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ABSTRACT 

 

INVESTIGATION OF BOSE-EINSTEIN CONDENSATION  

FOR DIFFERENT POTENTIALS 
 

KILIN, Mustafa 

M.Sc. Thesis, Engineering Physics, University of Gaziantep 

Supervisor:  Prof. Dr. Hayriye TÜTÜNCÜLER 

July 2013  

72 pages 

 

 

In this study, we analyze the ground state properties of the condensate for different 

potentials. These are harmonic oscillator potential which is solved in literature 

anharmonic and morse potentials which have not been investigated before.  

This thesis has two main parts. In the first part, ground state solutions for different 

potentials are obtained.  We have used the Runge-Kutta method to solve time-

independent Gross-Pitaevskii equation for determination of the ground state wave 

function of system. 

The second part involves the solution of time-independent Gross-Pitaevskii equation 

for the same potentials by using Thomas-Fermi Approximation. This approximation 

method is valid in systems that have very large number of atoms in the condensate. 

 

 

 

 

Key words: Bose-Einstein condensation, Gross-Pitaevskii equation, Thomas-Fermi 

Approximation. 
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Bu çalışmada, farklı potansiyeller için yoğuşmanın taban durum özelliklerini analiz 

ettik. Bu potansiyeller literatür de çözümü olan harmonik potansiyel ve daha önce 

incelenmemiş olan anharmonik ve morse potansiyelleridir. 

Bu tez iki ana kısımdan oluşmaktadır. İlk bölümde taban durum çözümleri farklı 

potansiyeller içinde elde edildi. Sistemin taban durumu dalga fonksiyonun 

belirlenmesinde, zamandan bağımsız Gross-Pitaevskii denkleminin çözümü için 

Runge-Kutta metodunu kullandık.  

Tezin ikinci parçası, Thomas-Fermi yaklaşımını kullanarak aynı potansiyeller için 

zamandan bağımsız Gross-Pitaevskii denkleminin çözümünü içermektedir. Bu 

yaklaşım yoğuşmadaki atom sayısının fazla olduğu sistemlerde geçerlidir. 

 

 

 

Anahtar Kelimeler: Bose-Einstein yoğunlaşması, Gross-Pitaevskii denklemi, 

Thomas-Fermi Yaklaşımı 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

Bose-Einstein condensation is phase transition in atomic systems consist of bosons 

gas at very low temperatures. Bosons are particles with integer spin. The wave 

function for a system of identical bosons is symmetric under interchange of any two 

particles. Unlike fermions which have half-odd integer spin and anti-symmetric wave 

function, bosons may occupy the same single particle state. That is bosons do not 

obey Pauli Exclusion Principle but fermions obey this principle. 

Bose-Einstein condensation which is a long-lasting problem in physics in 1901 [1] 

began with the idea that it should be discrete radiation emitted from the heated object 

by Planck but the first foundations of Bose-Einstein condensation was put forward 

by S. N. Bose and A. Einstein. In 1924 [2] Bose was the definition of the photon 

statistics. Upon this in 1925 [3] Einstein showed that gas of boson consist of particles 

that do not interact with each other occupy single particle quantum state. These two 

theories by combining, have submitted at absolute zero temperature Bose systems 

transformed into a new state of matter. It is called Bose-Einstein Condensation. 

One of the most important features of Bose systems, they are non-homogeneous and 

are finite dimensional systems. Two body interactions play an important role in non-

homogeneous systems. Many body correlation effects between bosons increases the 

amount of exited atoms located outside of condensation in an interactive Bose 

system. 

Following the work of Bose (1924) [2] and Einstein (1925) [3], Fritz London 

suggested the connection between the super-fluidity of liquid 4He and Bose-Einstein 

condensation in 1938 [4]. Liquid 4He is good candidate for Bose-Einstein 
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Condensation and it has played a good role in the development of physical concepts. 

However, the interaction between helium atoms is strong, and this reduces the 

number of atoms in the zero-momentum state at low temperatures. Therefore it is 

difficult to evaluate directly the occupancy of the zero momentum state. 

Pioneering theoretical studies on the behavior of interacting bosons gas was initiated 

by Bogoliubov in 1947 [5]. Bogoliubov has developed a perturbation expansion for 

the case where number of atoms excited state and weak interactive atoms became 

low density, can be neglected. 

In 1957 J. Barden, L. N. Cooper and J. R. Schrieffer are published an article 

associated with super-conductivity. In their theory molecules system has properties 

similar to that of a charged Bose-Einstein gas, including a Meissner effect and a 

critical temperature of condensation [6,7]. 

In 1959 [8] Hecht argued that spin-polarized hydrogen would be a good applicant for 

a weakly interacting Bose gas. The attractive interaction between electronic spins 

aligned two hydrogen atoms was guessed to be so weak. Hecht’s paper get little 

attention, but his conclusions was approved  Stwalley and Nosanow [9] in 1976, 

when improved information about interaction between two hydrogen atoms with 

their electronic spins fixed was usable. 

In 1976 regarding spin-polarized hydrogen made some experiments was followed by 

several experiments. In 1980 J. T. M. Walraven-Isaac F. Silvera [10], in 1982 Hardy 

W. N. and his friends [11], 1984 Greytak T. J. and his friends [12] first cooled the 

hydrogen atoms in a refrigerator, then trapped by magnetic field and farther cooled 

by evaporating. They came very close to Bose-Einstein condensation. 

In1986 [13] laser cooling and in 1987 [14] magneto-optical trapping were advanced 

to cool and traps atoms. Laser based methods are convenient for alkali atoms and can 

excite their optical transitions. Laser methods can cool them to very low 

temperatures due to their good internal energy level structure. 

Since Bose-Einstein condensation has been predicted in 1924-1925, it has become a 

major topic of interest. After this prediction 70 years and after many experimental 

attempts, in 1995 Bose-Einstein condensation was observed as a result of a series of 

experiments with weak interaction alkali atoms. This condensate was initially 
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observed in Joint Institute for Laboratory Astrophysics (JILA) by Anderson and his 

friends in 1995 with rubidium [15], later this experiment was obtained in 

Massachusetts Institute of Technology (MIT) by Davis and his friends in 1995 with 

sodium [16], in the same year Bose-Einstein condensation was observed again with 

lithium by Bradley and his friends [17]. In this experiment atoms have been confined 

with magnetic traps and cooled to low temperatures which become order of micro-

Kelvin. After than magnetic traps have been shut down, atoms began to spread and 

optical operations have been applied to atoms. Under the certain temperature in the 

velocity distribution around zero speed a peak has observed and it has been become a 

proof of Bose-Einstein condensation. Success of these experimental provides unique 

facility for exploring quantum phenomena on macroscopic scale. Bose-Einstein 

condensation is a very important event, it is considered that Bose-Einstein 

condensation will be provide basis important development both in the area of 

technology and scientific. 

 

Figure 1.1 Rubidium atoms velocity distribution [15]. 

This figure is rubidium atoms velocity distribution image in the experiment made by 

Anderson and his friends in 1995. The left figure is image of the gas at above the 

condensation temperatures, the center figure is image of the gas just after the 

appearance of the condensate, and the right figure is image of pure condensate after 

evaporation is made. Colors denote numbers of atoms in the velocity distribution. 

Red one is minimum and white one is maximum. 
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In 1995 in the experiment made with weak interactive alkali atoms become low 

density (
87

Rb, 
23

Na and 
7
Li [15] [16] [17]), occurrence of the atomic cloud to single 

quantum state is observed. In later years Bose-Einstein condensation has been 

observed with 
1
H (Fried and his friends) [18] in 1998, 

14
K (Monduga and his friends) 

[19] in 2001, semi-stable 
4
He (Santos and his friends) [20] in 2001, 

133
Cs (Weber and 

his friends) [21] in 2003 and in the Li2 molecules (Jochim and his friends) [22] in 

2002. 

Before we start the theoretical literature survey of the Bose-Einstein condensation, 

briefly we can give some information about experimental survey of the studies at low 

temperature. 

When all physical particles lose kinetic energies in accordance with traditional 

theory, as a result of this, they slow down by losing their speed. Similarly atoms or 

atomic mixtures slow down when they lose their kinetic energy. One of the simplest 

ways to slow down particles reduces momentum of the particles. If it is provided that 

the momentum of a moving particle release, it will slow down by losing energy. 

Cooling is a process realized by lowering the temperature. There is no physical 

response of the temperature for a single particle. The temperature which is a form of 

energy has a physical mean for a particle system and kinetic energy of this system is 

a parametric measurement of temperature. Therefore, to reduce the kinetic energy of 

particle in the system corresponds to lower the temperature of the system that is 

cooling the system. On the other hand trapping is known that their motion restrict 

towards the all freedom degrees of atoms. The aim of the studies in this area is to 

cool the order of the micro-Kelvin or below the temperature of particles by 

preventing conversion of atomic gases to a solid or liquid [9]. 

