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ABSTRACT 

SCATTERING AND BOUND STATES OF DIRAC PARTICLES IN AN 

EXTERNAL FIELD  

YETER, Yusuf 

M. Sc. In Engineering Physics 

Supervisor: Prof. Dr. Ramazan KOÇ 

January 2014  76 Pages 

 

In order to understand the nature of basic particles, the Dirac equation has been 

studied for many years. The Dirac equation plays an important role in well known 

modelling physical problem. Additionally, to describe properties of the spin 
 

 
  

particles, the Dirac equation is a useful one, so one can consider the solution of Dirac 

equation is important in physics. Furthermore, the study of Dirac equation including 

various potentials like harmonic oscillator potential, Coulomb potential, Rosen-

Morse potential etc. has recently attracted interest on physical systems. 

In this thesis, in the presence of exactly solvable potential and an external magnetic 

field, the Dirac equation has been studied for scattering and bound states. Because of 

that this work consists of three parts. In the first part the Dirac equation is generally 

solved for free particles and existing various potentials. The scattering of a Dirac 

particle is studied in the external magnetic field in the second part. As in the last part, 

the bound state of Dirac particle is investigated. The ultimate goal of the study in this 

thesis is defining the scattering and bound states of Dirac particles in an external 

field.  

 

 Key words: Dirac equation, exactly solvable potentials, scattering and bound states 

 



 
 

ÖZ 

 DIRAC PARÇACIKLARININ BİR DIŞ ALANDA SAÇILMA VE BAĞLI 

DURUMLARI 

YETER, Yusuf 

Yüksek Lisans Tezi, Fizik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ramazan KOÇ 

Ocak 2014 76 Sayfa 

 

Temel parçacıkların doğasını anlamak için yıllardır Dirac denklemi çalışılmaktadır 

ve bu denklem iyi bilinen fizik problemlerini modellemek için önemli bir rol oynar. 

Ayrıca spini 
 

 
  olan parçacıkların özelliklerini açıklamak için Dirac denklemi faydalı 

olan bir denklemdir. Bundan dolayı Dirac denkleminin çözümünün fiziksel 

problemlerde önemli bir yere sahip olduğu düşünülür. 

Başka bir deyişle harmonik osilatör potansiyeli, Coulomb potansiyeli, Rosen-Morse 

potensiyali gibi potansiyeller içeren Dirac denkleminin çalışmaları son zamanlarda 

fiziksel sistemlerin çözümü üzerine ilgi çekmektedir. 

Bu tezde bazı tam çözülebilen potansiyeller ve bir dış manyetik alan içeren Dirac 

denkleminin çözümü Dirac parçacıklarının saçılma ve bağlı durumları çalışıldı. 

Bundan dolayı bu çalışma üç bölümden oluşmaktadır. Birinci bölümde genel olarak 

Dirac denklemi serbest parçacık ve çeşitli potansiyellerin varlığında çözüldü. Ikinc 

bölümde bir Dirac parçacığının bir dış manyetik alanda saçılma durumu çalışıldı. 

Son bölüm ise bir Dirac parçacığının bir dış alandaki bağlı durumu araştırıldı. Bu 

tezin son amacı ise Dirac parçacıklarının bir dış alandaki saçılma ve bağlı 

durumlarının tayını yapıldı.  

Anahtar kelimler: Dirac denklemi, tam çözülebilir potansiyeller, saçılma ve 

bağlı durumlar.   
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CHAPTER 1 

INTRODUCTION 

In this thesis, we have studied the Dirac equation for behavior of elementary 

particles. We know that the Dirac equation is an relativistic quantum equation and 

this equation is consistent with the results of the classical mechanics. Moreover, in 

order to describe spin  
 

 
 particles, the Dirac equation is a useful equation. If we are 

supposed to give a few examples, they are electron, positron, neutrions and the like. 

Furthermore, to describe the spins of these particles we need to the principles of 

quantum mechanics and the theory of special relativity [1]. Also, one can explain the 

probability amplitude for a single particle by using the Dirac equation with the theory 

of special relativity and the principles of quantum mechanics. Many of the fine 

structures in atomic lines are explained by using this single particle theory [2]. Also, 

some features of electrons like the spin and the magnetic moment are given by that 

theory [3]. Additionally, the peculiar prediction is taken by the theory of an infinite 

set of quantum states, so the electron may possess negative energy [1]. The Dirac 

equation firstly was considered for describtion of electrons, but it can be applied to 

the other elementary particles too.  Also, describtion of protons and neutrons can be 

explained by a modified Dirac equation. We know that these particles are not 

elementary particles that are made of smaller particles called quarks. Now, we should 

recall some features of relativistic quantum mechanics. 

 Non-relativistic principles should be agreeable with the relativistic quantum theory. 

These principles [2]:  We can define a wave function ψ for every physical system 

including all information about the system. For instance, with a wave function ψ a 

particle’s motion is defined by coordinates (q1…qn, s1…sn)  at any time t; the wave 

function of particle has a physical meaning only by choice |              |2 
≥ 0 

[4]. This explains the particle's probability. For all acceptable wave functions the 

sum of positive contributions |ψ|
2
 given for all values of coordinates (q1…qn, 

s1…sn) must be defined as finite values [5].  
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An observable physical system is represented by a linear Hamiltonian operator. For 

example, ( ̂   
 

 

 

   
 ) represents the momentum operator. When we apply this 

operator to a physical system, we can obtain the eigenvalues    ) of the system. 

Because of the hermitian operator, the eigenvalues are taken as real values [1]. 

             (1.1) 

The functions (   ) in the left side of the equation (1.1) represent the eigenstates of 

the physical system which can be obtained after some measurements. A state 

functions of a physical system can be written in terms of a complete orthonormal set 

of eigenfunctions    as [4] 

     ∑     (1.2) 

and  ∑∫        
 (q…,s…,t)   (q…,s…,t) =     is the explanation of 

orthonormality [5]. Also, we can write    | ⟩   and      = ⟨ | , and than;     = 

⟨ | ⟩ = ⟨   |   ⟩ =        |  |2
 [1]. In order to understand the physical 

systems, probability is another feature. Any of eigenvalue    is measured by a 

physical observable   with a probability |  |2
 . The value of probablity of physical 

observability is measured by 〈 ̂〉 [4]. 

  〈 ̂〉 =∑∫              ̂                    = ∑|  |   . (1.3) 

One of the best equation is the Schrödinger equation in order to explain the features 

of the physical systems or particles. The Schrödinger equation explains a physical 

system depending on the time. That equation is written as [1] 

    
  

  
 =  ̂    (1.4) 

Here  ̂ is a linear hermitian operator and it has suspense time dependence. If we 

consider a closed physical system, the hamiltonian in that system depends on the 

time (
  ̂

  
 = 0). Now, by using the properties of conservation and linearity, we can 

conclude conservation of probability and linearity of the hamiltonian that form [5];  

     
 

  
∑∫          

 

 
∑∫      [( ̂           ̂     = 0  (1.5) 
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We can obtain the relativistic Dirac equation in terms of these principles of non-

relativistic theory. 

1.1 Formulation of Relativistic Quantum Theory 

We try to obtain the Schrödinger equation in terms of relativistic principles. A non-

relativistic hamiltonian for an isolated free particle is written as [4] 

  ̂ = 
  

  
 (1.6) 

and we use that hamiltonian as an operator in quantum mechanic as follows 

  ̂ =   
 

  
,   ̂   

 

 
  (1.7) 

By using these operators the non-relativistic Schrödinger equation takes form [5] 

   
       

  
   

    

  
         (1.8) 

Also, the momentum operator            and the total energy E are written in terms 

of components of a contravariant four vector in the special relativistic quantum 

mechanics as follows [6]; 

                     
 

 
              (1.9) 

Invariant length of four momentum [6] is 

  ∑       
  

     ̂          (1.10)  

From here the relativistic hamiltonian is concluded as [6]  

  ̂   √            (1.11) 

Now we can write the relativistic form of the Schrödinger equation in terms of this 

hamiltonian as [6] 

   
  

  
  √                (1.12) 

The right-side of the equation (1.12) represents an operator [4] which is expanded as 

follow, 
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   √              = m     
 

 

    

        (1.13) 

An equation is obtained for all powers of the derivative operators  ̂  and this 

equation can not be solved to handle which is an nonlocal equation, so if we take the 

square  ̂ in equation (1.7), we find an equation which is relativistic form of the 

Schrödinger equation [6]. 

    
 

  
     

 

  
  =(              )   (1.14) 

   [
 

  

  

          
  

 
  ]   = 0  (1.15) 

This equation is named Klein-Gordon equation [7,8].  ̂   √           presents 

a negative energy root appearing with a minus sign which gives the negative energy 

solutions of antiparticles. Now, we try to find a conserved current from the Klain-

Gordon equation. Firstly, multiplying left side of equation (1.15) by   ; secondly, 

taking hermitian conjugate of this equation and then multiplying this from left-side 

by    , finally, we can obtain the equation after some calculations [6]; 

                   = 0  (1.16) 

Or in explict form 

 
 

  
 

  

         

  
  

   

  
     ̂

 

   
    ̂     ̂    = 0 (1.17) 

Obviously, the term in the first parentheses in equation (1.17) looks like the 

probability density ρ. But, it is not a definite expression. On the other hand, equation 

(1.9) gives negative energy solutions in physical interpretation [6]. 

Furthermore, when we study in quantum mechanics, we use wave functions which 

represent a special function space in mathematics. This space is also an infinitive-

dimensional linear vector space. Now we try to define the space as three-dimension 

as follow; Firstly, a wave function (a vector) is defined with each  given  ⃗ position in 

the space. Because each position  ⃗ takes infinitive values, the wave function is 

dimensionless [9]. 

