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ABSTRACT 

APPLICATION OF VARIATIONAL METHOD AND SUPERSYMMETRIC 

TECHNIQUES FOR THE FOKKER-PLANCK PROBABILITY 

 

BAŞAK, Yunus 

MSc Thesis, Engineering Physics, University of Gaziantep 

Supervisor: Assoc. Prof. Dr. Okan ÖZER 

July 2013, 39 pages 

 

The time dependent probability density for the one-dimensional Fokker-Planck 

equation is determined by the variational method within the context of the 

Supersymmetric Quantum Mechanics. Using an ansatz function for the superpotential, 

one can obtain the trial wavefunctions of the variational method and then the 

construction of the hierarchy of the effective Hamiltonians allows us to obtain the 

variationaleigenfunctions and energies of the excited states to the evaluation of the 

probability. The symmetric bistable potentials, whose energy eigenvalues are 

calculated for some potential parameters, are studied. The numerical results obtained 

in this study are in very good agreement with the eigenvalues obtained by numerical 

integration in previous studies. The error percent is also presented in all calculations. 

 

 

Keywords: ansatz, superpotential, variational method.  



 
 

ÖZET 

FOKKER-PLANCK OLASILIK HESABI İÇİN 

VARYASYONEL METOD VE SÜPERSİMETRİK TEKNİKLERİ 

 

BAŞAK, Yunus 

Yüksek Lisans Tezi, FizikMühendisliği, Gaziantep Üniversitesi 

Danışman: Doç. Dr. Okan ÖZER 

Temmuz 2013, 39 sayfa 

 

 

Tek boyutlu Fokker-Planck denklemi için zamana bağlı olasılık yoğunluğu 

varyasyon yöntemi ile Süpersimetrik Kuantum Mekaniğini kullanarak belirlenir. 

Superpotansiyel için yaklaşım fonksiyonunu kullanarak, varyasyon yönteminin 

deneme dalga fonksiyonları elde edilebilir ve daha sonra etkin Hamilton 

hiyerarşisinin yapısı bize, zamana bağlı olasılığın hesaplanmasındaki değişken 

özfonksiyonların ve uyarılmış durumların enerjilerini bulmanıza olanak sağlar. Bazı 

potansiyel parametreler için hesaplanmış enerji özfonksiyonları olan, simetrik 

bistabil potansiyelleri incelenmiştir. Bu çalışmada elde edilen sayısal sonuçlar daha 

önceki çalışmalarda sayısal integralleme ile elde edilen özdeğerler ile çok iyi bir 

uyum içindedir. Yüzdelik hata ayrıca her hesapta sunulmuştur. 

 

 

Anahtar kelimeler: yaklaşım, süperpotansiyel, varyasyon metodu. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

Particle in a box, simple harmonic oscillator, hydrogen atom and such kind of 

quantum systems of which Hamiltonians are well known and can be solved exactly 

are good examples in undergraduate courses to understand the behavior of particles 

in a potential well [1]. On the other hand, there are some potential functions, in 

quantum physics, whose solution can not be solved exactly; no analytical energy 

eigenvalues and eigenfunctions are obtained explicitly. Therefore, there are many 

methods to solve these kinds of potential problems to find the eigenvalues and 

eigenfunctionsofthe Schrödinger equation. One of the basic approximation methods 

that are suitable for solving such problems is the Variational Method, which is also 

called the Rayleigh-Ritz method [2]. In other words, the variational method is one 

way of finding approximations to the lowest energy eigenstate or ground state, and 

some excited states. This allows calculating the approximate wavefunctions of 

systems such as moleculer orbitals [3]. 

 

This method consists of choosing a “trial wavefunction” depending on one or more 

parameters and finding the values of these parameters for which the expectation 

value of the energy is the lowest possible. The wavefunction obtained by fixing the 

parameters to such values is then an approximation to the ground state wavefunction, 

and the expectation value of the energy in the state is an upper bound to the ground 

state energy. In general; for a Hamiltonian operator  ̂ that describes the studied 

system and any normalizable function   with arguments approximate for the 

unknown wavefunction of the system, we define the energy function as 

 [ ]  
    ̂    

     
  (1.1) 
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The variational principle states that; 

-      where    is the lowest energy eigenstate(ground state) of the 

Hamiltonian. 

-      if and only if   is exactly equal to the wavefunction of the ground 

state of the studied system. 

Choosing a “trial wavefunction” in variational method can be done by suggesting an 

ansatz wavefunction which can be obtained from the SUSYQM. 
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CHAPTER 2 

SUPERSYMMETRIC QUANTUM MECHANICS and FOKKER-PLANCK 

EQUATION 

 

A unified description of all basic interactions of nature, i.e. strong, electroweak, and 

gravitational interactions has been studied for a long period by the scientists. There 

are many ambitious attempts made in the last years, and now it is considerably 

believed that supersymmetry (SUSY) is a necessary element in any unifying 

approach [4]. Basically, the SUSY gets relation between bosonic and fermionic 

degrees of freedom and it includes a graded Lie algebra that has combination of 

commutation and anti-commutation relations. 

 

The idea in SUSY has given new comprehensions in the studies of statistical physics, 

mathematical physics, nuclear physics and condensed matter physics [5]. In 

particular, supersymmetric quantum mechanics (SUSYQM) originally has been 

introduced by Nicolai in 1976 [6], re-discovered by Witten [7] in 1981, and has been 

attracted much attention in the last decades [8]. 

 

The Fokker–Planck equation was first introduced by Fokker and Planck (for 

instance, see [9]) to describe the Brownian motion of a particle: When a small 

particle of mass m is immersed in a fluid, thee quation of motion for the distribution 

function is defined by a time-dependent linear second-order partial differential 

equation. Recently, the Fokker–Planck equation has taken much attention in a 

number of different fields in natural science such as chemical physics, quantum 

optics, solid-state physics, circuit theory and theoretical biology [See Ref. 10 and 

references there in].  



