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ABSTRACT 

AN OBJECT ORIENTED PROGRAM OF MESHFREE METHODS FOR 

ANALYZING OF 2D AND 3D ELASTOSTATIC PROBLEMS  

YAVUZ, Mustafa Murat 

Ph.D. in Mechanical Engineering 

Supervisor: Prof. Dr. Bahattin KANBER 

September 2015 

153 pages 

In this study, several object oriented and structured programs are developed using 

Matlab and Fortran programming languages. In these programs, various meshfree 

methods are used such as LRPIM, MLPG and RPIM with different integration 

schemes. The performance of each program, efficiency of integration schemes and 

shape parameters of RPIM are investigated in details. 

In the first part of this study, LRPIM and MLPG methods are used inside an object 

oriented program to test the classes and objects. Developed program is applied in the 

solutions of 2D and 3D elasto-static problems. The modularity of the program is 

main target in this part of the study. 

In the second part, a nodal integration scheme is used in RPIM with a structured 

program for solution of 2D and 3D elasto-static problems. Higher order terms of 

Taylor series expansion are used for increasing solution accuracy. Various 

integration domain shapes are used for integrations of regular and irregular 

distributed nodes in the problem domains. Optimum shape parameters of RPIM and 

support domain sizes are determined.  

In the last part, stress fluctuations in nodal integration results have been decreased 

with three different applications. 

Key Words: Object oriented programming (OOP), meshfree methods, RPIM, nodal 

integration, Matlab 



 
 

 

 

 

ÖZET 

2 VE 3 BOYUTLU ELASTOSTATİK PROBLEMLERİN ANALİZİ İÇİN 

AĞSIZ YÖNTEMLERİN NESNE TABANLI BİR PROGRAMI 

YAVUZ, Mustafa Murat 

Doktora Tezi, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Bahattin KANBER 

Eylül 2015 

153 sayfa 

Bu çalışmada, Matlab ve Fortran programlama dilleri kullanılarak çeşitli nesne 

tabanlı ve yapısal programlar geliştirilmiştir. Bu programlar içerisinde LRPIM, 

MLPG ve RPIM gibi çeşitli ağsız yöntemler farklı integrasyon şemaları ile 

kullanılmıştır. Her programın performansı, integrasyon şeması ve RPIM şekil 

parametrelerinin verimliliği detaylı olarak araştırılmıştır. 

Çalışmanın ilk kısmında, LRPIM ve MLPG yöntemleri bir nesne tabanlı program 

içerisinde sınıfları ve nesneleri test etmek için kullanılmıştır. Geliştirilen program 2 

ve 3 boyutlu elasto-statik problemlerin çözümüne uygulanmıştır. Programın 

modülerliği bu bölümün ana hedefidir. 

İkinci bölümde, noktasal integrasyon yöntemi yapısal bir program ile 2 ve 3 boyutlu 

elasto-statik problemlerin çözümü için RPIM içerisinde kullanılmıştır. Yüksek 

dereceli Taylor serisi açılımı terimleri çözüm hassasiyetinin arttırılması için 

kullanılmıştır. Problem alanı içerisinde düzenli ve düzensiz dağılmış noktaların 

integrasyonu için çeşitli integrasyon alanı şekilleri kullanılmıştır. Uygun RPIM şekil 

parametreleri ve destek alanı büyüklüğü belirlenmiştir. 

Son bölümde, noktasal integrasyon sonuçları içerisindeki gerilme dalgalanmaları 3 

farklı yöntem kullanılarak azaltılmıştır. 

Anahtar Kelimeler: Nesne yönetimli programlama, ağsız yöntemler, RPIM, 

noktasal integrasyon, Matlab 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Computational mechanics is one of the numerical analysing techniques and it is 

becoming widespread by means of developed computational science and numerical 

methods. On the contrary, usage of experimental methods for the investigation of 

solid mechanics problems, numerical methods and solution techniques can be used, 

which are usually fast and they do not require any experimental equipment and 

materials. Construction of the numerical model and application of required initial and 

boundary conditions are enough for the solution of the problems. Solution results are 

taken fast and new conditions are easily adapted into the analyses. Different 

numerical methods are adapted on computer programs. Some examples of numerical 

analysis methods can be given as; finite element method (FEM), boundary element 

method (BEM), finite difference method (FDM), finite volume method (FVM) and 

so on. They are easily applied on the most of engineering problems. However some 

assumptions and simplifications are required, especially for the analysis model, 

which includes complex shapes, nonlinear behaviour and time dependent responses. 

Some differences occur between simplified and real model, which must be taken 

under control. 

FEM are widely used on the solutions of solid mechanics problems. The analysed 

model is divided into small elements, which are called finite elements and the 

solution is going over on these elements. The elements form meshes and it is known 

that analyse results are directly influenced by quality of these meshes. Rough, less or 

insufficient meshes cause to give less sensitive or incorrect results. Also it may cause 

to not convergence of the finite element analyses (FEA) with respect to analyse 

conditions. Hence, mesh convergence is also studied for satisfying stable results, 

which consumes more time again.  
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Different studies are investigated for eliminating meshing operation of FEM. One of 

the investigations is meshfree method. Meshfree method is one of numerical 

analysing techniques, which gains popularity with respect to new improvements. In 

meshfree or meshless methods, a mesh is not commonly used, at least interpolation 

operations. Only placing nodes into the analysed system is enough. However, 

meshfree method is a new method when its development stage is compared with 

FEM and BEM. It needs more improvements, especially for the construction of 

relations between nodes before and during the analyses. Most of the researchers 

focus on this subject and they develop some new techniques. 

Besides the developments on numerical techniques, it is also known that their 

programming in computer programs is important. A well-structured programming is 

needed for using numerical methods efficiently in computational solutions. 

Misidentifications, incorrect operation cycles, unwanted changes of constant 

parameters and conflicts lead to undesirable results during the application. Hence 

another programming technique must be used for prevention of conflicts, especially 

for the programs in developing stage. Object oriented programming (OOP) technique 

is one of the programming technique and used especially in the programming of 

complex and developing programs. Transactions with objects avoid the complexity 

and classification of similar structures increases efficiency in OOP. Inheritance, 

polymorphism and encapsulation properties of OOP provide to decrease conflicts in 

programs, especially complex types. 

1.2 Research Objectives and Tasks 

The main objective of this study is constructing an object oriented meshfree 

program for analysing of solid mechanics problems. The followed stages of this 

study can be summarized as; 

I. to investigate the studies about meshfree methods and OOP in 

numerical methods in literature 

II. to determine a suitable meshfree program in literature to apply in OOP 

programming 

III. to construct classes of OOP programming of meshfree methods for 

solution of 2D elasto-static problems 
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IV. to set classes of RPIM and MLS methods for construction of shape 

functions 

V. to add randomly distributed nodes property in the determination of 

node coordinates 

VI. to determine class properties and objects 

VII. to set a main program for running the classes in harmony 

VIII. to solve 2D elastostatic plane problems subjected to axial and bending 

loading with OOP meshfree program 

IX. to improve 2D meshfree program for using in 3D applications 

X. to solve 3D elasto-static solid mechanics problems 

XI. to improve 2D and 3D Matlab programs for new meshfree techniques 

1.3 Layout of Thesis 

A general introduction about the thesis is given in chapter one. The previous studies 

are mentioned in literature review about meshfree methods, their applications and 

OOP in numerical methods, which are given in chapter two. The formulations of 

MLS and RPIM on the construction of shape functions are summarized in chapter 

three, which are used in many meshfree methods. In chapter four, application of 

OOP in MLPG and LRPIM is given for 2D elastostatic problems. Classes of OOP 

are defined in detail. In chapter five, nodal integration scheme is summarized for 2D 

and 3D structures. Nodal integration needs integration cells. In chapter six, 

application of nodal integration on 2D/3D RPIM for different integration cells is 

given. Stress results in nodal integration include fluctuations. In chapter seven, stress 

stabilization methods are given for decreasing fluctuations in nodal integration stress 

results. In the last chapter, chapter eight includes main findings in this study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Previous studies are searched in literature about meshfree methods and object 

oriented programming. Also, their applications on different subjects are searched and 

summarized in this section. 

2.2 Meshfree Methods 

Nowadays, meshfree methods are very popular and used in many different areas such 

as solution of 2D/3D solid and fluid mechanics, thermal and heat transfer problems, 

explosion modelling, etc. The main reason is flexibility of meshfree methods. 

Solutions are generally carried out without using any predefined elements and only 

nodes are used in modelling. 

The idea of meshfree methods in numerical analyses has been used nearly since 1977 

by the development of SPH (smoothed particle hydrodynamics) (Lucy, 1977; 

Gingold and Monaghan, 1977), which is applied on the solutions of astrophysical 

problems. Further developments are continuously carried on and new methods are 

developed by different researchers. DEM (diffuse element method) (Nayroles et al., 

1992) is developed at the further development stages which requires no mesh 

generation. It includes MLS (moving least square) functions, which is used further 

development stage of EFG (element-free Galerkin) (Belytschko et al., 1994) method. 

