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ABSTRACT 

STATE FEEDBACK CONTROL OF UNDERACTUATED MANIPULATORS 

ARICI, Mehmet 

M.Sc. in Electrical-Electronics Engineering 

Supervisor:  Assist. Prof. Dr. Tolgay KARA 

August 2013, 60 pages 

Underactuated manipulators are widely used in robotic and mechatronic applications. 

Control of underactuated mechanical systems is difficult since they have fewer 

control inputs (actuators) than degrees of freedom. This thesis considers a two-

degree-of-freedom manipulator with one active joint at shoulder and  moves on 

horizontal plane. Controlling the manipulator in horizontal plane is another 

challenging work since the gravity has no effect on free joint of manipulator.  

To solve the control problem a nonlinear state feedback controller is developed. 

Partial feedback linearization technique is used for controlling each joint angle 

position and in order to control both joints simultaneously a switching control 

algorithm is adopted to the control system.  

Designed control system is applied to the manipulator in simulations and for various 

initial conditions, controlled system performance is observed. Furthermore, the same 

controller is implemented to real-time prototype of manipulator and applicability of 

controller to a real system is tested. In both simulation and real-time implementation 

satisfactory results are obtained. Proposed control system moves the manipulator 

links to desired positions in a short time interval and input torque needed is small 

enough to apply the controller to a real system. Results also show that we achieve 

position control objective with small steady-state errors which are in an acceptable 

range. 

Key Words: State feedback control, switching control, underactuted manipulators, 

partial feedback linearization, computed torque control, real-time control 

applications 



 

ÖZET 

EKSİK TAHRİKLİ MANİPÜLATÖRLERİN DURUM GERİ BESLEMELİ 

KONTROLÜ 

ARICI, Mehmet 

Yüksek Lisans Tezi, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi:  Yrd. Doç. Dr. Tolgay KARA 

Ağustos 2013, 60 sayfa 

Eksik tahrikli manipülatörler, mekatronik ve robotik uygulamalarında fazlaca 

kullanılmaktadır. Eksik tahrikli manipülatörlerin kontrolü, sistemin tahrik elemanı 

(kontrol giriş) sayısının sistem serbestlik derecesinden az olduğu için zor bir hal 

almaktadır. Bu tezde, iki serbestlik dereceli, ilk mafsalda tahrik elemanı bulunduran 

ve yatay düzlemde çalışan bir manipülatör ele alınmıştır. Yatay düzlemde serbest 

dönebilen ekleme yer çekimi etki etmediğinden bu koşulda manipülatörü kontrol 

etmek  daha zor hale gelmektedir. 

Pozisyon kontrolü problemini çözmek için doğrusal olmayan durum geri beslemeli 

kontrol sistemi geliştirilmiştir. Kısmi geri beslemeli doğrusallaştırma tekniğiyle 

manipülatörün her bir ekleminin pozisyonunu kontrol etmek için kullanılmış ve her 

iki mafsalı aynı anda kontrol etmek amacıyla anahtarlamalı kontrol algoritması 

kontrol sistemine dahil edilmiştir. Tasarlanan kontrol sisteminin performansı 

simülasyonlarla ve gerçek zamanlı çalışan bir prototip yardımıyla test edilmiş; hem 

simülasyonlarda hem de gerçek zamanlı kontrol uygulamarında tatminkar sonuçlar 

elde edilmiştir. Önerilen kontrol sistemi manipülatörün mafsallarını istenilen 

pozisyonlara kısa sürede götürmüş ve uygulanan torkun gerçek sistemlerde 

kullanılabilir düzeyde olduğu görülmüştür. Sonuçlar pozisyon kontrol hedefine 

sürekli rejimde kabul edilebilir derecede küçük hatalarla varıldığını göstermektedir. 

Anahtar Kelimeler : Durum geri beslemeli kontrol, anahtarlamalı kontrol, eksik 

tahrikli manipülatörler, kısmi geri besleme doğrusallaştırma, hesaplanan tork kontrol, 

gerçek zamanlı kontrol uygulamaları.  
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CHAPTER I 

INTRODUCTION 

Recently, a lot of attention has been given to the control of mechanical systems 

where the number of control inputs are less than that of degrees of freedom or 

generalized coordinates. Such mechanical systems are said to be underactuated 

systems. Mechanical systems may become underactuated because of failure of one or 

more actuators. Underactuated systems can also appear in the mathematical model 

used for control design such as the joint or link flexibility is included in the model. 

These systems exist in a broad range of applications including robotics, aerospace 

systems, marine systems, flexible systems mobile systems and locomotive systems. 

Pendubot, acrobot, planar underactuated manipulator, inverted pendulum, double 

inverted pendulum, gymnast robot, cart pendulum, inverted wedge are typical 

examples of undeactuated systems.  

1.1. Motivation 

The underactuated robots have many advantages, such as light weight, low energy 

consumption, high security, self-fault tolerance they have and so on. Especially in the 

area of astronautics, it has a great application prospect, as the payload sent into the 

outer space is very expensive, the manipulators of the space robots can be made by 

extremely light and high strength carbon fiber material, but at present, driving motor 

can not be made very light, and using the underactuated joints not only can reduce 

the weight of the space robots, but also can enhance the flexibility of the system. The 

underactuated systems also arise naturally when trying to develop controllers for 

spacecraft, satellites and hovercraft and as popular laboratory test examples such as 

the inverted pendulum cart, the ball and beam, and the inertia wheel pendulum. Since 

underactuated mechanical systems are so broad and have complicated variant 

dynamics, many research efforts have been made on control aspects and strategies of 

underactuated systems.  

Control of underactuated manipulators with passive joints operating in the horizontal 

plane is a special challenge. This underactuated mechanical system has been subject
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of extensive research to develop various control algorithms to deal with the 

complication of the nonlinearity, instability, and controllability of the underactuated 

system. Since the dynamics of the manipulator is not affected by gravitational terms 

are a linearization about an equilibrium point leads to a linear system which is not 

controllable. The system also has second order nonholonomic constraints which are 

not integrable. It is thus clear that there is a need to develop control techniques 

applicable to this kind of systems. To investigate the control problem, a two link 

planar  manipulator arm which has a free joint and operates in the horizontal plane is 

considered in this thesis.  

1.2. Literature Review 

Several authors proposed different control methods which are linear or nonlinear 

depending on physical and mechanical conditions of the underactuated manipulator. 

For instance, in the presence of gravity, underactuated manipulators can be linearized 

about some specific points although they are not fully linearizable. Most researchers 

have used linear control theory, in this case, to balance the systems about equilibrium 

points. Daniel Jerome [1] has used linear quadratic regulator (LQR) technique for 

balancing the Pendubot about the upright equilibrium point. Fantoni and Lozano [2] 

have used full state feedback linear controller for balancing the acrobot about the 

equilibrium position. G.Giua and A.Usai have developed a gain-scheduling 

controller for overhead cranes [3]. On the other hand, some researchers used 

nonlinear control for the same system. Spong and Praly [4] have presented the partial 

feedback linearization technique for swinging up underactuated robots about unstable 

equilibrium points. They have considered acrobot, which is a two link manipulator 

having one actuator at the elbow joint and the other one is completely free and three-

link gymnast robot and cart pole system. Daniel Jerome [1] has designed two-link 

underactuated manipulator (Pendubot), and used partial feedback linearization 

technique for a swing up control and linear quadratic regulator (LQR) technique for 

balancing the manipulator about the upright equilibrium point. Isabelle Fantoni and 

Rogelio Lozano [2] have presented energy based approach for swinging up the 

Pendubot and used Lyapunov theory for convergence analysis. Also they have used 

full-state feedback linear controller for balancing the manipulator at the equilibrium 

position. In [5], K. L. Carroll presented a robust sliding mode controller for acrobot 
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while in [6] W. Wang and D. Liu have presented a sliding mode controller for 

overhead crane. 

In the absence of gravity which means the manipulator operates in horizontal plane, 

control problem is more difficult. There are also a lot of studies that examine the 

system and suggest different control strategies. Arai and Tachi [7] have presented a 

method of controlling the position of an underactuated manipulator equipped with 

motors and encoders on active joints, and holding brakes and encoders on passive 

joints. The passive joints are excited to the desired position using dynamic 

decoupling and held on the desired position by engaging the holding brakes. Also 

Arai and Tachi [7] have described the controllability conditions of such 

manipulators. In [11], Arai has proved the controllability of a 3-DOF underactuated 

manipulator (that is not equipped with brakes on passive joints) by a constructive 

method in which the trajectory from any initial state to any desired state is composed. 