4 
 

2.1 Supersymmetric Quantum Mechanics 

 It is well known that the time-independent Schrödinger equation describing a 

particle of mass m moving in a one-dimensional potential V(x) is given by [1] 

2 2

2

( )
( ) ( ) ( )

2

d x
V x x E x

m dx


    )()()(

)(

2 2

22

xExxV
dx

xd

m






 (2.1) 

 

Now, we ask that if this equation can be factorized? According to the basic quantum 

mechanics, the Scrödinger equation can be factorized if one suggests the appropriate 

quantum mechanical "operators" [6]. Then, Eq. (2.1) can be factorized. Let's focus 

on Eq. (2.1) and its ground state wave function 

)()()(
)(

2
0002

0

22

xExxV
dx

xd

m


  


 (2.2) 

We use the 'superscripts' because our purpose is to obtain a "partner" of that 

equation, and these two systems should be distinguished from each other shortly. We 

start with the ground state wave function, which has a great importance in the 

procedure and the reason will be clearly seen in next steps. If we assume that H  is 

the Hamiltonian operator for this system, then we can write 

)(
2 2

22

xV
dx

d

m
H  


. 

   (2.3) 

Since H  is operator and 


0E is its eigenvalue, then it can be convenient to re-write 

the equation as following: 

 0 0 ( ) 0H E x        (2.4) 

 

Where 


0E  is the ground-state energy eigenvalue and 0 ( )x 
 is the normalizable 

ground-state eigenfunction of the operator H  [11]. Thus, we obtain an equation in 
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terms of Hamilton operator for the system. Therefore, one can now factorize the 

operator on the left-hand side of the wave function as: 

  AAEH 0     (2.5) 

and it is guessed that these operators can be given in the following forms [12] 

),(
2

xW
dx

d

m
A  

 

),(
2

xW
dx

d

m
A  

 

 

(2.6) 

 

Where W(x) is some function, called superpotential function in SUSYQM, whose 

exact form will be determined soon. As it is seen in the process, these operations do 

not change anything in the physics. It is also clear that the wave functions of the 

system are not affected and the potential of the system is just re-scaled by the 

constant term 


0E  in Eq.(2.4). One can ask to examine what exactly A  and A  

operators 'do' on any function  f(x), for example. To see the effect, we just apply 

these operators on the function as it is done in quantum mechanics: 

         

 
 

   

 
     

 
   

     xfxWxW
mdx

d

xfxW
dx

xdf

m
xWxfxW

dx

d

mdx

xfd

m

xfxW
dx

xdf

m
xW

dx

d

m

xfxW
dx

d

m
xW

dx

d

m
xfAA



























































2

2

22

2

2

22

22m
-                    

222
                    

22
                    

22









 

(2.7) 

 

For this result, it is required 
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        0

2

2
ExVxW

m
xW


. (2.8) 

At that point it is clearly seen that if one can find a function W(x) satisfying this 

equation, then the Hamiltonian in Eq. (2.5) will have been successfully factorized. 

Now, the question is how one can determine the function W(x)? We can suppose that 

it were the case A  has annihilated the ground state wave function 


0 , that means 

0 ( ) 0A x   . Then  0 ( )A A x   would automatically be zero, and Eq.(2.4) would 

be satisfied. At his point, it is clearly seen as a reason why we have started by the 

ground-state wave function 0 ( )x 
. Then we can look for a function W(x) which 

forces this condition to be satisfied. If we explicitly write the condition in terms of 

Eq.(2.8), then we get 

 
 

    0
2

0

0

0  



 xxW
dx

xd

m
xA 





 (2.9) 

and this equation leads us to find out that 

   x
dx

d

m
xW  0ln

2



 (2.10) 

It is obvious that one can also obtain 0 ( )x 
 from this equation if W(x) is known: 

   













 

 dyyW
m

Nx

x



2
exp0  (2.11) 

Where N  is the normalization constant. Eq.(2.10) says that we can find W(x) 

explicitly if we know the ground state wave function. To do this, we are to solve the 

Schrödinger equation completely. We find that we need to know the solutions 

already. On the other hand, the Eq.(2.11) says something quite different: It says that 

if one somehow can find W(x) independently of any knowledge of 


0 , then one can 

obtain the ground state wave function of the system by using Eq. (2.11). In essence, 
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we have transformed the Schrödinger equation into a completely different equation, 

but equivalent one. In more general terms, we have found a first-order, nonlinear 

differential equation equivalent to our original second-order linear differential 

equation. Such first-order nonlinear equivalents are classified under the general name 

of Riccati equations. 

In order to obtain a partner potential and to factorize the Schrödinger equation, the 

only thing we do is to reverse the order of the factors A  and get something 

interesting. Reversing the order of factors leads to a new Hamiltonian such as [12, 

13] 

  0EHAA  (2.12) 

Where  xV
dx

d

m
H  

2

2

2


 and it is found that 

         

     ,
22m

-                  

22

2
2

2

22

xfxWxW
mdx

d

xfxW
dx

d

m
xW

dx

d

m
xfAA


































 (2.13) 

 

for this result, it is required that the potential of this new Hamiltonian H  must 

satisfy 

        0

2

2
ExVxW

m
xW


 (2.14) 

From that equation, it is seen that there is a relation between partner  potentials and  

it can be found as following: If we rewrite that equation with a little difference, 

 
(2.15) 

 

and using another fact, 

            0

2

222
ExW

m
xW

m
xW

m
xWxV


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      ,
2

0

2   ExW
m

xWxV


 (2.16) 

one obtains 

     ,
2

2 xW
m

xVxV   
 (2.17) 

When the superpotential term is replaced in terms of wave function, we get finally, 

   
2 2

02

d
V x V x ln

m dx
     (2.18) 

We can easily find interesting connections between these two systems described by 

