

UNIVERSITY OF GAZİANTEP

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

DYNAMIC MANUFACTURING CELL FORMATION THROUGH

MARKET ORIENTED PROGRAMMING

Ph.D THESIS

IN

INDUSTRIAL ENGINEERING

BY

LATİFE GÖRKEMLİ

JANUARY 2014

Dynamic Manufacturing Cell Formation through Market Oriented

Programming

Ph.D Thesis

in

Industrial Engineering

University of Gaziantep

Supervisor

Prof. Dr. Adil BAYKASOĞLU

by

Latife GÖRKEMLİ

January 2014

©2014 [Latife GÖRKEMLĠ]

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Latife GÖRKEMLĠ

ABSTRACT

DYNAMIC MANUFACTURING CELL FORMATION

THROUGH MARKET ORIENTED PROGRAMMING

GÖRKEMLİ, Latife

Ph.D. in Industrial Eng.

Supervisor: Prof. Dr. Adil BAYKASOĞLU

January 2014

100 page

In today’s competitive environment, cellular manufacturing is a promising approach

providing both the flexibility of job shops and efficiency of flow lines. However, one

of the drawbacks of cellular manufacturing and its algorithms is their inability to

handle dynamic events, especially dynamic changes in part spectrum. Although there

are various efforts in the literature, researchers still could not overcome this problem

efficiently. Since handling dynamism with traditional methods is nearly impossible,

and the reconfiguration of the cells according to each change is difficult and costly

especially in volatile manufacturing systems. In this context, agent based modelling

provides opportunities to model dynamism and to obtain efficient solutions. Since it

has ability to track and evaluate the real time information if it is implemented

successfully. On the other side, virtual cell formation concept provides the

opportunity to create manufacturing cells without the reconfiguration. In this thesis

study, it is mainly focussed on these modelling approaches to develop a dynamic

cellular manufacturing system. And an integrated novel agent based virtual cellular

manufacturing approach is developed. The proposed approach enables to realize part

family formation, virtual cell formation, and scheduling simultaneously while

considering dynamic part demand arrivals. The results are discussed and it is shown

that the proposed approach is very effective.

Key Words: Agent based modelling, virtual cellular manufacturing, dynamism.

ÖZET

PİYASA ODAKLI PROGRAMLAMA İLE DİNAMİK ÜRETİM

HÜCRELERİNİN OLUŞTURULMASI

GÖRKEMLİ, Latife

Doktora Tezi, Endüstri Müh. Bölümü

Tez Yöneticisi: Prof. Dr. Adil BAYKASOĞLU

Ocak 2014

100 sayfa

Bugünün rekabetçi imalat sektöründe hücresel imalat yöntemi, atölye tipi üretimin

esnekliğini ve seri üretimin etkinliğini içinde bulundurmasıyla umut vaad eden bir

yaklaĢımdır. Fakat hücresel imalat ve algoritmalarının en önemli eksikliklerinden

birisi özellikle parça taleplerinde meydana gelen dinamik değiĢiklikleri olmak üzere

dinamik olarak meydana gelen olayları modellemedeki yetersizliğidir. Literatürde bu

konuda birçok çalıĢma yapılmasına rağmen hala bu problemin üstesinden etkin bir

Ģekilde gelinememiĢtir. Çünkü geleneksel yaklaĢımlar ile dinamikliği modellemek

neredeyse imkansızdır ve meydana gelen her bir değiĢikliğe göre geleneksel olarak

hücreleri yeniden oluĢturmak zor ve maliyetli bir iĢtir. Bu bağlamda, etmen tabanlı

modelleme yaklaĢımı, dinamikliği modelleme ve etkin sonuçlar elde edilmesinde bir

çok avantaja sahiptir. Çünkü etmen tabanlı modellemenin, eğer doğru uygulanırsa,

zaman içerisinde meydana gelen değiĢiklikleri izleme ve değerlendirme kabiliyeti

vardır. Diğer taraftan, sanal hücresel imalat yöntemi ile ise imalat hücreleri sanal

olarak oluĢturulduğundan hücrelerin fiziksel olarak yeniden yapılandırılmasına gerek

yoktur. Bu tez çalıĢmasında hücresel imalat sisteminde dinamikliği modellemede

önemli fırsatlar sunan bu yöntemler dikkate alınarak dinamik etmen tabanlı bir

sistem geliĢtirilmiĢtir. Önerilen sistem ile dinamik olarak gelen parça talepleri

dikkate alınarak parça ailesi oluĢturma, sanal imalat hücresi oluĢturma ve

çizelgeleme iĢlemleri eĢ zamanlı olarak gerçekleĢtirilmektedir. Elde edilen sonuçlar

değerlendirilmiĢ ve önerilen sistemin etkinliği ortaya koyulmuĢtur.

Anahtar Kelimeler: Etmen tabanlı modelleme, sanal hücresel imalat, dinamizm.

To My Family

viii

ACKNOWLEDGEMENTS

I would like to express my thanks and appreciation to my supervisor Prof. Dr. Adil

BAYKASOĞLU for his invaluable guidance, support and encouragement throughout

the thesis study.

I thank to Prof. Dr. Türkay DERELĠ for his valuable support. I also would like to

thank the other committee member of my thesis Doç. Dr. KürĢad AĞPAK.

I also thank to my friend Zeynep Didem UNUTMAZ DURMUġOĞLU for her

valuable concern and help.

I am grateful to TUBĠTAK BĠDEB for their Ph.D. scholarship program supported me

throughout the Ph. D. studies.

My special thanks for my family; my father, mother, sisters Beyza and Burcu, and

brother Nuhkan for their invaluable support.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZET... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABREVIATIONS .. xiv

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Thesis Organization .. 3

CHAPTER 2 .. 5

LITERATURE REVIEW... 5

CHAPTER 3 .. 12

AGENT BASED DYNAMIC PART FAMILY FORMATION IN

CONCEPTUAL LEVEL .. 12

3.1 Agent based dynamic part family formation .. 13

3.1.1 Problem definition ... 13

3.2 Agent based dynamic part family formation algorithm 15

3.3 Agent based dynamic part family formation simulation model 18

3.4 An illustrative example .. 21

3.4 Computational study ... 25

CHAPTER 4 .. 34

AN OVERVĠEW OF DYNAMIC AGENT BASED VIRTUAL

CELLULAR MANUFACTURING ... 34

x

4.1. Resource elements ... 35

4.2. Capability based distributed layout ... 35

4.3. Market oriented programming ... 36

CHAPTER 5 .. 44

AGENT BASED DYNAMIC VIRTUAL CELL FORMATION AND

SCHEDULING APPROACH .. 44

5.1. Part family formation phase .. 45

5.2. Virtual cell formation and scheduling phase ... 48

CHAPTER 6 .. 51

COMPUTATIONAL STUDY ... 51

CHAPTER 7 .. 65

SUMMARY, CONCLUSIONS, AND FURTHER RESEARCH 65

REFERENCES ... 68

APPENDIX A .. 76

APPENDIX B .. 78

PERSONAL INFORMATION .. 97

xi

LIST OF TABLES

TABLES Page

Table 3.1 Properties of the test problems ... 29

Table 3.2 Comparison of results .. 30

Table 3.3 Details of the results ... 32

Table 6.1 Processing capabilities of machines in terms of resource elements........... 52

Table 6.2 Processing times of resource elements respect to machines (minutes) 53

Table 6.3 Travelling distances between machines in the capability based

distributed layout .. 54

Table 6.4 RE-based operation sequences of each part type 55

Table 6.5 Parameters and their levels .. 57

Table 6.6. Results of the experiments .. 58

Table 6.7 Results according to scheduling rules .. 60

Table 6.8 Travelling distances between machines in functional layout..................... 62

Table 6.9 Summary of results .. 63

xii

LIST OF FIGURES

LIST OF FIGURES Page

Figure 3.1 Machine-part incidence matrix ... 14

Figure 3.2 Flowchart of the agent based dynamic part family formation algorithm . 16

Figure 3.3 Statecharts of part, manager, and part family agent respectively. 18

Figure 3.4 Machine-part incidence matrix. .. 21

Figure 3.5 Dynamically generated part families. ... 22

Figure 3.6 Threshold value of part families and distance of part 8

from the part families. .. 22

Figure 3.7 Dynamically created part families .. 23

Figure 3.8 Threshold value of part families and distance of part 9

from the part families. .. 23

Figure 3.9 Dynamically created part families. ... 24

Figure 3.10 Dynamically created part families. ... 24

Figure 3.11 Machine-part incidence matrix. .. 25

Figure 3.12 Dynamically created part families. ... 25

Figure 4.1 The main concepts and methods ... 34

Figure 4.2 The framework of the proposed approach .. 38

Figure 4.3 Statechart of a part agent .. 40

Figure 4.4 Statechart of the clustering manager agent ... 40

Figure 4.5 Statechart of a part family agent ... 41

Figure 4.6 Statechart of a machine agent ... 42

Figure 4.7 The interaction diagram of the agents .. 43

Figure 5.1 Agent based dynamic part family formation algorithm 46

xiii

Figure 5.2 The procedure for determining part dissimilarity based

on processing sequences of parts ... 47

Figure 5.3 The procedure for transition from dynamic part family

formation to dynamic virtual cell formation and scheduling 49

Figure 5.4 The procedure for determination of the machines of the virtual cell 50

Figure 6.1 Dynamically created and scheduled part families 56

Figure 6.2 The main effects plot for average tardiness .. 59

Figure 6.3 The main effects plot for average set up time... 59

Figure 6.4 Main effects plot considering average time in shop 61

Figure 6.5 Main effects plot considering average tardiness 61

Figure 6.6 Results considering average time in shop ... 64

Figure 6.7 Results considering average setup time .. 64

Figure 6.8 Results considering total travel time .. 64

Figure A.1 Machine-part incidence matrix considering obtained part families......... 76

Figure A.2 Sum of voids and exceptional elements for each machine-part

family pair .. 77

Figure A.3 Determined machines and part families for each cell 77

xiv

LIST OF ABREVIATIONS

xij xij=1 if part i belongs to part family j, and x ij=0 otherwise

n number of parts

p number of part families

mj the size of part family j

dij Distance between part i and part j

Dpk Distance between part p and part family k

Ck,a Center of part family k for attribute a

Ga Global center of system for attribute a

e total number of 1’s in the matrix

e0 total number of exceptional elements

ev total number of voids

REs Resource elements

ADSif Average dissimilarity between part i and part family f

DSij Overall dissimilarity level between part i and part j

PDSij Part dissimilarity based on commonality of machine requirements

between part i and part j

SDSij Part dissimilarity considering processing sequences of part i and

part j

Pi Operation sequences of part i

M n*m matrix

wi weight on dissimilarity index i

RTi Release time of ith part

DDEi Due date estimation of ith part

FTEj flow time estimation of ith part

xv

ABVCM-1 Version 1 of agent based virtual cellular manufacturing methodology

ABVCM-2 Version 2 of agent based virtual cellular manufacturing methodology

t threshold

cce cell capacity estimation parameter

fte flow time estimation parameter

dde due date estimation parameter

EDD Earliest due date

SPT Shortest processing time

MLB Minimum load based

MQLB Minimum queue length based

EXPO Exponential distribution

1

CHAPTER 1

INTRODUCTION

Efficiency and flexibility are the two important keywords of successful

manufacturing. A manufacturing system which keeps both of them is desired in most

of the manufacturing areas. However, handling such a manufacturing system is not

enough in today’s competitive world. As most environmental factors change rapidly

in this global world, customer demands change rapidly either. Nowadays, there is a

need for a manufacturing system which keeps efficiency and flexibility while

tracking and evaluating the real time information.

As known, flow lines and job shops have come into prominence having high

efficiency and flexibility, respectively. Thus, cellular manufacturing systems which

contain features of flow lines and job shops have been studied by researchers for

many years. Besides its several advantages, one of the most important drawbacks of

cellular manufacturing is that in volatile manufacturing environments cellular

manufacturing systems become inapplicable because of the difficulty and cost of

reconfiguration. Despite this disadvantage, researchers have been studying how to

model dynamism in part demand in cellular manufacturing appropriately. This is

because modelling dynamism is very important to obtain meaningful solutions to real

world problems. In this context, researchers have mainly focused on modelling

changes in demand via multi period cellular manufacturing approaches, such as those

proposed by Turker (1993), Chen (1998), Balakrishnan and Cheng (2005), Safael et

al. (2007), Muruganandam et al. (2008), Ah kioon et al. (2009), Das and Abdul-

Kader (2011), Ghotboddini et al. (2011), and Saxena and Jain (2011). However, in

multi period cellular manufacturing, it is assumed that a multi period plan is possible

(Balakrishnan and Cheng, 2007). Although changes in demand are modelled by multi

period approaches, having knowledge of multi period plans makes the problem static.

Therefore, the developed algorithms which work with the assumption of known

2

multi period plans do not have the ability to model dynamic changes in part demands

efficiently. Already, in most production systems, a sudden part demand or

unexpected demand cancellation causes problems.

Basically, in cellular manufacturing parts and machines are grouped according to

their features, and assignments of part families to the machine cells are realised. In

volatile manufacturing environments, even dynamism is modelled, as applicability is

nearly impossible via traditional cellular manufacturing methods. This is because it is

very difficult and costly to reconfigure the manufacturing cells according to each

dynamic change in the environment. In the early 1980s, the virtual manufacturing

cell concept was introduced by McLean et al. (1982). Mainly, a virtual cell differs

from a traditional cell in terms of configuration. The virtual cell is a logical group of

machines, thus by using this concept; cellular manufacturing approach can be applied

to the manufacturing systems without reconfiguration of machines. But as known,

traditional cells are physical groups of machines.

Although virtual cellular manufacturing systems give the opportunity to handle

dynamic part changes in part demand spectrum, unfortunately there is no integrated

study considering both the main phases of cellular manufacturing and dynamism on

part demand arrivals in the manufacturing systems efficiently. In this context, there is

big a gap in the literature on this important topic. Modelling cell formation problem

with this kind of dynamism and gathering efficient solutions with classical

approaches is extremely difficult. This is because these classical approaches create

solutions to the definite states of the system, and they are incapable of adapting the

changing environmental conditions (Karageorgos et al., 2003; Baykasoglu et al.,

2011; Erol et al., 2012). We proposed an agent based modelling approach for

dynamic virtual cellular manufacturing systems.

Agent oriented computing provides a marvellous opportunity to handle dynamic

problems and to provide effective solutions, if carefully and intelligently

implemented. In this study, besides agent based modelling, other modelling concepts

and methods which support modelling desired operational issues and dynamism

efficiently are brought together such as resource elements, capability based

distributed layout, and market oriented programming. Thus, an integrated novel

agent based virtual cellular manufacturing methodology is developed. The proposed

3

approach enables to realize part family formation, virtual cell formation, and

scheduling simultaneously while considering dynamic part demand arrivals.

The proposed approach is realized on AnyLogic
R
 simulation platform which presents

several advantages while modelling dynamism and agent based systems. In relation

to the increasing usage of agent based modelling and simulation approaches to the

problems, the number of software tools supporting these methodologies has also

increased. AnyLogic
R
 is one of these software tools, providing different modelling

paradigms in any combination such as discrete event, system dynamics, continuous

and dynamic system and agent based modelling (As of May 8, 2013, AnyLogic
R

mentioned on its website http://www.anylogic.com/overview). One can define most

behaviours of the agents using AnyLogic
R
. AnyLogic

R
 simplifies development of

agent based models with its designed patterns such as model architecture, agent

synchronization, animation, agent connections and communication, dynamic creation

and destruction of agents (As of May 8, 2013, AnyLogic
R
 mentioned on its website

http://www.anylogic.com/agent-based-modeling).

In the thesis study, an approach which aims to handle operational issues of

manufacturing system and dynamism in part demand arrivals is presented. Firstly

we focused on part family formation phase of cellular manufacturing under

dynamic part demand changes. In this process, studies are concentrated in

conceptual level. Here, we aimed to investigate whether the developed agent based

part family formation algorithm can find efficient solutions to the problems while

tracking and evaluating the changes. Therefore, the results are exciting and show

that the proposed algorithm has an ability to follow optimal solutions in dynamic

circumstances. With this motivation, we developed dynamic agent based virtual

cellular manufacturing approach. The thesis study is organized as in the following.

1.1 Thesis Organization

Chapter 2: the literature review is presented in this chapter. Studies on cellular

manufacturing and virtual cellular manufacturing are examined. And dynamic

clustering methods are investigated in this chapter. Also agent based modeling and

the properties are presented.

http://www.anylogic.com/overview
http://www.anylogic.com/agent-based-modeling

4

Chapter 3: the developed algorithm for dynamic part family formation algorithm in

conceptual level is presented. We attempt to compare the performance of the

present algorithm on static test problems by dynamically introducing parts in the

literature datasets to our algorithm. Many results have been presented on these

static datasets by utilizing several heuristics, meta-heuristics and optimization

based algorithms. It is shown that the proposed algorithm has the ability to produce

very good solutions which are comparable to the best known results.

Chapter 4: an overview of the proposed dynamic agent based virtual cellular

manufacturing approach is presented in this chapter. Also resource elements

approach, capability based distributed layout, and market oriented programming

methods are explained.

Chapter 5: the details of the proposed agent based dynamic virtual cellular

manufacturing approach are presented. The properties of the defined agents, the

steps of the part family formation and virtual cell formation and scheduling

algorithms are given in this chapter.

Chapter 6: the parameters and their effects on the performance of the proposed

algorithm and the performance of the algorithm are analyzed in this chapter. The

analyses are divided into three parts. In the first part the parameters which directly

affect the performance of part family formation are examined and their effect on

the performance is discussed. In the second the scheduling rules are investigated.

And in the third part, performance of the proposed algorithm compared with the

results of the manufacturing system which mainly has the same properties but

works as functional job shop.

Chapter 7: the summary of the study and the conclusions are given in the last

chapter. Also some aspects for the future work are discussed.

5

CHAPTER 2

LITERATURE REVIEW

Cellular manufacturing comes into prominence with several advantages such as

reduction in production lead time, reduction in labor, reduction in set up time, and

improvement in scheduling and planning (Baykasoglu and Gindy, 2000; Baykasoglu

et al., 2001; Baykasoglu, 2004). Cell formation process which includes part

clustering and machine assignment to these clusters, is one of the most important

phases of cellular manufacturing (Baykasoglu et al., 1998a; Keeling et al., 2007). In

the literature, much work has been undertaken in order to gather effective solutions

to the cell formation problem using different constraints and objectives. There are

several review papers which provide extensive classification and evaluation of these

approaches. Selim et al. (1998) provided a mathematical programming formulation

for the cell formation problem. They also presented a methodology based

classification on the cell formation problem. Papaioannou and Wilson (2010)

presented a literature review of the cell formation problem, concentrating on

formulations proposed between 1997 and 2008. In their paper a comparison and an

evaluation of the methodologies were performed and a number of conclusions

deduced. Yin and Yasuda (2006) presented an overview and discussion on similarity

coefficients developed for cell formation. They developed taxonomy to explain the

definition and usage of the similarity coefficients. Sarker (2001) presented a review

on categorization and generalization of the measures developed for the determination

of the goodness of machine-part groups in cellular manufacturing systems. They also

proposed a new grouping efficiency measure. Balakrishnan and Cheng (2007)

reviewed the studies performed to address issues related to multi-period planning

horizons with demand and resource uncertainties in cellular manufacturing. They

stated that most traditional cell formation approaches ignore any changes in demand

over time; it is assumed that part demand stays constant over long periods of time.

6

However, changes in demand occur because of the product redesign and

uncertainties due to volume variation, part mix variation, and resource unreliability

(Balakrishnan and Cheng, 2007). Turker (1993), Chen (1998), Balakrishnan and

Cheng (2005), Safael et al. (2007), Muruganandam et al. (2008), Ah kioon et al.

(2009), Rezazadeh et al. (2011), Ghotboddini et al. (2011), Saxena and Jain (2011)

and Das and Abdul-Kader (2011) presented studies considering multiple time periods

in cellular manufacturing.