 {  }       ⃗)    ( i = 1,2,3…) (1.18) 
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Secondly, it can be defined scalar product for wave functions    ̂) ,    ̂) as 

    = ∫       ⃗    ⃗  (1.19) 

here    is complex conjugate. Also ; 

 ‖ ‖         ∫        ⃗    ⃗    (1.20) 

represents norm of wave functions [9].  

Finally, we consider presence of a function group {    ⃗ } in the wave functions 

space (i=1,2,3,…N), where the numbers of   can take limited or unlimited values. 

The function group {    ⃗ } is an orthonormal group [9], when multiplying member 

of these functions take that forms;   

          ∫      
   ⃗     ⃗  = {        

        
 (1.21) 

Also, we can define each wave function    ⃗  in this wave functions space in terms 

of member of the space as; 

    ⃗   ∑   
 
     ⃗  (1.22) 

the group of {    ⃗ } creates an orthonormal phase in the wave function space. Here, 

the functions {  } and constants of    represent the phase vectors and componenets of 

wave function  , respectively. The components are defined as  

              ∫      
   ⃗    ⃗         (i=1,2,3…) 

Now one can define a wave function completely by selecting phase {  } and given 

components of    . We know that the space which has these features is called the 

Hilbert space in mathematics [9]. It is easy to present the three-dimensional complex 

number problem, definition of spin and the behavior of particles in quantum 

mechanics in this space. As a result, the solution of wave functions in the quantum 

mechanics is obtained without the complex integrates, complex derivatives and their 

solutions are easy to find by defining algebraic constants   , [9] written as 

         (∑       ∑         = ∑ ∑   
        ∑   

       (1.23) 

And explanation of norm can be written as [9] 
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           ∑ |  |
 

  (1.24) 

Additionally, in this thesis we would like to try to solve the (2+1) Dirac equation for 

a free particle whose mass is m with the Coulomb scalar potential. We can write the 

(2+1) Dirac equation for a free particle in terms of two-component spinors   as [3] 

  E   =[ ∑              

   
]   (1.25) 

Furthermore, we can see solution of Dirac equation including various solvable 

potentials in this study. These potentials are harmonic oscillator potential, Coulomb 

potential and Morse potential [10]. We can define the Dirac equation in the presence 

appropriate potentials to analyze relativistic effect on the spectrum of such physical 

systems and to obtain the solution of the Dirac equation including these potentials. 

Two dimensional Dirac oscillator can be used in order to determine the spectrum and 

properties of such systems in the relativistic physics. In this study, we see only 

exactly solvable potentials,  relativistic extensions of these potentials have also 

turned out to be important in the description of (2+1)-dimensional phonemena. 

Spectrum of different condensed matter physics phonemaena existence (2+1) 

dimensional is determine by the Dirac equation including various potentials. We 

know that the Dirac equation is important to understand the relativistic particles that 

have spin-1/2.  Meantime, we can state that the Hamiltonian obtained from the Klein-

Gordon equation, called Feshbach-Villars equation [11], has been builded by two 

different states. One of them is spinless particles. The Hamiltonian has been 

constructed in a two-component for this particles and other one has been constructed 

in a eight-component for spin-1/2 particles. Unfortunately, the Dirac equation is not 

exactly solvable in all species of potentials, it is exactly solvable only in a very 

limited potentials. In this chapter we propose the solution of the Dirac equation 

including a class of potential whose spectrum can accurately be determined. The 

Dirac equation is transformed into the Schrödinger-like equation for this purpose. 

For example, physical systems which have few electrons, stuck on the problem in the 

building of the Schrödinger-like equations. A Dirac equation was considered 

previously with an interaction linear in coordinates, and recently, it is reinvented in 

the case of the relativistic theories. If we add a very strong spin-orbit coupling term 

into the Dirac oscillator, the equation becomes a harmonic oscillator in the non-

relativistic limit. Dirac oscillator has attracted much attention. Analogous to the 
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Dirac equation, with a modified momentum operator, in the non-relativistic limit  

turns out to the usual Schrödinger equation. As we have already noted the Dirac 

equation including various potentials might attract much attention because it may 

have some physical applications, particularly in the condensed matter physics. It 

seems that one can present more realistic modals for the artificial atoms using the 

procedure given here. 

In this study, we will see another section which is scattering of Dirac particles by an 

external potential field. Here, for the solution of Dirac particles, we will use a mixed 

potential including the Coulomb scalar potential. The exact solution of the Dirac 

equation with the coulomb potential plays a very important role in relativistic and 

non-relativistic quantum mechanics. For instance, for a harmonic oscillator in three-

dimension and a hydrogen atom the exact solution of the Schrödinger equation is 

important for the beginning stage of quantum mechanics and solutions provided a 

strong evidence for quantum theory. In order to understand a given quantum system, 

the studying of the bound states then that of the scattering states can be paid more 

attention. To understand the quantum systems completely, we can study both bound 

states and scattering states. Because of establishment of scattering and bound states 

particles in quantum mechanics, the applying of the Schrödinger equation to 

quantum systems has been known well. For example, the bouth systems of quantum 

mechanics and classical mechanic can be understood well by studying the scattering 

of particles by the Coulomb potential field. However, when we consider the 

relativistic effect on a quantum system, the Dirac equation has to be employed to 

study the electrons scattering by a nucleus potential. Also, one can carry out the 

exact solution of the Dirac equation including Coulomb plus scalar potential in 

different dimensions which are two-dimension, three-dimension and higher-

dimensions. One can study scattering phase shifts in the two-dimension Dirac 

equation including the Coulomb potential given by the second order differential 

equation and by algebraic method, for the condensed matter physics and interest of 

the lower-dimensional quantum field theory. Our aim in this chapter is to study the 

scattering of the two-dimensional Dirac equation including the Coulomb plus scalar 

potential. Finally, in the last section the bound states of Dirac particles have been 

studied.  In this chapter we will study the bound states solutions of Dirac particles 

under an external potential field. Let’s consider a particle which is exposed to a 
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strong potential field. For this particle the relativistic effects must be considered. It 

should be noted that when a spinless particle is exposed to an external potential field, 

the relativistic effects are expressed with the Klein-Gordon equation [6]. For some 

fields of physics like nuclear and atomic and molecular physics, the solution of Dirac 

equation is also important [12,13]. We consider the Dirac equation in terms of scalar 

potential   and the repulsive vector potential   . If the potentials are nearly equal 

such      in the nuclei (as an arbitrary constant    ), the potentials take that 

relation;            ) [14]. The spin symmetry arises within the framework 

of the Dirac equation. However, the pseudospin (pspin) symmetry occurs if      

  are nearly equal (as an arbitrary constant    , the sum potential  ∑         

 ∑) [12,13]. The spin symmetry is available for mesons [15]. Recently, many authors 

have extensively applied the spin and pspin symmetries on various physical 

potentials [16,17]. For example, we can see solution of  Dirac equation for some 

potentials which are deformed generalized Poschl-Theller (PT) potential [18], well 

potential [19], Manning-Rosen potential (MR) [20], modified PT potential [21,22], 

modified Rosen-Morse (RM) potential [23] and class of potentials including 

harmonic oscillator, Hulthen, trigonometric RM potential, Scarf Eckert, Morse, MR, 

and others [24]. By using the properties of quantization rules, algebraic methods, we 

can obtain the solution of Dirac equation including these potentials in the framework 

of the spin-orbit centrifugal term of the approximation to the spin-orbit. If we want to 

obtain the exact solutions of the Dirac equation for the exponential-type potentials, 

we should choose the s-wave (     case) [25]. The Dirac equation has exact 

solution for these potentials only in the case of the wave. However, for the spin-orbit 

and pseudospin centrifugal, 
      

    and  
      

  ), respectively, terms (1.1) state an 

approximation which can be used to deal with that spin-orbit and psedospin-orbit 

values [25]. To this end, the Dirac equation including large number of potential has 

been solved to obtain the two-component spinor wave functions and to obtain the 

energy by many works. The values of the energy spectra do not depend on the 

structure of the particle, but they depend on the spin  
 

 
 or spin-0 particle [25]. Also, 

by choosing spin  
 

 
 or spin-0 particle which have the same mass and depend on 

potential of equal magnitude          ∑    or     ) [12-14] which are 

scalar potential S and vector potential V, the spectrum of energy (isospectrality) 
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including bound and scattering states will be the same. When we solve the Dirac 

equation with the harmonic oscillator potential for the massless particles (or the 

ultra-relativistic particles), we see that the spin and pspin spectrum of that particles 

are the same [10]. For example, the spin symmetric and pspin bound state solutions 

of Dirac equation including the standard Rosen-Morse well potential model [23] can 

be obtained as 

             
              

Where    and    constants represent the depth of the potential and   is arranged the 

potential. Our aim in the next paper is to extend the s-wave solution by using the 

Dirac equation including some physical potential and using the Nikiforov-Uvarov 

method [26,27] adding an approximation with the presence of centrifugal (pseudo-

centrifugal) potential term. The spin-orbit centrifugal barrier   
      

   is arranged for   

which is the value of spin-orbit coupling quantum number with the using of 

approximation scheme [25]. Where the quantum numbers were given is not large and 

vibrations of the small amplitude. By using the definition of spin symmetry     and 

pspin symmetry       the bound state energy eigenvalues and their corresponding 

upper and lower spinor wave functions can be calculated [12]. Also, the spin and 

pspin symmetric Dirac solutions can be shown, when pspin symmetry limitation is 

chosen     and  ∑   , respectively and for spin symmetry      and ∑  

   [13] can be reduced to the exact spin symmetry. Furthermore, if we use suitable 

matching of parameters, by using the non-relativistic limit of the Dirac equation, the 

bound state solutions of Schrödinger equation can be obtained. In the following 

sections, we mainly will define the basic spin and pspin Dirac equation. Then, the 

(2+1)-dimensional Dirac equation including the Rosen-Morse potential and 

reflectionless-type potentials that will be approached for analytical bound state 

solution [25]. Also, we use a parametric generalization of the Nikiforov-Uvarov 

method [26,27], in order to obtain these potentials that are also obtained in the 

presence of the spin and pspin limits. After that, we will study non-relativistic limit 

and special case of the s-wave          ̃    . Finally, the suitable conclusion 

will be given. 
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CHAPTER 2 

THE DIRAC EQUATION 

After two results of the Klein-Gordon equation that are negative energy states and 

negative probability density, Dirac tried to explain these unphysical cases, so In 

1928, Dirac found a relativistic equation. The equation includes the form of time 

dependence in the Schrödinger equation with positive definite probability density. 