The usage of MLS functions as trial and test functions in EFG method prevents 

volumetric locking on the solutions. Liu et al. (1995) develop Reproducing Kernel 

Particle methods (RKPM). Also partitions of unity (Babuska and Melenk, 1996) and 

H-p clouds (Duarte and Oden, 1996) methods are developed by using MLS 

functions. Atluri and Zhu (1998) study on meshless local Petrov-Galerkin (MLPG) 

method for solution of solid mechanics problems. PIM (point interpolation method) 

(Liu and Gu, 2001) and RPIM (radial point interpolation method) (Wang and Liu, 

2002a) are developed for solution of solid mechanics problems. 
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These methods can be also combined with other methods. PIM and PRIM is included 

inside of BEM (Liu and Gu, 2004) for construction of boundary integral equations. 

PIM and RPIM are further used with different methods and integration schemes; 

linearly conforming point interpolation method (LC-PIM) (Liu et al., 2005), nodal 

integration radial point interpolation method (NI-RPIM) (Liu et al., 2007), NS-PIM 

(node-based smoothed point interpolation method) (Zhang et al., 2007), edge-based 

smoothed point interpolation method (ES-PIM) (Liu and Zhang, 2008) and CS-RPIM 

(cell-based smoothed radial point interpolation method) (Liu and Zhang, 2009) are 

available in literature. The name of LC-PIM (Liu et al., 2005) was lately changed to 

NS-PIM (Zhang et al., 2007) to make it consistent with other types of smoothing 

methods. Most of these methods are constructed based on weak form and provide to 

eliminate pre-defined mesh dependency for construction of shape functions. 

However, more researches are needed for fully eliminating mesh generation on 

interpolations and integrations. Investigations on meshfree methods still continue. 

Therefore, it is not fully developed with respect to FEM and BEM. 

Researchers are trying to solve the problem about meshing cost of FEM or BEM 

with application of meshfree methods on different subjects. Some of the application 

areas are summarized;  

2.2.1 Solid Mechanics 

Numerical methods have been used on the investigations of solid mechanics 

problems for a long time. Different methods are developed and they are used on the 

solution of 2D/3D solid mechanics problems. Bobaru and Mukherjee (2001) 

investigate element free Galerkin method on 2D shape optimization problems and 

compare their results with FEM results. They mention that MLS in EFG method has 

higher computational cost then FEM, but no remeshing property of meshfree 

methods close the difference in their analyses. Besides the usage of meshless local 

Petrov-Galerkin method, local point interpolation method (LPIM) is developed (Gu 

and Liu, 2001) which has lower computational cost then MLS method. Onate et al. 

(2001) use finite point method (FPM) for the investigation of linear elastic solid 

mechanics problems. They achieve better results than a standard FEM analysis. 

Wang and Liu (2002b) investigate the effect of different shape parameters of RPIM 

on a cantilever beam problem by using different basis functions. They determine that 
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optimum shape parameters are q=1.03 and R=1.42, when MQ (multi-quadric) basis 

functions are used. If Gaussian basis functions are used, the optimum shape 

parameter has a range between 0.003 and 0.03 (Wang and Liu, 2002b). Liu (2002) 

develops a method, point assembly method for investigations of two-dimensional 

solids. The method (Liu, 2002) does not need cells and search neighbour points, but 

it cannot be used in compressible elastic material problems with respect to 

volumetric locking condition. Also Lui (2002) warns that overlapping of integrations 

of nodes can be seen in this method, which needs high point density for achieving 

accurate stress results. 

Noguchia and Kawashima (2004) use ALE-EFG (arbitrary Lagrangian Eulerian-

EFG) method for investigation of cable-reinforced membrane structures. Although 

they get acceptable results, they mention that the used method is nearly five or ten 

times slower than a FEM analysis. Liu et al. (2005) investigate solutions of 2D solid 

mechanics problems by using LC-PIM. They achieve more accurate results than 

FEM analysis. Dai et al. (2006) use RPIM for investigation of 2D solids with both 

regular and irregular node distributions. They achieve good agreements between 

compared results and both regular and irregular distributed node results in their 

analyses. Computational cost of meshfree methods is main problem on solid 

mechanics problems. It is tried to be decreased with the both usage of Heaviside test 

function and MLPG method in the study of Hu et al. (2006). Heaviside test function 

is also used by Zheng and Dai (2011) for providing less computational costs. They 

use local Moving Kriging method in their analyses. Yanan et al. (2011) investigate 

2D elastic problems with b-spline method. They use different scales of subdomains 

for saving computational costs. Fooladi et al. (2011) investigate time dependent 

dynamic loads on solid mechanics with using local radial interpolation method. 

Besides the usage of Gaussian quadrature, they use Taylor series expressions for 

decreasing the number of field nodes and integration points. In some cases, irregular 

node distributions cause to increase numerical errors in meshfree analyses and the 

problem can be prevented by increasing the number of nodes (Abdollahifar et al., 

2012). Plasticity analyses of solids are also investigated by Chen et al. (2011). They 

use kinematic hardening assumption and reduced basis technique to achieve more 

realistic and stable solutions.  
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2.2.2 Large Deformation 

The most weakness of FEM is observed in large deformation analyses, because of 

highly distorted elements occur. Chen et al. (1996) use reproducing kernel particle 

methods for ignoring mesh distortion problems of mesh based techniques. They 

investigate large deformation problems of non-linear elastic and inelastic structures. 

Shapiro and Tsukanov (1999) use meshless methods for investigation of deforming 

domains with r-functions method. They do not use predetermined elements, but it 

causes a significant computational cost in their analyses. Liew et al. (2002) use 

reproducing kernel particle method for the investigation of large deformations of 

elasto-static beam problems. They add penalty method for eliminating the lack of 

Kronecker delta property of RKPM. Shangwu et al. (2003) investigate strain rolling 

of plane with RKPM method. They mention that rectangular influence domain is 

more suitable than circular influence domain. Gu et al. (2007) use local Kriging 

method on the solutions of 2D deformable bodies. Filice et al. (2009) use NEM 

(natural element method) on the extrusion processes, but they mention that NEM has 

more computational cost than FEM. Hanoglu et al. (2011) investigate rolling process 

with a strong form meshfree technique and they gain good agreements with 

compared DEFORM-2D results. 

2.2.3 Crack and Fracture 

Crack and fracture analyses are mainly discussed and studied for preventing the 

failure of mechanical systems. High distorted elements may occur, if mesh based 

methods are used in fracture analyses. Ponthot and Belytschko (1998) use arbitrary 

Lagrangian-Eulerian formulation for the investigation of dynamic crack propagation. 

They clarify that redefining of node locations are easily handled by ALE. Hao et al. 

(2000) use RKPM for investigation of fracture problems. They gain higher 

resolutions on shear band pattern in RKPM solution than FEM solution. Rao and 

Rahman (2001) use both meshless and FEM on crack analyses and use same shape 

functions on the interaction of meshless and FEM models. Li et al. (2002) use 

meshfree Galerkin method on the investigation of dynamic crack propagations. They 

achieve to see curved shear band path in meshfree analyses as nearly same as 

compared experimental results, which are not captured with FEM. Rabczuk and 

Belytschko (2007) study on crack grow by using meshfree methods. They model the 
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crack as a collection of particles and the unity of these particles are ruined on the 

direction of crack propagation. Gu and Zhang (2008) use both of meshfree and FEM 

for crack analyses. They set meshfree particles on crack sides for prevention of 

remeshing, but they use FEM at far away of crack for less decreasing computational 

efficiency. In the study of Rabczuk et al. (2010), particles are set to be ruined easily 

by using meshless method when cracking criteria occurs. Wena and Aliabadi (2011) 

investigate stress intensity factors by using element free Galerkin method with both 

usage of RBF and MLS methods. Zhang et al. (2011) investigate 3D crack analysis. 

They use radial integration method for transferring the domain integral to boundary 

integrals over the crack. Liu et al. (2011) investigate crack problems with cell based 

smoothed radial point interpolation method. They set the number of gauss points as 

4, for gaining optimum solution accuracy in their analyses. Pathak et al. (2014) 

investigate 3D crack problems with a coupled FE and EFG methods. They use EFG 

method on crack surfaces and FEM on other analysed locations. 

2.2.4 Thin and Thick Plates 

Another application area of meshfree methods is investigation of thin and thick plate 

problems. Donning and Liu (1998) investigate thin and thick plates with meshless 

methods. They try to eliminate shear locking of thin members with Galerkin method. 