In 1908, the Dutch physicist Heike Kammerligh Onnes achieved helium liquefaction 

at -269
°
C (4.2 K) temperature. Until this time, by using liquid nitrogen was reached 

to 77 K temperature. As known from the kinetic theory, motion, rotation and 

translation of atoms and molecules stop at 0 K (-273.15
°
C). In this very low 

temperature matters begin to show different feature. The first of these features, 

“below the specific temperature, resistance of certain substance decreases to zero” 

discovered in 1911 by Kammerligh Onnes that is, it is superconductivity. Generally, 

some good non-conductive materials have been observed to be super conductive at 
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liquid helium temperature. In the nucleus of isotope He formed fluid which has two 

protons and neutrons show a property like frictionless flow (super-fluidity) at 2.18 K 

temperature. But, in the atomic boson gases phase transition predicted by Bose and 

Einstein require much lower temperature.  

In order to descend to low temperatures in the range of micro-Kelvin, laser light has 

been used (light amplification by stimulated emission of radiation). On this subject, 

the aim of first studies would rather the idea of cooling than slow down atoms to 

increase the accuracy of spectroscopic studies [10]. 

Laser shows several differences compared with normal light. Normal light includes 

different frequency ranges as an electro-magnetic wave and just as it shows the 

spherical expansion so laser is coherent and monochromatic. Laser can be controlled 

and have high density to examine some features of physical systems since 1960.  

First time in 1968 Letokhow suggested that atomic trapping with electromagnetic 

waves can be accomplished. After than 1970 Ashkin calculated what would happen 

light pressure in an atom where a light beam became in resonance. On this subject, in 

years maintained different studies firstly Hansch and Schawlow (1975) showed that 

laser light can be used for cooling of atoms. Physical reason of the slowdown of 

atoms can be explained that atoms absorb photon from the outside. Because photon 

absorption is to change the momentum of the atoms when conditions are satisfied, it 

is possible to slow down motion of atom by using this method. If three dimension 

laser systems are used, atom can be cooled in the direction of all degrees of freedom. 

Alkali atoms are quite convenient to laser-based methods because optical transition 

of they can be excited with available laser and they have appropriate internal energy 

level in order to cool low temperature. 

 

The low temperature which is obtained by using laser cooling technique is limited 

with energy of a single photon. As a result, the number of atom in the volume 3

DB  is 

very smaller than number of atom required for BEC. In the 1980 the first successful 

experiment achieved with laser cooling method was carried out by Balykin and 

Letokhow in Moscow and in same year by Phillips and his friends in the 

Gaithersburg. Immediately after, at below limits prescribed by earlier theories of 
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Phillips, Chı and Cohen-Tnnoudji, the cooling method was developed. After cooling 

with the laser has been achieved, Chu and his study friends in the Bell laboratory was 

trapped atoms cooled by optical traps. Because optical traps are too small and weak, 

physically in order to collect a sufficient number of atoms good traps had been 

required. After that, magnetic-traps were used but in 1986 more original magneto-

optical tapping method suggested by Dalibard. Beside at that time this technique was 

developed by Chu and Pritchard’s groups. Until that day, magneto-optic traps which 

were developed, has been best method and so both cooling and trapping of atoms has 

been achieved as quite safe [11].   

In the non-homogeneous systems, Gross-Pitaevskii equation which gives the 

experimental results correspond to the data is derived by Gross in 1961 [23] [24] and 

Pitaevskii in 1961 [25] independently of each other and by using different 

techniques. GP equation gives a very good mean-field description of condensation at 

low density. In 1995 following the experimental observation of Bose-Einstein 

condensation, interested in Bose-Einstein condensation has increased both 

experimental and theoretical. In later years, while the solution of GP equation have 

been made, take into account the different potentials, numerical methods, dimensions 

and geometries  theoretical studies have been carried, in 1995 Mark Edwards and K. 

Burnett  [26] solved numerical solution of non-linear Schrödinger equation for small 

samples of trapped neutral atoms, in 1999 A. Gammal and his friends  [27] improved 

numerical approach, in 2000 Sadhan K. Adhikari [28] solved 2-D GP equation and in 

2009 Cheng Luo [29] brought a new model Bose-Einstein condensation with GP 

equation. 

In this thesis, up to now experimental and theoretical studies gave inspiration us, 

following these studies, Bose -Einstein condensation system have been examined 

under different potentials and with different solution methods. Before the 

calculations, in chapter 2, definition of Bose-Einstein condensation have been 

described, also the behavior of an ideal Bose gas and thermodynamic properties at 

low temperatures is surveyed in the non-interacting systems. This chapter also forms 

the theoretical foundations of Bose-Einstein condensation. Furthermore it is 

examined behavior of the critical temperatures of atoms which began condensation. 
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In chapter 3 a system formed gas of bosons is considered in presence of interactions 

at low temperatures. These systems are rare and there are weak interactions in there 

which is defined by Gross-Pitaevskii equation which describes the structure and 

distribution of condensation. This equation was derived independently by Gross 1961 

[23] [24] and Pitaevskii 1961 [25]. For bosons which are trapped by external 

potential, ground state solutions have been determined by different methods and 

approaches. 

In chapter 4, the numerically solution of the time-independet Gross-Pitaevskii 

equation are defined, for harmonic, anharmonic and morse potentials and after that 

condensate probability density of these solutions are drowned versus the boundary of 

potentials. Secondly, these graphs are propagated for different value of chemical 

potentials. After these calculations are done, for solution of Gross-Pitaevskii 

equation a approximation is applied it is called Thomas-Fermi approximation, for 

this approximation the graph of condensate probability density are drowned. Finally 

in this chapter, for same potentials, chemical potential versus the graph of number of 

particles are drowned.   

Finally in chapter 5 we define the conclusion for our all calculations which are made 

in chapter 4.   



 

8 
 

CHAPTER 2 

 

THEORETICAL FOUNDATIONS 

OF BOSE-EINSTEIN CONDENSATION  

 

2.1 WHAT IS THE BOSE-EINSTEIN CONDENSATION 

In order to understand the Bose-Einstein Condensation, primarily the physical 

properties of classical and quantum gases should be research closely. It is known 

that, gas forms of molecules and atomic particles that move freely in space. Gases 

can be examined in to two class like that classical and quantum gases. At high 

enough temperatures the behavior of all the gases is defined as classical. 

The average distance between gas molecules is relatively large and they just interact 

weakly. At any time only a very smart part of the collection of molecules interact 

with each other through collisions. Under normal conditions, average distances 

between molecules are about the order of 30
 
A

0
 (10

-10 
m) and it is 10 times the 

diameter of a molecules. 

When potential energy of interaction between molecules of a gas system was 

compared with the kinetic energy of motion between molecules of it, if potential 

energy is smaller than kinetic energy, the system is called ideal gas. At the high 

enough temperatures such gas represented distribution function and owned free 

energy obtained by using Maxwell-Boltzman statistics and this statistical mechanic is 

called classical approximation [30]. 

When it goes to the low temperatures, quantum effects be based on particles cannot 

be distinguished from each other begin to appears. 

In quantum mechanics there is a de Broglie wavelength accompanied a particle with 

p momentum and it is defined as [31] 
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 (2.1) 

 

In a system occurring from N particles, let’s take average momentum p according to 

equipartition theorem, at temperature T in the gas system the average energy of each 

particle is; 

 (2.2) 

 (2.3) 

 (2.4) 

 

In Eq. (2.4)   denotes de Broglie wavelength. In here, because an approximation 

calculation is made, de Broglie wavelength can be taken to equal to the   thermal 

de Broglie wavelength [32]. 

 (2.5) 

 

In Eq. (2.5)  thermal de Broglie wavelength is a boundary condition which 

describes the classical limit and quantum limit. When temperature T decreases in 

there,   thermal de Broglie wavelength increases. In the quantum mechanics the 

minimum amplitude of the wave packets which represents particles close to   

thermal de Broglie wavelength. When distance between two particles with 

decreasing the temperature is going to come   thermal de Broglie wavelength 

which represents the particles, quantum effects has began to appear. 

There is a critical temperature Tc which began appearing these effects. The particle 

density of a gas that is the number of particles per unit volume is represented by 
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number n, the volume of surrounding a particle is   and average distance between 

particles is  (that is volume between particles). So the criterion which is 

searched and compared with the thermal de Broglie wavelength and average distance 

between particles is given by; 

Classical case                    (2.6) 

Quantum case                    (2.7) 

 

In the volume of  which separates the two limit (classical and quantum case) 

temperature Tc is called critical temperature or degeneracy temperature. 

In order to understand the physical behaviors of a gas where quantum effects 

dominates, according to quantum statistics, properties and numbers of the situations 

that can be described should be known. In the quantum mechanics the case of a 

system is defined by wave function of system. The absolute square of the amplitude 

of the wave function is proportional to the probability of finding of the system in a 

particular situation. Since the particles that have the same structural properties (mass, 

electric charge, etc…) cannot be distinguished from each other, interchange of two 

particles should not change the physical observables of the system. Because of this 

fundamental principle, in the quantum mechanics the wave functions which define a 

system that occur identical particles have to indicate the symmetric or anti-symmetric 

behavior under interchange of two particles.  

If spin of particles is half integer, they are called fermions (electron, proton, neutron, 

etc…). The wave functions of such particles are anti-symmetric and obey Fermi-

Dirac statistics [33] [34]. 