In today’s business environment, part demand and mix can change rapidly and

unexpectedly. Thus, a cell formation methodology needs to address these issues

(Balakrishnan and Cheng, 2007; Baykasoglu et al., 1998b; Saad et al., 2002a).

However, as seen in the literature, changes in production environment related to

dynamic changes in part demand are predominately evaluated in multi-period cell

formation approaches. Balakrishnan and Cheng (2007) mentioned that in multi

period cellular manufacturing systems, it is assumed that a multi period plan is

possible. Consequently, these multi period cell formation approaches do not address

fully dynamic problems. In fact, related to this context, the solved problems are static

as no change occurs dynamically in part demand changes, they are assumed to be

known beforehand for each period. According to the literature review, there is only

one study which considers dynamic part arrivals in the part family formation

problem in cellular manufacturing without the assumption of known part type at the

beginning of the problem solution. This study is presented by Ben-Arieh and

Sreenivasan (1999). They proposed a methodology which allows parts to be grouped

as they arrive. Also, the existing parts can change their part families without the need

to solve the part family formation problem from the beginning. Their algorithm can

be considered as a distributed, dynamic and negotiation based method.

In actual fact, part family formation process is clustering parts considering some of

their properties. So, dynamic clustering methodologies in the literature are examined

although they are not applied to the part family formation problem. Khalilian and

Mustapha (2010) gave several example areas that require dynamic processing:

network monitoring, calling records, sensor monitoring, stock exchange, power

supply and manufacturing, examining the spread of illnesses etc. Clustering these

streaming data which is not completely known at the beginning of the clustering

7

process is studied as data stream clustering in the literature (Fournier et al., 2007).

Khalilian and Mustapha (2010) stated two main problems focused on the data stream

clustering in the literature as in: 1) visiting data once because of the insufficiency of

data storage capacity, and 2) evolution of streaming data and concept change during

time. Charu et al. (2003) presented an approach which contains two components as

online micro clustering and offline macro clustering. During online component,

detailed summary statistics are stored periodically. This summary statistics is used by

the offline component. The method called ClueStream framework also provides

exploration of the evolution of the clusters over different time periods. Fournier et al.

(2007) proposed a multi-agent algorithm for dynamic clustering. The proposed

approach combines an ants algorithm with agent theory and executes these

algorithms simultaneously. Kiselev and Alhajj (2008) presented an adaptive multi-

agent approach to continuous online clustering of streaming data which is sensitive

to environmental variations. In their approach market-based negotiation is used to

model the unsupervised clustering as a dynamic distributed allocation problem.

Sandhir and Kumar (2010) mentioned that many real world applications require

online analysis of streaming data, and they proposed an algorithm which is

modification of the fuzzy c-means clustering technique. The proposed algorithm

allows clusters to be adaptively updated as data points keep streaming in. Lee et al.

(2011) developed a framework for online anomaly detection. In the study, a self

organizing map (SOM) is combined with K-means clustering. According to the

proposed dynamic algorithm, an initial model is constructed, and then, depending on

the online data the model, evolves gradually. Among the clustering algorithms, Ben-

Arieh and Sreenivan’s (1999) algorithm comes into prominence having all the

following advantages: handling dynamics effectively without the need to solve the

clustering problem from the beginning, no need to determine parameters such as the

initial number of clusters, threshold value, and having non-complex computation. It

is an agent based approach.

The success of agent based approaches on modelling dynamic systems are already

known in the literature and nowadays researchers focus on agent based approaches to

solve complex dynamic problems. Davidsson et al. (2003) analyzed the strengths and

weaknesses of the agent based approaches. According to their evaluation, agent

based approaches are preferable in sequential situations: the domain of problem is

8

large and modular in nature, the probability of failure is high, the time-scale of the

domain is short, the structure of domain changes frequently, and there is sensitive

information that should be kept locally. If the properties of the dynamic part family

formation problem is taken into account, agent based modelling is also a promising

approach to this dynamic problem. Since, in dynamic part family formation problem,

dynamic arrivals and cancellations are possible in the system and the clustering

concept can change depending on the data.

Agent based modelling and simulation is a powerful approach for analyzing and

modelling complex systems by making use of autonomous, interacting agents (Macal

and North, 2009; Garro and Russo, 2010). Properties of agents are defined as follows

(Macal and North, 2009):

 Agents are autonomous and self-directed individuals. They can perform

autonomously in their environment and with other agents.

 Agents are modular or self-contained discrete individuals with several

attributes, behaviours, and decision making ability.

 Agents are social, interacting individuals. They have protocols which describe

communication and information sharing with other agents.

 Agents may have goals to which they evaluate the outcomes of behaviours

continuously. And they modify their behaviours in respect to this benchmark.

 Agents may learn and adjust their behaviours based on the experiences.

Borshchev and Flippov (2004) presented a practical reference on agent based

modelling. They emphasized that agent based models are decentralized, that is, one

defines behaviour of an agent at individual level, and the global behaviour obtained

from all the system individuals. They mentioned that since an agent based model

enables to handle more complex systems and dynamics, it is more general and

powerful. And also maintaining the agent based models is easier. One can construct

models in the absence of knowledge about the global behaviour through agent based

modelling (Borshchev and Flippov, 2004).

Basically, in cellular manufacturing parts and machines are grouped according to

their features, and assignments of part families to the machine cells are realised. In

highly volatile manufacturing environments, even dynamism is modelled, as

9

applicability is nearly impossible via traditional cellular manufacturing methods.

This is because, it is very difficult and costly to reconfigure the manufacturing cells

according to each dynamic change in the environment. In the early 1980s, the virtual

manufacturing cell concept was introduced by McLean et al. (1982). Mainly, a

virtual cell differs from a traditional cell in terms of configuration. A detailed

explanation on virtual cellular manufacturing systems can be found in the study of

Drolet (1989), who developed algorithms for the scheduling of these systems. The

virtual cell is a logical group of machines; thus, by using this concept, the cellular

manufacturing approach can be applied to the manufacturing systems without

reconfiguration of machines. However, as known, traditional cells are physical

groups of machines. This main difference makes the virtual manufacturing approach

promising and there has been an increasing interest in the literature on this topic.

However, according to the literature review, there is no integrated study which

considers both the main phases of cellular manufacturing and dynamism on part

demand arrivals in manufacturing systems efficiently. Some studies focused on

configuring virtual cells by considering the different constraints and features of

manufacturing systems, but they were not sufficiently able to handle dynamism on

part demand arrivals. In this sense, we can classify these studies into two subclasses.

In the first subclass, studies with the assumption of known part demand (all the part

demands are available) at the beginning of problem solution are examined. Sarker

and Li (2001) proposed a method which adopts the double-sweep algorithm for the

k-shortest path problem for virtual cell formation. They also presented a heuristic to

schedule the virtual cells when there are multiple job orders. Ko and Egbelu (2003)

proposed a virtual cell formation procedure by considering a machine sharing

procedure. In the study, machine cell formation was realised by using the routings of

parts in the part mix. According to the study, if the new production order differs from

the product mix, as before, new virtual cells are formed by the proposed algorithm.

Mak et al. (2005) developed a mathematical model and an age-based genetic

algorithm for virtual manufacturing cell formation and scheduling. Mak et al. (2007)

presented a methodology which consists of a mathematical model that describes the

characteristics of a virtual cellular manufacturing system and an ant colony

optimisation algorithm for manufacturing cell formation and production scheduling.

Kesen et al. (2010a) developed a multi objective mixed integer programming

10

formulation for the scheduling of virtual cells. Kesen et al. (2010b) presented a multi

objective mixed integer programming formulation and a genetic algorithm based

heuristic approach for job scheduling in virtual manufacturing cells. This study was

generalised by Kesen and Güngör (2012) allowing a lot streaming strategy. Khilwani

et al. (2011) proposed a mathematical model and a solution procedure for virtual

cellular manufacturing. According to the proposed approach, firstly machines are

assigned to the cells, then parts are assigned to the cells with maximum similarity

index, and then a search algorithm is executed in order to find the best configuration

of virtual cells. Hamedi et al. (2012) presented a multi objective mathematical model

with a goal programming approach to form capability based virtual cellular

manufacturing systems. In the model, worker constraints are also considered. They

solved the proposed model through a multi objective tabu search algorithm.

In the second class, there are studies considering multi time periods with the

assumption of known part demand at the beginning of each time period. An

integrated framework which is mainly based on multiple objective simulation

optimisation was proposed by Saad et al. (2002b) for the reconfiguration of cellular

manufacturing systems using virtual cells. They stated that part spectrum and

demand are not stable and change from one production horizon to another. The

decisions related to reconfiguration were made considering the demand of each

production horizon by the proposed framework. Mahdavi et al. (2009) developed a

mathematical model for manufacturing cell formation and production planning in

virtual cellular manufacturing systems with worker flexibility by considering a multi

period planning horizon. Mahdavi et al. (2011) proposed a fuzzy goal programming

based method to solve a multi objective mathematical model of virtual cell formation

and planning which considered worker flexibility. Murali et al. (2010) presented an

approach which is based on artificial neural networks. They assigned workers into

virtual cells using artificial neural networks by considering different time periods.

Murali (2012) expanded their previous study by applying the learning vector

quantisation approach to worker assignment problems for virtual cellular

manufacturing systems. Rezazadeh et al. (2011) presented a mathematical model for

the virtual cell formation problem by considering multi period planning horizon. The

model, which considers real world instances, cannot be solved optimally within a

reasonable amount of computational time. Therefore, they proposed a linear

11

programming embedded particle swarm optimisation algorithm with a simulated

annealing-based local search engine to solve the model.

On the other hand, some studies considered dynamic part demand changes, but under

an assumption related to the main phases of cellular manufacturing. They assumed

that the family types of parts are known when the parts enter the manufacturing

system. Kannan and Ghosh (1996), Kannan (1997), Kannan (1998), Vakharia et al.

(1999), Suresh and Slomp (2005), Nomden and Zee (2008), and Kesen et al. (2009)

presented studies using this assumption.

In actual fact, determining the family types by considering the parts at the beginning

of the solution is not enough in dynamic systems. This is because the part spectrum

and the part family type of a part can be changed according to the changing part

spectrum over time.

As seen, there is no integrated study which considers both the main phases of virtual

cellular manufacturing and dynamic part demand arrivals effectively. Some studies

which consider dynamic part demand arrivals work under the assumption of having

knowledge of the family types of parts at the beginning of the solution. Some create

virtual cells for parts instead of part families. However, removing this assumption

and creating virtual cells for part families, and considering dynamism in part demand

arrivals are important issues. This is because one of the most important aims of

virtual cellular manufacturing is to provide efficiency in volatile manufacturing

environments, and the other is to take advantage of grouping similar parts, such as

reduced setup times and reduced lead times. In this thesis study, we removed this

assumption and determined the virtual cells by considering part families via the

presented agent based algorithm. The proposed approach enables us to realise part

family formation, virtual cell formation, and scheduling simultaneously while

considering dynamic part demand arrivals.

12

CHAPTER 3

AGENT BASED DYNAMIC PART FAMILY FORMATION IN

CONCEPTUAL LEVEL

In this chapter a novel agent based clustering algorithm is presented for part family

formation in cellular manufacturing by considering dynamic demand changes.

However, it is not easy to directly compare the performance of the proposed

algorithm with the literature results as there is no benchmark for dynamic cell

formation problems. We attempt to compare the performance of the present

algorithm on static test problems by dynamically introducing parts in these datasets

to our algorithm.

As mentioned in the literature review, there is only one study which considers

dynamic part arrivals in the part family formation problem in cellular manufacturing

without the assumption of known part types at the beginning of the problem solution.

This study was presented by Ben-Arieh and Sreenivasan (1999). Although Ben-Arieh

and Sreenivan’s (1999) methodology has several advantages, it can be improved in

terms of handling dynamism more efficiently. Their algorithm consists of two

separate phases as initial part family formation and negotiation. Negotiation starts

among the agents after the initial part family formation is finished. Initial part family

formation phase continues until the predetermined time is full. So, parts find the

more appropriate part family for themselves after the initial part family formation

phase. Time dependency is one of the features of most of the real world dynamic

problems, and the solutions need to be found in response to the incoming information

and track the optimal solutions through time as closely as possible (Psaraftis, 1995;

Bianchi, 2000; Branke, 2001; Younes, 2006; Erol et al., 2012). In the thesis study,

we considerably modified the algorithm proposed by Ben-Arieh and Sreenivasan

(1999) in order to have a method to handle the dynamism more effectively. In our

algorithm, the most important change is that the initial part family formation and

13

negotiation phases are combined in order to obtain a more efficient dynamic

approach, which tracks optimum or near optimum solutions closely. Consequently,

any part can obtain the more appropriate part family for itself at any time considering

existing conditions. Also by the proposed algorithm, besides the dynamic part

demand arrivals, dynamic part demand cancellations can be handled efficiently. In

addition, the proposed algorithm mainly considers the same calculations with Ben-

Arieh and Sreenivan’s (1999) methodology but it has a different auction based

negotiation mechanism. Wellman (1993) suggested that in order to maximize the

overall system performance, one of the efficient coordination mechanisms is market

oriented programming, a concept which he initially introduced to the literature. In

market oriented programming approach, negotiation among the agents are realized as

the auctions in the real life. The activities and resource allocations for agents are

derived by computing the competitive equilibrium of an artificial economy

(Wellman, 1993).

In this chapter, the developed algorithm for dynamic part family formation problem

is presented removing the assumption of having the knowledge of multi period plans.

3.1 Agent based dynamic part family formation

3.1.1 Problem definition

One of the fundamental problems in cellular manufacturing is part family formation.

Part families are formed according to processing requirements of parts. In the

literature, machining operations of the parts are considered as the processing

requirements at conceptual level in cell formation (Gonçalves and Resende, 2004).

This has been represented by a 0-1 machine-part incidence matrix. In 0-1 machine-

part incidence matrix, m rows indicate m machines and p columns illustrate p parts.

Each 0-1 instance in machine-part incidence matrix [A] as illustrated in Figure 3.1

determine a relationship between machines and parts: a1,2=1 indicates the visit of part

2 to machine 1, and a1,3=0 indicates that part 3 does not visit machine 1 etc.

14

 Parts

 1 2 3 4 5 6 7 8 9

M
ac

h
in

es

1 1 1 0 0 0 1 1 0 1

2 0 1 1 0 1 1 1 0 1

3 0 1 1 0 1 0 1 0 0

4 0 0 1 1 0 0 0 1 0

Figure 3.1 Machine-part incidence matrix

For small size problems, part families can be detected by visual inspection,

rearranging the rows and columns appropriately, using the machine-part incidence

matrix, but visual inspection is not sufficient for larger size problems (Wang and

Rose, 1997). One of the basic mathematical models for static part family formation

was proposed by Kusiak et al. (1986) assuming the number of part families and size

of each part family are known, is as follows (Sultan and Fedjkı, 1997):

 

1 1 1

1

1

1

0,1

pn n

ij il jl

i j l

p

ij

j

n

ij j

i

ij

min d x x

x i=1,...,n

x m j=1,...,p

x i=1,...,n j=1,...,p

  

















where xij=1 if part i belongs to part family j, and xij=0 otherwise. n and p indicate the

number of parts and part families respectively. mj represents the size of part family j.

dij denotes the distance between part i and j.

It is not possible to handle dynamic part arrivals with classical mathematical

programming approaches which were proposed for static clustering. Furthermore,

other methods developed for static clustering are not sufficient. For example, one of

the widely used successful clustering algorithms is k-means clustering algorithm

proposed by MacQueen (1967). The algorithm mainly considers a set of individuals

for clustering and processes in order to obtain clusters. However, when there is any

change in the set of individuals, then the algorithm should start to process from the

15

beginning. And also one needs to determine the number of clusters before the

algorithm starts to work. If the problem considered has larger size and the

environment is highly dynamic, then the algorithm may not be sufficient for the

solution. But in the proposed algorithm dynamic arrivals can be handled without

having to start perform from the beginning. And there is no need to determine the

number of clusters, since it is determined during the execution of the algorithm

dynamically.

As mentioned before, one of the important aims of this study is to model dynamic

part arrivals. So it is assumed that all the parts in the given machine-part incidence

matrix enter the system dynamically. And as they come into the system they are

clustered by the agent based dynamic part family formation algorithm which is

explained below.

3.2 Agent based dynamic part family formation algorithm

In the proposed agent based dynamic part family formation algorithm parts and part

families are defined as agents. And also a manager agent is defined in order to

manage the part family formation process. During the negotiation process of Ben

Arieh and Sreenivasan’s (1999) algorithm, part families bid out their parts

respectively according to the average distances. The part family which has a

maximum average distance bids out its part firstly. And the family bidding out its

part bids out its farthest part. However, in the proposed algorithm there are no

priorities as in the above. The opportunity to change their part families is given to all

the parts satisfying the conditions explained in below. The part which gets the

maximum bid wins the auction. Negotiation between part family agents is acted if

any part agent detects there is a more appropriate part family for itself. The flowchart

of the developed algorithm is given in Figure 3.2. The details of the algorithm such

as calculations, updates, and the auction mechanism are presented in the following.

16

START

(Part demand arrival/part demand

cancellation)

Is there any bid?

Each part family determines its

bid for the part

The part applies to the manager

Manager bids out the part to the

auction

Yes

No
Manager creates a new family

and assigns the part to this family

Manager assigns the part to the

part family which gives the min

bid

Global center, centers of part

families, threhold values are

updated (if needed)

Each part which satisfies at least one of the following conditions applies

to the manager

-There is another part family which is near than its current family&which

has a threshold>=distance of the part to that family

-Alone in its current family& there is another part family which has a

threshold>=distance of the part to that family

Is there any application from the

parts to the manager?

No

There is no change in the system

Manager bids out the partsYes

Each part family determines its

bid considering the parts in

auction

Yes

Is there any participation to the

auction from the part families?

There is no change in the system

No

No Is the dynamic event part demand

arrival?

Yes

END

The part is removed from the part

spectrum

 Figure 3.2 Flowchart of the agent based dynamic part family formation algorithm

In the proposed agent based dynamic part family formation algorithm, Equations 1-5

which were used by Ben Arieh and Sreenivasan (1999) are considered. These

equations (Ben Arieh and Sreenivasan, 1999) have been re-written considering a

number of attributes and Manhattan distance measure in this thesis study. Ben Arieh

and Sreenivasan (1999) used Euclidean distances in these equations. In this study,

17

Manhattan distances have been considered. In the proposed algorithm, threshold

values of part families are calculated dynamically using the distance between the

center of the part family and global center of the system. One of the conditions for

acceptance to a part family is based on this threshold value. Since Manhattan

distance is always greater than or equal to the Euclidean distance considering the

same points, the calculated threshold value using Manhattan distance is always

greater than or equal to the other one. It is clear that acceptance condition of a part to

a family can be changed depending on the employed distance measure. So the

appropriate distance measure should be used for the problem at hand. In the present

study, we gathered results by using Euclidean distance measure for the test problems,

and we observed that using Euclidean distance measure increased the number of part

families in most of the test problems. Moreover, this situation also increased the

possibility of having singleton part families (part family having less than two parts),

although in the proposed algorithm there is an encouragement to destroy part

families having one part. Thus, Manhattan distance measure is preferred.

Distance between part i and part j is calculated by Equation 3.1. xi,a illustrates the

value of attribute a of part i (a A , (A: set of attributes)). In this study, machine

requirements of parts are considered as the attributes of parts. For example, if part 1

visits machine 2, then attribute 2 value of part 1 (x1,2) is equal to 1, otherwise the

attribute 2 value of part 1 is equal to 0. Distance between part p and part family k

with the center of Ck,a are calculated using Equation 3.2.

A

ij i ,a j ,a

a 1

d x x


 
 (3.1)

A

pk p,a k ,a

a 1

D x C


  (3.2)

Center of part family k (having nk parts) and global center of the system (having N

parts) for attribute a are determined using Equations 3.3 and Equation 3.4,

respectively.

kn

k ,a a

i 1k

1
C x

n 

  (3.3)

18

N

a a

i 1

1
G x

N 

  (3.4)

Threshold of part family k is calculated using Equation 3.5.