Static and free vibration analyses of thin shells are investigated with MLS shape 

functions by Liu et al. (2002). They assign these shape functions into Galerkin weak 

form for construction of system equations. Liew et al. (2004) investigate thin plates 

by using MLS functions and they recommend that more order degree of polynomials 

are needed in irregular distributed node analyses than regular distributed node 

analyses. Li et al. (2005) study on a locking-free meshless local Petrov–Galerkin 

formulation on shear flexible thick plates in thin plate limits. They prevent shear 

locking with chancing two dependent variables in governing equations rather than 

using assumed strain and reduced integration techniques. Bending behaviour of shear 

deformable shallow shells is investigated in the study of Sladek et al. (2007) by using 

meshless local Petrov-Galerkin method. They see that regular distributed nodes give 

more stable results than irregular ones. Xia et al. (2009) use local radial point 

interpolation method (LRPIM) on the elasto-dynamic solution of moderate thickness 

plates. They use low order polynomials for gaining time, however their results have 

low accuracy. Dynamic fracture of plates is (Gato, 2010) also investigated and the 
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connectivity of fractured parts is easily removed in calculations by the usage of 

meshfree methods. RezaeiMojdehi et al. (2011) investigate static and dynamic thick 

plates by using cubic domains in support domain and MLPG method with MLS 

shape functions. They eliminate domain integrals in the calculation of stiffness 

matrix by using Heaviside test functions. Heaviside test functions are used for 

converting the local integral equations to local sub-domains (RezaeiMojdehi et al., 

2011). Elasto-plastic behaviour of thick plates is investigated by Xi et al. (2011). 

They use polynomial radial basis functions inside of weighted residual method and 

use quartic spline functions as test functions. Liu et al. (2011) use adaptive analysing 

method for increasing sensitivity in sheet metal forming with reproducing kernel 

particle method. Wu et al. (2011) investigate plane stress and strain problems of 

plates with meshless collocation method. Dinis et al. (2011) investigate the dynamic 

behaviour of 3D thin walled structures with natural neighbour meshless method. The 

determination of neighbour nodes provides less influence effects on the variations of 

boundary conditions. Wang et al. (2011) try to eliminate surface mesh on BEM by 

using hybrid boundary node method and MLS functions. Results of their study show 

good agreements with compared analytical solutions on the solutions of 3D thick 

walled cylinder problems. Similar usage of meshfree methods can be seen for the 

solutions of nonhomogeneous problems by Chen et al. (2011). 

2.2.5 Composites 

Investigations of composite plates with different combinations, material properties 

and other parameters cause to consume large amount of resources and lose lots of 

time in experimental analyses. In this sense, meshfree methods are also applied on 

the investigation of composite structures. Bending and buckling of thick rectangular 

laminates are investigated by using MLS methods (Liew and Huang, 2003). Liew 

and Huang (2003) observe that if enough support is achieved for integration, the 

accuracy of the solution is not affected dominantly by node irregularities and support 

sizes. EFGM is used on the investigations of plates and laminates (Belinha et al., 

2007), but this method has bigger computational cost than other methods. Liu et al. 

(2008) use RPIM for analysing composite plates, which are subjected to static and 

free vibration loads. Besides the usage of Gauss integration, Liu et al. (2008) use 

nodal integration which prevents shear locking condition on the analyses. Galerkin 

meshfree formulation is used for the investigation of composites by Wang et al. 
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(2009). They set different integration subdomains for different materials. Ferreira et 

al. (2011) use RBF collocation method in the investigations of composites. Different 

researchers investigate FGM (functionally graded materials) and composites by using 

meshless methods (Wu and Yang, 2011; Wu et al., 2011; Wu and Chiu, 2011) and 

suitable results are achieved. Li et al. (2011) achieve more realistic models on the 

investigation of 3D orthogonal woven fabric composites by using radial basis and 

moving kriging interpolation functions. Orthotropic enrichment functions are used on 

fracture problems of composites by Ghorashi et al. (2011) for increasing the accuracy 

of the solution. Roque et al. (2011) investigate composite plates by using finite 

difference methods with radial basis functions and they mention that shape 

parameters are important and affect the solutions. 

2.2.6 Contact 

The interaction of bodies may give different responses on different conditions. 

Meshfree methods can be used in contact mechanic problems with different contact 

algorithms. Campbell et al. (2000) use SPH and develop a contact algorithm by using 

penalty method. They see in their investigations that oscillations in SPH may cause 

to inaccurate results. Moreover, in some cases, the contact algorithm begins without 

interaction of nodes (Campbell et al., 2000). They determine that it is caused from 

interaction of node domains. Three different radial basis functions are investigated 

by Xiao et al. (2005), which are MQ, EXP and TSP on the solutions of 2D contact 

problems. They see that MQ gives the best and EXP gives the worst results. 

However, shape parameters of all these basis functions are sensitive to distance of 

nodes without TSP basis functions (Xiao et al., 2005). Kwon and Youn (2006) 

investigate a rigid plastic contact analysis. Hu et al. (2007) use two different test 

functions for two different cases. When nodes do not contact, Heaviside test function 

is selected for simplifying domain integrals (Hu et al., 2007). Otherwise, if the 

contact occurs, Kronecker delta test function is used (Hu et al., 2007). Nianfei et al. 

(2009) investigate an adaptive RKPM method on contact problems. Especially, they 

use adaptive domain sizes for elasto-plastic large deformations analyses. Hence, they 

achieve optimum support sizes for different nodes interactions and preventing usage 

of unnecessary nodes in integration. Amirani and Nemati (2011) investigate a 

meshless contact algorithm with FEM in the investigations of 2D frictionless 

interaction problems. They use FEM shape functions in contact.  
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2.2.7 Impact 

Besides static analysis, impact analysis is also examined by different researchers. 

Geometrical discontinuities, fragmentation of geometry and up to hypervelocity 

impact effects may cause to difficulties when FEM is used in the analyses. Liu et al. 

(1999) use reproducing kernel particle method on impact problems. Li et al. (2001) 

investigate an impact problem on a Taylor bar with a contact-detection algorithm, 

which is mainly derived from moment method in meshfree discretization. Ma et al. 

(2002) use material point method on hypervelocity impact problems, which does not 

need to search neighbour nodes in the analyses and avoids tensile instability. 

Rabczuk and Eibl (2006) investigate dynamic behaviour of concrete with SPH, 

which supports fragmentation easily. Recio et al. (2007) investigate hourglass 

condition and different forms of locking by using EFGM. Wang et al. (2009) try to 

prevent hourglass condition and large computational time by using a local boundary 

integration operation with both usage of meshfree and FEM shape functions. Johnson 

et al. (2011) use a coupled particle and finite element algorithm on the investigations 

of high velocity impact problems. The used technique prevents tensile instabilities in 

the particles. Zhang et al. (2011) use both meshfree and FEM for investigation of 

impact analysis. They use SPH for meshfree method and particle contact algorithm 

for contact definition. They clarify that contact begins when the SPH domain of node 

contacts with finite element. However, the SPH node has not directly interacted with 

finite element yet (Zhang et al., 2011), which may give less accurate results. Gong et 

al. (2012) investigate impact behaviour of an aluminium plate by using material point 

method, which provides good agreements with compared experimental solutions. 

2.2.8 Fluid Mechanics and Heat Transfer 

Fluid mechanics and heat transfer problems are another usage area of meshfree 

methods. Rabczuk et al. (2004) study on Lagrangian and Eulerian kernels with stable 

particle methods. They mention that Lagrangian kernels are more suitable for small 

deformation and failure problems of solids. If fluid-solid interaction problem is 

investigated, it may be useful to define solid structures with Lagrangian kernels and 

fluid structures with Eulerian kernels (Rabczuk et al., 2004). Vorobyev et al. (2011) 

investigate sloshing fluid analyses with SPH. Hashemi and Jahangirian (2011) use 

Taylor series least square method for interpolations in compressible flow 
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investigations. They use local time stepping and residual smoothing methods for 

increasing computational efficiency. Li (2011) develops a generalized boundary node 

method for investigation of incompressible viscous fluid flows, which provides the 

application of boundary conditions easily. Darbani et al. (2011) investigate broken 

dam problems with natural element method and achieve suitable results. Swathi and 

Eldho (2014) study on ground water flow simulation by using MLPG method, which 

has much less consuming time for pre-processor step than FDM and FVM. 

Xue-Hong and Wen-Quan (2008) use meshless MLPG method for the investigation 

of steady state heat conduction problems. They achieve accurate results for 2D 

irregular complex domains. Wu et al. (2009) use node based smoothed point 

interpolation method (NS-PIM) for 3D heat transfer problems. The used gradient 

smoothing technique enables to achieve suitable results with low ordered shape 

functions (Wu et al., 2009). Thakur et al. (2010) investigate nonlinear heat 

conduction problem on irregular domains with MLPG method. Shibahara and Atluri 

(2011) investigate welding process by using MLPG method. They see that increasing 

the number of nodes cause to decrease the effect of shape parameters. Khosravifard 

et al. (2011) use an improved RPIM method for heat conduction analyses of FGM. 

