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ABSTRACT

DIRAC EQUATION WITH POSITION-DEPENDENT MASS
AND ITS APPLICATION

DHAHIT, HAYDER
M.Sc. in Engineering Physics
Supervisor: Assoc. Prof. Dr. Eser OLGAR
June 2013, 58 pages

The formalism of Dirac equation for constant mass and position dependent mass is
outlined in this study. During formalism, the equation is transformed into first order
and second order differential equation forms respectively to solve for various

physical potential.

The eigenfunctions and eigenvalues of corresponding physical potentials are
obtained in the framework of Asymptotic Iteration Method for both first order and
second order form of Dirac equation. This method is applied to Coulomb potential,
Harmonic Oscillator problem, Manning-Rosen potential, Eckart potential and
Hulthen potential. The results are in a good agreement with the corresponding values

found in the literature.

Keywords:Dirac equation, position dependent mass, eigenvalues, eigenfunctions,

asymptotic iteration method, physical potentials.
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SABIT-POZISYONA BAGLI KUTLE iCiN DIRAC DENKLEMIi VE
UYGULAMALAR

DHAHIT, HAYDER
YiiksekLisansTezi, FizikMiihendisligi, Gaziantep Universitesi

Damisman: Dog. Dr. Eser OLGAR
Haziran 2013, 58sayfa

Bu calismada, Dirac denkleminin sabit ve pozisyona bagh kiitle i¢cin formiilasyonu
Ozetlendi. Formiilasyonda, Dirac denklemi farkli fiziksel potansiyellerin ¢6zliimii i¢in
sirasiyla birinci ve ikinci dereceden diferansiyel denklem formuna doniistiirtildi.
Baz1 fiziksel potansiyellerin enerji O6zdegerleri ve Ozfonksiyonlar1 Asimtotik
iterasyon metodu kullanilarak Dirac denkleminin her iki formunda elde edildi. Bu
metot Coulomb potansiyeli, Harmonic Oscillator problemi, Manning-Rosen
potansiyeli, Eckart potansiyeli and Hulthen potansiyeli i¢in uygulandi. Elde edilen
sonuglar literattirdeki sonuglarla iyi bir uyum sergiledi.

Anahtar Kelimeler: Dirac denklemi, konuma baglh kiitle, 6zdeger, 6zfonksiyon,

asimtotik iterasyon metodu, fiziksel potansiyel.
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CHAPTER ONE

1 INTRODUCTION

The solution of one of the relativistic differential equation, Dirac equation for
quantum mechanical systems in both case of spatially dependent mass and constant
mass plays an important role [1-29].These physical systems are very useful in
modeling the physical electronic properties of semiconductors[3], quantum wells
,quantum dots [3,4], quantum liquids [5]and semiconductors hetero structures [6].In
addition to the modeling systems, the relativistic effects are important in the field of
heavy ion doping and heavy atoms [7-9].

Since the important of investigation of the Dirac equation with position dependent
mass, there has been increased a great interest on it [7-18]. The solution of Dirac
equation for Coulomb potential in different dimensions [19-24], Dirac particle in a
central potential [25, 26] have been discussed. Additionally, different
multidimensional non-relativistic and relativistic equations have been studied ,For
example ,the Schrodinger equation in D-dimensional has been studied with the
pseudo harmonic potential [28], Coulomb potential [27], Hulthen potential[29]and
Poschl-Teller potential [30]. Also, different potentials with D-dimensional for Klein-
Gordon equation [31] and Dirac equations [32-35] has been studied.

In the science of quantum mechanics, physicists searched for methods to solve the
Schrodinger and the Dirac equations. For this task, researchers have developed
different access to get the exact or numerical solutions of both Schrédinger and the
Dirac equation for many of potentials.

From these methods, there are many techniques, the more commonly used is the
algebraic method [38], the Laplace transformation [39, 40], the power series
expansion[36, 37], the factorization method [41], supersymmetry, shape invariance
method [44],the path integral method [42, 43], WKB as well as supersymmetric
WKB (SWKB) methods [45].The developing history of quantum mechanics for non-
relativistic and relativistic shown that the new method promoted us to research in this
field.



In few years ago, Ciftciet al[46, 47] proposed an asymptoticiteration method (AlIM)
it’s very efficient to establish the eigenvalues, which draws the attention of a many
researchers [48-50] and gives a number of numerical or exact solutions to
theSchrodinger equation for a lot of interesting potentials.After successfully using
asymptotic iteration method to non-relativisticquantum mechanics, researchers
moved to applythismethodto relativistic quantum mechanics to solve the Dirac
equation [51].

In this thesis, we choose AIM method to solve the spectrum of some physical

potentials for Dirac equation.

The organization of thesis is as follow: the fundamental of Dirac equation for d-
dimension [52] is introduced in Chapter 2. In chapter (3), the ideas which make the
Dirac equation persuasiveand the properties of certain Dirac matrices with
relationship a and B pointed out .In subsequent chapter, the formulism of Dirac
equation for constant mass and variable are derived both for first order and second
order differential equation form. In chapter 4, the method used in the calculation of
eigenvalues and eigenfunctions is presented. The applications of method are outlined

in Chapter 5. The last chapter devotes to main conclusion of this thesis.



CHAPTER 2

2 FORMULASIMOF THE DIRAC EQUATION

One of the relativistic equation, Dirac equation was presented by the Paul Adrien
Maurice Dirac [1] in 1928, who constructed an essential contribution to the
development of both quantum electrodynamics and quantum mechanics. Dirac
equation was constructed to explain the behavior of fermions and predicted to
appearance of the antimatter [2]. Dirac searched for relativistic thatequation which
was consistent with special theory of relativity without a sureness negative results of
probability density. Toconstruct the relation of the energyand momentum, the Dirac
equation must be linear in time derivative. And also to be preserved the
Lorentztransformation, it also to be relativistic covariant.Therefore, Dirac proposed
the Dirac equation which led to experimental discovery, the discovery of the

positron, the anti-particle of the electron thatis one of greatest theoretical physics [3].

2.1 Derivation ofDirac Equation

The Dirac equation is derived withseveral methods by considering the fundamental
of the relativistic relation between the energy and momentum. This relation in the

form of

EZ = p2c? + m3c* (2.1)
Where ¢ is speed of light, E the energy, p the momentum and m the mass of

particlesubsequently, the operator form of quantummechanical observables E and pis
., 0 h
E- 1ha and p = n \Y

where V is donates the gradient and A is given in terms of constant hash =
% .Substituting this operator in Eq.(2.1) and acting on the quantum mechanical wave

function (r,t), yields

02 2.2
_ha_tlzljz (_h C2V2+m2C4)l|J ( )



this equation represents the Klein-Gordon equation for free particle. The time
dependent second order differential equation (namely (2.2)) is solved by using

boundary conditions for Yi(r, t)and ¢’ (r, t).

The relativistic solution of Klein-Gordon gives negative energy solution due toE2.
To get rid of these problems, some physicists tried to write the Eq. (2.2) in different
form which combines the quantum mechanics and special relativity. Also, the
transformed form of Klein-Gordon equation is first order differential equation

depending on time and it can be invariant under Lorentz transformations.

Through the studies, Paul Dirac [3, 57] considered square root of Eq. (2.1) as

E = y/p?c2 + m2c* (2.3)

This energy equation is reduced to in the limit of p — 0 equation (2.3) become
Jp2c? + m2c* - me?

And in limitof m - 0
JPPE Tt o pe.

From these limits, Dirac generalized the energy equation in

Vp2cZ+mic* =apc+pfmc?

where a and PBare matrices which they are defined in following section.

Substitution this assumptions to the Eq. (2.2) yields

0 2.4
iha—lijz(apc+,8mc2)l|1 @4
Taking the natural units (2 = ¢ = 1), the Eq. (2.4) transform to
d
0y
l§=zajpj+ﬁm)lll (2.5)
j=1

where the momentum operatorp; represents

.0 .
pj=—lﬁ,1S]Sd



The Eq. (2.5) is called the famous Dirac equation for free particle in (d + 1)

dimensions.