H and H . First, consider an eigenfunction of H  satisfying 

,  nnn EH   (2.19) 

where


nE  is the n
th

 energy of H . In terms of A , we get 

 0 0n nA A E E         (2.20) 

Applying A  to the left of both equations, we obtain 

,0

  nnnn AEAEAAA   (2.21) 

 

then we can group terms 

      nnn AEAEAA 0  (2.22) 

 

which we notice Eq. (2.12) to get 
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     nnn AEAH   (2.23) 

 

This is a quite interesting result and it says that 


nA   is a solution to the 

Schrödinger equation for H , with energy 


nE . It is obvious that we can go the 

other way around. Starting with an eigenfunction


m of H  with energy 


mE  leads 

us to obtain 

    mmm EEAA 0  (2.24) 

 

Applying A  to the left of both sides and grouping terms appropriately we get 

      mmm AEAEAA 0  (2.25) 

or shortly 

     mmm AEAH   (2.26) 

 

so


mA   is an eigenfunction of H , with an energy 


mE . 

In summary, A  applied to any eigenfunction of H  gives an eigenfunctionof H , 

with the same energy eigenvalue; A  applied to any eigenfunction of H  gives an 

eigenfunction of H , again with the same eigenvalue. This guarantees that the two 

systems in fact have identical energy spectra, almost. Notice that A  kills the ground 

state wave function 


0 of H , by construction, so H  has no corresponding 

eigenstate at the same energy. The lowest state of H  must then correspond to the 

first 'excited' state of H , or 


 10 EE . In general, 



  nn EE 1  (2.27) 
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As we have shown above if the ground-state eigenvalue of a potential can be shifted 

to zero and the ground-state eigenfunction can be normalized, then the system is 

called “unbroken supersymmetry”. This is why we obtain Eq. (2.27). Therefore, one 

can conclude that partner potentials have identically the same bound spectra, except 

the ground state of  V x
 which does not appear in the spectrum of ( )V x . This 

procedure is sometimes useful if one of the partner potentials is quite complex for to 

be solved than the other one. 

 

On the other hand, if the partner potentials have ground-state energy eigenvalues 

greater than zero, then the system is called “broken supersymmetry”, and the energy 

eigenvalues satisfy the condition: 

n nE E   (2.28) 

As we have shown above one can obtain the eigenvalue and the eigenfunction among 

the partner potentials if the initial potential is in the exactly solvable form, such as 

Simple Harmonic Oscillator, Coulomb, Morse and Pösch-Teller potential [12]. One 

can easily obtain the partner potentials for them by following the procedure given 

above. At this point a question is asked that what the general relation among these 

potentials is and why they can be solved? In the paper by Gendenshtein [14], it is 

shown that these potentials have a property of “shape invariance” that is of 

importance point in the SUSYQM to obtain eigenvalues of the partner potentials. In 

the procedure we have given above if the potentials  V x
 and  V x

 can be 

written in a more general case than Eq.(2.18) as 

   0 1 1; ; ( )V x a V x a R a    (2.29) 

where 0a  is a set of parameters and 1a  is a function of 0a  and the last term 1( )R a  is 

a independent function of x , then the potentials  V x
 and  V x

 are called 

“shape invariant” potentials: They are similar in shape and differ only in the 

parameters appearing in their function forms. Following the hierarch process given 

above one can write the Hamiltonians in the form of the following structure 
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 
2 2

2
1

; ( )
2

kk
k i

i

d
H V x a R a

m dx





     (2.30) 

where 0( )k
ka f a , the function f  applied k times. If we take the next member of 

the hierarchy and compare its spectrum with the previous one, we obtain  

 

 

2 2 11
12

1

2 2

2
1

; ( )
2

; ( )
2

kk
k i

i

k

k i
i

d
H V x a R a

m dx

d
V x a R a

m dx

 







   

   

 
(2.31) 

 

From Eqs. (2.30) and (2.31), we obtain that the Hamiltonians have identical bound-

state spectra except for the lovest level of the member 
kH  whose energy is given by 

0
1

( )
kk

i
i

E R a


  
(2.32) 

 

This can be written from Eq.(31) and it is known that 0 0E  . The complete energy 

spectrum of H 
 is found as 

0
1

( ), 0
n

n i
i

E R a E 



   
(2.33) 

 

In several branches of physics, chemistry and biology the Fokker-Planck equation 

has many applications in the processes involving diffusion of neutrons, transfer of 

electrons, transfer of protons and protein folding [15]. 

 

2.2 The Fokker-Planck Equation 

The general form of the Fokker-Planck equation (See Appendix A for a detailed 

derivation of the Fokker-Planck equation) is defined as [9, 16] 
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( , )
( ) ( , )

P x t
D U x P x t

t x x

   
     

 (2.34) 

.       

In the steady-state case the probability function can be defined as ( , ) ( )EtP x t e x  

and then one can write  

2

2
( ) ( ) ( ) ( )

d d
D U x D U x x E x

dxdx
 

 
     

 
 (2.35) 

 

The transfrormation 
( )/2( ) ( )DU xx e x   makes possible to write Eq.(2.35) in the 

from of Schrödinger equation: 

2
2( ) ( ) ( ) ( ) ( )

4 2

D D
x U x U x x E x  

 
       

 
 (2.36) 

where one can define the Schrödinger potential by 

2
2( ) ( ) ( )

4 2
S

D D
V x U x U x    and 

then one gets 

( ) ( ) ( ) ( )Sx V x x E x      (2.37) 

where 
2 2 1m  . Comparing Eq.(38) with Eq.(2.6), one finds a relation between 

the superpotential and the fluctuation functions as  

1
( ) ( )

2
W x DU x  (2.38) 

 

where the operators A  and A  are as given in Eq.(2.6). 
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CHAPTER 3 

THE VARIATIONAL METHOD and SUPERSYMMETRIC TECHNIQUE 

 

3.1 The Variational Method 

It is well know that there are some quantum systems of which Hamiltonians are well 

known, but they can not be solved exactly or by a perturbative treatment. That means 

there is no closely related Hamiltonian that can be solved exactly or approximately 

by perturbation theory because the first order is not sufficiently accurate, for 

example. One of the basic approximation methods that is suitable for solving such 

problems is the variational method, which is also called the Rayleigh–Ritz method 

[2]. The variational method is useful for determining upper bound values for the 

eigenenergies of a system of which Hamiltonian is known where as its eigenvalues 

and eigenstates are not known. Therefore, it is particularly useful for determining the 

ground state. However, it becomes quite cumbersome to determine the energy levels 

of the excited states. 

