot is 18% in the step 

response of the cart. 

Note the other two poles are located to the left and far away from the first and second 

desired closed-loop poles. Therefore their effect over the total response can be 

neglected.  

u 

-k1 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 

-k3 

-k4 

-k2 
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Since the system given in Equation (2.8) has single input then Ackermann’s formula 

namely known acker in MATLAB Control toolbox can be used. The M-File 3.1 of 

MATLAB program is given in Table 2.1. 

Table 2.1 MATLAB program to determine K matrix based on Ackermann’s formula. 

M-File 21: 

% To determine state feedback gain K matrix for Inverted Pendulum by  

% Ackermann’s formula 

J=[-1+i*sqrt(3) -1-i*sqrt(3) -6  -6] % Desired closed loop poles. 

A=[0 1 0 0;30.48 0 0 0;0 0 0 1;-0.362 0 0 0] 

B=[0;-1.48;0;0.493] 

K=acker(A,B,J) 

Thus the controller gains are; 

K = [k1 k2 k3 k4] = [-67.1   -12.2    -9.9    -8.2]  

and the controller dynamic is: 

𝑢𝑢 = −𝐾𝐾𝐾𝐾 = [67.1 12.2 9.9 8.2] �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�  

The closed loop performance of the system is depicted in Figures 2.4 and 2.5, where 

the initial conditions are [x1(0), x2(0), x3(0), x4(0)] = [-0.3,0,0,0]. Figure 2.4 shows 

the system output x1 started from x1(0) = -0.3 rad ≈-17 degrees, and it approaches to 

zero when t→∞ with the settling time approximately 4.8 sec. and x2 where the 

maximum value is 1 rad/sec then it converges to zero. 

Figure 2.5 shows the position and velocity of the cart where the cart position goes far 

from origin 0.4 m and then both of them approach to zero. 

Note that all states approach to zero when  t→∞. Hence the closed loop system is 

asymptotically stable in the sense of Lyapunov. 

Figure 2.6 shows the control signal which starts from -17 Newton and approaches to 

zero when time approaches to infinity. 
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Figure 2.4: Closed loop rod angle and road angular velocity time response. 

 

Figure 2.5: Closed loop cart position and cart velocity time response.  
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Figure 2.6: Control signal for closed-loop system. 

The results show that the controller is achieves the desired performance but it may be 

produced a large control signal leads saturation and leads system enter in nonlinear 

region. This is the natural result of pole placement, it is achieved the desired 

performance without limiting the control energy.  

Optimal control strategies need to account the control energy with constrain on the 

closed loop performance. That is the controller gain is obtained based on the 

weighting function of the control signal and steady state error. Then the closed loop 

performance is resulted. In the following subsection, an optimal state feedback 

control namely Linear Quadratic Control (LQR) based on the Lyapunov method is 

considered.  

2.4 Design LQR control for linearized pendulum model. 

The linear model of inverted pendulum system in Equation(2.8) is considered and the 

control gain in Equation(2.9) is designed based on linear quadratic regulator (LQR) 

approach [14] such that the following performance index J is minimized: 

𝐽𝐽 = ∫ (∞
0 𝑒𝑒𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑅𝑅)𝑑𝑑𝑑𝑑       (2.10) 
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where e = x – xd and if xd=0  then e=x. 

Hence the performance index J is: 

𝐽𝐽 = � (
∞

0
𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑅𝑅)𝑑𝑑𝑑𝑑 

where xT and uT represents the transpose of the state vector x and input vector u 

respectively, Q and R are a positive-definite (or positive-semi definite) real 

symmetric matrices. Q and R matrices respectively represent the cost functions 

placed upon reducing errors e and the cost placed upon saving energy (limiting 

control energy). 

Q and R are usually chosen to be diagonal. Selection of the weighting matrices  Q 

and R in the cost function J  is based on some criteria determined and given in [15]. 

The Q matrix is usually responsible for system performance and R matrix is 

responsible for control effort. The physics of the problem may suggest further terms 

in the cost function. Another procedure to select weighting matrices is by trial and 

error [15-16]. The designer first specifies which outputs are important to drive to 

zero with this method. 

To see the effect of Q and R matrices on the system performance and control signal, 

here three different set of matrices Q and R are chosen and their effects are 

discussed. 

case 1:    Let 𝑄𝑄 = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�  and      𝑅𝑅 = 0.01, 

The lqr command in MATLAB Control tool Box is used and controller gain K is 

determined by M-File is given in table 2.2. 

Running M-File 2.2 program leads to: 

K = [k1 k2 k3 k4] =[ -101.6380  -21.0469  -10.0000  -16.2955]. 
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Table 2.2 MATLAB program to determine K matrix based on LQR. 

M-File 2.2: 

% To determine state feedback gain K matrix for Inverted Pendulum by  

%calculating k matrix by LQR case 1 

A=[0 1 0 0;30.48 0 0 0;0 0 0 1;-0.362 0 0 0] 

B=[0;-1.48;0;0.493] 

Q=[1 0 0 0 ;0 1 0 0 ;0 0 1 0 ;0 0 0 1] 

R=[0.01] 

K=lqr(A,B,Q,R) 

 

Again the system is released from x1(0) = -0.3 rad ≈-17 degree and the other states 

initial conditions are zero. The closed loop performance for stabilized system based 

on LQR technique of case 1 changing with time is depicted in Figures 2.7 and 2.8. 

Figure 2.7 shows the rod angle it starts from its initial condition then it approaches to 

zero when t→∞ with the settling time is 2 sec, and the rod angular velocity reaches 

maximum value approximately at 1.4 rad/sec.  
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Figure 2.7: Closed loop rod angle and rod angular velocity time response based on 

LQR for Case 1. 

 
Figure 2.8: Closed loop cart position and cart velocity time response based on LQR 

for Case 1. 
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Figure 2.9: Closed-loop system input  signal based on LQR for Case 1. 

Case 2: 

Let keep Q matrix as previous case and R = 1 M file 2.2 gives: 

K = [k1 k2 k3 k4] =[-50.0313   -9.1447   -1   -2.6482] 

Figure 2.10 shows the rod angle and rod angular velocity time response for case 2, 

Figure 2.10 (a) shows the rod angle start from -17o and the controller converges it to 

zero with a settling time of 5 sec and maximum over shoot approximately % 22. 

Figure 2.10 (b) shows the rod angular velocity it reach to maximum value 0.8 

rad/sec, then controller also converges it to zero. 

The results are presented in Figures 2.11 and 2.12 are almost the same as Figure 2.5 

and Figure 2.6 because of selection the Q and R matrices.   
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Figure 2.10: Closed loop rod angle and rod angular velocity time response for Case 2 

 
Figure 2.11: Closed loop cart position and cart velocity time response for Case 2. 
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Figure 2.12: Closed-loop system input  signal for case 2. 

2.5 Conclusions and remarks 

Mathematical model of inverted pendulum is obtained, nonlinear model is linearized 

and then two linear controllers are applied. In case controller designed based on the 

pole placement, it is noticed that the controller is achieved the desired performance 

but it produced a large control signal that may be saturated and lead system to behave 

as a nonlinear system. This is the natural result from pole placement that the desired 

closed loop is selected without considering the control energy. In case of design a 

controller based on LQR technique  the effect of weighting matrixes are as follow: 

• When the value of R constant is increased by keeping the same value for Q 

matrix, that the control signal value is decreased. 

• By fixing the R constant value and increasing Q matrix element q33 speeded 

up the time response [16].  

Designing controller based on pole placement and LQR technique do not perform 

stable behavior with presence of disturbance and cannot reject the perturbation. 

Robust control strategies need to be designed to reject the disturbance and perform 
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properly where the system dynamic model contains uncertainty. 
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CHAPTER 3 

SLIDING MODE CONTROL 

3.1 Introduction 

Sliding Mode Control (SMC) is adapted from Variable structure systems [17]. 

Sliding Mode Control is a type of discontinuous in nonlinear control, it consists of 

two or more continuous subsystems together by using a high-speed switching control 

that switches between two different values based on the defined conditions. 

The advantage of using SMC is it’s ability to very robust closed loop control system 

that gives the system fast response and insensitive to system parameter variations or 

uncertainty, external disturbances or noises[18]. It can be designed for both linear 

and non-linear systems. 

3.2 Sliding Mode Controller design for linear systems 

Designing of any SMC consist of two stages, Switching function s(x) and 

discontinuous control law. A switching function is mostly assumed to be linear and 

its dimension equal to m (m input matrix dimension). 

Designin SMC for linear system is discussed and studied in [1]. Consider a linear 

system described by the state Equation: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵         (3.1) 

where vectors x(t)∈ Rn,     u(t)∈ Rm,    and rank(B) = m 

The steps for designing any SMC are as follow: 

3.2.1 Design switching function 

A suitable switching surface is generally define as s(x)=Cx, where dim-s =m, C is n-

dimensional constant row vector. Each switching function s(x) describes a linear 

surface s(x) = 0, which is defined to be switching surface or switching manifold. If 

every point in s(x) is an end point, that is, for every point in s(x) there are trajectories
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 reaching it from both sides of s(x), then switching surface s(x) called a sliding 

surface. 

There are many methods has been introduced to design the sliding surface.  

s(x)=Cx         (3.2) 

Here, the method is recently introduced in [19] based on Ackermann’s Formula is 

used at first, and then linear matrix inequality is used to design the switching surface.  

3.2.2 Reaching Condition  

The condition whereby the state will move toward and reach to the sliding surface is 

called Reaching Condition [17]. Reaching phase or reaching mode is the system 

trajectory under reaching condition. To determination the reaching condition two 

approaches are proposed here. 

1) The Direct Switching Function Approach: The older of reaching condition 

proposed was: 

𝑠̇𝑠(𝑥𝑥) > 0,    when    s(x) ˂ 0 

𝑠̇𝑠(𝑥𝑥) ˂ 0,    when     s(x) > 0 

where 𝑠̇𝑠(𝑥𝑥) = 𝐶𝐶𝑥̇𝑥        (3.3) 

A similar sufficient condition was proposed by Utkin [20]: 

lim𝑠𝑠→−0 𝑠̇𝑠  > 0         and lim𝑠𝑠→+0 𝑠̇𝑠 < 0   

2) The Lyapunov Function Approach: By choosing the candidate the positive definite 

Lyapunov function V (s) such that𝑉𝑉(𝑠𝑠) = 1
2

(𝑠𝑠(𝑥𝑥))2, the condition for stability is the 

time derivative of V(s) along to the switching surface and 𝑉̇𝑉 = 𝑠𝑠(𝑥𝑥)𝑠̇𝑠(𝑥𝑥) needs to be 

negative definite. 

𝑉̇𝑉(𝑠𝑠) ˂ 0  when     s(x) ≠ 0 

3.2.3 Reaching Law 

The reaching law is differential equation which specifies the dynamics of a switching 

function s(x) [21]. Sliding mode based on  reaching law contains two stages, 

reaching stage, it drives system toward the sliding surface, and sliding stage, it can 

constrain the system on the sliding manifold and lead it to the origin, or equilibrium 
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point [22]. 

