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ABSTRACT 

DIRAC EQUATION WITH POSITION-DEPENDENT MASS  

AND ITS APPLICATION 

 

DHAHIT, HAYDER  

M.Sc. in Engineering Physics 

Supervisor: Assoc. Prof. Dr. Eser OLĞAR 
June 2013, 58 pages  

 

The formalism of Dirac equation for constant mass and position dependent mass is 

outlined in this study. During formalism, the equation is transformed into first order 

and second order differential equation forms respectively to solve for various 

physical potential. 

The eigenfunctions and eigenvalues of corresponding physical potentials are 

obtained in the framework of Asymptotic Iteration Method for both first order and 

second order form of Dirac equation. This method is applied to Coulomb potential, 

Harmonic Oscillator problem, Manning-Rosen potential, Eckart potential and 

Hulthen potential. The results are in a good agreement with the corresponding values 

found in the literature.  

 

 

 

Keywords:Dirac equation, position dependent mass, eigenvalues, eigenfunctions, 

asymptotic iteration method, physical potentials. 

 

 



 

 

 

ÖZ 

 

SABİT-POZISYONA BAĞLİ KUTLE İÇİN DİRAC DENKLEMİ VE 

UYGULAMALAR 
 

 

DHAHIT, HAYDER  

YüksekLisansTezi, FizikMühendisliği, Gaziantep Üniversitesi 

Danışman: Doç. Dr. Eser OLĞAR 

Haziran 2013, 58sayfa 

 

Bu çalışmada, Dirac denkleminin sabit ve pozisyona bağlı kütle için formülasyonu 

özetlendi. Formülasyonda, Dirac denklemi farklı fiziksel potansiyellerin çözümü için 

sırasıyla birinci ve ikinci dereceden diferansiyel denklem formuna dönüştürüldü.  

Bazı fiziksel potansiyellerin enerji özdeğerleri ve özfonksiyonları Asimtotik 

iterasyon metodu kullanılarak Dirac denkleminin her iki formunda elde edildi. Bu 

metot Coulomb potansiyeli, Harmonic Oscillator problemi, Manning-Rosen 

potansiyeli, Eckart potansiyeli and Hulthen potansiyeli için uygulandı. Elde edilen 

sonuçlar literatürdeki sonuçlarla iyi bir uyum sergiledi. 

 

 

 

 

Anahtar Kelimeler: Dirac denklemi, konuma bağlı kütle, özdeğer, özfonksiyon, 

asimtotik iterasyon metodu, fiziksel potansiyel. 
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CHAPTER ONE 

1 INTRODUCTION 

The solution of one of the relativistic differential equation, Dirac equation for 

quantum   mechanical systems in both case of spatially dependent mass and constant 

mass plays an important role [1–29].These physical systems are very useful in 

modeling the physical electronic properties of semiconductors[3], quantum wells 

,quantum dots [3,4], quantum liquids [5]and semiconductors hetero structures [6].In 

addition to the modeling systems, the relativistic effects are important in the field of 

heavy ion doping  and heavy atoms  [7–9]. 

Since the important of investigation of the Dirac equation with position dependent 

mass, there has been increased a great interest on it [7–18]. The solution of Dirac 

equation for Coulomb potential in different dimensions [19-24], Dirac particle in a 

central potential [25, 26] have been discussed. Additionally, different 

multidimensional non-relativistic and relativistic  equations have been studied ,For 

example ,the Schrodinger equation in  D-dimensional  has been studied with the 

pseudo harmonic potential [28], Coulomb potential [27], Hulthen potential[29]and 

Poschl-Teller potential [30]. Also, different potentials with D-dimensional for Klein-

Gordon equation [31] and Dirac equations [32-35] has been studied. 

In the science of quantum mechanics, physicists searched for methods to solve the 

Schrödinger and the Dirac equations. For this task, researchers have developed 

different access to get the exact or numerical solutions of both Schrödinger and the 

Dirac equation for many of potentials. 

From these methods, there are many techniques, the more commonly used is the 

algebraic method [38], the Laplace transformation [39, 40], the power series 

expansion[36, 37], the factorization method [41], supersymmetry, shape invariance 

method [44],the path integral method [42, 43], WKB as well as supersymmetric 

WKB (SWKB) methods [45].The developing history of quantum mechanics for non-

relativistic and relativistic shown that the new method promoted us to research in this 

field. 
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In few years ago, Ciftciet al[46, 47] proposed an asymptoticiteration method (AIM) 

it’s very efficient to establish the eigenvalues, which draws the attention of a many 

researchers [48–50] and gives a number of numerical or exact solutions to 

theSchrödinger equation for a lot of interesting potentials.After successfully using 

asymptotic iteration method to non-relativisticquantum mechanics, researchers 

moved to applythismethodto relativistic quantum mechanics to solve the Dirac 

equation [51].  

In this thesis, we choose AIM method to solve the spectrum of some physical 

potentials for Dirac equation. 

 

The organization of thesis is as follow: the fundamental of Dirac equation for d-

dimension [52] is introduced in Chapter 2. In chapter (3), the ideas which make the 

Dirac equation persuasiveand the properties of certain Dirac matrices with 

relationship α and β  pointed out .In subsequent chapter, the formulism of Dirac 

equation for constant mass and variable are derived both for first order and second 

order differential equation form. In chapter 4, the method used in the calculation of 

eigenvalues and eigenfunctions is presented. The applications of method are outlined 

in Chapter 5. The last chapter devotes to main conclusion of this thesis. 
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CHAPTER 2 

2 FORMULASIMOF THE DIRAC EQUATION 

One of the relativistic equation, Dirac equation was presented by the Paul Adrien 

Maurice Dirac [1] in 1928, who constructed an essential contribution to the 

development of both quantum electrodynamics and quantum mechanics. Dirac 

equation was constructed to explain the behavior of fermions and predicted to 

appearance of the antimatter [2]. Dirac searched for relativistic thatequation which 

was consistent with special theory of relativity without a sureness negative results of 

probability density. Toconstruct the relation of the energyand momentum, the Dirac 

equation must be linear in time derivative. And also to be preserved the 

Lorentztransformation, it also to be relativistic covariant.Therefore, Dirac proposed 

the Dirac equation which led to experimental discovery, the discovery of the 

positron, the anti-particle of the electron thatis one of greatest theoretical physics [3]. 

2.1 Derivation ofDirac Equation 

The Dirac equation is derived withseveral methods by considering the fundamental 

of the relativistic relation between the energy and momentum. This relation in the 

form of  

E2 = 𝐩2c2 + 𝑚2c4 (2.1) 

Where c  is speed of light, E the energy, 𝐩 the momentum and m the mass of 

particlesubsequently, the operator form of quantummechanical observables E and pis 

E → iℏ
∂

∂t
    and  𝐩 →

ℏ

i
 ∇ 

where ∇ is donates the gradient and ℏ is given in terms of constant hasℏ =

ℎ

2𝜋
 .Substituting this operator in Eq.(2.1) and acting on the quantum mechanical wave 

function  𝛙(𝑟, 𝑡), yields   

−ℏ
𝜕2𝛙

𝜕𝑡2
= (−ℏ c2∇2 + 𝑚2c4)𝛙 

(2.2) 
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this equation represents the Klein-Gordon equation for free particle. The time 

dependent second order differential equation (namely (2.2)) is solved by using 

boundary conditions for ψ(𝑟, 𝑡)and ψ′(𝑟, 𝑡). 

The relativistic solution of Klein-Gordon gives negative energy solution due toE2.  

To get rid of these problems, some physicists tried to write the Eq. (2.2) in different 

form which combines the quantum mechanics and special relativity. Also, the 

transformed form of Klein-Gordon equation is first order differential equation 

depending on time and it can be invariant under Lorentz transformations. 

Through the studies, Paul Dirac [3, 57] considered square root of Eq. (2.1) as 

𝐸 = √𝐩2c2 + 𝑚2c4 (2.3) 

This energy equation is reduced to in the limit of 𝒑 → 0  equation (2.3) become 

√𝐩2c2 + 𝑚2c4    → 𝑚𝑐2 

And in limit of  𝑚 → 0 

√𝐩2c2 + 𝑚2c4    → 𝑝𝑐 . 

From these limits, Dirac generalized the energy equation in  

√𝐩2c2 + 𝑚2c4   = 𝛼 𝐩 𝑐 + 𝛽 𝑚 c2 

where 𝛼 and 𝛽are matrices which they are defined in following section. 

Substitution this assumptions to the Eq. (2.2) yields  

𝑖ℏ
𝜕𝛙

𝜕𝑡
= (𝛼 𝐩 𝑐 + 𝛽 𝑚 𝑐2 ) 𝛙 

(2.4) 

Taking the natural units ( ℏ =  𝑐 = 1 ), the Eq. (2.4) transform to   

𝑖
𝜕𝛙

𝜕𝑡
= ∑𝛼𝑗

𝑑

𝑗=1

𝑝𝑗 + 𝛽 𝑚  ) 𝛙 

 

(2.5) 

 

where the momentum operator𝑝𝑗 represents   

𝑝𝑗 = −𝑖
𝜕

𝜕𝑥𝑗
 , 1 ≤ 𝑗 ≤ 𝑑 
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The Eq. (2.5) is called the famous Dirac equation for free particle in (d + 1) 

dimensions. 

2.2 Matrix Representations of 𝜶 𝐚𝐧𝐝 𝜷 

From equation (2.5) it is clear that the coefficients  𝛼𝑗 and 𝛽should investigate the 

condition of   invariant with respect to spatial rotations. In order to satisfied this 

condition, these parameters can’t be numbers, they should be in matrix form which 

are called Dirac matrices. In addition, the wave function 𝛙  must be column vector 

form. 

Thus, the time dependent wavefunction in column matrices form for n rows can be 

written as  

𝛙 =

(

 
 
 

𝜓𝟏(𝒓, 𝑡)

𝜓𝟐(𝒓, 𝑡)

𝜓𝟑(𝒓, 𝑡)
⋮
⋮

𝜓𝒏(𝒓, 𝑡))

 
 
 

 

 

(2.6) 

The matrices 𝛼𝑗 and 𝛽  must be a square matrix for obeying the matrix formalism of 

Dirac equation [1, 2]. 

The equation (2.5) is rearranged by considering   

(∑𝛼𝑗

𝑑

𝑗=1

𝑝𝑗 + 𝛽 𝑚 − 𝑖
𝜕

𝜕𝑡
)𝛙 = 0 

 

(2.7) 

By multiplying the Eq. (2.7) with the operator 

∑𝛼𝑗

𝑑

𝑗=1

𝑝𝑗 + 𝛽 𝑚 + 𝑖
𝜕

𝜕𝑡
 

from left , it causes the Eq. (2.7) to reduce in  

( ∑ 𝛼𝑖

𝑑

𝑖,𝑗=1

𝛼𝑗𝑝𝑖𝑝𝑗 + 𝑚 ∑( 𝛼𝑗

𝑑

𝑗=1

𝛽 + 𝛽 𝛼𝑗)𝑝𝑗 + 𝑚2𝛽2 +
𝜕2

𝜕𝑡2
)𝛙 = 0 

 

(2.8) 

 

where     ∑ 𝛼𝑖
𝑑
𝑖,𝑗=1 𝛼𝑗𝑝𝑖𝑝𝑗 = ( ∑ 𝛼𝑖

𝑑
𝑖,𝑗=1 𝛼𝑗𝑝𝑖𝑝𝑗 + ∑ 𝛼𝑗𝛼𝑖

𝑑
𝑖,𝑗=1 𝑝𝑗𝑝𝑖)/2 
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After some algebraic calculations, the Eq. (2.8) is obtained as  

−
𝜕2

𝜕𝑡2
= ( ∑

𝛼𝑖𝛼𝑗+𝛼𝑗 𝛼𝑖

2
𝑝𝑖𝑝𝑗

𝑑

𝑖,𝑗=1

+ 𝑚 ∑( 𝛼𝑗

𝑑

𝑗=1

𝛽 + 𝛽 𝛼𝑗)𝑝𝑗 + 𝑚2𝛽2)𝛙 = 0 

 

(2.9) 

 

In a similar way, by substituting the matrix form of  𝛙  from (2.9) into Klein-

Gordon with the natural units Eq. (2.6), the Eq. (2.2) is written as  

−
𝜕2𝜓𝒊

𝜕𝑡2
= (𝐩2 + 𝑚2 )𝜓𝒊 

(2.10) 

It can be seen that from Eq. (2.10), the each components of 𝜓𝒊(𝒓, 𝑡) satisfy the Klein-

Gordon equation. 

By comparing the equation (2.9) and (2.10), it is clear that the requirement for 

matrices 𝛼𝑗 and 𝛽 is  

𝛽2 = 𝛼𝑖
2 = 1 (2.11) 

𝛼𝑖𝛼𝑗 + 𝛼𝑗 𝛼𝑖 = 2 𝛿𝑖𝑗(2.12), 𝛼𝑗 𝛽 + 𝛽 𝛼𝑗 = 0 (2.13) 

where 𝛿𝑖𝑗 is called kroneccker delta function which is  

𝛿𝑖𝑗 = {
1        𝑖𝑓   𝑖 = 𝑗
 0       𝑖𝑓     𝑖 ≠ 𝑗 

} 
 

In order to satisfy requirements of 𝛼𝑗 and 𝛽  matrices, as written in equation Eq. 