Due to the linearity such a formation in the time-derivative, it is essential to solve an 

equation of linear in space derivatives. This equation can be written as [3] 

   
  

  
 

  

 
 [  

  

       
  

       
  

   ] +        ̂  (2.1) 

This equation has some properties that are; 

1- The coefficient    should be matrices from the invariance of spatial rotations. 

2- The wave function   is represented N-dimensional spinors in general that is not a 

simple scalar.  

3- The probability density         should be the time component of a conserved 

four-vector, if   is integrated over all space, it must be an invariant. Dirac put 

forwarded that the equation (2.1) is a matrix equation. Also, he thought that the wave 

function   must be coressponded to spin wave functions of non-relativistic quantum 

mechanics. The spin wave function   [4] is 

    

(

 

   
 
 

  )

  (2.2) 

In equation (2.1)        and   are NxN matrices, so the N-coupled first order equations 

can be written as in the following [5] 
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 ∑ (  

  

   
       )    ∑  ̂   

 
   

 
    (2.3) 

This N-coupled first order equation must be provided the correct relation of energy-

momentum for a free particle as [3] 

                      (2.4) 

Moreover, Lorentz transformation can not be allowed to a variant system of an 

equation, it must allow a continuity and probability interpretation for the wave 

function  . The Dirac equation gives correct energy-momentum relation, so each 

component of   must satisfy the Klein-Gordon equation. Now, we can write the 

Dirac equation in terms of the Klein-Gordon equation as follows [6] 

   
  

  
   

  

  
   [

  

 
∑   

 

          
   ] [

  

 
∑          

   ]    (2.5) 

After some rearrangement we get the Dirac equation of the form [3] 

   
   

   
       ∑ (

           

 
 

   

      
) 

 

     

 

  
    

 
 ∑           

 
   

  

               (2.6) 

Where we don’t know that    and     are commutative or anti-commutative, so we 

take  
          

 
  instead          If we compare equation (2.5) with equation (2.6), we 

can write these relations [6]. 

                      (2.7a) 

             (2.7b) 

    
      = 1  (2.7c) 

 Quantum mechanics postulates notify that Hamiltonian, can be easily seen in 

equations (2.7), must be a hermitical operator, so    and   have to be hermitical 

matrices.    and   have the matrix form [6]; 

     (
   

   
)    and       (

  
   

) (2.8) 
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Here    represented the Pauli 2x2 matrices, I is a 2x2 unit matrix. They are [6] 

     (
  
  

)        (
   
  

)      (
  
   

)         (
  
  

)  (2.9) 

By using equation (2.2), a current conversation equation can be found out and then 

we can take hermitical conjugate wave functions [3] 

        
      

    (2.10) 

And then by multiplying equation (2.5)     from left and it is fond [3] 

       
  

  
    

  

 
∑     

  

            
    (2.11) 

And than the Hamiltonian and conjugate of wave are taken into the equation (2.5) 

and then multiplying it by   from right-side, we obtain that equation [10] 

       
   

  
     

  

 
∑

   

     
           

    (2.12) 

Where   
           Subtracting equation (2.12) from equation (2.11), we get 

[10] 

    [    

  
  

   

  
 ]   

  

 
∑ [    

  

    
   

       ] 
    (2.13) 

Now we understand that the terms on the left hand-side in brackets are probability 

density  , and the other terms on right-side in brackets represent current density, 

            By putting these into the equation (2.13) in their place, we obtain the 

continuity equation [6] 

  
  

  
        (2.14) 

If we integrate equation (2.14) over all space, we can write [3] 

 
 

  
∫      ∑ ∫            

    (2.15) 

It is obviously understood in the last equation that the second term integration gives 

zero. Then the first term is also zero, so we can see   has positive definite probability 

density. The density and current in equation (2.13) must be invariant under Lorentz 
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transformation. Therefore, the probability density   and current J from a four-vector 

under this transformation. 

2.2. Non-relativistic Approach to the Dirac Equation 

Dirac equation, which is a relativistic equation, is related to quantum theory as we 

stated before. Therefore, results are accompanied to non-relativistic results, so that 

let us show them. Now, we try to solve the Dirac equation for a free electron which is 

at rest. In this case, the Dirac equation [6] is written as; 

   
  

  
        (2.16) 

Where   is a matrix and   is spinor. By using   and matrix form of   , the equation 

(2.16) is written in the form [4] 

   
 

  
 (

  

  

  

  

)      (

    
    
 
 

 
 

   
   

)(

  

  

  

  

) (2.17) 

All of the components of the wave functions are found as [6] 

     
      

  (

 
 
 
 

)          
      

  (

 
 
 
 

) 

       
      

  (

 
 
 
 

)        
      

  (

 
 
 
 

) (2.18) 

Where    and    correspond positive energy solutions and    and    correspond 

negative energy solutions [3]. We try to find out an equation of Pauli spin theory by 

reduction of the Dirac equation. To do this we describe a four-potential    and a 

four-momentum     (
 

 
)    of gauge invariant form replacing     to introduce the 

interaction of point charge by appling an external electromagnetic field. Now, the 

Dirac equation [6] takes the form 

    
  

  
  [   ⃗  ( ⃗    

 

 
)  ⃗          ]   (2.19) 
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This last equation express the interaction of a point particle with an applied 

electromagnetic field. The classical partner of the hamiltonian in this equation is  

         . Where        ⃗  ⃗ +e   and we note that classical hamiltonian is 

  
            

 

 
  ⃗  ⃗     [6]. 

We can write a wave function in terms of two component column matrices for the 

function [6] in the Dirac equation as 

       
     

 
 (

 
 )  (2.20) 

By using this two-compenent column matrices; the equation (2.20) is rewritten as an 

equation depending on matrix form after some calculations as follows; [6] 

   
 

  
 (

 
 )     ⃗. ⃗⃗ (

 
 )      (

 
 
)     (

 
 ) (2.21) 

Where      
 

 
   Components of   can be taken in terms of large one   as [6] 

   
 ⃗⃗⃗  ⃗⃗⃗

   
   (2.22) 

And putting this instead of   as seen in equation (1.21) and using the definition [6] 

  ⃗   ⃗    ⃗  ⃗⃗    ⃗  ⃗    ⃗⃗⃗ (2.23) 

To find out   ⃗  ⃗⃗ ⃗  ⃗⃗       ⃗  ⃗⃗    ⃗⃗ and putting its value into the equation, we 

carry out two-component spinor equation [6]; that is 

   
 

  
 [

( ⃗ 
 

 
 ⃗)

 

  
  

  

   
 ⃗  ⃗⃗    ]  (2.24) 

This equation is known as  Pauli equation. 

We can reduce the Pauli equation to a general form by using some changing which is 

the electron spin momentum  ⃗   
 

 
  ⃗, we can omit the field interaction because it 

has a small effect, as expansion of      ⃗   
 

 
  ⃗  ⃗⃗,  ⃗⃗   

 

 
  ⃗  ⃗ and neglecting higher 

order terms in equation (2.24) after these transforms the Pauli equation takes [3] 
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  [

  

  
  

 

   
 (  ⃗    ⃗⃗)  ⃗⃗]   (2.25) 

the founded  last equation is the corresponding non-relativistic equation to the Dirac 

equation which gives convenient values.  

 

2.3. Dirac Equation for Free Particle 

The Dirac equation is a relativistic wave equation. It is a useful equation to describe 

elementary spin -1/2 particles which is fully consistent with the principles of 

quantum mechanics and mainly consistent with the theory of special relativity, such 

as electrons, positrons, neutrons and the like. Additionally, this equation is required 

for the nature of particle spin and existence of antiparticle. It also describes the 

probability amplitudes for a single electrons. This single particle theory gives a fairly 

good prediction of the spin and magnetic moment of the electron and explains much 

of the fine structure observed in atomic spectral lines. Additionally, it makes the 

peculiar prediction that exists an infinite set of quantum states in which the electron 

possesses negative energy because the Dirac equation was originally invented to 

describe the electron, here we will mention about electrons. Actually, the equation 

applies to other types of elementary spin -1/2 particles, such as neutrinos. Also, a 

modified Dirac equation can be used to describe protons and neutrinos 

approximately, which are made of smaller particles called quarks and they are not 

elementary particles. 