A

k a k ,a

a 1

Threshold G C


  (3.5)

3.3 Agent based dynamic part family formation simulation model

The model which is created in AnyLogic
R
, especially to illustrate the auction

mechanism between agents is presented. Statecharts of part, manager and part family

agent are given in Figure 3.3 which are created in AnyLogic
R
. The statecharts in

Figure 3.3 represent the possible states and transitions.

Figure 3.3 Statecharts of part, manager, and part family agent respectively.

When a part enters to the system dynamically it is placed in newPart state. If there is

no process in the system it moves to initialization state and sends a message to the

manager to inform its arrival. When manager receives the message, it sends a

message to each part family to call them to the auction and manager moves from

waitingForApplication state to waitingForBids state. The part family which receives

19

a message from manager moves from waitingForAuction state to joiningToAuction,

and determines its decision considering the part/parts in auction. It then moves from

joiningToAuction state to waitingForResults state. After all the part families place to

waitingForDecision state, the manager moves from waitingForBids state to

makingDecision state. When manager makes its decision, assignments and updates

are performed according to the decision made. The part moves from initialization

state to partInPF state (if it is a new part). Manager moves from makingDecision

state to negotiationDecision state. If any changes occur in the system, manager

decides to communicate to each part to find out whether there is a more appropriate

part family for the part than the current one. Then parts, part families, and clustering

manager move to partInPF (if it is not a new part), waitingForAuction, and

waitinForApplication states, respectively. If there is a decision for parts to find a new

part family, each part moves from partInPF state to lookForNewPF state. If a part

finds a more appropriate part family, it applies to the manager. After all the parts

place to waitForDecision state, manager agent sends a message to each part family to

call them to the auction. And the process continues as mentioned above.

When a demand cancellation occurs, the cancelled part is removed from the system

(if it is alone in its family, the family is also destroyed) and the global center and

threshold values are updated. And then if there is any request from parts for auction

due to this change, the manager starts the auction process.

20

Auction between part families and manager is performed as follows:

Manager sends a message to the part families for calling them to the

auction

for each part family

for each part in the auction

if(part p has no family)|| (part p in the auction is alone in its

part family k)

 Part family m calculates its bid for part p if condition 1 and

condition 2 are satisfied

 Condition 1: Resulting configuration has not been reached before

in this auction

 Condition 2: Distance between part p and part family m

(Dpm)<=Thresholdm
else

 Part family m calculates its bid for part p if condition 1,

condition 2, and condition 3 are satisfied

 Condition 1: Resulting configuration has not been reached before

in this auction

 Condition 2: Dpm<=Thresholdm

 Condition 3: Dpk>Dpm
 endif

endfor

Part family m selects part p which has the min distance to itself

(minimum calculated bid) among the parts in auction. And join to the

auction for it

endfor

if there is any participation to the auction

Manager determines the winner part p which gets the min bid among the

parts in auction and the winner part family m which gives the min bid

to it

Manager assigns the winner part p to the winner part family m

if number of parts in part family k equals to zero

 Manager destroys family k

 Family m updates its center and threshold

else

 if part p in auction has no family

 Manager updates global center

 Each part family updates its threshold

 Family m updates its center

 else

 Family k and family m update their centers and thresholds

 endif

endif

else

if part p in auction has no family

 Manager creates a new part family n and assigns the part p to it

 Manager updates global center

 Each part family updates its threshold

 Family n updates its center

endif

21

3.4 An illustrative example

The proposed dynamic part family formation algorithm is presented on a simple

problem which is created synthetically in order to explain the working of the

algorithm. In the example there are ten machines. Parts enter to the system

dynamically, and as they enter to the system they try to find the appropriate part

family to themselves by utilizing the dynamic part family formation algorithm. Let’s

look at the system at some times in order to see the steps of the proposed algorithm

in more detail.

The situation after the arrival of seven parts to the system dynamically is as follows:

Machines (machine set M={1,2,…,10}) and parts (part set P=(1,2,…,7)) in the

current system define the machine-part incidence matrix as shown in (Figure 4).

Machine requirements of parts are considered as the attributes of parts in such a way

that if a1,2=1, then first attribute value of part 2 is equal to 1, otherwise (if a1,2=0) the

first attribute value of part 2 is equal to 0. Parts are numbered according to their

attending order to the system in Figure 3.4. Dynamically generated part families are

shown in Figure 3.5. In Figure 3.5, centers of the part families are given in terms of

10 dimensional arrays (each dimension indicates the calculated center value by

considering each attribute (machine) with respect to M={1,2,…,10}).

 Parts

 1 2 3 4 5 6 7

M
ac

h
in

es

1 1 1 0 0 0 0 1

2 0 1 0 0 1 0 1

3 0 1 0 0 1 0 1

4 0 0 0 0 0 0 0

5 1 0 1 0 0 1 1

6 1 0 1 0 0 1 0

7 0 0 1 0 0 1 0

8 0 0 0 1 0 1 0

9 1 0 0 1 1 1 0

10 0 0 0 1 0 0 0

Figure 3.4 Machine-part incidence matrix.

22

Production System

 Center of Part Family 1 Center of Part Family 2 Center of Part Family 3

P1

P3

P6

P2

P5
P7

P4

[0.667, 1.000, 1.000, 0.000, 0.333,

0.000, 0.000, 0.000, 0.333, 0.000]

[0.333, 0.000, 0.000, 0.000, 1.000,

1.000, 0.667, 0.333, 0.667, 0.000]

[0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 1.000, 1.000, 1.000]

Figure 3.5 Dynamically generated part families.

Part 8 enters to the current system. The value of part incidence matrix for part 8

is  ,8 0 0 0 1 1 1 0 0 0 0T

ia  . Part 8 sends a message to the manager to inform

manager of its arrival. The manager sends a message to each part family to call them

to the auction. Threshold value of the part families and distance of part 8 from part

families is shown in Figure 3.6.

Production System

 Threshold of Part Family 1

=3.000

 Threshold of Part Family 2

=2.619
 Threshold of Part Family 3

=4.571

P1

P3P6

P2

P5
P7

P4

P8

 Distance from Part Family 1=5.667

 Distance from Part Family 2=3.000

 Distance from Part Family 3=6.000

Figure 3.6 Threshold value of part families and distance of part 8 from the part

families.

Since part 8 is acceptable for none of the part family, there is no bid for part 8. The

manager created part family 4 and part 8 is assigned to part family 4 as illustrated in

Figure 3.7.

23

Production System

 Center of Part Family 1 Center of Part Family 2 Center of Part Family 3

P1

P3
P6

P2

P5
P7

P4

[0.667, 1.000, 1.000, 0.000, 0.333,

0.000, 0.000, 0.000, 0.333, 0.000]

[0.333, 0.000, 0.000, 0.000, 1.000,

1.000, 0.667, 0.333, 0.667, 0.000]

[0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 1.000, 1.000, 1.000]

 Center of Part Family 4

[0.000, 0.000, 0.000, 1.000, 1.000,

1.000, 0.000, 0.000, 0.000, 0.000]

P8

Figure 3.7 Dynamically created part families

All parts check if there is a more appropriate part family themselves than the current

one. Since there is no part family for any part satisfying conditions, no change occurs

in the families of parts.

Part 9 enters to the system. The value of part incidence matrix of part 9

is  ,9 1 1 1 1 1 0 0 0 0 0T

ia  . Part 9 sends a message to the manager to inform

manager of its arrival. The manager sends a message to each part family for calling

them to the auction. Threshold value of the part families and distance of part 9 from

part families is shown in Figure 3.8.

Production System

 Threshold of Part Family 1

=3.250

 Threshold of Part Family 2

=2.583
 Threshold of Part Family 3

=4.750

P1

P3P6

P2

P5
P7

P4

P9

 Distance from Part Family 1=2.333

 Distance from Part Family 2=6.333

 Distance from Part Family 3=8.000

 Threshold of Part Family 4

=4.000

P8

Distance from Part Family 4=4.000

Figure 3.8 Threshold value of part families and distance of part 9 from the part

families.

24

Part family 1 determines a bid for part 9 as 2.333. Since there is only one bid, the

manager assigns part 9 to the part family 1. The new configuration is shown in

Figure 3.9.

Production System

 Center of Part Family 1 Center of Part Family 2 Center of Part Family 3

P1

P3
P6

P2

P5
P7

P4

[0.750, 1.000, 1.000, 0.250, 0.500,

0.000, 0.000, 0.000, 0.250, 0.000]

[0.333, 0.000, 0.000, 0.000, 1.000,

1.000, 0.667, 0.333, 0.667, 0.000]

[0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 1.000, 1.000, 1.000]

 Center of Part Family 4

[0.000, 0.000, 0.000, 1.000, 1.000,

1.000, 0.000, 0.000, 0.000, 0.000]

P8

P9

 Threshold of Part Family 1

=2.806

 Threshold of Part Family 2

=3.000

 Threshold of Part Family 3

=5.111

 Threshold of Part Family 4

=4.000

Figure 3.9 Dynamically created part families.

All parts check if there is a more appropriate part family themselves than the current

one. Part 8 applies to the manager. Manager bids out part 8. Part family 2 determines

a bid for part 8. Manager assigns part 8 to the part family 2. Part family 4 has no part

any more, therefore manager destroys it. The new configuration of the part families

is shown in Figure 3.10.

Production System

 Center of Part Family 1 Center of Part Family 2 Center of Part Family 3

P1

P3P6

P2

P5P7
P4

[0.750, 1.000, 1.000, 0.250, 0.500,

0.000, 0.000, 0.000, 0.250, 0.000]

[0.250, 0.000, 0.000, 0.250, 1.000,

1.000, 0.500, 0.250, 0.500, 0.000]

[0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 1.000, 1.000, 1.000]

P9
P8

 Threshold of Part Family 1

=2.806

 Threshold of Part Family 2

=2.472

 Threshold of Part Family 3

=5.111

Figure 3.10 Dynamically created part families.

All parts check if there is a more appropriate part family themselves than the current

one. Since there is no part family for any part satisfying conditions, no change occurs

in the families of parts.

25

Parts continue to enter: at simulation time 340.00, there are 18 parts in the system.

Machines (machine set M={1,2,…,10}) and parts (part set P=(1,2,…,18)) in the

current system are shown through the machine-part incidence matrix in Figure 3.11.

Figure 3.12 shows the final configuration of the system.

 Parts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
ac

h
in

es

1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0

2 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0

3 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0

4 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0

5 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0

6 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0

7 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0

8 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1

9 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1

10 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1

Figure 3.11 Machine-part incidence matrix.

Production System

 Center of Part Family 1 Center of Part Family 2 Center of Part Family 3

P1

P8
P3

P17

P6

P2
P5

P7
P9

P10
P13

P14

P12

P18

P11

P15

P4

P16

[0.857, 1.000, 1.000, 0.429, 0.286,

0.000, 0.000, 0.000, 0.143, 0.000]

[0.200, 0.000, 0.000, 0.200, 1.000,

1.000, 0.600, 0.200, 0.400, 0.000]

[0.167, 0.167, 0.167, 0.167, 0.000,

0.500, 0.333, 1.000, 0.833, 1.000]

Figure 3.12 Dynamically created part families.

3.4 Computational study

Since there is no comparable result for dynamic part family formation problem in the

literature we have tried to compare the present agent based algorithm’s results with

the results of the test problems generated using traditional cell formation (static)

approaches. In order to enable our algorithm to work with static test problems we

have dynamically introduced parts in these data sets to our algorithm allowing

26

random attending orders. By this comparison, we aimed to investigate whether our

algorithm can find efficient solutions to the problems while tracking and evaluating

the changes. In order to be able to compare the results, machines need to be allocated

to the dynamically created part families. Allocation of machines to the part families

is performed using the procedure proposed by the Wu et al. (2008) which is given in

the following. And an example is given in Appendix A.

Consider the results of the agent based dynamic part family

formation algorithm.

Repeat (until all machines assigned)

Determine the cell to which the machine allocation will result

in the least sum of number of voids and exceptional elements. If

a tie occurs, assign the machine to a cell with the least number

of voids.

In the procedure exceptional elements are 1’s outside the diagonal blocks, and 0’s

inside the diagonal blocks are called voids.

Several measures of efficiency of cell formation have been proposed in the literature.

However, grouping efficacy proposed by Kumar and Chandrasekharan (1990) comes

into prominence with several reasons; it is a widely accepted measure in the literature

to evaluate the goodness of the proposed algorithms; it considers both the within-cell

utilization and inter-cell movement; it can discriminate well-structured and ill-

structured matrices, etc. (Gonçalves and Resende, 2004). Therefore, grouping

efficacy is employed in this study in order to determine the efficiency of the

proposed algorithm. Grouping efficacy can be computed by making use of Equation

3.6 (Kumar and Chandrasekharan, 1990):

0

v

e e
Grouping Efficacy=

e e




 (3.6)

Where e is the total number of 1’s in the matrix, e0 is the total number of exceptional

elements and ev is the total number of voids.

The performance of the proposed algorithm is compared with several classical

approaches, namely ZODIAC (Chandrasekharan and Rajagopalan, 1987), GRAFICS

(Srinivasan and Narendran, 1991), MST (Srinivasan, 1994), TSPGA (Cheng et al.,

1998), GA (Onwubolu and Mutingi, 2001), GPA (Dimopoulos and Mort, 2001),

HGGA (James et al., 2007), AS (Islier, 2005), ACRS (Kao and Li, 2008), PACO

(Megala et al., 2008), and ACO-CF (Xiangyong et al., 2010) (results of ACO-CF

27

with constraint not allowing residual cells are represented as ACO-CF (1) in Table

3.2). (The results of the previously mentioned algorithms are taken from the study of

Xiangyong et al. (2010)). Most of these algorithms are metaheuristics aiming to

provide optimal solutions for these static problems. One important point during the

comparison process analyzed by Xiangyong et al. (2010) is the effect of having

residual cells (cells having only machines or parts) in the solution to the efficacy

measure. In their study, they also gave place to the results obtained using their

proposed algorithm allowing residual cells. They expressed that efficacy can increase

while allowing the residual cells in diagonal blocks. The results obtained using ACO-

CF (Xiangyong et al., 2010) allowing residual cells (represented as ACO-CF (2) in

Table 3.2) are also given in Table 3.2. One of the constraints used in some of the

studies (Gonçalves and Resende, 2004) is not allowing singletons (cells having less

than two parts or two machines) and Gonçalves and Resende (2004) mentioned that

this constraint also degrades the performance of the algorithm.

Our algorithm allows occurring singleton part families although there is an

encouragement to destroy part families which has only one part. Since parts enter the

system dynamically, one part family having only one part can be a part family having

two or more parts after the entrance of a new part to the system. So in this open

system, singleton part family constraint will be meaningless. A machine allocation

procedure which does not affect the obtained part families is required, since the main

goal of this study is dynamic part family formation. To this aim, a machine allocation

procedure which is independent of part family formation phase was used. The

procedure used for allocation of machines to the part families allows residual cells.

In the comparisons we also give place to the results which were obtained using the

simulated annealing based approach (SACF) of Wu et al. (2008) from where we

adopted machine allocation procedure. Data sets for the test problems are obtained

from Gonçalves and Resende (2004). We also compare our results with theirs.

Properties of test problems are given in Table 3.1 and a direct comparison of the

results is given in Table 3.2. There are 35 test problems. Bolded values in Table 3.2

represent the results which are smaller than or equal to results generated by agent

based dynamic part family formation algorithm. Apart from three problems

(problems: 9, 28, and 34) the agent based dynamic approach is able to produce the

28

same or better results than the static algorithms available in the literature. Here we

should again mention that the proposed agent based algorithm is not an optimization

based algorithms (i.e. it does not conduct a search procedure for a given problem as it

adaptively constructs a solution as parts enter to the system). Therefore, the results

are exciting and show that the proposed algorithm has an ability to follow optimal

solutions in dynamic circumstances. Moreover, as can be seen from Table 3.2, the

proposed algorithm dominates Islier’s (2005) ant system algorithm for the compared

problems. A similar situation exists for Onwubolu and Mutingi’s (2001) genetic

algorithm approach, agent based approaches produced better or same results for 19

test problems within 25 test problems. These results are especially important as ant

colony and genetic algorithms are known to be members of the most powerful

optimization algorithms in the literature.

29

Table 3.1 Properties of the test problems

No. Source of test problem Size

1 King and Nakornchai (1982) 5x7

2 Waghodekar and Sahu (1984) 5x7

3 Seifoddini (1989) 5x18

4 Kusiak and Cho (1992) 6x8

5 Kusiak and Chow (1987) 7x11

6 Boctor (1991) 7x11

7 Seifoddini and Wolfe (1986) 8x12

8 Chandrasekharan and Rajagopalan (1986a) 8x20

9 Chandrasekharan and Rajagopalan (1986b) 8x20

10 Mosier and Taube (1985a) 10x10

11 Chan and Milner (1982) 10x15

12 Askin and Subramanian (1987) 14x24

13 Stanfel (1985) 14x24

14 McCormick et al. (1972) 16x24

15 Srinivasan, Narendran, and Mahadevan (1990) 16x30

16 King (1980) 16x43

17 Carrie (1973) 18x24

18 Mosier and Taube (1985b) 20x20

19 Kumar, Kusiak, and Vannelli. (1986) 20x23

20 Carrie (1973) 20x35

21 Boe and Cheng (1991) 20x35

22 Chandrasekharan and Rajagopalan (1989) 24x40

23 Chandrasekaran and Rajagopalan (1989) 24x40

24 Chandrasekharan and Rajagopalan (1989) 24x40

25 Chandrasekharan and Rajagopalan (1989) 24x40

26 Chandrasekharan and Rajagopalan (1989) 24x40

27 Chandrasekharan and Rajagopalan (1989) 24x40

28 McCormick, Schweitzer, and White (1972) 27x27

29 Carrie (1973) 28x46

30 Kumar and Vannelli (1987) 30x41

31 Stanfel (1985) 30x50

32 Stanfel (1985) 30x50

33* King and Nakornchai (1982) 36x90

34 McCormick et al. (1972) 37x53

35 Chandrasekharan and Rajagopalan (1989) 40x100

*Although the size of problem is mentioned as 36*90, there are 30 machines in the

data set

30

Table 3.2 Comparison of results

No.