2.2 Matrix Representations of ¢ and 8

From equation (2.5) it is clear that the coefficients «; and Bshould investigate the
condition of invariant with respect to spatial rotations. In order to satisfied this
condition, these parameters can’t be numbers, they should be in matrix form which
are called Dirac matrices. In addition, the wave function §p must be column vector

form.

Thus, the time dependent wavefunction in column matrices form for n rows can be

written as

ll)l(rl t)
Yo (r,t) (2.6)
lIJ — l/)3 (r, t)

\noo/

The matrices a; and § must be a square matrix for obeying the matrix formalism of

Dirac equation [1, 2].
The equation (2.5) is rearranged by considering

d

d
Zajpj+,8m—ia PY=0 2.7

j=1

By multiplying the Eq. (2.7) with the operator
d
.0
Z ajpj +Bm+ i
j=1
from left , it causes the Eq. (2.7) to reduce in

d d 52
(Z a; ajp;p; +m Z(ajﬁ +ﬂaj)Pj+mzﬁz+F)‘|J=0 (2.8)

i,j=1 ]:1

where X%, a; a;pip; = (X @i apipj + X8 =1 aja;i ppi) /2



After some algebraic calculations, the Eq. (2.8) is obtained as

92 a aia]-+ajai ¢ 22
—7 = szipj+mZ(ajﬁ+ﬁaj)pj+mﬁ ¥=0 (2.9)

i,j=1 j=1

In a similar way, by substituting the matrix form of  from (2.9) into Klein-
Gordon with the natural units Eq. (2.6), the Eq. (2.2) is written as

24, 2.10
—aa;/;'=(p2+m2)t/)i @10

It can be seen that from Eq. (2.10), the each components of y;(r, t) satisfy the Klein-

Gordon equation.

By comparing the equation (2.9) and (2.10), it is clear that the requirement for

matrices a;j and S is

BZ=a?=1 (2.11)
aia; + aja; = 2 6;;(2.12), ajf+fa =0 (213)

where §;; is called kroneccker delta function which is

s-{l I
Y 0 if i#]j

In order to satisfy requirements of a; and § matrices, as written in equation Eq.
(2.11),Eq. (2.12) and Eq. (2.13) the corresponding matrices are anti-commute rather
than commute with each other. Because the Hamiltonian in Eq. (2.5),is hermitian

(self-adjoint), as

d
H=Zajpj+/3m
j=1

Therefore if H is hermitian, Dirac matrices also have to be hermitian.This means that
the elements on the main diagonal are real and the matrices are symmetric .This

condition results to be their eigenvalues real, and:

ﬁ'l' = ﬁ and C(]'T = q; (2.14)
a; in its eigen-representation with eigenvalues ( a; , a5, ... ) has considered to be in

form of



al 0 . 0
/ O @ ) \ (216)
Then with this representation, a;? becomes from Eq. (2.16) and Eq. (2.11) we obtain
-0
9\ (2.17)

a? 0 10

0 a2 - 0 /01

: S S N R -
0

ai2='k;) : )=k 5.’:.1)

From these equations, generalizing fora, it can be found that a;, = + 1 where
k=1, 2,...n . Similarly, if the same procedure is applied to matrixf3, the eigenvalues

for ajandBare +1 .

Multiplying Eqg. (2.13) from the left with constant 3 , and with the aid of Eq. (2.11)

we get

BajB=—a; (2.18)
Using the algebraic properties of matrices in [3], the trace of A B is written as

tr AB = tr BA

where the operator tr A , trace of a square matrix A, is the sum of the elements on

the diagonal of matrix A. Now from equation (2.11) and Eqg. (2.18),
tra; =tr (B?a;) =tr (B a; B) = —tr ()
Thus
tra; =0 (2.19)
By using the same argument of «; and applying the some algebraic procedure to

matrix S, we get

—B=a;Bq
So
tr=tra>B=tr a;f aj =—trp
And similarly,
trg =0 (2.20)



Again from Eq. (2.13) with a new arrangement:

af=(-1)Ba (2.21)
Taking determinant of Eq. (2.21) for both sides,

det ajdetf = (—1)" det q; detf (2.22)
From the factor of (—1)", n should be even to satisfy the corresponding equation.
Consider a matrix R with dimensions (n X n) that transform the matrix «; into its

diagonal form as

a 0 0
0 ay vee 0\

: : . (2'23)
R a] R—l — k . . . . )
0 0 Oy
From equation (2.23) and the relationtr (AB) = tr(BA), it is found
al 0 0
( I ?\ " , (220
trk 0 0 - an) - kz;“k =Ry R

=trajRR™ ' =tra;
From properties of Dirac matrices, their trace are equal to zero, and the
corresponding eigenvalues are = 1. But, from Eq. (2.24), the trace has the same value
with its eigenvalues. So, it is concluded the number of negative eigenvalues has to be

the same like the number of positive eigenvalues.

From equation Eq. (2.11), Eqg. (2.12) and Eqg. (2.13) and as shown in [17] there are
only three matrices satisfy anticommuting properties which are called the Pauli.
These are

omWhere m=1,23

(0 1 (0 —i /1 0 (2.25)
01_(1 0) ‘72_(1' o) 03_(0 —1)
Therefor it is useful to construct the Dirac matrices in terms of Pauli matrices as
(0 Om (I 0 (2.26)
“f_(am 0) B_(o —1)

where lis the unit matrix (2 x 2),1 = ((1) (1))



CHAPTER 3

3 TRANSFORMATION OF DIRAC EQUATION

In literature, the transformation of the Schrddinger equation from 3-dimensions to
arbitrary d-dimensions has been done by using the eigenvalues of the generalized
orbital angular momentumL?, in place of the three-dimensional ones [53,54].
The transformation method For Dirac equation is different. It must treat with spin
angular momentum and generalized orbital operators, and its agreement with element
of a Lie group and a Lie algebra. The authors in reference [55] were derived The
Diracequation in arbitrary d-dimensionsby using the self-adjoint ladder operator
method.

In this chapter, the derivation of the radial Dirac equation d-dimensions is
discussed in simple algebraicderivation and the similar structure of the Dirac

equations in arbitrary spatial dimensions in a central field is pointed out.

3.1 First-Order coupled differential equations form
The derivation of Dirac equation in first order linear form can be obtained for two

different cases of mass function when it is constant mass and variable mass function.

3.1.1 Constant mass Case,

The Dirac equation for a central field in (d + 1 )dimensions is written for spherically
symmetric vector V(r) and S(r) spherically symmetric scalar potential by using Eq.
(2.5)

d

d

ia—T=H1|; H =Zajpj+ﬁ(m+5(r))+V(T) (3.1)
j=1

where (d + 1) dimensional matrices also satisfy the anti-commutative relations.



Without any approximation, the Dirac equation for a central fieldin spherical
coordinates can be separated into the variables. Thus, it has mean the eigenfunction
of the orbital and spin angular momentum can be found.

From Eqg. (3.1), the radial velocity operators and radial momentum are reduced as

d d

pr =171 X; -—id_1 a;, =11 Xj a;

T j Dj 2 ! ] ) (3.2)
=1

j=1

Now, the orbital angular momentum operators is defined as

) ) > (3.3)

Lij = xipj — xp; = —i <xi6_xj " Y%

According to reference [55], Eq. (3.3) satisfy the following algebraic relations

Lij = —L;(3.4), Ly = L;;'(35), [Lij, L] = i Lye(3.7)
(3.7)
[Lij, L] =0, fori=j#k=+I
LijLy; + Ly, Ljp + Ly , Ly = 0, fori+j+k+l1 (3.8)

Where the indices (i, j, k, I)take the values (1, 2, ...d ) and dbeing the dimension of

the space.