Skouras et al. (2011) investigate heat conduction problem on isotropic and 

functionally graded materials with meshless point collocation (MPC) method. They 

mention that the accuracy of solution is directly affected by the order of meshless 

approximation functions and their derivatives. Heat conduction problems are also 

investigated by Cheng and Liew (2012). They use RKPM and achieve good 

agreements with compared analytical solutions. 

2.2.9 Developments on Applications 

Some weaknesses of meshfree methods are tried to be eliminated by different 

researchers. They use different methods and observe their efficiencies on the solution 

of different problems. Liu et al. (1997) use spectral methods with moving least 

square reproducing method and see that this method needs more calculation time and 

computational resources. Liu and Gu (2002) investigate three different integration 

methods, which are LPIM, MLPG and LR-PIM. They see that LPIM has the best and 

LR-PIM has the least efficiency. Liu and Gu (2004) study on boundary meshfree 

methods and determine optimum number of nodes in the support domain and shape 
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parameters for MQ radial basis functions. Kwon et al. (2006) investigate the 

performance of integrations of Galerkin method and determine that increasing 

integration points in nodal supports provides less integration errors. RPIM is very 

effective and becomes widespread in the meshfree methods. It is used in DRM (dual 

reciprocity method) with hybrid boundary node method (HBNM) and seen that using 

RPIM increases the accuracy (Yan et al., 2010). The study shows that the usage of 

MLS shape functions increases CPU time, which is decreased by construction of 

shape functions with RPIM. Tang et al. (2011) include automatic mesh generation 

technique with Delaunay method on node based smoothed point interpolation 

method. The applied adaptive refinement method in the study effectively achieves 

accurate stress concentration results. He et al. (2011) use meshfree weighted least 

square method for achieving less computational cost on MLS method. The used 

method avoids numerical integration, which increases computational efficiency. 

They try to prevent the ill-conditioned formulations of MLS method for 2D 

Helmholtz problems. Liana et al. (2011) use material point method (MPM) and FEM 

together with hybrid nodes. FEM is used in small deformation and MPM are used in 

large deformation sections. Moosavi et al. (2011) use orthogonal weighted basis 

functions to solve singularity problems on meshless finite volume method. Xiang et 

al. (2011) investigate 3D partial differential equations with radial point collocation 

method. They study on different radial basis functions and try to calculate optimum 

shape parameters. It is mentioned that if the number of partial differential equations 

increases, it will cause to decrease the accuracy of the solutions on meshless 

collocation method. Cheng et al. (2014) investigate 2D plasticity problems with EFG 

method. They include interpolating moving least square method to construct shape 

functions, which supports property of Kronecker delta function. 

2.2.10 Radial Basis Functions and Other Applications 

RBFs (radial basis functions) include an important level in some meshfree methods 

and are widely used in meshfree approximations. They are used for development of 

BKM (boundary knot method) (Chen and Tanaka, 2002). However, in some 

meshfree methods, the usage of RBF cannot fully increase accuracy. It is observed in 

the study of Zhang (2006) that whether radial basis functions are used, the accuracy 

and efficiency of Galerkin method is less than FEM. The interpolation of nodes can 

cause oscillations. 
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Xiao et al. (2007) investigate homogeneous and isotropic thick elastic plates with a 

meshless local Petrov-Galerkin (MLPG) method and a higher-order shear and normal 

deformable plate theory. They mention that the usage of RBFs provides essential 

boundary conditions without application of any special treatment, which reduces 

computational cost. Demirkaya et al. (2008) observe in their study that node 

placements are very important and affect the convergence of RBF solutions. Regular 

node placement provides the convergence of solution quickly in RBFs. It is also 

detected by Demirkaya et al. (2008) that the matrices may be ill-conditioned, if too 

much number of nodes is used. Increasing number of nodes causes to increase the 

size of Jacobian and other matrices in the solution and cause to decrease the 

computational speed. Kanber and Bozkurt (2008) investigate a diagonal offset 

algorithm to overcome singular moment matrix problem by using polynomial point 

interpolation method. Another meshfree method is NNR-PIM (natural neighbour 

radial point interpolation method), which is used for investigation of 3D solids (Dinis 

et al., 2007), plates (Dinis et al., 2008) and thin structures (Dinis et al., 2010) by 

using RBF, which achieves enough accuracy. 

RBF meshless method is simple to use, because of RBFs only depend on the 

Euclidean distance between nodes. It is also used for the solutions of radiative 

transport equations by Kindelan et al. (2010). Both local and global domains can be 

used in RBF. But, local domains in the formulation of system matrix have less 

computational cost on the contrary to global domain (Senturk, 2011). Zhou et al. 

(2011) try to improve ill-conditioned interpolation matrices in the calculations of 

RBF by applying different shape parameter variation schemes. Ferreira et al. (2011) 

investigate elasto-static, vibration and buckling analysis of laminate plates by radial 

basis function collocation method. Also this method is used for solutions of Burgers’ 

equations by Islam et al. (2012). RBF includes different shape parameters and their 

effects (Wang and Liu, 2002b; Kanber et al., 2013; Bozkurt et al., 2013) are also 

searched in some studies. They can affect solution results and suitable parameters 

must be searched before their usage. This condition is also observed in the study of 

Wang et al. (2010) that the accuracy of solutions in meshless methods is affected by 

the number of nodes, selection of nodes and used shape parameters. More 

developments are continuously carrying on meshfree methods. 
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2.3 Stress Stabilization on Meshfree Methods 

Different techniques are developed and adapted for increasing the applicability of 

meshfree methods. One of the integration schemes; nodal integration scheme can 

increase applicability and be effective for compact usage inside of RPIM, which is 

explained in detail in the study of Liu et al. (2007).  

The application of nodal integration is fast and suitable for complex geometries. This 

method uses Taylor series expansion in integration and the solution results are 

mainly affected with the used order of Taylor expansion. However, it is observed that 

the stress results of pure/unstabilized nodal integration (Duan and Belytschko, 2008; 

Yavuz and Kanber, 2015) include high fluctuations. Even if two close nodes are 

selected in the analysed model, their stress results can be highly different. Hence 

application of different methods is investigated for trying to decrease the stress 

fluctuations. 

In literature, behaviour of nodal integration includes instabilities in some cases. 

Initially Biessel and Belytschko (1996) include additional a stabilization term on 

potential energy function of EFG method for nodal integration. It achieves instability 

problems of nodal integration in weak form formulations. Chen et al. (2001) also 

focus on instability of direct nodal integration and observe that integration 

constraints include errors in direct nodal integration and they cannot be satisfied 

enough in Gaussian integration at irregular discretization. They eliminate this 

problem with including a strain smoothing stabilization. Zhou et al. (2003) include 

square residual of equilibrium equation into potential energy function in stabilized 

nodal integration scheme. The used Voronoi diagram with supporting Delaunay 

triangles increases accuracy of volume assignment of nodal integration. Liu et al. 

(2006) use least square stabilization technique on radial point collocation method 

(RPCM). The used stabilization technique and easily added nodes in analysed 

models with respect to adaptive analysis give accurate results. Van et al. (2007) use 

conforming nodal integration into finite element formulation of laminate plates, 

which prevents shear locking. Han (2010) uses stabilized conforming nodal 

integration method on elasto-plastic analysis of metal forming process. Nodal 

integration with strain smoothing stabilization is used, which prevents instabilities of 

integration of Galerkin weak form formulations. Elmer et al. (2012) use a stable 
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nodal integration method on nearly incompressible solids. Xu (2014) uses stabilized 

nodal integration for cracking particles method (CPM), which supports stability and 

computational efficiency. Cui et al. (2015) investigate 3D elasticity problems with 

RPIM. Gradient smoothing method is applied on smoothed Galerkin weak form of 

analysed equations, which gives accurate results and provides to not necessary of 

derivatives of shape functions. 

Duan and Belytschko (2008) summarize and compare 3 different stabilization 

techniques; which are least-square stabilization (LSS) (Biessel and Belytschko, 1996; 

Fries and Belytschko, 2008), Taylor series expansion based stabilization (TEBS) 

(Liu et al., 1985; Nagashima, 1999; Liu et al., 2007) and the finite increment gradient 

stabilization (FIG) (Bonet and Kulasegaram, 2000), which can adjust stress 

instabilities. However, they recommend using LSS and TEBS rather than FIG. These 

methods can be tried to reduce stress fluctuations in nodal integration. 

2.4 OOP in Numerical Methods 

Besides the structure of procedural programming, different operators and techniques 

are available in OOP (object oriented programming) for increasing modularity. 

Objects and classes form main structure and all processes mainly continue with 

respect to them. An object is used inside of calculations and related data are stored as 

its assigned properties. Classes are used for grouping similar objects which support 

object properties in a main framework for various objects. Functions in the classes 

can also handle related calculations. These structures in OOP support high 

programming capacity. Also some extraordinary properties are available in OOP than 

procedural programming, which are encapsulation, inheritance and polymorphism. 

Encapsulation hides the implementation details of the objects. Input and output 

processes are mainly concerned at the outside of the class. Inheritance is 

methodology to form new classes in terms of old classes. Polymorphism is the ability 

to use an operator or method in different ways. 