Grouping efficacy (%)

ZODIAC GRAFICS MST TSPGA GPA GA EA HGGA AS ACRS PACO ACO-CF (1) ACO-CF (2) SACF

The proposed

approach

1 73.68 73.68 73.68 82.35 73.68 82.4 73.68 82.35 82.35 75.00

2 56.52 60.87 68.00 62.50 62.50 69.57 68.0 69.57 69.57 69.57 69.57 60.00

3 77.36 77.36 79.59 79.59 79.59 79.59 80.85 79.59 79.59

4 76.92 76.92 76.92 76.92 76.92 76.92 79.17 76.92 76.92

5 39.13 53.12 46.88 50.00 53.13 60.87 58.62 60.87 60.87 60.87 56.52

6 70.37 70.37 70.37 70.83 70.37 70.83 70.83 70.83 70.83

7 68.30 68.30 68.30 69.44 68.29 69.44 69.44 69.44

8 85.24 85.24 85.24 85.24 85.20 85.24 85.25 85.25 85.3 85.25 85.25 85.25 85.25 85.25

9 58.33 58.13 58.72 58.33 58.70 55.91 58.72 58.72 58.72 58.72 58.72 58.41 36.96

10 70.59 70.59 70.59 70.59 72.79 70.59 75.00 70.59 75.00 75.00 75.00 70.59

11 92.00 92.00 92.00 92.00 92.00 92.00 92.00 81.82 92.0 92.00 92.00 92.00 92.00 92.00

12 64.36 64.36 64.36 69.86 72.06 69.86 72.06 73.13 65.75

13 65.55 65.55 67.44 71.80 63.48 69.33 71.83 67.1 70.51 71.83 72.86 71.21 69.33

14 32.09 45.52 48.70 52.58 52.75 51.96 52.75 53.26 48.91

15 67.83 67.83 67.83 67.83 68.99 67.83 68.99 69.92 67.91

16 53.76 54.39 54.44 53.89 86.25 54.86 57.53 39.25 48.8 54.86 57.53 58.04 52.44 54.27

17 41.84 48.91 44.20 54.46 57.73 54.96 57.73 57.73 51.00

18 21.63 38.26 37.12 34.16 42.96 43.18 42.75 43.45 43.97 41.02 37.93

19 38.66 49.36 43.01 46.62 49.00 39.02 49.65 50.81 49.65 50.81 50.81 50.81 43.48

20 75.14 75.14 75.14 75.28 76.70 66.30 76.22 77.91 78.40 77.91 78.88 78.40 76.14

21 55.14 56.80 44.44 58.07 57.98 58.38 57.98 58.60 56.04 56.35

22 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 70.47 100.00 100.00 100.00 100.00 100.00

23 85.10 85.10 85.11 85.11 85.10 85.11 85.11 85.11 61.49 85.11 85.11 85.11 85.11 85.11

24 37.85 73.51 73.51 73.03 73.50 73.03 73.51 73.51 49.71 73.51 73.51 73.51 73.51 73.51

25 20.42 43.27 51.81 49.37 53.3 37.62 51.97 53.29 35.75 52.83 53.29 53.29 52.44 52.03

26 18.23 44.51 44.72 44.67 47.90 34.76 47.06 48.95 32.08 47.21 48.95 48.95 47.13 44.37

27 17.61 41.67 44.17 42.50 43.70 34.06 44.87 47.26 31.00 44.71 47.26 47.26 44.64 41.06

28 52.14 47.37 51.00 54.27 54.02 54.27 54.82 54.82 46.96

29 33.01 32.86 40.00 44.62 46.91 45.67 47.08 47.72 38.71

30 33.46 55.43 55.29 53.80 60.70 40.96 58.48 63.31 60.38 63.31 63.31 62.42 51.35

31 46.06 56.32 58.70 56.61 59.40 48.28 59.66 59.77 59.55 59.77 59.77 60.12 47.52

32 21.11 47.96 46.30 45.93 50.00 37.55 50.51 50.83 50.51 50.83 50.83 50.51 45.36

33 32.73 39.41 40.05 42.64 46.35 44.75 47.11 47.53 37.58

34 52.21 52.21 56.42 60.64 57.94 60.64 61.31 45.69

35 83.92 83.92 83.66 84.03 84.00 83.90 84.03 84.03 39.56 84.0 81.64 84.03 84.03 84.03 71.61

31

The success of the proposed algorithm in modeling the dynamic arrivals in part

family formation is demonstrated by the above analysis. However, in real life

manufacturers are also frequently faced with other types of dynamic events, such as

demand cancellation and reentrance. The solution approach which models these

dynamic events successfully is very precious. Since, in order to get ahead in this age

of global competition, manufacturers need an approach which works under the

operational dynamics. Our algorithm has abilities to manage these dynamic events.

In order to examine these capabilities, a scenario is prepared. According to the

scenario, differing from the above analyses, a dynamic event is not always a part

demand. It can be a part demand or a cancellation with probabilities 0.80 and 0.20,

respectively. If the dynamic event is determined as part demand according to the

given probability, then the part in the given machine-part incidence matrix of the

problem enters the system (allowing random attending orders) as realized in above

analysis. But, if the dynamic event is determined as cancellation, then the cancelled

part demand is determined dynamically among the parts in the system randomly.

After all the parts in the problem are entered into the system once, the cancelled parts

are reentered into the system. In Table 3.3 we presented the detailed results

considering 10 independent runs of the proposed algorithm.

32

Table 3.3 Details of the results

No.

Results of proposed approach

(Grouping efficacy (%))

 Results of proposed approach with

cancellation and reentrance
(Grouping efficacy (%))

Minimum Average Maximum Minimum Average Maximum

1 61.11 69.88 75.00 61.11 70.50 75.00

2 50.00 58.00 60.00 50.00 58.00 60.00

3 64.58 73.59 79.59 64.58 76.59 79.59

4 66.67 75.02 76.92 76.92 76.92 76.92

5 46.15 53.72 56.52 46.15 52.85 56.52

6 64.00 68.91 70.83 67.86 69.16 70.83

7 63.89 67.38 69.44 63.89 65.85 68.29

8 85.25 85.25 85.25 78.69 84.59 85.25

9 32.61 34.71 36.96 32.61 35.25 40.22

10 70.59 70.59 70.59 70.59 70.59 70.59

11 92.00 92.00 92.00 92.00 92.00 92.00

12 62.50 63.82 65.75 62.50 65.68 68.92

13 64.47 67.93 69.33 67.05 67.73 69.33

14 43.88 46.20 48.91 40.63 46.47 49.48

15 64.18 66.59 67.91 62.12 66.85 68.15

16 49.07 52.51 54.27 48.67 53.08 53.75

17 45.54 47.94 51.00 43.33 46.41 49.02

18 30.70 34.87 37.93 32.48 35.49 39.50

19 36.13 40.01 43.48 33.05 37.90 44.92

20 76.14 76.14 76.14 76.14 76.14 76.14

21 53.59 54.97 56.35 52.91 55.43 56.61

22 80.86 86.91 100.00 60.33 83.13 100.00

23 68.90 75.49 85.11 66.67 76.92 85.11

24 60.48 69.91 73.51 60.36 72.19 73.51

25 40.54 45.67 52.03 40.54 44.85 47.92

26 36.91 41.25 44.37 36.05 40.67 43.59

27 34.44 38.78 41.06 34.69 38.68 41.67

28 40.40 42.86 46.96 39.26 42.60 47.37

29 30.74 35.41 38.71 31.60 36.18 39.74

30 41.28 47.10 51.35 45.41 48.63 51.19

31 38.03 44.10 47.52 40.10 46.11 54.59

32 38.00 42.12 45.36 38.22 43.46 46.24

33 29.82 33.44 37.58 34.38 36.51 38.11

34 39.62 42.54 45.69 39.90 42.89 46.19

35 53.05 63.01 71.61 54.45 64.40 76.84

The results of the algorithm considering these two different dynamic cases are

compared in order to prove the success of the algorithm on managing the

cancellation and reentrance events. In the comparison paired-t test is used, since it is

appropriate for comparing the average results of these two dynamic cases. A paired-t

test matches the values of the two samples in a pairwise manner, computes the mean

of differences between the pairs and then tests whether the mean of differences is

different from zero. Shortly, the hypothesis of no difference between the two samples

is tested by paired-t test. The assumption that must be satisfied in order to use paired-

t test is that paired differences should follow a normal distribution. The assumption is

satisfied in our comparison. In the comparison all the test problems are evaluated, so

33

the sample size is 35. According to the test, p-value is determined as 0.155. Since

the p-value is greater than 0.05, the hypothesis of no difference between samples is

accepted. As seen the difference between the results of these two dynamic cases is

not statistically significant. So we can say that the proposed algorithm can handle

cancellation and reentrance situations successfully.

34

CHAPTER 4

AN OVERVİEW OF DYNAMIC AGENT BASED VIRTUAL CELLULAR

MANUFACTURING

In this chapter, an overview of the proposed algorithm is presented. The proposed

approach aims to handle the operational issues of manufacturing system and

dynamism in part demand arrivals. The main manufacturing concepts that operate for

the same purpose are gathered together and an integrated system is proposed. The

main concepts and methods which are used for this purpose are illustrated in Figure

4.1.

Concepts

Methods

Dynamic Agent BasedVirtual

Cell Formation and Scheduling

Resource Elements

Capability Based Distributed

Layout

Multi Agent Systems

Market Oriented

Programming

RE1

RE4

RE5

FGS1

FGS2 FGS6

FGS8

Figure 4.1 The main concepts and methods

35

Agent based modelling and virtual cellular manufacturing systems have been

explained in the literature review section of the thesis study. Resource elements,

capability based distributed layout and market oriented programming approaches are

explained in the following.

4.1. Resource elements

In the manufacturing environment, parts can be assigned to machines if and only if

the selected machines have the required capabilities of the parts. It is necessary to

define the capabilities of machines and requirements of parts in a common way to

make assignments properly. In this context, one of the methods used is the Resource

Elements (REs) approach which was defined by Gindy et al. (1996). Gindy et al.

(1996) reported that, according to their study, the use of resource elements provides

better matching between the processing requirements of components and capabilities

of machine tools compared with the conventional machine-based approach. In the

resource elements approach, form generating schemas are used to define these

capabilities. A form generating schema consists of a cutting tool, motion set, and

technological output. The resource elements are determined by an iterative procedure

which considers the form generating schemas.

Detailed information on form generating schemas and resource elements can be

found in the studies of Gindy et al. (1996), Baykasoglu (1999), and Baykasoglu

(2003). In our approach, the use of resource elements provides the opportunity to

model flexibility in a better way.

4.2. Capability based distributed layout

For a successful manufacturing system under dynamic conditions, besides selected

manufacturing strategy, determination of the most appropriate layout for the selected

strategy is also an important issue. In highly volatile manufacturing environments, in

which the part spectrum and demand change rapidly, a flexible layout is needed

(Benjaafar and Sheikhzadeh, 2000; Baykasoglu, 2003). This is because, in a

36

changing manufacturing environment, routings vary intensively and unplanned

changes can occur, and the reconfiguration of layouts which are developed for a

particular part spectrum is very difficult and expensive (Benjaafar and Sheikhzadeh,

2000; Baykasoglu, 2003).

Baykasoglu (2003) specified that the distributed layout approach is a better

alternative for virtual cellular manufacturing applications. In the distributed layout

approach, similar machines are scattered in the factory. In this way, the accessibility

of the machines is increased from different regions of the layout. Therefore, the

changing part spectrum can be handled with the distributed layout approach with

acceptable material travel distances (Baykasoglu, 2003). For detailed explanations

about the capability based distributed layout approach, refer to Baykasoglu (2003).

4.3. Market oriented programming

Although multi agent approaches provide lots of opportunities in many areas, control

of agents is not an easy issue; it gets especially difficult depending on the size of the

population of agents in the system (Flower, 2005). Moreover, if the system is an

open system, controlling the system is even more difficult. This is because unknown

agents enter to the system at unknown times (Flower, 2005).

In multi agent systems, agents act according to their own interests and benefits. Thus,

in order to maximise the performance of the overall system, an efficient

coordination mechanism between agents is required (Wellman, 1993). One of these

coordination mechanisms is market oriented programming, which was first

introduced by Wellman (1993) in the literature. In market oriented programming,

solutions to distributed resource allocation problems are derived by computing the

competitive equilibrium of an artificial economy (Wellman, 1993).

In this thesis study, the agent based dynamic virtual cell formation and scheduling

algorithm is presented considering all these main concepts and approaches. The

proposed algorithm consists of three main phases which progress simultaneously.

These are the part family formation phase, virtual cell formation phase, and the

37

scheduling phase. The transitions between these phases are also very important.

Figure 4.2 shows the framework of the proposed approach.

38

 Time to pass

scheduling

Part Family Formation Phase

Virtual Cell Formation and

Scheduling Phase

If yes, the part family

passes to virtual cell

formation and

scheduling

Clustering

Manager

Agent
Part

Agent

Part Family

Agent
New part arrival

The part family determines its virtual

cell by considering requirements of its

parts, capacities of machines, and

features of capability based distributed

layout

The part finds the more

similar part family for itself

by market oriented

programming

Scheduling of virtual

cells are realised

Figure 4.2 The framework of the proposed approach

39

The proposed approach is realised on AnyLogic
R
 platform which supports agent

based modelling. As illustrated in Figure 4.2, in the model four types of agents are

defined such as part, part family, clustering manager, and machine. We illustrate the

main steps of the proposed algorithm by considering Figure 4.2 and the statecharts of

the agents. A statechart which consists of states and transitions is a visual construct

that enables us to define the event and time driven behaviour of agents (As of

November 29, 2013, AnyLogic
R

mentioned on its website

http://www.anylogic.com/upload/Big%20Book%20of%20AnyLogic/Designing_state

-based_behavior-statecharts.pdf). Statecharts created in AnyLogic
R
 for the parts, part

families, clustering manager, and machines are given in Figures 4.3, 4.4, 4.5 and 4.6,

respectively. As an example, some Java codes of the part agent is presented in

Appendix B.

We examine the proposed approach by the arrival of a part demand to the system

dynamically. The part agent is created by the arrival of the part demand and it is

placed in the newPart state. If there is no process related to clustering issues in the

system it moves to the initialization state. Some records and assignments are done in

the newPart and initialization states, such as arrival time to the system and due date

assignment. When the part is in the initialization state, it sends a message to the

clustering manager to inform of its arrival.

http://www.anylogic.com/upload/Big%20Book%20of%20AnyLogic/Designing_state-based_behavior-statecharts.pdf
http://www.anylogic.com/upload/Big%20Book%20of%20AnyLogic/Designing_state-based_behavior-statecharts.pdf

40

Figure 4.3 Statechart of a part agent

The clustering manager which receives the message from the part communicates

with the part families. The manager sends a message to each part family to invite

them to the auction. Then it moves from the waitingForApplication state to the

waitingForBids state.

Figure 4.4 Statechart of the clustering manager agent

41

Each part family which receives a message from the clustering manager moves from

the waitingForAuction state to the joiningToAuction state. In this state each part

family makes a decision whether to join the auction in order to bid or not for the part

in the auction. If it decides to join, then it determines its bid. It then moves to the

waitingForResults state.

Figure 4.5 Statechart of a part family agent

When all the part families move to the waitingForResults state, then the clustering

manager moves from the waitingForBids state to the makingDecision state. In this

state, the clustering manager evaluates the bids. It then determines the part family for

the part. After making the assignments, the manager moves to the doingUpdates

state. The part and part families move to the partInCluster and

waitingforAuctionState, respectively. If there is a change in the system, then the

clustering manager calls each part to determine whether it wants to change its part

family or not. Each part moves to the lookingForNewPF state in order to make the

evaluation. Each part which desires to change its part family applies to the manager

agent. If there is any application, the clustering manager restarts the auction process.

Part families continuously make controls to determine the right time for passing from

the part family formation phase to the virtual cell formation and scheduling phase. A

part family which decides to pass from the partFamilyInScheduling state according

42

to this control moves to the waitingForSchSeq state, and then moves to the

determiningMachines state when its turn arrives. In this state the part family

determines the machines for the virtual cell by considering the requirements of its

parts and the constraints of the manufacturing environment. After the determination

it moves to the scheduling state. Parts of the part family leave the partInCluster state

with the movement of the part family. The parts and the determined machines

communicate for scheduling by considering the scheduling rules.

Figure 4.6 Statechart of a machine agent

After all the resource elements of a part are scheduled, the part moves to the

scheduledPart state; after all the parts of a part family are scheduled, the part family

moves to the scheduledPartFamily state. In this way, the part family formation,

virtual cell formation and scheduling processes continue simultaneously as long as

there are parts in the system. The interaction diagram of agents are illustrated in

Figure 4.7, and a detailed explanation of the methodology is presented in Chapter 5.

43

Part Family Agent
Clustering Manager

Agent
Part Agent Machine Agent

Inform about arrival

Call for auction

Refuse

Inform about result

Inform about created virtual cell

In machine queue

scheduled

Scheduled part

Send bid

Inform about result

If there is

more

appropriate

part family for

any part

If part family

passed to the

virtual cell

formation and

scheduling
All requirements scheduled?

Figure 4.7 The interaction diagram of the agents

44

CHAPTER 5

AGENT BASED DYNAMIC VIRTUAL CELL FORMATION AND

SCHEDULING APPROACH

Dynamic virtual cellular manufacturing methodology is used in order to provide an

efficient manufacturing system from the arrival of the part demand to the factory to

obtain finished parts. Four types of agents are defined in the algorithm. These agents

and their basic features and roles are as follows.

A part agent represents an individual part demand. It aims to find the most

appropriate part family for itself before the scheduling process starts. By the time the

scheduling process starts, it is scheduled in the virtual cell which is determined by its

part family. Each part agent has information on its arrival time, processing

sequences, due date, lot size etc. The part agent represents the part demand and its all

properties.

A part family agent works to form a part family which has similar parts in terms of

manufacturing features and due dates. Each part family agent always makes controls

to find the right time to pass from the part family formation phase to the scheduling

phase. Part family agents which are in the scheduling phase determine virtual cells

by evaluating the machines and constraints in the manufacturing system. Each part

family agent has information about the parts which belong to it, the threshold value

for acceptance of parts, etc.

Each machine agent has information about its capabilities, the process times of its

capabilities, busy times, etc. These agents communicate with the parts during the

scheduling process.

The clustering manager agent coordinates the part family formation phase. It

communicates with parts and part families in order to arrange efficient part families.

45

The details of the part family formation phase are presented in the following.

5.1. Part family formation phase

The aim of this phase is to obtain part families which consist of similar parts in terms

of their production features as well as their due dates. As parts enter the system

dynamically, we can release the parts to the job shop immediately or use an order

review/release mechanism. Sabuncuoglu and Karapinar (1999) made a study on

order review/release mechanisms in production systems. They emphasised that

although in most studies order review/release activities are ignored, in practice

demands are often collected in a pool and then released to the manufacturing system

according to a specific criterion. They stated that the target of order review/release

mechanisms is to improve production system performance by controlling the input of

production orders to the system. In the proposed approach we used the order

review/release mechanism in order to model the manufacturing system as in real life

and to take advantage of order review mechanisms. During this waiting time period,

each part which is in the pool has the opportunity to find a more appropriate part

family. The part family formation phase is carried out between the parts and part

families when they are in the pool, that is, before releasing part families as parts for

manufacturing. By the time the part families are released for manufacturing, the part

family formation phase finishes and the virtual cell formation and scheduling phase

starts for them. Part family formation is realised as in Figure 5.1.

46

1.1 Part agent → New part arrival

 Send a message to the clustering manager agent to inform the

manager about the arrival.

1.2 Clustering manager agent → Opening an auction

 Put the part/parts to the Auction List

 Send a message to the part families for calling them to the

auction for the part/parts which apply for bidding out

1.3 Part family agent → Joining to the auction

 for each part p in the Auction List

 Determine a bid for part p (bid quantity for part p= average

dissimilarity of part p) if the part p satisfies the listed

conditions

 The average dissimilarity of part p<=threshold of the part

family

 The average dissimilarity of the part<average

dissimilarity current part family (if there is)

 Entrance of part p does not make the parts in the part

family late

 In this auction period, if part p does not present in the

part family twice

 Select part p (among the parts in the Auction List) which has

the minimum determined bid for joining to the auction

1.4 Clustering manager agent → Determining the winner part and part

family

 if there are any bids

 Evaluate all the bids and find the minimum bid

 Determine the winner part family which gives the minimum bid,

and determine the winner part to which the minimum bid is

given

 else

 for each part p in the Auction List

 if (the average dissimilarity of the part p<average

dissimilarity current part family)|| (part p has no

family)

 Create a part family for part p

1.5 if there are any changes in the part families go to step 1.6,

else finish the auction

1.6 Part agent → Looking for a new part family

 Apply to the clustering manager agent if any part family

satisfies at least one the following conditions

 There is a nearer part family than its current part family

 Not being within the threshold values of the current part

family

 There is only one part in the current part family

1.7 If there is any application to the clustering manager go to step

1.2, else finish the auction period

Figure 5.1 Agent based dynamic part family formation algorithm

In the part family formation algorithm the average dissimilarity ADSif between part i

and part family f having s parts is calculated by Equation 5.1.

1

s

ij

j

if

DS

ADS
s






 (5.1)

47

where DSij is the overall dissimilarity level which is used by Baykasoglu and Gindy

(2000). It considers commonality in machine requirements and similarity patterns of

production sequences. The overall dissimilarity level is calculated between part i and

part j by Equation 5.2 (Baykasoglu and Gindy, 2000).

 1 2ij ij ijDS w PDS w SDS   
 (5.2)

w1 and w2 are weights on each dissimilarity index. PDSij, which is calculated by

Equation 5.3, defines the part dissimilarity based on commonality of machine

requirements (Baykasoglu and Gindy, 2000).