The total orbital angular momentumL? and generalized spin angular momentum o;;
are defined as

d [
2 — 2, oy = =5 |ai, ]

i<j

The o;; are satisfy the following relations which are introduced in [56] as

oij = =0;3-11), o = 0;1(3.12), 0,2 = 1(3.13)
[0, 0u] =ion, forizj*k (3.14)
[05j, 0] =0,  fori#j#k=#l (3.15)

Introducing the operatork which is related to the total angular momentum and

commute with corresponding potential

10



< d-1
ka =B ZaijLij+l > (3.16)

i<j

by substituting Eg. (3.2) and Eq.(3.3) into Eq.(3.1) ,it gives

d
Yy =1
j=1

Thus, the Hamiltonian turns to the

H = a,pr + %ar Bky+B(m+SE)+V() (3.17)

It can be see that, the corresponding Hamiltonian Eq. (3.17) is depends on three
operators a,, p,,ky . If the eigenvalues of matrix or operator,k the eigenvalues of

Hamiltonian H can be calculated.

For this aim, let introduce a new operator as

d

L= ZUULU (3.18)

i<j

Eqg. (3.16) with the introducing operator transform to:

k, = B <L+id;1> (3.19)

Since , [H,£] =0 and [L2,£]=0
WhereH, L2and £ have common eigenfunction .The eigenvalues of L can be found
by establishing a relation between L andL? which introduce in reference [57] .The
power squares of L? , can be written from Eq. (3.18) as following
da d
[£2 = Z Z 0;j Lijoki Ly (3.20)

i<j k<l
The solution is get by rewritten Eq. (3.20),

L2+ L5+ L3
Where
L2 — is the content of equal indices (i=j and j=I)

11



L3> - is the content of unequal indices (i # j # k # 1)

L2 - is the can be contracted to (o; iLij)

Therefore, we have

d
LZ = Z( aijLij )2 = LZ (320)
i<j
d d
and L£; = ZZ 0ij Lijonliy ,  TFjFRFIL (3.21)
i<j k<l

In similar way the last part of Hamiltonian £3 has a definition of:

d d-1 d j—1
2 _
L3 - Z Z Oki Lkio-kijj + Z O-kiLkiO-jijk 2 O-kijjO-ikLik (322)
i<j \k=1 k=j+1 K=i+1

=—(d-2)L

The addition of terms in Eq. (3.18) is symmetric, therefore terms appeared in Eq.
(3.20) can be covered by summing up only the following triple terms.

0ij LijoxiLiy + 0ucLir 051 Lj1 + oLy 03 Ly

= 0jjLi(LijLiy + LucLjy + LixgLy) = 0,i<j <k <l (3.23)

By using the equations Eq. (3.6) and Eq. (3.13), it can be concluded that the number
of terms involved in each partial sum are:

did—-1 3.24
A : ) g (3.24)
d (3.25)
d(d—1)(d—-2)(d -3
N, =6 Z 1=( )(4 ) ), in L2
i<j<k<l
N;=d(d—-1)(d-2), in L3 (3.26)
Then it easy to see that
d(d —1)\° (3.27)
N=N1+N2+N3 =(T)

By comparing the equations Eq. (3.20), Eq. (3.21) and Eq. (3.23), L? is found as

2 =L(L+d—-2) (3.28)

where the eigenfunctions ofL? are doubly degenerate we may write

12



LY =1y, (3.29), Ly,=—-(+d-2)yY, (3.30)
These above equations lead to

For that the eigenvalue of operator k; will be

(., d—2 R (3.32)
kd—+<]+T>, ]—l+§

which are the same as derived in [1],by introducing two-component wavefunction.

_aaf F (3.33)
llj =71 2 < )
iG
Theradial Dirac equations in d-dimensions are derived in following form

dF k 3.34

dgr) = — TdF(r)+(E+m — V(@) +S()G(r) (3:34)

dG(r) kg (3.35)

= = G~ (E-m =V(@) = SM) F(1)

These two equations are called the first-order linear coupled Dirac equations. Thus,

by using these equations Dirac equations are ready to apply to physical systems.

3.1.2 Variable Mass Case

As we introduced the first-order coupled Dirac equations with variable mass, can be

using the last equations Eqg. (3.34) and Eqg. (3.35) for a constant mass as following

ar@) _ k_dp(r) +(E+M@) —V()+S@)G(r)
- . (3.36)
dG(r) kg

= —G() - (E-M(@) —V()—S@))F(r)
3.2 Second Order-Differential Equations Form
3.2.1 Constant Mass Case

Similar to the calculations done is section 3.1, here the second-order differential
equations for the lower and upper componentsof the Dirac equation ispresented for
constant mass and spatially mass by using Dirac wave equation in first order and

Dirac spinorwavefunction.

13



With the aid of Eq. (3.33), the Dirac spinor can be written due to upper F,;(r) and

lower G (r) wavefunctions as

a1 (S d-1 Snk (1) Y}'lm(e' @)
v :r_T<- )zr_T ) (3.37)
Q Qe (DYL.(6, )

where Ym(e ¢)represents the spin spherical harmonic and inn(e, ¢)represents the
pseudospin spherical harmonic. m, is the projection angular momentum on the z axis,
n is the radial quantum number, and [ and [ orbital angular momentum quantum

numbers to the spin and pseudospin respectively.

Rearranging the two coupled differential equations in equations (3.35) and (3.36) for

upper and lower radial wave functions in, as yields

d .
(E B 7) Gr) = (E+m =) F(r) (338)
d k |

(d + _d> F(r)=—(E—m —A() G(r) (3.39)

where Y (r) = V(r) + S(r),andA(r) =V (r) — S(r) .

The general form of two second-order differential equations for corresponding
eigenfunctions are obtain by eliminating wavefunctionF (r) in Eq. (3.38) and G (r)

in Eq.(3.39) ,as following

—( +E — A(r))(m E+Z(r))

d? ky(kg +1)
dr? r2

dA(r) ( 4, k_d) (3.40)
- T:ll— Ed_ A(T‘)“Fnk(r) =0
d?>  ka(kg -
[drz + 2 - ( +E — A(r))(m E+ Z(r))
) (i _ k_d) (3.41)
dar dr r _
m—E+Y(r) Gne(r) = 0

14



3.2.2 Variable Mass Case

From section 3.2.1, by using the equations Eq. (3.38) and Eqg. (3.39), we can write
coupled radial Dirac equation for the spinor component with central potential V(r)

and position-dependent mass M (r) as

ank(T') k

LE  —F(r) = (Epy +M@) = V() + S()) G (r)

" " 3.43
dl;(r) =2 Gk (r) = = (Bt = M(r) = V(") = S() Fc () -

(3.42)

where k = - (I + 1) for the total angular momentum j = | + 1/2, and | is angular
momentum quantum number. F,,(r)and G, (r)are the radial wave function of the
upper and the lower-spinor components respectively, and the general form of two
second-order differential equations for corresponding eigenfunctions are obtain by
eliminating wavefunctionF,,; (r) in Eq. (3.42) and G, (r)in Eq.(3.43) we get

¢y (B2 0,0
dr? 2 nk M(r) + Ep — A(r)
= [(M@) + Ew = AM) (M) = Eny + Z()]Fuc ()
(3.44)
e, (R E 60
dr? r2 nk " M(r) — E, + A(r)
=[(M@) + Epy = @) (M(r) = Eny + %(1)] G (1)
(3.45)
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CHAPTER 4

4 ASYMTOTIC ITERATION METHOD (AIM)

It is well known that the second-order homogeneous linear differential equations play
an important role in many branches of physics to explain the physical systems .The
solution of these type of differential equations with boundary conditions has been
solved by various techniques. One of method is called Asymptotic Iteration Method.
By finding a suitable algorithm in AIM, the spectrum of corresponding system is
obtained rapidly and more correctly by using computer programming.

In this chapter, the formulism of AIM is given for both first [46] and second-order

linear differential equations form [47].