In [12], Marcel Bergerman have studied the controllability of planar manipulators 

and developed robust optimal sequential control methods for the underactuated 

manipulators using variable structure controllers with the aid of brakes on passive 

joints. He has also developed a graphical method to plan a collision–free motion of 

the manipulator inside its constrained configuration space. On the other side, Norbert 

Scherm and Bodo Heimann [13] have proposed a discrete time approach based on 

sensitivity functions for the same system. Tian Zhixiang [14] has presented a 

discontinuous control method which divides the system into active and passive 

subsystem and designed adaptive laws with bacstepping algorithm to control overall 

system. 

1.3. Problem Statement and Contribution of Thesis 

Position control problem of a two link underactuted manipulator which moves in 

horizontal plane and has two revolute joints is considered in this thesis. The 

manipulator is an example of a mechanical system with second-order nonholonomic 

constraints. In particular, the dynamic equation of the unactuated joints is a second-

order constraint on generalized coordinates which is in general non-integrable. This 

is in contrast with the vast majority of literature on nonholonomic systems, where 

only first-order (kinematic) constraints have been presented. Furthermore, as we will 

see in following chapters, linearization of the system about any equilibrium point is 
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not controllable. It means that we can not control both joints of the manipulator 

simultaneously by using a linear state feedback control method. It must be 

emphasized that if the manipulator operated in vertical plane it would simplify the 

control problem, making the linearization around any equilibrium point controllable 

because of inclusion of gravity terms in the dynamic equation of the system. In this 

case even a linear controller will eventually stabilize the system. Consequently, 

linear stabilization tools cannot be used even locally. Moreover, there is a 

fundamental obstruction to existence of smooth time-invariant feedback laws. In the 

case of horizontal operating condition, system might be asymptotically stabilizable 

by means of nonlinear feedback. A number of approaches have been proposed for 

stabilization of nonholonomic control systems to an equilibrium. Approaches can be 

classified as discontinuous time-invariant stabilization, time varying stabilization and 

hybrid stabilization. For these reasons a nonlinear state feedback control law is 

proposed for an underactuated manipulator in thesis. Firstly, for each joint, a partly 

stable control law is designed by using partial feedback linearization technique and 

computed torque control method. Then, to control the overall system, a logic based 

switching rule which depends on energy-like error functions of the joint angles and 

velocities and chooses the suitable partly stable controller is used as a supervisor.  

1.4.  Organization of Thesis 

The previous sections give an overview about underactuated systems and at which 

conditions this behavior occurs. Then some solutions of the control problem are 

given in previous studies. The mathematical model of the system and its properties 

are discussed further in Chapter II. 

Chapter III presents control problem of the underactuated manipulator. A brief 

background of the proposed control methodologies and strategies are also given and 

then purposed control system is explained. 

After control system is designed, simulation of the manipulator based on the 

designed controller is given Chapter IV and performance of the manipuator is tested 

by the simulated system. Chapter V give information about construction of real 

prototype system and performance of the controller on the prototype is also observed 

and results are given. In Chapter VI results and conclusions are generally discussed.
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CHAPTER II 

MATHEMATICAL MODEL OF 2-DOF UNDERACTUATED 

MANIPULATOR 

 

2.1. Introduction 

The first step in the controller design for two-link planar underactuated manipulator 

is to develop mathematical model for it. This task is achieved in the following 

sections. 

In general, dynamic equations may be used to find the equations of motion of 

mechanisms. This means that knowing the forces and torques, one can figure out 

how a mechanism will move. The techniques such as  Newtonian mechanics can be 

used to find the dynamic equations for robots. However, due to the fact that robots 

are three dimensional, multiple-degree-of-freedom mechanisms with distributed 

masses, it is very difficult to use Newtonian mechanics. Instead, one may choose to 

use other techniques such as Lagrangian mechanics. Lagrangian is based on energy 

terms only and thus in many cases is easier to use. Although Newtonian mechanics, 

as well as other techniques, can be used for this derivation, most of references are 

based on Lagrangian mechanics.  

With Lagrange formulation, the equations of motion can be derived in a systematic 

way independently of the reference coordinate frame. Once a set of variables qi , i =1, 

……, n termed as the generalized coordinates, are chosen which effectively describe 

the link positions of an n-DOF manipulator, the Lagrangian of the generalized 

coordinates: 

L K P                                                                                                                  (2.1) 

where K and P respectively denote the total kinetic energy and potetial energy of the 

system. Then : 

i

i i

L L
( (q,q)) (q,q)

t q q

  
  

  
                                                                                  (2.2) 
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where τ is the sum of all torques in a rotational motion. States q and  ̇ are joint 

angular positions and velocities respectively. As a result, to get the equations of 

motion, we need to derive energy equations for the system and then differentiate the 

Lagrangian according to equation (2.2). 

2.2. Equations of Motion via Lagrange Formulation 

First we calculate the kinetic and potential energies of the system for which the 

coordinate description is given in Figure 2.1 to obtain equations of motion with 

Lagrangian mechanics.  

 

 

 

 

Figure 2. 1. Coordinate description of underactuated manipulator 

 

Kinetic energy of the first link of the manipulator is given by : 

 

2 2

1 1 1 1 1

1
K (I m r )q

2
                                                                                                  (2.3)
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Kinetic energy of the second link: 

 

2 2 2 2

2 2 2 1 2 2 2 2 2 1 1 2 2 1 2 2 2 2 1 2

2 2

2 2 2 2

1
K (I m l r cosq m r m l )q (I m l r cosq m r )q q

2

1
(I m r )q

2

      

 

          (2.4) 

 

Total kinetic energy of the system is: 

 

1 2K K K                                                                                                              (2.5) 

 

To simplify the equations  we introduce three parameters θi,  i = (1, .., 3) in the 

following form: 

 

2 2

1 1 1 2 1 1m r m l I                                                                                                    (2.6) 

 

2

2 1 2 2m r I                                                                                                             (2.7) 

 

3 2 1 2m l r                                                                                                                (2.8) 

 

By using the parameters introduced total kinetic energy can be written in the 

following form: 

 

2 2

1 2 3 2 1 2 2 2 3 2 1 2

1 1
K ( 2 cosq )q q ( cosq )q q

2 2
                                           (2.9) 

 

Potential energy of the system is also sum of the energies of the two links. This 

energy is only depends on the position of each joint. However, since we assume that 

the manipulator moves in horizontal plane we can cancel the terms which contain 

gravity. In this case, total potential energy of the manipulator is zero and Lagrangian 

function takes the following form: 
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2 2

1 2 3 2 1 2 2 2 3 2 1 2

1 1
L ( 2 cosq )q q ( cosq )q q

2 2
                                          (2.10)

In order to find elements of Lagrange equation given in (2.2), Lagrange function 

above is used. Following equations give these elements : 

 

1 2 3 2 1 2 3 2 2

1

L
( ) ( 2 cosq )q ( cosq )q

q


       


                                              (2.11) 

 

1

L
( ) 0

q





                                                                                                               (2.12) 

 

2 3 2 1 2 2

2

L
( ) ( cosq )q q

q


   


                                                                           (2.13) 

 

2

3 2 1 3 1 2

2

L
( ) sin q q sin q q

q


  


                                                                          (2.14) 

 

where q = (q1, q2)
T
 is joint positions vector and τ = (τ1, 0)

T
 is actuation torque of the 

joints. In our case only shoulder joint is actuated and there is no actuation in the 

elbow joint. From Lagrangian derivations the dynamic equations of the manipulator 

are obtained as given below: 

2

1 2 3 2 1 1 3 2 2 3 2 2

3 2 1 2 1

( 2 cosq )q ( cosq )q sin(q )q

2 sin(q )q q

       

   
                                     (2.15) 

 

2

2 2 2 3 2 1 3 2 1q ( cosq )q sin(q )q 0                                                                 (2.16) 

The equation of motion can be written in the compact matrix form which represents 

the joint space dynamics as : 

 

M(q)q H(q,q)                                                                                                 (2.17) 

 

where  

M(q)      :  Symmetric positive definite inertia matrix 

H(q,  ̇)  :  Centipetal and coriolis term matrix 
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τ            :  Joint torques 

 

If we rewrite equations (2.15) and (2.16) in the compact form given in (2.17), inertia 

matrix, coriolis matrix and joint torque matrix for the manipulator we considered are 

as given below:  

 

 
T

1 2q q q  

 

 
T

1 0    

 

1 2 3 2 2 3 2

2 3 2 2

2 cosq cosq
M(q)

cosq

      
  

   
 

 

2

3 2 1 2 2

2

3 2 1

sin q (2q q q )
H(q,q)

sin(q )q

  
  

 
 

 

In the manipulator dynamic equation, a coefficient in the form of M11 is known as 

effective inertia at joint1, such that an acceleration at joint1 causes a torque at joint1 

equal to M11 ̈ , whereas a coefficient in the form M12 is known as coupling inertia 

between first and second joints as an acceleration at joint1 or joint2 causes a torque 

at joint1 or joint2 equal to M12 ̈ . All terms with  ̇  ̇  represent coriolis 

accelerations and when multiplied by corresponding inertias they will represent 

coriolis forces. Remaining terms which contain quadratic velocities of joints like  ̇ 
  

and  ̇ 
  represents centripetal forces acting on related joint due to a velocity at other 

joint. 