Further developments or extension sections of numerical methods can be easily 

applicable with OOP. This structure is well used in FEM with defining classes and 

their methods. This programming technique (Mackie, 1992) provides to better code 

writing with its supplied modularity in FEM. Various design structures are 
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constructed in OOP of FEM in different subjects. Zimmermann et al. (1992) use 

OOP to FEA of 2D trust elements by using Smalltalk PL (programming language). 

They define 5 classes for whole analyses; component, domain, tool, linear 

system and dof classes, which are subclasses of a main class. Dubois-Pelerin et al. 

(1992) develop an OO (object-oriented) FEM program by using Smalltalk PL from 

extension study of Zimmermann et al. (1992). OOP methodology is used for 

increasing readability, modularity and reusability. The OO program includes two 

different kinds of methods; instance and class methods. It is clarified that objects use 

instance methods, but classes use class methods. 

The usage of C++ PL in OOP is widely and most of the OO FEA codes are written 

with this language. Ohtsubo et al. (1993) develop an OO finite element program with 

capable of fully automated sub-division of mesh property by using C++ PL. When 

model is changed, only changing of related object can satisfy the new changes 

without changing the whole model. They define the analysed problem with three 

main objects, which are geometry, analytical conditions and 

relation objects and applied to 3D shell elements. Kong and Chen (1995) study 

on an OO FEA program with C++ PL. They use different block objects on different 

block hierarchies. Adeli and Kao (1996) design object-oriented blackboard model 

(OOBM) for design of large structures with C++ PL. OOP mainly manages, isolates 

and encapsulates knowledge bases of objects, which are specific objects for OOBM 

and control the main flow of algorithm. Sheehy and Grosse (1997) also study OOBM 

for FEM and analysis of multichip modules with C++ PL. 

Zimmermann et al. (1998) study OO FEA environment and its key features with both 

Smalltalk and C++ PL. They construct 5 major classes; FEMComponent, Dof, 

Domain, LinerSystems and GaussPoint. Pantale (2002) uses OO FEM to 

impact simulations with C++ PL. Peters and Dziugys (2002) use OOP for 3D 

numerical particle motion simulation of granular materials. They use C++ PL and 

mention that encapsulation and inheritance are very attractive for this research. Ma 

and Feng (2002) develop OO FEA software with visual C++ PL for providing 

Windows-type graphical user interfaces (GUI). Yu and Kumar (2001) construct an 

OO framework to FEM for decreasing duplication between analyse components with 

C++ PL. They use inheritance and polymorphism to provide the framework as 
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abstract class in OO FE program. Patzak and Bittnar (2001) study an OO FE program 

and construct material-element and analysis frame design with C++ PL. 

Nonlinear behaviour responses in numerical analyses are programmed with OO C++ 

PL in some studies. Menetrey and Zimmermann (1994) apply OO FEA to plasticity 

analyses with C++ PL. Newton-Raphson and stress integration algorithms are 

included to existing objects. Dubois-Pelerin and Pegon (1998) introduce OOP 

formation for nonlinear FEA. They use C++ PL and define three classes; problem, 

nonlinear solver and linear solver. Zarabas and Srikanth (1999) use 

OO C++ PL for FEA in inelastic large deformation analyses. Lages et al. (1999) 

study an OO nonlinear FEA with C++ PL. It can solve elasto-plastic and 

geometrically nonlinear beam model with Newton-Raphson and arc-length nonlinear 

solution schemes. Commend and Zimmermann (2001) develop OO FE program with 

including Von Mises plasticity. They use C++ PL in OO coding. Tabatabai (2002) 

uses OO FEA for steel weight minimizations with respect to plasticity theory with 

C++ PL. Wegner and Peczak (2010) use OOP method for non-linear FEA with 

including a strain energy density function. C++ PL is used in coding. 

Peskin and Hardin (1996) develop and OO program of FEA for fluid dynamic 

problems with C++ PL. Their written code can solve continuum equations of fluid 

dynamics, heat and mass transfer in chemical engineering applications. Munthe and 

Langtangen (2000) study an application of OO FEA for CFD with C++ PL. Sampath 

and Zarabas (1999) use OO C++ programming method on FEM for investigation of 

solidification process with including heat and mass transfer. Qiao (2006) uses OOP 

technique to program BEM for 2D heat transfer analyses with C++ PL. It is applied 

for solution of Laplace and diffusion equations. Moreno and Ramaswamy (2003) use 

OO FEA with C++ PL for investigation of natural convective flows. Different class 

hierarchies are included inside of geometrical and mathematical management tools. 

Morgan and Henda (2006) develop an OO program with Java and C++ PL for 

investigation of thermal radiation simulator. It has graphical user interface (GUI) and 

is able to work on Macintosh, Windows and Linux platforms. Liu et al. (1996) 

develop a 2D OO program with both adaptive FEM and FVM by using C++ PL. 

Their similar components like linear system solvers, data structures and error analyse 

modules are easily grouped with OOP. Phongthanapanich and Dechaumphai (2006) 
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develop an OO FEM and FVM program with graphical interface. It can be used in 

the solutions of heat transfer, solid and fluid mechanic problems. They use both 

Visual Basic and C++ PL in programming. Marczak (2006) constructs a structure of 

OO numerical integration scheme for FEM and BEM by using C++ PL. Lage (1998) 

uses an OOP technique to BEM with C++ PL. Wang et al. (1999) develop OO BEM 

by using C++ PL. 

Gil and Bugeda (2001) include damage models and sensitivity analyses in their OO 

FE program by using C++ PL. Pantale et al. (2004) apply OOP technique to FEA of 

metal forming and impact analyses. They use C++ PL. Chung et al. (2005) use OOP 

technique for investigation of FEA of fibre metal laminates with C++ PL. Kromer et 

al. (2004) apply OO FE to multibody system analyses with C++ PL. Wang and 

Kolditz (2007) investigate multi-field problems with OO FEA. C++ PL is used in 

their study. OOP can easily manage different types of partial differential equations 

(PDEs). Geometrical, topological and process-related data are encapsulated. The 

code is applied to thermo-hydro-mechanical coupled problems for geotechnical 

applications. Dadvand et al. (2010) develop an OO FEA codes for multi-disciplinary 

problems with C++ PL. 

Programming language and efficiently usage of computers are also important cases 

in computational numerical methods. Dubois-Pelerin and Zimmermann (1993) carry 

the developed OO FEM structure (Zimmermann et al., 1992; Dubois-Pelerin et al., 

1992) from Smalltalk PL to OO C++ programming for increasing efficiency. 

Because it is mentioned in their study that Smalltalk PL has very slow executing 

time, approximately 100 times slower than a Fortran code. Cary et al. (1997) 

investigate the differences between C++ and Fortran 90 PL in OOP platform. C++ 

satisfies OOP properties, however Fortran 90 is not capable of OOP features. It is 

thought that it supports a small section with type and module features without 

inheritance. The lack of high reusable libraries in Fortran decrease modularity in 

OOP. Archer et al. (1999) develop a new OOP structure for FEA which can solve 

nonlinear static and dynamic conditions with C++ PL. It is observed in the study that 

Fortran code is %20 faster than the prepared OO program, which may be caused 

from young age OO program and lack of a fast numerical library. Kromer et al. 

(2005) study an OO FE code for multibody systems. The code includes the solution 
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capacity of 3D multibody flexible mechanism with large rotations and large strains. 

It is mention that efficiency of OO C++ has lower performance than Fortran 

compilers because of polymorphism, which needs dynamic binding. 

Carry et al. (1994) study on an OO FE solver for parallel computing with C++ PL. 

Guidec et al. (1996) construct an object oriented framework for increasing efficiency 

of usage of distributed computing systems (DCS). Re-usage of encapsulated objects 

in parallel computing have benefits in calculations. Master et al. (1997) study 

transient heat conduction problems with solidification in FE. They use C++ PL with 

OOP and parallel computing technique. Shared and distributed memory in parallel 

computing allows increasing computational performance and using for large meshes. 

They construct two main classes; mathematical and geometrical classes. 

Mukunda et al. (1998) study parallel computing of OO FE framework with C++ PL. 

Base and Carey (1999) construct data structure classes on FEM with parallel 

computing and C++ PL. Chen and Archer (2001) develop an OO FE program with 

combination of multi-data scheme and message passing diagram. Niekamp and Stein 

(2002) develop 2D and 3D adaptive OO FE program with a refinement algorithm. 

C++ is used with parallel computing in their study. Patzak and Rypl (2012) study a 

parallel load-balancing framework for FEA with OOP technique. 