A general form of reaching law is: 

𝑠̇𝑠(𝑥𝑥) = −𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))− 𝑘𝑘𝑘𝑘(𝑠𝑠)       (3.4) 

where η is positive diagonal matrix and k is diagonal matrix with positive elements,  

sgn(s) = [sgn(s1)…. sgn(sm)]T and   f(s) = [f1(s1)…… fm(sm)]T. 

Selecting value of η and k identify different rates for s(x) and produce different 

structures in the reaching law.  

Three practical different reaching laws are [22-23]: 

1) Constant rate reaching law; 

𝑠̇𝑠(𝑥𝑥) = −𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))        (3.4a)  

where η represents a constant rate and η > 0. This reaching law forces the switching 

variable s(x) to reach switching surface s(x) = Cx =0 at a constant rate |𝑠̇𝑠| = - η. The 

advantage of this law is its simplicity. But if η is too small the reaching time will be 

too long. On the other hand by selecting η too large will cause serious chattering. 

2) Exponential reaching law 

𝑠̇𝑠(𝑥𝑥) = −𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))− 𝑘𝑘𝑘𝑘(𝑥𝑥)      (3.4b) 

where  η > 0, k > 0 and   𝑠̇𝑠(𝑥𝑥) = −𝑘𝑘𝑘𝑘(𝑥𝑥) is exponential term, can be solved as: 

𝑑𝑑𝑑𝑑 (𝑥𝑥)
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑘𝑘(𝑥𝑥)     ⇒     𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑠𝑠(𝑥𝑥)

= −𝑘𝑘𝑘𝑘𝑘𝑘    ⇒        ∫ 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑠𝑠(𝑥𝑥)

= −𝑘𝑘 ∫𝑑𝑑𝑑𝑑  ⇒  ln 𝑠𝑠(𝑥𝑥) = −𝑘𝑘𝑘𝑘  

leads to  s(x) = s(0)e –kt. 

Clearly, by adding the proportional rate term –ks(x) to this reaching law forces the 

state to approach the switching surface faster when s(x) is enough large. It can be 

shown that the reaching time for x state is move from an initial state x(0) to the 

switching surface   s(x) = Cx =0  is finite, and is given by 

𝑇𝑇 = 1
𝑘𝑘

ln 𝑘𝑘|𝑠𝑠|+𝜂𝜂
𝜂𝜂

       

3) Power rate reaching law 

𝑠̇𝑠(𝑥𝑥) = −𝑘𝑘|𝑠𝑠(𝑥𝑥)|𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠(𝑥𝑥))       (3.4c) 

where  k > 0 and  0 ˂ α ˂ 1. This reaching law decreases the slow motion’s time 

when the state is far away from the switching surface line, but when the state near to 
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the switching surface (switching manifold) it reduced the rate, so the result from this 

law is reduced the chattering reaching mode and fast reaching. Integrating power rate 

reaching law from s = s0 (where s0 is initial value of s(x)) to s(x) = Cx =0, yields 

𝑇𝑇 = 1
(1−𝛼𝛼)𝑘𝑘

𝑠𝑠0(1− 𝛼𝛼)  

shows the reaching time T is finite. Thus power rate reaching law gives a fine 

reaching time. In addition, power rate reaching law eliminate the chattering because 

in the right hand of this law does not have the – η sign(s) term. 

3.2.4 Control law u 

The discontinuous control u, that enforces the sliding mode in the s(x) = Cx =0 plane 

to provide the condition 𝑠𝑠(𝑥𝑥)𝑠̇𝑠(𝑥𝑥) ˂ 0 and lim 𝑠𝑠(𝑥𝑥)𝑠̇𝑠(𝑥𝑥)  ˂ 0 with s(x) →0, can be 

obtained by two methods 

a) Using the general sliding control law 

𝑢𝑢 = �𝑢𝑢
+(𝑥𝑥, 𝑡𝑡)        𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒    𝑠𝑠(𝑥𝑥) > 0
𝑢𝑢−(𝑥𝑥, 𝑡𝑡)        𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒    𝑠𝑠(𝑥𝑥) < 0

�      (3.5) 

Then the control law can be obtained as: 

𝑢𝑢 = −𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))         (3.6) 

To check the reachability condition. Let select the candidate positive definite 

Lyapunov function V (s) such that:  

𝑉𝑉(𝑠𝑠) = 1
2

(𝑠𝑠(𝑥𝑥))2        (3.7) 

The time derivative of V(s) needs to be negative definite such that. 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)𝑠̇𝑠(𝑥𝑥) ≤ 0        (3.8) 

substituting Equation (3.3) in (3.8) leads to:  

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)𝐶𝐶𝑥̇𝑥(𝑥𝑥)  

substituting Equation (3.1) in above Equation has: 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)(𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶)  

substituting Equation(3.6) in above Equation leads to: 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)(𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶�−𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))�)  
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𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑠𝑠(𝑥𝑥)�𝑠𝑠(𝑥𝑥)     by using sign(s)*s=|s|,   sign function 

property 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠(𝑥𝑥)|                                          

To satisfy the condition given in Equation (3.8) we have 

0 > |𝑠𝑠(𝑥𝑥)|𝐶𝐶𝐶𝐶|𝑥𝑥| − 𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠(𝑥𝑥)|   

𝜂𝜂 > (𝐶𝐶𝐶𝐶)−1𝐶𝐶𝐶𝐶|𝑥𝑥|         (3.9) 

b) Using reaching law 

Using one of the reaching law and by taken time derivative for switching surface s(x) 

as shown by Equation (3.3) and substituting Equation (3.1) in this equation as: 

𝑠̇𝑠(𝑥𝑥) = 𝐶𝐶𝑥̇𝑥         

𝑠̇𝑠(𝑥𝑥) = 𝐶𝐶(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵)         (3.10) 

Selecting any reaching law and then equating it with Equation (3.10) for example 

selecting exponential reaching law as: 

 𝑠̇𝑠(𝑥𝑥) = −𝑘𝑘𝑘𝑘(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥)) 

substituting Equation(3.10) in above equation Leads to 

−𝑘𝑘𝑘𝑘(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥)) = 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶  

then the control law can be obtained as: 

𝑢𝑢(𝑥𝑥) = (𝐶𝐶𝐵𝐵)−1(−𝑘𝑘𝑘𝑘(𝑥𝑥)− 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))−𝐶𝐶𝐴𝐴𝐴𝐴)    (3.11) 

3.3 Sliding mode controller where the switching surface is designed based on 

Ackermann’s formula. 

Ackermann’s Formula gives the designer to determine a linear state-feedback control 

law in specific form resulting in a feedback system with desired eigenvalues [24]. A 

similar work presents itself when designer want to design sliding mode control for 

linear systems with discontinuity surface. Because the corresponding sliding mode 

equation is linear and depends on the coefficients of the surface equation for n order 

system the sliding mode equation is of the (n – 1) order and does not depend on the 

disturbance [25]. 

Switching surface design; 
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The C-vector where C ∈R1×n may be obtained in an explicit form without the sliding 

motion equation based on Ackermann’s Formula, and the procedure is illustrated in 

the literature [14, 19] .  

The design steps to determine C-vector matrix for system (3.1) are as follows [25]: 

The first step is selecting the sliding motion desired spectrum λ1, λ2,…. λn-1 and then 

the equation  of discontinuity plane s(x)= Cx = 0 is found based on Ackermann’s 

Formula (see appendix A). 

C = eTP1(A) 

C = eT(A - λ1I) (A – λ2I)… (A – λn-1I)      (3.12) 

where 𝑒𝑒𝑇𝑇 = [0 0 0 … . 1][𝐵𝐵  𝐴𝐴𝐴𝐴   𝐴𝐴2𝐵𝐵  𝐴𝐴𝑛𝑛−1𝐵𝐵 ]
−1

  and I identity matrix ∈Rn×n . 

Consider the linear model of inverted pendulum system with bounded disturbance 

(f(t)) for equilibrium point (x1 ,x2) = (0,0). 

�

𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇

� = �

0 1 0 0
30.48 0 0 0

0 0 0 1
−0.362 0 0 0

� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� + �

0
−1.48

0
0.493

� (𝑢𝑢 + 𝑓𝑓(𝑡𝑡))   (3.13) 

where f(t)=fosinωt     (fo constant). 

Let design a sliding mode control to keep the pendulum rod at upright position    

x1=θ = 0 as follow. 

Sliding Surface equation for this system is: 

s(x) =  Cx   

where C=[c1  c2  c3  c4] 

𝑠𝑠(𝑥𝑥) = 𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 + 𝑐𝑐3𝑥𝑥3 + 𝑐𝑐4𝑥𝑥4       (3.14) 

Since the order of the system is n=4, determining the C matrix based on Ackerman’s 

formula (see appendix A) that described by equation (3.12) is: 

𝐶𝐶 = 𝑒𝑒𝑇𝑇(𝐴𝐴 − 𝜆𝜆1𝐼𝐼)(𝐴𝐴 − 𝜆𝜆2𝐼𝐼)(𝐴𝐴− 𝜆𝜆3𝐼𝐼)      (3.15) 

where 𝑒𝑒𝑇𝑇 = [0 0 0 1][𝐵𝐵  𝐴𝐴𝐴𝐴   𝐴𝐴2𝐵𝐵  𝐴𝐴3𝐵𝐵 ]
−1

 and (𝜆𝜆1 ,𝜆𝜆2,𝜆𝜆3) are the desired 

eigenvalues of sliding motion. 

In this particular design, to achieve a specific reasonable speed and damping in the 
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response of the closed loop system, let 𝜇𝜇1 = 𝜆𝜆1 = −1 + 𝑗𝑗√3 ,     𝜇𝜇2 = 𝜆𝜆2 = −1− 𝑗𝑗√3   

and 𝜇𝜇3 = −6. Substituting all known parameters in Equation (3.15), leads C 

constants: 

The M-File (MATLAB Program) written to obtain C matrix for this problem is given 

in Table (3.1) 

Table 3.1 MATLAB Program to determine C matrix. 

M-File 3.1: 
%%%Calculation C* matrix %%%% 

A=[0 1 0 0;30.488 0 0 0;0 0 0 1;-0.362 0 0 0] 

B=[0;-1.48;0;0.495]; 

µ1=-1-i*sqrt(3); µ2=-1+i*sqrt(3); µ3=-6; 

M= inv([B A*B (A^2)*B (A^3)*B]) 

E=[0 0 0 1]*M; 

I=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 

P=(A-(µ1*I))*(A-(µ2*I))*(A-(µ3*I)); 

C=E*P 

The result of M-File 3.1 is; 

C=[ -5.9569   -1.0433   -1.6488   -1.0992]. 