2.3.1. Structure of Dirac Equation for free particle 

We try to derive a relativistic equation which describes the electron, by using a non-

relativistic equation and then we add perturbation. The non-relativistic equation can 

be non-relativistic Schrödinger equation, written in the form; 

 

   
 

  
    

 

  
     

  

  
        (2.26) 

 

Here, the notation used like            There is an easy way to rewrite down the 

two magnetic terms. Consider the following combination, in which we have studied 

to simplify [3] 
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  ⃗     ⃗    ∑      ∑        =  ∑(     ∑      )      =  ⃗   ∑           

 = ⃗      [     ] +             +i   [     ] (2.27) 

Where  

       {
                         
                          

  (2.28a) 

      {

                      

                            

                             
 {(1,2,3),(2,3,1),(3,1,2)} (2.28b) 

 Also, we use Pauli matrices   again which satisfies the following identity 

            ∑         . The matrices forms are 

         (
  
  

)              (
   
  

)              (
  
   

)     (2.29) 

Now, we try to find an equation like-Schrödinger equation instead of magnetic field 

so the commutative of           depends on the relations which are written as  

 [     ]            [     ]         (2.30a) 

  [     ]            [     ]         (2.30b) 

 

                                     (2.30c) 

 

We can obtain the results by using upward identities with simple processes [3]. 

    ⃗     ⃗             (2.31) 

This allows us to rewrite the non-relativistic Schrödinger equation in the form of the 

electromagnetic terms that dropped to help simplify our understanding. If we look at 

the remaining equation, we see that [3] 

    
 

  
    

 

  
        (2.32) 

If we infer this equation for the plane wave, we obtain that equation 
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 E = 
 

  
        

  

  
 (2.33) 

We easily see that result. This is certainly a non-relativistic equation. We would 

prefer to have something like the corresponding relativistic equation namely [3] 

                 (2.34) 

This suggests the following form for our equation [3]. 

  (  
 

  
 )

 

                   (2.35) 

We have changed the wave function   from   temporarily because the left side of 

the equation includes second order time, this equation does not exactly transform 

what we need. This violates certain basic assumption of quantum mechanics; for 

example, that the future of the wave function        depends only on the value 

         of the wave function at     , and not on its time derivative           

To attempt to remedy this problem, we first bring the first operator on the right to the 

left side, and then the difference of squares gives [3]; 

 (  
 

  
)
 

                    (2.36) 

  (  
 

  
)
 

                    (2.37) 

 (  
 

  
     ) (  

 

  
      )         (2.38) 

To eliminate the second order equation, we define a second field   as [3] 

 (  
 

  
      )         (2.39) 

Plugging this into our second order differential equation [3], we see that 

 (  
 

  
      )        (2.40) 

 These two equations are treated as if they were the first a definition and the second 

derived. Thinking of both    and   as the given wave function, then we have two 

coupled differential equations for   and   because each of these equations have only 

first order in time, specifying the initial conditions for both   and   will completely 
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determine both wave functions in future times. We now use the combination of these 

two equations for writing a single equation for finding the Dirac equation as follows, 

also because the constants of the Dirac equation are not real numbers, we write them 

as matrices and so together like this [3]; 

 [  
 

  
  (

  
   

)   ] (
 
 

)     (
   

   
) (

 
 
) (2.41) 

Where           are four-component wave function and some new matrices and 

they are written as follows, respectively. 

      (
 
 

)           (
  

   
)           (

   
   

) (2.42) 

After all these, the Dirac equation is written [3] 

   
 

  
               (2.43) 

Now we have a relativistic Hamiltonian and it is written 

 H =            (2.44) 

Here we look at shortly the properties of the matrices   and  . They are all 4x4 

Hermitical matrices, and the square of any of them is equal to one. They anti-

commute with each other as well [3]. So we have 

      ,         ,        
     (2.45a) 

                          if    i   (2.45b) 

 It can be denoted that these properties of the    and   matrices all we barely ever 

might to enforce calculation. Indeed, any set of 4x4 matrices with these properities 

may be written tending to the same solution. They apart from the components of   

and will be caught up with each other [3]. 
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2.3.2. Solution of Dirac Equation for Free Particle 

In order to solve the Dirac equation for free particle the plane wave function was 

chosen [3]. The wave function is written as in the following, 

        
  

      

 
    (2.46) 

If we substitute this equation into the Dirac equation, we obtain 

                 (2.47) 

when we expand each side of equation, we simply care the values of equation. 

                       (2.48) 

Now, the right side of equaiton is more complex according to the other side because 

all four matrices anti-commute, the cross terms will all vanish. Since all the matrices 

are squared, this simplifies to 

                        (2.49) 

This leads to two different values which are positive and negative values; 

 E =  √          (2.50) 

This result is definitely the equation we want to except the    symbol. Actually, one 

can find that two different solutions for each momentum p which have values of 

negative energy and positive energy, If the equation is viewed more carefully. We 

know that, the states of positive energy correspond to the electrons spin states, 

however, we have not got any idea for the negative energy states. Dirac tried to solve 

this problem. By the time he came up with this theory, the Pauli exclusion principle 

was already understood, and Dirac proposed that negative energy solutions, since 

they had negative energy, were already filled up with negative energy electrons 

(figure 2.1) [3]. As a consequence, any electron can not fall into these negative 

energy states. The assumption here is that the empty space is filled with countless 

negative electron states, and we don’t notice them because that is the naturel state of 

space. 
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Figure 2.1: The energy of momentum functions for electron. The negative energy 

states defined by the lower curve[3]. 

 

 

 

 

Figure 2.2: When a negative energy electron is bumben up to a positive energy 

state, it creates an electron and leaves behind a hole with positive charge and 

positive energy, which are called positron [3] 

 

Now, some of the electrons have negative energy and positive energy state. But 

missing electrons (Fig.2.2)  are left over from the hole. We have a negative charge 

(which means positive charge) by the absence of a negative energy (which means 

positive energy) would have accepted this hole. The electron mass is at rest as we 



21 
 

know. Finally, in this chapter we have given the basic properties of the Dirac 

equation for free particle. In the following chapters, we will discuss the solution of 

the Dirac equation including various potential and then scattering of Dirac particles 

and bound state of Dirac particles. 
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CHAPTER 3 

THE DIRAC EQUATION INCLUDING VARIOUS EXACTLY SOLVABLE 

POTENTIALS 

 

In order to analyze relativistic effects on the spectrum of such physical systems, one 

should construct the Dirac equation including adequate potentials and obtain its 

solutions. Two dimensional Dirac oscillator [28,29] can be used in order to 

determine the spectrum and properties of such systems in the relativistic physics. In 

this study, we have studied only exactly solvable potentials, relativistic extensions of 

these potentials have also turned out to be of importance in the description of (2+1)-

dimensional phonemena [30,31]. The Dirac equation Hamiltonian presence various 

potential can be used to find the spectrum of (2+1) dimensional different condensed 

matter physical systems. We know that the Dirac equation is important to understand 

the relativistic particles that have spin-1/2. Meantime, we can say that the 

Hamiltonian obtained from the Klein-Gordon equation, called Feshbach-Villars 

equation, has been built by two different states. One of them is spinless particles 

[11]. The Hamiltonian has been constructed in a two-component spinors for this 

particles and other one has been constructed in an eight-component for spin-1/2 

particles[32,33]. Unfortunately, the Dirac equation is not exactly solvable all species 

of potentials, it exactly is solvable only in a very limited potentials. In this chapter 

we propose that the solution of the Dirac equation including a class of potential 

whose spectrum can accurately be determined. The Dirac equation is transformed 

into the Schrödinger-like equation for this purpose. For example, physical systems 

which have few electrons, stuck on the problem in the building of the Schrödinger-

like equations. A Dirac equation was considered previously with an interaction linear 

in coordinates, and recently, it is reinvented in the case of the relativistic theories 

[34]. If we add a very strong spin-orbit coupling term into the Dirac oscillator, the 

equation becomes a harmonic oscillator in the non-relativistic limit [35,36,37].  

As we have already noted, the Dirac equation including various potentials might 

attract much attention, because it may have some physical applications, particularly 
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in the condensed matter physics. It seems that one can present more realistic models 

for the artificial atoms using the procedure given here. 

 

3.1.  Structure of Potential 

We can write the (2+1)-dimensional Dirac equation for a particle without any 

potential or magnetic field, that the particle has mass m, in terms of two-component 

spinors   , as follows [38] 

       ∑              
       (3.1) 

Where by using the Pauli spin matrices, we have defined two component spinors   

and      and we have used only that two components. Also, the relation of      

               gives the components   and     and they written as [38]  

 

        ,            ,             (3.2) 

 

We have taken the equation without any potential, so the momentum operator     is a 

differantial operator written by two component                in (2+1)-

dimension. Now, we consider we have a magnetic field. Because of the magnetic 

field in our equation, the momentum operator is replaced to        , where A is 

vector potential. And then, we add a parameter into the momentum operator as 

            ̂ and we use it into the Dirac oscillator [38]. We are seeking for a 

certain form of the momentum operator that can be interpreted as exactly solveable 

Schrödinger equation in the non-relativistic limit. For this purpose, we introduce the 

following momentum operator. 