1 () / ()ij i j i jPDS P P P P   

 (5.3)

where Pi and Pj are the operation sequences of part i and part j respectively. Here, the

numerator illustrates the common operations between part i and part j, and the

denominator shows the total number of operations of part i and part j.

SDSij in Equation 5.2 indicates part dissimilarity by considering the processing

sequences of parts. A dynamic programming procedure is used, as in the study of

Baykasoglu and Gindy (2000). This procedure was proposed by Tam (1990) for

determining part dissimilarity based on the processing sequences of parts. It is given

in Figure 5.2 (Tam, 1990).

Set M[0,0]=0

Set the first row as (M[0,k], 0<=k<=m)

Set the first column as (M[r,0], 0<=r<=n)

for (k=1 to n)

 for (r=1 to m)

 if (Pi(k)==Pj(r))

 substitude =M[k-1,r-1]

 else

 substitude=M[k-1,r-1]+1

 delete=M[k-1,r]+1

 addition=M[k,r-1]+1

 M[k,r]=min(substitude,delete,addition)

SDSi,j=M[n,m]

Figure 5.2 The procedure for determining part dissimilarity based on processing

sequences of parts

where M is an n*m matrix, and the operation sequences of part i and part j are

Pi={O1,O2,O3…On} and Pj={O1,O2,O3…Om}, respectively.

48

Besides part similarity in the operational manner, we also pay attention to similarity

in due dates. This is because grouping dissimilar parts in terms of due dates can

cause undesirable deviations from both the goals of efficient manufacturing and

customer satisfaction. In the part family formation algorithm, grouping of similar

parts by considering due dates is provided by accepting the new part which does not

make the parts in the part family late by its arrival to the part family. The parts in the

part family, including the new part, are sorted according to the job scheduling rule

and calculations are realised for the parts by this order. If the calculated value by

subtracting the release time of the part from the current time is smaller than zero for

any part, then the part family does not accept the new part. Infinite loading, which is

one of the methods used for release time determination in the literature, calculates

the release time by subtracting the expected flow time from the due date of the part

(Sabuncuoglu and Karapınar, 1999). The release time of each part is calculated by

Equation 5.4 (given in Figure 5.3) which is based on infinite loading.

By the time the part families are released for manufacturing, the part family

formation phase finishes and the virtual cell formation and scheduling phase starts

for them. Details of the virtual cell formation and scheduling phase are given in

Section 5.2.

5.2. Virtual cell formation and scheduling phase

As seen the parts, part families and clustering manager communicate with each other

and realise the part family formation algorithm continuously in order to obtain more

similar part families. Part families and their parts are present in this phase until the

time of virtual cell formation and scheduling. Part families always control whether

any of their parts is late or not. The transition between dynamic part family formation

and dynamic virtual cell formation and scheduling is provided by this control. Each

part family determines the time for passing to the virtual cell formation and

scheduling phase by the following procedure given in Figure 5.3.

49

Sort the parts in the part family according to the job scheduling

rule

for(i=0; i<number of parts in the part family; i++)

 Calculate the release time of ith part by using Equation (5.4)

1

i

i i j

j

RT DDE FTE


 
 (5.4)

if (time>=RTi)

 Add the ith part to the list

if (list size>0)

 Pass to dynamic virtual cell formation and scheduling phase

 Determine the capacity point as the due date of ith part which

has the minimum due date in the list

Figure 5.3 The procedure for transition from dynamic part family formation to

dynamic virtual cell formation and scheduling

RTi, DDEi, and FTEj represent release time, due date and flow time estimation of ith

part, respectively. According to this procedure, if a part family determines its part as

late or on time for scheduling, it passes to the virtual cell formation and scheduling

phase. Part families determine their virtual cells according to the entering order to the

virtual cell formation phase. The capacity of the virtual cell is calculated by

considering the total available capacities of machines in the virtual cell in terms of

resource elements, as in the study of Baykasoglu and Gindy (2000). Each part family

determines the machines for its virtual cell according to the determined capacity

point and parts in the machine queues. Then cell capacity estimation of the virtual

cell is determined by multiplying the virtual cell capacity by the cell capacity

estimation parameter. If there is more than one virtual cell with enough capacity,

then the part family selects one of them as its virtual cell. We consider two strategies

here. It is expected that the travelling distance of parts is lower when the first

strategy is used and that overlapping between cells is lower when the second strategy

is used. In the computational study, we addressed the proposed approach by

considering the first and second strategies as ABVCM-1 and ABVCM-2,

respectively, and the results are discussed. The machines of the virtual cells are

determined according to the procedure in Figure 5.4.

50

Determine all the machine combinations consisting of all the

required REs

for each combination

 Determine total available capacity in terms of each of the REs by

considering the time slot (capacity point-(current time+(average

process time of REs of the machine*parts in queue))

 Calculate cell capacity estimation in terms of REs by multiplying

the total available virtual cell capacity by cell capacity

estimation parameter

 Add the virtual cell which has enough capacity by considering the

required REs to the list

if there are virtual cells with enough estimated capacity in the

list

 if the first strategy is used

 Determine virtual cell which has min distance between machines

as the virtual cell of the part family

 else if the second strategy is used

 Determine virtual cell which has min total queue as the

virtual cell of the part family. If a tie occurs the virtual

cell which has min distance between machines is selected

else

 Determine virtual cell which has max capacity as the virtual cell

of the part family

Figure 5.4 The procedure for determination of the machines of the virtual cell

After the creation of the virtual cell, part families are scheduled. Each part is

scheduled by considering machines in its virtual cell according to the scheduling

rule. Overlapping between part families can occur. If there is more than one machine

available for the resource element of the part in its virtual cell, then the part enters

the queue of the machine which is determined using the machine selection rule.

51

CHAPTER 6

COMPUTATIONAL STUDY

The dynamic agent based virtual cell formation and scheduling model was developed

using the multi-method simulation software AnyLogic
R
. For the evaluation of the

proposed approach, an example based on a case was prepared. In the example, the

basic characteristics of the manufacturing environment, such as the processing times

of resource elements, travelling distance between machines, and operation sequences

of each part type, are gathered from the studies presented by Baykasoğlu (1999),

Baykasoğlu (2003), and Baykasoğlu and Göçken (2010) with some assumptions. In

the manufacturing environment there are 24 machines, each defined with its

capability based resource elements.

The properties of the demand are determined dynamically by its arrival time. Any

operation of each part can be processed on any machine which has the capability to

process the required resource element. The processing capabilities of machines in

terms of resource elements are given in Table 6.1 (Baykasoğlu, 2003 and Baykasoğlu

and Göçken, 2010). The processing time of resource elements considering each

machine type is given in Table 6.2 (Baykasoğlu and Göçken, 2010). At any given

time, single resource element can be processed on a machine and preemption of an

operation and/or a lot is not allowed.

52

Table 6.1 Processing capabilities of machines in terms of resource elements (Baykasoğlu, 2003 and Baykasoğlu and Göçken, 2010)

REs

Machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 ✔ ✔ ✔ ✔

2 ✔ ✔ ✔ ✔

3 ✔ ✔ ✔

4 ✔ ✔ ✔ ✔

5 ✔ ✔

6 ✔ ✔ ✔ ✔

7 ✔ ✔ ✔ ✔

8 ✔ ✔ ✔

9 ✔ ✔ ✔ ✔

10 ✔

11 ✔ ✔ ✔

12 ✔

13 ✔ ✔ ✔

14 ✔

15 ✔

16 ✔

17 ✔

18 ✔ ✔ ✔

19 ✔ ✔ ✔

20 ✔ ✔

21 ✔ ✔

22 ✔ ✔ ✔

23 ✔ ✔ ✔

24 ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

26 ✔ ✔ ✔ ✔ ✔

27 ✔ ✔ ✔ ✔

28 ✔ ✔ ✔ ✔ ✔

29 ✔ ✔ ✔ ✔ ✔

30 ✔ ✔ ✔ ✔ ✔

31 ✔ ✔ ✔ ✔ ✔

32 ✔

53

Table 6.2 Processing times of resource elements with respect to machines (minutes) (Baykasoğlu and Göçken, 2010)

REs Machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 5.8 5.8 5.80 5.10

2 8.11 8.12 8.10 8.12

3 6.90 6.90 6.90

4 8.13 8.12 8.11 8.11

5 7.13 7.13

6 5.90 5.90 5.90 5.90

7 9.13 9.13 9.13 9.13

8 6.12 6.12 6.12

9 5.90 5.90 5.90 5.90

10 7.90

11 9.12 9.13 9.12

12 6.11

13 5.10 5.10 5.10

14 5.70

15 6.70

16 8.13

17 6.11

18 6.90 6.10 6.10

19 5.70 10.14 10.15

20 5.90 5.90

21 7.11 7.11

22 4.60 8.12 8.11

23 4.70 7.11 7.12

24 6.90 6.90 6.10 6.10

25 11.14 11.14 11.14 11.14 11.14

26 9.11 9.11 9.12 9.14 9.11

27 6.10 6.10 6.10 6.10

28 6.10 6.10 6.10 6.12 6.10

29 6.10 6.10 6.10 5.90 6.10

30 7.10 7.10 7.10 7.10 7.10

31 13.17 13.16 13.16 13.16 6.12

32 6.90

54

Travelling distances between machines are given in Table 6.3 (Baykasoğlu, 2003 and

Baykasoğlu and Göçken, 2010). Machines are arranged according to the capability

based distributed layout method, and the distances are calculated considering

rectilinear movements. Researchers can find details of the capability based

distributed layout method, capability based distributed layout of the manufacturing

system, and related computations in the study of Baykasoğlu (2003) and Baykasoğlu

and Göçken (2010).

Table 6.3 Travelling distances between machines in the capability based distributed

layout (Baykasoğlu, 2003 and Baykasoğlu and Göçken, 2010)

Machines

Machines

1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

1 - 5 4 7 2 6 5 1 2 3 1 6 4 5 7 2 6 3 4 8 5 3 4 3

2 5 - 3 2 7 1 6 4 3 6 6 3 5 4 4 5 5 4 1 3 2 2 7 8

3 4 3 - 3 4 2 3 3 2 4 3 2 2 1 3 2 2 1 2 4 1 1 4 5

4 7 2 3 - 5 1 4 6 5 4 6 1 3 2 2 5 3 4 3 1 2 4 5 6

5 2 7 4 5 - 6 3 3 4 1 1 4 2 3 5 2 4 3 6 6 5 5 2 1

6 6 1 2 1 6 - 5 5 4 5 5 2 4 3 3 4 4 3 2 2 1 3 6 7

7 5 6 3 4 3 5 - 4 3 2 4 3 1 2 2 3 1 2 5 3 4 4 1 2

8 1 4 3 6 3 5 4 - 1 2 2 5 3 4 6 1 5 2 3 7 4 2 3 4

9 2 3 2 5 4 4 3 1 - 3 3 4 2 3 5 2 4 1 2 6 3 1 4 5

10 3 6 4 4 1 5 2 2 3 - 2 3 1 2 4 1 3 2 5 7 4 4 1 2

11 1 6 3 6 1 5 4 2 3 2 - 5 3 4 6 1 5 2 5 7 4 4 3 2

12 6 3 2 1 4 2 3 5 4 3 5 - 2 1 1 4 2 3 2 2 1 3 4 5

13 4 5 2 3 2 4 1 3 2 1 3 2 - 1 3 2 2 1 4 4 3 3 2 3

14 5 4 1 2 3 3 2 4 3 2 4 1 1 - 2 3 1 2 3 3 2 2 3 4

15 7 4 3 2 5 3 2 6 5 4 6 1 3 2 - 5 1 4 3 1 2 4 3 4

16 2 5 2 5 2 4 3 1 2 1 1 4 2 3 5 - 4 1 4 6 3 3 2 3

17 6 5 2 3 4 4 1 5 4 3 5 2 2 1 1 4 - 3 4 2 3 3 2 3

18 3 4 1 4 3 3 2 2 1 2 2 3 1 2 4 1 3 - 3 5 2 2 3 4

19 4 1 2 3 6 2 5 3 2 5 5 2 4 3 3 4 4 3 - 4 1 1 6 7

20 8 3 4 1 6 2 3 7 6 7 7 2 4 3 1 6 2 5 4 - 3 5 4 5

21 5 2 1 2 5 1 4 4 3 4 4 1 3 2 2 3 3 2 1 3 - 2 5 6

22 3 2 1 4 5 3 4 2 1 4 4 3 3 2 4 3 3 2 1 5 2 - 5 6

23 4 7 4 5 2 6 1 3 4 1 3 4 2 3 3 2 2 3 6 4 5 5 - 1

24 3 8 5 6 1 7 2 4 5 2 2 5 3 4 4 3 3 4 7 5 6 6 1 -

There are 20 common part types in the manufacturing system. The resource element

based operation sequences of each part type are given in Table 6.4 (Baykasoğlu,

1999). However, in the system, new part demands also occur. If a new part demand

occurs, its resource element based operation sequence is created randomly

considering 32 resource elements. The maximum number of operations is determined

as 5.

55

Table 6.4 RE-based operation sequences of each part type (Baykasoğlu, 1999)

Part

types

Number of

operations

based on REs

RE based

operation

sequence

Part

types

Number of

operations

based on REs

RE based

operation

sequence

Part 1 3 29 26 30 Part 11 4 17 18 19 21

Part 2 3 7 6 5 Part 12 3 17 19 21

Part 3 2 1 5 Part 13 3 19 21 20

Part 4 2 17 21 Part 14 2 6 7

Part 5 3 1 5 2 Part 15 2 22 21

Part 6 5 10 12 14 8 15 Part 16 3 29 24 25

Part 7 4 9 8 11 12 Part 17 4 10 8 9 12

Part 8 3 25 32 26 Part 18 4 29 24 25 32

Part 9 4 10 8 9 12 Part 19 3 1 5 3

Part 10 4 16 10 12 14 Part 20 2 26 32

Dynamically created and scheduled part families are illustrated in Figure 6.1. In

order to see the change in virtual cells, three shots are presented considering different

times. In Figure 6.1, when the number of part families with same virtual cells get

increase, the lines of virtual cells get bolder.

56

Figure 6.1 Dynamically created and scheduled part families

57

Parameters and their effects on the performance of the proposed algorithm and the

performance of the algorithm are analysed by considering the manufacturing system

which is defined above. The analyses are divided into three parts. In the first part, the

parameters which directly affect the performance of part family formation are

examined. In the second, the part scheduling rules are investigated. In the third part,

the performance of the proposed algorithm is compared with those of functional job

shop. In the analysis results of each experiment is presented for 3000 finished parts

(150 lots), and lot size is considered as 20 parts. Due dates and flow time estimations

of the parts are calculated according to total work content rule, which is one the most

commonly used rules in the literature.

In the manufacturing system two types of set up time are considered. One is minor

set up time, which occurs when a machine changes working the current resource

element. It is calculated by multiplying the processing time of the lot of the part in

the related machine by the minor set up time ratio. The other is major set up time,

which occurs when a machine changes the part family for which it is working. Major

set up time is calculated for each machine by multiplying the average processing

time of the lot of the part in the machine by the major set up time ratio.

A Taguchi experimental design was prepared in the statistical software Minitab
R

by

considering the parameters and their levels which directly affect the part family

formation. These parameters and their levels are given in Table 6.5. In this part of the

analyses, major set up time, minor set up time, job selection rule, machine selection

rule, and new part arrival rate are taken as 0.2, 0.01, earliest due date (EDD),

minimum queue length based (MQLB), and 0.1, respectively. Demand arrival rate is

considered as EXPO(10). The value of weight w1 and w2 on each dissimilarity index

is taken as 0.5.

Table 6.5 Parameters and their levels

Parameters Levels

Threshold (t) of part family 0.5, 1.0, 1.5

Cell capacity estimation parameter(cce) 0.5, 0.75, 1.0

Flow time estimation parameter (fte) 2.0, 3.0

Due date estimation parameter (dde) 6.0, 8.0, 10.0

58

The results of the each experiment are presented in Table 6.6 (average of two runs).

The average tardiness and average set up time performance measures are selected for

the evaluation. This is because these measures can be directly affected by the

considered parameters. Also, manufacturers need to meet the demand of customers

on time. One of the most important reasons for preferring cellular manufacturing

over job shops is the opportunity to work with minimum set up times. Therefore,

determining appropriate levels for the parameters by considering average tardiness

and average set up time is important.

Table 6.6. Results of experiments

Exp.

no
t cce fte dde

Average

tardiness

Average

set up time

1 0.5 0.50 2 6 69.49 55.19

2 1.0 0.75 2 6 114.72 58.32

3 1.5 1.00 2 6 134.10 62.54

4 0.5 0.50 2 8 10.90 50.26

5 1.0 0.75 2 8 21.08 47.15

6 1.5 1.00 2 8 24.34 54.33

7 0.5 0.75 2 10 2.65 43.25

8 1.0 1.00 2 10 7.51 42.52

9 1.5 0.50 2 10 2.95 44.47

10 0.5 1.00 3 6 93.22 59.84

11 1.0 0.50 3 6 85.00 62.42

12 1.5 0.75 3 6 132.44 74.28

13 0.5 0.75 3 8 78.26 57.40

14 1.0 1.00 3 8 42.48 56.94

15 1.5 0.50 3 8 16.08 59.72

16 0.5 1.00 3 10 1.29 47.48

17 1.0 0.50 3 10 5.92 46.05

18 1.5 0.75 3 10 2.72 54.15

The effects of the parameters on the average tardiness values and average setup times

are illustrated in Figure 6.2 and Figure 6.3, respectively.

59

M
ea

n
 o

f
A

v
er

ag
e

T
ar

d
in

es
s

1.51.00.5

100

75

50

25

0
1.000.750.50

32

100

75

50

25

0
1086

t cce

fte dde

Main Effects Plot (data means) for Average Tardiness

Figure 6.2 The main effects plot for average tardiness

M
ea

n
 o

f
A

v
er

ag
e

S
et

 u
p
 T

im
e

1.51.00.5

60

55

50

45
1.000.750.50

32

60

55

50

45
1086

t cce

fte dde

Main Effects Plot (data means) for Average Set up Time

Figure 6.3 The main effects plot for average set up time

As the threshold value increases, the similarity of parts in the part family decreases

and the number of parts in the part family increases. It is observed that when the

threshold value is 0.5, the created part families usually consist of the same type of

parts. On the other hand, when the threshold value is 1.0, part families consist of

similar parts (different types of parts besides the same type of parts). In Figure 6.2

and Figure 6.3 there is no significant difference between the level 0.5 and level 1.0 in

the results. A threshold level of 1.5 increases the average set up time significantly.

Therefore we can say that 1.0 is the appropriate level for the threshold parameter.

One of the important parameters is the cell capacity estimation parameter. This

60

parameter affects the determination of sufficient capacity to the part families. If the

capacity is estimated incorrectly, deviations will be larger from the due dates.

Figures 6.2 and Figure 6.3 show that the level 0.5 is appropriate for the cell capacity

estimation parameter considering both average tardiness and average set up time.

Flow time estimation and the due date estimation parameter can be evaluated

together. This is because when these parameter values get closer, the time for part

family formation gets lower. Also, according to the proposed approach one of the

constraints for joining a family is that accepting the part to the part family should not

make the current parts in the part family late. Therefore, we can expect that grouping

can be realised by considering longer times and parts when the values of flow time

and due date estimation parameters are 2 and 10, respectively. We see in the results

that these levels are the most desired ones in terms of average set up time and

average tardiness performance measurements. Therefore these levels are considered

in the following analyses.

The average time in shop and average tardiness performance measurements are

considered in the determination of the appropriate scheduling rules, since these

measurements will be greatly affected by these rules. The earliest due date and

shortest process time rules are considered as the part scheduling rules and the

minimum queue length based and minimum load based rules are considered as the

machine selection rules. The results are given in Table 6.7 and illustrated in Figure

6.4 and Figure 6.5.