4.1 AIM for the First Order Linear Differential Equations.

Starting from the first—order linear coupled equations

}’i = Ao(X)y1 + 50(X)y> (4.1), 3’2' = wo(xX)y1 + Do (X) Y (4.2)

where "'" represent the operator d/dx , and Ay(x),sy(x), wy(x)andpy(x) are
sufficiently differentiable.Taking the derivation of equations (2.1) and Eq. (2.2)
yields to

Y1 = 200)y1 + 20 (Y1 + 50(x)y2 + 50 (X)y2 (4.3)
Y2 = wo(X)y1 + wo(X)y1 + po(X)y2 + po(X)y, (4.4)
By rearranging these equations, it can be founds

yi = (xX)y; + 5,0y, 4.5),  y, =wi()y; + p1(X)y2 (4.6)
where
s;(x) = s(', + A0S0 + SoPo (4.8)
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wy(x) = W(; + Aowo + oWy (4.9)
p1(x) = po + p§ + sewo (4.10)
For (n) of differentiate to equations (4.5) and Eq. (4.6) we have

3’1(n+2) A1)y + Spp1(X) Y2 (4.11)
y2(n+2) = Wn+1 (Y1 + Pps1(X)y2 - (4.12)
The functions A(x),s(x),w(x)and p(x) are
A1(x) = /1;1 + Ando + Spwy ) Sp+1(X) = 57,1 + AnSo + SnPo
Wpi(x) = erl + oWy, + PrWy ) Pn+1(x) = p‘;l + DPnDo + SoWn (4.13)
By taking the ratio to equation (4.11) we get
y£n+2) s <y1 ( n+1)lz>
n+1)
Vi A\ ()2 (4.14)
And we can write
g (n+1) (4.15)
(n+1) dx(l ( )

According to the method with large sufficiently of (n) the ratio of /51—” becomes

Sn+1 _ Sn _ (4.16)

Ant1  An

By using equations (4.14), (4.15) and (4.16) we get

2 (in( (") = dzs (4.7)

From equation (4.13) and (4.16), we can write equation (4.17) in the form

A;Ll,:l = %(ln(ln)) + Ay + aw (4.18)

now from equations (4.17) and (4.18) we have

In(y"*) = f (ZAn(2:(0))) + 26(8) + a () wo(©))

or

YD () = €, Anexp ( [ @ +a w0<t>>) dt (4.89)

where (C; is the integral constant.
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From equation (4.11) we can write

(n+1)

Vi = An(x)yl + Sn(x)yz
Substituting equation (2.19) into equation (4.20) with using equation (2.16) we get

(4.20)

A (0)y1 + sp(x)y2 = C1Anexp < f x(lo(t) +a(t) Wo(t))> dt

or
* (4.21)
y1(x) = Cyexp <f (Ao (®) + a(t) Wo(t))> dt — a(x)y,(x)
After some algebraic calculations Eq. (4.2) results to
Y1) = y2(x) = po(x)y2(x)/ wo(x) (4.22)
combining equations (2.21) and (2.22) we obtain
C1 wo(x)exp <f (Ao(t) + a(t) Wo(t))> dt — a(x)y,(x) wo(x) =
(4.23)
Yé (x) = po(X)y2(x)
or
Y2 + @)y, (x) = 0(x) (4.24)
where
p(x) = a(x) wo(x) — po(x) .
and

0(x) = C; wy(x)exp (f (Ao(t) + a(t) Wo(t))> dt

Comparing with Eq. (2.24), the solution of this differential equation is given in [58]

as

y2(x) = exp™! <Jx(p(t) dt> <fx@(t) it exp <Jx(p(t) dt> it C2> (4.25)

Now, by Substitution of fuctions ( @(x)and@(x) )in the Eq. (2.25), the general

solution of y, (x)becomes
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y2(x) = exp (f (po —awy)dt > [Cz (4.26)

X t
+C1f WO exp(f (Ao_p0+2aW0)dT>dtl

In similar procedure, by using Eq. (2.26) and Eq. (4.21), the solution of y;(x) is

obtained in form of

y1(x) = Crexp <f (Ao(t) + a(t)wy (1)) dt)
—a(x) exp ( f (Po

x t
—awo)dt>[C1f woexp(f (Ao—p0+2aw0)dr>dt

(4.27)

+q)

4.2 Second -Order Formalism of AIM

Initially, when AIM is proposed by Ciftcietal [46, 47], it is constructed for the
solution of second-order linear differential equation in the form of
' =2(x)y" + s0(x)y (4.28)
The second order formulism is obtained by using the similar procedure with the first
order.
First of all, taking the derivation of Eq. (4.28) with respect to time gives.
y'" =24y +s:(x)y (4.29)
With sufficiently differentiable
A () = Ap(x) + 50(x) + A5(x)
s1() = 59(x) + 50(x) 2 (x)
again, taking the derivative of Eq. (4.29) yields
y'" =200y + s:(x)y (4.30)
with functions
A2(x) = 21 (x) + 51(x) + Ao (x) 44 (x)
s2(x) = 51(x) + sp(x) A4 (x) .
Generalizing for the(n + 1)**and(n + 2)** derivatives of Eq. (4.28), forn =
1,2,3, ..., it gives
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y(n+1) = An—l(x)y’ + sp_1(X)y (4.31)

YD = 2,0y + s, (x)y (4.32)
with arbitrary function
An(x) = Ap—1 (%) + Sp—1(X) + Ao (X)An_1(x) (4.33)
sn(x) = sp_1(x) + 50 (%) A1 (x). (4.34)

Taking the ratio of the (n + 2)**and(n + 1)*"* and from derivations of Eq. (4.31) and
Eq. (4.32), give a results

A (x "4 Sn(x)
iln(y(n+1)) _ y(Tl+2) _ n( )(y );n(x) y) (4.35)
dx YOV a0 + 722 )

for the large limit cases for n, there is asymptotic expression

5200 _ Sno1(®) _
(x)  Ap_1(%)
And the termination condition is in the form of

a(x) (4.36)

sn(x)  An(x) | _
Sn—l(x) An—l(x) B

k =1,2,3,...n . Which gives the solution of physical systems .By using the relation
in Eq. (4.36), Eq. (4.36) is reduced to

Ap(x) = An—1 ()83 (%) = A5 (x)Sp—1 () (4.37)

d An(x)
s n+1y — n
LA, .00 (4.38)
which yields
An (8)
y®™+D(x) = ¢, Exp T dt ) = Cidn_y Exp ( f (a + Ag)dt) (4.39)
n—1
where(; is the constant integration. Substituting Eq. (4.39) into Eq. (4.31), as
y +ay = ClExp(f a+ Ay)dt) (4.40)

At this point,the general solution to Eq. (4.31) can be easily calculated by using Eqg.
(4.40) as

y(x) = Exp (— f a dt) [Cz + C; J Exp (f (AO(T) + Za(T))dT) dt] (4.41)

This is the solution of wavefunctions of AIM method.
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CHAPTER 5

5 APPLICATION OF DIRAC EQUATION
The application of AIM on Dirac equation is classified into two cases as for constant
mass and variable mass function.
5.1 Constant Mass Applications
5.1.1 Dirac-Coulomb Problem

In chapter three from section 3.1 we obtained the radial Dirac equation as the first—
order differential equation with spherically symmetric vector V(r) ) and spherically
symmetric scalar S(r) .In case of coulomb problem we will substitute the scalar
potential by zero, considering that the particle is moving in a pure vector coulomb
filed [47].