 

                 ̂ (3.3) 

 

When we substitute the equation (3.3) into the (3.1) the momentum operator takes 

that form [38]; 

 

                        (      )              

    [        (      )   (      )]  (3.4) 

Where  
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    (
  
  

)           (
  
  

) 

 

where, in the equation (3.4)     represents momentum components,    represents 

vector potential and finally    represents the potential in the cartesian coordinate 

system.  We try to writte the (2+1) dimensional Dirac equation in terms of spherical 

coordinates under some suitable transformations [39]. Now, we can define 

transformations as vector potential;              and             , scalar 

potential;              ve              and        ,        . Under 

these transformations, the equation takes that form [38];  

 

               
 

  
  

 

 

 

  
                 (3.5) 

 

               
 

  
  

 

 

 

  
                 (3.6)   

 

Where          and             represents upper and lower components 

of the spinor  . The substitution of the wave function [38] 

 

            
 

  (    
 
 
) 

√ 
      (3.7) 

 

We can write the following set of coupled differantial equations [38] 

 

            
 

  
  

  

 
                (r) (3.8) 

 

           
 

  
  

  

 
                    (3.9) 

 

Our aim is now to write the equation (3.8) and (3.9) in terms of the Schrödinger-like 

equation, so if we substitute the above terms into the equation, we get the formulain 

the following [38] 

 

       
 

 
  

            

 
,              and           (3.10) 



25 
 

leads to that defination [38] 

 

           
 

  
            (3.11) 

 

             
 

  
            (3.12) 

 

We can see that a supersymmetric treatment of the Dirac equation is hidden into the 

results of equations (3.11) and (3.12) [39], and the supersymmetric operators are 

written as      
 

  
      [39]. It is clear that the functional form of the W(r) 

and     , which are superpotential, have the same exception for the radial function 
  

 
 

and because of the superpotential of the non-relativistic quantum mechanics. Now 

we can see that the equations (3.11) and (3.12) are written as  [38] 

 

   
  

                           (3.13) 

 

  
  

                           (3.14) 

 

This gives an interesting result for the potential.           leads to a common 

spectrum. Thus, an isospectral system can be formed. In the following study we 

analyze the solutions and the energy spectrum of the (2+1)-dimensional Dirac 

equation including various exactly solvable potentials [39]. 

 

3.2.  Exactly Solvable Potentials 

We can obtain the construction of the equations in presence of exactly solvable 

potentials with appropriate choices of the superpotential W(r) [38]. For the a large 

class potential, the equations (3.13) and (3.14) have exact solutions which are the 

Dirac equation in form of Schrödinger-like equations. Now, we try to solve the Dirac 

equation for three of these exactly solvable potential. 
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3.2.1.  Harmonic Oscillator Potential 

 

In order to solve the Dirac equation including the harmonic oscillator potential let’s 

use the Dirac oscillator. The Dirac oscillator constructs with choices of the 

superpotential       
 

 
    

   

 
. Adding this superpotential into the 

Schrödinger-type equations (3.13) and (3.14), they are taking the following form; 

[38] 

 

 [ 
  

    
      

   (
 

 
  )

 

   
 

 
           ]         (3.15) 

 

 [ 
  

    
           

   (
 

 
  )

 

   
 

 
           ]          (3.16) 

 

In these equations, the scalar potential      and the vector potential      are defined 

by [38] 

 

      
 

 
   

      

 
,          

 

 
   (3.17) 

 

And the frequency    can be denoted in terms of the Larmor frequency that form 

[38] 

 

              
  

  
 (3.18) 

 

To solve the equation (3.15), we familiarize wave function [39] 

 

            
   

   
 

        (3.19) 

 

Where we have changed the variable     
 

 
    . By using these change, the 

equation (3.15) takes; [38] 

 

 [ 
  

    (  
 

 
  )   ]        (3.20) 
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Where C is the normalization constant. The relation of energy and natural number n 

is written in the form [3] 

 

      
       

    
     

 

 
   (3.21) 

 

By choices of             we obtain the non-relativistic limit of energy and by 

choice of the relation of terms           , the non-relativistic energy is obtained 

as [38] 

          

 

Now we add the effect of spin energy into the Hamiltonian. It is worth to obtain non-

relativistic form of the equation (3.15) to analyze spin effect [38] 

 

 [ 
  

  

  

    
      

     
 

 
   

       (  
 

 
)     ]         (3.22) 

 

The corresponding Hamiltonian is the Hamiltonian of a harmonic oscillator with an 

additional spin dependent form of    (  
 

 
). We turn our attention to the 

normalization of the wave function for couplet our analysis. We can see that the 

solution of equation (3.20) associates with the Laguerre polynomials,   

  
 

    , then 

we can write      as [38] 

 

          
   

    
 

    

  
 

     (3.23) 

 

Now we can define the upper component       of spinor       from equation (3.11) 

and it is written as [38] 

      
  √   

  
  

   
    

 
      

  
 
     

Expression of normalization condition in polar coordinates is  

 ⟨ | ⟩  ∫  |     |  
 

 
|     |       (3.24) 
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Laguerre polynomials satisfy the orthogonally conditions [38] 

 ∫    

 
       

 (z)    
        

  
      (3.25) 

Finally, for the normalization constant C, an expression is obtained [38] 

    [ √     
        

      
       (    

 

 
)
]

 

 

 (3.26) 

 The Dirac oscillator in two-dimensional space has been solved which permits series 

of interesting result. The Dirac oscillator has various physical applications 

particularly in semiconductor physics [40]. 

3.2.2.  Coulomb Potential 

We can give another example such as relativistic hydrogen atom for the exactly 

solvable Dirac equation including its potential. If we choose that the magnetic field 

equals to zero,        [41,42] and in the asset of the Coulomb potential      

 
   

          
 

       

 
, the Dirac equation including that potential can be solved 

exactly. In addition, superpotential       
   

           
 

     

 
, by using the change 

these three terms the Schrödinger-like equations (3.13) and (3.14) can be written as 

follows [38] 

 

 [ 
  

    
      

   
   

       
 (

   

           
)
 

   ]         (3.27) 

 

 [ 
  

    
          

   
  

 
 (

   

           
)
 

   ]         (3.28) 

By using the similar developments in the construction of the harmonic oscillator 

problem, we transform the equation (3.27) in the form [38] 

 

 [ 
  

   
           ]         (3.29) 
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After changing the variable         
        

 

     and the wave function [38] 

                
 

         (3.30) 

The energy of the Hamiltonian is written by the natural number n as [38] 

     
       

      (
   

           
)
 

 (
   

             
)
 

 (3.31) 

In order to express the solution of the wave function, it is written by solution of the 

equation (3.29) as [38] 

                
 

    
        (3.32)  

And the wave function        is written from the equation (3.11) as follows [38] 

        
  

  
        

 

  [          
             

   

      
           

       ] (3.33) 

Now If we use the identity, the equation takes the form [38] 

 ∫      

 
     

      
                          

  
 (3.34) 

We can obtain the normalization constant after some straight forward calculation 

[38] 

   [
      

   
(
       

  
     

               )         ]
 

 

 
 (3.35) 

Where   is given by 

   [  
 

  
    

(    
   

      
      )

 

] (3.36) 

For the resent interest of the two-dimensional field theory in the condensed matter 

physics, as physically the two-dimensional Coulomb potential is relevant and we can 

see that some new features after this result of the solution [43,44]. 
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3.2.3.  Morse Potential 

One of the quantum mechanical problem is the exactly solvable Morse oscillator. In 

order to understand the interaction of the atoms in the diatomic molecules, the 

exactly solvable Morse oscillator can be used as a model [20]. One can be provided 

by using the parameters       
  

 
         ,         and        

      as the following potential [38]. 

 [ 
  

                             ]         (3.37) 

 [ 
  

                             ]         (3.38) 

We take the variable        
 

  
   for solving of the equation (3.37) and the wave 

function is chosen as in the following [39]; 

         
 

 
     

 

        (3.39) 

After these changes, the equation is obtained in the form of [38] 

 [ 
  

    (
  

 
       )   ]         (3.40) 

 

Also, we can write the energy expression of  Morse potential; [38] 

              

Now, by using the equations (3.40) and (3.11) we can define the wave function [38] 

          
 

 
     

 

    

  

 
   

    (3.41) 

       
  

  
 

 

 
    

 

 [   

  

 
   

         

  

 
     

   ] (3.42) 

For the normalization constant, normalization condition is appropriate with  the 

following expressions [38] 
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     [
            

  
  

 
                       

]

 
 

 

 (3.43) 

The potentials are useful for considering of both mathematical and physical problem 

which we have derived in this section. For example, the solution of the Dirac 

equation including single quark potential can be solved by the relativistic quark 

model. Murci has recently treated the behavior of a large distance   and short 

distance  
 

 
 [45]. Also, we can use the Morse oscillator potential for large distance 

potential in some various physical systems [25].  
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CHAPTER 4 

SOLUTION OF SCATTERING STATES OF DIRAC PARTICLES 

INCLUDING AN EXTERNAL POTENTIAL FIELD 

The exact solution of the Dirac equation with the Coulomb potential plays a very 

important role in relativistic and non-relativistic quantum mechanics. For instance, 

for a harmonic oscillator in three-dimension [46] and a hydrogen atom the exact 

solution of Schrödinger equation is important for beginning the stage of quantum 

mechanics and that solution provides a strong evidence for quantum theory. In order 

to understand a given quantum system, studying of the bound states then that of the 

scattering states can be paid more attention, so that for understanding quantun 

systems completely, we can study both of them because of the scattering  

establishment and bound states particles in quantum mechanics. Appling of the 

Schrödinger equation [47] to quantum systems has been known well. For example, 

the both systems of quantum mechanics and classical mechanic can be understood 

well by studying of the scattering of particles by Coulomb potential field. However, 

when we consider the relativistic effect on a quantum system, the Dirac equation has 

to be employed to study the electrons scattering by a nucleus potential. Also, one can 

carry out the exact solution of the Dirac equation including Coulomb plus scalar 

potential in different dimensions which are two-dimension [48,49], three-

dimension[50] and higher-dimensions [51]. One can study scattering phase shifts in 

the two-dimension Dirac equation including the Coulomb potential given by the 

second order differential equation and by algebraic method [52], for the condensed 

matter physics and interest of the lower-dimensional quantum field theory. The aim 

of us in this chapter is to study the scattering of the two-dimensional Dirac equation 

including plus scalar potential.  The Dirac equation with a given mixed potential 

including the Coulomb plus scalar potential [48,49] can be considered and it can be 

written as [48] 
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                                 (4.1) 

In this equation m represents the mass of the particle and 

      
  

 
            

  

 
   (4.2) 

Also,    and    as constants,    is electrostatic and    is scalar coupling, 

respectively. The others terms in equation (4.1)    and    correspond electrostatic and 

scalar potentials, respectively. When adding this scalar potential into the mass term, 

the Dirac equation turns into effective position-dependent mass equation. 