If spin of particle is odd integer, they are called bosons (phonon, photon, K and π 

meson, etc...). The wave functions of such particles are symmetric and obey Bose-

Einstein statistics (1924-1925 by Albert Einstein, by Satyendra Nath Bose). 

At high temperature between bosons and fermions don’t have certain difference at 

the observable behaviors of them. But when the system’s temperature reaches to 
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sufficient low temperature, it shows quite different statistical behavior. As a result of 

the anti-symmetric wave function, fermions obey Pauli Exclusion Principle (1925 by 

Wolf Gang Pauli), so at the same time maximum one fermion particle can exists in 

the same quantum state, whereas bosons which have symmetric wave function 

occupy in the same quantum state without limitation.  

We consider that a boson gas that is equal to total integer spin and non-zero mass. 

But before dealing with boson gas, we should describe what is the boson gas? The 

total spin of a Bose particle must be an integer, and therefore a boson made up 

fermions must contain an even number of them. Neutral atoms contain equal 

numbers of electrons and protons, and therefore the statistics that an atom obeys is 

determined solely by the number of neutrons N: if N is even, the atom is a boson and 

if it is odd, the atom is a fermion. The alkalis have odd atomic number Z, boson 

alkali atoms have odd mass numbers A [35].   

In the boson gas consist of boson alkali atoms, molecules can move freely, in the 

sufficiently high temperatures, at the classical limit, according to quantum mechanics 

a particle with momentum p that accompanied de Broglie wavelength  must be 

small compare with average distance between molecules. If average distance 

between molecules is much bigger than , de Broglie wavelength cannot 

interference each other sufficiently. This particle obeys Newton mechanics. If bosons 

gas begins to approach the limit temperature Tc, as described with equation (2.5), 

particles accompanied wave length  begin to grow. 

 

Figure 2.1 At high temperature T, thermal speed V and density    “look like 

billiard balls”. 
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Figure 2.2 At low temperature T, de Broglie wavelength    

“wava packets”. 

 

 

 

Figure 2.3 T=Tc  Bose-Einstein Condensation begin to occur, matter waves overlap 

 

 

 

Figure 2.4 T=0 pure boson condensation, giant matte wave 

 

At high temperature, because de Broglie wavelength   is quite small the 

interaction of the atoms with each other is small enough to be neglected and gas 

exhibit classical behavior. As shown in Figure 2.1 because the intermolecular 

distance is too large, de Broglie wavelength accompanied particle is small 
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sufficiently and it cannot be interference with each other, such particles obey 

Newton’s mechanics. Atom can be considered as billiard ball in these conditions 

which is in the dilute gas limit of weak interactions between atoms. As shown in 

Figure 2.2 wavelength of the atoms begin to increase at low temperature and the 

atoms of gas can be considered as wave packets with of the order of the . In the 

Figure 2.3 when system approaches to critical temperature Tc, distances between 

atoms are comparable size with   wavelength and at this temperature atomic wave 

packets start to overlap. On the bosons a phase transition is observed and Bose-

Einstein Condensation begins to form. Finally as shown in Figure 2.4 when the 

temperature close to zero point, a thermal cloud of atoms excited vanishes and all the 

atoms occupy in the same quantum state. In this case the system is represented by 

large wave of a single matter [36].  

Energy and momentum of particles reaching the ground state energy are zero, so that 

the phase transition occurs. By this way the collection of particles in the ground state 

energy is called Bose-Einstein Condensation (BEC). Because this phase transition 

which occurs at low temperature to resemble condensation of vapor, it is called BEC. 

Condensation of the boson gas is quite different from a classical condensation of 

vapor, but there are same resembles between condensations of boson gas and vapour. 

For example, at  like pressure of saturated vapour gas, boson gas pressure 

does not depend on volume but depend to temperature of gas. 

In a phase transition, it is considered that individual characteristics of the particles 

lost and all particles occupy the single particle quantum state. In this case, in the 

BEC observed in the rarely alkali gases movement of any particles do not leave other 

ones therefore in the condensate the movement of all the atoms not take into account 

separately but take into consideration like movement of a single large atom. 

 

2.2 THE NON-INTERACTING BOSE GAS 

Before surveying the behavior of interacting Bose gas, in the present chapter, 

properties of a non-interacting Bose gas is debated in a trap. In a semi classical 

approximation, equilibrium properties of systems shall be calculated, in which the 

energy spectrum is treated as a continuum. For this approach to be valid the 
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temperature must be large compared with , where  denotes the separation 

between neighboring energy levels and  is the Boltzmann constant [35]. As known, 

at temperature below the Bose-Einstein condensation temperature the lowest state is 

not properly accounted for if one simply replaces sums by integral and it must be 

included explicitly. [30] 

In Sec. 2.2.1, the statistical distribution function is discussed, as is single-particle 

density of states. In the calculations of thermodynamics properties, density of states 

is a very important ingredient and in Sec. 2.2.2 it is described. In Secs. 2.2.4 and 

2.2.3 calculations of the condensation fraction of particles and transition temperature 

are described respectively. In Sec. 2.2.5 the density profile of particles is determined. 

2.2.1 The Bose Distribution 

In thermodynamic equilibrium for non-interacting bosons, the mean occupation 

number of single particle state  is given by the Bose distribution function [35]; 

 (2.8) 

 

where, shows the energy of single particle state for the particular trapping 

potential under consideration. T is the temperature and k is the Boltzmann constant.   

denotes the chemical potential. It is determined as a function of N (total number of 

particles) and T (temperature) by the condition that the total number of particles be 

equal to the sum of the occupancies of the individual levels [31].  

In thermodynamics, chemical potential  is a measure of the potential that a 

substance has to produce in order to alter a system. Particles tend to move from 

higher chemical potential to lower chemical potential [32]. 

Chemical potential can be studied in terms of fugacity and it is defined the quantity 

. If the energy of lowest single-particle state is taken zero, the 

fugacity is less than unity above the transition temperature and equal to unity in the 

condensed state.  
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When the vapor pressure is not too high, the fugacity is approximately equal to the 

vapor pressure, so the fugacity of a real gas is formally defined by an equation 

analogous to the relation between the chemical potential and the pressure of an ideal 

gas  ( ) [33]. 

In Bose-Einstein statistics, the average occupancy of each  energy quantum states 

was given by Bose distribution function in equation 1. In this equation, the term of 

minus one (-1) on the denominator is most important point of the equation. If the 

energy spectrum of bosons from ground state is listed, it can be obtained;  

 (2.9) 

 

Though the minimum energy of the ground state is taken , average occupation 

number of particles  cannot be equal to minus value so in the Bose gases, the 

expression of  or  must be like this [34]; 

 (2.10) 

 (2.11) 

 

It is known that at high temperatures chemical potential is much less than the energy 

of the lowest single particles state ( ) and average occupation number of any 

state is much less than unity. But when the temperature is lowered, chemical 

potential rises and average occupation number increase. However the chemical 

potential cannot exceed , otherwise the Bose distribution function would be 

negative and unphysical. Consequently the average occupation number of any 

excited single particle state can be expressed in Eq. (2.8). 

In the following Figure 1 the distribution function is shown as a function of energy 

for various values of fugacity [30]. 
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 (2.12) 

         (2.13) 

 (2.14) 

 

        

  

 

Figure 2.5 The Bose distribution function. 

The Bose distribution function f
 0  

 is
 
as a function of energy for different value of the 

fugacity. The blue one  corresponds to temperature below the transition 

temperature. The purple one  shows that the    and the green 

one shows the  also in the two values of fugacity it can be seen that 

temperature increases so occupation number of the particle decreases. 

2.2.2 Density of States 

If the thermodynamic properties of gases studied, sums at all levels are replaced with 

integrals and density of state is used to smooth out details of the level structure. This 
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method is unsuccessful for a Bose-Einstein condensed systems, because the 

contribution from the ground state is not correctly explained. However it gives a 

good approximation to contribution from excited states, and these smoothed densities 

of states are calculated for a number of different situations. 

One dimension density of states can be obtained but firstly phase space should be 

explained after that in three dimensions it should be obtained. 

First, let us consider a particle in a one dimensional coordinate system in the classical 

mechanics. If Hamiltonian H(q , p) is given, by using Hamiltonian equation solution 

of q(t) and p(t) can be obtained 

The two dimensional space which have the axes of p and q is called phase space as 

shown in Figure 2.6. Micro state of a particle at time t is a point corresponding 

values of p(t) and q(t) in phase space. If time t changes, p(t) and q(t) changes and the 

point representing micro state in the phase space moves on the a orbit.   