The switching surface for whole system is: 

𝑠𝑠(𝑥𝑥) = −5.95𝑥𝑥1 − 1.04𝑥𝑥2 − 1.64𝑥𝑥3 − 1.09𝑥𝑥4  

Second step is to design a control law based on Equation (3.5), here three different 

methods are considered to design the controller. First sliding mode controller is 

designed based on Lyapunov method. Then the controller is designed based on two 

different reaching laws. The performance of the closed loop system is studied for 

three cases and the results are discussed. 

Case 1. In the first case, the most general sliding mode controller is used to 

stabilizing the pendulum at upright position, and the reachability condition is 

obtained, by selecting the sliding mode controller as: 

𝑢𝑢 = −𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))         (3.16) 
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where η > 0 and the switching surface s(x) is 

𝑠𝑠(𝑥𝑥) = −5.95𝑥𝑥1 − 1.04𝑥𝑥2 − 1.64𝑥𝑥3 − 1.09𝑥𝑥4  

Let fo=1 and ω = 3, leads to f(t)=sin3t. 

By selecting the candidate positive definite Lyapunov function V (s) such that: 

𝑉𝑉(𝑠𝑠(𝑥𝑥)) = 1
2

(𝑠𝑠(𝑥𝑥))2         

The time derivative of V(s) needs to be negative definite such that. 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)𝑠̇𝑠(𝑥𝑥)     < 0         

the time derivative of switching surface is: 

𝑠̇𝑠(𝑥𝑥) = −5.95𝑥̇𝑥1 − 1.04𝑥̇𝑥2 − 1.64𝑥̇𝑥3 − 1.09𝑥̇𝑥4  

Substituting the system Equation (3.13) in to above equation leads to. 

𝑠̇𝑠(𝑥𝑥) = −31.36𝑥𝑥1 − 5.95𝑥𝑥2 − 1.64𝑥𝑥4 + 𝑢𝑢 + 𝑓𝑓(𝑡𝑡)  

where u is the control law defined in Equation(3.16) and f(t) is bonded disturbance 

(f(t)=sin3t). 

substituting the controller given in Equation (3.16) in above equation leads to: 

𝑠̇𝑠(𝑥𝑥) = −31.36𝑥𝑥1 − 5.95𝑥𝑥2 − 1.64𝑥𝑥4 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠) + 𝑓𝑓(𝑡𝑡)    (3.17) 

To see the negatives of derivative of Lyapunov Equation (3.4) let substituting 

Equation (3.17) in to Equation (3.4) then. 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(−31.36𝑥𝑥1 − 5.95𝑥𝑥2 − 1.64𝑥𝑥4 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠) + 𝑓𝑓(𝑡𝑡))  

𝑉̇𝑉(𝑠𝑠) = −31.36𝑥𝑥1𝑠𝑠 − 5.95𝑥𝑥2𝑠𝑠 − 1.64𝑥𝑥4𝑠𝑠 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠)𝑠𝑠 + 𝑓𝑓(𝑡𝑡)𝑠𝑠     since sign(s)s=|s| 

𝑉̇𝑉(𝑠𝑠) = −31.36𝑥𝑥1𝑠𝑠 − 5.95𝑥𝑥2𝑠𝑠 − 1.64𝑥𝑥4𝑠𝑠 − 𝜂𝜂|𝑠𝑠| + |𝑓𝑓(𝑡𝑡)||𝑠𝑠|         by using |xy|≤|x|.|y| 

𝑉̇𝑉(𝑠𝑠) ≤ −31.36|𝑥𝑥1||𝑠𝑠|− 5.95|𝑥𝑥2||𝑠𝑠|− 1.64|𝑥𝑥4||𝑠𝑠|− 𝜂𝜂|𝑠𝑠| + |𝑓𝑓(𝑡𝑡)||𝑠𝑠|  

𝑉̇𝑉 ≤ −|𝑠𝑠|(31.36|𝑥𝑥1|+5.95|𝑥𝑥2| + 1.64|𝑥𝑥4| + 𝜂𝜂 − |𝑓𝑓(𝑡𝑡)|)  

0 < (31.36|𝑥𝑥1|+5.95|𝑥𝑥2| + 1.64|𝑥𝑥4| + 𝜂𝜂 − |𝑓𝑓(𝑡𝑡)|  

𝜂𝜂 > −31.36|𝑥𝑥1|−5.95|𝑥𝑥2| − 1.64|𝑥𝑥4| + |𝑓𝑓(𝑡𝑡)|     (3.18) 

Let select the state variables initial conditions are: 

[x1(0), x2(0), x3(0), x4(0)]=[-0.35, 0, 0, 0]   and  η=18  then the control signal is 
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𝑢𝑢 = −18 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑠𝑠(𝑥𝑥)� = −18 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(−5.95𝑥𝑥1 − 1.04𝑥𝑥2 − 1.64𝑥𝑥3 − 1.09𝑥𝑥4) 

 

Figure 3.1: Rod angle and rod angular velocity time response for Case 1 

The closed loop performance of the stabilized system based on sliding mode of case1 

are depicted in Figures 3.1 and 3.2, where the states initial conditions are [x1(0), 

x2(0), x3(0), x4(0)] = [-0.35,0,0,0]. Figure 3.1(a) shows the system output state x1 

starts from -20o, and it approaches to zero when t→∞ with the settling time 

approximately 4 sec. Note that closed loop system exhibits the desired behavior and 

the disturbance is rejected. Figure 3.1(b) shows the rod angular velocity the when the 

rod angle converges to zero also it approaches to zero when the time approaches to 

infinity t→∞. 

0 1 2 3 4 5 6 7 8 9 10 
-20 

-10 

0 

10 
R

od
 a

ng
le

 x
1 

[d
eg

re
e]

 

t (sec) 

0 1 2 3 4 5 6 7 8 9 10 
-1 

0 

1 

2 

3 

t (sec) 

R
od

 a
ng

ul
ar

 v
el

oc
ity

 x
2[

ra
d/

se
c]

 

(a) 

(b) 



 

30 
 

 

Figure 3.2: Cart position and cart velocity time response for Case 1 

Figure 3.2 a shows the cart position displacement where it starts from origin and it 

go far from its origin approximately 0.4 meters then the controller can bring it again 

to zero. Figure 3.2 b shows the cart velocity time response, it reaches maximum 

value (1.3 meters/sec ) after 0.3 seconds from beginning and then it’s value is go to 

zero when time approach to infinity t→∞. 

Switching surface curve and control input signal versus time, are depicted in 

Figure3.3 illustrate that the switching function value is decreased to zero and the 

control signal contains the chattering effect. 
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Figure 3.3: Switching surface and control signal for Case 1 

Case 2. In the second case, the controller is designed based on the following 

exponential reaching law given in Equation (3.4.b). 

𝑠̇𝑠(𝑥𝑥) = −𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠)− 𝑘𝑘𝑘𝑘  where η > 0  and  k > 0 

Let η=8, k = 1, and f(t)=sin3t, then the control law can be found which is based on 

equation (3.11) is: 

𝑢𝑢(𝑥𝑥) = (𝐶𝐶𝐵𝐵)−1(−𝑘𝑘𝑘𝑘(𝑥𝑥)− 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥))− 𝐶𝐶𝐴𝐴𝐴𝐴)  

 The terms (CB), (CB)-1 and CA are: 

CB = [ -5.9569   -1.0433   -1.6488   -1.099]*[0   -1.48    0    0.495]T 

 CB ≅ 1, since (CB)-1≅ 1    and CA=[-31.4108   -5.9569         0   -1.6488] 

Substituting the control law yields: 

u = - ks(x) – η sign(s) + 31.4 x1 + 5.9569 x2 + 1.6488 x4  

    = -s(x) – 8 sign(s) + 31.4 x1 + 5.9569 x2 + 1.6488 x4 
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Figure 3.4: Rod angle and rod angular velocity time response for Case 2 

The closed loop performance of the stabilized system based on sliding mode case2 is 

depicted in Figures 3.4 and 3.5 for the same initial condition of [x1(0), x2(0), x3(0), 

x4(0)] = [-0.35,0,0,0]. Figure 3.4(a) shows the rod angle (system output state x1 ) that 

the controller brings it from its initial value (-20o) to zero. Figure 3.4(b) shows the 

rod angular velocity it’s reaching to maximum value 1.8 rad/sec, and then it is 

approached to zero when the rod angle converges to zero. Note that the maximum 

value of angular velocity in this case is smaller than at Case 1.  

Figure 3.5 (a) shows the cart position displacement where it starts from origin and it 

goes far from its origin approximately 0.42 meter then the controller can bring it 

again to zero. Figure 3.5(b) shows the cart velocity time response, it reach maximum 

value (1.2 meter/sec ) after 0.3 sec from beginning. Then its value is decreased to 

zero when time approach to infinity t→∞. Control input signal versus time, are 

depicted in Figure 3.6(b) and shows that it started with a value is approximately 20 

Newton and it has the chattering effect. Note that the chattering amplitude in this 

case is smaller than at the previous case, and the rachability condition does not 

depend on the states initial conditions. 
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Figure 3.5: Cart position and cart velocity time response for Case 2 

 
Figure 3.6: Switching surface and control signal for Case 2. 
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Case 3. When the following power rate reaching law (Equation (3.4.c)) is selected 

with  k = 8, α = 0.5  and f(t)=sin3t. 

𝑠̇𝑠(𝑥𝑥) = −𝑘𝑘|𝑠𝑠|𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)       (3.4.c)  

The control law can be found based on Equation (3.11) as: 

u(x) = - k|s|α sign(s) + 31.4 x1 + 5.9569 x2 + 1.6488 x4 

  = -8|s|0.5 sign(s) + 31.4 x1 + 5.9569 x2 + 1.6488 x4  

The closed loop performance of the system based on sliding mode in case 3 is 

depicted in Figures 3.7 and 3.8 where the initial condition are [x1(0), x2(0), x3(0), 

x4(0)] = [-3.5,0,0,0]. Figures 3.7 (a) shows that the rod angle is started from x1(0) =-

20o, and it approaches to zero when t→∞, and the other states also approach to zero 

when the t→∞, as shown by Figures 3.7 (b) and Figure 3.8 these results are shown 

that the closed loop system can exhibit the desired behaviors. 

 

Figure 3.7: Rod angle and rod angular velocity time response for Case 3 

0 1 2 3 4 5 6 7 8 9 10 
-20 

-10 

0 

10 

R
od

 a
ng

le
 x

1 
[d

eg
re

e]
 

t (sec) 

0 1 2 3 4 5 6 7 8 9 10 
-1 

0 

1 

2 

t (sec) 

R
od

 a
ng

ul
ar

 v
el

oc
ity

 x
2[

ra
d/

se
c]

 

(a) 

(b)

 



 

35 
 

 

Figure 3.8: Cart position and cart velocity time response for Case 3.  

 

Figure 3.9: Switching surface and control signal for Case 3. 
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Figure 3.9 (b) shows the control input signal versus time for case 3, and shows that 

the controller based on power rate reaching law is reduced the chattering effect. 