If we regard the nonconservative forces doing work at the manipulator joints, those 

are given by actuation torques τ minus the viscous friction torques and the static 

friction torques general formulation of the system takes the following form: 

 

v sM(q)q H(q,q) F q F sgn(q)                                                                         (2.18) 
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where Fv denotes the 2x2 diagonal matrix of viscous friction coefficients, and Fs is a 

2x2 diagonal matrix of static friction coefficients. 

 

2.3. The State Space Based Description 

Because the matrix M(q) is positive definite, the inverse matrix of it, M(q)
-1

, exists. 

The system motion equation can then be written as: 

 

1q M(q) ( H(q,q))                                                                                           (2.19) 

 

If we define the state vector x as follows : 

x :   x1 = q1,  x2 =  ̇ ,  x3 = q2,  x4 =  ̇   

 

The state space description of the system can be obtained as follows: 

 

x f (x) g(x)u                                                                                                      (2.20) 

 

where 

 

1 2f (x) x  

2 2

2 3 1 4 3 3 2 3 3
2 2

1 2 3 3

(x x ) sin x x sin x cos x
f (x)

cos x

   


  
 

3 4f (x) x  

2 2 2

3 2 4 3 3 1 3 2 3
4 2 2 2

1 2 3 3

(x x ) sin x cos x x sin x
f (x) f (x)

cos x

   
  

  
 

1g (x) 0  

2
2 2 2

1 2 3 3

g (x)
cos x



  

 

3g (x) 0  

2 3 3
4 2 2

1 2 3 3

cos x
g (x)

cos x

 
 

  
 

                                                                                                                               (2.21)                       
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Parameters θ1 to θ3 above are defined in equations (2.6), (2.7) and (2.8), u is the input 

torque applied to the shoulder motor, and x1 to x4 are state variables of the 

manipulator. 

2.4. The Equilibrium Manifold 

Underactuated mechanical systems generally have equilibria which depend on both 

their kinematic and dynamic parameters. If the underactuated manipulator is 

mounted so that the joint axes are parallel to gravity, then there will be a continuum 

of equilibrium configurations exist only when the input torque is zero. In some other 

researches on the planar robot, the joint axes of the system are set to be perpendicular 

to the gravity in which case the continuum of equilibrium configurations exists, each 

corresponding to a constant value,  ̅, of the input torque τ [15, 16].  

 

If (q,  ̇) = (q
e
, 0) is an equilibrium solution for the system, q

e
 is referred to as an 

equilibrium configuration. For the manipulator dynamics, the equilibrium 

configuration is given by {       ( )   (   )   }. It is thus clear that all points 

q   Q are equilibrium configurations. The control object is to move the links from 

rest to a target-configuration with zero-velocity. 
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CHAPTER III 

 

CONTROL METHOD 

 
As mentioned before, because of horizontal operating condition, linearization of 

underactuated system considered in the thesis in not controllable. The system also 

has very complicated nonlinear structure and nonholonomic constraints. All these 

properties of the manipulator still make its control issue an open problem as given in 

the literature review. As a matter of fact, manipulators with passive joints in the 

absence of gravity cannot be stabilized at a point by smooth static feedback, as they 

violate the condition due to Brocket [17]. As a consequence, any feedback law 

solving the position control problem of the manipulator must necessarily be 

discontinuous and/or time-varying. 

 

In this thesis, to solve the control problem a discontinuous nonlinear state feedback 

controller is proposed. Partial feedback linearization and computed torque control is 

used to design partly stable state feedback controllers for each link of manipulator. 

These controllers can stabilize only the related joint that linearization process is 

applied. Then, in order to design a supervisory switching controller that stabilizes the 

whole system, an energy like error function is given such that it includes position and 

velocity errors of joints according to desired and actual values of the state variables. 

3.1. Controllability of Underactuated Manipulator 

In the horizontal plane, the components of potential energy are not included as 

mentioned in the previous chapter. Thus, the equations of motion for the 

underactuated manipulator in the horizontal plane, are as it is expressed in the 

equations (2.15) and (2.16). 

 

Let us rewrite equations (2.15) and (2.16) in the following manner :
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2 2 2

1 2 3 2 1 2 3 2 2 1 2 12 2

1 2 3 2

1
q sinq (q q ) cosq sin(q )q

cos q
          

                (3.1) 

 

2 2

3 2 3 2 2 1 2 1 3 2 2 1

2 2 2

1 2 3 2 2 3 2 1

( cosq )sin q (q q ) ( cosq )sin(q )q1
q

cos q ( cosq )

       
  
       

                 (3.2) 

 

Differentiating equations (3.1) and (3.2) with respect to the states [          

  ̇            ̇ ]and evaluating them at arbitrary position [          ̇  

            ̇   ], reveals the following state space equation: 

 

x Ax Bu                                                                                                              (3.3) 

 

where  

 

1

2

00 1 0 0

N0 0 0 0
x

00 0 0 1

N0 0 0 0

  
  
   
  
  

   

x                                                                                     (3.4)   

 

The terms N1 and N2 are constants resulted from evaluating the partial differential 

equation at arbitrary positions [                 ]. 

 

2 3 22
1 22 2 2 2

1 2 3 2 1 2 3 2

cosq
N , N

cos q cos q

 
  
     

 

 

Therefore  

 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 
 
 
 
 
 

A          
1

2

0

N

0

N

 
 
 
 
 
 

B         

1

2

N

0
AB

N

0

 
 
 
 
 
 

        2

0

0
A B

0

0

 
 
 
 
 
 

         3

0

0
A B

0

0

 
 
 
 
 
 

 

 

And 
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1

12 3

2

2

0 N 0 0

N 0 0 0
B AB A B A B

0 N 0 0

N 0 0 0

 
 
      
 
 

 

 

It is clear that the matrix [             ] which determines the controllability 

of the system is singular (rank=2<4). Thus, as in [18] the two link manipulator is 

uncontrollable in the absence of gravity terms and friction terms. Therefore 

positioning the underactuated manipulator at desired position is done with aid of 

holding brakes in some previous researches.  

3.2. Computed-Torque Control 

Computed-torque control gives one the ability to obtain a linear version of a 

nonlinear system by means of the state variables. The equation of motion (2.17) that 

exhibits charactersitic behaviour of robot manipulator, generally comprises nonlinear 

functions of state variables (joint positions and velocities). A controller can be 

compesed of nonlinear functions of the state variables in the closed-loop form but it 

can also be described by a linear differential equation. This controller is capable of 

fulfilling the motion control objective, globally and moreover with a trivial selection 

of its design parameters. 

The computed-torque control law is given as follows : 

d V PM(q) q K q K q H(q,q)                                                                             (3.5) 

Where KV and KP are symmetric positive definite design matrices and dq q q   

generally denotes the position error. 