Table 6.7 Results according to scheduling rules

Part selection

rule
Machine selection

rule

Average

time in shop

Average

tardiness

EDD MQLB 1427.90 2.45

SPT MQLB 1464.18 11.39

EDD MLB 1463.82 4.20

SPT MLB 1690.89 56.62

61

M
e

a
n

 o
f

A
v

e
ra

g
e

 T
im

e
 i
n

 S
h

o
p

SPTEDD

1575

1550

1525

1500

1475

1450

MQLBMLB

Part selection rule Machine selection rule

Main Effects Plot (data means) for Average Time in Shop

Figure 6.4 Main effects plot considering average time in shop

M
e

a
n

 o
f

A
v

e
ra

g
e

 T
a

rd
in

e
s
s

SPTEDD

35

30

25

20

15

10

5

0

MQLBMLB

Part selection rule Machine selection rule

Main Effects Plot (data means) for Average Tardiness

Figure 6.5 Main effects plot considering average tardiness

Results show that the EDD part scheduling rule and minimum queue length based

machine selection rule are significantly preferable. These scheduling rules are

considered in the comparisons.

We compared the results of the proposed approach with the results of a functional

job shop. In the functional manufacturing system, the same scheduling rules, namely

EDD and MQLB, are used as the part scheduling rule and the machine selection

rules, respectively. The strategy for the part demand arrivals is the same as with the

proposed approach. Minor set up time and major set up time occur in the machine

with the change of the processing resource element and part, respectively. Travelling

distances between machines in the functional layout is given in Table 6.8

(Baykasoğlu and Göçken 2010).

62

Table 6.8 Travelling distances between machines in functional layout (Baykasoğlu

and Göçken 2010)

Machines

Machines

1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

1 - 5 4 7 2 6 5 1 2 3 1 6 4 5 7 2 6 3 4 8 5 3 4 3

2 5 - 3 2 7 1 6 4 3 6 6 3 5 4 4 5 5 4 1 3 2 2 7 8

3 4 3 - 3 4 2 3 3 2 4 3 2 2 1 3 2 2 1 2 4 1 1 4 5

4 7 2 3 - 5 1 4 6 5 4 6 1 3 2 2 5 3 4 3 1 2 4 5 6

5 2 7 4 5 - 6 3 3 4 1 1 4 2 3 5 2 4 3 6 6 5 5 2 1

6 6 1 2 1 6 - 5 5 4 5 5 2 4 3 3 4 4 3 2 2 1 3 6 7

7 5 6 3 4 3 5 - 4 3 2 4 3 1 2 2 3 1 2 5 3 4 4 1 2

8 1 4 3 6 3 5 4 - 1 2 2 5 3 4 6 1 5 2 3 7 4 2 3 4

9 2 3 2 5 4 4 3 1 - 3 3 4 2 3 5 2 4 1 2 6 3 1 4 5

10 3 6 4 4 1 5 2 2 3 - 2 3 1 2 4 1 3 2 5 7 4 4 1 2

11 1 6 3 6 1 5 4 2 3 2 - 5 3 4 6 1 5 2 5 7 4 4 3 2

12 6 3 2 1 4 2 3 5 4 3 5 - 2 1 1 4 2 3 2 2 1 3 4 5

13 4 5 2 3 2 4 1 3 2 1 3 2 - 1 3 2 2 1 4 4 3 3 2 3

14 5 4 1 2 3 3 2 4 3 2 4 1 1 - 2 3 1 2 3 3 2 2 3 4

15 7 4 3 2 5 3 2 6 5 4 6 1 3 2 - 5 1 4 3 1 2 4 3 4

16 2 5 2 5 2 4 3 1 2 1 1 4 2 3 5 - 4 1 4 6 3 3 2 3

17 6 5 2 3 4 4 1 5 4 3 5 2 2 1 1 4 - 3 4 2 3 3 2 3

18 3 4 1 4 3 3 2 2 1 2 2 3 1 2 4 1 3 - 3 5 2 2 3 4

19 4 1 2 3 6 2 5 3 2 5 5 2 4 3 3 4 4 3 - 4 1 1 6 7

20 8 3 4 1 6 2 3 7 6 7 7 2 4 3 1 6 2 5 4 - 3 5 4 5

21 5 2 1 2 5 1 4 4 3 4 4 1 3 2 2 3 3 2 1 3 - 2 5 6

22 3 2 1 4 5 3 4 2 1 4 4 3 3 2 4 3 3 2 1 5 2 - 5 6

23 4 7 4 5 2 6 1 3 4 1 3 4 2 3 3 2 2 3 6 4 5 5 - 1

24 3 8 5 6 1 7 2 4 5 2 2 5 3 4 4 3 3 4 7 5 6 6 1 -

In order to analyse the effects of set up time, two different levels of major set up time

ratio are considered. These are 0.2 and 0.6, because one of the advantages of cellular

manufacturing is working with lower set up times. As known, one of the most

important drawbacks of cellular manufacturing versus job shops is inefficiency in

handling the new type of part demands. In order to observe the behaviour of the

proposed approach by considering the varying rate of new type of part demand

arrivals, we consider two levels for the new type part demand arrival rate. These

levels are 0.1 and 0.3. The results considering 10 independent runs are presented in

Table 6.9.

63

Table 6.9 Summary of results

Methods

Major

setup

time

ratio

New

part

arrival

rate

Time in shop Set up time Total travel time

Min Ave Max Min Ave Max Min Ave Max

ABVCM-1 0.2 0.1 1228.7 1362.1 1514.4 38.8 41.6 46.4 302.0 350.1 384.0

ABVCM-1 0.2 0.3 1025.7 1115.5 1207.8 40.9 44.1 47.1 298.0 329.5 386.0

ABVCM-1 0.6 0.1 1458.1 1573.4 1745.9 116.3 126.7 139.9 305.0 360.9 416.0

ABVCM-1 0.6 0.3 1255.6 1327.1 1399.5 54.7 126.5 142.9 280.0 325.6 390.0

ABVCM-2 0.2 0.1 1139.8 1243.1 1341.8 34.6 40.0 44.5 393.0 453.1 591.0

ABVCM-2 0.2 0.3 927.0 996.6 1055.6 36.4 40.6 45.1 348.0 385.8 423.0

ABVCM-2 0.6 0.1 1363.1 1569.4 1729.3 106.9 125.4 140.9 397.0 451.2 562.0

ABVCM-2 0.6 0.3 1109.7 1190.2 1287.7 108.6 117.7 126.0 368.0 408.3 471.0

Functional

job shop
0.2 0.1 1029.1 1147.7 1258.3 72.2 73.9 75.5 517.0 570.9 658.0

Functional

job shop
0.2 0.3 856.6 961.7 1077.8 66.0 69.4 72.6 468.0 566.6 621.0

Functional

job shop
0.6 0.1 1620.8 1787.5 1902.5 208.9 217.0 224.8 479.0 567.0 634.0

Functional

job shop
0.6 0.3 1189.2 1396.3 1542.1 191.6 199.6 212.1 448.0 528.8 608.0

The results of each experiment considering each solution approach in terms of

average time in shop, average set up time and total travel time are illustrated in

Figures 6.6, 6.7, and 6.8, respectively.

According to the results, ABVCM-1 and ABVCM-2 dominate the functional job

shop in terms of average set up time and total travel time in all the experiments.

Functional layout is good at average time in shop results when the major set up time

ratio is 0.2, however, when this ratio is considered as 0.6, the ABVCM-1 and

ABVCM-2 results are much better than those for the functional job shop. We can

also say that the new type part demand arrivals can be handled by the proposed

algorithm successfully. The overlapping ratio is lower in ABVCM-2 than in

ABVCM-1, and it is already good at average time in shop performance

measurement. ABVCM-1 outperformed ABVCM-2 in the total travel time criteria.

This is not surprising, that the capacity determining strategy of ABVCM-1 supports

these results.

64

Figure 6.6 Results considering average time in shop

Figure 6.7 Results considering average setup time

Figure 6.8 Results considering total travel time

65

CHAPTER 7

SUMMARY, CONCLUSIONS, AND FURTHER RESEARCH

In this chapter, a summary, the main contributions of the thesis to the literature, and

the further research areas are presented.

In Chapter 1, an introduction to the research is given. And in Chapter 2, the literature

review related with the topics which is considered in the thesis study is presented.

In Chapter 3, an agent based dynamic part family formation algorithm is explained.

Firstly, we focus on dynamic part family formation in conceptual level. An agent

based clustering algorithm for part family formation in cellular manufacturing

applications is developed considering dynamic demand changes. Although the

proposed algorithm is directly applicable to dynamic part family formation problems,

it can also be extended to other dynamic clustering problems. Due to the

unavailability of dynamic benchmark data for part family formation problems in the

literature, the performance of the proposed algorithm is compared on static test

problems by dynamically introducing parts in these datasets to the proposed agent

based algorithm. Although the proposed agent based algorithm is not an optimization

based algorithm, we have shown that it has ability to provide competitive results

which are comparable to the best known solutions.

An overview of the agent dynamic agent based virtual cellular manufacturing

approach is presented in Chapter 4. And the novel dynamic agent based virtual

cellular manufacturing approach is explained in Chapter 5. The presented approach

aims to handle dynamic part demand arrivals while providing efficiency and

flexibility. It consists of several concepts and approaches to support this aim, such as

agent based modelling, market oriented programming, virtual cellular manufacturing,

resource elements, and capability based distributed layout. The proposed integrated

methodology enables to realize part family formation, virtual cell formation, and

66

scheduling phases simultaneously. In Chapter 6, computational study of the proposed

methodology is given. The performance of the approach is tested with several

experiments. The performance measurements show that the proposed approach

provides promising solutions. The results also show that it has the ability to manage

the dynamic part demand arrivals efficiently.

The proposed approach is very important for both industry and academia. Since

manufacturers are face to face with dynamism in most of the areas. If an

unpredictable event occurs, several planned issues may become meaningless. And

one has to start rescheduling. And if the system is large sized and the environment is

volatile, then it is becoming more diffucult. The requirement of a system which

handle dynamism efficiently is detected by several researchers. And there are

attempts to overcome this problem. But the efforts are not enough. Thus, we present

an important study in order to fill this gap. The proposed dynamic agent based virtual

cellular manufacturing system has abilities to handle dynamism in part demand

arrivals and provide efficient and flexible manufacturing. It is also open for

improvements. The further research areas are listed below:

1. In the dynamic virtual cellular manufacturing systems dynamic part demand

arrivals are considered. Since, it is one of the most important one among the

dynamics in the manufacturing environment. But the environmental dynamics can be

modelled in order to obtain more realistic solutions. Algorithms to handle these

dynamics can be easily adapted to the proposed approach. Since agent based

modelling gives the opportunity to maintain or change the system in an easier way.

2. One of the most important mechanisms of the proposed algorithm is transition of

part families from part family formation phase to virtual cell formation and

scheduling phase. We used an order review mechanism which mainly considers the

due dates and flow times of the parts. Besides these, capacity of the manufacturing

environments can be considered. Thus, other types of order review mechanisms can

be used or developed in order get a more efficient system.

3. In part family formation phase of the algorithm, agents communicate each other to

obtain more similar part families in terms of manufacturing requirements and due

dates. They mainly used an auction based communicating mechanism which is

67

popularly used as the communication mechanism of most of the agent based

algorithms. New communication mechanisms can be developed.

4. In virtual cell formation and scheduling phase part family agents can investigate

the manufacturing environment considering various objectives in order to create

more efficient virtual cells and schedule these cells. In most of the phases of the

approach the proposed algorithm can be supported by the heuristics and

metaheuristics to obtain more efficient results with lower computational times.

68

REFERENCES

Aggarwal, C. C., Han, J., Wang, J., Yu, P. S. (2003). A framework for clustering

evolving data streams, VLDB’03 Proceedings of the 29th International Conference

on Very Large Data Bases, Berlin, Germany.

Ah kioon, S., Bulgak, A. A., Bektas, T. (2009). Integrated cellular manufacturing

systems design with production planning and dynamic system reconfiguration,

European Journal of Operation Research, 192, 414-428.

Al-Sultan, K. S., Fedjkı, C. A. (1997). A genetic algorithm for the part family

formation problem, Production Planning and Control, 8(8), 788-796.

AnyLogic
R
. Available at:

http://www.anylogic.com/upload/Big%20Book%20of%20AnyLogic/Designing_state

-based_behavior-statecharts.pdf. Accessed by 29.11.2013

AnyLogic
R
. Available at: http://www.anylogic.com/overview. Accessed by

08.05.2013.

AnyLogic
R
. Available at: http://www.anylogic.com/agent-based-modeling. Accessed

by 08.05.2013.

Askin, R. G., Subramanian, S. (1987). A cost-based heuristic for group technology

configuration, International Journal of Production Research, 25, 101-113.

Balakrishnan, J., Cheng, C. H. (2005). Dynamic cellular manufacturing under

multiperiod planning horizons, Journal of Manufacturing Technology Management,

16 (5), 516-530.

Balakrishnan, J., Cheng, C. H. (2007). Multi-period planning and uncertainty issues

in cellular manufacturing: a review and future directions, European Journal of

Operation Research, 177, 281-309.

Baykasoglu, A., Saad, S. M., Gindy, N. (1998a). A loading approach for cellular

manufacturing systems, FAIM'1998: 8th International Conference on Flexible

Automation and Intelligent Manufacturing, Portland, Oregon, USA, July 1-3.

Baykasoglu, A., Gindy, N. N. Z., Saad, S. M. (1998b). A framework for the

reconfiguration of cellular manufacturing systems, IMS-98, 2nd Int. Symposium on

Intelligent Manufacturing Systems, Sakarya, Turkey, August 6-7.

Baykasoğlu, A. (1999). Multiple objective decision support framework for

configuring, loading and reconfiguring manufacturing cells, PhD diss., University of

Nottingham.

Baykasoglu, A., Gindy, N. (2000). MOCACEF 1.0: Capability based approach to

form part-machine groups for cellular manufacturing applications, International

Journal of Production Research, 38(5), 1133-116.

Baykasoglu, A., Gindy, N. N. Z., Cobb, R. C. (2001). Capability based formulation

and solution of multiple objective cell formation problems using simulated

http://www.anylogic.com/agent-based-modeling

69

annealing, Integrated Manufacturing Systems: The International Journal of

Manufacturing Technology Management, 12(4), 258-274.

Baykasoglu, A. (2003). Capability-based distributed layout approach for virtual

manufacturing cells, International Journal of Production Research, 41(11), 2597-

2618.

Baykasoglu, A. (2004). A meta-heuristic algorithm to solve quadratic assignment

formulations of cell formation problems without presetting number of cells, Journal

of Intelligent Manufacturing, 15(6), 753-759.

Baykasoğlu, A., Göçken, M. (2010). Capability-based distributed layout and its

simulation based analyses, Journal of Intelligent Manufacturing, 21, 471-485.

Baykasoglu, A., Kaplanoglu, V., Erol, R., Sahin, C. (2011). A multi-agent

framework for load consolidation in logistics, Transport, 26(3), 320-328.

Ben-Arieh, D., Sreenivasan, R. (1999). Information analysis in a distributed dynamic

group technology method, International Journal of Production Economics, 60(61),

427-432.

Benjafaar, S., Sheikhzadeh, M. (2000). Design of flexible plant layouts, IIE

Transactions, 32, 309–322.

Bianchi, L. (2000). Notes on dynamic vehicle routing-the state of the art, Techical

Report-IDSIA-05-01, December 20.

Boctor, F. (1991). A linear formulation of the machine-part cell formation problem,

International Journal of Production Research, 29(2), 343-356.

Boe, W., Cheng, C. H. (1991). A close neighbor algorithm for designing cellular

manufacturing systems, International Journal of Production Research, 29(10), 2097-

2116.

Borshchev, A., Filippov, A. (2004). From system dynamics and discrete event to

practical agent based modeling: reasons, techniques, tools, The 22nd International

Conference of the System Dynamics Society, Oxford, England, July 25 – 29.

Branke, J. (2001). Evolutionary optimization in dynamic environments. Kluwer

Academic Publishers.

Carrie, S. (1973). Numerical taxonomy applied to group technology and plant layout,

International Journal of Production Research, 11, 399-416.

Chan, H. M., Milner, D. A. (1982). Direct clustering algorithm for group formation

in cellular manufacture, Journal of Manufacturing System, 1, 65-75.

Chandrashekharan, M.P., Rajagopalan, R. (1986a). An ideal seed non-hierarchical

clustering algorithm for cellular manufacturing, International Journal of Production

Research, 24(2), 451-464.

Chandrashekharan, M. P., Rajagopalan, R. (1986b). MODROC: An extension of

rank order clustering for group technology, International Journal of Production

Research, 24(5), 1221-1233.

Chandrasekharan, M. P., Rajagopalan, R. (1987). ZODIAC-An algorithm for

concurrent formation of part-families and machine-cells, International Journal of

Production Research, 25(6), 835-850.

70

Chandrasekharan, M. P., Rajagopalan, R. (1989). Groupability: analysis of the

properties of binary data matrices for group technology, International Journal of

Production Research, 27(6), 1035–1052.

Chen, M. (1998). A mathematical programming model for system reconfiguration in

a dynamic cellular manufacturing environment, Annals of Operations Research, 77,

109-128.

Cheng, C. H., Gupta, Y. P., Lee, W. H., Wong, K. F. (1998). A tsp-based heuristic

for forming machine groups and part families, International Journal of Production

Research, 36, 1325-1337.

Das, K., Abdul-Kader, W. (2011). Consideration of dynamic changes in machine

reliability and part demand: a cellular manufacturing systems design model,

International Journal of Production Research, 49(7), 2123-2142.

Davidsson, P., S. Johansson, J., Persson, J. A., Wernstedt, F. (2003). Agent-based

approaches and classical optimization techniques for dynamic distributed resource

allocation: a preliminary study, In AAMAS’03 workshop on Representations and

Approaches for Time Critical Decentralized Resource/Role/Task Allocation.

Dimopoulos, C., and Mort, N. A. (2001). Hierarchical clustering methodology based

on genetic programming for the solution of simple cell-formation problems,

International Journal of Production Research, 39(1), 1-19.

Drolet, J. R. (1989). Scheduling virtual cellular manufacturing systems, PhD diss.,

Purdue University.

Erol, R., Sahin, C., Baykasoglu, A., Kaplanoglu, V. (2012). A multi-agent based

approach to dynamic scheduling of machines and automated guided vehicles in

manufacturing systems, Applied Soft Computing, 12(6), 1720-1732.

Flower, D. (2005). A survey of market oriented programming.

Fournier, D., Simon, G., Mermet, B. (2007). A dynamic clustering algorithm for

mobile objects, Lecture Notes in Computer Science, 4702, 422-429.

Garro, A., Russo, W. (2010). easyABMS: a domain-expert oriented methodology for

agent-based modeling and simulation, Simulation Modeling Practice and Theory, 18,

1453-1467.

Ghotboddini, M. M, Rabbani, M., Rahimian, H. (2011). A comprehensive dynamic

cell formation design: benders’ decomposition approach, Expert Systems with

Applications, 38, 2478-2488.

Gindy, N. N. Z., Ratchev, T. M., Case, K. (1996). Component grouping for cell

formation using resource elements, International Journal of Production Research,

34(3), 727–752.

Gonçalves, J. F., Resende, M. G. C. (2004). An evolutionary algorithm for

manufacturing cell formation, Computers and Industrial Engineering, 47, 247-273.

Hamedi, M., Esmaeilian, G. R., Ismail, N., Ariffin, M. K. A. (2012). Capability

based virtual cellular manufacturing systems formation in dual resource constrained

settings using tabu search, Computers and Industrial Engineering, 62, 953-971.

Islier, A. A. (2005). Group technology by an ant system algorithm, International

Journal of Production Research, 43(5), 913-932.

http://www.springerlink.com/content/?Author=Dominique+Fournier
http://www.springerlink.com/content/?Author=Ga%c3%able+Simon
http://www.springerlink.com/content/?Author=Bruno+Mermet
http://www.springerlink.com/content/0302-9743/

71

James, T., Brown, E., Keeling, K. (2007). A hybrid grouping algorithm for the cell

formation problem, Computers and Operations Research, 34, 2059-2079.

Kannan, V. R., Ghosh, S. (1996). Cellular manufacturing using virtual cells,

International Journal of Operations and Production Management, 16(5), 99-112.