Let now replace the S(r) by zero and V(r) by ( —é ) into equations (3.34) and

(3.35), if we discuss the operator k,; from equation (3.32) in 3-dimensions becomes

k—¢(+1) e

if we namely: @ = +1,thenj =1 —? and the operator k will be

k = Q+1) 1
—O\"T2) 7 3

where the simple @ will take the negative sign for aligned spin (l +§)and the

positive sign for unaligned spin (I — %) .S0, Eg. (3.35) and (3.36) reduce to

dG B k A (5.1)
I ——;G(r) + (E + m+?)5(r)
dF B k A (5.2)
Pl ;F(r)—(E— m —;) G(r)

We should get some asymptotic forms for functions G (r)and F(r), for that treat with

(r) when it a small and large.
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First, at (r) near to the origin its approach to zero .So, all the terms with (r) will be

very large than the term (E + m) .In this case equations (5.1) and (5.2) become

dc A k
it F(r) — - G(r) (5.3)
dF k A
il F(r) = G(r) (5.4)

if we derivate the equations (5.3) and (5.4) with respect to (r) we have :

d’G _AdF K )A 60 kdG (5.5)
A2 rdr 4 r2 = rdr
d’F _ kdF F ) 6 FdG (5.6)
dr2  rdr " + = rdr

Firstly, we substitute equations (5.3) and (5.4) into (5.5) and then (5.6) with deleting

the similar terms we get

T 2 5.7
dG:k—G(r) G(r)A——F(r)—+ G(r)— 1)

dr?
&2F K 4’ k 4
7 =5 FO) - F0) = - F() 5 - 60 (5.8)

if we multiply the equations (5.3) and (5.4) by (— %) we find :

1dG A k (5.9)
Trar - 2 TR M

1dF &k A (5.10)
Trar - Ot Eem

now we replace the last two terms in equations (5.7) and (5.8) by equations (5.9) and

(5.10) we obtain

d*G _ G ) A2 1dG (5.11)

dr? r Crdr

d°F A2 1dF (5.12)
= F(r) - ——

dr? rdr

If we look at for equations (5.11) and (5.12) by following [59] we find they are

Euler equation and the solution of them will be :
Q(r) =19 (5.13)
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Where, § = Vk? — F2, and Q(r) can be furcation F(r) or G(r)

The equation (5.13) represent the solution of equation (5.1) and (5.2) at ( r) very
small .Now , for a second case at ( r ) is very large ,its approach to infinity .So, the

terms with ( r ) are approaching to zero .we can write equation (5.1) and (5.2) as

following
ac (5.14)
E = (E + m )F(T‘)
dF (5.15)
el (m—E )G(r)

Again by taking the derivative of equations (5.14) and (5.15) respect to ( r ) we get

d*G = (E + dF (5.16)
dr? = ( m) dr
d*F oy 46 (5.17)
dr2 (m ) dr

By using equations (5.14) and (5.15) into last equations we see:

d’G 5.18
o (m?-E?) G (5.18)
d’F 5.19
77 = (m?—E%?)F (.19)

The solution to these equations is given by :

M(r) = Ce™ T Vm*-E? (5.20)

Where C is the constant of integration, and M(r) is a function of G(r) or (1) .

After we got the solutions of equations (5.1) and (5.2) at (r) small and large ,we
adopt representations for radial functionsG (r) andF (r) by using equations (5.13) and

(5.20) in the following form :

G(r) =roVm+Ee™ "V E (0,(r) + 6, (1)) (5:21)
F(r) =r*m —E e="V™*~F* (0,(r) — 6, (1)) (5.22)

Now, let us make the following notation:

d 1d
r=nnr., %—r—l% (523)
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1
Where: 1 =

. By substituting these notations into equations (5.21) and

2Vm2-E?
(5.22) to find
G = ri®n’e” sVm+ E (6,(n) + 6, () (5.24)
F(n) =ri%ne” sVm—E (8,() — 6; () (5.25)
And also we substitute equation (5.23) into equations (5.1) and (5.2) we get :
dG A k 5.26
= [mem + 5] Fp - = o (629
n n n
dF A k 5.27
= =[5 6 + - Fa) 527
n n n

The next step we will use equation (5.24) into equation (5.26) with multiplying by

the following term <+> , we find
r%nde” 2vm+E

B 1) g, do,

n
I (5.28)
=.._wf+@)+[nmn+E)+—)] — 01 02)

By similar steps to find equation (5.28) ,we use equation (5.25) into equation (5.27)

then get :

5 1) do, do,
dn dn

-0 (2-1)s

(5.29)

:—(91 92)+[r1(m E)——)] (91+92

Let us add equation (5.28) to equation (5.29), with deleting all the similar terms and

then use the following notation :

m+ E

m-—E

=2T1(m+E)

=2ri(m—E
m+ E 1 ( )

We obtain :
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(6, —6;)[2 rf(mz_Ez) —2r(m—-E))]

A
+ 2r1(m2—E2)—2r12(m+E)+E)](91+92) (5.30)
1 1
_ 2%, s +2d61+2w(l+5)+59
77 1 1 dn T] 2

Also we remember that 7, = - .So, of course (2rZ(m?—E?) =% ) and

1
Vm?-E2
equation (5.30) becomes

A A
;91—91-1-—:——92—27‘1;E91—21’1;m92 (531)

If we make new notation as following

C=2n E, D=2r m
Finally, equation (5.31) becomes
do, cC-6 D+k
T=(1-—=) e - (——) 6. 532
n n n
Also by subtracting equations (2.28) and (5.29) with using the same steps to get
equation (5.32) we find
do, (D—k c-6
= (=) e +(——) et 539
n n n
Equations (5.32) and (5.33) are first order linear differential equations and they can
be solved by power series method .At this point, these equations are amenable to
solve with AIM.
By comparing the equations Eq. (4.1) and Eq. (4.2) with Eg. (5.32) and (5.33), we
get

ol = (1-<=2) o) == ()

wo) = (=) o) = (<)

then we calculate the sufficiently differentiable
Ans1 (M), Sps1 (M), Wyyq1 and , pryq () from equations (4.13) .With using iteration

condition according to AIM in equation (4.16) as following :

A Sp1(M) — $p (M) An11(m) = 0 (5.34)
we progressed the calculations above ,get the following result, in Table [1]
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0 6 -k

I [1+6 CF-Jitkii

2 | 2468 | -k, FV3+k2+25, FVA+EkZ+46,

3 | 346 —k, F\5 + k2 + 26, F/8 + k2 + 46, F\/9 + k2 + 66
4 1 4+0 | ke FVT + k2 + 26, F k2 + 43+ 6), TV 15 + k2 + 66,

FVk? +8(2 +8)

S |5+ |k, FJo+k2+256F k2 +8(B +6), F k2 +4(4+6),

FV21 + k2 + 68, Fy/25 + k2 + 106

6 | 6+8 | _k, F/11+ k2 + 26, FJk? + 4(5 + 5),

FVkZ+8(4+6),Fy27 + k% +6,

F /354 k2 +108, Fk2 +12(3 + 6)
Table[1]:the results of Cand D .

as we see from results in Table 1 we conclude the formulas of (C and D) for arbitrary
n:

C=1+68,D="F/e(2n—e€) + 2e8 + k2 (5.39)
we introduce the symbol ¢ to be : e = 0,1,2,3 ...n. As we know from notation of :

1
C=2nkE, (D=2T1 m),and T1=2\/ﬁ
By using formulas from (5.35) we find two different equations of energy as
following:
AE
=n+6
mZ_EZ
So,
E=F—0
B 2 (5.36)
1+(535)
And
AE
= FJ/e(2n —€) + 2e6 + k2
m2_ 2
_ A?
E=+m [1- e(2n —e€) + 2e6 + k? (5.37)
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If we look at the equations (5.36) and (5.37) we find that the energy will be equal, at
a (e) take the (n orn + & ). But § is not integer, that is mean e and n are integers
therefore we find (e =n) .if we use the conclusion of (€ =n) with equation
(5.35) for Dwe get

C=1+6,D=F,/(2n6)+n2+k? (5.38)
And at n=0equation above become
D = —k?
Thus the energy formula has the form

m

14+ () (5.39)

n+é6

E =

If we define the principal quantum number as following

d—3 4
n, =n+ |k| -5 = 1,2,3 ... (5.40)

In 3-dimensions quantum number with using our definition of operator k we see

1y 1 5.41
nr:n+|w(]+§)—§ =123 .. (541)
We know that § = Vk? — A% for n = 0,1,2,3.... . So, we rewrite equation (5.39)

and get:

2 (5.42)
1+

A
mefo(i+) 3 (o () 3) -

Equation (5.42) represent the well-known formula for coulomb energy in three

dimensions.
5.1.1.1 Eigenfunctions

In this section we will solve the wave functions and obtain the general formula of
functions 8, (n) and 8,(n) in equations (5.35) and (5.36) to range of (n) ,by using our
introducing of AIM .