In the context of the variational method, one does not attempt to solve the eigenvalue 

problem 

Ĥ E    (3.1) 

 

but rather one uses a variational scheme to find the approximate eigenenergies and 

eigenfunctions from the variational equation 

  0E    (3.2) 

where  E   is the expectation value of the energy in the state  : 

 
Ĥ

E
 

 
 

 (3.3) 
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If    depends on a parameter, let us say  , then  E   will also depend on  . The 

variational ansatz Eq.(3.3) enables us to vary   so as to minimize  E  . The 

minimum value of  E   provides an upper limit approximation for the true energy 

of the system. The variational method is particularly useful for determining the 

ground state energy and its eigenstate without explicitly solving the Schrödinger 

equation. Note that for any (arbitrary) trial function 0  we choose, the energy E as 

given by Eq.(3.3) is always larger than the exact energy 0E : 

  0

ˆ
E E

H 
  

 
 (3.4) 

the equality condition occurs only when   is proportional to the true ground state 

0 . To prove this, we simply expand the trial function in terms of the exact 

eigenstates of Ĥ : 

n n

n

    (3.4) 

 

With 

 

ˆ
n nH E   (3.5) 

 

and since 0 nE E , nE  for nondegenerate one-dimensional bound systems, we have 

 

 

2 2

0

02 2

ˆ
n n nn n

n nn n

E EH
E E

 

 

 
    

 

 
 

 (3.6) 

 

which proves Eq.(3.4). 
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3.2 Supersymmetric Quantum Mechanics Formalism and the Variational 

Method 

 

The hierarchy of Hamiltonians provides an efficient way to obtain the solution for 

excited states of the Schrödinger equation [17]. This general construction was 

originally conceived for exactly analytical solvable potentials. In what follows we 

give the main idea and fix the notation in this study. 

 

The method of supersymmetric quantum mechanics starts from an original 

Hamiltonian 0H : 

2

0 02
( )

d
H x

dx
V   (3.7) 

 

Next step is to factorize this Hamiltonian in terms of the ``bosonic'' operators 1a , 

defined in terms of a function 1( )w x  known as the superpotential, 

1 1( )
d

a x
dx

w  (3.8) 

       

And 

2
(1) (1)2

0 1, 1 1 1 10 02
( ) ( )

d
H H a a E w x w x E

dx

 


         (3.9) 

 

where (1)
0E is the ground state eigenvalue. Thus the superpotential 1( )w x  satisfies the 

Riccati equation: 

(1)2
1 1 0 0( ) ( ) ( )w x w x V x E    (3.10) 

  

The supersymmetric partner of 1,H   is constructed by changing the order of operators 

1a : 

2
(1) (1)2

1, 1 1 1 10 02
( ) ( )

d
H a a E w x w x E

dx

 


        (3.11) 

 

where the potential associated to this Hamiltonian is: 
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(1)2
1, 1 1 0( ) ( ) ( )V x w x w x E

    (3.12) 

    

The Hamiltonian 1,H   can be identified with another Hamiltonian. If this new 

Hamiltonian can be factorized by new operators 2 2 ( )
d

a x
dx

w  then we obtain, 

2
(2) (2)2

1, 1 1 2 20 02
( ) ( )

d
H a a E w x w x E

dx

 


        (3.13) 

 

where the superpotential 2 ( )w x  must satisfy the Riccati equation similar to Eq. (3.10). 

This equation is obtained through the imposition that 1,H   be equal to 2,H  , then, 

(2)2
1, 2 2 0( ) ( ) ( )V x w x w x E

    (3.14) 

 

With 1, ( )V x  indicated in Eq.(3.12). The difference between Eq.(3.12) and Eq.(3.14) 

is only an additive constant that is related to the energy eigenvalue.  

 

This process can be repeated “n” times since successive Hamiltonians can be 

factorized and a family or hierarchy of Hamiltonians can be constructed as: 

 

( )
, 0

n
n n nH a a E 
    (3.15) 

 

Where 

( )n n

d
a x

dx
w  (3.16) 

       

And 

( )2
, 0( ) ( ) ( )

n
n n nw x w x V x E

    (3.17) 

 

The lowest state eigenfunction is obtained by applying the operator 1a ,  given by Eq. 

(3.16), in the ground state wave function, 

 

(1)
1 0 ( ) 0a x   (3.18) 
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This results in 

1( )(1)
0 ( )

w x dx
x e


    (3.19) 

 

The first excited state (1)
1 ( )x  can be obtained through the operator 1a applied to 

(2)
0 ( )x . This relation can be extended to all the members of the hierarchy; it is 

possible to get a general form for the eigenfunctions of the excited states by the 

application of the bosonic operators successively. These are simple relations 

connecting the eigenfunctions and eigenvalues of the members of the hierarchy: 

 

( 1)(1)
1 2 3 0( ) ( )

n
n nx a a a a x

      and  
( ') '( )

0 ( )
nw x dxn

x N e


    (3.20) 

 

And 

( 1)(1)
0
n

nE E


  (3.21) 

 

The superscript and subscript notations represent the member of the hierarchy of 

Hamiltonians and the energy level of each member, respectively. See Ref. [18] for 

detail. 