Following the previous study [48],      
 

  
,    | | are taken. We consider In 

2+1 dimensions, by choosing        ,         and       , where   

            are the Pauli matrices, the equation written as [39] 

                
 

          
 

  (
        

    
 
 
  

        
    

 
 
  

) (4.3) 

We know that   represents the angular momentum      
 

 
  

 

 
  . Also         and  

       denote the radial components which are adequate for first order differential 

equations [39].  

 
 

  
         

 

 
         (     

      

 
)         (4.4a) 

  
 

  
         

 

 
         (     

      

 
)       (4.4b) 

In order to introduce the scattering state this case is appropriate [39]. 

            √     ,    m | | (4.5) 

By using the equations (4.5), (4.4a), and (4.4b) [39] turn out 

 
 

  
         

 

 
         (   

      

 
)         (4.6a) 

  
 

  
         

 

 
         (

 

 
  

      

 
)       (4.6b) 
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Where     is defined  √
   

   
 

Also, the wave functions         are defined with the forms [39] 

         
 

 
                    (4.7a) 

          
 

 
                     (4.7b) 

One can obtain following equations by substitution of equations (4.7a) and (4.7b) 

into the equations (4.6a) and (4.6b) [39]. 

 
   

  
  

  

 
     

     

 
       (4.8a) 

 
   

  
         

  

 
    

     

 
      (4.8b) 

Where   and    are defined [39] as follow; 

      
      

  
  

         

 
 (4.9a) 

     
      

  
  

         

 
 (4.9b) 

Also we have a property between these equations [39] that is 

              
    

 
 (4.10) 

 we can obtain an equation for      by eliminating       [39], 

  
    

     (1+2i  ) 
    

  
  (   

     
    

 

 
)       (4.11) 

Equation (4.11) looks like a special case of Tricomi equation [53]. A tricomi 

equation [39] is written as in the following 

 
   

     a+
 

 
  

  

  
    

 

 
 

 

     = 0 (4.12) 

Where a,b,c,d and f are constants. By using behaviors of the asymptotic wave 

functions at the origin, one can define 

            ,         √     
    

  (4.13) 
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By using the equation (4.13) into the equation (4.12) leads to [39] 

  
   

              
  

  
            (4.14) 

Changing another term which is         ,  the equation (4.14) takes a new form 

[39] 

  
   

   
         

  

  
             (4.15) 

We have not any solution for this equation, but turning the confluent hypergeometric 

functions [54] that are written as 

                              (4.16) 

So we have an equation for      that is 

                              (4.17) 

One can obtain a useful formula by using the following recursive relations between 

the confluent hypergeometric functions [54]. 

    
 

  
                              (4.18) 

                                           (4.19) 

We may obtain a useful formula [39] 

   
 

  
                                 (4.20) 

By using the equation (4.17) into the equation (4.8a) and helping of the equation 

(4.20) it yields [39] 

         
    

     
                             (4.21) 

Finally, we can express           and         directly by the behaviors of the radial 

function in the combinations of the confluent hypergeometric functions. And for the 

value of     , We now study the asymptotic behaviors of the radial wave 

functions. For     , we have [39] 



36 
 

       
 

    
   

 

 
                  

       

         
 (4.22a) 

      
 

      
 

 

 
                   

       

         
         

      (4.22b) 

we can obtain the following relation by using the equations [39] (4.22a) and (4.22b) 

   
    

   
                   

         

         
       

     

    
 (4.23) 

so, we can obtain the phase shifts     as [39] 

                

   
   

         

         
          

     

    
 (4.24) 

It is shown that, the Dirac equation was discussed [54] only by Coulomb potential 

that is similar to this exact expression. However, the problem discussed in this work 

includes the scalar coupling potential,i.e, the parameter     is related to two potential 

parameters     and    . 

As we know, once the phase shifts are obtained we can study the scattering 

amplitude and the differantial cross section. For the sake of simplicity, in the 

following we can obtain the scattering amplitude as [54] 

        
 

√   
 ∑ [ (      )]     

  (4.25) 

because of  ∑     
        , we can write for        

        
 

√   
 ∑   (    )

       (4.26) 

From which the cross section may be calculated as [54] 

       |    |  (4.27) 

It should be noted that the equation (4.26) is very difficult to obtain an analytical 

expression [39]. Nevertheless, It can be expressed by choice of              
  

  

    
     [54] in the special case      for the light nucleus [39]. However, if we 

choose the parameters   in terms of the parameters       and   which are given in 

equation (4.13), they turn into a very complicated term [39]. We now write the 
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equation in special case       . Substituting of the relation         into the 

equation allows us to obtain   | | [39]. On the other hand, we have a relation 

depending on   and    given in equation (4.9). 

      
  

 
 (4.28) 

so equation (24) can be written as [39] 

             
       

         
         (4.29) 

From which [39] 
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  | | 
 

 
    

  | | 
 

 
    

              

 (4.30) 

By substitution of this result into the equation (4.26) we can obtain these relations 

[39] 

      
 

√   
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        ] 

  
 

√   
[
  

 

 
    

  
 

 
    

       
 

 
    

 

 
          ] (4.31) 

Where F(a,b,c,z) represents the hypergeometric functions. We can write following 

important equations [46]. 

                                     (4.32) 

And  

            
          

          
                      

 

 
   

 +
          

          
                      

 

 
  (4.33) 

Now the scattering amplitude      can be obtained by equation (4.32) and (4.33) 

substituting into equation (4.31) [39]. 
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√            
 

 
 

 (4.34) 

From these equations the following formulas can be written [39] 

             |     |  
 

        
 (4.35a) 

  (
 

 
   )  (

 

 
   )  | (

 

 
   )|

 

 
 

         
 (4.35b) 

 

As a result we have [39] 

      |    |  
          

       
 

 
 
 (4.36) 

Where It is shown that respect to the scattering angle     is symmetry with the 

cross section      as shown in fig.4.1[39]. 

 

Figure 4.1: It is shown that respect to the scattering angle      is symmetry 

with the cross section                           √        √  [39] 

Phase shifts of Dirac equation has solved as a second order trigonometric differential 

equation. Then It showed that scattering angle      is symmetry with cross 

section       [39].   
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CHAPTER 5 

SOLUTION OF BOUND STATES OF DIRAC PARTICLES WITH SOME 

PHYSICAL QUANTUM POTENTIALS 

In this chapter we will study the bound states solutions of Dirac particles under an 

external potential field. Let’s consider a particle which is exposed to a strong 

potential field. For that particle the relativistic effects must be considered. It should 

be noted that when a spinless particle is exposed to an external potential field, the 

relativistic effects are expressed with the Klein-Gordon equation. For some fields of 

physics like nuclear and atomic and molecular physics, the solution of Dirac equation 

is also important [12,13]. We can consider the Dirac equation in terms of the scalar 

potential   and the repulsive vector potential   . Within the framework the Dirac 

equation the spin symmetry arises if the magnitude of the spherical attractive scalar 

potential   and repulsive vector   potential nearly equal such that     in the nuclei. 

However, the pseudospin symmetry occurs if      are nearly equal [14]. 

Recently, many authors have been extensively applied on various physical potentials 

by helping of spin and pspin symmetries [16,17]. For example, we can see solution 

of  Dirac equation for some potentials which are deformed generalized Poschl-

Theller (PT) potential [18], well potential [19], Manning-Rosen potential (MR) [20], 

modified PT potential [21,22], modified Rosen-Morse (RM) potential [23] and class 

of potentials including harmonic oscillator, Hulthen, trigonometric RM potential, 

Scarf Eckert, Morse, MR [24], and others. By using the properties of quantization 

rules, algebraic methods, we have the solution of Dirac equation including those 

potentials in the framework of the spin-orbit centrifugal term of the approximation to 

the spin-orbit. 

If we want to obtain the exact solutions of the Dirac equation for the exponential-

type potentials, we should choose the s-wave (     case). The Dirac equation has 

exact solution for those potentials only this case of the wave [55]. 
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However, for the spin-orbit and psedospin centrifugal, 
      

    and   
      

  , 

respectively, the terms states approximation can be used to deal with that spin-orbit 

and psedospin-orbit values [56,57]. To this end, the Dirac equation including large 

number of potential has been solved to obtain the two-component spinor wave 

functions on the energy by many works. The values of the energy spectra do not 

depend on the structure of the particle [58], whether they depend on the spin  
 

 
 or 

spin-0 particle. Also, when by choose spin  
 

 
 or spin-0 particle which have same 

mass and depend on potential of equal magnitude          ∑    or     ) 

which are scalar potential S and vector potential V, the spectrum of energy 

(isospectrality) including bound and scattering states will have been same [58]. 

When we solve the Dirac equation with the harmonic oscillator potential for the 

massless particles (or the ultra-relativistic particles), we see that the spin and pspin 

spectra of that particles are the same [59]. 