(2.11),Eq. (2.12) and Eq. (2.13) the corresponding matrices are anti-commute rather 

than commute with each other. Because the Hamiltonian in Eq. (2.5),is hermitian 

(self-adjoint), as  

𝐻 = ∑𝛼𝑗

𝑑

𝑗=1

𝑝𝑗 + 𝛽 𝑚  

Therefore if H is hermitian, Dirac matrices also have to be hermitian.This means that 

the elements on the main diagonal are real and the matrices are symmetric .This 

condition results to be their eigenvalues real, and: 

 

𝛽† = 𝛽 and 𝛼𝑗
† = 𝛼𝑗 (2.14) 

𝛼𝑗 in its eigen-representation with eigenvalues ( 𝛼1 , 𝛼2, … )  has considered to be in  

form of 
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𝛼𝑗 =

(

  
 

𝛼1 0 ⋯
0 𝛼2 ⋯
⋮ ⋮ ⋱
0 0 ⋯

0
0
⋮

𝛼𝑛

)

  
 

 

 

(2.16) 

Then with this representation, 𝛼𝑖
2 becomes from Eq. (2.16) and Eq. (2.11) we obtain  

𝛼𝑖
2 =

(

 
 
 

𝛼1
2 0 ⋯

0 𝛼2
2 ⋯

⋮ ⋮ ⋱
  0   0    ⋯

0
0
⋮

 𝛼𝑛
2

)

 
 
 

=

(

  
 

1 0 ⋯
0 1 ⋯
⋮ ⋮ ⋱
0 0 ⋯

0
0
⋮
1

)

  
 

 

 

(2.17) 

From these equations, generalizing for𝛼, it can be found that 𝛼𝑘 = ± 1  where      

k=1, 2,…n . Similarly, if the same procedure is applied to matrixβ, the eigenvalues 

for  αj and β are  ± 1  . 

Multiplying Eq. (2.13) from the left with constant β , and with the aid of Eq. (2.11) 

we get   

𝛽 𝛼𝑗 𝛽 = − 𝛼𝑗 (2.18) 

Using the algebraic properties of matrices in [3], the trace of A B is written as  

𝑡𝑟 AB = 𝑡𝑟 BA  

 

where the operator tr A , trace of a square  matrix A, is the sum of the elements on 

the diagonal of matrix A. Now from equation (2.11) and Eq. (2.18),    

𝑡𝑟 𝛼𝑗 = 𝑡𝑟 (𝛽2 𝛼𝑗) = 𝑡𝑟 (𝛽  𝛼𝑗  𝛽) = −𝑡𝑟 ( 𝛼𝑗)  

Thus 

𝑡𝑟 𝛼𝑗 = 0 (2.19) 

By using the same argument of  𝛼𝑗  and applying the some algebraic procedure to 

matrix  𝛽 , we get   

− 𝛽 =  𝛼𝑗 𝛽 𝛼𝑗  

So  

𝑡𝑟𝛽 = 𝑡𝑟 𝛼𝑗
2 𝛽 = 𝑡𝑟  𝛼𝑗 𝛽  𝛼𝑗  = −𝑡𝑟 𝛽  

And similarly,  

𝑡𝑟 𝛽 = 0 (2.20) 
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Again from Eq. (2.13) with a new arrangement: 

 𝛼𝑗 𝛽 = (−1 )𝛽 𝛼𝑗 (2.21) 

Taking determinant of Eq. (2.21) for both sides,  

det  𝛼𝑗 det 𝛽 = (−1)𝑛 det  𝛼𝑗 det 𝛽 (2.22) 

From the factor of (−1)𝑛, n should be even to satisfy the corresponding equation. 

Consider a matrix R with dimensions (𝑛 × 𝑛) that transform the matrix  𝛼𝑗 into its 

diagonal form as 

 𝑅 𝛼𝑗 𝑅
−1 =

(

  
 

𝛼1 0 ⋯
0 𝛼2 ⋯
⋮ ⋮ ⋱

  0   0   ⋯ 

0
0
⋮

𝛼𝑛

)

  
 

 

 

(2.23) 

From equation (2.23) and the relation𝑡𝑟(AB) = 𝑡𝑟(BA), it is found  

𝑡𝑟

(

  
 

𝛼1 0 ⋯
0 𝛼2 ⋯
⋮ ⋮ ⋱

  0   0   ⋯ 

0
0
⋮

𝛼𝑛

)

  
 

= ∑ 𝛼𝑘

𝒏

𝒌=𝟏

= 𝑡𝑟 𝑅 𝛼𝑗 𝑅
−1 

 

(2.24) 

                                           = 𝑡𝑟 𝛼𝑗 𝑅 𝑅−1 = 𝑡𝑟 𝛼𝑗   

From properties of Dirac matrices, their trace are equal to zero, and the 

corresponding eigenvalues are ± 1. But, from Eq. (2.24), the trace has the same value 

with its eigenvalues. So, it is concluded the number of negative eigenvalues has to be 

the same like the number of positive eigenvalues. 

From equation Eq. (2.11), Eq. (2.12) and Eq. (2.13) and as shown in [17] there are 

only three matrices satisfy anticommuting properties which are called the Pauli. 

These are  

 𝜎𝑚where  m =1,2,3  

 𝜎1 = (
0 1
1 0

)  𝜎2 = (
0 −𝑖
𝑖 0

)  𝜎3 = (
1 0
0 −1

) 
(2.25) 

Therefor it is useful to construct the Dirac matrices in terms of Pauli matrices as 

 𝛼𝑗  = (
0  𝜎𝑚

 𝜎𝑚 0
) 𝛽 = (

𝐼 0
0 −𝐼

) (2.26) 

where Iis the unit matrix (2 × 2), 𝐼 = (
1 0
0 1

).
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CHAPTER 3 

3 TRANSFORMATION OF DIRAC EQUATION 

In literature, the transformation of the Schrödinger equation from 3-dimensions to 

arbitrary d-dimensions has been done by using the eigenvalues of the generalized 

orbital angular momentum𝐿2, in place of the three-dimensional ones [53,54].  

The transformation method For Dirac equation is different. It must treat with spin 

angular momentum and generalized orbital operators, and its agreement with element 

of a Lie group and a Lie algebra. The authors in reference [55] were derived The 

Diracequation in arbitrary d-dimensionsby using the self-adjoint ladder operator 

method. 

      In this chapter, the derivation of the radial Dirac equation d-dimensions is 

discussed in simple algebraicderivation and the similar structure of the Dirac 

equations in arbitrary spatial dimensions in a central field is pointed out. 

 

3.1 First-Order coupled differential equations form 

The derivation of Dirac equation in first order linear form can be obtained for two 

different cases of mass function when it is constant mass and variable mass function. 

3.1.1 Constant mass Case, 

The Dirac equation for a central field in (d + 1 )dimensions is written for spherically 

symmetric vector V(r)  and S(r) spherically symmetric scalar potential by using Eq. 

(2.5) 

𝑖
𝜕𝛙

𝜕𝑡
= 𝐻 𝛙            𝐻 = ∑𝛼𝑗

𝑑

𝑗=1

𝑝𝑗 + 𝛽 (𝑚 + 𝑆(𝑟)) + 𝑉(𝑟)  
 

(3.1) 

where (d + 1 ) dimensional matrices also satisfy the anti-commutative relations. 
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Without any approximation, the Dirac equation for a central fieldin spherical 

coordinates can be separated into the variables. Thus, it has mean the eigenfunction 

of the orbital and spin angular momentum can be found. 

 From Eq. (3.1), the radial velocity operators and radial momentum are reduced as  

 

𝑝𝑟  = 𝑟−1 (∑𝑥𝑗

𝑑

𝑗=1

𝑝𝑗 − 𝑖
𝑑 − 1

2
) 

 

, 𝛼𝑗  = 𝑟−1 (∑𝑥𝑗

𝑑

𝑗=1

𝛼𝑗) 

 

(3.2) 

Now, the orbital angular momentum operators is defined as 

𝐿𝑖𝑗  = 𝑥𝑖𝑝𝑗 − 𝑥𝑗𝑝𝑖 = −𝑖 (𝑥𝑖

𝜕

𝜕𝑥𝑗
− 𝑥𝑗

𝜕

𝜕𝑥𝑖
) 

(3.3) 

According to reference [55], Eq. (3.3) satisfy the following algebraic relations  

𝐿𝑖𝑗  = −𝐿𝑗𝑖(3.4), 𝐿𝑖𝑗  = 𝐿𝑖𝑗
†(3.5), [𝐿𝑖𝑗 , 𝐿𝑖𝑘] = 𝑖 𝐿𝑖𝑘(3.7) 

 

[𝐿𝑖𝑗 , 𝐿𝑘𝑙] = 0 , 𝑓𝑜𝑟 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 

(3.7) 

𝐿𝑖𝑗𝐿𝑘𝑙 + 𝐿𝑘𝑖, 𝐿𝑗𝑙 + 𝐿𝑗𝑘 , 𝐿𝑖𝑙 = 0 , 𝑓𝑜𝑟 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 (3.8) 

Where the indices (i, j, k, l)take the values (1, 2, . . . d ) and  dbeing the dimension of 

the space. 

The total orbital angular momentum𝐿2 and generalized spin angular momentum 𝜎𝑖𝑗 

are defined as  

𝐿2 = ∑𝐿𝑖𝑗
2

𝑑

𝑖<𝑗

 

 

(3.9) 

 

, 
𝜎𝑖𝑗 = −

𝑖

2
[𝛼𝑖 , 𝛼𝑗] 

 

(3.10) 

The 𝜎𝑖𝑗 are satisfy the following relations which are introduced in [56] as 

𝜎𝑖𝑗  = −𝜎𝑗𝑖(3.11), 𝜎𝑖𝑗  = 𝜎𝑗𝑖
†(3.12), 𝜎𝑖𝑗

2 = 1(3.13) 

 

[𝜎𝑖𝑗 , 𝜎𝑖𝑘] = 𝑖 𝜎𝑗𝑘 , 𝑓𝑜𝑟  𝑖 ≠ 𝑗 ≠ 𝑘 

 

(3.14) 

[𝜎𝑖𝑗 , 𝜎𝑘𝑙] = 0 , 𝑓𝑜𝑟  𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 (3.15) 

 

Introducing the operator𝑘𝑑which is related to the total angular momentum and 

commute with corresponding potential  
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𝑘𝑑  = 𝛽 (∑𝜎𝑖𝑗

𝑑

𝑖<𝑗

𝐿𝑖𝑗 + 𝑖
𝑑 − 1

2
) 

 

 

(3.16) 

by substituting Eq. (3.2) and Eq.(3.3) into Eq.(3.1) ,it gives  

∑(𝑥𝑗  )2

𝑑

𝑗=1

= 𝑟2 

 Thus, the Hamiltonian turns to the   

𝐻 = 𝛼𝑟𝑝𝑟 +
𝑖

𝑟
𝛼𝑟 𝛽 𝑘𝑑 + 𝛽(𝑚 + 𝑆(𝑟)) + 𝑉(𝑟) 

(3.17) 

It can be see that, the corresponding Hamiltonian Eq. (3.17) is depends on three 

operators  𝛼𝑟 , 𝑝𝑟 , 𝑘𝑑  . If the eigenvalues of matrix or operator,𝑘𝑑the eigenvalues of 

Hamiltonian  𝐻 can be calculated. 

For this aim, let introduce a new operator as   

ℒ = (∑𝜎𝑖𝑗

𝑑

𝑖<𝑗

𝐿𝑖𝑗) 

 

(3.18) 

Eq. (3.16) with the introducing operator transform to: 

𝑘𝑑  = 𝛽 (ℒ + 𝑖
𝑑 − 1

2
) 

 

(3.19) 

Since ,                       [𝐻 , ℒ] = 0    and  [𝐿2 , ℒ] = 0 

Where𝐻, 𝐿2𝑎𝑛𝑑 ℒ   have common eigenfunction .The eigenvalues of L can be found 

by establishing a relation between L and𝐿2 which introduce in reference [57] .The 

power squares of  𝐿2 , can be written from Eq. (3.18) as following  

ℒ2  = ∑∑𝜎𝑖𝑗

𝑑

𝑘<𝑙

𝐿𝑖𝑗𝜎𝑘𝑙𝐿𝑘𝑙

𝑑

𝑖<𝑗

 

 

(3.20) 

The solution is get by rewritten Eq. (3.20), 

ℒ1
2 + ℒ2

2 + ℒ3
2  

Where  

ℒ1
2  →  is the content of equal indices ( i=j and j=l) 
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ℒ2
2  → is the content of unequal indices ( 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 ) 

ℒ3
2 → is the can be contracted to (𝜎𝑖𝑗𝐿𝑖𝑗) 

 

Therefore, we have  

ℒ1
2  = ∑( 𝜎𝑖𝑗𝐿𝑖𝑗 )

2

𝑑

𝑖<𝑗

= 𝐿2 

 

(3.20) 

 

and  ℒ2
2  = ∑∑𝜎𝑖𝑗

𝑑

𝑘<𝑙

𝐿𝑖𝑗𝜎𝑘𝑙𝐿𝑘𝑙

𝑑

𝑖<𝑗

 , 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 

 

(3.21) 

In similar way the last part of Hamiltonian ℒ3
2 has a definition of: 

ℒ3
2  = ∑(∑ 𝜎𝑘𝑖

𝑑−1

𝑘=1

𝐿𝑘𝑖𝜎𝑘𝑗𝐿𝑘𝑗 + ∑ 𝜎𝑘𝑖𝐿𝑘𝑖𝜎𝑗𝑘𝐿𝑗𝑘

𝑑

𝑘=𝑗+1

∑ 𝜎𝑘𝑗𝐿𝑘𝑗𝜎𝑖𝑘𝐿𝑖𝑘

𝑗−1

𝑘=𝑖+1

)

𝑑

𝑖<𝑗

  

= −(𝑑 − 2)𝐿  

 

(3.22) 

The addition of terms in Eq. (3.18) is symmetric, therefore terms appeared in Eq. 

(3.20) can be covered by summing up only the following triple terms. 