 

 

 

 

 

 

If the Hamiltonian of harmonic oscillator in the phase space is written, it will be like 

form; 

 (2.15) 

 

Eq. (2.15) is a ellipse equation and the diameter of the ellipse varies depending on 

the value of  . So in the phase space the harmonic oscillator draws elliptical orbits 

as shown in Figure 2.7 

 

Figure 2.6 Phase space 

(p,q) 

p 

q 
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When the micro-states of classical systems are searched, there is a serious problem; 

because the position and momentum of a particle take continuous values, in the 

region where the motion become, the number of the micro-state is infinite. For 

example, if the energy of particles changes between  and , it can be written 

 (2.16) 

 

and there are infinite points between ellipses  and . When the number of micro-

state is infinite, it is not possible to make statistical analysis. But the uncertainty 

principle of quantum mechanics can be used to for this situation. According to the 

uncertainty principle, the product of   uncertainty of the position with of   

uncertainty of the momentum must be at least as much as h (Planck’s constant) [30] 

 (2.17) 

 (2.18) 

 

 Figure 2.7 The orbits of Hamiltonians of two harmonic oscillators in the phase space 

q 

p 
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then, if in the phase space surface element dq.dp is smaller than value of h (Planck’s 

constant), the surface element cannot be evaluated and it is unphysical. In the surface 

element dq.dp, surface area covered by micro-state is h, so the number of micro-

states is given in the one dimension by [30] 

 (2.19) 

 

also, in three dimensions it can be given 

 (2.20) 

 

so, the number of state can be finite value. In these equations Planck’s constant h can 

be written in terms of reduced Planck’s constant or Dirac constant and it is equal to 

the Planck’s constant divided by   and is denotes  (h-bar)  

 (2.21) 

 

In three dimension, for a free particle in a particular internal state, there is on average 

one quantum state per volume (2πħ)
3
 of phase space. The region of momentum space 

for which the magnitude of momentum is less than p has a volume 4πp
3
/3 equal to 

that of a sphere of radius p and, since the energy of a particle of momentum p is 

given , the number of micro-states , with energy less than  is 

given by [32]; 

 (2.22) 

 

(dp)
3
 is the volume of momentum, 
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     and  (2.23) 

 (2.24) 

 

(dq)
3
 is the volume of system, and it is equal to V 

If the number of states  is re-written, in terms of dp and dq, it is obtained this 

form, 

 (2.25) 

 

Quite generally, the number of states with energy between    and d  is given 

by d , where  is the density of states. Therefore; 

 (2.26) 

 

If Eq. (2.25) put in the Eq. (2.26), Eq. (2.27) is obtained; 

 (2.27) 

 (2.28) 

 

In Eq. (2.28) density of states were obtained in three dimension systems for free 

particles, also in d-dimension the corresponding results can be given; 

 (2.29) 
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Now, let us consider a particle in the anisotropic harmonic oscillator potential and in 

the three dimensions this potential can be written; 

 (2.30) 

 

where, i (i =1,2,3) is classical oscillation frequencies and x, y and z are positions in 

three dimension systems. 

It is known that the energy levels  are given [35]; 

 (2.31) 

 

Where, n1, n2 and n3 are positive integer. 

Same procedure can be applied for a particles in the anisotropic harmonic potential 

system to determine the number of states G( ) for free particles in the three 

dimensions. Firstly, the number of states G( ) with energy less than a given value 

can be treated. For large energies compared with ħωi, as continuous variables ni is 

treated and zero-point motion is neglected. Therefore a coordinate system is defined 

with axes of    and in this coordinate system surface which is constant the 

total energy   , occurs a plane. Then G( ) is proportional to the 

volume in the first octant bounded by the plane and is defined so the number of states 

can be obtained this form [35]; 

 (2.32) 

 

From  , density of states is obtained; 

 (2.33) 
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 (2.34) 

 

so, for a particle sin the three dimension anisotropic potential corresponding results 

can be given    [35]. 

Density of states in three dimensions; 

For free particle  (2.35) 

For anisotropic 

potential 
 (2.36) 

 

were obtained. 

It can be seen that density of states varies as power of the energy. 

To calculate easily the thermodynamic properties of systems, density of states can be 

written following form [35]. 

 (2.37) 

 

Where  is constant and for free particle in Eq. (2.28) and for harmonic oscillator 

potential in Eq. (2.34) may be read off. 

For free particle; 

 

 

(2.38) 
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For anisotropic potential; 

 

 

(2.39) 

 

 

2.2.3 Transition Temperature 

As the highest temperature where occupation number of the lowest single particle 

state appears, the transition temperature Tc is defined. When the number of particles 

N is enough large, zero point energy in Eq. (2.31) can be neglected, thus the lowest 

energy  may be zero. 

Under such situation, according to density of states and distribution function which is 

defined in Eq. (2.37) and Eq. (2.8) respectively, transition temperature can be 

obtained. 

The number of particles in the excited states is given by; [37] 

 (2.40) 

 

This achieves its greatest value for  and the transition temperature Tc is 

determined by condition that the total number of particles can be accommodated in 

excited states, that is; 

 (2.41) 

  

  

 (2.42) 
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When Eq. (2.41) is written in terms of the dimensionless variables , it can 

be obtained the result is given in Eq. (2.45). 

 (2.43) 

 (2.44) 

 
 

 
 

 (2.45) 

 (2.46) 

 

In Eq. (2.45) the side of integral can be defined in terms of the gamma function  

and the Riemann zeta function . In evaluating the integral in Eq.(2.45) Bose 

function is expanded in power of e
-x

 and equation  is used.[35] 

In the following Table (2.1) lists  and  for selected values of . 

 

Table 2.1 The Gamma function and Riemann zeta function for various values of  

[35]. 

   

1 1  

1,5  2,612 

2 1  

2,5  1,341 

3 2 1,202 

3,5  1,127 

4 6  
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Eq. (2.45) can be written in terms of Eq. (2.46), and result is given; 

 (2.47) 

so transition temperature can be written like; 

 (2.48) 

 

for a three dimensional harmonic oscillator potential  is equal to 3 and  is given 

by Eq. (2.39), the transition temperature is given by; 

 (2.49) 

 (2.50) 

 

Where product of   can be written in terms of geometric mean of them. 

 (2.51) 

 

so, result is given;  

 (2.52) 

 

Eq. (2.52) may be written in the useful form 

 (2.53) 

where, .  
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For a uniform Bose gas in a three dimensional box of volume V,  is equal to 3/2 and 

 is given by Eq. (2.38) thus the transition temperature is given by; 

 (2.54) 

 (2.55) 

 (2.56) 

 (2.57) 

 

where,  is the number density. 

For a free particle in two dimensions, because d is equal to 2  is equal to 1 and the 

Eq. (2.45) diverges. Thus in two dimensional box Bose-Einstein may occur only at 

zero temperature. But in two dimensional harmonic oscillator potential, Bose gas can 

condense at non-zero temperature [35]. 

 

2.2.4 Condensate Fraction 

Below the transition temperature the number  of particles in excited states is 

given by Eq. (2.40) with .  

 (2.58) 

 

In Sec. 2.3.3  in order to find the transition temperature, it can be supposed that the 

total number of particles became in excited states and chemical potential which is 

equal to zero is taken, so results are given in Eq. (2.47) [35]. 
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 (2.59) 

  

In Eq. (2.58) below the transition temperature  the number  of particles in 

excited states can be written in the form; 

 (2.60) 

 

Note that this result does not depend on the total number of particles. 

If Eqs. (2.59) and (2.60) are used to find condensate fraction, it can be written; 

 

In condensate the number of particles is so given by; 

 

If Eq. (2.62) is used to in Eq. (2.63), it is obtained by; 

 

 (2.61) 

 (2.62) 

 (2.63) 

  

 (2.64) 
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For free particles in a volume V,  is equal to 3/2 so the occupancy of the condensate 

can be written from Eq. (2.64).  

 

For a three dimensional harmonic oscillator potential  is equal to 3 the number of 

particles in condensate is; 

 

The transition temperature  which is given Eq. (2.48) is suit in all cases for the 

appropriate value of  [35]. 

 

2.2.5 Density Profile 

The cold clouds of atoms that are investigated at  (micro-kelvin) temperatures 

contain about order of 10
4
 – 10

7
 atoms. Due to a lot of reasons, it is possible to apply 

the techniques of low temperature physics to these systems. First, there are rather few 

atoms, second the system are metastable so one cannot allow them to come into 

equilibrium with another body, and third the system have a lifetime which is of order 

second to minutes. So among the quantities that can be measured is the density 

profile. One way to do this is made by using some experimental procedure. During 

the experimental procedure, the distributions of particles which become in the cold 

atomic cloud do not only depend on early density distribution of particles but also 

depend on beginning the velocity distribution of particles. [35] 

In the ground state of the system, all atoms are condensed in the lowest single 

particle quantum state and the density distribution n(r) shows the shape of the ground 

state wave function    for a particle in the trap since, for non-interacting 

particles, the density is given by; 

 (2.65) 

 (2.66) 
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 (2.67) 

  

where, N is the number of particles. For anisotropic harmonic oscillator the ground 

state wave function is given this form; [35] 

 (2.68) 

 

where, the widths  of the wave function in the three directions are given by 

. 

Thus, density distribution is anisotropic and if the three frequencies ,  and  

are not all equal, the greatest begin associated with the lowest frequency. 

Eq. (2.68) can be written in momentum space by using Fourier transform Eq. (2.69). 

 (2.69) 

 (2.70) 

 

Thus, ground state wave function is obtained in the momentum space like form; 

 (2.71) 

Where,   and it can be written like form . 

The density in momentum space corresponding to Eq. (2.67) is given by; 

 (2.72) 



 

30 
 

 (2.73) 

 

Eq. (2.73) has the form of a Maxwell distribution with different temperatures for 

three directions. 