Control law (3.5) contains the terms V PK q K q  which are of PD type. However, 

these terms are actually multiplied by the inertia matrix dM(q q) . Therefore this is 

not a linear controller as the PD, since the position and velocity gains are not 

constant but they depend explicitly on the position error q . This may be clearly seen 

when expressing the computed-torque control law given by (3.5) as : 

d P d VM(q q)K q M(q q)K q M(q)q H(q,q)                                                  (3.6)
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The closed-loop equation is obtained by substituting the control action τ from (3.5) in 

the equation of manipulator model (2.17) to obtain 

d V PM(q)q M(q) q K q K q H(q,q)                                                                  (3.7) 

Since M(q) is a positive definite matrix, we can apply inverse matrix operation and 

equation (3.7) reduces to 

d V Pq K q K q 0                                                                                                    (3.8) 

 which in turn may be expressed in terms of the state vector 
T

T Tq q   as : 

P V

0 Iq qd

K Kq qdt

    
          

                                                                                     (3.9) 

where I is the identity matrix of dimension n. 

It is important to point out that the closed loop equation (3.9) is represented by a 

linear autonomous differential equation, which unique equilibrium point is given by  

T
T T 2nq q 0     . This single equilibrium point in the origin since the matrix KP 

is designed to be positive definite and therefore nonsingular. 

Since the closed-loop equation (3.9) is linear and autonomous, its solutions may be 

obtained in closed form and be used to conclude about the stability of the origin. This 

can be done by using Lyapunov’s direct method.  

To that end, we start by introducing the constant ε satisfying 

 min VK 0     

Multiplying by x
T
x where nx  is any nonzero vector, we obtain :  

  T T

min VK x x x x    

Since KV is by design, a symmetric matrix then : 

  T T

V min Vx K x K x x   
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and therefore, 

 T

Vx K I x 0          nx 0    

This means that the matrix vK I  is positive definite, i.e. 

vK I 0                                                                                                              (3.10) 

Considering all this, the positivity of the matrix KP and constant ε we can conclude 

that 

2

P vK K I 0                                                                                                    (3.11) 

If  a Lyapunov function candidate is chosen as 

T

p Vq K K I q1
V(q,q)

q I I q2

       
      

     
 

 

 T T T

P v

1 1
V(q,q) q q q K K q q q

2 2
                                                                (3.12) 

Evaluating the total time derivative of V(q,q)  we get : 

 T T T T

P v

1 1
V(q,q) q q q K K q q q q q

2 2
                                                       (3.13) 

Substituting q  from the closed-loop equation (3.9) in the previous expression and 

after simplifying it, we obtain 

 

T

P

V

K 0q q
V(q,q)

0 K Iq q

    
           

                                                                   (3.14) 

Now, since ε is chosen so that KV-εI > 0, and since KP is by design positive definite, 

the function  V(q,q)  in equation (3.14) is globally negative definite. In this case the 
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origin 
T

T T 2nq q 0      of the closed-loop equation is globally uniformly 

asymptotically stable and therefore : 

t
limq(t) 0


 ,  
t
limq(t) 0


  

For practical purposes, the design matrices Kp and KV may be chosen to be diagonal. 

This means that the closed-loop equation (3.9) represents a decoupled multivariable 

linear system that is, the dynamic behavior of the errors of each joint position is 

governed by second-order linear differential equations which are independent of each 

other. In this case the selection of the matrices KP and KV may be made specifically 

as: 

 2 2

P 1 nK diag ,.....,   ,    V 1 nK diag 2 ,.....,2    

With this choice, each joint responds as a critically damped linear system with 

bandwidth i . The bandwidth i defines the velocity of the joint in question and 

consequently, the decay exponential rate of the errors q(t)and q(t) . Therefore, in 

view of these we may not only guarantee the control objective but we may also 

govern the performance of the closed-loop control system. 

3.5. Partial Feedback Linearization 

Linearizing the state equations does not necessarily linearize the output equation. 

The idea in partial feedback linearization is to obtain a simple and direct relationship 

between the system output y and input u. If one needs to differentiate the output of a 

nonlinear system r times to obtain an explicit relationship between u and y, the 

system is said to have a relative degree r. This is consistent with the notion of relative 

degree in linear systems (excess of poles over zeros). If the relative degree is less 

than the degree of state equations, i.e., r < n, then a part of the system dynamics 

called the “internal dynamics” has been rendered unobservable in the partial 

feedback linearization; and the system is not input-state linearizable but partial 

feedback linearizable. When r = n, there is no internal dynamics; and the system is 

both input-state and partial feedback linearizable. In order for the closed-loop system 

to be stable, the internal dynamics must be stable. It is possible for one choice of 

output to yield a stable internal dynamics while another choice would lead an 
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unstable one. Therefore, if possible, one should choose the output y (“designer 

output”) such that the internal dynamics is stable   

Fully actuated robots are feedback linearizable by nonlinear feedback. For 

underactuted robots it is known that the portion of the dynamics corresponding to the 

actuated (or active) degrees of freedom may be linearized by nonlinear feedback. It is 

named as collocated feedback linearization. Collocated linearization refers to a 

control that linearizes the equations associated with the actuated degrees of freedom 

q1 if we consider our underactuated manipulator which has only one actuator on the 

shoulder joint. The remaining portion of the dynamics after such partial feedback 

linearization is nonlinear and represents internal dynamics. It is alternatively possible 

to linearize the portion of the dynamics corresponding to unactuated (or passive) 

degrees of freedom under a condition which we call strong inertial coupling. In this 

case the linearization is called as non-collocated feedback linearization which refers 

to linearizing the passive degrees of freedom [22]. 

3.6.Control of the Manipulator Links via Partial Feedback Linearization 

The task of this section is to derive the partial feedback control for the underactuated 

manipulator. To see a general derivation of partial feedback linearization please refer 

to [23] and [24]. 

 

The motion equations of the manipulator are given by Equations (2.15)-(2.17). 

Performing the matrix and vector multiplications, the motion equations can be 

written as : 

 

11 11 12 2 1m q m q h (q,q) u                                                                                    (3.17) 

 

21 11 22 2 2m q m q h (q,q) 0                                                                                    (3.18) 

Because the manipulator is a planar two-link robot with an actuator at the shoulder 

(joint 1) but no actuator at elbow (joint 2), the Link 2 is underactuated. That is, only 

one torque u is applied at the shoulder of the manipulator. Refer to the dynamics of 

the manipulator derived in the following section, one can see that with setting the 

input torque u as some desired value determined by the feedback control law, either 

one link of the manipulator could be controlled to move a given position but not 
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both. This is the reason why this method is called the partial feedback linearization 

method. If the system is fully actuated, there are actuators not only at the shoulder 

but also at the elbow, one can fully linearize the dynamics of both degrees of 

freedom by feedback control law. As a result, both links could be fully controlled to 

track given trajectories. this is the so called fully linearization method or the 

computed torque  method. 

3.6.1. Control of the First Link 

At first, one can choose to linearize the collocated degree of freedom q1. The 

dynamical equation for the manipulator can be written as follows: 

 

 1q M (q) h(q,q)                                                                                          (3.19) 

 

Expanding the above equation, it is also rewritten by 

22 12 22
1 1 2 1

m m m
q h h

D D D
                                                                                    (3.20) 

12 11 22
2 1 2 1

m m m
q h h

D D D
                                                                                    (3.21) 

where D is the determinant of the inertia matrix M(q) given by : 

2

11 22 12D m m m                                                                                                    (3.22) 

Now one can give the system input u for equation (3.20) as follows : 

22 12
1 1 2

22

m mD
u (v h h )

m D D
                                                                                 (3.23) 

where v1 is the auxiliary input to the system. 

This results in the following system 

1 1q v                                                                                                                    (3.24) 

22 2 2 21 1m q h (q,q) m v                                                                                        (3.25) 
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Since equation (3.24) is now linear, a computed torque  controller with feedforward 

acceleration could be applied for the purpose of the Link 1’s position control : 

1 d1 v1 d1 1 p1 d1 1v q K (q q ) K (q q )                                                                       (3.26) 

where qd1 is the desired value of q1. 

 

 

 

Figure 3. 1. Block diagram of the partial feedback linearization control 

This is the outer loop control which is employed to move to a desired angle value q1 

for Link 1. The response of Link 2 is then given by the resulting nonlinear equation 

(3.25). Equation (3.25) represents internal dynamics with respect to an output y = q1 . 

the function of the outer loop control therefore is to move a given angle value for 

Link 1 and the same time excite the internal dynamics to any angle value for Link 2. 

First, the state variables, q1, q2,  ̇ ,  ̇ , are fed back to the outer loop control law to 

calculate the variable v1 (using the equation (3.26)). Then, v1 is used with the state 

variables to calculate the control input for the manipulator based on the inner loop 

control law (using equation (3.23)). Now one can see that the so called outer loop 

and inner loop are actually two steps for calculating the control signal u. They are 

divided in order to be expressed more clearly. 