 

The exactly analytical solvable potentials can be studied by the general construction 

presented above. However, the relation between the variational method and the 

formalism of supersymmetric quantum mechanics can provide an appropriate and 

successful way to determine trial eigenfunctions in order to find out the energy 

eigenvalues variationally for the non-exactly solvable potentials [19]. The approach 

to obtain these trial functions is based on an ansatz for the superpotential generally 

used in supersymmetric quantum mechanic formalism. If an approximate function 

that depends on free parameters is used to obtain an effective potential, then one 

obtains Eq.(3.14).  Using Eq. (3.20) one finally gets the eigenfunction which depends 

on a set of free parameters, denoted by , that is used in the variational method to 

minimize the energy expectation value, given by the following expression: 

 
( , ) ( , )

) ( ,

ˆ

( ,

x x
E

x

H

x

 






 


 
 (3.22) 



18 
 

It is also possible to apply an extension of the procedure described above for excited 

states. Since one factorizes the effective Hamiltonian, it is possible to build a 

supersymmetric partner as indicated in Eq. (3.13). Then one can search for an 

effective Hamiltonian in order to obtain a trial eigenfunction and through this 

procedure the first excited state can be found. The procedure can be followed to 

obtain a set of effective Hamiltonians, one for each state of the original Hamiltonian.  

Therefore, it is a constructive approach to obtain trial functions for excited states for 

a given Hamiltonian. The eigenfunctions and eigenvalues obtained variationally by 

this method can be used in the calculation of the transition probability for the 

Fokker-Planck equation. 
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CHAPTER 4 

APPLICATIONS 

 

As a first application we consider the even-power potential [20]  

6 4 2
0 ( )V x Ax Bx Cx D     (4.1) 

        

The partner potential is found as 

(1)2 6 4 2
1, 1 1 0( ) ( ) ( )V x w x w x E Ax Bx Cx D

        (4.2) 

 

which is satisfied by the following superpotential 

3
1 1 1( )w x a x b x   (4.3) 

 

We note here that there is an exact solution for the ground state when the potential 

and superpotential parameters are defines as 1, 2, 1, 1A B C D      and 1 11, 1a b  

, respectively. Using Eq. (3.15), one gets 

2 4

1 1(1) 2 4
0 ( )

x x
a b

x e
 

   (4.4) 

        

Following the procedure given above one can construct the partner Hamiltonian. 

Thus, we get 

2
(1)2

1, 1 1 02
( ) ( )

d
H w x w x E

dx


      (4.5) 

 

in which the partner potential is determined as 

(1) (1)2 2 2 4 2 6 2
1, 1 1 1 1 1 1 1 10 0( ) ( ) ( ) 2 3V x w x w x E a x a b x b x b x a E

          (4.6) 

 

If the parameters 1 11, 1a b    are given, then we find 



20 
 

6 4 2
1, ( ) 2 4 1V x x x x      (4.7) 

 

Following the factorization procedure in SQM, one obtains the second partner 

Hamiltonian as 

2 2
(2)2

2, 2 2 2,02 2
( ) ( ) ( )

d d
H w x w x E V x

dx dx
 

         (4.8) 

 

in which the superpotential 2 ( )w x  satisfies 

(1) (2)2 2
1 1 2 20 0( ) ( ) ( ) ( )w x w x E w x w x E       (4.9) 

 

Now there is not an exact solution for the Riccati equation for 2 ( )w x  and then one can 

make the following ansatz for the superpotential since 1, ( )V x  and 1, ( )V x  are in the 

same functional form. Therefore, one can set  

3
1 2 2( )w x a x b x   (4.10) 

  
 

      

And 

2 4

2 2(2) 2 4
0 ( )

x x
a b

x e
 

   (4.11) 

 

where the constants 2a  and 2b  are now parameters that minimize the energy of (2)
0E  

by the variationa method:  

(2) (2)
1,0 0(2) (1)

0 1 (2) (2)
0 0

H dx
E E

dx

 
 

 




 (4.12) 

      

The excited states can be determined by the same procedure if one suggests the 

ansatz superpotential in the form of  

3( )n n nw x a x b x   (4.13) 

 

and then the ground state wavefunctions of each partner can be determined by 

2 4

( ') '( ) 2 4
0 ( )

n nn

x x
a bw x dxn

x Ne e
 

    (4.14) 
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In Table 1, we give the values of na  and nb  minimized parameters, the energy 

eigenvalues obtained from the variational method, the numerical results of the 

potential function in Eq.(3.13) for the certain parameters. We also present the percent 

Error in the last column. It is observed that the variational results are in a good 

agreement for the low values of energy with the ones obtained by numerical 

calculation. For higher states the more approximations are needed. In Figure 1, we 

present the first four states normalized wave functions for the minimized parameters 

of  na  and nb values given in Table 1. 

 

Table 1: The minimized values of na and nb , the energy eigenvalues by the 

variational method ( V
nE ) with supersymmetric formalism, the numerical results ( N

nE ) 

and the percent errors for the potential in Eq.(64) with potential parameters 

1, 2, 1, 1A B C D      . 

na  nb  V
nE  N

nE  Error (%) 

1 1a    1 1b   
0 0VE   0 0NE   0  

2 1.6895a   2 0.2850b   
1 0.4238VE   1 0.4229NE   0.21 

3 2.0990a   3 0.2440b   
2 2.3192VE   2 2.3149NE   0.18  

4 2.4040a   4 0.2194b   
3 4.5713VE   3 4.5038NE   1.49  

5 2.6525a   5 0.2025b   
4 7.0998VE   4 7.1755NE   1.55  
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One can now calculate the transition probability   

2 4
4

( /2 /4) (1) (1)

0

( ) (0, | 0, ) )( 0 ntx x
n n

n

P x t e x e
 



    (4.15) 

 

where it is set (1)
n nE   for the truncation of the series for the transition probability 

function. We show the transition probability ( , | 0,0)P x t  for four different time values, 

t , in Figure 2. 