The libraries and storage modules in programming have lots of benefits. The usage 

of OOP in FEM (Forde, 1990) increases the performance of maintaining and 

decreases complexity of design. Different methods like banded matrix storage on 

global stiffness matrix can be easily applied for decreasing computational cost. The 

program of Forde (1990) is prepared for solutions of 2D elastic problems and enables 

to modification with the prepared framework. Yu and Adeli (1993) develop an OO 

enhanced entity relationship data model for FEA and create a class library by using 

C++ PL. Also Zeglinski et al. (1994) study OO matrix classes for FEA with C++ PL. 

Their matrix library includes various matrix objects and different sparse storage 

schemes for various matrix types. Sparse, banded, symmetric and unsymmetrical 

full, upper triangular and lower triangular matrices are classified. Kong (1996) 

studies a data design structure for decreasing data coupling and enhancing hidden 

data in OO program of FEA with C++ PL. Dubois-Pelerin and Pegon (1997) study 

on improving modularity of an OO FE program. Data structure and linear equation 
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solvers are prepared with alternative schemes in OOP technique. Besson and Foerch 

(1997) develop a large scale OO program for FEA. They use C++ PL with a core 

library. Mackie (1998) uses OOP for developing a fully interactive FE program, 

which have multi-threading options. Also Mackie (1999) studies on an OO FE 

program with respect to data modelling. At the further stage, Mackie (2000) 

investigates calculation controls on an OO FE program. Three different calculation 

methods are implanted easily with respect to flexible property of OOP, which are 

standard linear solution, sub-structure based calculations and concurrent processing. 

Desitter et al. (2000) construct 1D, 2D and 3D ground-water models with OO FE 

framework. Mackie (2002) investigates effect of objects calculation control on an 

OO FEA program. Marczak (2004) constructs an OO framework for BEM. In his 

study, C++ PL is used and three main classes are constructed. Lejeune et al. (2012) 

develop an object oriented high order non-linear solver with C++ PL. They focus on 

OO asymptotic numerical method library. 

Other programming languages are used in OOP as; Al-Assaf and Saffarini (2004) 

construct an OO program for optimizing concrete slabs with Java PL. Optimal design 

parameters are easily calculated. Nikishkow (2006) develops an OO FEA code with 

Java PL. The code includes ten Java packages and three methods, which are used for 

construction of FEM models, solution and visualization. Alves et al. (2013) study on 

GFEM (generalized FEM) with object oriented environment. GFEM has a relation 

with partition of unity method for interpolations. Both FEM and GFEM and their 

similarities and differences are easily constructed in OOP environment. They use 

Java PL. Anacleto et al. (2013) investigate OO programming of BEM with self-

regular formulation, which includes four integral equations; displacement boundary 

integral, Somigliana’s integral identities for displacement, stress and strain. They use 

Java PL. Nota et al. (2013) study and design OO classes for GFEM, which includes 

local enrichment functions for improving solution. Python PL is used. Heng and 

Mackie (2009) construct 5 different design patterns for OO FEA by using C#. Nie et 

al. (2010) develop an OO FE program for multi-physic applications. It includes 

adaptive meshing. They use Fortran 2003 with OOP technique. They solve heat 

transfer, fluid mechanics and structure mechanics problems. Adaptive meshing is 

used in required local sections. Rauson et al. (2010) mention object construction and 

basic design patterns of OOP for Fortran 2003. 
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Some of OOP applications on meshfree methods are available in literature. Krysl and 

Belytschko (2001) design a library for EFG shape functions with both OO and 

procedural programming. EFG shape functions have more complicated than FEM 

shape functions and encapsulation of OOP can decrease the complexity. Seidl and 

Schmidt (2005) study on OOP for both meshless FEM and classical FEM with C++ 

PL. Zhang and Subbarayan (2006) develop an OO meshless analyses software with 

b-spline. They construct a framework with Java PL. Sanchez and Gonçalvesw (2010) 

study on OOP for meshfree shape functions. They focus on shape functions, which 

are derived from MLS. They use Java PL and construct a main framework of classes. 

Barbieri and Meo (2012) use OOP technique with Matlab for RKPM. They mainly 

focus on increasing speed on construction of shape functions. 

2.5 Conclusion of Literature Review 

Meshfree methods are mainly developed to avoid the meshing problems in mesh 

dependent methods like FEM, FDM and other similar methods. The usage of only 

nodes in this method supports flexibility and simplicity for modelling of problem 

domain. In large deformation, fracture and impact problems, finite elements show 

high distortions. In meshfree methods, problems including high distortions in the 

analysed model are overcomed by using only nodes. Re-meshing requirement in 

many finite element solutions is also eliminated with the usage of meshfree methods.  

Some findings are summarized and highlighted from literature review, which are 

observed commonly in the most of the studies. In meshfree analyses, the analysed 

model consists of only nodes, which can be distributed random or regular in the 

problem domain. Literature studies have revealed that regular distributed nodes give 

more stable, quickly converging and less erroneous results than irregular ones. If 

irregular node distributions are used, the studies recommend to increase the used 

number of nodes or the order degree of polynomials for decreasing numerical errors. 

However the usage of too much number of nodes may cause ill-conditioned matrices 

and increases the size of Jacobian and other matrices, which will cause higher 

computational cost. Hence enough and optimum number of nodes must be 

determined in the analyses. If enough support is achieved for integration, the 

accuracy of the solution is not affected dominantly by node irregularities and support 

sizes. The findings in literature show that domain shapes can affect solution results. 
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Rectangular support domain recommended rather than the usage of circular support 

domains.  

Many different techniques are developed on meshfree methods for increasing 

accuracy. The usage of RBF in meshfree methods is one of the applications, which is 

widely used by many researchers. RBF improves accuracy of solutions in the local 

and global domain applications, but it causes increasing the solution time. The usage 

of RBF is simple, which only depends on the Euclidean distance between nodes and 

it contains shape parameters. The effect of shape parameters on the solution has also 

an important concept in the meshfree studies. In literature, shape parameters are 

generally selected according to type of the problem and there is no a general 

optimum shape parameter values. Three different radial basis functions are 

commonly examined, which are MQ, EXP and TSP. Optimum shape parameters are 

q=1.03 and R=1.42, when MQ (multi-quadric) basis functions are used in some 

literature studies, which gives the best results.  

Different interpolation methods are developed and adapted into solution of different 

problems. The early developed method; EFG contains MLS functions, which 

prevents volumetric locking. However, this method is not as widely used as FEM, 

because of its higher computational cost. Also in MLS shape functions, Kronecker 

delta function property is not satisfied and it requires some extra algorithms in the 

applications of essential boundary conditions. RPIM shape functions satisfy 

Kronecker delta function property and can be able to give better results rather than 

MLS shape functions. But more solution time is also required in the RPIM solutions.  

Solution time and computational costs are another critical concept for meshfree 

methods. Most of them have lower performance than FEM. Nevertheless, researchers 

improve their solution speed by using low order polynomials. But it cause low 

accuracy. Both meshless and FEM are used in some cases for decreasing solution 

time of pure meshfree analyses. 

Programming of numerical methods is also considered in the literature studies. 

Different programming techniques are mentioned and one of them, OOP is widely 

used, especially in the programming of FEM. Object oriented programming is 

especially used in complex problems to solve them in a simple and modular way. 
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C++ programming language is generally preferred in their programming. In old 

Fortran versions, object oriented programming is not supported. Fortran 2003 

partially supports it, but it is not used as much as C++ in OOP. Java is also used to 

develop object oriented numerical programs that works on different systems such as 

Windows, Linux and Macintosh. 

Some shortcomings are predicted that nodal integration scheme can be used 

effectively, if its applicability can be developed, especially on the solution of 3D 

problems. It usually includes fluctuations on stress results. OOP has lots of benefits 

and is effectively used on FEM. Its usage on meshfree methods can be useful for the 

spread of the method. Therefore, in this work, our main aim is developing an OO 

meshfree program. Matlab is a platform that fully supports OOP, which includes 

suitable functions in its library.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

 

 

CHAPTER 3 

MESHFREE INTERPOLATION METHODS 

3.1 Introduction 

Construction of shape functions is one of the most critical sections in meshfree 

methods. Their quality must be checked carefully, which directly influences the 

solution results. MLS and RPIM interpolation methods are commonly used in 

construction of shape functions in meshfree methods, which are used in this study. 

Their structure is summarized in this section.  

3.2 Moving Least Square Interpolation Method 

One of the most used interpolation technique in meshfree shape function construction 

is MLS interpolation method. This method is widely used, especially in EFG. MLS 

shape functions (Liu and Gu, 2005) can be derived with initially creation of a field 

function  xu  in the problem domain,  .  xu  approximation variable is in Eq. 3.1.  

          xaxpxaxpxu T
m

j jj

h        
1

 
 (3.1) 

where  xp  represents basis functions in spatial coordinates and  yxxT ,  for 2D 

problems, which is usually built with monomials from Pascal triangle to provide 

minimum completeness. m  represents the number of the basis functions.  xa  is 

coefficient vector, which depends on x  and is given in Eq. 3.2 as; 

         xxxxaT

m21
a  a  a    (3.2) 

a  can be (Liu and Gu, 2005) calculated by minimizing weighted discrete 
2

L  norm. 