Now, substituting (3.26) into equation (3.24), one can get the error equation: 

d1 11

d1 12

q qe

q qe

  
    

   
e                                                                                               (3.27) 
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1 1

p1 v12 2

0 1e e

K Ke e

    
           

e                                                                               (3.28) 

The values of Kp1 and Kd1 must be positive to guarantee the convergence of the error 

e to zero. With properly chosen Kp and Kv, the convergence rate of the errors could 

be adjusted. 

3.6.2. Control of the Second Link 

In some cases of controlling the underactuated manipulator one can choose to 

linearize the non-collocated degree of freedom q2. Similar to the analysis for the 

control of q1, one can get following results for controlling q2 as given in equation 

(3.21) : 

12 11 22
2 1 2 1

m m m
q h h

D D D
     

Now, the system input u (input torque τ1) could be given as follows : 

12 11
2 1 2

12

m mD
u (v h h )

m D D
                                                                               (3.29) 

where v2 is auxiliary input to the system. 

This results in the system 

2 2q v                                                                                                                    (3.30) 

21 1 2 22 2m q h (q,q) m v                                                                                         

(3.31) 

 

For the purpose of Link 2’s stabilization, computed torque controller is applied in the 

same manner with Link 1, 

2 d2 v2 d2 1 p2 d2 2v q K (q q ) K (q q )                                                                    (3.32) 

where qd2 is the desired position value or trajectory of q2.  

Now , together with the equation (3.30), one can get the error equation : 
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d2 21

d2 22

q qe

q qe

  
    

   
e                                                                                              (3.33) 

 

1 1

p2 v22 2

0 1e e

K Ke e

    
           

e                                                                              (3.34) 

 

With properly chosen 
p2K  and v2K , one can adjust the convergence rate of the errors 

to zero. 

Now, it has been proved that any degree of freedom of the underactuated 

manipulator can be fully controlled very well. 

3.7. Combining and Implementing the Controllers 

In order to control each link of the underactuted manipulator, partly stable controllers 

are designed. In this case a supervisory controller is needed to control the position of 

end point of second link. Therefore, a logic based switching controller is proposed 

which uses position and velocity errors of the joints.  

Let us consider n-degrees-of-freedom system in which m joints are active (actuated) 

where m < n in our case. If a computed torque method is used as a partly stable 

controller, then the number of states stabilized by the controller is just 2m. When we 

use a two-link underactuated manipulator with a single actuator, n = 2 and m = 1. 

Therefore we need two partly stable controllers are needed [25]. 

3.7.1. Design of Partly Stable Controllers 

In the previous sections collocated and non-collocated partial feedback linearized 

system was controlled with computed torque control method. We can use computed 

torque control method can be used as a partly stable controller. To do that, first the 

equations for stabilization of the first link are recalled. Joint 1 acceleration equation 

is obtained from the dynamic model in the previous parts as follows : 

22 12 22
1 1 2 1

m m m
q h h

D D D
     
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Then for the computed torque controller for stabilizing only q1, letting the desired 

angle be qd1, its angular velocity be  ̇  , the propotional gain be 
p1K , derivative gain 

be v1K , and the modified angular acceleration be given by : 

1 d1 v1 d1 1 p1 d1 1v q K (q q ) K (q q )      

It follows that

22 12
1 1 1 2

22

m mD
(v h h )

m D D
     

Similarly, the computed torque controller for stabilizing only q2 is reduced to 

following equations as given in non-collocated partial feedback linearization section: 

2 d2 v2 d2 1 p2 d2 2v q K (q q ) K (q q )      

12 11
1 2 1 2

12

m mD
(v h h )

m D D
      

3.7.2. Switching Control 

Since the system has only one actuator at the shoulder joint a supervisory switching 

controller is needed to decide which controller must be chosen in order to reach 

desired end point position. For that purpose a logic based switching algorithm is 

defined by using joint error energies. Energy is defined by using generalized 

coordinates. Desired joint angle of each link is qdi, and the error of joint angle is 

denoted by : 

i di ie q q                                                                                                             (3.35) 

Then, the energy of each link is defined by 

2 2

i i iE e e                                                                                                             (3.36) 

Let the partly stable controller that stabilizes only the i-th link be denoted by Ci. If 

the controller C1 is adopted, then E1 is decreased while E2 is increased, because q1 

can be stabilized by its controller. Similarly, if the controller C2 is adopted, then E2 is 

decreased while E1 is increased. 
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Considering the energy functions for the joints, in order to achieve predefined state 

values which are angles and velocities of both joints and to make defined energies 

zero which means reaching to the desired points with zero velocity, a logic based 

switching function can be defined as follows: 

1 2

1 2

E E1 if
Î

E E2 if


 


                                                                                                 (3.37)

where Î  is the switching index number that decides which controller needs to be 

chosen according to error energies of joints. Figure 3.2. shows the block diagram 

structure of controlled system. 

 

 

Figure 3. 2. Block diagram of the proposed switching control system 
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CHAPTER IV 

SIMULATION RESULTS 

After theoretical analysis of the underactuated manipulator and designing a control 

algorithm for the system it is necessary to observe controller performance. To do 

that, firstly, a simulation in the computer is needed. The powerful built-in toolbox in 

Matlab, called Simulink, is used to simulate two-link underactuated manipulator 

system. Simulink is a software package for modelling, simulating and analyzing 

dynamical systems. It supports linear and nonlinear systems, modelled in continous 

time, sampled time, or a hybrid of the two [26]. 

4.1. Simulation of Underactuated Manipulator 

The physical description of the system we study on was given in Figure 2.1. There 

are two ways of simulating this system in Simulink environment.  First we can model 

the system by using its dynamical equations given in the state space form in equation 

(2.21). Figure 4.1 illustrates the model of underactuated manipulator. 

  

Figure 4. 1. Mathematical model based system model in Simulink
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In the second way, the system is simulated using Simmechanics toolbox which has 

simple compact mechanical component blocks. By using these blocks one can realize 

the whole system simply and achieve the same system dynamical behaviour. For the 

sake of simplicity of the system, in control design steps and observation of the 

system performance Simmechanics based model is used. Figure 4.2 shows the same 

system which is made up in Simmechanics toolbox. 

 

Figure 4. 2. Mechanical representation of the system in Simmechanics toolbox 

For validation of the model given in Figure 4.2,  both systems are compared for the 

same input torque which is given in Figure 4.3. Simulation sample time is chosen as 

0.001 s and total simulation time is 1 s. Total simulation time is kept small since 

second link in this case has high frequency oscillations and not clearly seen. Input 

torque is given in a 0.2 s duration. The  output response of dynamical model based 

simulation and Simmechanics based systems are exactly the same as shown in Figure 

4.4.  
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Figure 4. 3. Applied torque to the compared systems  

 

 Figure 4. 4. Mathematical model and Simmechanics based system outputs 

4.2. Simulation of the Combined System 

In practice, joint friction cannot be neglected in underactuated robotic manipulators, 

especially at the passive joint. This is because while friction at the active joints can 

be directly compensated, the same is not true for the passive joint [27]. Since we 

implement the control algorithm to a real system, in the simulation of the 

manipulator, joint friction of free joint is considered. Therefore static and viscous 

friction of the second joint is included in H(q,  ̇) matrix which is given in equation 
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(2.17) and controller is designed considering frictions. Frictions are also considered 

in mechanical realization of the system in Simmechanics and model is modified 

according to the joint frictions. Modified model of the system can be seen in Figure 4 

 

Figure 4. 5. Manipulator system with joint frictions 

For the stabilization of first joint, computed torque controller with partial feedback 

linearization is adobted to the simulated system by using Equations (3.24) - (3.26) . 

Figure 4.6 shows block structure of Controller 1. 

 

Figure 4. 6. Simulink model of the controller which stabilizes the first joint
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In the same manner, the controller that stabilizes only second link is made up based 

on Equations (3.30) - (3.32) as shown in Figure 4.7 

 

Figure 4. 7. Simulink model of the controller which stabilizes the second joint 

In order to calculate the error energies of joints, an energy calculation subsystem is 

designed and integrated to the controller. Then, this subsystem is adopted to 

supervisor, and with the controllers, constitutes switching controller. Figure 4.8 

illustrates the combined system simulation.  