3.4 Sliding mode controller based on Linear Matrix Inequality (LMI). 

Consider the linearized inverted pendulum system with bounded disturbance 

described by Equation (3.20), will be considered and sliding mode control will be 

designed. Again the problem is to keep the inverted pendulum’s rod at upright 

position θ = 0, subject to the disturbance. 

�

𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇

� = �

0 1 0 0
30.48 0 0 0

0 0 0 1
−0.362 0 0 0

� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� + �

0
−1.48

0
0.493

� (𝑢𝑢 + 𝑓𝑓(𝑡𝑡))    (3.20) 

where f(t) is disturbance and is f(t) = f0 sin(ωt). 

Designing the switching surface s(x) based on LMI that proposed in [22]as follow:  

s(x)=Cx 

     =BTPx         (3.21) 

where P ∈ℜn×n is positive-definet matrix and B is the input matrix. 

Sliding mode control based on auxiliary feedback: 

To solving the P matrix, the system controller is designed as: 

ut(x) = ul(x)+us(x)        (3.22) 

where ut(x) is total controller, ul (x)=  -Kx is linear feedback controller (K ∈ R1x4 

vector matrix and us(x) is sliding mode controller. 

Let the following Lyapunov function is: 

V(x)=xTPx         (3.23) 

Rewriting Equation (3.23) as: 

𝑉𝑉(𝑥𝑥) = [𝑥𝑥1  𝑥𝑥2  𝑥𝑥3  𝑥𝑥4]𝑃𝑃 �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�  

          = 𝑃𝑃(𝑥𝑥1
2 + 𝑥𝑥2

2 + 𝑥𝑥3
2 + 𝑥𝑥4

2)  

The derivative of V(x) is: 
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𝑉̇𝑉(𝑥𝑥) = 𝑃𝑃(2𝑥𝑥1𝑥̇𝑥1 + 2𝑥𝑥2𝑥̇𝑥2 + 2𝑥𝑥3𝑥̇𝑥3 + 2𝑥𝑥4𝑥̇𝑥4)  

           = 2[𝑥𝑥1  𝑥𝑥2  𝑥𝑥3  𝑥𝑥4]𝑃𝑃 �

𝑥̇𝑥1
𝑥̇𝑥2
𝑥̇𝑥3
𝑥̇𝑥4

�        

finally the time derivative of Lyapunov function is: 

𝑉̇𝑉(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑃𝑃𝑥̇𝑥          (3.24) 

where the closed loop system is 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵  

substituting Equation (3.22) in above leads to: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵(−𝐾𝐾𝐾𝐾 + 𝑢𝑢𝑠𝑠(𝑥𝑥))  

𝑥̇𝑥 = (𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑥𝑥 + 𝐵𝐵𝑢𝑢𝑠𝑠(𝑥𝑥)  

𝑥̇𝑥 = 𝐴̅𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢𝑠𝑠(𝑥𝑥)         (3.25) 

where 𝐴̅𝐴 is the closed loop matrix for u=-Kx and is: 

 𝐴̅𝐴 = 𝐴𝐴 − 𝐵𝐵𝐵𝐵         (3.25b) 

substituting Equation (3.25) in (3.24) yields to: 

𝑉̇𝑉(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑃𝑃(𝐴̅𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢𝑠𝑠(𝑥𝑥))    

𝑉̇𝑉(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑃𝑃𝐴̅𝐴𝑥𝑥 + 2𝑥𝑥𝑇𝑇𝑃𝑃𝑃𝑃𝑢𝑢𝑠𝑠(𝑥𝑥)  

when t ≥ to , there exists s(x)= BTPx=0, therefore  sT(x)= xTPB=0, it leads to  

𝑉̇𝑉(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑃𝑃𝐴̅𝐴𝑥𝑥  

𝑉̇𝑉(𝑥𝑥) = 𝑥𝑥𝑇𝑇(𝑃𝑃𝐴̅𝐴 + 𝐴̅𝐴𝑇𝑇𝑃𝑃)𝑥𝑥  

the condition to make 𝑉̇𝑉(𝑥𝑥) < 0 is 

 𝑃𝑃𝐴̅𝐴 + 𝐴̅𝐴𝑇𝑇𝑃𝑃 < 0         (3.26) 

Multiplying above inequality by P-2 

𝐴̅𝐴𝑃𝑃−1 + 𝑃𝑃−1𝐴̅𝐴𝑇𝑇 < 0      Let M=P-1, then      𝐴̅𝐴𝑀𝑀 + 𝑀𝑀𝐴̅𝐴𝑇𝑇 < 0  

Substituting Equation (3.25b) in above inequality leads to 

(𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑀𝑀 + 𝑀𝑀(𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑇𝑇 < 0  
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𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑀𝑀𝐴𝐴𝑇𝑇 − 𝑀𝑀𝐾𝐾𝑇𝑇𝐵𝐵𝑇𝑇 < 0       Letting L=KM, leads to 

𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 + 𝑀𝑀𝐴𝐴𝑇𝑇 − 𝐿𝐿𝑇𝑇 < 0        (3.27) 

Now the problem is become to solve above matrix inequalities. The M matrix can be 

obtained by solving the inequality defined in Equation (3.27), and then P matrix can 

be obtained with M-file given in Table (3.2). 

Table 3.2 MATLAB program for solving inequality Equation (3.27). 

MATLAB m-file 

A=[0 1 0 0;30.48 0 0 0;0 0 0 1;-0.362 0 0 0] 
B=[0;-1.48;0;0.493]c 
% LMI Var Description 
setlmis([]); 
M = lmivar(1, [4 1]);   % 1 -> symmetric block diagonal, then P is 
symmetric 
L = lmivar(2, [1 4]);   % Define L is 1 row,4 column 
  
% LMI 
%First LMI 
lmiterm([1 1 1 M], A, 1, 's');   % A*M+M'*A'<0 
lmiterm([-1 1 1 L], B, 1, 's');  % 0<B*L+L'*B' 
  
%Second LMI 
lmiterm([-2 1 1 M], 1, 1);       % 0<M, then P is positive matrix 
  
lmis=getlmis; 
  
[tmin,xfeas] = feasp(lmis); 
M = dec2mat(lmis,xfeas,M); 
P=inv(M); 
L = dec2mat(lmis,xfeas,L); 
K=L*inv(M); 
 

The M-file given in Table (3.2) results the followings P matrix, K matrix and C gain 

matrix; 

𝑃𝑃 = �

7.4338 1.2471  1.0764 1.1368
 1.2471 0.3949 0.2105   0.3250
1.0764 0.2105  0.3852   0.2278

 1.1368  0.3250 0.2278 0.4285

�,  K=[-55.6   -5.5   -4.1   -4.2] and 

C=BTP=[ -1.2853   -0.4243   -0.1993   -0.2698]. 

Thus the switching surface is: 

s(x)=Cx= -1.2853x1 -0.4243 x2-0.1993 x3 -0.2698 x4 

𝑠̇𝑠(𝑥𝑥) = 𝐶𝐶𝑥̇𝑥 = 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)  
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Here the sliding mode controller us designed is based on the following exponential 

reaching law given in Equation (3.4.b). 

 𝑠̇𝑠(𝑥𝑥) = −𝑘𝑘𝑘𝑘(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠)    where η > f0(t) 

Let f(t)=fosinωt,      f0(t)=1 and    ω=3. 

then the sliding mode controller us law can be found like in Equation (3.11) is: 

𝑢𝑢𝑠𝑠(𝑥𝑥) = (𝐶𝐶𝐵𝐵)−1(−𝑘𝑘𝑘𝑘(𝑥𝑥)− 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠)− 𝐶𝐶𝐴𝐴𝐴𝐴)  

where CB=0.4909, (CB)-1=2.0206, CA =[ -12.8336   -1.2853         0   -0.1993], η=5 

and k=2 

us (x)=2.02(-2s-5sgn(s)+12.83x1 +1.2853x2 +0.199 x4) 

us (x)=-4s-10.1sgn(s)+25.9x1 +2.59x2 +0.4 x4     (3.28)  

the linear controller is: 

ul(x) = -kx = 55.6x1 +5.5x2 +4.1 x3+4.2 x4     (3.29) 

The total controller ut given in Equation (3.22) that obtained from Equations (3.28) 

and Equation (3.29) is: 

ut(x) = ( 55.6x1 +5.5x2 +4.1 x3+4.2 x4)+(-4s(x)-10.1sgn(s)+25.9x1 +2.59x2 +0.4 x4) 

ut(x) = 81.5x1 +8.1x2+4.1 x3 +4.6. x4 -4s(x)-10.1sgn(s)   (3.30) 

Simulation results for this case where the switching surface is designed based on 

LMI are depicted by Figures 3.10, 3.11 and 3.12. The results show that the closed 

loop performance has a smaller oscillation than in the previous cases and the switch 

surface value is smaller in case that designed based in Ackermann’s formula, finally 

if compared the cart displacement between last case and previous case, can be note 

that cart displacement in the last case has smaller deflection than the previous cases. 

Note that the controller rejected the disturbance. 
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Figure 3.10: Rod angle and rod angular velocity time response for LMI. 

 

Figure 3.11: Cart position and cart velocity time response for LMI 
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Figure 3.12: Switching surface and control signal for LMI 

3.5 Sliding Mode Controller design for nonlinear systems 

The most commonly nonlinear systems are given in the following form: 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝑢𝑢        (3.31) 

where  x∈Rn and   u∈Rr. 

The transient dynamics of SMC control consists of two modes, a reaching mode (non 

sliding mode ) and sliding mode [21]. Thus the steps to design of SMC are, designing 

suitable switching function s(x) where its dimension is r, and then design the control 

law for the reaching mode such that satisfy the reaching condition. The desired 

response for the reaching mode is to reach the switching surface (switching 

manifold), that described by: 

s(x)=Cx=0         (3.32) 

Before designing a controller of nonlinear systems some point need to be made [17]: 

1) The fundamental theory and basic concepts to design a controller based on 

SMC in nonlinear case are similar to linear case. 
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2) Designing the control law u(x) is simple. 

The switching parameters are obtained based on trial and error [21] to selecting the 

suitable switch, here a coupled sliding mode is considered. 

The system (3.31) can be represents in another form as follow 
𝑥̇𝑥1 = 𝑥𝑥2 
𝑥̇𝑥2 = 𝑓𝑓1(𝑥𝑥) + 𝑏𝑏1(𝑥𝑥)𝑢𝑢 
𝑥̇𝑥3 = 𝑥𝑥4  
𝑥̇𝑥4 = 𝑓𝑓2(𝑥𝑥) + 𝑏𝑏2(𝑥𝑥)𝑢𝑢 
 
where f1(x)  and f2(x) are nominal function and b1(x) and b1(x) are the nonlinear 
functions of the state variables [26]. 
In sliding mode control the controller is divided by two parts, equivalent control law 

and switching control law. 