The weight residual function, which includes approximated values and the nodal 

parameters of the unknown field function is given in Eq. 3.3. 

       2T

1

p ˆ
ii

n

i

i
uxaxxxWJ 
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which n  represents number of nodes in the support domain of x . It is valid for which 

the weight function is not equal to zero;   0ˆ 
i

xxW .  

The partial derivative of J  with respect to  xa  equals zero 

 0 aJ  (3.4) 

That provides the following linear relations.  

      
S

UxBxaxA   (3.5) 

where 
S

U  includes the nodal parameters of field function for all the nodes in the 

related support domain.  

  T

nS
uuuU 

21
    (3.6) 

 xA  in Eq. 3.5 represents weighted moment matrix, which can be represented as, 

        
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
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T

ii
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where 

    
ii

xxWxW  ˆˆ  (3.8) 

When linear basis is used     yxxpm T     1 ;3  , A is a symmetric matrix, which 

has a dimension of 33 . It can be explicitly written as 
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B matrix in Eq. 3.5 can be expressed as  

               
nn

xpxWxpxWxpxWxB ˆ  ˆ ˆ
2211
  (3.12) 

When linear basis is used, B matrix, which supports a dimension of n3  matrix can 

be expressed as; 
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If Eq. 3.5 is solved for  xa , it can be written as; 

      
S

UxBxAxa 1  (3.15) 

Eq. 3.15 is substituted into Eq. 3.1, new form can be written as; 

      
S

T

n

i

ii

h Uxuxxu 
1

  (3.16) 

where  xT  represents (Liu and Gu, 2005) vector of shape functions, which is 

derived from MLS. It is written for n  number of nodes in the support domain of the 

point x  as; 

         
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      (3.17) 

For a selected node ith , the shape function  x
i
  is given as  

            
i
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ji

m

j

ji
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

  (3.18) 
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MLS shape functions can be continuous in the entire global domain, if suitable 

weight functions are used. Hence Eq. 3.17 can be rewritten in 3.19 for obtaining the 

partial derivatives of shape functions; 

      xBxx TT   (3.19) 

where  

   1 Apx TT  (3.20) 

Eq. 3.20 can be regulated, since A  matrix is symmetric; 

 pA   (3.21) 

The partial derivatives of   can be created as;  

 
iii

ApA
,,,

  (3.22) 

  
ijijjiijij

AAApA
,,,,,,,

  (3.23) 

              
ijtijtjittijijtitjjtiijtijt

AAAAAAApA
,,,,,,,,,,,,,,,

  (3.24) 

i, j and t in Eq. 3.22, 3.23 and 3.24 represent coordinates in x and y. Comma 

represents partial derivative with respect to the indicated spatial coordinate. It is 

applied for partial derivatives of the shape function  , which is given in below 

equations. 
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,     (3.27) 

3.3 Radial Point Interpolation Method 

Relation between nodes in meshfree methods is mainly obtained with interpolations. 

Various interpolation methods are available in literature. RPIM (Wang and Liu, 

2002a) is one of interpolation technique and widely used. It includes PIM (Liu and 

Gu, 2001) with radial basis functions. When shape functions have been constructed, 

a field function  xu  is created and given as in Eq. 3.28, which is consist of 

polynomial and basis functions. 
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          bxPaxRbxPaxRxu TTm

j jj

n

i ii                 
11

  
 (3.28) 

 xRi  and  xPj  represent radial basis and polynomial basis functions, respectively. 

ia  and jb  are related constants, n  is the number of field nodes in the local support 

domain and m  is the number of polynomial terms. Interpolations between nodes are 

mainly accomplished within the local support domain for each node or point of 

interests. 

Various RBF (Liu and Gu, 2005; Liu, 2009) are available in literature, like multi-

quadrics (MQ), the Gaussian (Exp), the thin plate spline (TSP) and logarithmic radial 

basis functions. MQ is (Liu and Gu, 2005; Dinis et al., 2007) used as radial basis 

function in Eq. 3.29. 

     qccii drxR
22          (3.29) 

where cd  is usually set as average nodal spacing near the point of interest at x ; c  

and q  are shape parameters. It is (Liu and Gu, 2005; Liu, 2009) recommended to use 

q  as 1.03 and c  as 3.00 for MQ basis function. The radial distance is given in Eq. 

3.30 for 2D and in Eq. 3.31 for 3D cases.  

      22

        
iii

yyxxxr   (3.30)  

        222
            iiii zzyyxxxr   (3.31) 

The polynomial terms are given in Eq. 3.32 for 2D and Eq. 3.33 for 3D cases which 

are mainly derived from binomial expansion. 

    ,...,,,,,1  22 yxyxyxxpT   (3.32) 

    ,...,,,,,,,,,1  222 zxzyzyxyxzyxxpT   (3.33) 

The binomial expansion is given in Fig. 3.1 for 3D cases. Its x
n
 and y

n
 components 

are used for 2D cases. 
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Figure 3.1. Binomial expansion for 3D polynomial terms 

Interpolation is applied in a support domain for point of interest. Different support 

domain geometries can be used, like circular, elliptical, triangular or rectangular. 

Illustration of circular and rectangular local support domain for point of interest is 

given in Fig. 3.2. 

 

Figure 3.2. Different types of local support domains for point of interests (Liu and 

Gu, 2005) 

 

A circular local support domain is used and its covered area is given by radius of 

circle ( sd ), which is given in Eq. 3.34. 

 css dd       (3.34) 
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where cd is average nodal spacing and 
s

  is a positive real number of dimensionless 

size of the local support domain. Its value (Liu and Gu, 2005; Dinis et al., 2007) is 

commonly used between 2.00 and 3.00. The unknown constants of field function of 

ia  and jb  in Eq. 3.28 can be determined by enforcing the field function to pass 

through all n  field nodes in the local support domain. At the thk  point or last point 

in a local support domain, field function can be written in Eq. 3.35 for 2D and in Eq. 

3.36 for 3D cases: 

           


m

j jkkj

n

i ikkikk
,..n,k=byxPayxRyxu

11
21        ,    ,  ,  (3.35) 

      
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m

j jkkkj

n

i ikkkikkk
,..n,k=bzyxPazyxRzyxu

11
21        ,,    ,,  ,,  (3.36) 

The matrix form of Eq. 3.35 or Eq. 3.36 can be expressed as; 

  Tnmqe uuubPaRU ...            21  (3.37) 

where eU  is the vector of function values at the nodes in the local support domain. 

qR  is the moment matrix of RBF and it is given in Eq. 3.39.  
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mP  is the polynomial moment matrix (Liu and Gu, 2005), which are given in Eq. 

3.39 and 3.40 for 2D and 3D cases, respectively. 
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a  and b are vectors of unknown coefficients for radial and polynomial basis 

functions respectively. They are given in Eq. 3.41 and 3.42. 

  n

T aaaa ...    21  (3.41) 

  n

T bbbb ...    21  (3.42) 

For solution of field function, unknown parameter a  in Eq. 3.37 must satisfy in 

polynomial function, 

   


n

j

T

miij aPaxp
1

0           j=1,2,..,m (3.43) 

Combination of Eq. 3.37 and Eq. 3.28 yields the following equations in the matrix 

form: 
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where 
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n

e

e aaa
U
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~
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


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
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Unique solution is obtained, if inverse of matrix G exists: 

 
eUG

b

a
a

~
      1

0 








     (3.46) 

Substituting Eq. 3.46 into Eq. 3.28, interpolation with respect to field function can be 

expressed as; 

          ee

TT UxUGxPxRxu
~

 ~~
        1       (3.47) 

Finally (Liu and Gu, 2005; Dinis et al., 2007), RPIM shape functions for the 

corresponding n  field nodes can be obtained as; 

         xxxx n

T   ...  21    (3.48) 

The approximation function can be written as; 
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     



n

i

iie

T uUxxu
1

            (3.49) 

The derivatives of  xu  can be easily obtained as 

     e

T

kki Uxxu     ,,     (3.50) 

where k  denotes the coordinates x  or y  in 2D and x , y  or z in 3D cases. Partial 

differentiation is taken with respect to that defined coordinated by k .  
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CHAPTER 4 

OBJECT-ORIENTED PROGRAMMING IN MESHFREE ANALYSIS 

4.1 Introduction 

The usage and implementation of numerical methods on computer programs are also 

important, as well as their developments. Computer coding of numerical methods is a 

very different kind of study and applicability of numerical methods depends on the 

coding performance. A well designed program contains less error and is easily 

handled. There are lots of codes which have different kinds of structures, even if they 

have small sizes. Procedural programming is commonly used in coding of these 

programs, which includes less procedure. But addition of more codes, new functions, 

elements and items causes increasing conflicts, even if subroutines or other auxiliary 

modules are used. One of the programming techniques, object-oriented programming 

(OOP) is used for preventing complexity, which has capable of key-lock property 

and can group similar structures. This key-lock property supports to avoid 

unnecessary usages of programs. Hence OOP can be capable to use in programming 

of numerical methods. Developments in numerical methods provide different 

solution techniques like FDM, BEM, FEM and so on. The usage of FEM is widely 

known, especially in the solutions of solid mechanics problems. Solution procedure 

includes some structures (interpolations, transformations, construction of shape 

functions and application of essential and natural boundary conditions) which must 

work in harmony together. Any conflicts may cause wrong results. Hence object-

oriented programming techniques are widely used in finite and boundary element in 

literature. Further developments or extension sections of numerical methods can be 

easily applied with OOP. 