 

  

  

Figure 1: The first four states normalized wave functions for (1)
n  where 0,1,2,3.n   
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Figure 2: The transition probability functions for four different values of time, t . 

 

As a second application, we consider the quartic potential [21] 

2 4
0 ( ) x xV x     (4.16) 

  

Following the procedure given above, one can obtain the partner potential functions, 

the wave functions and the eigenvalues of the quartic potential in Eq.(78) by 

determining the values of the minimized parameters of na and nb . We give our results 

in Table 2a, 2b, 2c and 2d for the first 4 states of the quartic potential for different   

values. We also compare our results with numerical results and present the percent 

error in the calculations. 

As a third application, we consider the following sextic potential which has a great 

importance in class of quasi-exactly solvable potentials [22-24]: 

 

6 2
0 ( ) x 3xV x    (4.17) 

 

Following the same procedure, one can determine the partner Hamiltonians and the 

energy eigenvalues of the potential in Eq. (4.17). We present our results in Table 3.
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Table 2a: The minimized values of a and b , the ground state energy eigenvalues by 

the variational method ( 0
VE ) with supersymmetric formalism, the numerical results  

( 0
NE ) and the percent errors for the potential in Eq.(4.16) for different   values. 

  a  b  
0
VE  0

NE  Error (%) 

0.1 1.060 0.300 1.023911 1.023810 0.01 

0.2 1.020 0.305 0.986647 0.986540 0.01 

0.4 0.945 0.315 0.909823 0.909680 0.02 

0.6 0.875 0.320 0.829672 0.829488 0.02 

0.8 0.800 0.330 0.745853 0.745613 0.03 

1.0 0.720 0.340 0.657974 0.657656 0.05 

 

 

 

Table 2b: The minimized values of a and b , the first excited state energy 

eigenvalues by the variational method ( 1
VE ) with supersymmetric formalism, the 

numerical results ( 1
NE ) and the percent errors for the potential in Eq.(4.16) for 

different   values. 

  a  b  1
VE  1

NE  Error (%) 

0.1 1.63 0.23 3.714926 3.70897 0.16 

0.2 1.6 0.23 3.626268 3.61704 0.26 

0.4 1.56 0.23 3.428299 3.42950 0.04 

0.6 1.52 0.24 3.245721 3.23679 0.28 

0.8 1.49 0.24 3.044770 3.03859 0.20 

1.0 1.45 0.24 2.842032 2.83456 0.26 
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Table 2c: The minimized values of a and b , the second excited state energy 

eigenvalues by the variational method ( 2
VE ) with supersymmetric formalism, the 

numerical results ( 2
NE ) and the percent errors for the potential in Eq.(4.16) for 

different   values. 

  a  b  
2
VE  2

NE  Error (%) 

0.1 1.98 0.20 7.32667 7.33079 0.06 

0.2 1.95 0.20 7.18273 7.20491 0.31 

0.4 1.92 0.20 6.91123 6.95033 0.56 

0.6 1.90 0.21 6.66891 6.69197 0.34 

0.8 1.88 0.20 6.413241 6.42982 0.26 

1.0 1.84 0.21 6.137756 6.16393 0.42 

 

 

 

Table 2d: The minimized values of a and b , the third excited state energy 

eigenvalues by the variational method ( 3
VE ) with supersymmetric formalism, the 

numerical results ( 3
NE ) and the percent errors for the potential in Eq.(4.16) for 

different   values. 

  a  b  
3
VE  3

NE  Error (%) 

0.1 2.25 0.18 11.55487 11.48857 0.58 

0.2 2.22 0.18 11.35422 11.33136 0.20 

0.4 2.19 0.18 11.02608 11.01406 0.11 

0.6 2.19 0.19 10.75837 10.69288 0.61 

0.8 2.16 0.18 10.45268 10.36778 0.82 

1.0 2.14 0.18 10.11452 10.03872 0.76 
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Table 3: The minimized values of a and b , the first few excited state energy 

eigenvalues by the variational method ( V
nE ) with supersymmetric formalism, the 

numerical results ( N
nE ) and the percent errors for the potential in Eq.(4.17) for 

different   values (Note that ,
0 0V NE  ). 

n na  nb  V
nE  N

nE  Error (%) 

1 1.9 0.5 1.93596 1.9354 0.03 

2 2.5 0.4 6.344699 6.2985 0.73 

3 2.9 0.4 11.75929 11.6809 0.58 

4 3.3 0.3 17.92811 18.0426 0.63 

5 3.6 0.2 24.78196 25.2546 1.87 

 

 

As a last, the Morse potential is considered. For the diatomic system, the three 

dimensional Morse oscillator [25] can be written as 

 

              )           )) (4.18) 

 

where   is the dissociation energy,    is the equilibrium internuclear distance and   

is the range parameter. One can write the Schrödinger equation in terms of a new 

variable   as 

( 
  

   
 

     )

  
   (        )          )))   )      ) 

 

(4.19) 

where      and the constants are set like 

                
   

    
     

    

  
 

(4.20) 

 

and the parameter   is the reduced mass of the molecule. 
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The Schrödinger equation can be exactly solvable and therefore one can construct the 

hierarchy of Hamiltonians as shown above. In this case, the Schrödinger equation 

can be reduced to the form 

( 
  

   
 

     )

  
   (        )          )))   )      ) (4.21) 

 

Using the behaviour of the wavefunction at     and   goes to infinity, one can 

write the eigenfunction obtained from Eq.(4.21) as 

   )          )
     )     (4.22) 

 

where one can suggest the variational parameter “C” in the equation. Using the 

ansatz wave function in Eq. (4.22) one can also obtain the superpotential     ) as  

    )   
 

  
   [   )]           )  

    )

 
   (4.23) 

 

Using expression in Eq. (4.22) as a trial wavefunction in the variational method we 

can change the parameter   by the variational parameter 𝜇: 

         𝜇)          )
     )     (4.24) 

 

Following the process given in Eq. (3.22) the energy eigenvalues can then obtained 

by minimisation of the energy expectation value with respect to 𝜇. Therefore, the 

equation we have to consider to minimize is given as 

 

   
∫     ) [ 

  

    
     )

     (        )          ))]    )  
 

 

∫     )   
 

 

 
(4.25) 

 

Using this expression one can calculate the ground state energy expectation value of 

various molecules such as        ,    and     for known values of their respective 

potentials parameters         and   of the molecules in Table 4[26]  
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Table 4: Potential parameters         and   for different molecules [26]. 