3.5.1 Designing the Sliding Surface (switches) 

The inverted pendulum system can be divided into two subsystems with state 

variables (x1, x2 ) and (x3 ,x4) for each group a linear function is designed as a 

switches: 

𝑠𝑠1(𝑥𝑥1,𝑥𝑥2) = 𝑐𝑐1𝑥𝑥1 + 𝑥𝑥2  

𝑠𝑠2(𝑥𝑥3,𝑥𝑥4) = 𝑐𝑐2𝑥𝑥3 + 𝑥𝑥4  

where c1 and c2 are real positive design parameters. But for the whole system it has 

one switching surface; 

𝑠𝑠(𝑥𝑥) = 𝛼𝛼1𝑠𝑠1 + 𝛼𝛼2𝑠𝑠2  

𝑠𝑠(𝑥𝑥) = 𝛼𝛼1𝑐𝑐1𝑥𝑥1 + 𝛼𝛼1𝑥𝑥2 + 𝛼𝛼2𝑐𝑐2𝑥𝑥3 + 𝛼𝛼2𝑥𝑥4      (3.33) 

where 𝛼𝛼1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼2 are the sliding controller design parameters. The above approach is 

adopted from [27] 

3.5.2 Designing the Sliding mode controller 

In sliding mode by using the reaching law, the system involves two stages. The 

reaching stage drives the system toward the sliding surface, and sliding stage 

constrains the system on the sliding manifold and leads it to the origin (or 

equilibrium point). 

Let select the exponential reaching law.   

𝑠̇𝑠 = −𝜑𝜑𝜑𝜑(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠),      𝜑𝜑 > 0, 𝜂𝜂 > 0      (3.34) 

According to Equation (3.33) we can drive the switching control law (𝑢𝑢𝑠𝑠𝑠𝑠 ) as follow: 

𝑠̇𝑠(𝑥𝑥) = 𝛼𝛼1𝑐𝑐1𝑥𝑥1̇ + 𝛼𝛼1𝑥𝑥2̇ + 𝛼𝛼2𝑐𝑐2𝑥𝑥3̇ + 𝛼𝛼2𝑥𝑥4̇ 
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𝑠̇𝑠(𝑥𝑥) = 𝛼𝛼1𝑐𝑐1𝑥𝑥2 + 𝛼𝛼1(𝑓𝑓1(𝑥𝑥) + 𝑏𝑏1(𝑥𝑥)𝑢𝑢) + 𝛼𝛼2𝑐𝑐2𝑥𝑥4 + 𝛼𝛼2(𝑓𝑓2(𝑥𝑥) + 𝑏𝑏2(𝑥𝑥)𝑢𝑢) 

𝑠̇𝑠(𝑥𝑥) = 𝛼𝛼1𝑐𝑐1𝑥𝑥2 + 𝛼𝛼1𝑓𝑓1(𝑥𝑥) + 𝛼𝛼1𝑏𝑏1(𝑥𝑥)𝑢𝑢 + 𝛼𝛼2𝑐𝑐2𝑥𝑥4 + 𝛼𝛼2𝑓𝑓2(𝑥𝑥) + 𝛼𝛼2𝑏𝑏2(𝑥𝑥)𝑢𝑢 

𝑠̇𝑠(𝑥𝑥) = 𝛼𝛼1𝑐𝑐1𝑥𝑥2 + 𝛼𝛼1𝑓𝑓1(𝑥𝑥) + +𝛼𝛼2𝑐𝑐2𝑥𝑥4 + 𝛼𝛼2𝑓𝑓2(𝑥𝑥) + (𝛼𝛼1𝑏𝑏1(𝑥𝑥) + 𝛼𝛼2𝑏𝑏2(𝑥𝑥))𝑢𝑢  

By substituting 𝑠̇𝑠(𝑥𝑥) = −𝜑𝜑𝜑𝜑(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥)) 

−𝜑𝜑𝜑𝜑(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥)) = 𝛼𝛼1𝑐𝑐1𝑥𝑥2 + 𝛼𝛼1𝑓𝑓1(𝑥𝑥) + 𝛼𝛼2𝑐𝑐2𝑥𝑥4 + 𝛼𝛼2𝑓𝑓2(𝑥𝑥) + (𝛼𝛼1𝑏𝑏1(𝑥𝑥) +

𝛼𝛼2𝑏𝑏2(𝑥𝑥))𝑢𝑢  

𝑢𝑢(𝑥𝑥) = −𝜑𝜑𝜑𝜑 (𝑥𝑥)−𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 𝑛𝑛 (𝑠𝑠(𝑥𝑥))−𝛼𝛼1𝑐𝑐1𝑥𝑥2−𝛼𝛼1𝑓𝑓1(𝑥𝑥)−𝛼𝛼2𝑐𝑐2𝑥𝑥4−𝛼𝛼2𝑓𝑓2(𝑥𝑥)
𝛼𝛼1𝑏𝑏1(𝑥𝑥)+𝛼𝛼2𝑏𝑏2(𝑥𝑥)

     (3.35) 

To determine the sliding mode controller parameters the candidate Lyapunov 

function V (s(x)) is (𝑉𝑉(𝑠𝑠) = 1
2
𝑠𝑠2). The time derivative of 𝑉𝑉(𝑠𝑠) need to be negative 

definite. 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)𝑠̇𝑠(𝑥𝑥)  < 0  

Substituting the exponential reaching law of (3.34) leads to. 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠(𝑥𝑥)(−𝜑𝜑𝜑𝜑(𝑥𝑥) − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠(𝑥𝑥)))   

𝑉̇𝑉(𝑠𝑠) = −𝜑𝜑(𝑠𝑠)2 − 𝜂𝜂|𝑠𝑠(𝑥𝑥)|            (sign(s)s=|s| is the one of sign function’s property) 

so to satisfy the Lyapunove stability condition( 𝑉̇𝑉(𝑠𝑠) < 0 ) yields to 𝜑𝜑 > 0 and η > 0 

The other parameters (c1, c2, α1 and α2) can be determined based on trial and error 

[28]. 

3.6 Sliding mode controller for nonlinear inverted pendulum 

The numerical nonlinear system for inverted pendulum is: 

𝑥̇𝑥1 = 𝑥𝑥2 
𝑥̇𝑥2 = 𝑓𝑓1(𝑥𝑥1,𝑥𝑥2) + 𝑏𝑏1(𝑥𝑥1)𝑢𝑢 
𝑥̇𝑥3 = 𝑥𝑥4  
𝑥̇𝑥4 = 𝑓𝑓2(𝑥𝑥1,𝑥𝑥2) + 𝑏𝑏2(𝑥𝑥1)𝑢𝑢 
where  𝑓𝑓1(𝑥𝑥1,𝑥𝑥2) = 20.58 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1−0.025 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥1𝑥𝑥1̇

2

0.7− 0.025𝑐𝑐𝑐𝑐𝑐𝑐 2𝑥𝑥1
,          𝑏𝑏1(𝑥𝑥1) = cos 𝑥𝑥1

0.7−0.025cos 2𝑥𝑥1
,    

𝑓𝑓2(𝑥𝑥1,𝑥𝑥2) = 0.1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1𝑥𝑥2
2−2.94 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥1

8.4−0.3 𝑐𝑐𝑐𝑐𝑐𝑐 2𝑥𝑥1
   and  𝑏𝑏2(𝑥𝑥1) = 4

8.4−0.3 𝑐𝑐𝑐𝑐𝑐𝑐 2𝑥𝑥1
  

dividing system into two sub systems with state variables (x1, x2 ) and (x3 ,x4) for each 

group linear functions are derived as a switches: 

𝑠𝑠1(𝑥𝑥1,𝑥𝑥2) = 𝑐𝑐1𝑥𝑥1 + 𝑥𝑥2  

𝑠𝑠2(𝑥𝑥3,𝑥𝑥4) = 𝑐𝑐2𝑥𝑥3 + 𝑥𝑥4  
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The coupled switch for whole system is: 

𝑠𝑠(𝑥𝑥) = 𝛼𝛼1𝑐𝑐1𝑥𝑥1 + 𝛼𝛼1𝑥𝑥2 + 𝛼𝛼2𝑐𝑐2𝑥𝑥3 + 𝛼𝛼2𝑥𝑥4  

For c1=5, c2=0.5, α1=-1 and   α2=-1 

𝑠𝑠(𝑥𝑥) = −5𝑥𝑥1 − 𝑥𝑥2 − 0.5𝑥𝑥3 − 𝑥𝑥4  

The controller law designed in Equation (3.35) is:  

𝑢𝑢(𝑥𝑥) = −𝜑𝜑𝜑𝜑 (𝑥𝑥)−𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 (𝑠𝑠)−𝛼𝛼1𝑐𝑐1𝑥𝑥2−𝛼𝛼1𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2)−𝛼𝛼2𝑐𝑐2𝑥𝑥4−𝛼𝛼2𝑓𝑓2(𝑥𝑥1,𝑥𝑥2)
𝛼𝛼1𝑏𝑏1(𝑥𝑥1)+𝛼𝛼2𝑏𝑏2(𝑥𝑥1)

    (3.35a) 

Let ϕ=1, and  η=5 then. 

𝑢𝑢(𝑥𝑥) = −𝑠𝑠(𝑥𝑥)−5𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠)+5𝑥𝑥2+𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2)+0.5𝑥𝑥4+𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2)
−𝑏𝑏1(𝑥𝑥1)−𝑏𝑏2(𝑥𝑥1)

  

Simulation results for the closed loop system are depicted in Figures 3.13, 3.14 and 

3.15 where the system is stabilized based on nonlinear controller, with the system 

initial conditions are [x1(0), x2(0), x3(0), x4(0)] = [-3.5,0,0,0]. From the results can be 

seen that the sliding mode controller achieves the desired performance for nonlinear 

system and the controller is stabilized the system.  

 
Figure 3.13: Rod angle and rod angular velocity time response for coupled SMC. 
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Figure 3.14: Cart position and cart velocity time response for coupled SMC. 

 
Figure 3.15: Switching surface and control signal for coupled SMC. 

0 1 2 3 4 5 6 7 8 9 10 
-1 

0 

1 

2 

t (sec) 

S
w

itc
h 

su
rfa

ce
 

0 1 2 3 4 5 6 7 8 9 10 
-20 

-10 

0 

10 

20 

t (sec) 

In
pu

t s
ig

na
l[N

ew
to

n]
 

0 1 2 3 4 5 6 7 8 9 10 
-0.8 

-0.6 

-0.4 

-0.2 

0 

t (sec) 

C
ar

t p
os

iti
on

 x
3 

[m
] 

0 1 2 3 4 5 6 7 8 9 10 
-1.5 

-1 

-0.5 

0 

0.5 

t (sec) 

C
ar

t V
el

oc
ity

 x
4 

[m
/s

ec
] 



 

46 
 

CHAPTER 4 

SLIDING MODE CONTROLLER FOR SWING-UP AND STABILIZING 

INVERTED PENDULUM  

In this chapter the control problem considered for two stages. Firstly the swing-up 

stage, usw(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) region is swinging up the pendulum by a nonlinear controller, to 

bring the pendulum from rest position, to a limited region around of upright position 

with the predefined desired cart position, z. Secondly the stabilization stage, 

ust(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) region,  is stabilizing pendulum at the upright position with desired cart 

position by employing a sliding mode controller. The swing up is achieved by energy 

based control combined with sliding mode control, usw(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧).  For the stabilizing 

the pendulum at upright position and desired card position a coupled sliding mode 

controller, ust(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧)  is used.  The closed loop stability is achieved by Lyapunov 

method and the performance will be discussed. 