 
𝜎𝑖𝑗 𝐿𝑖𝑗𝜎𝑘𝑙𝐿𝑘𝑙 + 𝜎𝑖𝑘𝐿𝑖𝑘 𝜎𝑗𝑙𝐿𝑗𝑙 + 𝜎𝑗𝑘𝐿𝑗𝑘  𝜎𝑖𝑙𝐿𝑖𝑙  

= 𝜎𝑖𝑗𝐿𝑘𝑙(𝐿𝑖𝑗𝐿𝑘𝑙 + 𝐿𝑖𝑘𝐿𝑗𝑙 + 𝐿𝑗𝑘𝐿𝑖𝑙) = 0 , 𝑖 < 𝑗 < 𝑘 < 𝑙 (3.23) 

 

By using the equations Eq. (3.6) and Eq. (3.13), it can be concluded that the number 

of terms involved in each partial sum are: 

N1 =
d(d − 1)

2
  , in ℒ1

2 
(3.24) 

 

𝑁2 = 6 ∑ 1 =

𝑑

𝑖<𝑗<𝑘<𝑙

𝑑(𝑑 − 1)(𝑑 − 2)(𝑑 − 3)

4
 , 𝑖𝑛 ℒ2

2 

 

(3.25) 

𝑁3 = 𝑑(𝑑 − 1)(𝑑 − 2) , 𝑖𝑛 ℒ3
2 (3.26) 

Then it easy to see that     

𝑁 = 𝑁1 + 𝑁2 + 𝑁3 = (
𝑑(𝑑 − 1)

2
)
2

 
(3.27) 

By comparing the equations Eq. (3.20), Eq. (3.21) and Eq. (3.23), 𝐿2 is found as  

𝐿2  = ℒ(ℒ + 𝑑 − 2) (3.28) 

where the eigenfunctions of𝐿2  are doubly degenerate we may write 
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ℒ 𝜓𝟏 = 𝑙 𝜓𝟏 (3.29), ℒ 𝜓𝟐 = −(𝑙 + 𝑑 − 2) 𝜓𝟐 (3.30) 

These above equations lead to   

𝐿2𝜓𝒊  = 𝑙(𝑙 + 𝑑 − 2)𝜓𝒊  , 𝑖 = 1, 2  (3.31) 

For that the eigenvalue of operator 𝑘𝑑  will be  

𝑘𝑑 = ∓(𝑗 +
𝑑 − 2

2
) , 𝑗 = 𝑙 ∓

1

2
 

(3.32) 

which are the same as derived in [1],by introducing two-component wavefunction. 

𝛙 = 𝑟− 
𝒅−𝟏

𝟐 (
𝐹

  𝑖 𝐺
) 

(3.33) 

Theradial Dirac equations in d-dimensions are derived in following form  

𝑑𝐹(𝑟)

𝑑𝑟
 = − 

𝑘𝑑

𝑟
𝐹(𝑟) + (𝐸 + 𝑚 − 𝑉(𝑟) + 𝑆(𝑟))𝐺(𝑟) 

(3.34) 

𝑑𝐺(𝑟)

𝑑𝑟
 =  

𝑘𝑑

𝑟
𝐺(𝑟) − (𝐸 − 𝑚 − 𝑉(𝑟) − 𝑆(𝑟)) 𝐹(𝑟) 

(3.35) 

These two equations are called the first-order linear coupled Dirac equations. Thus, 

by using these equations Dirac equations are ready to apply to physical systems. 

3.1.2 Variable Mass Case 

As we introduced the first-order coupled Dirac equations with variable mass, can be 

using the last equations Eq. (3.34) and Eq. (3.35) for a constant mass as following   

𝑑𝐹(𝑟)

𝑑𝑟
 = − 

𝑘𝑑

𝑟
𝐹(𝑟) + (𝐸 + 𝑀(𝑟)  − 𝑉(𝑟) + 𝑆(𝑟))𝐺(𝑟) 

 

(3.36) 

 
𝑑𝐺(𝑟)

𝑑𝑟
 =  

𝑘𝑑

𝑟
𝐺(𝑟) − (𝐸 − 𝑀(𝑟)  − 𝑉(𝑟) − 𝑆(𝑟)) 𝐹(𝑟) 

 

3.2 Second Order-Differential Equations Form 

3.2.1 Constant Mass Case 

Similar to the calculations done is section 3.1, here the second-order differential 

equations for the lower and upper  componentsof the Dirac equation ispresented for 

constant mass and spatially mass by using Dirac wave equation in first order and 

Dirac spinorwavefunction. 
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With the aid of Eq. (3.33), the Dirac spinor can be written due to upper 𝐹𝑛𝑘(𝑟) and 

lower  𝐺𝑛𝑘(𝑟) wavefunctions as 

𝛙 = 𝑟− 
𝒅−𝟏

𝟐 (
𝑆

𝑖𝑄
) = 𝑟− 

𝒅−𝟏

𝟐 (

𝑆𝑛𝑘(𝑟) 𝑌𝑗𝑚
𝑙 (𝜃, 𝜙)

𝑖𝑄𝑛𝑘(𝑟)𝑌𝑗𝑚
𝑙 (𝜃, 𝜙)

) 

 

(3.37) 

where 𝑌𝑗𝑚
𝑙 (𝜃, 𝜙)represents the spin spherical harmonic and  𝑌𝑗𝑚

𝑙 (𝜃, 𝜙)represents the 

pseudospin spherical harmonic. m, is the projection angular momentum on the z axis, 

n is the radial quantum number, and 𝑙 and  𝑙  orbital angular momentum quantum 

numbers to the spin and pseudospin respectively. 

Rearranging the two coupled differential equations in equations (3.35) and (3.36) for 

upper and lower radial wave functions in, as yields 

(
𝑑

𝑑𝑟
− 

𝑘𝑑

𝑟
)𝐺(𝑟) = (𝐸 + 𝑚 − ∑(𝑟)) 𝐹(𝑟) 

 

(3.38) 

(
𝑑

𝑑𝑟
+ 

𝑘𝑑

𝑟
) 𝐹(𝑟) = −(𝐸 −  𝑚 − ∆(𝑟)) 𝐺(𝑟) 

(3.39) 

 

where ∑(𝑟) = 𝑉(𝑟) + 𝑆(𝑟), and∆(𝑟) = 𝑉(𝑟) − 𝑆(𝑟) . 

The general form of two second-order differential equations for corresponding 

eigenfunctions are obtain by eliminating  wavefunction𝐹(𝑟) in Eq. (3.38) and 𝐺(𝑟) 

in Eq.(3.39) ,as following  

[
𝑑2

𝑑𝑟2
− 

𝑘𝑑(𝑘𝑑 + 1)

𝑟2
− (𝑚 + 𝐸 − ∆(𝑟))(𝑚 − 𝐸 + ∑(𝑟))

−

𝑑∆(𝑟)

𝑑𝑟
(

𝑑

𝑑𝑟
+

𝑘𝑑

𝑟
)

𝑚 − 𝐸 − ∆(𝑟)
] 𝐹𝑛𝑘(𝑟) = 0 

 

 

 

(3.40) 

[
𝑑2

𝑑𝑟2
+ 

𝑘𝑑(𝑘𝑑 − 1)

𝑟2
− (𝑚 + 𝐸 − ∆(𝑟))(𝑚 − 𝐸 + ∑(𝑟))

−

𝑑∑(𝑟)

𝑑𝑟
(

𝑑

𝑑𝑟
−

𝑘𝑑

𝑟
)

𝑚 − 𝐸 + ∑(𝑟)
] 𝐺𝑛𝑘(𝑟) = 0 

 

 

 

(3.41) 
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3.2.2 Variable Mass Case 

From section 3.2.1, by using the equations Eq. (3.38) and Eq. (3.39), we can write 

coupled radial Dirac equation for the spinor component with central potential 𝑉(𝑟) 

and position-dependent mass 𝑀(𝑟)  as  

 

𝑑𝐹𝑛𝑘(𝑟)

𝑑𝑟
+ 

𝑘

𝑟
𝐹𝑛𝑘(𝑟) = (𝐸𝑛𝑙 + 𝑀(𝑟) − 𝑉(𝑟) + 𝑆(𝑟))𝐺𝑛𝑘(𝑟) 

(3.42) 

𝑑𝐺𝑛𝑘(𝑟)

𝑑𝑟
−

𝑘

𝑟
𝐺𝑛𝑘(𝑟) = −(𝐸𝑛𝑙 − 𝑀(𝑟) − 𝑉(𝑟) − 𝑆(𝑟))𝐹𝑛𝑘(𝑟) 

(3.43) 

 

where  k = - (l + 1) for the total angular momentum j = l + 1/2, and l is angular 

momentum quantum number. 𝐹𝑛𝑘(𝑟)and 𝐺𝑛𝑘(𝑟)are the radial wave function of the 

upper and the lower-spinor components respectively, and the general form of two 

second-order differential equations for corresponding eigenfunctions are obtain by 

eliminating wavefunction𝐹𝑛𝑘(𝑟) in Eq. (3.42) and 𝐺𝑛𝑘(𝑟)in Eq.(3.43) we get 

 

[
𝑑2

𝑑𝑟2
− 

𝑘(𝑘 + 1)

𝑟2
] 𝐹𝑛𝑘(𝑟) −

(
𝑑𝑀(𝑟)

𝑑𝑟
−

𝑑∆(𝑟)

𝑑𝑟
) (

𝑑

𝑑𝑟
+

𝑘

𝑟
) 𝐹𝑛𝑘(𝑟)

𝑀(𝑟) + 𝐸𝑛𝑙 − ∆(𝑟)

= [(𝑀(𝑟) + 𝐸𝑛𝑙  − ∆(𝑟))(𝑀(𝑟) − 𝐸𝑛𝑙 + ∑(𝑟))]𝐹𝑛𝑘(𝑟) 

 

 

 

(3.44) 

 

[
𝑑2

𝑑𝑟2
− 

𝑘(𝑘 − 1)

𝑟2
] 𝐺𝑛𝑘(𝑟) −

(
𝑑𝑀(𝑟)

𝑑𝑟
+

𝑑∆(𝑟)

𝑑𝑟
) (

𝑑

𝑑𝑟
−

𝑘

𝑟
) 𝐺𝑛𝑘(𝑟)

𝑀(𝑟) − 𝐸𝑛𝑙 + ∆(𝑟)

= [(𝑀(𝑟) + 𝐸𝑛𝑙 − ∆(𝑟))(𝑀(𝑟) − 𝐸𝑛𝑙 + ∑(𝑟))]𝐺𝑛𝑘(𝑟) 

 

 

 

(3.45) 
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CHAPTER 4 

4 ASYMTOTIC ITERATION METHOD (AIM) 

It is well known that the second-order homogeneous linear differential equations play 

an important role in many branches of physics to explain the physical systems .The 

solution of these type of differential equations with boundary conditions has been 

solved by various techniques. One of method is called Asymptotic Iteration Method. 

By finding a suitable algorithm in AIM, the spectrum of corresponding system is 

obtained rapidly and more correctly by using computer programming. 

In this chapter, the formulism of AIM is given for both first [46] and second-order 

linear differential equations form [47]. 

 

4.1 AIM for the First Order Linear Differential Equations. 

Starting from the first–order linear coupled equations 

𝑦1
′ = 𝜆0(𝑥)𝑦1 + 𝑠0(𝑥)𝑦2 (4.1), 𝑦2

′ = 𝑤0(𝑥)𝑦1 + 𝑝0(𝑥)𝑦2 (4.2) 

 

where  " ′ "  represent the operator  𝑑 𝑑𝑥⁄   , and  𝜆0(𝑥) , 𝑠0(𝑥),𝑤0(𝑥)and𝑝0(𝑥)  are 

sufficiently differentiable.Taking the derivation of equations (2.1) and Eq. (2.2) 

yields to  

𝑦1
′′ = 𝜆0

′ (𝑥)𝑦1 + 𝜆0(𝑥)𝑦1
′ + 𝑠0

′ (𝑥)𝑦2 + 𝑠0(𝑥)𝑦2
′  (4.3) 

𝑦2
′′ = 𝑤0

′ (𝑥)𝑦1 + 𝑤0(𝑥)𝑦1
′ + 𝑝0

′ (𝑥)𝑦2 + 𝑝0(𝑥)𝑦2
′  (4.4) 

By rearranging these equations, it can be founds  

𝑦1
′′ = 𝜆1(𝑥)𝑦1 + 𝑠1(𝑥)𝑦2 (4.5), 𝑦2

′′ = 𝑤1(𝑥)𝑦1 + 𝑝1(𝑥)𝑦2  (4.6) 

where 

𝜆1(𝑥) = 𝜆0
′ + 𝜆0

2 + 𝑠0𝑤0 (4.7) 

𝑠1(𝑥) = 𝑠0
′ + 𝜆0𝑠0 + 𝑠0𝑝0 (4.8) 
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𝑤1(𝑥) = 𝑤0
′ + 𝜆0𝑤0 + 𝑝0𝑤0 (4.9) 

𝑝1(𝑥) = 𝑝0
′ + 𝑝0

2 + 𝑠0𝑤0 (4.10) 

For (n) of differentiate to equations (4.5) and Eq. (4.6) we have 

𝑦1
(𝑛+2)

= 𝜆𝑛+1(𝑥)𝑦1 + 𝑠𝑛+1(𝑥)𝑦2 (4.11) 

𝑦2
(𝑛+2)

= 𝑤𝑛+1(𝑥)𝑦1 + 𝑝𝑛+1(𝑥)𝑦2 . (4.12)

. 