Molecule      )      )       )       )  

H2                              17.4129 

LiH                                      28.8558 

HCl                                     24.9221 

CO                                      82.0662 

 

 

The results are given for different values of   for the molecules under investigation as 

shown in Tables 5-8. 

Table 5: Comparison of bound states energy eigenvalues (in eV) for the H2 molecule for 

different values of the angular momentum quantum number. 

    Present 

Results 

[27] [28] [29] [30] [31] [32] [33] 

0                                                
       

 
          

 
          

 

5                                                                           

10                                                                           

15                                                                

20                                                           

 

 

 

 

Table 6: Comparison of bound states energy eigenvalues (in eV) for the HCl molecule for 

different values of the angular momentum quantum numbers. 

  𝜇 Present 

Results 

[28] [30] [31] [33] [34] [34] 

0 24.838 4.43555 4.43556 4.4356 4.4355 4.4355522 4.43556 4.43556 

5                4.39681 4.3968 4.3968 4.3968066 4.39681 4.39682 

10                4.28408 4.2841 4.2940 4.2940628 4.28407 4.28409 

15 

 
30.290         4.12889 - - 

 
4.1288846 4.12889 4.12893 

20 31.740 3.90241 3.90375 - - 3.9037744 3.90374 3.90385 
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Table 7: Comparison of bound states energy eigenvalues (in eV) for the CO molecule for different 

values of the angular momentum quantum numbers. 

  𝜇 
Present 

Results 
[28] [30] [31] [33] [34] [34] [35] 

0 83.378 11.0916 11.0915 11.0915 11.092 11.0915353 11.0915 11.0915 11.091 

5 85.279 11.0844 11.0844 11.0845 11.084 11.0843875 11.0844 11.0844 11.084 

10 87.146 11.0653 11.0653 11.0653 11.065 11.0653334 11.0653 11.0653 11.065 

15 88.915 11.0344 11.0344 - - 11.0343911 11.0344 11.0344 - 

20 90.768 10.9916 10.9916 - - 10.9915902 10.9916 10.9916 - 

 

Table 8: Comparison of bound states energy eigenvalues (in eV) for the LiH molecule for different 

values of the angular momentum quantum numbers. 

  𝜇 
Present 

Results 
[28] [30] [31] [33] [34] [34] [35] 

0 28.906 2.42885 2.42886 2.4289 2.4280 2.4288627 2.42886 2.42886 2.4287 

5 31.469 2.40118 2.40133 2.4013 2.4000 2.4013352 2.40133 2.40133 2.4012 

10 33.688 2.32842 2.32883 2.3288 2.3261 2.3288530 2.32883 2.32885 2.3287 

15 35.539 2.21306 2.21377 - - 2.2138464 2.21377 2.21385 - 

20 37.012 2.05885 2.05977 - - 2.0600073 2.05977 2.06001 - 
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Figure 3: The Morse potential for    molecule for different   values 

 

The Figure 3 shows graph of the Morse potential for four different values of the 

orbital angular momentum quantum number,  . The graph says that the behaviour of 

the Morse potential is typical of the substantial variance of    ) for     and    . 

The different molecules for the same   (where     ), The Morse potential seems as 

in Figure 4.  The relation between the potential energy and distance seperating two 

bonded atoms as HCL, is the great importantance such that chemical  processes. 

 

 

Figure 4: The Morse potential for different molecules for        
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CHAPTER 5 

CONCLUSION 

 

 In this work we have studied a method to determine the time dependent 

probability density for the one-dimensional Fokker-Planck equation. The treatment is 

based on an analysis of the Schrödinger equation though the variational method 

associated to the formalism of the supersymmetric quantum mechanics. We have 

used an ansatzsuperpotential which allows us to obtain the trial wavefuntion of the 

variational method. Using SUSYQM, the hierarchy of the effective Hamiltonians can 

be constructed. The superpotentials give us the variationaleigenfunctions and the 

effective potentials. The adjustable parameters allow one to calculate the minimum 

eigenenergy of the partner potential for the full spectra. The symmetric bistable 

potentials are studied to illustrate the approach whose results are in good agreement 

with the numerical calculations [36]. 

As a result, our study shows that the variationalsupersymmetric approach can be 

useful and effective for a group of polynomial potentials. 
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APPENDIX 

APPENDIX A 

Derivation of the Fokker-Planck Equation 

Let     )       be a one-dimensional stochastic process with          [37]. 

We use              ) to denote the joint probability distrubition, i.e., the 

probability that     )     and    )    , and              )to denote the 

conditional (or trasition) probability distrubition, i.e., the probability that     )     

given that     )    , defined as              )               )       ). We 

wil assume    ) is a Markov process, namely, 

   1 1 2 2 3 3 1 1 2 2, , ; , , ,P x t X t X t P X t X t . (A.1)
 

 

For any continuous state Markov process, the following Chapman-Kolmogorov 

equation is satisfied [38, 9]:  

     1 1 3 3 1 1 2 2 2 2 3 3 2, , , , , ,P x t X t P x t X t P x t X t dX  . (A.2)
 

 

In the following, We also assume    ) is time homogenous: 

                 )               )  (A.3)
 

 

So that X is invariant with respect to a shift in time. For simplicity of natation, we 

use              )               ). 