In this chapter instead of state variables [x1, x2, x3, x4], the physical state 

variables�𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧� will be considered for inverted pendulum system. 

Two regions are depicted in Figure 4.1 for the movement of rod angle, (angular 

position). 

 

 

 

 

 

 

 

Figure 4.1: The controller parts active region: Switching process.  

usw(.) region 

θ = ± 1550 

θ = ± 1800 

The rest position 

ust(.) region 

θ = ± 250 
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The controller u contains two parts; 

𝑢𝑢 = �𝑢𝑢𝑠𝑠𝑠𝑠 (𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧)                 𝑖𝑖𝑖𝑖 |θ | > 250

𝑢𝑢𝑠𝑠𝑠𝑠(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧)                  𝑖𝑖𝑖𝑖 |θ | < 250
�     (4.1) 

where usw(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) is swinging up controller which is designed to swing up the 
pendulum from the pendant position θ = ±1800and bring it to nearby upr ight position 
θ = 00, with the desired cart position by acceleration of the cart. Once the rod entered 
in the region near the upr ight positionθ ≤ |250|, the swing-up controller usw(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) 
is released by a switching process and then the stabilization controller ust(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) 
became active to stabilize the rod at upright position θ = 00 and with the desired cart 
position. The swing-up control is energy-based control combined with sliding mode 
control to bring the pendulum from pendant position, θ = ±1800 to enter in the 
limited region, θ ≤ |250| away from the upright position with controlling the cart 
position simultaneously. The stabilizing controller for the pendulum at the upright 
position is designed based on coupled sliding mode controllers to stabilize pendulum 
and control the cart position at same time. 

4.1 Swing-Up Inverted Pendulum 

There are many control strategies introduced and used to swing-up of inverted 
pendulum. Here energy-based control combined with sliding mode control will be 
designed to swing up the pendulum as follows.  

The nonlinear model of the inverted pendulum can be represented by the following 

equations: 

𝑚𝑚𝑚𝑚 𝜃̈𝜃cos 𝜃𝜃 − 𝑚𝑚𝑚𝑚 𝜃̇𝜃2sin𝜃𝜃 + (𝑀𝑀 + 𝑚𝑚)𝑧̈𝑧 = u      (4.2) 

𝐽𝐽𝜃̈𝜃 − 𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜃𝜃 + 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 𝑧̈𝑧 = 0       (4.3) 

where Equation (4.2) and (4.3) represent cart dynamic and pendulum dynamics 

respectively. Rewriting equations (4.2) and (4.3) as: 

𝜃̈𝜃 = 𝑓𝑓𝜃𝜃�𝜃𝜃, 𝜃̇𝜃� + 𝑏𝑏𝜃𝜃 (𝜃𝜃)𝑢𝑢         (4.4) 

𝑧̈𝑧 = 𝑓𝑓𝑧𝑧�𝜃𝜃, 𝜃̇𝜃� + 𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢       (4.5) 

where  𝑓𝑓𝜃𝜃�𝜃𝜃, 𝜃̇𝜃� = (𝑀𝑀+𝑚𝑚 )𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃−𝑚𝑚2𝑙𝑙2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜃̇𝜃2

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃
 ,  𝑏𝑏𝜃𝜃 (𝜃𝜃) = − 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐽𝐽 (𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃
  ,  

𝑓𝑓𝑧𝑧(𝜃𝜃, 𝜃̇𝜃) = 𝐽𝐽𝐽𝐽𝐽𝐽  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃̇𝜃2−𝑚𝑚2𝑙𝑙2𝑔𝑔  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐽𝐽 (𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃

   and  𝑏𝑏𝑧𝑧(𝜃𝜃) = 𝐽𝐽
𝐽𝐽(𝑀𝑀+𝑚𝑚 )− 𝑚𝑚2𝑙𝑙2𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃

  

The swing up controller usw is consisting of two sub different controllers that can be 

combined together: 
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usw= up(θ)+ uc(z)          (4.6) 

where up(θ) is controller to swing up the pendulum, and uc(z) is the controller to 

control the cart position during the pendulum is swinging up.  

  4.1.1 Pendulum Swing-up controller up(θ). 

Consider the energy equation for the pendulum subsystem is given by 

The pendulum subsystem’s energy equation is given by 

𝐸𝐸(𝜃𝜃, 𝜃̇𝜃) = 1
2
𝐽𝐽𝜃̇𝜃2 + 𝑚𝑚𝑚𝑚𝑚𝑚(cos𝜃𝜃 − 1)       (4.7) 

The time derivative of E is 

𝐸̇𝐸(𝜃𝜃, 𝜃̇𝜃) = (𝐽𝐽𝜃̈𝜃 − 𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜃𝜃)𝜃̇𝜃       (4.8) 

Substituting Equation(4.3) in to (4.8) yields to 

𝐸̇𝐸(𝜃𝜃, 𝜃̇𝜃) = −𝑚𝑚𝑚𝑚𝜃̇𝜃𝑧̈𝑧 cos 𝜃𝜃         (4.9) 

Let us consider the energy function as the candidate Lyapunov function as follows 

[29];  

𝑉𝑉(𝐸𝐸) = 1
2

(𝐸𝐸0 − 𝐸𝐸)2         (4.10) 

where Eo is desired energy and E pendulum energy. 

Taking the derivative of Lyapunov function (4.10) along the system trajectory yields 
to 

𝑉̇𝑉(𝐸𝐸) = −(𝐸𝐸𝑜𝑜 − 𝐸𝐸)𝐸̇𝐸      

substituting (4.9) in 𝑉̇𝑉 yields to 

𝑉̇𝑉(𝐸𝐸) = 𝑚𝑚𝑚𝑚𝜃̇𝜃 cos𝜃𝜃 (𝐸𝐸0 − 𝐸𝐸)𝑧̈𝑧       (4.11) 

substituting (4.5) in (4.11) lead to 

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) = 𝜎𝜎(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢)       (4.12) 

where 𝜎𝜎 = 𝑚𝑚𝑚𝑚𝜃̇𝜃 cos 𝜃𝜃 (𝐸𝐸0 − 𝐸𝐸)  

The nonlinear controller up(E) is 

𝑢𝑢𝑝𝑝(𝐸𝐸) = −𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎)   where δ  > 0      (4.13) 

The condition to make Equation (4.12) become semi-negative definite is: 

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) = 𝜎𝜎(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢𝑝𝑝)  

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) = 𝜎𝜎(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)(−𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎)))  

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) ≤ |𝜎𝜎||(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)�−𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎)�)|  

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) ≤ |𝜎𝜎|(|𝑓𝑓𝑧𝑧(𝜃𝜃)| − |𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿|𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎)|)    
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𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) ≤ |𝜎𝜎|(|𝑓𝑓𝑧𝑧(𝜃𝜃)| − |𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿)   

where |sgn(𝜎𝜎)|=1, and right hand side should be smaller or equal to zero  

0 ≥ |𝑓𝑓𝑧𝑧(𝜃𝜃)| − |𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿  

𝛿𝛿 ≥ |𝑓𝑓𝑧𝑧(𝜃𝜃)|
|𝑏𝑏𝑧𝑧(𝜃𝜃)|

  

where |bz(θ)| ≠ 0. 

 

4.1.2 Cart position controller during swinging up uc(z). 

The cart position controller during swinging up is achieved by a sliding mode control 
uc(z) [18]. 

Let us define the switching surface as: 

𝑠𝑠𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒 + 𝑒̇𝑒         (4.14) 

where csc is constant and e= zrsw -z where zrsw is the cart desired position for 

pendulum during the swing up region. 

The time derivative for switching surface is: 

𝑠̇𝑠(𝑒𝑒) = 𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒 + 𝑒̈𝑒    

𝑠̇𝑠(𝑒𝑒) = 𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒 + 𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑧̈𝑧        (4.15) 

The controller uc can be obtained by considering the candidate Lyapunov function, 

by select the Lyapunov function as follows [11]  

𝑉𝑉(𝑠𝑠) = 1
2
𝑠𝑠𝑠𝑠𝑠𝑠2          (4.16) 

Taking the derivative of Lyapunov Equation (4.16) yields to 

𝑉̇𝑉(𝑠𝑠) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠̇𝑠𝑠𝑠𝑠𝑠           (4.17) 

For the reaching law  

𝑠̇𝑠𝑠𝑠𝑠𝑠 = −𝛾𝛾𝛾𝛾 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑠𝑠)       (4.18) 

where β>0  and γ>0  and substituting Equation(4.18) in Equation(4.15) results to. 

−𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒 + 𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑧̈𝑧       (4.19) 

then substituting Equation (4.5) in Equation (4.19) yields to the following control 
law; 

−𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒 + 𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑧𝑧(𝜃𝜃) − 𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢𝑠𝑠𝑠𝑠    

𝑢𝑢𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠+𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒̇+𝑧𝑧̈𝑟𝑟𝑟𝑟𝑟𝑟 −𝑓𝑓𝑧𝑧(𝜃𝜃)
𝑏𝑏𝑧𝑧(𝜃𝜃)

      (4.20) 



 

50 
 

By combining the control laws given in Equations (4.13) and Equation (4.20) the 
swing-up controller is in the form of: 

𝑢𝑢𝑠𝑠𝑠𝑠 (𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) = −𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎) + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠+𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐𝑠𝑠𝑠𝑠 𝑒𝑒̇+𝑧𝑧̈𝑟𝑟𝑟𝑟𝑟𝑟 −𝑓𝑓𝑧𝑧(𝜃𝜃)
𝑏𝑏𝑧𝑧(𝜃𝜃)

    (4.21) 

To obtain the reachability condition and study the closed loop stability let recall 
Equation (4.12)  

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) = 𝜎𝜎(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢𝑠𝑠𝑠𝑠 )  

substituting Equation (4.21) in to Equation(4.12) 

𝑉̇𝑉(𝜃𝜃, 𝜃̇𝜃) = 𝜎𝜎(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)(−𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎) + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠+𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒̇+𝑧𝑧̈𝑟𝑟𝑟𝑟𝑟𝑟 −𝑓𝑓𝑧𝑧(𝜃𝜃)
𝑏𝑏𝑧𝑧(𝜃𝜃)

))  (4.22) 

𝑉̇𝑉�𝜃𝜃, 𝜃̇𝜃� = 𝜎𝜎(𝑓𝑓𝑧𝑧(𝜃𝜃) − 𝑏𝑏𝑧𝑧(𝜃𝜃)𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎) + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒 + 𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑧𝑧(𝜃𝜃))  

Taking the norm of both side leads to. 