If we turn back to chapter four and discuss the equation (4.26) we see that equation

includes two parts ,where the first part in general represent the physical meaning and
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the second part go for infinity solution. Therefore we use the first part as a factor for

the wave function generator as following

0,(n) = Crexp <fn(p0 —awp) dt) (5.43)

The constant integration C, , determined by normalization .We follow the same
iteration procedures to find sufficiently A,,1(1), Sp+1(M), Wneq and , prye1(n) in
section 5.2 and then applied into equation (5.43) . We obtain the results of 6,(n) in
the Table [2], as following:

n 02(m)

0 1

1 _ _ n
6+1D)+(1 25+1)

2 27 n?

Q6+1D25+2)(1- )

26+1 (26+1)(26+2)

3 26+ 1)2 5+2)2 8 +3)(1—— i
—26+1DR2 6§+2)2 §+3)( ) 5+1+(2 S+1)(2 6+2)

n3

T 26+1DR25+2)(2 5+3)
Table[2]: the results of 8,(n) .

)

From results in Table[2], we can write general formula of 6,(n)as :

2 5+ n)! 5.44
%CZX(—n,26+1,n) (5.44)

Where X is the hypergeometric function.

0,(n) = (-D"

We will calculate the 6,(n) ,for this case we again go back to chapter four and
discuss the equation (4.21) ,we find its content two parts .where the part [
Crexp([*(Ao(®) + a(t) wo(t))) 1 is an infinite series and the second part is a

polynomial. So we choose a polynomial part ,we have

0:(m) = —a(x)6,(n) (5.45)
Now we will use the results we have obtained for 6,(1n) into equation (5.45) and by

following same iteration procedure, we get the results for function 8, (1) in Table [3]

n 0:(m)
0 0
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1 (k + D)

T
25+1

3 k+D)2 §+1)(2 6+2)(1 al 5
kD)2 o+ D2+ (- T+ G Dz o+ D

—(k+D)2 §+1)(1—

2

)

Table [3]: the results of 8, (1)

as we found the general formula for 6,(n), we conclude the general formula for

61 (n). Depending on the results in Table[3], like a following

(2 8+n—1)! (5.46)
G G X(1-n28+ 1)

0:(n) = (=" (k + D)

5.1.2 Eckart Potential

The Eckart potential [60] plays a fundamental role in molecular physics,itused to
describe molecular vibrations and to find theenergy spectra of nonlinear and linear
systems. It is very useful for describing the interatomic interaction of the molecules
and for describingpolyatomic vibration energies within the vibration states of the
NH3 molecule.

To investigate the relativistic behavior of spin-1/2 particles in order to understand the
nuclear structure, theresearch of the spin and pseudospin symmetric solutions of

the Dirac equation has been an interesting area of study in nuclear physics, the
technique ofpseudospin and spin symmetry withthe nuclear shell model has been
widely used in solving a number of phenomena in nuclear physics.

In this section we solve the Dirac equation for the Eckart potential in any «-state

by using a asymptotic iteration method AIM, in framework an approximation to
spin—orbit coupling potential in arrangement to find the relativisticbound state
eigenvalues and the identical Dirac spinors by pseudospin symmetry and spin
symmetry concept.

By what we introduced in section 3.2 for Dirac spinors from equation(3.37) with
orbital angular momentum numbers, [ to spin and [ to pseudospin, and what we

obtained for the second-order differential equations. We will use equations (3.40)
and (3.41) with helping of operator k = w(l +%) - %from section 5.1 to rewrite

second-order differential Dirac equations in 3-dimension.
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5.1.2.1 Eckart potential with Spin symmetric

From our knowledge from section 3.1.2, the difference between the vector potential

and scalar potential is A(r) =V(r) —S(r).In case of spin symmetric this a

dA(r) _
ar

0. Therefore we can write

difference be constant, i.e.A(r) =C,

equation(3.40) by following form

d? k(k+1)
dr? r2

(5.47)

(m+Ep — C)(m — Eng +Z(r)) Fu(r) =0

where k = [ for negative k and k = —(I + 1)for positive k.
The eigenvalues depend on n andk or E,; =E (n,l(l+ 1)) .We replace the
summation of vector potential and scalar potential);(r) byEckart potential , where
the Eckart potential defined according to [29], as

V(r) = Vycosech? (ar) — V, coth(a )

here a is a screening parameter , we can write the Ecart potential in the exponential
form :
e~2ar 1+e2ar (5.48)

(1_6—2ar)2 - 21_9—2057*

V(r) =4V,

similar to [61] when aand k are small ,we can replace the spin orbit coupling

potential V,, = k(':l) ,by take an approximate spin-orbit coupling as
e 2ar (5.49)
V(T) = 46!2 k(k + 1)m

if we insert the Ecart potential from equation (5.48) and approximate spin-orbit from

equation (5.49) into first equation (5.47) ,then make the following notations

_ m+ Ep — C(m — Epy) g = V,(m+E, —C)

zZ = e , € 4“2 ) 4a2 )
(5.50)
%
yr+1) = k(k +1) a—;(m+Enk - )
the Dirac equation (5.47) will be reduced to the formula
d*Fp(z) ~ 1dF(2) e yy+1) BA+2) (5.51)
- -— - Fo(2) =0
iz 7 dz +[ 2z z(1-2)? z%2(1-2)? i (2)
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respect to the boundary conditions to the wavefunction we see for :
r - oo then F,;(0) =0 atz=0,and forr - 0then F,; (1) =0atz=1

with this conditions we suppose the reasonable wavefunction as following

Foe(z) = 2/5*B(1 — 2)¥ S(2) (5.52)

lets insert equation(5.52) into Dirac equation(5.51) we obtain the second-order

homogeneous linear differential equation in new formula

d*F(z)  [(1+2y+2e+PB)z—(2Je+B)+ | dF(2)
dzz z(1—12) X &
5 V242 (5.53)
PR v

after obtained equation(5.53),which is amenable to asymptotic iteration method .So,
let's refer to section 4.2 and compare it with equation(4.28). Also we can calculate
sufficiently differentiable of values of k ( A,(z) and s, (z) ) by means of equations
((4.31)-(4.34)) , we get

_(+2y+2/e+pB)z—(2/e+B+1) (5.54a)

ho(2) = z(1—172)

2\/e+ By +v*+2B (5.54b)
z(1—12)

so(z) =

A()(6,/s+,8y+2+6,/£+ﬂy+3y2+6y+4e+2,8)zz+2+6,/£+B+4s+4ﬁ
1\Z

z2(z — 1)
(—12/e+B— 4y +Y? — 6,e + By — 6B — Bz — 4)z
* z22(z — 1)2
5, (2) = (y> + 2B+ 2e+ By)(—2 + 3z + 2yz + 2\/e + Bz — 2,/e + B)
v z%(z — 1)?

from the a termination condition for AIM in equation(4.37), we can write
El == Also - 1051 == O (555)
by using sufficiently differentiable above into equation(5.55) we calculate the first

value of &; as

£ (2) = (28+2{e+B+2/e+By+1+2y+v?)(2/c+ By +2B+7Y?)
ne z2(z — 1)?