Kannan, V. R. (1997). A simulation analysis of the impact of family configuration on

virtual cellular manufacturing, Production Planning & Control: The Management of

Operations, 8(1), 14-24.

Kannan, V. R. (1998). Analysing the trade-off between efficiency and flexibility in

cellular manufacturing systems, Production Planning & Control: The Management

of Operations, 9(6), 572-579.

Karageorgos, A., Mehandjiev, N., Weichhart, G., Hammerle, A. (2003). Agent-based

optimisation of logistics and production planning, Engineering Applications of

Artificial Intelligence, 16(4), 335-348.
Kao, Y., Li, Y. L. (2008). Ant colony recognition systems for part clustering

problems, International Journal of Production Research, 46(15), 4237-4258.

Keeling, K. B., Brown, E. C., James, T. L. (2007). Grouping efficiency measures and

their impact on factory measures for the machine-part cell formation problem: a

simulation study, Engineering Applications of Artificial Intelligence, 20(1), 63-78.

Kesen, S. E., Toksari, M. D., Güngör, Z., Güner, E. (2009). Analyzing the behaviors

of virtual cells (VCs) and traditional manufacturing systems: ant colony optimization

(ACO)-based metamodels, Computers and Operations Research, 36, 2275-2285.

Kesen, S. E., Das, S. K., Gungor, Z. (2010a). A mixed integer programming

formulation for scheduling of virtual manufacturing cells (VMCs), The International

Journal of Advanced Manufacturing Technology, 47, 665-678.

Kesen, S. E., Das, S. K., Güngör, Z. (2010b). A genetic algorithm based heuristic for

scheduling of virtual manufacturing cells (VMCs), Computers & Operations

Research, 37, 1148-1156.

Kesen, S. E., Güngör, Z. (2012). Job scheduling in virtual manufacturing cells with

lot-streaming strategy: a new mathematical model formulation and a genetic

algorithm approach, Journal of the Operational Research Society, 63, 683-695.

Khalilian, M., Mustapha, N. (2010). Data stream clustering: challenges and issues,

Proceedings of the International MultiConference of Engineers and Computer

Scientists, Hong Kong, March 17-19.

Khilwani, N., Ulutas, B. H., Islier, A. A., Tiwari, M. K. (2011). A methodology to

design virtual cellular manufacturing systems, Journal of Intelligent Manufacturing,

22, 533-544.

King, J. R., Nakornchai, V. (1982). Machine-component group formation in group

technology: review and extension, International Journal of Production Research,

20(2), 117-133.

King, J. R. (1980). Machine-component grouping in production flow analysis: an

approach using a rank order clustering algorithm, International Journal of

Production Research, 18(2), 213-232.

72

Kiselev, I., Alhajj, R. (2008). A self-organizing multi-agent system for online

unsupervised learning in complex dynamic environments, First International

Workshop on: Optimization in Multi-Agent Systems.

Ko, K. C., Egbelu, P. J. (2003). Virtual cell formation, International Journal of

Production Research, 41(10), 2365-2389.

Kumar, K. R., Chandrasekharan, M. P. (1990). Grouping efficacy: a quantitative

criterion for goodness of block diagonal forms of binary matrices in group

technology, International Journal of Production Research, 28(2), 233-243.

Kumar, K. R., Kusiak, A., Vannelli, A. (1986). Grouping of parts and components in

flexible manufacturing systems, European Journal of Operations Research, 24, 387-

397.

Kumar, K. R., Vannelli, A. (1987). Strategic subcontracting for efficient

disaggregated manufacturing, International Journal of Production Research, 25(12),

1715–1728.

Kusiak, A., Cho, M. (1992). Similarity coefficient algorithm for solving the group

technology problem, International Journal of Production Research, 30, 2633-2646.

Kusiak, A., Chow, W. (1987). Efficient solving of the group technology problem,

Journal of Manufacturing Systems, 6(2), 117-124.

Kusiak, A., Vannelli, A., Kumar, K. R. (1986). Clustering analysis: model and

algorithms, Control and Cybernetics, 15, 139-153.

Lee, S., Kim, G., Kim, S. (2011). Self-adaptive and dynamic clustering for online

anomaly detection, Expert Systems with Applications, 38, 14891-14898.

Macal, C. M., North, M. J. (2009). Agent-based modeling and simulation,

Proceedings of the 2009 Winter Simulation Conference, December 13-16.

MacQueen, J. B. (1967). Some methods for classification and analysis of

multivariate observations, Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability.

McCormick, W. T., Schweitzer, P. J., White, T. W. (1972). Problem decomposition

and data reorganization by a clustering technique, Operations Research, 20, 993-

1009.

Megala, N., Rajendran, C., Gopalan, R. (2008). An ant colony algorithm for cell-

formation in cellular manufacturing systems, European Journal of Industrial

Engineering, 2(3), 298-336.

Mahdavi, I., Aalaei, A., Paydar, M. M., Solimanpur, M. (2009). Production planning

and cell formation in dynamic virtual cellular manufacturing systems with worker

flexibility, Computers and Industrial Engineering CIE 2009, 6-9 July.

Mahdavi, I., Aalaei, A., Paydar, M. M., Solimanpur, M. (2011). Multi-objective cell

formation and production planning in dynamic virtual cellular manufacturing

systems, International Journal of Production Research, 49(21), 6517-6537.

Mak, K. L., Lau, J. S. K., Wang, X. X. (2005). A genetic scheduling methodology

for virtual cellular manufacturing systems: an industrial application, International

Journal of Production Research, 43(12), 2423-2450.

https://springerlink3.metapress.com/content/?Author=Igor+Kiselev
https://springerlink3.metapress.com/content/?Author=Reda+Alhajj

73

Mak, K. L., Peng, P., Wang, X. X., Lau, T. L. (2007). An ant colony optimization

algorithm for scheduling virtual cellular manufacturing systems, International

Journal of Computer Integrated Manufacturing, 20(6), 524-537.

McLean, C. R., Bloom, H. M., Hopp, T. H. (1982). The virtual cell, Proceedings of

4
th

 IFAC/IFIP Conference on Information Control Problems in Manufacturing

Technology Gaithersburg, MD, October.

Mosier, C. T., Taube L. (1985a). The facets of group technology and their impact on

implementation, Omega, 13(6), 381-391.

Mosier, C. T., Taube, L. (1985b). Weighted similarity measure heuristics for the

group technology machine clustering problem, Omega, 13(6), 577-583.

Murali, R. V., Puri, A. B., Prabhakaran, G. (2010). Artificial neural networks based

predictive model for worker assignment into virtual cells, International Journal of

Engineering, Science and Technology, 2(1), 163-174.

Murali, R. V. (2012). Workforce assignment into virtual cells using learning vector

quantization (LVQ) approach, Research Journal of Applied Sciences, Engineering

and Technology, 4(15), 2427-2435.

Muruganandam, A., Prabhakaran, G., Murali, R. V. (2008). PRABHA - a new

heuristic approach for machine cell formation under dynamic production

environments, The International Journal of Applied Management and Technology,

6(3), 191-221.

Nomden, G., Zee, D. J. van der. (2008). Virtual cellular manufacturing: configuring

routing flexibility, International Journal of Production Economics, 112, 439-451.

Onwubolu, G., Mutingi M. (2001). A genetic algorithm approach to cellular

manufacturing systems, Computer and Industrial Engineering, 39, 125-144.

Papaioannou, G., Wilson, J. M. (2010). The evolution of cell formation problem

methodologies based on recent studies (1997-2008): review and directions for future

research, European Journal of Operational Research, 206, 509-521.

Psaraftis, H. (1995). Dynamic vehicle routing: status and prospects, Annals of

Operations Research, 61(1), 143–164.

Rezazadeh, H., Mahinib, R., Mahdi, Z. (2011). Solving a dynamic virtual cell

formation problem by linear programming embedded particle swarm optimization

algorithm, Applied Soft Computing, 11, 3160-3169.

Saad, S. M., Baykasoglu, A., Gindy, N. N. Z. (2002a). A new integrated system for

loading and scheduling in cellular manufacturing, International Journal of Computer

Integrated Manufacturing, 15(1), 37-49.

Saad, S. M., Baykasoglu, A., Gindy, N. N. Z. (2002b). An integrated framework for

reconfiguration of cellular manufacturing systems using virtual cells, Production

Planning & Control: The Management of Operations, 13(4), 381-393.

Sabuncuoglu, I., Karapinar, H. Y. (1999). Analysis of order review/release problems

in production systems, International Journal of Production Economics, 62, 259-279.

Safael, N., Saidi-Mehrabad, M., Babakhani, M. (2007). Designing cellular

manufacturing systems under dynamic and uncertain conditions, Journal of

Intelligent Manufacturing, 18, 383-399.

74

Sandhir, R. P., Kumar, S. (2010). Dynamic fuzzy c-means (dFCM) clustering for

continuously varying data environments, Fuzzy Systems (FUZZ), IEEE International

Conference, July 18-23.

Sarker, B. R. (2001). Measures of grouping efficiency in cellular manufacturing

systems, European Journal of Operation Research, 130, 588-611.

Sarker, B. R., Li, Z. (2001). Job routing and operations scheduling: a network-based

virtual cell formation approach, Journal of Operational Research Society, 52, 673-

681.

Saxena, L. K., Jain, P. K. (2011). Dynamic cellular manufacturing systems design-a

comprehensive model, International Journal of Advanced Manufacturing

Technology, 53, 11-34.

Selim, H. M., Askın, R. G., Vakharia, A. S. (1998). Cell formation in group

technology: review, evaluation and directions for future research, Computers and

Industrial Engineering, 34(1), 3-20.

Seifoddini, H. (1989). Single linkage versus average linkage clustering in machine

cells formation applications, Computers and Industrial Engineering, 16(3), 419-426.

Seifoddini, H., Wolfe, P. M. (1986). Application of the similarity coefficient method

in group technology, IIE Transactions, 18(3), 266-270.

Srinivasan, G., Narendran, T. T. (1991). GRAFICS-a nonhierarchical clustering

algorithm for group technology, International Journal of Production Research, 29,

463-478.

Srinivasan, G. (1994). A clustering algorithm for machine cell formation in group

technology using minimum spanning trees, International Journal of Production

Research, 32(9), 2149-2158.

Srinivasan, G., Narendran, T., Mahadevan, B. (1990). An assignment model for the

part-families problem in group technology, International Journal of Production

Research, 28, 145-152.

Stanfel, L. (1985). Machine clustering for economic production, Engineering Costs

and Production Economics, 9, 73-78.

Suresh, N. C., Slomp, J. (2005). Performance comparison of virtual cellular

manufacturing with functional and cellular layouts in DRC settings, International

Journal of Production Research, 43(5), 945-979.

Tam, K. Y. (1990). An operation sequence based similarity coefficient for part

families formation, Journal of Manufacturing Systems, 9, 55-68.

Turker, U. (1993). Static and dynamic considerations of part family and machine cell

formations, Masters’ diss., University of Ottawa.

Vakharia, A. J., Moily, J. P., Huang, Y. (1999). Evaluating virtual cells and

multistage flow shops: an analytical approach, The International Journal of Flexible

Manufacturing Systems, 11, 291-314.

Waghodekar, P. H., Sahu, S. (1984). Machine-component cell formation in group

technology: MACE, International Journal of Production Research, 22, 937-948.

75

Wang, J., Roze, C. (1997). Formation of machine cells and part families: a modified

p-median model and comparative study, International Journal of Production

Research, 35(5), 1259-1286.

Wellman, M. P. (1993). A Market-oriented programming environment and its

application to distributed multicommodity flow problems, Journal of Artificial

Intelligence Research, 1, 1-23.

Wu, T., Chang, C., Chung, S. (2008). A simulated annealing algorithm for

manufacturing cell formation problems, Expert Systems with Applications, 34, 1609-

1617.

Xiangyong, L., Baki, M. F., Aneja, Y. P. (2010). An ant colony optimization

metaheuristic for machine-part cell formation problems, Computers and Operation

Research, 37, 2071-2081.

Yin, Y., Yasuda, K. (2006). Similarity coefficient methods applied to the cell

formation problem: a taxonomy and review, International Journal of Production

Economics, 101, 329-352.

Younes, A. (2006). Adapting evolutionary approaches for optimization in dynamic

environments, PhD diss., University of Waterloo.

76

APPENDIX A

In section 3 we have presented an example which illustrates the steps of agent based

dynamic part family formation algorithm. Let’s use the solution of the illustrative

example of section 3 to explain the machine allocation procedure. The machine-part

incidence matrix considering obtained part families using the agent based dynamic

part family formation algorithm is given in Figure A.1.

 Parts in Part Family 1 Parts in Part Family 2 Parts in Part Family 3

P2 P5 P7 P9 P10 P13 P14 P1 P3 P6 P8 P17 P4 P11 P12 P15 P16 P18

M1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0

M2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0

M3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

M4 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0

M5 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0

M6 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0

M7 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0

M8 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1

M9 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1

M10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Figure A.1 Machine-part incidence matrix considering obtained part families

First of all we need to determine the sum of the voids and exceptional elements for

each machine considering of the each part family. Figure A.2 shows these sums for

each machine-part family pair.

77

 Part Family 1 Part Family 2 Part Family 3

 voids+exceptional elements voids+exceptional elements voids+exceptional elements

M1 1+2=3 4+7=11 5+7=12

M2 0+1=1 5+8=13 5+7=12

M3 0+0=0 5+7=12 6+7=13

M4 4+2=6 4+4=8 5+4=9

M5 5+5=10 0+2=2 6+7=13

M6 7+8=15 0+3=3 3+5=8

M7 7+5=12 2+2=4 4+3=7

M8 7+7=14 4+6=10 0+1=1

M9 6+7=13 3+6=9 1+3=4

M10 7+6=13 5+6=11 0+0=0

Figure A.2 Sum of voids and exceptional elements for each machine-part family pair

Machine 1, machine 2, machine 3, and machine 4 have the least sum of voids and

exceptional elements if they are assigned to part family 1. Machine 5, machine 6, and

machine 7 have the least sums if they are assigned to part family 2. Machine 8,

machine 9, and machine 10 have the least sum of voids and exceptional elements if

they are assigned to part family 3. Determined machines and part families for each

cell are illustrated in Figure A.3.

 Cell 1 Cell 2 Cell 3

P2 P5 P7 P9 P10 P13 P14 P1 P3 P6 P8 P17 P4 P11 P12 P15 P16 P18

M1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0

M2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0

M3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

M4 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0

M5 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0

M6 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0

M7 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0

M8 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1

M9 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1

M10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Figure A.3 Determined machines and part families for each cell

78

APPENDIX B

public class Part extends Agent

{

// Plain Variables

public int partNo;

public int nOfOperations;

public double dueDate;

public double[] disToPFMatrix;

public double aveDistToPF;

public double guessedProcTime;

public int lookforNPF;

public double partTime;

public double arrivalTime;

public int partType;

public int schNo;

public double totalTravellingTime;

public double fte;

public double dde;

public int processCompletedSc;

public double minSetupPart;

public int partFamilyBelonged;

public double aveDistToSPF;

public int quantity;

public int initial;

public int processCompletedCl;

public double totalOperationTime;

public int selectedMach;

public int lastMach;

79

// Collection Variables

public java.util.ArrayList <String > sequencesSt = new java.util.ArrayList<String>();

public java.util.ArrayList <Integer > sequences = new java.util.ArrayList<Integer>();

public java.util.ArrayList <Integer > sequencesForScheduling = new

java.util.ArrayList<Integer>();

public java.util.ArrayList <Integer > totalWorkOfP = new

java.util.ArrayList<Integer>();

public java.util.ArrayList < Integer > selectedMachines = new

java.util.ArrayList<Integer>();

// Dynamic (Flow/Auxiliary/Stock) Variables

public HyperArray MachMachDist = new HyperArray(Machines, Machines);

// Events

public EventTimeout _autoCreatedDS_xjal = new EventTimeout(this);

@Override

public String getNameOf(EventTimeout _e) {

if (_e == _autoCreatedDS_xjal) return "Auto-created DataSets auto update event";

return super.getNameOf(_e);

}

@Override

public int getModeOf(EventTimeout _e) {

if (_e == _autoCreatedDS_xjal) return EVENT_TIMEOUT_MODE_CYCLIC;

return super.getModeOf(_e);

}

@Override

public double getFirstOccurrenceTime(EventTimeout _e) {

if (

_e == _autoCreatedDS_xjal

) return getEngine().getStartTime();

return super.getFirstOccurrenceTime(_e);

}

@Override

public double evaluateTimeoutOf(EventTimeout _e) {

80

if (_e == _autoCreatedDS_xjal) return 1;

return super.evaluateTimeoutOf(_e);

}

@Override

public void executeActionOf(EventTimeout _e) {

if (_e == _autoCreatedDS_xjal) {

for (DataSet _ds : _ds_MachMachDist) {

_ds.update();

}

}

super.executeActionOf(_e);

}

// Statecharts

public Statechart stateOfPart = new Statechart(this, (short)2);

@Override

public String getNameOf(Statechart _s) {

if(_s == this.stateOfPart) return "stateOfPart";

return super.getNameOf(_s);

}

@Override

public void executeActionOf(Statechart _s) {

if(_s == this.stateOfPart) {

enterState(partInClustering, true);

return;

}

super.executeActionOf(_s);

}

// States of all statecharts

public static final short partInClustering = 0;

public static final short newPart = 1;

public static final short initialization = 2;

public static final short partInCluster = 3;

81

public static final short lookForNewPF = 4;

public static final short waitForDecision = 5;

public static final short determiningMachine = 6;

public static final short scheduling = 7;

public static final short scheduledPart = 8;

public static final short branch = 9;

@Override

public String getNameOfState(short _state) {

switch(_state) {

case partInClustering: return "partInClustering";

case newPart: return "newPart";

case initialization: return "initialization";

case partInCluster: return "partInCluster";

case lookForNewPF: return "lookForNewPF";

case waitForDecision: return "waitForDecision";

case determiningMachine: return "determiningMachine";

case scheduling: return "scheduling";

case scheduledPart: return "scheduledPart";

case branch: return "branch";

default: return super.getNameOfState(_state);

}

}

@Override

public boolean stateContainsState(short compstate, short simpstate) {

if (compstate == partInClustering && (simpstate == newPart || simpstate ==

partInCluster || simpstate == waitForDecision || simpstate == lookForNewPF ||

simpstate == initialization)) {

return true;

}

return super.stateContainsState(compstate, simpstate);

}

@Override

public short getContainerStateOf(short _state) {

switch(_state) {

82

case newPart: return partInClustering;

case initialization: return partInClustering;

case partInCluster: return partInClustering;

case lookForNewPF: return partInClustering;

case waitForDecision: return partInClustering;

default: return super.getContainerStateOf(_state);

}

}

@Override

public void enterState(short _state, boolean _destination) {

switch(_state) {

case partInClustering: // (Composite state)

if (_destination) {

enterState(newPart, true);

}

return;

case newPart: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(newPart);

{

arrivalTime=time();

;}

transition5.start();

return;

case initialization: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(initialization);

{

initial=0;

for(int bn=0;bn<totalWorkOfP.size();bn++)

{

avaiMach.add(new ArrayList<Integer>());

}

for(int i=0;i<sequences.size();i++)

{

83

totalOperationTime=totalOperationTime+get_Main().aveProcTimeOfREs.get(seque

nces.get(i))*quantity;

}

guessedProcTime=fte*totalOperationTime;

dueDate=arrivalTime+dde*totalOperationTime;

if (get_Main().parts.nPartInClustering()==1)

{

get_Main().add_partFamilies();

get_Main().partFamilies.get((get_Main().partFamilies.size()-

1)).partInPartFamily.add(this);

get_Main().partFamilies.get((get_Main().partFamilies.size()-

1)).partFamilyNo=(get_Main().partFamilies.size()-1);

partFamilyBelonged=(get_Main().partFamilies.size()-1);

aveDisSPF();

aveDisPF();

}

else

{

aveDisPF();

get_Main().clusteringManager.partsInAuction.add(this);

send("hello",get_Main().clusteringManager);