The functions  𝜆(𝑥) , 𝑠(𝑥),𝑤(𝑥)and  𝑝(𝑥) are  

𝜆𝑛+1(𝑥) = 𝜆𝑛
′ + 𝜆𝑛𝜆0 + 𝑠𝑛𝑤0 , 𝑠𝑛+1(𝑥) = 𝑠𝑛

′ + 𝜆𝑛𝑠0 + 𝑠𝑛𝑝0  

(4.13) 𝑤𝑛+1(𝑥) = 𝑤𝑛
′ + 𝜆0𝑤𝑛 + 𝑝𝑛𝑤0 , 𝑝𝑛+1(𝑥) = 𝑝𝑛

′ + 𝑝𝑛𝑝0 + 𝑠0𝑤𝑛  

By taking the ratio to equation (4.11) we get 

𝑦1
(𝑛+2)

𝑦1
(𝑛+1)

=
𝜆𝑛+1

𝜆𝑛
(

𝑦1+(
𝑠𝑛+1
𝜆𝑛+1

)𝜆2

𝑦1+(
𝑠𝑛
𝜆𝑛

)𝜆2

) 
 

(4.14) 

And we can write 

𝑦1
(𝑛+2)

𝑦1
(𝑛+1)

=
𝑑

𝑑𝑥
(ln( 𝑦1

(𝑛+1)
) 

(4.15) 

According to the method with large sufficiently of (n) the ratio of  
𝑠𝑛

𝜆𝑛
 becomes 

𝑠𝑛+1

𝜆𝑛+1
=

𝑠𝑛

𝜆𝑛
= 𝛼 (4.16) 

By using equations (4.14), (4.15) and (4.16) we get  

𝑑

𝑑𝑥
(ln( 𝑦1

(𝑛+1)
) =

𝜆𝑛+1

𝜆𝑛
 (4.17) 

From equation (4.13) and (4.16), we can write equation (4.17) in the form  

𝜆𝑛+1

𝜆𝑛
=

𝑑

𝑑𝑥
(ln( 𝜆𝑛)) + 𝜆0 + 𝛼 𝑤0 (4.18) 

now from equations (4.17) and (4.18) we have 

ln( 𝑦1
(𝑛+1)

) = ∫ (
𝑑

𝑑𝑥
(ln( 𝜆𝑛(𝑡))) + 𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))

𝑥

 
 

or  

 𝑦1
(𝑛+1)

(𝑥) = 𝐶1𝜆𝑛𝑒𝑥𝑝 (∫ (𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))
𝑥

)𝑑𝑡 
(4.19) 

where   𝐶1  is the integral constant. 
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From equation (4.11) we can write     

𝑦1
(𝑛+1)

= 𝜆𝑛(𝑥)𝑦1 + 𝑠𝑛(𝑥)𝑦2 (4.20) 

Substituting equation (2.19) into equation (4.20) with using equation (2.16) we get 

𝜆𝑛(𝑥)𝑦1 + 𝑠𝑛(𝑥)𝑦2 = 𝐶1𝜆𝑛𝑒𝑥𝑝 (∫ (𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))
𝑥

)𝑑𝑡 
 

or 

𝑦1(𝑥) = 𝐶1𝑒𝑥𝑝 (∫ (𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))
𝑥

)𝑑𝑡 − 𝛼(𝑥)𝑦2(𝑥) 
(4.21) 

After some algebraic calculations Eq. (4.2) results to  

𝑦1(𝑥) = 𝑦2
′ (𝑥) − 𝑝0(𝑥)𝑦2(𝑥)/  𝑤0(𝑥) (4.22) 

combining equations (2.21) and (2.22) we obtain  

𝐶1 𝑤0(𝑥)𝑒𝑥𝑝 (∫ (𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))
𝑥

)𝑑𝑡 − 𝛼(𝑥)𝑦2(𝑥) 𝑤0(𝑥) = 

𝑦2
′ (𝑥) − 𝑝0(𝑥)𝑦2(𝑥) 

 

(4.23) 

or 

𝑦2
′ + 𝜑(𝑥)𝑦2(𝑥) = Θ(𝑥) (4.24) 

where  

𝜑(𝑥) =  𝛼(𝑥) 𝑤0(𝑥) − 𝑝0(𝑥) .  

and 

Θ(𝑥) = 𝐶1 𝑤0(𝑥)𝑒𝑥𝑝 (∫ (𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))
𝑥

)𝑑𝑡 
 

Comparing with Eq. (2.24), the solution of this differential equation is given in [58] 

as 

𝑦2(𝑥) = 𝑒𝑥𝑝−1 (∫ 𝜑(𝑡)
𝑥

𝑑𝑡) (∫ Θ(𝑡)
𝑥

𝑑𝑡  𝑒𝑥𝑝 (∫ 𝜑(𝑡)
𝑥

𝑑𝑡) 𝑑𝑡 + 𝐶2) 
(4.25) 

Now, by Substitution of fuctions ( φ(x)andΘ(x) )in the Eq. (2.25), the general 

solution of y2(x)becomes  
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𝑦2(𝑥) = 𝑒𝑥𝑝 (∫ (𝑝0 − 𝛼 𝑤0)
𝑥

𝑑𝑡 ) [𝐶2

+ 𝐶1 ∫  𝑤0

𝑥

 𝑒𝑥𝑝 (∫ ( 𝜆0 − 𝑝0 + 2
𝑡

𝛼 𝑤0)𝑑𝜏)𝑑𝑡] 

 

(4.26) 

In similar procedure, by using Eq. (2.26) and Eq. (4.21), the solution of  𝑦1(𝑥) is 

obtained in form of  

𝑦1(𝑥) = 𝐶1𝑒𝑥𝑝(∫ ( 𝜆0(𝑡) + 𝛼(𝑡)𝑤0(𝑡))
𝑥

𝑑𝑡 )

− 𝛼(𝑥) 𝑒𝑥𝑝 (∫ (𝑝0

𝑥

− 𝛼 𝑤0) 𝑑𝑡 ) [𝐶1 ∫ 𝑤0 𝑒𝑥𝑝 (∫ ( 𝜆0 − 𝑝0 + 2
𝑡

𝛼 𝑤0)𝑑𝜏)
𝑥

𝑑𝑡

+ 𝐶2] 

 

(4.27) 

 

4.2 Second -Order Formalism of AIM 

           Initially, when AIM is proposed by Ciftcietal [46, 47], it is constructed for the 

solution of second-order linear differential equation in the form of  

𝑦′′ = 𝜆0(𝑥)𝑦′ + 𝑠0(𝑥)𝑦 (4.28) 

The second order formulism is obtained by using the similar procedure with the first 

order. 

First of all, taking the derivation of Eq. (4.28) with respect to time gives. 

𝑦′′′ = 𝜆1(𝑥)𝑦′ + 𝑠1(𝑥)𝑦 (4.29) 

With sufficiently differentiable 

𝜆1(𝑥) = 𝜆0
′ (𝑥) + 𝑠0(𝑥) + 𝜆0

2(𝑥) 

𝑠1(𝑥) = 𝑠0
′ (𝑥) + 𝑠0(𝑥)𝜆0(𝑥) 

again, taking the derivative of Eq. (4.29) yields 

𝑦′′′′ = 𝜆2(𝑥)𝑦′ + 𝑠2(𝑥)𝑦 (4.30) 

with functions 

𝜆2(𝑥) = 𝜆1
′ (𝑥) + 𝑠1(𝑥) + 𝜆0(𝑥)𝜆1(𝑥) 

𝑠2(𝑥) = 𝑠1
′(𝑥) + 𝑠0(𝑥)𝜆1(𝑥) . 

Generalizing for the(𝑛 + 1)𝑡ℎand(𝑛 + 2)𝑡ℎ derivatives of Eq. (4.28), for 𝑛 =

1, 2 ,3, ….. , it gives   
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𝑦(𝑛+1) = 𝜆𝑛−1(𝑥)𝑦′ + 𝑠𝑛−1(𝑥)𝑦 (4.31) 

𝑦(𝑛+2) = 𝜆𝑛(𝑥)𝑦′ + 𝑠𝑛(𝑥)𝑦 (4.32) 

with arbitrary function  

𝜆𝑛(𝑥) = 𝜆𝑛−1
′ (𝑥) + 𝑠𝑛−1(𝑥) + 𝜆0(𝑥)𝜆𝑛−1(𝑥) (4.33) 

𝑠𝑛(𝑥) = 𝑠𝑛−1
′ (𝑥) + 𝑠0(𝑥)𝜆𝑛−1(𝑥). (4.34) 

Taking the ratio of the (𝑛 + 2)𝑡ℎand(𝑛 + 1)𝑡ℎ and from derivations of Eq. (4.31) and 

Eq. (4.32), give a results   

𝑑

𝑑𝑥
𝑙𝑛(𝑦(𝑛+1)) =

𝑦(𝑛+2)

𝑦(𝑛+1)
=

𝜆𝑛(𝑥)(𝑦′ +
𝑠𝑛(𝑥)

𝜆𝑛(𝑥)
𝑦)

𝜆𝑛−1(𝑥)(𝑦′ +
𝑠𝑛−1(𝑥)

𝜆𝑛−1(𝑥)
𝑦)

 (4.35) 

for the large limit cases for n, there is asymptotic expression  

𝑠𝑛(𝑥)

𝜆𝑛(𝑥)
=

𝑠𝑛−1(𝑥)

𝜆𝑛−1(𝑥)
= 𝛼(𝑥) (4.36) 

And the termination condition is in the form of  

∆𝑘(𝑥) = |
𝑠𝑛(𝑥) 𝜆𝑛(𝑥)

𝑠𝑛−1(𝑥) 𝜆𝑛−1(𝑥)
| = 𝜆𝑛−1(𝑥)𝑠𝑛(𝑥) − 𝜆𝑛(𝑥)𝑠𝑛−1(𝑥) (4.37) 

𝑘 = 1,2,3, . …n . Which gives the solution of physical systems .By using the relation 

in Eq. (4.36), Eq. (4.36) is reduced to 

𝑑

𝑑𝑥
𝑙𝑛(𝑦𝑛+1) =

𝜆𝑛(𝑥)

𝜆𝑛−1(𝑥)
 (4.38) 

which yields 

𝑦(𝑛+1)(𝑥) = 𝐶1 Exp (∫
𝜆𝑛(𝑡)

𝜆𝑛−1
𝑑𝑡) = 𝐶1𝜆𝑛−1 Exp (∫(𝛼 + 𝜆0)𝑑𝑡) (4.39) 

where𝐶1 is the constant integration. Substituting Eq. (4.39) into Eq. (4.31), as 

𝑦′ + 𝛼𝑦 = 𝐶1Exp(∫𝛼 + 𝜆0)𝑑𝑡) (4.40) 

At this point,the general solution to Eq. (4.31) can be easily calculated by using Eq. 

(4.40) as  

𝑦(𝑥) = Exp (−∫𝛼 𝑑𝑡) [𝐶2 + 𝐶1 ∫Exp (∫(𝜆0(𝜏) + 2𝛼(𝜏))𝑑𝜏)𝑑𝑡] (4.41) 

This is the solution of wavefunctions of AIM method. 
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CHAPTER 5 

5 APPLICATION OF DIRAC EQUATION 

The application of AIM on Dirac equation is classified into two cases as for constant 

mass and variable mass function. 

5.1 Constant Mass Applications 

5.1.1 Dirac-Coulomb Problem 

In chapter three from section 3.1 we obtained the radial Dirac equation as the first–

order differential equation with spherically symmetric vector V(r) ) and spherically 

symmetric scalar S(r) .In case of coulomb problem we will substitute the scalar 

potential by zero, considering that the particle is moving in a pure vector coulomb 

filed [47]. 

Let now replace the 𝑆(𝑟) by zero and 𝑉(𝑟) by ( −
𝐴

𝑟
 ) into equations (3.34) and 

(3.35), if we discuss the operator  𝑘𝑑 from equation (3.32) in 3-dimensions becomes 

𝑘 = ∓(𝑗 +
1

2
) , 𝑗 = 𝑙 ∓

1

2
  

if we namely: 𝜛 = ∓1 , then 𝑗 = 𝑙 −
𝜛

2
   and the operator 𝑘 will be  

𝑘 = 𝜛 (𝑙 +
1

2
) − 

1

2
  

where the simple 𝜛 will take the negative sign for aligned spin (𝑙 +
1

2
)and the 

positive sign for unaligned spin (𝑙 −
1

2
 ) .So, Eq.  (3.35) and (3.36) reduce to  

𝑑𝐺

𝑑𝑟
 = − 

𝑘

𝑟
 𝐺(𝑟)  + (𝐸 +  𝑚 +

𝐴

𝑟
  ) 𝑆(𝑟) 

 

(5.1) 

𝑑𝐹

𝑑𝑟
 = − 

𝑘

𝑟
 𝐹(𝑟) − (𝐸 −  𝑚 −

𝐴

𝑟
)  𝐺(𝑟) 

(5.2) 

We should get some asymptotic forms for functions 𝐺(𝑟)and 𝐹(𝑟), for that treat with 

(𝑟) when it a small and large.  
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First, at (𝑟) near to the origin its approach to zero .So, all the terms with (𝑟) will be 

very large than the term  (𝐸 ±  𝑚) .In this case equations (5.1) and (5.2) become  

𝑑𝐺

𝑑𝑟
 =

𝐴

𝑟
   𝐹(𝑟) −  

𝑘

𝑟
 𝐺(𝑟) (5.3) 

 

𝑑𝐹

𝑑𝑟
 =  

𝑘

𝑟
 𝐹(𝑟) −

𝐴

𝑟
 𝐺(𝑟) (5.4) 

if we derivate the equations (5.3) and (5.4) with respect to (𝑟) we have : 

𝑑2𝐺

𝑑𝑟2
 =

𝐴

𝑟

𝑑𝐹

𝑑𝑟
 − 𝐹(𝑟)

𝐴

𝑟2
+ 

𝑘

𝑟2
 𝐺(𝑟) − 

𝑘

𝑟

𝑑𝐺

𝑑𝑟
 

 

(5.5) 

𝑑2𝐹

𝑑𝑟2
 =

𝑘

𝑟

𝑑𝐹

𝑑𝑟
 − 𝐹(𝑟)

𝑘

𝑟2
+ 

𝐴

𝑟2
 𝐺(𝑟) − 

𝐹

𝑟

𝑑𝐺

𝑑𝑟
 

(5.6) 