 

Figure 4. 8. Controlled manipulator system simulation in Simulink
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Table 4. 1. Manipulator parameters used in the simulation 

Parameter Parameter Values 

m1, m2 0.12[kg], 0.05[kg] 

l1, l2, r1, r2 0.1[m],0.15[m],0.0976[m],0.09[m]  

I1, I2 0.005[kgm
2
], 0.0002[kgm

2
] 

fv1, fv2 0[Nms], 0.006[Nms] 

fs1, fs2 0[Nms], 0.004[Nms] 

Since we apply the designed control system to a prototype of underactuted 

manipulator, in the simulation part, physical parameters of this real system is used as 

given in Table 4.1. It may be useful to select the desired responses at the end of the 

arm faster than the base, where the masses that must be moved are heavier. It is 

undesirable for the partly stable controllers to exhibit overshoot since this colud 

cause impact if fast swicthing between controllers occurs and settling time in the 

position control increases. Therefore the PD gains are usually selected for critically 

damping ζ = 1. The natural frequency ωn governs the speed of rensponse in each 

error component. It should be large for fast responses and is selected depending on 

the performance objctives. Another upper bound on ωn is provided by considerations 

on actuator satuaration. If the PD gains are too large the input torque mat reach its 

upper limit. Considering the conditions mentioned above and joint velocity range of 

joints in real system, gain parameters of partly stable controllers are adjusted to the 

suitable values. Each gain parameters were fixed during several explorations to Kp1 = 

49.0, Kv1 = 14, Kp2 = 225.0, Kv2 = 30.0 where Kpi is the proportional gain of ith link 

and Kvi is the derivative gain.  

Firstly, for the purpose of observing individual controller performance, only one of 

the partly stable controllers is applied to the systems. The state vectors are defined as  

joint angles and velocities in the following form :  

x :   x1 = q1,  x2 =  ̇ ,  x3 = q2,  x4 =  ̇   



 

31 

Then if only controller 1 is adopted to the system which means control objective is to 

bring the first joint to a given qd1 with zero velocity and final position of the second 

joint is not specified. With this controller only first link of manipluator can be 

controlled as mentioned in previous chapters. In this case one can choose desired 

state vector as  
T

d 2fx 0 0 q 0 , where 2fq is the final position of second joint 

which is not specified. In order to see controller performance two inital state vectors 

are chosen as follows: 

 
T

i 1 1 2 2x (0) q (0) q (0) q (0) q (0)

 
T

1x (0) 2 0 0 0  

 
T

2x (0) 3 0 1 0   

For the specified initial conditions variation of angles of underactuated manipulator 

with time can be seen in Figure 4.9 and 4.10. Sampling interval of the simulations is 

chosen as 0.01 s and total simulation time is 5 s. 

 

Figure 4. 9. Controller 1 adopted system angle changes for x1(0) inital state vector 
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Figure 4. 10. Controller 1 adopted system angle changes for x2(0) inital state vector 

From Figure 4.9 and 4.10, it can be seen that Controller 1 stabilizes the first joint 

position while second joint  reaches and stay at any position value. 

 

In the same manner, only Controller 2 can be adopted to the system with the desired 

state vector  
T

d 1fx q 0 0 0 where q1 position is not specified. For the purpose 

of examining the controller system, two  inital conditions are given as follows: 

 
T

1x (0) 1 0 1 0   

 
T

2x (0) 1 0 2 0   

 

Figure 4. 11. Controller 2 adopted system angle changes for x1(0) inital state vector 
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Figure 4. 12. Controller 2 adopted system angle changes for x2(0) inital state vector 

As we can see from Figure 4.11 and Figure 4.12, if only Controller 2 is used, second 

joint position can be controlled while first joint reaches  any random position value. 

 

Finally, we examine fully controlled system performance. We combine two 

controllers with switching rule and stabilize both joints. The objective of state 

feedback controller is to bring angles of two joints to predefined positions with zero 

velocity. To this end, simulation sampling interval is adjusted to 0.01 s and total 

simulation time is adjusted to 30 s and desired state vector is defined as  

 
T

dx 0 0 0 0 . Initial state vectors used in the simulations are as given below : 

 
T

1x (0) 2 0 0 0  

 
T

2x (0) 0 0 2 0  

 
T

3x (0) 2 0 2 0  

4.3. Results and Discussion 

For initial condition  
T

1x (0) 2 0 0 0 , Figure 4.13 - 4.15 shows variations of 

manipulator joint angles, velocities and input torque with time. It can be seen that 

both joints reach desired position values quickly with a very small error. Also for 

initial conditions  
T

2x (0) 0 0 2 0  and  
T

3x (0) 2 0 2 0 ,Figure 4.16-
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4.18 and Figure 4.19-4.21 shows these variation for each initial condition 

respectively. The settling time of joint positions and torque needed to stabilize the 

joint positions changes according to initial configuration and desired state vector. If 

initial errors of the joints increases, settling time  and total applied torque also 

increase. It is clearly seen if we look at the system responses for initial state vector 

3x (0) . It is also shown that the errors are kept within a small varying range, and 

converge to zero quickly. Because of the switching control the error values always 

oscillate in a very small range around zero. 

Using PD controller at the outer loop control of partly stable controllers is very 

effective if all the manipulator parameters are known and there is no disturbance. In 

the presence of constant disturbances, PD control gives a nonzero steady-state error. 

A common modification is to add an integrator term to eliminate steady-state errors. 

This introduces additional complications since care must be taken to maintain 

stability and avoid integrator windup. Additionally using a PID controller in partly 

stable controllers can ruin critically damped response [28]. Since we use continuous 

and in some cases fast switching between controllers it can increase the settling time 

and has a negative impact on small amplitude oscillations in the steady state part of 

position response. Table 4.2 gives the results of output responses in which case one 

of PD and PID controllers is chosen as the outer loop controller for designing partly 

stable controllers. Figures 4.22-4.24 shows the joint position responses for three 

initial conditions given above.  

Table 4. 2. Comparison of outer loop controller responses 

 PD Control PID Control 

X1(0) X2(0) X3(0) X1(0) X2(0) X3(0) 

Maximum Overshoot (%) 100 100 350 125 110 350 

Settling Time (second) 4 5 5 10 17 18 

Steady-state Error (radian) 0.01 0.01 0.015 0.02 0.015 0.01 
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Figure 4. 13. Joint angle outputs of controlled system for initial condition x1(0) 

 

Figure 4. 14. Joint velocity outputs of controlled system for initial condition x1(0) 

 

Figure 4. 15. Input torque applied to the first joint initial condition x1(0)
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Figure 4. 16. Joint angle outputs of controlled system for initial condition x2(0) 

 

Figure 4. 17. Joint velocity outputs of controlled system for initial condition x2(0) 

 

Figure 4. 18. Input torque applied to the first joint initial condition x2(0)
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Figure 4. 19. Joint angle outputs of controlled system for initial condition x3(0) 

 

Figure 4. 20. Joint velocity outputs of controlled system for initial condition x3(0) 

 

 

Figure 4. 21. Input torque applied to the first joint initial condition x3(0) 
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Figure 4. 22. Joint angle outputs of  PID controlled system for intial x1(0) 

 

Figure 4. 23. Joint angle outputs of  PID controlled system for intial x2(0) 

 

Figure 4. 24. Joint angle outputs of  PID controlled system for intial x2(0) 
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CHAPTER V 

EXPERIMENTAL SETUP AND RESULTS 

5.1. Introduction 

This chapter investigates the real-time implementation of the underactuated 

horizontal manipulator with state feedback controller applied to it. The term “real-

time” has been applied to many types of systems including computer-controlled 

power stations, flight-control software, and robot control. Real-time is the operation 

of a computer system in which the programs for the processing results are available 

within a given time interval. Depending on the application, the data may appear at 

unknown or predetermined time [29]. 

Due to the advent of inexpensive and fast computers, the implementation of the 

algorithms on hardware is becoming convenient and practical. However, most 

research was based on simulations, and the literature lacks real-time results. 

Theoretical analysis and computer simulation of the combined system are important 

but not sufficient in that inherent factors such as unmodeled high frequency 

dynamics and measurement noise are usually neglected for stability analysis in the 

simulation [25]. Therefore, the ultimate justification for the value and applicability of 

controllers should be proved in the actual hardware implementation of the combined 

system. Based on this perspective, this chapter examines the real-time performance 

of the underactuated manipulator system after applying the switching based state 

feedback controller to it. 