The spin symmetric and pspin bound state solutions of Dirac equation including the 

standard Rosen-Morse well potential model can be obtained as [25,60] 

              
              (5.1) 

Where    and    constants represent the depth of the potential and   has an inverse 

of length dimension which is the range of the potential. For three different values of 

parameters     and     the potential (5.1) is plotted in figure.4 [25]. 
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Figure 5.1: For three cases       ,                
  

 
                     

                

Our aim in the next papers is to extend of the s-wave solution by using the Dirac 

equation including some physical potential [50] and using the Nikiforov-Uvarov 

method [26,27]  adding an approximation to look after with the presence of 

centrifugal (pseudo-centrifugal) potential term [61,62]. The spin-orbit centrifugal 

barrier  
      

   is arranged for   which are the values of spin-orbit coupling quantum 

numbers with the use of approximation scheme. Where the quantum numbers have 

not got large values and they are vibrations of the small amplitude [62]. By using the 

definition of spin symmetry     and pspin symmetry       the bound state 

energy eigenvalues and their corresponding upper and lower spinor wave functions 

can be calculated. Also, the spin and pspin symmetry Dirac solutions can be shown 

when pspin symmetry limitation is chosen     and ∑   , respectively. And for 

spin symmetry      and ∑      can be reduced to the exact spin symmetry. 

Furthermore, if we use suitable matching of parameters, by using the non-relativistic 

limit of the Dirac equation the bound state solutions of Schrödinger equation can be 

obtained. 

In the following sections, we mainly will define the basic spin and pspin Dirac 

equation. Then, the (3+1)-dimensional Dirac equation with the Rosen-Morse 
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potential and reflectionless-type potentials are approached for analytical bound state. 

Also, we use a parametric generalization of the Nikiforov-Uvarov method [26,27] in 

order to obtain those potentials that are also obtained in the presence of the spin and 

pspin limits. After that, we will study non-relativistic limit and special case of the s-

wave          ̃    . 

5.1. Basic Spin and Pspin Dirac Equations 

Let’s write the Dirac equation for fermion massive particles which have spin  
 

 
. 

And the equation depends on vector and scalar potential is written as [12] 

 [   ⃗   (        )        ]     ⃗    (5.2) 

Where      ⃗  is written in terms of        parameters as in the following [25] 

     ⃗            

And E is the connecting relativistic binding energy of the system, m is corresponds 

the mass of particle,  ⃗       is momentum operator and   and   are 4x4 Dirac 

matrices [14,61,63]. The spinor wave functions are defined as 

        ⃗  (
     ⃗     

      

      ⃗     
 ̃       

) (5.3) 

In the equation (5.3)      ⃗  and       ⃗  demonstrate the radial wave functions of 

upper-spinor and lower-spinor ingredients, respectively. And    
       and 

   
 ̃        are represented the spherical harmonic functions coupled to the total 

angular momentum   and its projection m on the z axis [25].  

We can obtain for the upper-spinor ingredient a second differential equation 

[61,63,64,65] in form  

    
      (

      

  
   

    ∑)     ⃗  =0 (5.4) 

Where 

   
  

 

    
         

               (5.5a) 
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               (5.5b) 

And for choices of two values  , for     ,               and for    , 

         . Furthermore, the lower-spinor ingredient is obtained as [25] 

        
 

          
(

 

  
 

 

 
)       (5.6) 

Where, if we choose exact spin symmetric case         ,     is non-zero 

(     ). This means that we have only positive energy spectrum [25].Now, 

considering the same things for the existence of pspin symmetry (∑      ∑), we 

can obtain a second-order differential equation again for the lower-spinor [25] 

ingredient, 

     
      (

      

      
      )      =0 (5.7) 

Where [25] 

    
  

 

    
         

               (5.8a) 

      
 

    
             (5.8b) 

We can obtain the upper-spinor [25] component        as in the following 

         
 

          
(

 

  
 

 

 
)       (5.9) 

Where if the exact pspin symmetric case is chosen (    ∑   ),     is not be 

equal     (       ) [25]. This means that we have only negative energy 

spectrum. From the overhead equations, the energy eigenvalues depend on the 

quantum numbers n and   , and also the pseudo-orbital angular quantum number   

according to         ̃( ̃   ), which implies that     ̃  
 

 
 are degenerate 

for  ̃   . The quantum condition for bound states demands the finiteness of the 

solution at infinity and at the origin point [25]. 

It is known that the equations (5.4) and (5.7) can be solved exactly only for the case 

of             and       ̃    , respectively, when the spin-orbit coupling 

centrifugal and pseudo-centrifugal terms will get suppressed. In the case of non-zero 
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  and  ̃ values, we can use the approximation scheme to deal with the spin-orbit 

centrifugal (psedo-centrifugal) term when   is not large and when vibrations of the 

small amplitude near the minimum point       [62,63]. 

  
 

  
 

 

  
 [     

      

       
   (

      

       
)
 

] (5.10) 

At this equation    corresponding the parameters of coefficient (       ) are 

obtained by [25] 

      (
        

    
)
 

(
    

        
         ) (5.11a) 

               [ (
        

    
)          (

        

    
)] (5.11b) 

              (
       

    
)
 

(       
    

       
) (5.11c) 

And at this point, we have neglected higher order terms. 

 

5.1.1 Spin Symmetric Solution 

A total of potential is taken in equation (5.4) in terms of standard Rosen-Morse well 

potential [25] given in equation (5.1). 

 ∑           
     

          
   (

       

       )  (5.12) 

 As a new variable z(r) =      substituting into the sum potential given by equation 

(5.12) and which is written into the equation (5.4) can be in such form that [25], 

     
      

   

      
   

     
            

 

        
       = 0  (5.13) 

Where                requires that at boundaries we can show the parameters 

             whose forms are [25] 

    
 

  
√

      

  
           

     (5.14a) 
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(
      

  
                   

 ) (5.14b) 

    
 

   
(
      

  
              

      )  (5.14c) 

We can start with the NU method’s [26,27] applications by comparing the 

hypergeometric differential equation [25] with the equation (5.13) 

   
      

 ̃   

    
  

     
 ̃   

     
        (5.15) 

Where 

                 (5.16) 

To determine the parameters [25] 

  ̃       ,                  ̃         
        

  (5.17) 

And more calculate the function      as [25] 

 

      
 

 
        ̃     √

 

 
        ̃       ̃          

   
 

 
 

 

 
√                          

  (5.18) 

In order to make the discriminant of the expression under square root, we are also 

looking for a physical value of k by using the equation (5.18) which is equal to zero 

[25] 

 k =       
      , q √  

        

    
  

     

   (5.19) 

By using the value of k into the equation (5.18), the following appropriate solutions 

can be obtained [25] 

          
 

 
           (5.20) 

And  
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      (5.21) 

The function       ̃           can be calculated by regarded to equations (5.17) 

and (5.20). If we use this equation in the bound state condition, we can establish the 

solution when         as [25] 

                      ,          =             (5.22) 

Where prime corresponds to the derivative of variable z. The energy eigenvalues can 

be calculated from the finding energy equation according to the method [26,66], so 

we need to obtain the values of the parameters:  ̅           and   ̅     

      
 

 
                      , as [25] 

  ̅  
 

 
       

     (   
 

 
)   (5.23) 

and 

   ̅                           (5.24) 

 The supernatural energy equation, including vector and scalar potential of particles 

which has spin  
 

 
 can be obtained by the definitions of variables in equations (5.14) 

and (5.19) and the relation of   ̅   ̅  [25]. 
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]

 

 (5.25) 

In addition, according to the Klein-Gordon theory in units of       equally 

mixed Rosen-Morse-type potentials, we can obtain the arbitrary   wave energy 

equation in the case of exact spin symmetric.              [25]. 

      
   

        

   
           

    [    
      

     

  
            

        
]

 

 (5.26) 
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With 

   
 

 
 

 

 
√  

        

    
  

 

            (5.27) 

Where the values of   (         ) and the values of    (         ) are 

corresponding to the quantum number and the orbital quantum number, respectively. 

By using the present potential model we try to find the correspond wave function. 

Firstly, the weight function can be defined like in ref. [66]. The function is written as 

      
 

    
 

∫
    

    
  

              (5.28) 

And by using the first part of the equation (16) as [25] 

       
∫

    

    
  

          
   

  (5.29) 

Again by using the second part of the equation (5.16) a wave function can be 

obtained called Rodrigues representation [25] 

      
  

    

  

   
                        

  

   
                 

    
        

               (5.30) 

Where    is the normalization constant and the Jacobi polynomials [25]   
     

    

are defined for         and          for the           . 

The upper-spinor wave function can be written by using                as [25] 

         
                

   
   

         
           

                       
   

 
                                  (5.31) 

Where       and      . We calculate the normalization constant     for the 

upper-spinor component are [25] 

     [
                

      
∑

                       

                     
   

 
   ]

 

 (5.32) 

With  
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                                              (5.33) 

Furthermore, we can obtain the corresponding lower component     [25] as in the 

following 

          

                   
   
  

           

[      
           

       
 

 

 
] 

                                 

+   [
              (     )

    
(       )

   
 

                    
] 

                                              (5.34) 

for the exact spin symmetry           . Also, we end the hypergeometric series 

                                 for     and hence, by choosing the 

all values of real parameters     and      it is converged [25]. 

5.1.2. Pspin Symmetric Solution 

Now we take a difference potential in equation (5.7) in the same way as stated before 

as [25] 

            
     

          
   (

       

       ) (5.35) 

And by defining a new variable             , we can obtain a Schrödinger-like 

equation for        which is the lower-spinor component [25], 

    
      

   

      
   

     
            

  

        
         (5.36) 

Where the parameters [25]                are showed by  

    
 

  
√

        

  
           

     (5.37a) 

    
 

   (
      

  
                     

 ) (5.37b) 

    
 

   (
      

  
               

       ) (5.37c) 
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In order to avoid the repetition of the solution of equation (5.36), we understand from 

the relation between the previous set of parameters (          and the present set 

of            , for the negative energy solution of the pseudo-spin symmetry 

such ∑       ∑. Also, we can understand the positive energy solution for the 

spin-symmetry by performing changes [61,63]. 