 (2.74) 

 

As seen in following Eq. (2.75) Maxwell distribution is given; 

 (2.75) 

 

Spatial distribution is anisotropic, so the momentum distribution also depends on 

direction. According to the uncertainty principle, a narrow spatial distribution 

correspond to a broad momentum distribution, as seen in the Fourier transform Eq. 

(2.71) in which the width ci are proportional to the square root of the oscillator 

frequencies. 

When the gas behaviors classical gas in the well above Bose-Einstein condensation 

temperature, it can be looked the differences between classical distribution which are 

corresponded to density and momentum distribution. Density distribution classically 

is proportional with   and results are given; 

 (2.76) 

 

where, Ri is width spatial distribution, and it is given by; 

 (2.77) 
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These widths depend on temperature. Note that, the ratio of  which is bigger 

than value one, is equal to the  under the typically experimental 

situations. As a result of semi-classical behaviors situations are provided and it can 

be concluded that the thermal cloud is wider than the part of condense. Below critical 

temperature Tc the part of condenses appears as a sharp peak in the spatial 

distribution. According to thermal distribution when the temperature decreases, the 

weight of peak increases. Above Tc the density n(p) in the momentum space is 

isotropic in equilibrium, since it is determined only by the temperature and the 

particle mass, and in the classical limit it is given by; 

 (2.78) 

 

where, C constant is independent of momentum. If thermal cloud grows up more 

than initial size of it, the cloud which made up depends on the isotropy of velocity 

distribution and then it gets shape of spherical symmetry [35]. 
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CHAPTER 3 

 

THE INTERACTING BOSE GASES 

 

3.1 THEORY OF CONDENSATE STATES 

In the present section, the structure of Bose-Einstein condensation state in the 

presence of interactions will be considered. This topic is based on the Gross-

Pitaevskii equation which describes the zero temperature properties of the non-

uniform Bose gas when scattering length  is much less than mean inter-particle 

distance. This equation also called the non-linear Schrödinger equation and non-

linear term of the equation will be defined in the next subsection. 

Firstly, in section 3.1.1 Bogoluibov approximations will be defined. This theory that 

is discussed by Bogoluibov provides a good approximation to search the behaviors of 

a system consist of interacting bosons by using perturbation theory. 

In section 3.1.2 Gross-Pitaevskii equation is derived at zero temperature by treating 

the interaction between particles in terms of Bose field operator . In section 3.1.2.1 

for the ground state energy, in the time-independent Gross-Pitaevskii equation, 

Thomas-Fermi approximation obtained by neglecting the term of kinetic energy will 

be described. 

3.1.1 Bogoliubov Approximation and Mean Field Theory 

The mean field theory of the interacting bosons systems with multi-particles at zero 

temperature first time is discussed by Bogoliubov. In 1947 Bogoliubov improved a 

approximation to search the behaviors of a system consist of interacting bosons by 

using perturbation theory. Although this theory gives good results for low density 

and weak interacting systems, for systems which become inter-atomic effective 

interactions this theory is not good approximation. The theory of Bogoliubov is one 
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of the commonly used methods to examine the properties of Bose-Einstein 

condensation (Edwards and his friends 1996, Du Bois and Glyde 2003) [36] 

The Hamiltonian of the N interacting bosons with each other trapped by external 

potential is given by [35]; 

 

(3.1) 

 

Where   and   are the field operators of bosons, and they are respectively 

the annihilation and creation operators for a particle at position r.    is the 

inter-atomic interaction potential between two particles. 

The thermodynamic properties and ground states of the system can be directly 

calculated by using the Hamiltonian in Eq. (3.1). But, such calculations are very hard 

(Krauth 1996). For these type interaction systems the mean field approximation has 

been developed and it has been used to accurate solution of the multi-particle 

Schrödinger equations. 

The idea, which defines dilute a Bose gas with mean field approximation, is 

suggested by Bogoliubov in 1947. The field operators can be written [36]; 

 (3.2) 

 

Where,  is single particle wave function and  is the annihilation operator. 

The bosonic annihilation and creation operators,  and   are defined in Fock 

space through the relations [36]; 

 (3.3) 

 (3.4) 
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Where,  are the eigenvalue of the operator   giving number of atoms 

in the single particle  state. They obey the usual commutation rules.  

 (3.5) 

 (3.6) 

 (3.7) 

 

Where  is called Kronecher delta or Kronecher’s delta and it is a function of two 

variables, usually integers. The function is 1 if the variables are equal and 0 

otherwise. It can be defined by; 

 (3.8) 

 

Bose-Einstein condensation occurs when the number of atoms  of a particular 

single-particle state becomes very:   and the ratio  remains finite 

in the thermodynamic limit . In this limit the states with  and  

correspond to the same physical configuration and consequently the operators  and 

 can be treated like complex number:  . For a uniform gas in a 

volume V, Bose-Einstein condensation occurs in the single particle state 

having zero momentum and this mean that the field operator having zero 

momentum and this mean  can be decomposed  By 

treating the operator  as a small perturbation; Bogoliubov developed the “first-

order” theory for the excitations of interacting Bose gasses. [35] 

The generalization of the Bogoliubov prescription to the case of non-uniform and 

time-dependent configurations is given by [36]; 

 (3.9) 
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where, Heisenberg representation is used for the field operators. Also   is a 

complex function defined as expectation value of the field operator; 

 (3.10) 

 

Beside the condensation density is obtained with; 

 (3.11) 

 

The function   is defined as wave function of the condensation and     

which defines the fluctuation in the condensate is a small perturbation term [36]. 

3.1.2 Gross-Pitaevskii Equation 

In the first experiments, alkali atoms which are in the form of a quite dilute gas 

clouds were used. In these systems the interparticle distance between atoms is bigger 

than the distance of interaction between atoms. In the weak interactive dilute gases, 

the interaction of two particles that are defined with s-wave scattering length is 

expected to be the dominant. Gross-Pitaevskii theory describes the mean field theory 

of the Bose-Einstein condensation in the situation that has the low density and too 

much condensed atoms. This theory was improved by Gross (1961) and by Pitaevskii 

(1961) by using different techniques independently each other. In the literature, G.P. 

(Gross-Pitaevskii) equation has been used to examine lots of properties of boson 

gases trapped by isotropic (Fabrocini and Polls 1999, Du Bois and Glyde 2003) and 

anisotropic traps (Dalfavo and Strigari 1996, Du Bois and Glyde 2001)  

In Eq. (3.1) the second quantized Hamiltonian in terms of the Bose field operator   

can be written again;  

 

(3.12) 
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where,   is the interaction potential acting between the bosons and 

  is the single particle Hamiltonian, where m is the particle 

mass and  is the external potential acting on the system. The operator   

and   represents the creation and annihilation of a boson at position r, and 

satisfy the crucial Bose commutation rules that will be given below. 

The gas is sufficiently dilute that the atomic interactions are dominated by low 

energy, two-body s-wave collisions. These are essentially elastic, hard sphere 

collisions between two atoms, and can be modeled in terms of pseudo-potential [40]. 

 (3.13) 

 

where,    with  the s-wave scattering length. Also  is the 

delta function. 

 (3.14) 

 

Also, if delta function over all space is integrated, it is given by; 

 (3.15) 

 

So, Eq. (3.12) can be written in terms of Eq. (3.13)  

 

(3.16) 

 

So, Eq. (3.16) can be written in terms of the properties of delta function; 
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(3.17) 

 

So, Eq. (3.17) can be written in terms of integrated delta function over all space 

 (3.18) 

 

where, the dependence on  has now been conveniently integrated out. 

By using the Bose commutation relations [40]; 

 (3.19) 

  (3.20) 

 

After that, the second quantize Hamiltonian in Eq. (3.18) can be written in terms of 

Heisenberg’s time evolution equation; 

 (3.21) 

 

And, the results of commutation relations between  and   is given by; 

 (3.22) 
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(3.23) 

 

Eq. (3.23) can be written in terms of commutation relation in Eq. (3.19); 

 

(3.24) 

 

 

(3.25) 
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(3.26) 

 

 

(3.27) 

 

 (3.28) 

 

Since the condensate state involves the macroscopic occupation of a single state it is 

appropriate to decompose the Bose field operator in terms of a macroscopically-

populated mean field term in Eq. (3.10)     and a fluctuation term 

 in Eq. (3.9). 

  (3.29) 

 

Then, taking only the leading order terms in , Eq. (3.28) leads to the time-

dependent Gross-Pitaevskii equation, 

 (3.30) 

 

The equation known as Gross-Pitaevskii (GP) equation was derived by Gross 

(1961 and 1963) [23-24] and Pitaevskii (1961) [25]. Its validity is based on the 
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condition that s-wave scattering length be much smaller than the average distance 

between atoms and that the number of atoms in the condensate be much larger than 

1. The GP equation can be used, at low temperature, to explore the macroscopic 

behavior of the system, characterized by variation of the order parameter over 

distance larger than the mean distance between atoms.  

The ground state can be easily obtained within the formalism of mean field theory. 