𝑉̇𝑉�𝜃𝜃, 𝜃̇𝜃� ≤ |𝜎𝜎||(−𝑏𝑏𝑧𝑧(𝜃𝜃)𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿(𝜎𝜎) + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒 + 𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 )|   

𝑉̇𝑉�𝜃𝜃, 𝜃̇𝜃� ≤ |𝜎𝜎|(−|𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿|𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎)| + 𝛾𝛾|𝑠𝑠𝑠𝑠𝑠𝑠 | + 𝛽𝛽|𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠)||𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒| + |𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 |)   

𝑉̇𝑉�𝜃𝜃, 𝜃̇𝜃� ≤ |𝜎𝜎|(−|𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿 + 𝛾𝛾|𝑠𝑠𝑠𝑠𝑠𝑠 | + 𝛽𝛽|𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒| + |𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 |)  

where  (|sgn(s)|=1. 

To make Equation (4.12) to be negative semi definite, the right hand side in Equation 
(4.22) should be equal and smaller than zero: 

0 ≥ −|𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿 + 𝛾𝛾|𝑠𝑠𝑠𝑠𝑠𝑠 | + 𝛽𝛽|𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒| + |𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 |     and thus,       

|𝑏𝑏𝑧𝑧(𝜃𝜃)|𝛿𝛿 ≥ 𝛾𝛾|𝑠𝑠𝑠𝑠𝑠𝑠 | + 𝛽𝛽|𝑐𝑐𝑠𝑠𝑠𝑠 𝑒̇𝑒| + |𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 |  

Finally the reachability condition is  

𝛿𝛿 ≥ 𝛾𝛾|𝑠𝑠𝑠𝑠𝑠𝑠 |+𝛽𝛽|𝑐𝑐𝑠𝑠𝑠𝑠 𝑒𝑒̇|+|𝑧̈𝑧𝑟𝑟𝑟𝑟𝑟𝑟 |
|𝑏𝑏𝑧𝑧(𝜃𝜃)|   

The simulation results for swinging up controller usw(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) that represented by 
Equation (4.21) are depicted by Figures 4.2, 4.3 and 4.4 without stabilizing 
controller.  

Figure 4.2 (a) shows the pendulum starts swinging by swing up controller from θ=-
180 to upright position where the swing-up parameters are: Eo=0, δ=3.5, γ=1 β=1 ,  
csc=2 and zrsw=1, and the system initial conditions are �𝜃𝜃(0), 𝜃̇𝜃(0), 𝑧𝑧(0), 𝑧̇𝑧(0)� =
[−𝜋𝜋, 0,0,0]. It can be noted that the swing-up controller is continues to swinging up 
the pendulum, because it has not any stabilizing controller to catch the pendulum at 
upright position. Figure 4.2 (b) shows the cart position time response during the 
pendulum swinging up. The results given in Figure 4.2 indicates that the swing-up 
controller push the cart from its initial position z(0)=0 to its desired position zrsw=1 
within the restricted cart deviation.  

In this case the swing up parameters are: Eo=0, δ=4.5, γ=1, β=1 , csc=2 and zrsw=1. 
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Figure 4.3 shows where the value of δ is increased (in rechability condition range) 
the swing up time speeds up. Note that the swing-up controller is restricted with the 
cart travel. 

 
Figure 4.2: Swinging up system time response   

Figure 4.4 illustrates the system time response when the selected swinging up 
controller’s parameters are ( Eo=0, δ=3.2, γ=1, β=1 , csc=2 and zrsw=0_1_0), and the 
system initial conditions are �𝜃𝜃(0), 𝜃̇𝜃(0),𝑧𝑧(0), 𝑧̇𝑧(0)� = [−𝜋𝜋, 0,−0.5,0]. In this case 
the cart desired position three times was changed as shown by Figure 4.4(b) where 
dotted line represents the desired cart position and the solid line represents the actual 
cart position. Figure 4.4 shows that the controller is achieved the desired cart position 
and the closed loop performance. 
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Figure 4.3: Swing up pendulum time response Case 2. 

 

Figure 4.4: Swing up pendulum time response for Case 3. 
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4.2 Stabilizing the nonlinear pendulum system and controlling the cart position 

with the sliding mode control.  

Coupled sliding mode controller is used to stabilize the pendulum at upright position 
where coupled switching surface is defined as[27]: 

sc(sθ( 𝜃𝜃, 𝜃̇𝜃) , sz(𝑧𝑧, 𝑧̇𝑧))=ε1sθ + ε2sz       (4.23) 

where sc is coupled switching surface for hole system, ε1 and ε2 are design parameter, 
sθ( 𝜃𝜃, 𝜃̇𝜃) switching surface for pendulum subsystem and sz(𝑧𝑧, 𝑧̇𝑧) switching surface for 
cart subsystem. For the simplicity the function will be termed without presents such 
sc(sθ, sz )= sc. 

For the pendulum subsystem the switching surface and its derivative are: 

𝑠𝑠𝜃𝜃 = 𝑐𝑐1𝑒𝑒𝜃𝜃 + 𝑒̇𝑒𝜃𝜃           (4.24) 

and 

𝑠̇𝑠𝜃𝜃 = 𝑐𝑐1𝑒̇𝑒𝜃𝜃 + 𝑒̈𝑒𝜃𝜃          (4.25) 

where c1 is positive constant and eθ=θd -θ  where θd is the desired rod angle. 

Let us define the cart subsystem switching surface as: 

𝑠𝑠𝑧𝑧 = 𝑐𝑐2𝑒𝑒𝑧𝑧 + 𝑒̇𝑒𝑧𝑧          (4.26) 

𝑠̇𝑠𝑧𝑧 = 𝑐𝑐2𝑒̇𝑒𝑧𝑧 + 𝑒̈𝑒𝑧𝑧          (4.27) 

where c2 is positive constant and ez= zd -z where zd is desired cart position. 

The time derivative for coupled switching surface is: 

𝑠̇𝑠𝑐𝑐 = 𝜀𝜀1𝑠̇𝑠𝜃𝜃 + 𝜀𝜀2 𝑠̇𝑠𝑧𝑧          (4.28) 

and substituting Equation(4.25), and Equation(4.27) in to Equation(4.28) 

𝑠̇𝑠𝑐𝑐 = 𝜀𝜀1𝑐𝑐1𝑒̇𝑒𝜃𝜃 + 𝜀𝜀1𝑒̈𝑒𝜃𝜃  + 𝜀𝜀2𝑐𝑐2𝑒̇𝑒𝑧𝑧 + 𝜀𝜀2𝑒̈𝑒𝑧𝑧      (4.28b) 

For the exponential reaching law of: 

𝑠̇𝑠𝑐𝑐 = −𝜑𝜑𝑠𝑠𝑐𝑐 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠𝑐𝑐)  where ϕ > 0  and  η> 0   (4.29) 

then substituting Equation(4.29) in to Equation (4.28b) leads to 

−𝜑𝜑𝑠𝑠𝑐𝑐 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠𝑐𝑐) = 𝜀𝜀1𝑐𝑐1𝑒̇𝑒𝜃𝜃 + 𝜀𝜀1𝑒̈𝑒𝜃𝜃  + 𝜀𝜀2𝑐𝑐2𝑒̇𝑒𝑧𝑧 + 𝜀𝜀2𝑒̈𝑒𝑧𝑧   

−𝜑𝜑𝑠𝑠𝑐𝑐 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠𝑐𝑐) = 𝜀𝜀1𝑐𝑐1𝑒̇𝑒𝜃𝜃 + 𝜀𝜀1(𝜃̈𝜃d − 𝜃̈𝜃)  + 𝜀𝜀2𝑐𝑐2𝑒̇𝑒𝑧𝑧 + 𝜀𝜀2(𝑧̈𝑧𝑑𝑑 − 𝑧̈𝑧)  (4.30) 

and finally substituting Equation(4.4) and Equation(4.5) in to Equation (4.30)  

−𝜑𝜑𝑠𝑠𝑐𝑐 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠𝑐𝑐) = 𝜀𝜀1𝑐𝑐1𝑒̇𝑒𝜃𝜃 + 𝜀𝜀1𝜃̈𝜃d−𝜀𝜀1(𝑓𝑓𝜃𝜃 (𝜃𝜃) + 𝑏𝑏𝜃𝜃 (𝜃𝜃)𝑢𝑢) + 𝜀𝜀2𝑐𝑐2𝑒̇𝑒𝑧𝑧 + 𝜀𝜀2𝑧̈𝑧𝑑𝑑 −
𝜀𝜀2(𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢)  

−𝜑𝜑𝑠𝑠𝑐𝑐 − 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠𝑐𝑐) = 𝜀𝜀1𝑐𝑐1𝑒̇𝑒𝜃𝜃 − 𝜀𝜀1𝑓𝑓𝜃𝜃 (𝜃𝜃) − 𝜀𝜀1𝑏𝑏𝜃𝜃 (𝜃𝜃)𝑢𝑢𝑐𝑐 + 𝜀𝜀1𝜃̈𝜃d + 𝜀𝜀2𝑐𝑐2𝑒̇𝑒𝑧𝑧 − 𝜀𝜀2𝑓𝑓𝑧𝑧(𝜃𝜃) −
𝜀𝜀2𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢𝑐𝑐 + 𝜀𝜀2𝑧̈𝑧𝑑𝑑   

𝜀𝜀1𝑏𝑏𝜃𝜃 (𝜃𝜃)𝑢𝑢𝑐𝑐 + 𝜀𝜀2𝑏𝑏𝑧𝑧(𝜃𝜃)𝑢𝑢𝑐𝑐 = 𝜑𝜑𝑠𝑠𝑐𝑐 + 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(𝑠𝑠𝑐𝑐) + 𝜀𝜀1𝑐𝑐1𝑒̇𝑒𝜃𝜃 − 𝜀𝜀1𝑓𝑓𝜃𝜃 (𝜃𝜃) + 𝜀𝜀1𝜃̈𝜃d + 𝜀𝜀2𝑐𝑐2𝑒̇𝑒𝑧𝑧 −



 

54 
 

𝜀𝜀2𝑓𝑓𝑧𝑧(𝜃𝜃) + 𝜀𝜀2𝑧̈𝑧𝑑𝑑   

results the following control law. 