               ,             (or              ) 

           and        (5.38) 

Considering the previous result in equation (5.25) and applying the above 

transformations, we finally arrive at the pspin symmetric energy equation [25]. 

         
                

            

  
                + 

  
      

 
[       

                                 

  
 

              
] (5.39) 

Where 

   √  
        

    
  

      

      (5.40) 

Again the radial lower-spinor wave function [25] in equation (5.31) become 

             
                 

 

 
     

  
                       

 =     
                 

 

 
     

                                  (5.41) 

This equation satisfies for the bound states,     and       and the normalization 

constant [25] is    

      [
                

      
∑

                         

                     
   

 
   ]

 
 

 
 (5.42) 

With 

                                         (5.43) 

 



50 
 

5.2. Applications to some physical potential models 

We accept two physical potential cases as the reflectionless-type potential and the 

Rosen –Morse potential [25]. 

 

5.2.1.  The reflectionless-type potential 

Now, we consider the Rosen-Morse potential. In this potential, when we choose the 

coefficient of         equals to zero, this can be achieved. Also, this type potential is 

the special case of the symmetrical double-well potential. The reflectionless-type 

potential takes the form [67] 

                     
      

 
           (5.44) 

For three values             the plot of the potential can be shown in figure. 5 

[25] as  

Now, we consider the Rosen-Morse potential. In this potential, when we choose the 

coefficient of         equals to zero, this can be achieved. Also, this type potential is 

the special case of the symmetrical double-well potential. The reflectionless-type 

potential takes the form [67] 

                     
      

 
           (5.44) 

For three values             the plot of the potential can be showed in figure. 5 

[25] as  
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Figure 5.2: For Three values of           plot of reflectionless potential. 

By using the potential in equation (25), the energy equation becomes [25] 

       
             

        

  
  

  

 
[        

      
     

  
 

           
]

 

 (5.45) 

And again this potential substituting into the equation (5.31) for obtaining the upper-

spinor wave functions [25], it turns into 

              
                 

 

 
      

           (5.46) 

Where 

    
 

  
√

        

  
    

 
           √

        

    
  

     

   (5.47) 

These results which are given in equations (45) and (46) are identical [18] for s-wave 

case (    ). If we have the pspin case, the spectrum of the energy [25] becomes 

 

                   
             

        

  
  

  

 
[        

      
     

  
 

           
]

 

 (5.48) 
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And the lower-spinor component of pspin symmetry wave function [25] 

         ̃    
                 

 

 
      

                      (5.49) 

Where 

     
 

  
√

        

  
     

             √  
        

    
  

      

      (5.50) 

For the bound state 
      

  
    when      

In the next step, the non-relativistic limit of the energy eigenvalues and wave 

functions of the solutions are discussed. If one consider the transformation     

     and            and take             the expression for the 

equation (5.45) and wave function equation (5.46) (in      ) can be written as   

in the following [25] 

      
        

    
  

  

  
[  

 

 
 

 

 
   

               

     
    

 

 
 

 

 
   

]

 

 (5.51) 

And the wave function [25] 

              
                 

 

 
      

  
                 ) (5.52) 

Where 

    
 

  
√

        

  
  

  

                √
        

    
  

    

     (5.53) 

To conclude, it is necessary to mention that reflectionless-type potential here reminds 

one of the modified PT potential in the one-dimensional case [22]. However, for the 

present case, it is in the three-dimensional case. Thus, the original symmetry is 

broken. The energy levels could be obtained readily [22]. 
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5.2.2 The Rosen-Morse Potential 

The standard Rosen-Morse potential is introduced by Rosen and Morse [60] which is 

helpful for discussing polyatomic vibrational energies and useful to describe 

interatomic interaction of the linear molecules. If we are supposed to give an 

example for this case, application of the     molecule’s vibrational states can be 

considered [25]. One can achieve, when 

                                (5.54) 

Where     and    represent real dimensionless parameters [25]. This potential can be 

plotted like in figure 3 [25]. The potential is plotted for the set of three parameter 

values. Now, let us obtain the spin symmetry energy spectrum for the Rosen-Morse 

well potential in equation (25) and (31). It takes the form [25],  

      
             

        

  
 

               

 
  

 
[        

             

  
              

           
]

 

 (5.55) 

 

Figere 5.3: A plot of the Rosen – Morse potential for three different sets of 

parameters. 
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And the upper spinor component of the wave functions       [25] obtained as, 

             
                 

 

 
      

  
                    (5.56) 

Where 

    
 

  
√

        

  
         

            √
        

    
  

         

   (5.57) 

Furthermore, the spectrum of energy for the Rosen-Morse well potential is defined in 

the presence of the spin symmetric as [25] 
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]

 

 (5.58) 

And the lower-spinor wave function can be written as [25] 

             
                 

 

 
      

  
                     (5.59) 

Where 
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            √
        

    
  

          

      (5.60) 

For the bound state 
          

  
    when      In the next step, the non-relativistic 

limit [24,55] of the energy eigenvalues and wave functions of the our solutions are 

discussed. By taking             and one considers the expression for the 

equation (5.55) and wave function equation (5.56) (in      ) can ben shown as 

in the following [25] 
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 (5.61) 

And 

             
                 

 

 
      

  
                     (5.62)  

Where 
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√

        

  
                      √  

        

    
  

       

   (5.63) 

Also,      represents the normalization constant [24]. 

5.3. Discussion 

In this chapter two special cases of the energy eigenvalues have been studied which 

are written in equations (5.25) and (5.39) for spin and pspin symmetry, respectively. 

I. We have introduced the energy spectrum and the wave function equations in the 

presence of the reflectionless-type potential for the s-wave spin symmetric case 

(        ) and choosing the units parameters (     ) [25] we have  
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And  
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Where,    
          

  (       )  . And for another case  

       ̃      the   ̃-wave pspin symmetric case 
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 (5.66) 

Where  
   

  
               and we can write the lower-spinor component of 

pspin symmetric wave functions [25]. 
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Here,    
         

  (      )  . For the spin symmetric case the Rosen-

Morse potential model we can write that equation,  

         
  (       )      (          )    [  
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 (5.68) 

And the wave functions         have that upper-spinor component [25] 
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Where  

   √  
       

               and       √
  (          )    

 

  
  we can 

write the energy equation for the pseudospin case as in the following [25] 

        
  (      )     (         )    [   

 

 
 

  

 
 

            

     
 

 
 

  
 

 
]

 

 (5.69) 

And the lower-spinor wave function is showed for this case as [25] 

               
      

  
           

     

   
                    (5.70) 

Where  

   √  
       

  (         )  and     √  (         )  
  

 

 
 

II. We have introduced the other potential forms by the transformation of the 

potential (5.1). We consider a potential depending on variable x which is     . Now 

we choose the transformations:               and        . These are complex 

transform parameters, the equation transforms into a trigonometric Rosen-Morse-

type form [25]. 

               
              (5.71) 

Where    
 

  
  and        . Where           when        and      , if 

relation           exists, the potential        is said to be PT-symmetric, where 

P denotes parity operators (space reflection) and T denotes time reversal [68, 69]. 

This PT-symmetric potential is plotted in figure 4 [25] for various sets of parameters  

    and    . Thus the spin-symmetric energy equation (    ) can be obtained from 

equations (5.19) and (5.25) as 
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Figure 5.4: Plot of the trigonometric Rosen – Morse type potential [see eq.(71)] for 

various of parameters. 
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 (5.72) 

Here,                     [25]. 
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CHAPTER 6 

CONCLUSION 

As a result, firstly we have obtained the Dirac equation from the Klein-Gordon 

equation. Then, the solution of Dirac equation has been defined for the free particle 

and obtained the eigenfunctions and eigenvalues energy of the particle. It is obvious 

that the particles have negative solutions which can be seen in Figure 2.1 and Figure 

2.2 (it can be considered positron = anti-particle = anti-matter). And then, we have 

compared these results with results of non-relativistic studies. Another study in this 

thesis is the solution of Dirac equation for three (2+1) dimension exactly solvable 

potentials which are harmonic oscillator potential, Coulomb potential and Morse 

potential.  

Furthermore, we have studied the scattering solution of Dirac particle including the 

(2+1) dimension Coulomb plus scalar potential. Phase shifts of Dirac equation has 

been solved as a second order trigonometric differential equation. From which the 

scattering angle      has symmetry with cross section      .  

Finally, we have studied bound state of Dirac particle under an external potential 

field. For this solution, we have defined a relation of upper and lower spinor wave 

function in the presence of reflectionless spherical scalar and vector potential and 

approach of analytical Rosen-Morse type potential under the condition of relativistic 

spectrum of energy. The solution of wave functions has been expressed in terms of 

generalized Jacobi polynomials and hypergeometric functions. Also, we have used 

the recently introduced exponential approach of centrifugal spin-orbit (psedospin-

centrifugal) potential terms. One of the most interesting result is the spin (pspin) 

energy spectrum of Dirac equation that has been the same as the solution of energy 

spectrum of the Klein-Gordon equation by choices of         ∑           

  . We can state that this result is possible. It has been seen that spin and pspin 

symmetry of the Dirac equation is similar to the relativistic spin  
 

 
  and   spin   

particles in the presence of spherical scalar and vector potentials. Obviously, the 

limit of non-relative theory can be reduced with suitable transformations [61]. Also, 

the problem turns to s-wave solution  in case of quantum value             ̃     

[70,71]. 
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