For this one can write the condensate wave function as 

, where   is the chemical potential and  is real and 

normalized to the total number of particles.  The time-

independent GP equation becomes, 

 (3.31) 

 

This has the form of a non-linear Schrödinger equation in which the potential acting 

on particles is the sum of the external potential   and a non-linear term  

that takes into account the mean field produced by the other bosons. Note that the 

eigenvalue is the chemical potential, not the energy per particle as it is for the usual 

(linear) Schrödinger equation. For non-interacting particles all in the same state the 

chemical potential is equal to the energy per particle, but for interacting particles it is 

not. 

 

3.1.2.1 The Thomas-Fermi Approximation  

For sufficiently large clouds, an accurate expression for the ground-state energy may 

be obtained by neglected the kinetic energy term in the time-independent Gross-

Pitaevskii equation. A better approximation for the condensate wave function for 

large numbers of atoms may be obtained by solving the Gross-Pitaevskii equation, 

neglecting the kinetic energy term from the start. In Eq. (3.31) GP equation can be 

written in terms of this approximation [35]. 
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 (3.32) 

 

where,  is the chemical potential and condensation density n(r) can be written again 

in terms of the absolute square of the wave function of the condensation in Eq. 

(3.11); 

 (3.33) 

 (3.34) 

 

This equation has the solution in the region where the right hand side is positive 

while  outside this region. The boundary of the cloud is therefore given by;[35] 

 (3.35)   

 

The physical content of this approximation is that the energy to add a particle at any 

point in the cloud is the same everywhere. This energy is given by the sum of the 

external potential    and an interaction contribution    which is the 

chemical potential of a uniform gas having a density equal to the local density . 

Since this approximation is reminiscent of the Thomas-Fermi approximation in the 

theory of atoms, it is generally referred to by the same name. For atoms, the total 

electrostatic potential takes the place of trapping potential and the local Fermi energy 

that of the mean-field energy  . 

In the Thomas-Fermi approximation the extension of the cloud in the three directions 

is given by the three semi-axes   obtained by inserting Eq. (3.36) anisotropic three 

dimensional harmonic potential into Eq. (3.35) 

 (3.36) 



 

42 
 

 (3.37) 

 

The lengths  may be evaluated in terms of trap parameters once the chemical 

potential has been determined. The normalization conditions on , Eq. (3.38) yields 

a relation between the chemical potential  and the total number of particles . For a 

harmonic trap with a potential given by Eq. (3.36) it can be obtained; 

 (3.38) 

 (3.39) 

 (3.40) 

 (3.41) 

 

as may be seen by scaling each spatial coordinate by   and integrating 

over the interior of the unit sphere. Solving Eq. (3.41) for  following relation 

between  and :  

 (3.42) 

 

where,    is the geometric mean of the three oscillator frequencies 

and   is the widths of the wave function or the characteristic length. [36] 

The quantity    is a convenient measure of the spatial extent of the 

cloud. By combining Eq. (3.37) and Eq. (3.42) it can be obtained [36]; 
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 (3.43) 

 (3.44) 

 (3.45) 

 

With the replacement of the value of   in Eq. (3.44), last equation (3.45) can be 

obtained and this equation implies a relation between  that is characteristic length   

and  that is a convenient measure of the spatial extent of the cloud obtained in 

terms of .   

 

Figure 3.1 The form of the Thomas-Fermi approximation wave function [35]. 

 

The form of the Thomas-Fermi approximation wave function is given by in Eq. 

(3.34) and chemical potential is determined by normalization condition in Eq. (3.38) 

so, plot of wave function can be drawn in terms of harmonic oscillator length units in 

this form.  
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CHAPTER 4 

 

CALCULATIONS 

 

4.1 INTRODUCTION 

The time-independent Gross-Pitaevskii equation for a dilute assembly of bosons at 

T=0 is given in Eq. (3.31). This equation has the form of non-linear Schrödinger 

equation for condensed neutral atoms in the different potential and it can be written 

under different potential. Firstly we start to solve this equation for harmonic potential 

and then this equation will have been solved for different two potentials that are not 

investigated in literature up to now. 

G-P equation has following form in the external potential. 

 (4.1) 

 

Where,  is the Bose-Einstein condensation wave function, m is the mass of 

single atom, N is the number of atom in the condensate and  value characterizes the 

atom-atom interaction and it is given by; 

 (4.2) 

 

where,  is the scattering length. This interaction is valid at sufficiently low energies 

and for s-wave interaction between atoms. For the purpose of this discussion, that  

is taken as positive [41]. 
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In the three dimensional space differential volumes unit is equal to  

and because in Eq. (4.1) the norm of   wave function must be finite, a 

transformation should be made [26]; 

 (4.3) 

 

Bose-Einstein ground state wave function is spherically symmetric, thus it can be 

write the form of the Eq. (4.3)  

where, A is the normalization. Eq. (4.3) can be inserted in Eq. (4.1) but firstly 

Laplacian operator in Eq. (4.1) should be defined in the three dimensional spherical 

coordinate. 

 (4.4) 

 

In Eq. (4.1) ground state wave function only depend on radial part of operator, thus 

in Eq. (4.4) second and third part is going to zero so, result is given by; 

 (4.5) 

 

So, Eq. (4.3) is inserted in Eq. (4.5), Laplacian operator has following form, 

 (4.6) 

 (4.7) 

 

So, Eq. (4.1) can be written in terms of Eq. (4.3) and Eq. (4.7) and it is given by, 

 (4.8) 
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In Eq. (4.8)    and   are reduced and it is given; 

 (4.9) 

 

Eventually, we have obtained a suitable form to apply different potentials. Firstly we 

handle the harmonic potential for the solution of Gross-Pitaevskii equation after than 

anharmonic and morse potentials. 

 

4.2 SOLUTION OF GROSS-PITAEVSKII EQUATION FOR DIFFERENT    

POTENTIALS 

 

4.2.1 Harmonic Oscillator Potential 

Last form of Gross-Pitaevskii equation Eq. (4.9) can be investigated in terms of 

harmonic potential . 

To obtain an equation suitable for numerical work, we transform to dimensionless 

length unit by letting  

 (4.10a) 

 (4.10b) 

 (4.10c) 

 

Eq. (4.9) is written in terms of Eqs. (4.10a), (4.10b) and (4.10c) also           

  is taken and it has following form,  

 (4.11) 

  



 

47 
 

To get the dimensionless form of Eq. (4.11) we use the transformation given below, 

 (4.12) 

 (4.13) 

 

Also,  value is selected as the dimensionless energy, 

 (4.14) 

 

where, according to [26], the value of chemical potential is taken  so 

,  and with same procedure it can be taken like form, 

 (4.15) 

 

where,  is the scattering length and its numerical value is about 3nm also for the 

solution of our calculation is taken N~10
5
 in a trap of frequency 10 Hz. This is a 

reasonable case that one might expect to realize in the case of alkali-metal atoms, say 

Cs (Cesium) [26] 

Finally, we have obtained dimensionless form of the Eq. (4.11),  

 (4.16) 

 

Now we can consider Eq. (4.16) as . The non-linear term inside the square 

brackets approaches a constant in this limit because of the regularity of the wave 

function at . Thus we should write the value of wave function at  to solve 

in terms of second order Runge-Kutta method. 

For , Eq. (4.16) has following form. 
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 (4.17) 

 

So, the wave function can be written first two terms of Taylor series at , 

 (4.18) 

 

For , we can say that   

For , in Eq. (4.18)   is a constant and if Eq. (4.17) can be written in terms 

of Eq. (4.18) and it is solved at ,  can be obtained like form, 

 (4.19) 

 

where, the numerical value of initial conditions for harmonic potential and other 

initial conditions have like form, 

 (4.20) 

 

By using Eq. (4.1) G-P Equation, Eq. (4.16) was obtained and for , initial 

conditions in Eqs. (4.19) and (4.20) were obtained [26]. 

Another property of the condensate wave function is its mean square radius. In the 

any experiment, we suppose that there are a lot of particles which are represented by 

same wave function in the x-axis direction. We can make a lot of measurement to 

find the position of particles. Although the wave functions of particles are same each 

other, the position of particles that are measured in all measurement will be different. 

So it will be important to know the expected value of positions of atoms. 

In the Bose-Einstein condensation movement of any particles do not leave other ones 

therefore in the condensate the movement of all the atoms not take into account 
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separately but take into consideration like movement of a single large atom and 

movement of any particles is represented by same wave function. 

In this case for BEC expected value of position will be important. In addition, the 

uncertainty around the expected value of position that is the standard deviation 

defined in the calculation of the probability for position, mean square of position will 

be important in quantum mechanics. 

So we can define the mean square of position following form, 

 (4.21a) 

 (4.21b) 

 

We can write the  in terms of , according to Eqs. (4.10a) and (4.13), 

 (4.22) 

 

Where,   for harmonic potential and it has following form; 

 (4.23) 

 

After the calculations and definitions of system are made, we can obtain the solutions 

of Gross-Pitaevskii equation by using Wolfram Mathematica 8.0 programs. 

We use the Runge-Kutta method for second order differential equation to Eq. (4.16). 

As a result, the ground state wave function of condensate under harmonic potential 

with initial conditions has been obtained for   and numerical values 

which are used in this calculation are taken from the [26].  