(5.56)

the solution of equation(5.56) give the roots and we see the first value of g, as
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482 +y4

and inserting the value g, into equation(5.56) given the term /€ + B ,its equal to the

2 4
term /484% For that the roots of equation will be =+ B4Y+Y we take only the

negative root because it satisfies equation(5.56) and which is also valid for
& & ....etc. So, if we continue using the condition in Eq.(5.55),yields to other &
and € as

42 +yr+ 6y +4y3+4y+1

81: 4(1+y)2 , at 52:/’{251_1152:0
(48% + 16 + 32y + 24y* + 8y3 +y*)

& = 22 +7)? ,at §3 =A35; — 353 =0
..................... etc. (5.57)
when the formulas above are generalized by induction, we can write the eigenvalues
of eas

4B* + (n+y)* (5.58)
= =0,1,2
g‘l’lk 4(n + y)z ) n O' ) '3
now from equations (5.50)and (3.14) we calculate the energy eigenvalues E,,;, as
432 (5.59)
(m = Ep)(m + Epye — C) = a? I(n +y)? + m]

with 1
E[” 4k(k + 1) +4—(m+Enk —C)]

NI»—\

'Y:

To obtain the eigenfunctions we again return to the section 4.2, by using the
exponential part in equation(4.41) y(x) = C,Exp(— [ adt)as a wavefunction
generator. So, we get

F'(n+2euc + 0

I' 2yene + 0 +1)

+ 2 Snk+ﬁ;Z)

X(—n Z(w/snk + +y) +n,1

F(2) = (-DC,

(5.60)
where I' gamma function and X the Gauss hypergeometric function.
Now by helping from equation (5.52) and using equation above, we find the total

radial wavefuction as following

Fo(2) = N zVénk*B (1 — z)VX(—n,Z(,/enk + B+ y) +n,1+ 2/ + ,B;Z)
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(5.61)

where N is a normalization constant.

5.1.2.2 Eckart potential with pseudospin symmetric

For the case of exact pseudospin symmetry the summation term be

constant,i.e.);(r) = C ,dig) =

0. Therefore, we can write equation(3.41) by

following form

a2 k(k—1)
dr? r2

(5.62)

- (m + Enx — A(r))(m —Ey + O)| G (r) =0

where k = —I for negative k and, k = (I + 1)for positive k and we replace The
term A(r) by the Eckart potential .The energy eigenvalues depend on n andl or

Ene = E (n[(I+1)) ,if we follow [62] see the eigenstates for j=1[+=> are

N | =

degenerate to [ # 0 . So, the Dirac equation didn’t have exactly solution for Eckart

potential in k # 0 by way of standard method .Such we did in previous section in

k(k+1)

r2

order to obtain an approximation for a term

, by replacing the term rlz with the

-2ar

N 2
approximation 4 A eary -

If we substitute equations (5.48) and (5.49) from previous section into equation

(5.62) above and make following notations

m? —Ep’ + C(m+Ep) | Vo (m—Epe +0)

&= 4q2 B 42 ’

|4
Yo =1 =k(k=1) = —(m — Enc + )

then we can rewrite the Dirac equation in (5.62) can by the following way

d?Gny(2) | 1dGy e _y=D BA+2]. (2) =0 (5.63)

dz? z dz z2  z(1-2)? z?°(1-2)

by the similar to boundary conditions of the wavefunction in previous section ,we

propose the wavefunction G,,;(z) as

Grie(2) = 2VE*B (1 - 2)Y G(2)
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with similar steps in the previous section to obtain the equation ((5.53)-(5.58)) and
get the sufficiently differentiable .We can instantly get the energy eigenvalues for

pseudospin case ,as like following formula

, , 42 (5.64)
m+Ey)m—Ep +C)=a*|(n+y) +(n+y)2
with 1 1 A 1/2
y =3t |1+ dkle= D+ 43 0n+ By —C)]

To calculate total radial wavefunction with case of pseudospin , again we indicated
in section 5.2.1 and find corresponding wavefunctions with help from equation

(4.41),we have

Fn+2ey+p+1

T /et B+ D) X(~1,2(Jenk + B +7) + 0,1+ 2/eng + B; 2)

Finally, we write the radial wavefunction as following

G(z) = (D",

Gic(2) = N /ot (1 = 2)VX(—n 2(Jene + B +¥) + 1,1+ 2\/enic + B 2)

5.2 Variable Mass

5.2.1 Manning-Rosen Potential

The Manning—Rosen potential is given as [62,63],

1 [(a(a—1e 2"/b  pe-T/b
Vi = o (1—e"7/b)2  1—e-1/b
2 7;:2“) , A and a are dimensionless parameters ,b has dimension of length.

where() =

Also, b isscreening parameter for the potential[48].we refer to this potential is

remains invariant for @ & (1 — a) and it has a minimum value fora > 1, as

2 1\ 42
V(o) = . A 2a(a — 1A ]

——  atry = bIn|1l
bza(a—l)aro n[ + A

From Equation (3.44) in section 3.2.2 for variable mass,this equation can’t be solve
analytically because of the last term in the equation. So, to eliminate this term we use
the following condition.

dM(r) dV(r) _ 0 (5.65a)
dr  dr

34



By introducing the mass, function as

M) = to + 52 (1—e/b)2 1 —er/b

where i, is the integral constant with relating the rest mass of the Dirac particle.Now

1 (a(a —1)e27/b fe-T/P > (5.65hb)

by inserting the Manning-Rosen potential from and variable mass from Eq. ( 5.65b)

into Eq.(3.44), and using the condition in Eq.(5.65a) we get

dz  k(k+1)

7z 5z~ ot Ewd

2 (a(a—1)e 2T/b  fe-T/b
Hot Enk+ qpa\ " —ormye T 1= ) k() || =0 (5.66)

lets using the exponential approximation for the centrifugal term as

1 e~ T/b

72" p2(1= e 1/b)2

where this approximation is valid for large values of the parameter b. By defined

z = e~ 2% and following transformation
2 (fo + Enp)a(a—1)

& =k(k+1),& = b*(po®> —Eni’) & =

Q )
g, = 200+ Eno A
3 Q
Now, we can rewrite the Eq.(5.66) as
d>  1d 3 &1 &2 &3
dz? * zdz z(1—-2)? 22 * (1—2)2 + z(1—2) Snie(2) = 0 (5.66)

Respect to the boundary conditions for the wavefunction, i.e.
for r - oo then F,;(0) =0 atz=0,and forr - O0thenF,; (1) =0atz=1
with this conditions we suppose the reasonable wavefunction as following

Fu(@) = 2V%(1 = 220VF(2) (5.66b)
wherey = /1 + 48, + 4%, .
Lets insert Eq.(5.66b) into Eq.(5.66a) we obtain the second-order homogeneous

linear differential equation as
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d?F(z)  [(-1-2y&) +z(2+2/& +v)  4F@
dzz z(z—1) dz
l1 + 26 +y+ 251 +Y) — 253)1 (5.67)
- F(z)
2z2(z—1)

By comparing Eq. (5.67) with the aid of the AIM from Eqg. (4.28) we find
~1+z+2z-1)J§ +z(3+Yy) 1428 + 2,5 (1 +7) — 2%

Ao(z) = — , So(2) =

z(z—-1) 2z(z-1)
by means of equations ((4.33) and Eq.(4.34)) ,we can calculate sufficiently
differentiable of (A,,(z) and s, (z) ) as

4 +8(z—1)? 6(z—1 -2 3
au () = 11 8C )zl+22<2z(z_)1J)§( +23+Y)

(8 — 28, +3(1+vy) +2&) +22(4 — 25+ 5(1 +v) + 2(1 + )% + 2¢&3)

(242 - DVE 24+ V) (L+ 25 + v + 25 (1 +y) — 28)
s1(2) = 22z%(z—1)2

Again with help AIM, combining these results quantization condition given by Eq.
(4.37) yields

(1+28 +y—28)2 (5.68a)
AMSg— S =0=8 = 4(01 7 3
2+ 28 + 3(1 +y) — 28;)? (5.68b)
A2S1 — 418, = 0= El = ( ) 4(3(+ y)\zf) €3)
8+ 25 +5(1+v)—2&)? (5.68c)
A3S; —Ap53=0=§ = ( €o 4(5(+ y)]z/) £)

when the Eq.(5.68) are generalized by induction, we can write the eigenvalues of &

as

: 1 <2n2 +(1+2n)1 +y) + 2§, — 253>
in =7

B 2n+1+y (5.69)