Firstly, we substitute equations (5.3) and (5.4) into (5.5) and then (5.6) with deleting 

the similar terms we get  

𝑑2𝐺

𝑑𝑟2
 =

𝑘2

𝑟2
 𝐺(𝑟) − 𝐺(𝑟)

𝐴2

𝑟2
− 𝐹(𝑟)

𝐴

𝑟2
  +  −𝐺(𝑟)

𝑘

𝑟2
 

 

(5.7) 

𝑑2𝐹

𝑑𝑟2
 =

𝑘2

𝑟2
 𝐹(𝑟) − 𝐹(𝑟)

𝐴2

𝑟2
 −  𝐹(𝑟)

𝑘

𝑟2
− 𝐺(𝑟)

𝐴

𝑟2
 

 

(5.8) 

if we multiply the equations (5.3) and (5.4) by  (−
1

𝑟
 )   we find : 

− 
1

𝑟

𝑑𝐺

𝑑𝑟
 = −

𝐴

𝑟2
   𝐹(𝑟) +

𝑘

𝑟2
 𝐺(𝑟) 

 

(5.9) 

− 
1

𝑟

𝑑𝐹

𝑑𝑟
 = − 

𝑘

𝑟2
 𝐹(𝑟) + 

𝐴

𝑟2
 𝑄(𝑟) 

(5.10) 

now we replace the last two terms in equations (5.7) and (5.8) by equations (5.9) and 

(5.10) we obtain  

𝑑2𝐺

𝑑𝑟2
 =  𝐺(𝑟)

𝑘2 − 𝐴2

𝑟2
− 

1

𝑟

𝑑𝐺

𝑑𝑟
 

 

(5.11) 

𝑑2𝐹

𝑑𝑟2
 =  𝐹(𝑟)

𝑘2 − 𝐴2

𝑟2
 −  

1

𝑟

𝑑𝐹

𝑑𝑟
 

(5.12) 

If we look at for equations (5.11) and (5.12) ,by following [59] we find they are 

Euler equation and the solution of them will be : 

𝑄(𝑟) = 𝑟𝛿 (5.13) 
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Where,  𝛿 = √𝑘2 − 𝐹2,  and 𝑄(𝑟) can be furcation  𝐹(𝑟) or  𝐺(𝑟) 

The equation (5.13) represent the solution of equation (5.1) and (5.2) at  ( r ) very 

small .Now , for a second case at ( r ) is very large ,its approach to infinity .So, the 

terms with ( r ) are approaching to zero .we can write equation (5.1) and (5.2) as 

following  

𝑑𝐺

𝑑𝑟
 = (𝐸 +  𝑚  ) 𝐹(𝑟) 

 

(5.14) 

𝑑𝐹

𝑑𝑟
 = (𝑚 − 𝐸  ) 𝐺(𝑟) 

(5.15) 

Again by taking the derivative of equations (5.14) and (5.15) respect to ( r ) we get  

𝑑2𝐺

𝑑𝑟2
 = (𝐸 +  𝑚  )  

𝑑𝐹

𝑑𝑟
 

 

(5.16) 

𝑑2𝐹

𝑑𝑟2
 = ( 𝑚 − 𝐸 )  

𝑑𝐺

𝑑𝑟
 

(5.17) 

By using equations (5.14) and (5.15) into last equations we see: 

𝑑2𝐺

𝑑𝑟2
 = (𝑚2−𝐸2 ) 𝐺  

 

(5.18) 

𝑑2𝐹

𝑑𝑟2
 = (𝑚2−𝐸2 ) 𝐹  

(5.19) 

The solution to these equations is given by : 

𝑀(𝑟) = 𝐶𝑒− 𝑟 √𝑚2−𝐸2
 (5.20) 

Where 𝐶 is the constant of integration, and 𝑀(𝑟) is a function of  𝐺(𝑟) or (𝑟) . 

After we got the solutions of equations (5.1) and (5.2) at (r) small and large ,we 

adopt representations for radial functions𝐺(𝑟) and𝐹(𝑟) by using equations (5.13) and 

(5.20) in the following form : 

𝐺(𝑟) = 𝑟𝛿√𝑚 + 𝐸𝑒− 𝑟 √𝑚2−𝐸2
 ( 𝜃1(𝑟) + 𝜃2  (𝑟)) 

 

(5.21) 

𝐹(𝑟) = 𝑟𝛿√𝑚 − 𝐸 𝑒− 𝑟 √𝑚2−𝐸2
 ( 𝜃1(𝑟) − 𝜃2 (𝑟)) (5.22) 

Now, let us make the following notation: 

𝑟 = 𝜂 𝑟1  ,
𝑑

𝑑𝑟
=

1

𝑟1

𝑑

𝑑𝜂
 (5.23) 
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Where:   𝑟1 =
1

2 √𝑚2−𝐸2
  . By substituting these notations into equations (5.21) and 

(5.22) to find  

𝐺(𝜂) = 𝑟1
𝛿𝜂𝛿𝑒− 

𝜂

2√𝑚 + 𝐸 ( 𝜃1(𝜂) + 𝜃2 (𝜂)) (5.24) 

 

𝐹(𝜂) = 𝑟1
𝛿𝜂𝛿𝑒− 

𝜂

2√𝑚 − 𝐸 ( 𝜃1(𝜂) − 𝜃2 (𝜂)) (5.25) 

And also we substitute equation (5.23)  into equations (5.1) and (5.2) we get : 

𝑑𝐺

𝑑𝜂
 = [𝑟1( 𝑚 + 𝐸) +

𝐴

𝜂
  )]  𝐹(𝜂) − 

𝑘

𝜂
 𝐺(𝜂) 

 

(5.26) 

𝑑𝐹

𝑑𝜂
 = [−𝑟1( 𝑚 + 𝐸) +

𝐴

𝜂
  )]  𝐺(𝜂) + 

𝑘

𝜂
 𝐹(𝜂) 

(5.27) 

The next step we will use equation (5.24) into equation (5.26) with multiplying by 

the following term  (
1

𝑟1𝛿𝜂𝛿𝑒
− 

𝜂
2√𝑚+𝐸

) , we find  

(𝜃1 + 𝜃2 ) (
𝛿

𝜂
−

1

2
) +

𝑑𝜃1

𝑑𝜂
+

𝑑𝜃2

𝑑𝜂

= − 
𝑘

𝜂
(𝜃1 + 𝜃2 ) + [𝑟1( 𝑚 + 𝐸) +

𝐴

𝜂
  )]√

𝑚 − 𝐸

𝑚 + 𝐸
(𝜃1 − 𝜃2 ) 

 

(5.28) 

By similar steps to find equation (5.28) ,we use equation (5.25) into equation (5.27) 

then get : 

(𝜃1 − 𝜃2 ) (
𝛿

𝜂
−

1

2
) +

𝑑𝜃1

𝑑𝜂
−

𝑑𝜃2

𝑑𝜂

=
𝑘

𝜂
(𝜃1 − 𝜃2 ) + [𝑟1( 𝑚 − 𝐸) −

𝐴

𝜂
  )]√

𝑚 + 𝐸

𝑚 − 𝐸
(𝜃1 + 𝜃2 ) 

 

(5.29) 

Let us add equation (5.28) to equation (5.29), with deleting all the similar terms  and 

then use the following notation : 

√
𝑚 − 𝐸

𝑚 + 𝐸
= 2 𝑟1 (𝑚 − 𝐸) √

𝑚 + 𝐸

𝑚 − 𝐸
= 2 𝑟1 (𝑚 + 𝐸) 

 

We obtain : 
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(𝜃1 − 𝜃2 )[2 𝑟1
2(𝑚2−𝐸2) − 2 𝑟1( 𝑚 − 𝐸) )]

+ [2 𝑟1(𝑚
2−𝐸2) − 2 𝑟1

2( 𝑚 + 𝐸) +
𝐴

𝜂
  )] (𝜃1 + 𝜃2 )

=  
2 𝛿

𝜂
𝜃1 − 𝜃1 + 2

𝑑𝜃1

𝑑𝜂
+ 2

𝜛 (𝑙 +
1

2
) + 

1

2

𝜂
𝜃2  

 

(5.30) 

Also we remember that  𝑟1 =
1

2 √𝑚2−𝐸2
  .So, of course  ( 2 𝑟1

2(𝑚2−𝐸2) =
1

2
 ) and 

equation (5.30) becomes 

 𝛿

𝜂
𝜃1 − 𝜃1 +

𝑑𝜃1

𝑑𝜂
= −

𝑘

𝜂
𝜃2 − 2 𝑟1

𝐴

𝜂
 𝐸 𝜃1 − 2 𝑟1

𝐴

𝜂
 𝑚 𝜃2  (5.31) 

If we make new notation as following  

𝐶 = 2 𝑟1  𝐸  , 𝐷 = 2 𝑟1  𝑚  

Finally, equation (5.31) becomes 

𝑑𝜃1

𝑑𝜂
= (1 −

 𝐶 − 𝛿

𝜂
)  𝜃1(𝜂) − (

𝐷 + 𝑘

𝜂
) 𝜃2(𝜂)  (5.32) 

Also by subtracting equations (2.28) and (5.29) with using the same steps to get 

equation (5.32) we find 

𝑑𝜃2

𝑑𝜂
=  (

𝐷 − 𝑘

𝜂
)  𝜃1(𝜂) + (

 𝐶 − 𝛿

𝜂
) 𝜃2(𝜂)  (5.33) 

Equations (5.32) and (5.33) are first order linear differential equations and they can 

be solved by power series method .At this point, these equations are amenable to 

solve with AIM. 

By comparing the equations Eq. (4.1) and Eq. (4.2) with Eq.  (5.32) and (5.33), we 

get  

𝜆0(𝜂) = (1 −
 𝐶 − 𝛿

𝜂
) 𝑠0(𝜂) = − (

𝐷 + 𝑘

𝜂
) 

 

𝑤0(𝜂) = (
𝐷 − 𝑘

𝜂
) 𝑝0(𝜂) = (

 𝐶 − 𝛿

𝜂
) 

 

then we calculate the sufficiently differentiable 

𝜆𝑛+1(𝜂), 𝑠𝑛+1(𝜂),𝑤𝑛+1 𝑎𝑛𝑑 , 𝑝𝑛+1(𝜂) from equations (4.13) .With using iteration 

condition according to AIM in equation (4.16)  as following : 

𝜆𝑛(𝜂)𝑠𝑛+1(𝜂) − 𝑠𝑛(𝜂)𝜆𝑛+1(𝜂) = 0 (5.34) 

we progressed the calculations above ,get the following result, in Table [1] 
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n C D 

0 𝛿 −𝑘 

1 1 + 𝛿 −𝑘,∓ − √1 + 𝑘2 + 2𝛿 

2 2 + 𝛿 −𝑘,∓√3 + 𝑘2 + 2𝛿 , ∓√4 + 𝑘2 + 4𝛿, 

3 3 + 𝛿 −𝑘,∓√5 + 𝑘2 + 2𝛿,∓√8 + 𝑘2 + 4𝛿,∓√9 + 𝑘2 + 6𝛿 

4 4 + 𝛿 −𝑘,∓√7 + 𝑘2 + 2𝛿, ∓√𝑘2 + 4(3 + 𝛿),∓√15 + 𝑘2 + 6𝛿, 

∓√𝑘2 + 8(2 + 𝛿) 

5 5 + 𝛿 −𝑘,∓√9 + 𝑘2 + 2𝛿,∓√𝑘2 + 8(3 + 𝛿),∓√𝑘2 + 4(4 + 𝛿), 

∓√21 + 𝑘2 + 6𝛿,∓√25 + 𝑘2 + 10𝛿 

6 6 + 𝛿 −𝑘,∓√11 + 𝑘2 + 2𝛿,∓√𝑘2 + 4(5 + 𝛿),

∓ √𝑘2 + 8(4 + 𝛿),∓√27 + 𝑘2 + 6,

∓ √35 + 𝑘2 + 10𝛿,∓√𝑘2 + 12(3 + 𝛿) 

Table[1]:the results of C and D . 

as we see from results in Table 1 we conclude the formulas of (C and D) for arbitrary 

n  : 

𝐶 = 1 + 𝛿 ,𝐷 = ∓√𝜖(2𝑛 − 𝜖) + 2𝜖𝛿 + 𝑘2 (5.35) 

we introduce the symbol 𝜖  to be  : 𝜖 = 0,1,2,3…𝑛. As we know from notation of : 

𝐶 = 2 𝑟1𝐸 , (𝐷 = 2 𝑟1  𝑚), 𝑎𝑛𝑑  𝑟1 =
1

2 √𝑚2−𝐸2
 

 

By using formulas from (5.35) we find two different equations of energy as 

following: 

𝐴 𝐸

√𝑚2−𝐸2
=  𝑛 + 𝛿 

 

So , 

𝐸 = ∓
𝑚

√1+(
𝐴

 𝑛+𝛿 
)
2
 

 

(5.36) 

And  

𝐴 𝐸

√𝑚2−𝐸2
= ∓√𝜖(2𝑛 − 𝜖) + 2𝜖𝛿 + 𝑘2 

𝐸 = ∓𝑚 √1 −
𝐴2

 𝜖(2𝑛 − 𝜖) + 2𝜖𝛿 + 𝑘2
 

 

(5.37) 
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If we look at the equations (5.36) and (5.37) we find that the energy will be equal, at 

a (𝜖) take the ( 𝑛  or 𝑛 + 𝛿 ). But 𝛿 is not integer, that is mean  𝜖 and 𝑛 are integers 

.therefore we find  ( 𝜖 = 𝑛 ) .if we use the conclusion of ( 𝜖 = 𝑛 ) with equation 

(5.35) for Dwe get 

𝐶 = 1 + 𝛿 ,𝐷 = ∓√(2 𝑛 𝛿) + 𝑛2+𝑘2 (5.38) 

And at n=0equation above become 

𝐷 = − 𝑘2 

Thus the energy formula has the form  

𝐸 = ∓
𝑚

√1 + (
𝐴

 𝑛+𝛿 
)
2
 

 

(5.39) 

If we define the principal quantum number as following  

𝑛𝑟 = 𝑛 + |𝑘| −
𝑑 − 3

2
= 1,2,3… 

(5.40) 

In  3-dimensions quantum number with using our definition of operator k  we see  

𝑛𝑟 = 𝑛 + |𝜛 (𝑗 +
1

2
) − 

1

2
| = 1,2,3… 

(5.41) 

We know that  𝛿 = √𝑘2 − 𝐴2 for  𝑛 = 0,1,2,3….  . So, we rewrite equation (5.39) 

and get: 

𝐸 = ∓
𝑚

√1 + (
𝐴

𝑛𝑟−|𝜛(𝑗+
1

2
)−

1

2
|+√(𝜛(𝑗+

1

2
)−

1

2
)
2
 −𝐹2

)

2
 

 

(5.42) 

 

Equation (5.42) represent the well-known formula for coulomb energy in three 

dimensions. 