Figure 4.1 gives probability density of bosons particle  at     

 and at position  under harmonic potential. 
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Figure 4.1 Harmonic potential probability density. 

 

Figure 4.1 at absolute zero temperature under harmonic potential large fraction of 

bosons became in the centre of potential and according to changing distance it is 

decreasing. 

In section 3.1.2 we defined that, eigenvalue is chemical potential in Gross-Pitaevskii 

equation, not the energy per particle as it is for the usual Schrödinger equation. For 

non-interacting particle all in the same state the chemical potential is equal to the 

energy per particle, for interacting particle it is not. That is, there is a relation 

chemical potential and number of particles and it can be defined statistical law 

 [32]. The effect of changing chemical potential to the position of the 

atoms in the condensate is seen in Figure 4.2.  

For decreasing value of the chemical potential, it seen that the probability density of 

particle in condensate state decrease. If the getting value of the chemical potential 

 in Figure 4.1 is reduced with step by step   , Figure 4.2 is obtained. 

In the following table 4.1 these data are given and associated with these data, 

probability density and mean square radius are calculated. 
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Table 4.1 For different value of chemical potential, probability density of boson 

particle and mean square radius are given. 

      

2,1 2.14799 0.00078 3,3 4.1217 0.00151 

2,3 2.37175 0.00081 3,5 4.6144 0.00169 

2,5 2.63402 0.00096 3,7 5.1572 0.00189 

2,7 2.93748 0.00107 3,9 5.7487 0.00211 

2,9 3.28494 0.00120 4,1 6.3859 0.00234 

3,1 3.67897 0.00135 4,3 7.0636 0.00259 

 

 

 

Figure 4.2 Harmonic potential probability density, for changing value of chemical 

potentials. From (top curve)  to (bottom curve)  chemical potential 

respectively. 

 

This graph is obtained by using the data given in Table 4.1. For increasing values 

of the chemical potential the number of particles that become in the center and 

join the condensation increase. 

4.2.2 Anharmonic Oscillator Potential 

So far, numerical solution for time-independent Gross-Pitaevskii equation is made 

for harmonic potential. All calculations which are made for harmonic potential can 

be made again for both anharmonic and morse potentials.  
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We can handle time-independent Gross-Pitaevskii equation for anharmonic potential. 

Before it is taken numerical solution of Gross-Pitaevskii equation for anharmonic 

potential, we should make some dimensionless. 

Firstly, Eq. (4.9) can be written again for anharmonic potential, 

 (4.24) 

 

Where, c is the coupling constant of the quartic term and it can be very small values. 

Large enough values of  the quartic potential eventually supersedes, the 

harmonic potential  and it can no longer be consider weak. 

Gross-Pitaevskii equation under anharmonic potential is given by, 

 (4.25) 

 

We transform to dimensionless length unit by Eqs. (4.10a), (4.10b) and (4.10c) so, it 

has following form. 

 

 

(4.26) 

 

After reductions are made, some terms have following form, 

 (4.27a) 

 (4.27b) 
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 (4.27c) 

 (4.27d) 

 

Finally, to solve a suitable equation is obtained with these terms, 

 (4.28) 

 

Now we can consider Eq. (4.28) as . The non-linear term inside the square 

brackets approach a constant in this limit because of the regularity of the wave 

function at  . In Eq. (4.28) the term of   is going to zero while  is 

going to zero, so with same procedure in harmonic oscillator calculations, initial 

conditions Eq. (4.20) can be obtained again and same numerical values can be 

applied.[26] 

The mean square radius defined in Eq. (4.22) for harmonic, it can be written again in 

terms of   for anharmonic potential. 

 (4.29) 

 

After the calculation and definitions of system, we can be obtained the ground state 

wave function of condensate under anharmonic potential. In this solution wave 

function is   and following Figure 4.3 gives probability density of 

bosons particle  at , and at position under 

anharmnic potential. 
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Figure 4.3 Anharmonic potential probability density 

 

Figure 4.3 at absolute zero temperature under anharmonic potential large fraction of 

bosons became in the centre of potential and according to changing distance it is 

decreasing. 

Numerical values which have been used in harmonic potential solutions can be used 

for anharmonic solutions too, in Figure 4.4 so we can obtain following Table 4.2. 

 

Table 4.2 For different value of chemical potential, probability density of boson 

particle and mean square radius are given. 

      

2,1 1.4814 0.00308 3,3 3.0415 0.00632 

2,3 1.6498 0.00343 3,5 3.4577 0.00719 

2,5 1.8496 0.00384 3,7 3.9286 0.00817 

2,7 2.0848 0.00433 3,9 4.4567 0.00926 

2,9 2.3591 0.00490 4,1 5.0429 0.01048 

3,1 2.6766 0.00556 4,3 5.6865 0.01182 
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Figure 4.4 Anharmonic potential probability density for changing value of chemical 

potentials. From (top curve)  to (bottom curve)  chemical potential 

respectively. 

 

This graph is obtained by using the data given in Table 4.2. Same situation with 

harmonic potential can be seen in Figure 4.4, for increasing values of the chemical 

potential the number of particles that become in the center and join the 

condensation increase. 

 

4.2.3 Morse Potential 

Another interesting potential in this study is morse potential which is a convenient 

model for the potential of a diatomic molecule. It is a better approximation for the 

vibrational structure of molecule than harmonic oscillator because it explicitly 

includes the effects of bond breaking, such as the existence of unbound states. It also 

accounts for the anharmonicty of real bonds and the non-zero transition probability 

for overtone and combination bands. The morse potential can also be used to model 

other interactions such as the interaction between an atom and surface.  The morse 

potential energy function is of the form ,   

Here   is the distance between the atoms.  is the equilibrium bond distance so we 

can get zero it.  is the well depth and b controls the width of the potential. 

Since the zero of potential energy is arbitrary, the equation for morse potential can be 

rewritten any number of ways by adding or subtracting a constant value. When it is 
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used to model the atom surface interaction, the morse potential is usually written in 

the following form,  

, (4.30) 

 

Eq. (4.9) can be written for Eq. (4.30) again and  letting , 

 (4.31) 

   

We transform to dimensionless length unit by Eqs. (4.10a), (4.10b) and (4.10c) so, it 

has following form for . So Eq. (4.31) can be written following form. 

 

 

(4.32) 

 

After reductions are made, some terms have following form, 

 (4.33a) 

 (4.33b) 

 

Also,  and  can be written, and same values of Eqs. (4.14) and (4.15) can be got,  

 (4.34a) 

 (4.34b) 
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The chemical potential  and , 

Finally, to solve a suitable form of equation is obtained, 

 (4.35) 

 

Also, same procedure for harmonic potential can be made  and numerical 

values of initial conditions have the form, 

 (4.36a) 

 (4.36b) 

 

The mean square radius defined in Eq. (4.22), it can be written again in terms of  

  for morse potential. 

 (4.37) 

 

After the calculation and definitions of system, we can be obtained the ground state 

wave function of condensate for morse potential. In this solution wave function is 

  and following Figure 4.5 gives probability density of bosons 

particle  at , and at position under morse potential. 
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Figure 4.5 Morse potential probability density. 

 

Figure 4.5 at absolute zero temperature under morse potential large fraction of 

bosons became in the centre of potential and according to changing distance it is 

decreasing. 

Numerical values which have been used both in harmonic potential and anharmonic 

potential solutions can be used too for morse potential solutions, in Figure 4.6 so we 

can obtained following Table 4.3 for . 

 

Table 4.3 For different value of chemical potential, probability density of boson 

particle and mean square radius are given. 

      

2,1 3.620 0.00133 3,3 6.965 0.00256 

2,3 4.056 0.00149 3,5 7.670 0.00281 

2,5 4.542 0.00166 3,7 8.401 0.00308 

2,7 5.078 0.00186 3,9 9.147 0.00336 

2,9 5.662 0.00208 4,1 9.896 0.00363 

3,1 6.293 0.00231 4,3 10.635 0.00390 
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Figure 4.6 Morse potential probability density for changing value of chemical 

potentials. From (top curve)  to (bottom curve)  chemical potential 

respectively. 

 

This graph is obtained by using the data given in Table 4.3. Same situation with 

harmonic potential and anharmonic potential can be seen in Figure 4.4, for increasing 

values of the chemical potential the number of particles that become in the center and 

join the condensation increase. 

 

4.3 THOMAS-FERMI APPROXIMATION 

 

4.3.1 Harmonic Oscillator Potential 

Thomas-Fermi approximation was defined in section 3.1.2.1 for sufficiently large 

clouds, an accurate expression for the ground-state energy may be obtained by 

neglected the kinetic energy term in the time-independent Gross-Pitaevskii equation. 

A better approximation for the condensate wave function for large numbers of atoms 

may be obtained by solving the Gross-Pitaevskii equation, neglecting the kinetic 

energy term. As defined in this section Eq. (3.34) is written again for harmonic 

potential , it can be obtained following form, [26] 
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 (4.38) 

 

Also, condensate density and number of particle have following form, 

 (4.39a) 

 (4.39b) 

 

Eq. (4.38) has the solution in the region where the right hand side is positive while 

 outside this region. The boundary of the cloud is therefore given by; 

 (4.40)   

 

as may be seen by scaling each spatial coordinate by   and according to 

solution of  Eq. (4.39b)  chemical potential can be obtained like form, [26] 

 (4.41) 

 

By using Eq. (4.38) and Eq. (4.41) we can obtain following graph for harmonic 

potential. This graph shows the probability density of this approximation for 

harmonic potential.   
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Figure 4.7 Thomas-Fermi approximation probability density of bosons particles for 

harmonic potential. 