4

If &,and E;are inserted into Eq. (5.69)and is compared with &, the energy eigenvalue
of the for the Manning—Rosen potential position with dependent mass can be

obtained by the following expression

1

Eqe = 4§ 152
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2

[an+(1+2n)(1+\/1+4k(k+1)+8("”’”+)“(“‘1)+4k(k+1))—w1

|
[ 2n+1+\/1+4k(k+1)+w J

(5.70)

5.2.1.1 Eigenfunctions

By using the wave function generator given in the section 4.2, from using the
exponential part in Eq. (4.41)y(x) = C,Exp(— [ a dt) , the eigenfunctions can be
obtained as following
So(z) = -1

2+2/5 +y >
1425,

T e

S3(2) = €, (1+28)(2 +2y%)(3 +2/%,)

(1 62+1/8) | @+2nE)E+2nE) , 4+ 286 +2nB)B +2E) , )
1425 (1 +2yE) (1 +/8) 1+ 28 (1 +V8)(3 +2v/%)

S1(2)=-C, (1+2J%) <1 —

....etc.

Therefore, the wave function F(z) in general form can be written as

e TAH2E 4 _
F(2) = (-D"C, Fat /e X(—n, 1+ 2\E +y +n,1+2%;2)

From Eq. (5.66b) the total radial wavefunction can be given as follow

1
Fue(z) = N2V& (1 = 220 X(—n 1+ 2/E +y +n, 1 + 25 2)

5.2.2 Dirac Coulomb Potential

By considering the coulomb like potential as

V(r) = ?,and S(r) = % (5.71)

Form section 3.2.2,the Eq. (3.44) can’t be solved analytically because of the last term

(dM (r) dV(r)
d

in the equation
dar

0) so, we use the equality to eliminate this term.

Thus, using this equality condition, the mass function is obtained
as the following
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Vo =S0) | (5.72)
r

M(r) = m

By inserting the coulomb potential from Eq.(5.71) and variable mass into Eq.(3.44)
we get

k(k+1
D ) B ) (< +

2

2V, — S
w + mo)Fnk(T)

+ WFnk(T) =0 (573)

By making the following notations
ETZLl - mg = STZLl y k(k + 1) - A(A + 1), Z(Enl + mo)(SO - Vo) - B

The eigenvalues equation transforms to

A(A+1) B d? 5.74
<_€1211_ (TZ )+?)Fnk(r)+ank(r):0 ( )

Propose to the wavefunction by using AIM as
Fue(r) = r4*e e y(r)

by inserting the wavefuction above into Eq.(5.73) we obtain

(B—2(1+ Aexlrl+ 20+ A—eun)y'[r] +rx"[r] =0 (5.75)

after rearrange Eq.(5.75) we have
. 20+ A—eyr) |, —B+2(1+ A)e 5.76
= ST ey PR Dy BT

By comparing Eq.(5.76) with second-order diffraction equation Eq.(4.28) by mean of
AIM , we obtain

21+ A —¢eyr —B+2(1+A)¢
XO(I‘) — _ ( nl )’ SO(I')= ( )nl
r r
By using termination condition for energy, we get the general form of eigenvalues is
B

ol T2+ 1 +4)

Go back to the parameters definition, we get
2

B
Ei_n%zs%z(ﬂn+1+AQ

which yields

2
E? =m2+<—B )
nt T \2(n+1 +4)
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In order to find corresponding the energy eigenfunctions with AIM, we may use the

following energy eigenfunction generator for

x(r) =exp (— f iﬁg dr)

By applying the function generator, the f,(r) functions can be written in series

expansion by hypergeometric functions with constant (EF+n+1)" and

1Y (B + 2 + k). Generalizing these expansions, we get

n-1

() = (B+n+ D" 1_[(23 + 24 k)| x 1 Fy(=n, 2B + 2; 26,7)
0
Thus, we can write the upper spinor component of the radial wave function as
n-—1
F,.(r) = rA*1eCenr) (B 4 1 + 1)" H(ZB 24 k)| x 1Fy(=n, 2B + 2; 26,,7)
0

The lower spinor wave function can be obtained in a similar algebraic calculation. It

gives the same results as

n-1

G (r) = T4 1eCEnm (B 4 4+ 17 1_[(23 +24k)
0

X 1F,(—n, 2B + 2; 2¢&,7)

where
EZ —m3=—e2, k(k—1)+4S,(So + V) = A(A + 1),
—ZEanO + zmo)(ZSO + Vo) = B

are the corresponding parameters gives the results with those of in [34] after

transforming the parameters.
5.2.3 Dirac Harmonic Oscillator
By considering the Harmonic Oscillator potential as
V(r) = Vyr? (5.77)

By following similar steps in section 5.2.2, again by using this equality condition, the
mass function is obtained as the following
M(r) = my(1 + Vyr?) (5.78)
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By inserting the Harmonic Oscillator potential from Eq. (5.77) and variable mass
into Eq.(3.44) we get
k(k+1)

T2

Fo(r) = (B, + mo)(—Ep, + 2 moVor? + mg) Fo () (5.79)

dZ
+ WFnk(r) =0

By making the following notations
E2—mZ=2¢2, k(k+1)-> A(A+ 1), 2e,myV, + 2Vyms - B?

The equation Eq.(5.79) becomes

A(A+1) d? (5.80)
<_£n oz + Bzrz) F(r) — ﬁFnk(r) =0

Propose to the wavefunction by using AIM as

-Br2

Fpi (1) =rA+1e( 2 )x(r)

by substituting the wavefunction above into Eq.(5.80) we obtain

d? 3Bry(r) + 2ABrx(r) — ,rx(r) N (=2—=2A+2Br?) d

WX(T) = v - EX(r)

(5.81)

By comparing Eq.(5.81) with second-order diffraction equation Eq.(4.28) by mean of
AIM , we obtain
2(1 +A-Br?

A(r) =— - , So(r) =B+ 24)B—¢,

at this step, by using termination condition for energy given by Eq. (4.37),we get the
following results
& = (3+24)B

& = (7+24)B
g, = (114 24)B

Generalizing for energy ¢, , it can be found as
&, = (3+4n+ 2A)B.

If go back to the parameters A, and B, the ¢, relation transforms to

E2 —m2 = ((3 + 4n + 24)B)"
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and

E, = ng +((3 +4n+24)B)"

The corresponding eigenfunction is constructed by using wave function generator as
[65]

x(r) = (=1)"C,2"(0)px 1F1(—n, 05 Br?)
Thus, we can write the upper spinor as

—-Br2

Fo(r) = rA+1€(T) (=D)"C;2"(0)nx 1F1(—n, 0 Br?)
where

_2A+3 q _T(o+n)
o= > an (a)n—w

41



CHAPTER 6

6 CONCLUSION

In this thesis, the spectrum of the relativistic Dirac equation is obtained for some

physical potentials by using AIM method.

Through the corresponding calculations, the mass of the relativistic particle is
considered as positron dependent mass case and constant mass case. In spatially

dependent case, the mass function is considered as in the form of function satisfying

dM(r) _ avr) _ 0

the equality condition, o ar

By substituting the mass function in the differential equation of S(r) and Q(r) ,the
AlM is applied and the calculated results satisfy the exact results . This method has an

advantages with respect to other methods : These are ;

) Without using complex calculations, it gives the simple way by obtaining
A(y) and s(x).

i) It reproduce the corresponding the energy eigenvalues and eigenfunction

in a good accuracy.

In this thesis, the spectrum of Coulomb and harmonic Potentials in Dirac equation
are calculated for constant mass cases in addition to the applications for constant

mass.

It is possible to applied this method for first order and second order Dirac equation

by choosing appropriate asymptotic wavefunction form.
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