𝑢𝑢𝑠𝑠𝑠𝑠(𝜃𝜃, 𝜃̇𝜃, 𝑧𝑧, 𝑧̇𝑧) = 𝜑𝜑𝑠𝑠𝑐𝑐+𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 (𝑠𝑠𝑐𝑐)+𝜀𝜀1𝑐𝑐1𝑒𝑒̇𝜃𝜃−𝜀𝜀1𝑓𝑓𝜃𝜃 �𝜃𝜃 ,𝜃̇𝜃�+𝜀𝜀1𝜃̈𝜃d +𝜀𝜀2𝑐𝑐2𝑒𝑒̇𝑧𝑧−𝜀𝜀2𝑓𝑓𝑧𝑧�𝜃𝜃𝜃𝜃 ,𝜃̇𝜃�+𝜀𝜀2𝑧𝑧̈𝑑𝑑
𝜀𝜀1𝑏𝑏𝜃𝜃 (𝜃𝜃)+𝜀𝜀2𝑏𝑏𝑧𝑧(𝜃𝜃)

   (4.31) 

By using this controller the closed performance is achieved. There are several cases 
for desired card position is studied and the results are discussed. 

Case 1: For the system state initial conditions �𝜃𝜃(0), 𝜃̇𝜃(0),𝑧𝑧(0), 𝑧̇𝑧(0)� = [−𝜋𝜋, 0,0,0] 
and the desired card position zd=0. 

The parameters of the swing up controller given in Equation(4.21) are; δ=5,    Eo=0,  
γ=1,  β=1,   csc=2 and zrsw=0 and the parameters of the stabilizing controller  given in 
Equation(4.31) are; ε1=ε2=-1,  c1=5    c2=2,  ϕ=1,  η=3,  θd=0  and  zd=0. 

The closed loop performances of the stabilized system based on sliding mode are 

depicted in Figures 4.5. Figure 4.5 (a) shows that the swing-up controller swings up 

the pendulum from its rest position θ = -180o, and brings the pendulum to near 

upr ight position θ<|25o|. Then the stabilizing controller become active by a switch, 

and it converges the pendulum angle to zero when t→∞. Note that the closed loop 

system exhibits the desired behavior. Figure 4.5 (b) shows the cart position 

displacement where it starts from origin and it deflected from its origin 

approximately 12 cm and then back again to the desired position and it deflected in 

the opposite direction. Because of the bang-bang property of  swing up controller the 

cart continues to this action till the swing up controller moves the pendulum to be 

entered in the stabilizing region that limited by θ<|25o| to be replaced with the 

stabilizing controller. Since the swing-up controller has limited the cart deflection 

and it needs to move to close enough to the desired position. Figure 4.5 (b) shows 

that after 9 sec the stabilizing controller become active, and the cart is deflected 

approximately 19 cm away from the desired card position zd=0. Then the stabilizing 

controller achieves both stabilizing the pendulum and converge the cart to the desired 

position simultaneously. 

Figure 4.6 illustrates the control signal that have a bang-bang property and its value 

is large during swing-up controller and converge to zero with small charting effect 

after the stabilizing controller is become active. 
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Figure 4.5: System time responses for nonlinear controller Case 1. 

 

Figure 4.6: Control signal for closed loop system in Case 1. 
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Case 2: For the system state initial conditions �𝜃𝜃(0), 𝜃̇𝜃(0), 𝑧𝑧(0), 𝑧̇𝑧(0)� = [−𝜋𝜋, 0,0,0] 
and the desired card position has a square wave function. 

The parameters of the swing up controller given in (4.21) are; δ=4.5,   Eo=0,  γ=1,  
β=1.5,   csc=2 and zrsw=0.5-0 and the parameters of the stabilizing controller  given in 
(4.31) are; ε1= -1,  ε2= -2,  c1=5,  c2=2,  ϕ=2,  η=2,  θd=(0-0.5-0) 

The simulation results for case 2 are depicted in Figures 4.7 and 4.8. The pendulum 
time response illustrated in Figure 4.7 (a) and shows the swing-up controller swings 
up the pendulum from its initial condition and bring it to upright position after that 
the pendulum stabilized by the stabilizing controller. Figure 4.7 (b) illustrates the cart 
position time response where the desired cart position was changed, note that the 
swing-up controller and the stabilizing controller is achieved the desired cart position 
with limited cart deviation during swinging up the pendulum. 

 
Figure 4.7: Closed loop system time response for nonlinear controller Case 2 
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Figure 4.8: Control signal for closed loop system in Case 2 

Figure 4.8 illustrates the input signal that has a bang-bang property and its value is 
large during swing-up controller and converges to zero with small chattering effect 
when the stabilizing controller become active. Note that with any changing in desired 
cart position the control signal was increased instantaneously, but its value was 
limited by a saturation level of ±10.  

 

0 5 10 15 20 25 30 35 40 45 50 
-10 

-8 

-6 

-4 

-2 

0 

2 

4 

6 

8 

10 

In
pu

t s
ig

na
l [

N
ew

to
n]

 

Time [second] 



 

58 
 

CHAPTER 5 

COMPARISON OF RESULTS AND FUTURE WORK 

5.1 Conclusion and comparison of results 

Mathematical model of inverted pendulum system is obtained, nonlinear model is 

linearized and then three linear controllers have been applied. Linear and nonlinear 

models of the pendulum system are considered in this thesis.  

A robust controller namely sliding mode control is rejected the disturbance, is 

designed and works properly when the system dynamic model has uncertainty. 

From the simulation results obtained in case designing controller based on sliding 

mode it is noted that: 

• The controller designed based on sliding mode exhibits the desired 

behaviors. 

• Controller by sliding mode can reject the disturbance. 

• The result obtained from controllers based on reaching law is more robust 

and automatically leads to the free-order switching scheme. 

• Power rate reaching law can decrease the chattering effect. 

• A new control approach is designed to swing-up from the pendent position 

θ=±180o and stabilize the pendulum at θ=0o. Two controllers, swing up and 

stabilizing controller are designed. Swing-up controller is designed by 

combining the energy control with sliding mode controller to swing the 

pendulum from downward position it can enter within upright position 

θ<|25o| with the restricted the cart deviation to be closed to the desired 

position, zd. The swing–up’s time can be selected by adjusting the 

controller’s parameters. The controller to stabilize the pendulum at upright 

position and control the cart position is designed based on coupled sliding
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 mode controller. The stabilizing controller is not only stabilizing the 

pendulum at unstable equilibrium point, it also achieves the cart desired 

position zd and rejects the bounded disturbance. Since stabilizing controller 

is designed by using Lyapunov method the closed loop stability of the 

system is achieved.  

• Changing the desired cart position zd is having an effect for the system 

stability because both controllers are a function to 2nd derivative of desired 

cart position zd.  

• Several cases are discussed and the simulation results illustrate the 

effectiveness of the proposed method. 

  

 

 

5.2. Future Work 

a)  Designing a one nonlinear controller for both problems (swing-up and stabilizing 

the inverted pendulum). 

b) Designing nonlinear controller to swing-up and stabilizing the cart inverted 

pendulum on the slope rail, by using a sensor can measure the slope angle. 
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APPENDIX 

Appendix A: Reduced-Order Sliding Mode 

Consider a linear system (A.1) where we use the state feedback control u=-Kx ,the 

desired  

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝑏𝑏𝑢𝑢𝑎𝑎          (A.1) 

where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛    and   𝑢𝑢 ∈ 𝑅𝑅 

eigenvalues λ1, λ2, …., λn of the (A.1) may be assigned using Ackerman formula (see 

pages 730-731 in [14]). 

ua(x)= -Kx         (A.2) 

where K=eTP1(A) 

where 𝑒𝑒𝑇𝑇 = [0 0 0 1][𝐵𝐵  𝐴𝐴𝐴𝐴   𝐴𝐴2𝐵𝐵… ..  𝐴𝐴𝑛𝑛𝐵𝐵 ]
−1

 and 

P1 (A)=(A-λ1I) (A-λ2I)…(A-λn-1I)(A-λnI) = α1I+ α2A +…..+ αn-1An-2 +αnAn-1+.An (A.3) 

        ≠ 0 

Here consider a controllable system described by: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝑏𝑏[𝑢𝑢 + 𝑓𝑓(𝑥𝑥, 𝑡𝑡)]        (A4) 

Designing sliding mode control in system (A.4) implies a selection of a surface plain 

𝑠𝑠(𝑥𝑥) = 𝐶𝐶𝐶𝐶 = 0 and then the control enforcing sliding mode in s-plain s(x)=0. Order 

of the sliding mode equation is (n-1), and does not depend on disturbance. 

In this appendix the vector C will be found in an explicit form without the sliding 

motion equation by using Ackerman’s formula, here the pole placement task is 

concerned.  

Suppose λ1, …. λn-1 are the desired eigenvalues of the sliding mode. 

If  C = eTP1(A)         (A5) 

with 
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P1(A)=(A-λ1I) (A-λ2I) ……(A-λn-1I) = α1I+ α2A +…..+ αn-1An-2 +An-1,   (A.6) 

then λ1, ... λn-1 are the eigenvalues of the sliding mode dynamics in the plane 

𝑠𝑠(𝑥𝑥) = 𝐶𝐶𝐶𝐶 = 0. 

Proof : According to Ackermann’s formula (A.2), λ1, ... λn-1,λn are eigenvalues of the 

matrix,𝐴̅𝐴 = 𝐴𝐴 − 𝑏𝑏𝑏𝑏 with λn is an arbitrary value. 

Vector C is a left eigenvector of Ã corresponding to λn . Indeed, as follows from 

(A.2) and (A.5): 

𝐶𝐶𝐴̅𝐴 = 𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑇𝑇𝑃𝑃(𝐴𝐴)  

Since 

Cb= eT P1(A)b 

  = [0 0 … 1][b Ab ….An-1]-1 P1(A)b 

  =[0 0 … 1][b Ab ….An-1]-1(α1I+ α2A +…..+ αn-1An-2 +An-1)b 

  =[0 0 … 1][b Ab ….An-1]-1(α1Ib+ α2Ab +…..+ αn-1An-2b+An-1b) 

  =[0 0 … 1][b  Ab ….An-1]-1 [b  Ab ….An-1][α1  α2 ….. αn-1  1]T 

  = 1 

then 

𝐶𝐶𝐴̅𝐴 = 𝐶𝐶𝐶𝐶 − 𝑒𝑒𝑇𝑇𝑃𝑃(𝐴𝐴)  

by substituting (A.3) it become  

CÃ = CA-eT((A-λ1I) (A-λ2I)…. (A-λn-1I) (A-λnI)) 

CÃ = CA-eT P1(A)(A-λnI)       (A.7) 

where  P1(A)=(A-λ1I) (A-λ2I) ….(A-λn-1I) 

substituting (A.5) in (A.7): 

𝐶𝐶𝐴̅𝐴 = 𝐶𝐶𝐶𝐶 − 𝐶𝐶(𝐴𝐴 − 𝜆𝜆𝑛𝑛𝐼𝐼)   

𝐶𝐶𝐴̅𝐴 = 𝐶𝐶𝜆𝜆𝑛𝑛𝐼𝐼           (A.8) 

C (A-bK)= CλnI 

CA- CbK= CλnI 
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C(A-λnI)= CbK 

C= CbK(A-λnI)-1 

Note that Cb=1 as shown in above prove, and (A-λnI)-1 because λn dose not an 

eignvalue of A [30]. 
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