5.2. Mechanical Design of the Manipulator 

A simple two link planar manipulator is constructed to observe real-time 

performance of the controller. The photography of manipulator is shown in Figure 

5.1. Two links are made of aluminum and manipulator has two fully rotational 

revolute joints. The length of link #1 is selected to be 10 cm; the other dimensions of 

the link are selected to be 2 cm width and 6 mm thickness. The length of link #2 is 
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selected to be longer than link #1, to enhance underactuation property of it [22]. Thus 

it is selected to be 15 cm, the other dimensions of the link are same as link#1. 

 

Figure 5. 1. Experimental set up for underactuated manipulator 

Dc motor is fixed and hanged on motor base and coupled with the first end link#1  

(shoulder of the manipulator). The encoder on the passive joint (second joint) is 

hanged on link#1 and coupled with link#2. That is, the encoder shaft rotates as 

link#2 rotates and weight of encoder is added to link#1. The geometric and mass 

properties of manipulator are given in Table 5.1. 

Table 5. 1. Geometric and mass properties of manipulator 

Parameter Value Parameter Value 

m1 0.12 kg r1 0.0976 m 

m2 0.05 kg r2 0.0750 m 

l1 0.1 m I1 0.0003167 kg.m
2 

l2 0.15 m I2 0.0002000 kg.m
2 
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5.3. Combining DC Motor and Manipulator Model 

Manipulator has only one actuator at the shoulder joint and is driven by torque input. 

Therefore, driving torque is provided with a permanent magnet DC motor. 

Equivalent circuit of the armature-controlled DC motor is given in Figure 5.2. 

equations of this DC motor are given as [30] : 

a
a a a b

di
V R i L E

dt
                                                                                                (5.1) 

m
m t a m m

dq
k i J B q

dt
                                                                                            (5.2) 

Where mq is the angular speed, aL  is armature inductance, Ra is the armature 

resistance, ia is the armature current, kt is the torque constant, and Eb is the back EMF 

voltage. According to the energy conservation, the following energy equivalence 

holds : 

b a m mE i q                                                                                                               (5.3) 

It is known that eb is proportional to the angular speed for some constant ke as 

follows : 

b e mE k q                                                                                                                 (5.4) 

From Equations (5.2) and (5.3) it can be obtained that ke = kt. 

Since La is small enough to be neglected, equation (5.1) can be simplified and 

combined with Equation (5.2) [31]. In the end, DC motor torque can be calculated 

from the following equation: 

e m
m t

a

(V k q )
k

R


                                                                                                    (5.5) 

In Figure 5.1, the gear ratio is denoted as n, and the following relationships are 

known : 

m m 1

1 1 m

q q
n

q q


  


                                                                                                   (5.6)
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Finally, the relationship between DC motor voltage and input torque needed by the 

manipulator  takes the following form : 

e 1
1 t 2

a

(Vn k q )
k

R n


                                                                                                    (5.7) 

 

Figure 5. 2. Equivalent circuit of permanent magnet DC motor 

In prototype manipulator system a 12 V, 5A permanent magnet DC motor is chosen 

as actuator. It is used with a gearbox so that high torques needed by the manipulator 

can be supplied. It has 150 rpm free-run speed and 1.41 Nm stall torque at the output 

of gearbox.  DC motor parameters are given in Table 5.2. 

Table 5. 2. Parameters of permanent magnet DC motor 

Ra 2.4 Ω kt 4 x 10
-3 

Nm/A 

La 0.01 H Jm 0.056 x 10
-6

 kgm
2 

ke 4 x 10
-3

 V/rad/s Bm 1.6 x 10
-6 

Nm/rad/s 

n 1 : 67   

 

5.4. Digital Encoders 

To have high precision in the reading of joint angles from digital encoders, resolution 

of encoders are chosen to be high enough. Both of them are incremental encoders in 

which initial angle outputs are always zero. Stated otherwise, they can not remember 

the last position for previous application if we use them again. The encoder used at 
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the first joint has 16 ppr (pulse per revolution). Since it is coupled with DC motor 

shaft, at the gearbox output shaft its resolution is multiplied by gear ratio and gives 

1072 ppr. For the passive joints which rotates freely, a 1024 ppr optical encoder is 

used.  

5.5. Real-Time Control Board 

A real-time hardware-in-the-loop control platform for Matlab/Simulink is used to 

control the manipulator with designed controller on computer. The controller card is 

capable of giving appropriate control signal to the real system and getting sensor 

outputs back to the controller on computer.  

5.5.1. Specifications 

 Power supply: 6 − 15 V, minimum 0.15 A, regulated 

 Interface: 115200 baud, 8 bit data, no parity, 1 stop bit 

 Analog inputs: A0–A7, 0 − 5 V analog, 12 bit resolution 

 Capture inputs: C0–C1, 0 − 5 V digital, 16 bit resolution 

 Digital inputs: D0 d0–D0 d7, 0 − 5 V digital, 8 lines 

 Encoder inputs: E0–E1, 0 − 5 V digital, 16 bit resolution 

 Frequency outputs: F0–F1, 0 − 5 V digital, 16 bit resolution 

 Analog outputs: B0–B1, 0 - 5 V analog, 12 bit resolution 

 Digital outputs: G0 g0–G0 g7, 0 - 5 V digital, 8 lines 

 Pulse outputs: H0–H1, 0 - 5 V digital, 16 bit resolution 

 Filtered pulse outputs: L0–L1, 0 - 5 V analog 

 H-bridge outputs: P0–P1, 0-(supply voltage) V digital, 5 A 

 Voltage regulator output: VDD, 5 V, 0.25 A, regulated power supply 

 Ground: GND, 0 V 

 Sampling rate: up to 3.8 kHz 

The real-time control board is based on a DSPIC30F2012 digital signal controller. It 

has a total number of 8×16 bit inputs and 8×16 bit outputs capability. The inputs and 

outputs can be selected among the inputs and outputs listed above. The board is 

interfaced to the main computer that runs Matlab through a serial port. Two pulse-

width modulation driven H-bridges with 5 A drive capability are included on the 
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board.This feature gives the capability of driving external actuators or loads. The 

functional block diagram of the board is shown in Figure 1. In the figure, A0–A7 are 

the analog inputs, B0–B1 are the analog outputs. C0–C1 are the capture inputs, D0 

d0–D0 d7 are the digital inputs, E0–E1 are the encoder inputs, F0–F1 are the 

frequency outputs, G0 g0–G0 g7 are the digital outputs and H0–H1 are the pulse 

outputs. ADC represents the analog-to-digital converter, DAC represents the digital-

to-analog converter. ICM represents the input capture module, OCM represents the 

output-compare module, DIP represents the digital-input port, DOP represents the 

digital-output port, QEM represents the quadrature-encoder module and PWM 

represents the pulse-width modulator. FLs are the lowpass filters with outputs L0–L1 

and HBs are the H-bridges with outputs P0–P1. μC is the central microcontroller, 

UART is the universal-asynchronous-receiver-transmitter unit and PC is the host 

computer [31]. 

 

Figure 5. 3. Functional block diagram of the board 

The real-time control board employs a DSPIC30F2012 digital signal controller for 

central control. The DSPIC30F2012 is a high performance 16 bit digital signal 

controller with 12 kB flash program memory and 1 kB SRAM data memory. The 

layout of the board is given in Figure 5.4. 
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Figure 5. 4. Component layout of the board 

5.6. Real-Time System Experiments 

In the previous chapter state feedback controller is designed to control the simulated 

manipulator system. The same controller is adopted to the real prototype manipulator 

in Simulink environment. Thus PC serves as a data acquiring and processing system. 

Its main task is to deal with the measurement information and send out the calculated 

control signal accordingly.  General hardware system is shown in Figure 5.5.  

Encoder inputs, DC motor model and controller is combined in the Simulink and 

real-time controller unit is obtained. Physical parameters of the manipulator given in 

this chapter is used in the controller. Sample time of controller is chosen as 1/2048 s 

and total application time of controller is adjusted to 20 s. Controller used for real-

time control experiment can be seen in Figure 5.6. 
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Figure 5. 5. Configuration of underactuated manipulator hardware system 

 

Figure 5. 6. Control system used in real-time application 

Before giving the information about results and performance of the controller, a 

comparison is made between simulated system and real-time manipulator system. 