We will now outline the derivation of the Fokker-Planck equation, a partial 

differential equation fort he time evolution of the transition probability density 

function. This closely follows the derivation in Ref. [39]. Consider 
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 
 ,

,
P Y t X

h Y dY
t







  (A.4)
 

 

where  h Y  is any smooth function with compact support. Writing 

   
0

, , ) ( ,
lim ,
t

P Y t X P Y t t X P Y t X

t t 

  


 
 

 

(A.5)
 

 

and interchanging the limit with the integral, it follows that 

0

( , ) ( , ) ( , )
( ) lim ( )

t

P Y t X P Y t t X P Y t X
h Y dY h Y dY

t t

 

 
 

     
  

  
   

 

(A.6)
 

 

Applying the Chapman-Kolmogorov identity (Eq. A.2), the right hand side of Eq. 

A.6 can be written as 

0

1
lim ( ) ( , ) ( , ) ( ) ( , ) ,
t

h Y P Y t Z P Z t X dZdY h Y P Y t X dY
t

  

 
  

 
  

  
    (A.7)

 

 

Interchanging the limits of integration in the ¯rst term of Eq. 7, letting Y→Z in the 

second term, andusing the identity ( , ) 1,P Y t Z dY





  we have 

0

1
lim ( , ) ( , )( ( ) ( ))
t

P Z t X P Y t Z h Y h Z dYdY
t

 

 
 

 
  

  
   (A.8)

 

 

Taylor expanding h(Y ) about Z gives 

( )

0
1

1 ( )
lim ( , ) ( , ) ( ) .

!

n
n

t
n

Y Z
P Z t X P Y t Z h Z dYdY

t n

  

 
 

 
 

  
   (A.9)

 

 

Defining the jump moments as 
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( )

0

1 1
( ) lim ( ) ( , )

!

n n

t
D Z Y Z P Y t Z dY

n t



 


  
   (A.10)

 

 

It follows that 

( ) ( )

1

( , )
( ) ( , ) ( ) ( ) .n n

n

P Y t X
h Y dY P Z t X D Z h Z dZ

t

  

 





   (A.11)

 

 

Integrating each term on the right side of Eq. (A.11) by parts n times and using the 

assumptions on h, aftermoving terms to the left hand side, it follows that 

 

( )

1

( , )
( )( ( ) ( ) ( , ) ) 0.n n

n

P Z t X
h Z D Z P Z t X dZ

t Z

 



 
     

  (A.12)
 

 

Now, because h is an arbitrary function, it is necessary that 

( )

1

( , )
( ) ( ) ( , ) .

n

n

n

P Z t X
D Z P Z t X

t Z





  
       

  (A.13)
 

 

We define the probability distribution function P(X; t) of  X(t) as the solution of Eq. 

(A.13) with initial conditiongiven by a δ-distribution at    at t = 0. In this case, 

0( , ) ( , ,0)P X t P X t X  and we may write Eq. 13 as 

 

( )

1

( , )
( ) ( ) ( , ) ,

n

n

n

P Z t X
D X P X t

t Z





  
       

  (A.14)
 

 

with 

 ( )

0 0
0

1
) lim ( ) ( ) ,

!

nn

t
t

D X X t t X t
n


 

    (A.15)
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which is commonly called the Kramers-Moyal expansion. Now, if we assume 

( ) ( ) 0nD X  for  0n  , thenwe have the Fokker-Planck equation: 

 

   
2

2

( , )
( ) ( , ) ( ) ( , ) ,

P X t
V X P X t D X P X t

t X X

  
  

  
 (A.16)

 

 

where, 
(1)( ) ( )V X D X  is the drift coefficient and  

(2)( ) ( ) 0D X D X   is the 

diffision coefficient, which can be written as 

 

0

0 0

( ; )
( ) ,t

X t X
V X

t







2

0
0 0

( ; )1
( ) ,

2
t

t X
D X

t








 (A.17)

 

 

where angular brackets denote ensemble averaging, 2  denotes the variance of X, 

and 0( ; )X t X denotes arealization with 0(0)X X . Any stochastic process X(t) 

whose probability distribution functionsatisfiesthe Fokker-Planck equation is known 

mathematically as a diffusion process [38]. 
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APPENDIX B 

The Mathematica program used for the calculation of the energy eigenvalues 

presented in Table 2a. 

Timing[WorkingPrecision10; 

 Do[i=k; 

  gamma=i/10.; 

  Vp0=-gamma*x
2+x4; 

  En0=0.; 

  Do[ 

Print["gamma= ",gamma," iken ",j-1,". enerji seviyesi hesabı 

baslar!"]; 

Clear[energy]; 

energy=50.; 

   Do[ 

    Do[ 

wi=a*x+b*x
3; 

0i=Exp[-\[Integral]wix]; 

     term1=-D[0i,x,x]; 

     term2=Vpj-1*0i; 

hamilton=term1+term2; 

     term3=0i*hamilton; 

     term4=0i*0i; 

     term5=NIntegrate[term3,{x,-10,10}]; 

     term6=NIntegrate[term4,{x,-10,10}]; 

ratio=N[term5/term6,7]//N; 

If[ratio<energy,{energy=ratio,A=a,B=b},rr=10],{b,1./10,2./1,1.

/100}],{a,1./10,3./1,1/100}];Vpj=(A*x+B*x^3)
2+D[A*x+B*x^3,x]; 

Enj=energy+Enj-1; 

Print[NumberForm[{"gamma=",gamma,"ise",j-1 ,". enerji seviyesi 

E= ",Enj//N, "ve bu şartı saglayan","a=",A//N, 

"b=",B//N,"degerleri bulunur"},7]],{j,1,4}],{k,1,10}]] 