}

;}

transition.start();

return;

case partInCluster: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(partInCluster);

{

get_Main().clusteringManager.onChange();

;}

transition1.start();

transition4.start();

return;

case lookForNewPF: // (Simple state (not composite))

84

stateOfPart.setActiveState_xjal(lookForNewPF);

{

aveDisSPF();

aveDisPF();

if(((aveDistToPF<aveDistToSPF)&&(aveDistToPF<=get_Main().partFamilies.get(p

artFamilyBelonged).threshold))||((get_Main().partFamilies.get(partFamilyBelonged).

threshold<aveDistToSPF)&&(get_Main().partFamilies.get(partFamilyBelonged).par

tInPartFamily.size()>1)))

{

get_Main().clusteringManager.partsInAuction.add(this);

}

;}

transition2.start();

return;

case waitForDecision: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(waitForDecision);

{

get_Main().clusteringManager.onChange();

;}

transition3.start();

return;

case determiningMachine: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(determiningMachine);

{

int totalAvaiMach=avaiMach.get(sequencesForScheduling.get(0)).size();

int

minQueue=get_Main().machines.get(avaiMach.get(sequencesForScheduling.get(0)).

get(0)).partsInQueue.size();

int

minQueMach=get_Main().machines.get(avaiMach.get(sequencesForScheduling.get(

0)).get(0)).machineNo;

for(int i=1;i<totalAvaiMach;i++)

{

85

if(get_Main().machines.get(avaiMach.get(sequencesForScheduling.get(0)).get(i)).par

tsInQueue.size()<minQueue)

{

minQueue=get_Main().machines.get(avaiMach.get(sequencesForScheduling.get(0)).

get(i)).partsInQueue.size();

minQueMach=get_Main().machines.get(avaiMach.get(sequencesForScheduling.get(

0)).get(i)).machineNo;

}

}

selectedMach=minQueMach;

selectedMachines.add(selectedMach);

if(lastMach>-1)

{

partTime=time()+MachMachDist.get((lastMach),(selectedMach));

totalTravellingTime=totalTravellingTime+MachMachDist.get((lastMach),(selected

Mach));

}

;}

transition7.start();

return;

case scheduling: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(scheduling);

{

get_Main().machines.get(selectedMach).partsInQueue.add(this);

if(get_Main().machines.get(selectedMach).partsInQueue.size()==0)

{

get_Main().machines.get(selectedMach).onChange();

}

;}

transition10.start();

return;

case scheduledPart: // (Simple state (not composite))

stateOfPart.setActiveState_xjal(scheduledPart);

{

86

get_Main().partFamilies.get(partFamilyBelonged).schPartNum=get_Main().partFami

lies.get(partFamilyBelonged).schPartNum+1;

get_Main().partFamilies.get(partFamilyBelonged).onChange();

partTime=time();

get_Main().numberOfSchPart=get_Main().numberOfSchPart+1;

schNo=get_Main().numberOfSchPart;

;}

return;

case branch: // (Branch)

if (

sequencesForScheduling.size()==0

) { // transition8

enterState(scheduledPart, true);

return;

}

// transition9 (default)

enterState(determiningMachine, true);

return;

default:

super.enterState(_state, _destination);

return;

}

}

@Override

public void exitState(short _state, Transition _t, boolean _source, Statechart

_statechart) {

switch(_state) {

case partInClustering: // (Composite state)

if (_source) exitInnerStates(_state, _statechart);

return;

case newPart: // (Simple state (not composite))

if (!_source || _t != transition5) transition5.cancel();

return;

case initialization: // (Simple state (not composite))

87

if (!_source || _t != transition) transition.cancel();

return;

case partInCluster: // (Simple state (not composite))

if (!_source || _t != transition1) transition1.cancel();

if (!_source || _t != transition4) transition4.cancel();

{

processCompletedCl=0;

;}

return;

case lookForNewPF: // (Simple state (not composite))

if (!_source || _t != transition2) transition2.cancel();

return;

case waitForDecision: // (Simple state (not composite))

if (!_source || _t != transition3) transition3.cancel();

return;

case determiningMachine: // (Simple state (not composite))

if (!_source || _t != transition7) transition7.cancel();

return;

case scheduling: // (Simple state (not composite))

if (!_source || _t != transition10) transition10.cancel();

return;

case scheduledPart: // (Simple state (not composite))

return;

default:

super.exitState(_state, _t, _source, _statechart);

return;

}

}

public TransitionTimeout transition2 = new TransitionTimeout(this);

@Override

public String getNameOf(TransitionTimeout _t) {

if (_t == transition2) return "transition2";

return super.getNameOf(_t);

}

88

@Override

public Statechart getStatechartOf(TransitionTimeout _t) {

if (_t == transition2) return stateOfPart;

return super.getStatechartOf(_t);

}

@Override

public void executeActionOf(TransitionTimeout _t) {

if (_t == transition2) {

exitState(lookForNewPF, _t, true, stateOfPart);

enterState(waitForDecision, true);

return;

}

super.executeActionOf(_t);

}

@Override

public double evaluateTimeoutOf(TransitionTimeout _t) {

if (_t == transition2) return 0;

return super.evaluateTimeoutOf(_t);

}

public TransitionCondition transition5 = new TransitionCondition(this);

public TransitionCondition transition = new TransitionCondition(this);

public TransitionCondition transition1 = new TransitionCondition(this);

public TransitionCondition transition3 = new TransitionCondition(this);

public TransitionCondition transition4 = new TransitionCondition(this);

public TransitionCondition transition7 = new TransitionCondition(this);

public TransitionCondition transition10 = new TransitionCondition(this);

@Override

public String getNameOf(TransitionCondition _t) {

if (_t == transition5) return "transition5";

if (_t == transition) return "transition";

if (_t == transition1) return "transition1";

if (_t == transition3) return "transition3";

if (_t == transition4) return "transition4";

if (_t == transition7) return "transition7";

89

if (_t == transition10) return "transition10";

return super.getNameOf(_t);

}

@Override

public Statechart getStatechartOf(TransitionCondition _t) {

if (_t == transition5) return stateOfPart;

if (_t == transition) return stateOfPart;

if (_t == transition1) return stateOfPart;

if (_t == transition3) return stateOfPart;

if (_t == transition4) return stateOfPart;

if (_t == transition7) return stateOfPart;

if (_t == transition10) return stateOfPart;

return super.getStatechartOf(_t);

}

@Override

public boolean testGuardOf(TransitionCondition _t) {

if (_t == transition1) return

get_Main().clusteringManager.stateOfClusteringManager.isStateActive(ClusteringM

anager.waitingForApplication)&&(get_Main().partFamilies.get(partFamilyBelonged

).startScheduling==0);

return super.testGuardOf(_t);

}

@Override

public void executeActionOf(TransitionCondition _t) {

if (_t == transition5) {

exitState(newPart, _t, true, stateOfPart);

enterState(initialization, true);

return;

}

if (_t == transition) {

exitState(initialization, _t, true, stateOfPart);

enterState(partInCluster, true);

return;

}

90

if (_t == transition1) {

exitState(partInCluster, _t, true, stateOfPart);

enterState(lookForNewPF, true);

return;

}

if (_t == transition3) {

exitState(waitForDecision, _t, true, stateOfPart);

enterState(partInCluster, true);

return;

}

if (_t == transition4) {

exitState(partInCluster, _t, true, stateOfPart);

exitState(partInClustering, _t, false, stateOfPart);

enterState(determiningMachine, true);

return;

}

if (_t == transition7) {

exitState(determiningMachine, _t, true, stateOfPart);

enterState(scheduling, true);

return;

}

if (_t == transition10) {

exitState(scheduling, _t, true, stateOfPart);

{

lastMach=selectedMach;

sequencesForScheduling.remove(0);

processCompletedSc=0;

;}

enterState(branch, true);

return;

}

super.executeActionOf(_t);

}

@Override

91

public boolean testConditionOf(TransitionCondition _t) {

if (_t == transition5) return

(initial==1)&&(get_Main().parts.get(0).lookforNPF==0)&&(get_Main().parts.nIniti

alization()==0)&&(get_Main().clusteringManager.stateOfClusteringManager.isState

Active(ClusteringManager.waitingForApplication));

if (_t == transition) return

partFamilyBelonged>=0;

if (_t == transition1) return lookforNPF==1;

if (_t == transition3) return processCompletedCl==1;

if (_t == transition4) return

get_Main().partFamilies.get(partFamilyBelonged).startSchedulingP==1;

if (_t == transition7) return time()>=partTime;

if (_t == transition10) return processCompletedSc==1;

return super.testConditionOf(_t);

}

// Functions

void aveDisPF() {

disToPFMatrix=new double[get_Main().partFamilies.size()];

int pFFound;

for (int y=0;y<get_Main().partFamilies.size();y++)

{

if (y==partFamilyBelonged)

{

disToPFMatrix[y]=10000000.0;

}

else

if(get_Main().partFamilies.get(y).stateOfPartFamily.isStateActive(PartFamily.partFa

milyInScheduling))

{

disToPFMatrix[y]=10000000.0;

}

else

{

92

double avedis=0.0;

double disToPF=0.0;

int sizeOfPF=0;

for (int z=0;z<get_Main().partFamilies.get(y).partInPartFamily.size();z++)

{

int n=nOfOperations;

int m=get_Main().partFamilies.get(y).partInPartFamily.get(z).nOfOperations;

int [][] dis1Matrix=new int[n+1][m+1];

dis1Matrix[0][0]=0;

for (int a=1;a<=m;a++)

{

dis1Matrix[0][a]=a;

}

for (int b=1;b<=n;b++)

{

dis1Matrix[b][0]=b;

}

for (int k=1;k<=n;k++)

{

for (int j=1;j<=m;j++)

{

int substitute=0;

int delete=0;

int addition=0;

if (sequencesSt.get(k-

1).equals(get_Main().partFamilies.get(y).partInPartFamily.get(z).sequencesSt.get(j-

1)))

{

substitute=dis1Matrix[k-1][j-1];

}

else

{

substitute=dis1Matrix[k-1][j-1]+1;

}

93

delete=dis1Matrix[k-1][j]+1;

addition=dis1Matrix[k][j-1]+1;

dis1Matrix[k][j]=min(substitute, min(delete,addition));

}

}

double dis1=dis1Matrix[n][m];

int same=0;

double intersection=0;

double union=0;

for (int p=0;p<n;p++)

{

for (int r=0;r<m;r++)

{

if

(sequencesSt.get(p).equals(get_Main().partFamilies.get(y).partInPartFamily.get(z).se

quencesSt.get(r)))

{

same=same+1;

break;

}

}

}

intersection=same;

union=n+m-intersection;

double dis2=1-(intersection/union);

double dissimilarity=0.5*dis1+0.5*dis2;

disToPF=disToPF+dissimilarity;

sizeOfPF=sizeOfPF+1;

if (get_Main().partFamilies.get(y).partInPartFamily.size()==sizeOfPF)

{

avedis=disToPF/sizeOfPF;

}

}

disToPFMatrix[y]=avedis;

94

}

}

double aa=disToPFMatrix[0];

int mindis=0;

for (int bb=0;bb<get_Main().partFamilies.size();bb++)

{

if (aa>disToPFMatrix[bb])

{

aa=disToPFMatrix[bb];

mindis=bb;

}

}

aveDistToPF=aa;

pFFound=mindis;

}

void aveDisSPF() {

if (get_Main().partFamilies.get(partFamilyBelonged).partInPartFamily.size()==1)

{

aveDistToSPF=10000000.0;

}

else

{

double avedis=0.0;

double disToPF=0.0;

int sizeOfPF=0;

for (int

z=0;z<get_Main().partFamilies.get(partFamilyBelonged).partInPartFamily.size();z+

+)

{

int n=nOfOperations;

int

m=get_Main().partFamilies.get(partFamilyBelonged).partInPartFamily.get(z).nOfOp

erations;

int [][] dis1Matrix=new int[n+1][m+1];

95

dis1Matrix[0][0]=0;

for (int a=1;a<=m;a++)

{

dis1Matrix[0][a]=a;

}

for (int b=1;b<=n;b++)

{

dis1Matrix[b][0]=b;

}

for (int k=1;k<=n;k++)

{

for (int j=1;j<=m;j++)

{

int substitute=0;

int delete=0;

int addition=0;

if (sequencesSt.get(k-

1).equals(get_Main().partFamilies.get(partFamilyBelonged).partInPartFamily.get(z).

sequencesSt.get(j-1)))

{

substitute=dis1Matrix[k-1][j-1];

}

else

{

substitute=dis1Matrix[k-1][j-1]+1;

}

delete=dis1Matrix[k-1][j]+1;

addition=dis1Matrix[k][j-1]+1;

dis1Matrix[k][j]=min(substitute, min(delete,addition));

}

}

double dis1=dis1Matrix[n][m];

int same=0;

double intersection=0;

96

double union=0;

for (int p=0;p<n;p++)

{

for (int r=0;r<m;r++)

{

if

(sequencesSt.get(p).equals(get_Main().partFamilies.get(partFamilyBelonged).partIn

PartFamily.get(z).sequencesSt.get(r)))

{

same=same+1;

break;

}

}

}

intersection=same;

union=n+m-intersection;

double dis2=1-(intersection/union);

double dissimilarity=0.5*dis1+0.5*dis2;

disToPF=disToPF+dissimilarity;

sizeOfPF=sizeOfPF+1;

if

(get_Main().partFamilies.get(partFamilyBelonged).partInPartFamily.size()==sizeOf

PF)

{

avedis=disToPF/(sizeOfPF-1);

}

}

aveDistToSPF=avedis;

}

}

97

PERSONAL INFORMATION

Name and Surname: Latife Görkemli

Natioality: Turkish (TC)

Birth place and date: Kayseri, 1985

Marial status: Single

Phone number: +90 537 468 06 54

Email: lgorkemli@erciyes.edu.tr

EDUCATION

 Graduate school Year

Master Erciyes University (Ind. Eng.) 2009

Bachelor Erciyes University (Ind. Eng.) 2007

High School N.M. Küçükçalık Anadolu Lisesi 2003

Work experience

 Place Enrollment

2003-Present Erciyes University Research Assistant

PUBLICATIONS

International Journals

Baykasoğlu, A. Gorkemli, L., 2014. Dynamic virtual cellular manufacturing through

agent based modelling, Submitted to International Journal of Production Research.

Baykasoğlu, A. Gorkemli, L., 2013. Agent based dynamic part family formation for

cellular manufacturing applications, Submitted to International Journal of Production

98

Research.

Baykasoglu, A., Ozbakir, L., Gorkemli, L., Gorkemli, B., 2012. Multi-colony ant

algorithm for parallel assembly line balancing with fuzzy parameters, Journal of

Intelligent and Fuzzy Systems, 23(6), 283-295.

Özbakır L., Baykasoğlu A., Görkemli B., Görkemli L., 2011. Multiple-colony ant

algorithm for parallel assembly line balancing problem, Applied Soft Computing,

11(3), 3186-3198.

Görkemli, L., Kapan Ulusoy, S., 2010. Fuzzy Bayesian reliability and availability

analysis of production systems, Computers & Industrial Engineering, 59, 4, 690-696.

Internatinoal Conferences

Baykasoglu, A., Gorkemli, L., Formation of dynamic virtual manufacturing cells

through agent based modeling, YA/EM 2013: Yöneylem Arastirmasi / Endüstri

Mühendisligi Kongresi 33. Ulusal Kongresi, International IIE Conference, Grand

Cevahir Otel ve Kongre Merkezi, 26-28 Haziran 2013, Istanbul, (ISBN: 978-605-

61427-8-9), 2013. (abstract)

Baykasoglu, A., Ozbakir, L., Gorkemli, L., Gorkemli, B., Multiple ant colony

algorithm for balancing parallel assembly lines with fuzzy parameters, FUZZYSS'11:

2nd International Fuzzy Systems Symposium, (ed., Gokceoglu C., Aladag HC.,

Akgun A) Hacettepe University, Cultural Center, November 17-18, 2011, Ankara,

Turkey, pp. 163-168.

Baykasoglu, A., Durmusoglu, Z.D.U., Gorkemli, L., Solving vehicle deployment

planning problem by using agent based simulation modeling, 2nd International

Symposium on Computing in Science & Engineering, June, 1-4, 2011, Gediz

University Publications, editor: M. Gunes, ISBN:978-605-61394-2-0, pp.338-340,

Kusadasi, Aydin, Turkey.

Baykasoğlu, A., Özbakır, L., Görkemli, L., Görkemli, B., 2009, Balancing parallel

assembly lines via ant colony optimization, 39
th

 International Conference on

Computers & Industrial Engineering (CIE39), 6-9 July 2009, Troyes, France, p.p.

99

512-517.

Görkemli, L., Ulusoy, S., Bayesian analysis of manufacturing process reliability,

Innovative Approaches to University&Small and Medium Enterprises (SMES)

Cooperation, Workshop I, 19-20 Mart, Litvanya, 2009. (abstract)

Ulusoy, S., Görkemli, L., 2008. Analysis of maintenance data of an airline. HDM

2008: International Conference on Multivariate Statistical Modeling and High

Dimensional Data Mining, 19-23 June 2008, Erciyes University, Kayseri. (abstract)

National Conferences

Baykasoglu, A., Durmusoglu, Z. D. U., Gorkemli L., Dinamik araç yerleĢtirme

problemleri için etmen tabanlı çözüm stratejileri geliĢtirilmesi, 13. Üretim

AraĢtırmaları Sempozyumu, Bildiriler Kitabı, 25-27 Eylül 2013, Sakarya

Universitesi Esentepe Kampüsü Kongre ve Kültür Merkezi, pp. 269-278.

Baykasoglu, A., Durmusoglu, Z.D.U., Gorkemli, L., Etmen tabanlı benzetim:

ANYLOGIC
TM

yazılımı ve örnek bir uygulama, Endüstri Mühendisliği Yazılımları

ve Uygulamaları Kongresi, Ġzmir, 30 Eylül-01/02 Ekim 2011, TMMOB Makina

Mühendisleri Odası Yayın No: E/2011/559, pp. 197-204.

Görkemli, L., Görkemli, B., 2010. Montaj hatlarının hazırlık süreleri dikkate alınarak

karınca kolonisi algoritması ile dengelenmesi ve çizelgelenmesi. YA/EM 2010

Yöneylem AraĢtırması/Endüstri Mühendisliği 30. Ulusal Kongresi, Ġstanbul. (bildiri

özeti)

Özbakır, L., Baykasoğlu, A., Görkemli, B., Görkemli, L., 2009. Çok kriterli paralel

montaj hattı dengeleme problemine çok kolonili karınca optimizasyonu yaklaĢımı.

YA/EM 2009 Yöneylem AraĢtırması/Endüstri Mühendisliği 29. Ulusal Kongresi,

Ankara. (tam metin)

Ulusoy, S., Görkemli, L., 2009. Bayes ağları ile uçuĢ gecikmelerinin analizi. YA/EM

2009 Yöneylem AraĢtırması/Endüstri Mühendisliği 29. Ulusal Kongresi, Ankara.

(bildiri özeti)

100

Baykasoğlu, A., Özbakır, L., Görkemli, L., Görkemli, B., 2008. Parallel montaj hattı

dengelemede çok kolonili karınca kolonisi optimizasyonu. YA/EM 2008 Yöneylem

AraĢtırması/Endüstri Mühendisliği 28. Ulusal Kongresi, Ġstanbul. (tam metin)

Göleç, A., Görkemli, L., 2007. Panel mobilya üretiminde stratejik rekabet gücünü

etkileyen ergonomik konular. 13. Ulusal Ergonomi Kongresi, Kayseri. (tam metin)

Görkemli, L., Kara, G., Göleç, A., 2007. Ġstikbal Mobilya A.ġ.’de yatak montaj hattı

tasarımı. YA/EM’2007 Yöneylem AraĢtırması ve Endüstri Mühendisliği 27. Ulusal

Kongresi, Ġzmir. (tam metin)

FOREIGN LANGUAGE

English

German

HOBBIES

Jogging and playing table tennis.