5.1.1.1 Eigenfunctions 

In this section we will solve the wave functions and obtain the general formula of 

functions 𝜃1(𝜂) and 𝜃2(𝜂) in equations (5.35) and (5.36) to range of (n) ,by using our 

introducing of AIM . 

If we turn back to chapter four and discuss the equation (4.26) we see that equation 

includes two parts ,where the first part in general represent the physical meaning and 
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the second part go for infinity solution. Therefore we use the first part as a factor for 

the wave function generator as following  

𝜃2(𝜂) = 𝐶2𝑒𝑥𝑝 (∫ (𝑝0 − 𝛼 𝑤0)
𝜂

𝑑𝑡 ) 
(5.43) 

The constant integration 𝐶2 , determined by normalization .We follow the same 

iteration procedures to find sufficiently 𝜆𝑛+1(𝜂), 𝑠𝑛+1(𝜂), 𝑤𝑛+1 𝑎𝑛𝑑 , 𝑝𝑛+1(𝜂) in 

section 5.2 and then applied into equation (5.43) . We obtain the results of 𝜃2(𝜂) in 

the Table [2], as following: 

n 𝜃2(𝜂) 

0 1 

1 −(2  𝛿 + 1) + (1 −
𝜂

2  𝛿 + 1
) 

2 
(2  𝛿 + 1)(2  𝛿 + 2)(1 −

2 𝜂

2  𝛿 + 1
−

𝜂2

(2  𝛿 + 1)(2  𝛿 + 2)
) 

3 
−(2  𝛿 + 1)(2  𝛿 + 2)(2  𝛿 + 3)( 1 −

3 𝜂

2  𝛿 + 1
+

3 𝜂2

(2  𝛿 + 1)(2  𝛿 + 2)

−
𝜂3

(2  𝛿 + 1)(2  𝛿 + 2)(2  𝛿 + 3)
 ) 

Table[2]: the results of 𝜃2(𝜂) . 

From results in Table[2], we can write general formula of  𝜃2(𝜂)as : 

𝜃2(𝜂) = (−1)𝑛
(2  𝛿 + 𝑛)!

(2  𝛿)!
𝐶2 𝑋(−𝑛, 2 𝛿 + 1, 𝜂) 

(5.44) 

Where 𝑋 is the hypergeometric function.  

We will calculate the 𝜃1(𝜂) ,for this case we again go back to chapter four and 

discuss  the equation (4.21)  ,we find its content two parts .where the part [ 

𝐶1𝑒𝑥𝑝(∫ (𝜆0(𝑡) + 𝛼(𝑡) 𝑤0(𝑡))
𝑥

) ] is  an infinite series and the second part is a 

polynomial. So we choose a polynomial part ,we have 

𝜃1(𝜂) = −𝛼(𝑥)𝜃2(𝜂) (5.45) 

Now we will use the results we have obtained for θ2(η) into equation (5.45) and by 

following same iteration procedure, we get the results for function θ1(η) in Table [3] 

n 𝜃1(𝜂) 

0 0 
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1 (𝑘 + 𝐷) 

2 −(𝑘 + 𝐷)(2  𝛿 + 1) (1 −
 𝜂

2  𝛿 + 1
 ) 

3 
(𝑘 + 𝐷)(2  𝛿 + 1)(2  𝛿 + 2) ( 1 −

2 𝜂

2  𝛿 + 1
+

𝜂2

(2  𝛿 + 1)(2  𝛿 + 2)
 ) 

Table [3]: the results of 𝜃1(𝜂) 

as we found the general formula for 𝜃2(𝜂), we conclude the general formula for 

𝜃1(𝜂). Depending on the results in Table[3], like a following 

𝜃1(𝜂) = (−1)𝑛+1(𝑘 + 𝐷)
(2  𝛿 + 𝑛 − 1)!

(2  𝛿)!
𝐶2 𝑋(1 − 𝑛, 2 𝛿 + 1, 𝜂) 

(5.46) 

 

5.1.2 Eckart Potential 

The Eckart potential [60] plays a fundamental role in molecular physics,itused to 

describe molecular vibrations and to find  theenergy spectra of nonlinear and linear  

systems. It is very useful for describing the interatomic interaction of the molecules 

and for describingpolyatomic vibration energies within the vibration states of the 

NH3 molecule. 

To investigate the relativistic behavior of spin-1/2 particles in order to understand the 

nuclear structure, theresearch of the spin and pseudospin symmetric solutions of 

the Dirac equation has been an interesting  area of study in nuclear physics, the 

technique ofpseudospin and spin symmetry withthe nuclear shell model has been 

widely used in solving  a number of phenomena in nuclear physics.  

In this section we solve the  Dirac equation for  the Eckart potential in  any κ-state 

by using a  asymptotic iteration method  AIM, in framework an approximation to 

spin–orbit coupling potential in arrangement  to find the relativisticbound state 

eigenvalues and the identical  Dirac spinors by pseudospin symmetry and spin 

symmetry concept. 

By what we introduced in section 3.2 for Dirac spinors from equation(3.37) with 

orbital angular momentum numbers,  𝑙 to spin and  𝑙 to pseudospin, and what we   

obtained for the second-order differential equations. We will use equations (3.40) 

and (3.41) with helping of operator 𝑘 = 𝜛 (𝑙 +
1

2
) − 

1

2
from section 5.1 to rewrite 

second-order differential Dirac equations in 3-dimension. 
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5.1.2.1 Eckart potential with  Spin symmetric 

From our knowledge from section 3.1.2, the difference between the vector potential  

and scalar potential is  ∆(𝑟) = 𝑉(𝑟) − 𝑆(𝑟).In case of spin symmetric this a 

difference be constant, i.e.∆(𝑟) = 𝐶 ,
𝑑∆(𝑟)

𝑑𝑟
= 0 . Therefore we can write 

equation(3.40) by following form  

[
𝑑2

𝑑𝑟2
+ 

𝑘(𝑘 + 1)

𝑟2
− (𝑚 + 𝐸𝑛𝑘  − 𝐶)(𝑚 − 𝐸𝑛𝑘 + ∑(𝑟))] 𝐹𝑛𝑘(𝑟) = 0 

(5.47) 

 

where 𝑘 = 𝑙  for negative 𝑘 and  𝑘 = −(𝑙 + 1)for positive 𝑘. 

The eigenvalues depend on n andk or  𝐸𝑛𝑘 = 𝐸 ( 𝑛, 𝑙(𝑙 + 1)) .We replace the 

summation of vector potential  and scalar potential∑(𝑟)  byEckart potential , where 

the Eckart potential defined according to [29], as  

𝑉(𝑟) = 𝑉1𝑐𝑜𝑠𝑒𝑐ℎ2 (𝛼 𝑟) − 𝑉2 𝑐𝑜𝑡ℎ(𝛼 𝑟) 
 

 

here α  is a screening parameter , we can write the Ecart potential in the exponential 

form : 

𝑉(𝑟) = 4𝑉1

𝑒−2 𝛼 𝑟

(1 − 𝑒−2 𝛼 𝑟)2
− 𝑉2

1 + 𝑒−2 𝛼 𝑟

1 − 𝑒−2 𝛼 𝑟
 

(5.48) 

 

similar to [61] when α and k  are small ,we can replace the spin orbit coupling 

potential 𝑉𝑘 =
𝑘(𝑘+1)

𝑟2   ,by  take  an approximate spin-orbit coupling as   

𝑉(𝑟) = 4𝛼2 𝑘(𝑘 + 1)
𝑒−2 𝛼 𝑟

(1 − 𝑒−2 𝛼 𝑟)2
 

 

(5.49) 

if we insert the Ecart potential from equation (5.48) and approximate spin-orbit from  

equation (5.49) into first equation (5.47) ,then make the following notations    

 

𝑧 =  𝑒−2 𝛼 𝑟 , 𝜀 =  
𝑚 + 𝐸𝑛𝑘 − 𝐶(𝑚 − 𝐸𝑛𝑘)

4𝛼2
 , 𝛽 =  

𝑉2 (𝑚 + 𝐸𝑛𝑘 − 𝐶)

4𝛼2
, 

 

𝛾(𝛾 + 1) = 𝑘(𝑘 + 1) 
𝑉1

𝛼2
(𝑚 + 𝐸𝑛𝑘 − 𝐶) 

 

 

(5.50) 

the Dirac equation (5.47) will be reduced to the formula  

 

𝑑2𝐹𝑛𝑘(𝑧)

𝑑𝑧2
+ 

1

𝑧

𝑑 𝐹(𝑧)

𝑑𝑧
+ [−

𝜀

𝑧2
+ 

𝛾(𝛾 + 1)

𝑧(1 − 𝑧)2
−

𝛽(1 + 𝑧)

𝑧2(1 − 𝑧)2
] 𝐹𝑛𝑘(𝑧) = 0 

(5.51) 
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respect to  the boundary conditions to the wavefunction we see for : 

𝑟 → ∞ then  𝐹𝑛𝑘(0) = 0  𝑎𝑡 𝑧 = 0 , and  for 𝑟 → 0 then 𝐹𝑛𝑘(1) = 0 𝑎𝑡 𝑧 = 1  

with this conditions we suppose the reasonable wavefunction as following  

𝐹𝑛𝑘(z) = z√ε+β(1 − z)γ S(z) 

 

(5.52) 

lets insert equation(5.52) into Dirac equation(5.51) we obtain the second-order 

homogeneous linear differential equation in new formula  

d2F(z)

dz2
 = [

(1 + 2γ + 2√ε + β)z − (2√ε + β) + 1)

z(1 − z)
] × 

d F(z)

dz

+ [
2√ε + βγ − γ2 + 2β)

z(1 − z)
]  F(z) 

 

 

(5.53) 

 

 

after obtained equation(5.53),which is amenable to asymptotic iteration method .So,  

let's refer to section 4.2  and compare it with equation(4.28). Also we can calculate 

sufficiently differentiable of values of k  ( λ𝑘(z) and s𝑘(z) ) by means of equations 

((4.31)-(4.34)) , we get  

λ0(z)  =
(1 + 2γ + 2√ε + β)z − (2√ε + β + 1)

z(1 − z)
 

(5.54a) 

s0(z)  =
2√ε + βγ + γ2 + 2β

z(1 − z)
 

(5.54b) 

 

𝜆1(z)
(6√𝜀 + 𝛽𝛾 + 2 + 6√𝜀 + 𝛽𝛾 + 3𝛾2 + 6𝛾 + 4𝜀 + 2𝛽)𝑧2 + 2 + 6√𝜀 + 𝛽 + 4𝜀 + 4𝛽

𝑧2(𝑧 − 1)2
 

+ 
(−12√ε + β − 4γ + γ2 − 6√ε + βγ − 6β − 8ε − 4)z 

z2(z − 1)2
 

s1(z) =
(γ2 + 2β + 2√ε + βγ)(−2 + 3z + 2γz + 2√ε + βz − 2√ε + β)

z2(z − 1)2
 

 

 

…. ……..etc  

from the a termination condition for AIM in equation(4.37), we can write  

ξ1 = 𝜆1𝑠0 − 𝜆0𝑠1 = 0 (5.55) 

by using sufficiently differentiable above into equation(5.55) we calculate the first 

value of ξ1 as 

ξ1(z) =
(2β + 2√ε + β + 2√ε + βγ + 1 + 2γ + γ2)(2√ε + βγ + 2β + γ2)

z2(z − 1)2
 

   (5.56) 

the solution of equation(5.56) give the roots and we see the first value of ε0  as  



 

32 

 

ε0 =
4β2 + γ4

4γ2
 

and inserting the value ε0 into equation(5.56) given the term √ε + β ,its equal to the 

term √
4β2+γ4

4γ2   .For that the roots of equation will be  ±
4β2+γ4

4γ2  . we take only the 

negative root because it satisfies equation(5.56) and which is also valid for 

ε1 ,ε2 … . . etc. So, if we continue  using the condition in Eq.(5.55),yields to other ξ 

and  ε as  

𝜀1 =
4𝛽2 + 𝛾4 + 6𝛾2 + 4𝛾3 + 4𝛾 + 1

4(1 + 𝛾)2
 , 𝑎𝑡   𝜉2 = 𝜆2𝑠1 − 𝜆1𝑠2 = 0 

 

𝜀2 =
(4𝛽2 + 16 + 32𝛾 + 24𝛾2 + 8𝛾3 + 𝛾4)

4(2 + 𝛾)2
, 𝑎𝑡   𝜉3 = 𝜆3𝑠2 − 𝜆2𝑠3 = 0 

 

………………… etc. (5.57) 

when the formulas above are generalized by induction, we can write the eigenvalues 

of  ε as  

𝜀𝑛𝑘 =
4𝛽2 + (𝑛 + 𝛾)4

4(𝑛 + 𝛾)2
  , 𝑛 = 0,1,2,3 

(5.58) 

now from equations (5.50)and (3.14) we calculate the energy eigenvalues E𝑛𝑘 as 

(𝑚 − 𝐸𝑛𝑘)(𝑚 + 𝐸𝑛𝑘  − 𝐶) = 𝛼2 [(𝑛 + 𝛾)2 +
4𝛽2

(𝑛 + 𝛾)2
] 

 

(5.59) 

with 
γ =

1

2
±

1

2
[1 +  4𝑘(𝑘 + 1) + 4

𝑉1

𝛼2
(𝑚 + 𝐸𝑛𝑘  − 𝐶)]

1/2

 
 

 

To obtain the eigenfunctions we again return to the section 4.2, by using the  

exponential part in equation(4.41) 𝑦(𝑥) = 𝐶2Exp(−∫𝛼 𝑑𝑡)as a wavefunction 

generator. So, we get   

𝐹(𝑧) = (−1)2𝐶2 

Γ (𝑛 + 2√𝜀𝑛𝑘 + 𝛽 + 1

Γ (2√𝜀𝑛𝑘 + 𝛽 + 1)
 Χ(−𝑛 ,2(√𝜀𝑛𝑘 + 𝛽 + 𝛾) + 𝑛, 1

+ 2√𝜀𝑛𝑘 + 𝛽; 𝑧) 

   (5.60) 

where Γ  gamma function and  Χ   the Gauss hypergeometric function. 