The obtained results are given in Figure 5.6. As we can see from this comparison 

results, for the same input torque, the change of joint angles of real prototype system 

follows joint angles of its realization in Simulink with very small errors. In fact, in 

this case, comparison of final position values of joint angles is more important since 

we do not apply  a trajectory control to the system. 
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Figure 5. 7. Joint angle changes of simulated and real-time system for the same input 

torque 

 

In the experimental results, firstly, to show controller performance three desired state 

vector for joint angles and velocities are chosen as given in simulation part of thesis. 

As pointed out before considering maximum velocities available PD control gain 

values are adjusted to Kp1 = 49.0, Kv1 = 14, Kp2 = 225.0, Kv2 = 30.0 which are the 

same with the controller applied to simulated system. Since we use incremental 

encoders for both joint of underactuted manipulator in real-time application, every 

initial angle value is always zero radian. In this case initial condition for all 

experiments are chosen as  
T

dx 0 0 0 0 . To this end, various desired state 

vectors are defined. To show controller performance in real-time prototype of the 

manipulator some desired state vectors can be given as follows : 

 
T

d1x 2 0 0 0  

 
T

d2x 0 0 1.5 0  

 
T

d3x 1 0 1 0 
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 
T

d4x 1 0 1 0  

 

5.7. Results and Discussion 

For desired condition  
T

d1x 2 0 0 0 , Figures 5.7 - 5.9 show variations of 

manipulator joint angles, velocities and input torque with time. It can be seen that 

both joints reach desired position values quickly with small errors. Also for desired 

state vectors  
T

d2x 0 0 1.5 0 ,  
T

d3x 1 0 1 0  and  
T

d4x 1 0 1 0  

Figure 5.10-5.12, Figure 5.13-5.15 and Figure 5.16-5.18 show these variations for 

each desired condition respectively.  

The errors that occur in the system response can be based on some parametric 

uncertainty such as mass and inertia of the links, inertia values and joint frictions. 

This error can be decreased by changing gain parameters to some certain values.  

From figures, it can seen that applied torque to the system has a non-zero value but 

this torque value is not enough to drive the system to the exact desired positions. 

Also we can see that behavior of the system changes depending on the desired state 

vectors such that if we try to move two joint angles to different values, amplitude of 

joint position values in the transient part of the joint angle responses increases and 

input torque activity increase such that in small time interval input torque applied to 

the system changes quickly.  

In the end, depending on the initial configuration of the system and desired position 

and velocity values control effort can be hard or simple. However, it can be seen 

from various experiments done with different desired state values that controller is 

able to move joint positions to predefined values of it.  
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  Figure 5. 8. Joint angles for desired state  
T

d1x 2 0 0 0  

 

Figure 5. 9. Joint velocities for desired state  
T

d1x 2 0 0 0  

 

Figure 5. 10. Input torque for desired state  
T

d1x 2 0 0 0  
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Figure 5. 11. Joint angles for desired state  
T

d2x 0 0 1.5 0  

 

Figure 5. 12. Joint velocities for desired state  
T

d2x 0 0 1.5 0  

 

Figure 5. 13. Input torque for desired state  
T

d2x 0 0 1.5 0  
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Figure 5. 14. Joint angels for desired state  
T

d3x 1 0 1 0   

 

  Figure 5. 15. Joint velocities for desired state  
T

d3x 1 0 1 0   

 

Figure 5. 16. Input torque for desired state  
T

d3x 1 0 1 0   
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Figure 5. 17. Joint positions for desired state  
T

d4x 1 0 1 0  

 

 Figure 5. 18. Joint velocities for desired state  
T

d4x 1 0 1 0  

 

Figure 5. 19. Input torque for desired state  
T

d4x 1 0 1 0  
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Controller gain values are adjusted their appropriate values after some explorations 

as mentioned before. PD gain values of Controller 2 are chosen to be higher than 

those of Controller 1 since motion of Link #2 is excited by the motion of Link #1 and 

in this case we need faster error convergence rate for link 2 while Controller 2 is 

active and error of link 1 is getting higher. In the same manner, Controller 1 gain 

parameters are chosen to be small enough to steer link 1 to its desired position while 

it does not excite link 2 position. By looking at the experimental results in the 

relevant figures, it can be seen that the control input torque activity is very high and 

as a result of this link velocity can be higher. In the case of both joint error energies 

are very close and since Controller 2 indirectly by dynamic coupling between links 

and it has high gain value, controller switches rapidly and applied torque can change 

very fast in a short duration with high amplitute. The response given for the desired 

state d3x  is an example of that. In some cases, dynamic coupling between links can 

be adventageous  such as  the controller chosen by the switching algorithm can also 

decrease the position error of other link. The response given for desired state d4x  is 

an example of that. 

Using PD controller at the outer loop control of partly stable controllers is very 

effective if all the manipulator parameters are known and there is no disturbance. In 

the presence of constant disturbances, PD control gives a nonzero steady-state error. 

A common modification is to add an integrator term to eliminate steady-state errors. 

This introduces additional complications since care must be taken to maintain 

stability and avoid integrator windup. It is important to be aware of an effect in 

implementing PID control on any actual system that can cause serious problems with 

integral control due to windup. PID controller in partly stable controllers can ruin 

critically damped response and since we use continuous and in some cases fast 

switching between controllers it can increase the settling time or prevent the system 

settling to any value and has a negative impact on small amplitude oscillations in the 

steady state part of position response. Figures 5.20-5.22 shows PID applied outer 

loop controller case system position responses. It can be clearly seen that PID 

controller tries to make the errors zero but overshoot behavior and fast switching 

prevent the system position error approaching zero. 
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Figure 5. 20. Joint angle outputs of  PID controlled system for desired position xd1 

 

Figure 5. 21. Joint angle outputs of  PID controlled system for desired position xd2 

 

Figure 5. 22. Joint angle outputs of  PID controlled system for desired position xd3 
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CHAPTER VI 

CONCLUSIONS 

6.1. Concluding Remarks 

The objective of this work was to develop and implement a state feedback control 

system for a two-link planar underactuated manipulator. Its actuated joint is located 

at the shoulder and the elbow joint is unactuated and allowed to rotate freely. The 

states of the manipulator system are comprised of the joint angular positions and 

joint angular velocities. Two partly stable controllers are designed for the 

manipulator joints. Partial feedback linearization technique is used to design their 

control that stabilizes each joint. Then, in order to control two links of the 

manipulator simultaneously, a switching control algorithm is adopted to the system. 

State feedback control system that is composed of partial feedback linearization 

technique and switching control is implemented to a simulated manipulator in 

Simulink and a real prototype of manipulator. Results of simulated system and real 

system are presented demonstrating the performance of the system with the 

controller in related chapters. 

Firstly, controller performance is observed in simulated system and various initial 

state vectors are chosen and in each time, it is observed that system goes to desired 

positions in a short time with small position errors which are arisen from switching 

control. Secondly, the same controller is used in real-time prototype system. Digital 

encoders are used for high precision angle measurement and a control board is used 

sending the control signal to the manipulator and collecting data form encoders and 

sending them to PC which processes these data according to control algorithm and 

calculates control input. 

As a result, purposed control system moves the manipulator links to desired position 

in a short time interval and input torque needed is small enough to apply the 

controller to a real manipulator system. Simulation results also show that we achieve 

position control objective with small steady-state errors. These errors occurs with
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very small amplitude oscillation since we use a switching control method. Using PD 

control for the outer loop controller of partly stable controllers is very effective if all 

the arm parameters are known that in the presence of constant disturbances, PD 

control gives nonzero steady state error. Therefore, a PID controller is adopted also 

at the outer loop controller. PID controller in partly stable contollers  ruins critically 

damped response and since we use continuous and in some cases fast switching 

between controllers it  increase the settling time or prevent the system settling to any 

value and has a negative impact on small amplitude oscillations in the steady state 

part of position response. Also in real-time application, PID controller performance 

is observed and it is seen that PID control is not conveniant to use in order to 

decrease steady state error although in the case of disturbance this control method is 

required. 

6.2. Future Work and Recommendations 

In the future research, switching control algorithm can be improved so that number 

of switching in the transient part of position control decreases and less oscillation can 

occur in the transient part of response Convergence rates of position errors can also 

be improved. Additionally, it can be seen that steady state errors occurred in the real-

time position control is higher than that of simulations, also these errors can be 

eliminate and if switching number in the transient part can be decreased in this case 

PID outer loop control can be adopted to the partly stable controllers. 
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