 

In Figure 4.7 by using Thomas-Fermi approximation the probability density versus 

position plotted for the system with large number of particles. In this graph, particles 

are spread over a large proportion and majority of them are not distributed over the 

center of system like exact solution in Figure 4.1.  

After, Figure 4.7 is obtained; by using Eq. (4.41) number of particle versus chemical 

potential can be plotted in Figure 4.8 [26]. 

 

 

Figure 4.8 A plot of the number of condensate atoms as a function of the chemical 

potential for harmonic potential. 

 



 

62 
 

This graph the number of condensate atoms as a function of the chemical potential 

and it is obtained by using Thomas-Fermi approximation. As seen in Figure 4.8 the 

number of condensate atoms increased in direct proportion to the increased of 

chemical potential.  

 

4.3.2 Anharmonic Potential 

After Figures 4.7 and 4.8 were obtained for harmonic potential, for systems which 

have increasing the number of particles, Thomas-Fermi approximation wave function 

can be obtained under anharmonic potential too. According to the approximation, Eq. 

(3.34) can be written again for Eq. (4.24) and chemical potential can be obtained 

again the name of Eqs. (4.39a), (4.39b) and (4.40).  According to Eq. (4.40) chemical 

potential can be scaled spatial coordinate by   which are 

boundary conditions of potential. Also chemical potential can be obtained with same 

procedure in the harmonic potential solution but mathematical results give us very 

large roots in program so it is not given in here. 

Finally, we can plot the Gross-Pitaevskii equation for Thomas-Fermi approximation 

under anharmonic potential. This graph is the probability density of this 

approximation for anharmonic potential.   

 

 

Figure 4.9 Thomas-Fermi approximation probability density of bosons particles for 

anharmonic potential. 
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In Figure 4.9 by using Thomas-Fermi approximation the probability density versus 

position plotted for the system with large number of particles. In this graph, particles 

are spread over a large proportion and majority of them are not distributed over the 

center of system like exact solution in Figure 4.3.  

After, Figure 4.9 is obtained; by using root of chemical potential which is found by 

the mathematical program for Thomas-Fermi approximation under anharmonic 

potential number of particle versus chemical potential can be plotted in Figure 4.10.  

 

 

 

Figure 4.10 A plot of the number of condensate atoms as a function of the chemical 

potential for anharmonic potential. 

 

This graph the number of condensate atoms as a function of the chemical potential 

and it is obtained by using Thomas-Fermi approximation. As seen in Figure 4.10 the 

number of condensate atoms increased in direct proportion to the increased of 

chemical potential 

 

4.3.3 Morse Potential 

After Thomas-Fermi approximation wave functions both harmonic and anharmonic 

potantials were obtained, for systems which have increasing the number of particles, 

Thomas-Fermi approximation can be obtained for morse potential too with same 

procedure. According to this approximation Eq. (3.34) can be written again for morse 
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potential Eq. (4.30) and chemical potential can be obtained again the name of Eqs. 

(4.39a), (4.39b) and (4.40).  According to Eq. (4.40) chemical potential can be scaled 

spatial coordinate by   which are boundary conditions of potential. 

Also chemical potential can be obtained with same procedure in the both harmonic 

potential solution and anharmonic potential solution but mathematical results give us 

very large roots in program so we cannot write here. 

Finally we can plot the Gross-Pitaevskii equation for Thomas-Fermi approximation 

under morse potential. This graph is the probability density of this approximation for 

anharmonic potential with same procedure both harmonic and anharmonic potential.  

 

Figure 4.11 Thomas-Fermi approximation probability density of bosons particles for 

morse potential. 

 

In Figure 4.11 by using Thomas-Fermi approximation the probability density versus 

position plotted for the system with large number of particles. In this graph, particles 

are spread over a large proportion and majority of them are not distributed over the 

center of system like exact solution in Figure 4.5.  

After, Figure 4.11 is obtained; by using root of chemical potential which is found by 

the mathematical program for Thomas-Fermi approximation under morse potential 

number of particle versus chemical potential can be plotted in Figure 4.12.  
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Figure 4.12 A plot of the number of condensate atoms as a function of the chemical 

potential for morse potential. 

 

This graph the number of condensate atoms as a function of the chemical potential 

and it is obtained by using Thomas-Fermi approximation. As seen in Figure 4.12 the 

number of condensate atoms increased in direct proportion to the increased of 

chemical potential. 
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CHAPTER 5 

 

CONCLUSION 

Bose-Einstein condensation is a phase transition at absolute zero temperature. While 

a system which comprises alkali bosons gas atoms shows behavior of classical gas at 

high temperature limits,  the system with decreasing temperature gas shows behavior 

of quantum gas and at absolute zero temperature Bose-Einstein condensation occurs. 

In this situation particles that become in this system occupy the ground energy state. 

The motions of particles are not distinguished from each other and all of them begin 

to behave as the movement of a single particle so as a result of such situation the 

particles which becomes in the system can be represented with one condensate wave 

function. The equation which describes such a system and wave function is the 

solution of Gross-Pitaevskii equation or in other words non-linear Schrödinger 

equation. 

In this thesis, Gross-Pitaevskii equation is handled for different potentials. First 

potential is harmonic oscillator potential and the solution of this potential is 

investigated in literature [26]. The other two potentials are anharmonic and morse 

potentials. 

In the solution of the literature for harmonic potential by using the same numerical 

data with Runge-Kutta method condensate wave function are obtained. By using this 

solution, change in condensate probability density of particles are shown in Figure 

4.1. This graph is represented probability density versus width of potential. With 

same procedure, both anharmonic and morse potential are drawn to obtained 

condensate probability density in Figures 4.3 and 4.5 respectively. In the center of 

potential, it is observed that there is an increase in the number of particles 

participating condensation in these three graphs. Also in these graphs,   a decrease in 

the number of particles towards the boundary of potential can be seen. 
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As we defined in section 4.2.1, it can be seen that when the chemical potential 

decreases, the number of particles which participating in condensation decreases too 

in the system. This situation can be seen for harmonic oscillator potential in Figure 

4.2, for anharmonic potential in Figure 4.4 and for morse potential in Figure 4.6. 

These figures are drawn for all potential from larger chemical potential to low 

chemical potential. For these potentials, it is seen that number of particles that 

become in the center of potential decreases towards from high to low chemical 

potentials. It is concluded that chemical potential and number of particles 

participating in condensation is proportional to each other. Also in the these three 

graphs, it is seen that if the chemical potential is low, particles become on a large 

extent in the each region of potential but in the large value of chemical potential, 

particles concentrate towards to center of potential on the large scale. The solution of 

Gross-Pitaevskii equation that is probability density of condensation is obtained both 

different potentials and different chemical potentials. 

 By using Thomas-Fermi approximation for these three potentials probability density 

of condensation are obtained and their graphs are given in Figure 4.7, Figure 4.9 and 

Figure 4.11 respectively. Because this approximation is used for larger number of 

particles, numerical value of chemical potential are not used like in the exact 

solutions, it is derived as a function of number particle from Eq. (3.34) for all 

potentials. In the approximation these graphs show similarity with graphs of exact 

solutions.  While an increase in the number of particles is observed in the center of 

potentials, particles distribute with small change towards the boundary of potential 

and it is zero in the boundary. If we consider these there graphs there are most 

number of particles in the center of morse potential contrary to harmonic and 

anharmonic potential, also it can be seen that morse potential have similar density 

distribution with exact solution of morse potential when it is used same boundary of 

potential. 

It can be seen that whereas the majority of particles participating  condensation 

accumulate in the center of potential, the minority of particles participating 

condensation accumulate in the boundary of potential in the both exact solution and 

Thomas-Fermi approximation solution of Gross-Pitaevskii equation for the these 

three potentials. Particles also distribute almost equal ratio in these potentials for 

Thomas-Fermi approximation and it shows similar distribution with the exact 
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solutions in the solution of low chemical potential but note that only graphically 

representation shows similarity boundary values of potential are different except 

morse potential. 

In Thomas-Fermi approximation, graphs of probability density for each three 

potentials are obtained by using Eq. (3.34) and Eq. (3.38) and for each potential, 

chemical potential is defined as a function number of particles. According to these 

functions the graph of chemical potential versus number of particles are obtained for 

harmonic potential  and they are given in Figure 4.8, for anharmonic potential in 

Figure 4.10 and for morse potential in Figure 4.12. It can be seen in each graph, an 

increase of number of particles cause an increase of chemical potential 

These investigations help us understand the behavior of alkali bosons gases atoms at 

absolute zero temperature. We have analyzed two potential additionally to harmonic 

oscillator potential.  

There are important physical results of Bose-Einstein condensation. All atoms 

reaching ground energy state and behave like single particle so Bose-Einstein 

condensation explains quantum processes in macroscopic scale. 
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