Now by helping from equation (5.52) and using equation above, we find the total 

radial wavefuction as following   

𝐹𝑛𝑘(𝑧) = 𝑁 𝑧√𝜀𝑛𝑘+𝛽(1 − 𝑧)𝛾Χ(−𝑛 ,2(√𝜀𝑛𝑘 + 𝛽 + 𝛾) + 𝑛, 1 + 2√𝜀𝑛𝑘 + 𝛽; 𝑧) 
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   (5.61) 

where N  is a normalization constant. 

 

5.1.2.2 Eckart potential with  pseudospin symmetric 

For the case of exact pseudospin symmetry the summation term be 

constant,i.e.∑(𝑟) = 𝐶 ,
𝑑∑(𝑟)

𝑑𝑟
= 0 . Therefore, we can write equation(3.41) by 

following form  

 

[
𝑑2

𝑑𝑟2
− 

𝑘(𝑘 − 1)

𝑟2
− (𝑚 + 𝐸𝑛𝑘  − ∆(𝑟))(𝑚 − 𝐸𝑛𝑘 + 𝐶)]𝐺𝑛𝑘(𝑟) = 0 

(5.62) 

 

where 𝑘 = −𝑙 for negative 𝑘 and, 𝑘 = (𝑙 + 1)for positive 𝑘 and we replace The 

term ∆(𝑟) by the Eckart potential .The energy eigenvalues depend on n and𝑙 or  

𝐸𝑛𝑘 = 𝐸 ( 𝑛, 𝑙(𝑙 + 1)) ,if we follow [62]  see the eigenstates for   𝑗 = 𝑙 ±
1

2
  are  

degenerate to  𝑙 ≠ 0 . So, the Dirac equation didn’t have exactly solution for Eckart 

potential in  𝑘 ≠ 0  by way of standard method .Such we did in previous section in 

order to obtain  an approximation for a term 
k(k+1)

r2 , by replacing the term  
1

r2  with the 

approximation  4α2 e−2 α r

(1−e−2 α r)2
  . 

If we substitute equations (5.48) and (5.49) from previous section into equation 

(5.62) above and make following notations  

 

𝑧 =  𝑒−2 𝛼 𝑟 , 𝜀 =  
𝑚2 − 𝐸𝑛𝑘

2 + 𝐶(𝑚 + 𝐸𝑛𝑘)

4𝛼2
 , 𝛽 =  

𝑉2 (𝑚 − 𝐸𝑛𝑘 + 𝐶)

4𝛼2
, 

 

𝛾(𝛾 − 1) = 𝑘(𝑘 − 1) − 
𝑉1

𝛼2
(𝑚 − 𝐸𝑛𝑘 + 𝐶) 

 

 

 

 

 

then we can rewrite the Dirac equation in (5.62) can by the following way  

𝑑2𝐺𝑛𝑘(𝑧)

𝑑𝑧2
+ 

1

𝑧

𝑑𝐺𝑛𝑘

𝑑𝑧
+ [−

𝜀

𝑧2
− 

𝛾(𝛾 − 1)

𝑧(1 − 𝑧)2
−

𝛽(1 + 𝑧)

𝑧2(1 − 𝑧)
] 𝐺𝑛𝑘(𝑧) = 0 

(5.63) 

by the similar to boundary conditions of the wavefunction in previous section ,we 

propose the wavefunction 𝐺𝑛𝑘(𝑧) as 

𝐺𝑛𝑘(𝑧) = 𝑧√𝜀+𝛽(1 − 𝑧)𝛾  𝐺(𝑧) 
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with similar steps in the previous section to obtain the equation ((5.53)-(5.58)) and 

get the sufficiently differentiable .We can instantly get the energy eigenvalues for 

pseudospin case ,as like following formula  

(𝑚 + 𝐸𝑛𝑘)(𝑚 − 𝐸𝑛𝑘 + 𝐶) = 𝛼2 [(𝑛 + 𝛾)2 +
4𝛽2

(𝑛 + 𝛾)2
] 

(5.64) 

with 
γ =

1

2
±

1

2
[1 +  4𝑘(𝑘 − 1) + 4

𝑉1

𝛼2
(𝑚 + 𝐸𝑛𝑘  − 𝐶)]

1/2

 
 

 

To calculate total radial wavefunction with case of pseudospin , again we indicated 

in section 5.2.1 and find corresponding wavefunctions with help from equation 

(4.41),we have  

𝐺(𝑧) = (−1)n𝐶2 

Γ (𝑛 + 2√𝜀𝑛𝑘 + 𝛽 + 1

Γ (2√𝜀𝑛𝑘 + 𝛽 + 1)
 Χ(−𝑛 ,2(√𝜀𝑛𝑘 + 𝛽 + 𝛾) + 𝑛, 1 + 2√𝜀𝑛𝑘 + 𝛽; 𝑧) 

Finally, we write the radial wavefunction as following  

𝐺𝑛𝑘(𝑧) = 𝑁 𝑧√𝜀𝑛𝑘+𝛽(1 − 𝑧)𝛾Χ(−𝑛 ,2(√𝜀𝑛𝑘 + 𝛽 + 𝛾) + 𝑛, 1 + 2√𝜀𝑛𝑘 + 𝛽; 𝑧) 

 

5.2 Variable Mass 

5.2.1 Manning-Rosen Potential 

 

The Manning–Rosen potential is given as [62,63],  

 

𝑉(𝑟) =  
1

Ω𝑏2 (
𝛼(𝛼 − 1)𝑒−2 𝑟 𝑏⁄

(1 − 𝑒− 𝑟 𝑏⁄ )2
−

𝐴 𝑒− 𝑟 𝑏⁄

1 − 𝑒− 𝑟 𝑏⁄
) 

 

whereΩ =
2 𝑚(𝑟)

ℏ2  , A and α are dimensionless parameters ,b has dimension of length. 

Also, b isscreening parameter for the potential[48].we refer to this potential is 

remains invariant for  𝛼 ↔ (1 − 𝛼) and it has a minimum value for𝛼 > 1 , as 

𝑉(𝑟0) =  
𝐴2

4𝑏2 𝛼(𝛼 − 1)
at𝑟0 = 𝑏 ln [1 +

2𝛼(𝛼 − 1)𝐴2

 𝐴
] 

 

 

From Equation (3.44) in section 3.2.2 for variable mass,this equation can’t be solve 

analytically because of the last term in the equation. So, to eliminate this term we use 

the following condition. 

𝑑𝑀(𝑟)

𝑑𝑟
−

𝑑𝑉(𝑟)

𝑑𝑟
 = 0 

(5.65a) 
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By introducing the mass, function as  

 

𝑀(𝑟) =  𝜇0 +
1

 Ω 𝑏2 (
𝛼(𝛼 − 1)𝑒−2 𝑟 𝑏⁄

(1 − 𝑒−𝑟 𝑏⁄ )2
−

𝐴𝑒−𝑟 𝑏⁄

1 − 𝑒−𝑟 𝑏⁄
) 

(5.65b) 

where 𝜇0 is the integral constant with relating the rest mass of the Dirac particle.Now 

by inserting the Manning-Rosen potential from and variable mass from Eq. ( 5.65b)  

into Eq.(3.44), and  using the condition in Eq.(5.65a) we get  

 

[
𝑑2

𝑑𝑟2
− 

𝑘(𝑘 + 1)

𝑟2
− (𝜇0 + 𝐸𝑛𝑘) 

(𝜇0 + 𝐸𝑛𝑘 +
2

Ω𝑏2 (
𝛼(𝛼 − 1)𝑒−2 𝑟 𝑏⁄

(1 − 𝑒− 𝑟 𝑏⁄ )2
−

𝐴 𝑒− 𝑟 𝑏⁄

1 − 𝑒− 𝑟 𝑏⁄
)𝐹𝑛𝑘(𝑟))] = 0 

 

(5.66) 

 

lets using the exponential approximation for the centrifugal term  as  

 
1

𝑟2
≈ 

𝑒− 𝑟 𝑏⁄

𝑏2(1 − 𝑒− 𝑟 𝑏⁄ )2
 

 

where this approximation is valid for large values of the parameter b. By defined  

𝑧 =  𝑒−2 𝛼𝑟  and following transformation 

ξ0 = 𝑘(𝑘 + 1)  , ξ1 = 𝑏2( 𝜇0
2 − 𝐸𝑛𝑘

2 ) , ξ2 = 
2 (𝜇0 + 𝐸𝑛𝑘)𝛼(α − 1)

Ω
, 

ξ3 =
2 (𝜇0 + 𝐸𝑛𝑘) 𝐴

Ω
 

 

 

 

Now, we can rewrite the Eq.(5.66) as  

[
𝑑2

𝑑𝑧2
+ 

1

𝑧

𝑑 

𝑑𝑧
− 

ξ0

𝑧(1 − 𝑧)2
−

ξ1
𝑧2

+
ξ2

(1 − 𝑧)2
+

ξ3

𝑧(1 − 𝑧)
] 𝑆𝑛𝑘(𝑧) = 0 

 

(5.66a) 

Respect to the boundary conditions for the wavefunction, i.e. 

for  𝑟 → ∞ then  𝐹𝑛𝑘(0) = 0  𝑎𝑡 𝑧 = 0 , and  for 𝑟 → 0 then 𝐹𝑛𝑘(1) = 0 𝑎𝑡 𝑧 = 1  

with this conditions we suppose the reasonable wavefunction as following 

𝐹𝑛𝑘(z) = z√ξ1(1 − z)
1

2
(1−γ)𝐹(z) 

(5.66b) 

where γ = √1 + 4ξ0 + 4ξ2 . 

Lets insert Eq.(5.66b) into Eq.(5.66a) we obtain the second-order homogeneous 

linear differential equation as  
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d2F(z)

dz2
 = [

(−1 − 2√ξ1) + z(2 + 2√ξ1 + γ)

z(z − 1)
] × 

d F(z)

dz

− [
1 + 2ξ0 + γ + 2√ξ1(1 + γ) − 2ξ3)

2 z(z − 1)
]  F(z) 

 

 

(5.67) 

 

By comparing Eq. (5.67) with the aid of the AIM from Eq. (4.28) we find  

𝜆0(z) = −
−1 + z + 2(z − 1)√ξ1 + z(3 + γ)

𝑧 (𝑧 − 1)
,  𝑠0(z) =

1 + 2ξ0 + 2√ξ1(1 + γ) − 2ξ3

2 𝑧 (𝑧 − 1)
 

by means of equations ((4.33) and Eq.(4.34)) ,we can calculate sufficiently 

differentiable of   ( λ𝑛(z) and s𝑛(z) ) as   

𝜆1(z) =
4 + 8(z − 1)2ξ1 + 6(z − 1)√ξ1(−2 + z(3 + γ)) 

2 𝑧2(𝑧 − 1)2
+ 

 z(8 − 2ξ0 + 3(1 + γ) + 2ξ3) + 𝑧2(4 − 2ξ0 + 5(1 + γ) + 2(1 + γ)2 + 2ξ3) 

𝑠1(z) =
(−2 + 2(z − 1)√ξ1 + z(4 + γ)) (1 + 2ξ0 + γ + 2√ξ1(1 + γ) − 2ξ3) 

2 𝑧2(𝑧 − 1)2
 

…… etc. 

Again with help AIM, combining these results quantization condition given by Eq. 

(4.37) yields 

𝜆1𝑠0 − 𝜆0𝑠1 = 0 ⟹ ξ1 =
(1 + 2ξ

0
+ γ − 2ξ

3
)2

4(1 + 𝛾)2
 

(5.68a) 

𝜆2𝑠1 − 𝜆1𝑠2 = 0 ⟹ ξ1 =
(2 + 2ξ0 + 3(1 + γ) − 2ξ3)

2

4(3 + 𝛾)2
 

(5.68b) 

𝜆3𝑠2 − 𝜆2𝑠3 = 0 ⟹ ξ1 =
(8 + 2ξ0 + 5(1 + γ) − 2ξ3)

2

4(5 + 𝛾)2
 

(5.68c) 

………………… etc.  

when the Eq.(5.68) are generalized by induction, we can write the eigenvalues of  ξ 

as  

ξ1𝑛 =
1

4
(
2𝑛2 + (1 + 2𝑛)(1 + γ) + 2ξ

0
− 2ξ

3

2𝑛 + 1 + γ
) 

 

(5.69) 

If ξ0and ξ3are inserted into Eq. (5.69)and is compared with ξ1, the energy eigenvalue 

of the for the Manning–Rosen potential position with dependent mass can be 

obtained by the following expression 

𝐸𝑛𝑘
2 = 𝜇0

2  −
1

4𝑏2
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[
 
 
 
 2𝑛2 + (1 + 2𝑛) (1 + √1 + 4𝑘(𝑘 + 1) +

8(𝑚0+𝐸𝑛) 𝛼(α−1)

Ω
+ 4𝑘(𝑘 + 1)) −

4(𝑚0+𝐸𝑛)𝐴

Ω

2𝑛 + 1 + √1 + 4𝑘(𝑘 + 1) +
8(𝑚0+𝐸𝑛) 𝛼(α−1)

Ω ]
 
 
 
 
2

 

 (5.70) 

 

5.2.1.1 Eigenfunctions 

By using the wave function generator given in the section 4.2, from using the 

exponential part in Eq. (4.41)𝑦(𝑥) = 𝐶2Exp(−∫𝛼 𝑑𝑡) , the eigenfunctions can be 

obtained as following  

𝑆0(𝑧) = −1  

𝑆1(𝑧) = − 𝐶2  (1 + 2√ξ1) (1 −
2 + 2√ξ1 + γ

1 + 2√ξ1
 z ) 

𝑆2(𝑧) =  𝐶2  (1 + 2√ξ1)(2 + 2√ξ1) (1 −
2(3 + 2γ√ξ1)

1 + 2√ξ1
 z +

2(3 + 2γ√ξ1)(4 + 2γ√ξ1)

(1 + 2√ξ1)(2 + 2√ξ1)
𝑧2) 

𝑆3(𝑧) =  𝐶2  (1 + 2√ξ1)(2 + 2√ξ1)(3 + 2√ξ1) 

(1 −
6(2 + γ√ξ1)

1 + 2√ξ1
z +

(2 + 2γ√ξ1)(5 + 2γ√ξ1)

(1 + 2√ξ1)(1 + √ξ1)
𝑧2 −

(4 + 2γ√ξ1)(5 + 2γ√ξ1)(3 + 2γ√ξ1)

(1 + 2√ξ1)(1 + √ξ1)(3 + 2γ√ξ1)
𝑧3) 

…..etc. 

Therefore, the wave function 𝐹(𝑧) in general form can be written as  

𝐹(𝑧) = (−1)n𝐶2 

Γ (1 + 2√ξ1 + 𝑛

Γ (1 + 2√ξ1)
 Χ(−𝑛 ,1 + 2√ξ1 + 𝛾 + 𝑛, 1 + 2√ξ1 ; 𝑧) 

From Eq. (5.66b) the total radial wavefunction can be given as follow  

 

𝐹𝑛𝑘(𝑧) = 𝑁 𝑧√ξ1 (1 − 𝑧)
1

2
(1+𝛾) Χ(−𝑛 ,1 + 2√ξ1 + 𝛾 + 𝑛, 1 + 2√ξ1 ; 𝑧) 

 

5.2.2 Dirac Coulomb Potential 

By considering the coulomb like potential as   

𝑉(𝑟) =  
𝑉0

𝑟
, and 𝑆(𝑟) =

𝑆0

𝑟
. 

(5.71) 

 

Form section 3.2.2,the Eq. (3.44) can’t be solved analytically because of the last term 

in the equation(
𝑑𝑀(𝑟)

𝑑𝑟
−

𝑑𝑉(𝑟)

𝑑𝑟
= 0), so, we use the equality to eliminate this term. 

Thus, using this equality condition, the mass function is obtained 

as the following 
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𝑀(𝑟) =
(𝑉0 − 𝑆0)

𝑟
+ 𝑚0 

(5.72) 

By inserting the coulomb potential from Eq.(5.71) and variable mass into Eq.(3.44) 

we get  

−
𝑘(𝑘 + 1)

𝑟2
𝐹𝑛𝑘(𝑟) − (𝐸𝑛𝑙 + 𝑚0) (−𝐸𝑛𝑙 +

2(𝑉0 − 𝑆0)

𝑟
+ 𝑚0)𝐹𝑛𝑘(𝑟)

+
𝑑2

𝑑𝑟2
𝐹𝑛𝑘(𝑟) = 0 

 

 

(5.73) 

By making the following notations 

𝐸𝑛𝑙
2 − 𝑚0

2 = 𝜀𝑛𝑙
2   ,  𝑘(𝑘 + 1) = 𝐴(𝐴 + 1),  2(𝐸𝑛𝑙 + m0)(𝑆0 − 𝑉0) = 𝐵  

 

The eigenvalues equation transforms to 

(−𝜀𝑛𝑙
2 −

𝐴(𝐴 + 1)

𝑟2
+

𝐵

𝑟
)𝐹𝑛𝑘(𝑟) +

𝑑2

𝑑𝑟2
𝐹𝑛𝑘(𝑟) = 0 

(5.74) 

Propose to the wavefunction by using AIM as 

𝐹𝑛𝑘(𝑟) = 𝑟𝐴+1𝑒(−𝜀𝑛𝑙𝑟)𝜒(𝑟)  

by inserting the wavefuction  above into Eq.(5.73) we obtain  

(𝐵 − 2(1 + 𝐴)𝜀𝑛𝑙)𝜒[𝑟] + 2(1 + 𝐴 − 𝜀𝑛𝑙𝑟)𝜒
′[𝑟] + 𝑟𝜒′′[𝑟] = 0 (5.75) 

after rearrange Eq.(5.75)  we have  

𝜒′′[𝑟] = −
2(1 + 𝐴 − 𝜀𝑛𝑙𝑟)

𝑟
𝜒′[𝑟] +

−𝐵 + 2(1 + 𝐴)𝜀𝑛𝑙

𝑟
𝜒[𝑟] 

(5.76) 

 

By comparing Eq.(5.76) with second-order diffraction equation Eq.(4.28) by mean of 

AIM , we obtain  

λ0(r)  = −
2(1 + 𝐴 − 𝜀𝑛𝑙𝑟)

𝑟
, s0(r) =

−𝐵 + 2(1 + 𝐴)𝜀𝑛𝑙

𝑟
 

 

By using termination condition for energy, we get the general form of eigenvalues is 

𝜀𝑛𝑙  =
𝐵

2(𝑛 + 1 + 𝐴)
 

Go back to the parameters definition, we get 

𝐸𝑛𝑙
2 − 𝑚0

2 = 𝜀𝑛𝑙
2 = (

𝐵

2(𝑛 + 1 + 𝐴)
)

2

 

which yields  

𝐸𝑛𝑙
2 = 𝑚0

2 + (
𝐵

2(𝑛 + 1 + 𝐴)
)
2
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In order to find corresponding the energy eigenfunctions with AIM, we may use the 

following energy eigenfunction generator for 

𝜒(𝑟) = exp(−∫
sk(r)

λk(r)
𝑑𝑟

𝑟

) 

By applying the function generator, the  functions can be written in series 

expansion by hypergeometric functions with constant  and 

 Generalizing these expansions, we get 

𝜒(𝑟) = (𝐵 + 𝑛 + 1)𝑛 [∏(2𝐵 + 2 + 𝑘)

𝑛−1

0

] 𝑥 1𝐹1(−𝑛, 2𝐵 + 2; 2𝜀𝑛𝑙𝑟) 

Thus, we can write  the upper spinor component of the radial wave function as 

𝐹𝑛𝑘(𝑟) = 𝑟𝐴+1𝑒(−𝜀𝑛𝑙𝑟)(𝐵 + 𝑛 + 1)𝑛 [∏(2𝐵 + 2 + 𝑘)

𝑛−1

0

] 𝑥 1𝐹1(−𝑛, 2𝐵 + 2; 2𝜀𝑛𝑙𝑟) 

The lower spinor wave function can be obtained in a similar algebraic calculation. It 

gives the same results as 

𝐺𝑛𝑘(𝑟) = 𝑟𝐴+1𝑒(−𝜀𝑛𝑙𝑟)(𝐵 + 𝑛 + 1)𝑛 [∏(2𝐵 + 2 + 𝑘)

𝑛−1

0

] 𝑥 1𝐹1(−𝑛, 2𝐵 + 2; 2𝜀𝑛𝑙𝑟) 

where 

are the corresponding parameters gives the results with those of in [34] after 

transforming the parameters. 

5.2.3 Dirac Harmonic Oscillator 

By considering the Harmonic Oscillator potential as   

 

𝑉(𝑟) =  𝑉0𝑟
2 (5.77) 

By following similar steps in section 5.2.2, again by using this equality condition, the 

mass function is obtained as the following 

𝑀(𝑟) = 𝑚0(1 + 𝑉0𝑟
2) (5.78) 

𝐸𝑛𝑙
2 − 𝑚0

2 = −𝜀𝑛𝑙
2  ,  𝑘(𝑘 − 1) + 4𝑆0(𝑆0 + 𝑉0) = 𝐴(𝐴 + 1), 

−2𝐸𝑛𝑙𝑉0 + 2m0)(2𝑆0 + 𝑉0) = 𝐵 
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By inserting the Harmonic Oscillator potential from Eq. (5.77) and variable mass 

into Eq.(3.44) we get  

−
𝑘(𝑘 + 1)

𝑟2
𝐹𝑛𝑘(𝑟) − (𝐸𝑛 + 𝑚0)(−𝐸𝑛 + 2 𝑚0𝑉0𝑟

2 + 𝑚0)𝐹𝑛𝑘(𝑟)

+
𝑑2

𝑑𝑟2
𝐹𝑛𝑘(𝑟) = 0 

(5.79) 

By making the following notations 

𝐸𝑛
2 − 𝑚0

2 = 𝜀𝑛
2  ,  𝑘(𝑘 + 1) → 𝐴(𝐴 + 1),  2𝜀𝑛𝑚0𝑉0 + 2𝑉0𝑚0

2 → 𝐵2  

The equation Eq.(5.79) becomes  

(−𝜀𝑛 −
𝐴(𝐴 + 1)

𝑟2
+ 𝐵2𝑟2)𝐹𝑛𝑘(𝑟) −

𝑑2

𝑑𝑟2
𝐹𝑛𝑘(𝑟) = 0 

(5.80) 

Propose to the wavefunction by using AIM as 

𝐹𝑛𝑘(𝑟) = 𝑟𝐴+1𝑒
(
−𝐵𝑟2

2
)
𝜒(𝑟) 

 

by substituting the wavefunction  above into Eq.(5.80) we obtain  

𝑑2

𝑑𝑟2
𝜒(𝑟) =

3𝐵𝑟𝜒(𝑟) + 2𝐴𝐵𝑟𝜒(𝑟) − 𝜀𝑛𝑟𝜒(𝑟)

𝑦
+

(−2 − 2𝐴 + 2𝐵𝑟2)

𝑟

𝑑

𝑑𝑟
𝜒(𝑟) 

 

(5.81) 

By comparing Eq.(5.81) with second-order diffraction equation Eq.(4.28) by mean of 

AIM , we obtain  

λ0(𝑟)  = −
2(1  + 𝐴 − 𝐵𝑟2)

𝑟
,    s0(r)  = (3 + 2𝐴)𝐵 − 𝜀𝑛 

 

at this step, by using termination condition for energy given by Eq. (4.37),we get the 

following results  

𝜀0  = (3 + 2𝐴)𝐵  

𝜀1  = (7 + 2𝐴)𝐵  

𝜀2  = (11 + 2𝐴)𝐵  

Generalizing for energy  𝜀𝑛 , it can  be found as   

𝜀𝑛  = (3 + 4𝑛 + 2𝐴)𝐵. 

If go back to the parameters A, and B, the 𝜀𝑛 relation transforms to 

𝐸𝑛
2 − 𝑚0

2 = ((3 + 4𝑛 + 2𝐴)𝐵)
2
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and 

𝐸𝑛 = √𝑚0
2 + ((3 + 4𝑛 + 2𝐴)𝐵)

2
 

The corresponding eigenfunction is constructed by using wave function generator as 

[65] 

𝜒(𝑟) = (−1)𝑛𝐶22
𝑛(𝜎)𝑛𝑥 1𝐹1(−𝑛, 𝜎; 𝐵𝑟2) 

Thus, we can write the upper spinor as 

𝐹𝑛𝑘(𝑟) = 𝑟𝐴+1𝑒
(
−𝐵𝑟2

2
)
(−1)𝑛𝐶22

𝑛(𝜎)𝑛𝑥 1𝐹1(−𝑛, 𝜎; 𝐵𝑟2) 

where 

𝜎 =
2𝐴 + 3

2
and(𝜎)𝑛 =

Γ(𝜎 + 𝑛)

Γ(𝜎)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

 

 

 

 

 

CHAPTER 6 

6 CONCLUSION 

 

In this thesis, the spectrum of the relativistic Dirac equation is obtained for some 

physical potentials by using AIM method. 

Through the corresponding calculations, the mass of the relativistic particle is 

considered as positron dependent mass case and constant mass case. In spatially 

dependent case, the mass function is considered as in the form of function satisfying 

the equality condition, 
𝒅𝑴(𝒓)

𝒅𝒓
−

𝒅𝑽(𝒓)

𝒅𝒓
= 𝟎  . 

By substituting the mass function in the differential equation of S(r) and Q(r) ,the 

AIM is applied and the calculated results satisfy the exact results .This method has an 

advantages with respect to other methods :These are ; 

i) Without using complex calculations, it gives the simple way by obtaining 

𝜆(𝑦) and 𝑠(𝑥). 

ii) It reproduce the corresponding the energy eigenvalues and eigenfunction 

in a good accuracy. 

In this thesis, the spectrum of Coulomb and harmonic Potentials in Dirac equation 

are calculated for constant mass cases in addition to the applications for constant 

mass. 

It is possible to applied this method for first order and second order Dirac equation 

by choosing appropriate asymptotic wavefunction form. 
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