4.2 Object-oriented Programming (OOP) and Matlab 

OOP is an appropriate programming technique for large codes and based on a 

hierarchy of classes, which cooperate their objects. It mainly includes three major 

components; encapsulation, inheritance and polymorphism. The working structure of 
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object is protected and hidden by encapsulation. Input/output functions are mainly 

considered. Inheritance can construct new classes in terms of old classes. 

Polymorphism is the ability to use an operator or method in different ways.  

Matlab is a programming environment for algorithm development, data analysis, 

visualization, numerical computation and widely used in scientific and engineering 

applications. It also supports OOP technique with various class operators. There are 

two different ways to define classes in Matlab. The first way is using value class 

and the second is using handle class. A value class constructor returns an 

instance that is associated with the variable, which it assigned. A handle class 

constructor returns a handle object that is a reference to the object created. handle 

class is used as a base class of all developed classes in this study. This class also 

controls hierarchy of its subclasses. 

4.3 Meshfree Classes and Their Implementations in a Matlab Program 

In this work, seven different classes are mainly used. However, three of them are 

especially related with meshfree techniques; inte, sdo and sf classes. They have 

their own sub-classes. Some sub-classes have further sub-classes. In the subsections 

of this chapter, they are discussed in detail. Basic and special class properties are 

explained. Classes and its properties mainly manage objects and programming 

schemes. Defined properties in the class will be assigned to objects. Hence required 

and related properties must be determined for setting efficient object management. 

Thus the programmed method and its logic must be well known. 

The basic concept of elasto-static problems is the solution of equilibrium equations 

with respect to applied natural and essential boundary conditions. Their equations are 

given in Eq. 4.1, 4.2 and 4.3, respectively, which are mainly concerned in the 

application of object-oriented meshfree program for solution of elasto-static 

problems. 

 
 in    0  bTL  (4.1) 

 
t

on             tn  (4.2) 

 uon              uu  (4.3) 
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There are several methods are available for solution of these equations. Strong and 

weak form formulations are defined for solution of partial differential equations 

(PDEs). LRPIM and MLPG methods can handle weak form PDEs. Hence, the 

equilibrium equation (Liu and Gu, 2005) in Eq. 4.1 can be written in weak form with 

respect to weighted residual methods for LRPIM as 

   0  bˆ
i, 



dW jijI

q

  (4.4) 

where IŴ is the weight function at related node. The application of natural and 

essential boundary conditions on weak form of equilibrium equation for local 

quadrature domain of a related node is given in Eq. 4.5. This local quadrature domain 

can intersect with natural and essential boundaries, which need a special formulation 

on construction of stiffness matrix that related locations. Three boundary locations 

are determined with respect to natural and essential boundary conditions. qi  

represents not intersection locations of local quadrature domain with global 

boundary, qt  represents intersection locations with natural boundary and qu  

represents intersection locations of essential boundary locations. More detail 

information can be achieved in the study of Liu and Gu (2005). 

         0ˆˆˆˆˆ ,  


dbWWdnWdnWdnW

qqtquqi

iIijjIijjIijjIijjI   (4.5) 

Eq. 4.5 can be written with application of stresses. Application of tractions at inside 

of natural boundary conditions is given in Eq. 4.6. 

 

 


dbWdtWdtWdtWdW

qqtquqiq

iIiIiIiIijjI
ˆˆˆˆˆ ,   (4.6) 

Similar equilibrium equation is valid for MLPG method and its local weak 

formulation is given in Eq. 4.7. Same applications of natural and essential boundary 

conditions are valid as LRPIM method. In addition, equilibrium equation of MLPG 

method includes a curve integral for application of essential boundary conditions 

where local quadrature domain intersects with essential boundary qu . But, on the 

contrary, to use RPIM shape functions, MPLG method uses MLS shape functions, 

which do not support Kronecker delta function property. Hence essential boundary 
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conditions are enforced with penalty method. A penalty method with factor ( ) is 

included, which is used as 10
8
. 

     0ˆˆ  


duuWdbW

quq

iiIiijI   (4.7) 

The solution of these equations includes various components, which are classified for 

decreasing complexity in classes of OOP. 

4.3.1 mc (Model Constructor) Class 

mc (model constructor) class is mainly used for construction of basic numerical 

model, has two main properties: young and anu. They represent Young’s modulus 

and Poisson’s ratio, respectively. Its hierarchy diagram and Matlab codes are given 

in Fig. 4.1 and 4.2. It does not include any methods. Its properties are transferred to 

classes of material and nodes. Material properties must be known for 

calculation of strain and stresses with respect to Hooke’s law, which is given in Eq. 

4.8. 

    D  (4.8) 

material class is defined for materials of the model and has two own properties: 

you and dmat. dmat includes material matrix for isotropic materials in its property 

with respect to plane stress and strain, which are given in Eq. 4.9 and 4.10, 

respectively. In addition to them, different material models can be easily added with 

dmat property. 
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The class of nodes is used to read all data, which are related geometrical and 

meshfree parameter properties for the model and has three different sub-classes: 
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xlsinputnodes, textinputnodes and randtextinputnodes. 

xlsinputnodes class is used to read all its data from Excel files. If data is given 

in a text file, they can be read from textinputnodes class. Node coordinate can 

be obtained randomly by using Matlab statements in the class of 

randtextinputnodes. 

 

Figure 4.1. mc class hierarch 

 

Figure 4.2. Matlab codes of mc, its inherited classes and member functions 

classdef mc < handle 

    properties (GetAccess = public, SetAccess = protected) 

        young; anu 

    end 

end 

classdef material < mc 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Mat=material(young,anu)… 

        function Mat=dmatcalc(Mat)… 

    end 

end 

classdef nodes < mc 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Node=nodes(ylength)…         

    end 

end 

classdef randtextinputnodes < nodes 

    methods… 

end 

classdef textinputnodes < nodes 

    methods… 

end 

classdef xlsinputnodes < nodes 

    methods… 

end 
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4.3.2. inte (Integration Cell) Class 

Integration is one of the basic procedures in meshfree methods. Different integration 

methods are available and integration domains can be variable. Therefore, inte 

class is defined for local and global quadrature domains as shown in Fig. 4.3. Its 

Matlab codes are given in Fig. 4.4. The properties are inherited to the qdomain, 

gausscoefficient,domaingausspoints, localquadraturedomain 

and globalquadraturedomain classes. The size of quadrature domain is 

calculated in qdomain class and recorded in ds property. The weights are 

calculated with respect to the number of sampling points in gausscoefficient 

class and recorded in gauss property. A local quadrature domain is determined for 

a sampling point in localquadraturedomain class. The determined local 

quadrature domain is further subdivided in subdivisionlqdomain class. In 

domaingausspoints class, gauss points are calculated for a divided quadrature 

domain and recorded in gss property. Global quadrature domain can be used 

directly with globalquadraturedomain class. 

 

Figure 4.3. inte class hierarch 
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Figure 4.4. Matlab codes of inte, its inherited classes and member functions 

4.3.3. sdo (Support Domain) Class 

The number of nodes in a support domain and their coordinates are determined in 

sdo class. Its hierarchy diagram and Matlab codes are given in Fig. 4.5 and 4.6. It 

has a single basic property, gpos. It is inherited to its sub-classes of 

supportdomain and testfunc. supportdomain class determines the 

number of nodes and their labels in a support domain. In this process, three different 

support domain geometries can be used. They are given in 

rectangularsdomain, triangularsdomain and circularsdomain 

classes. In Eq. 4.11, size of support domain is given with circular distance (  sd ) for a 

circular support domain. cd  is usually selected as average nodal spacing and s  is a 

constant and used as (Liu and Gu, 2005; Liu, 2009) between 2.00 and 3.00 generally.  

 css dd       (4.11) 

The number of nodes and their labels in support domain for integration are stored in 

ndex and nv properties. testfunc class computes the weights and stores them in 

w property. Different weight functions (Liu and Gu, 2005) are available like the 

cubic spline function (W1), quartic spline weight function (W2) and other weight 

functions. W1 and W2 are given in Eq. 4.12 and 4.13, respectively. Both LRPIM and 

classdef inte < handle 

    properties (GetAccess = public, SetAccess = protected) 

        gauss 

        nquado 

    end 

end 

classdef qdomain < inte 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Qnode=qdomain(nquado)… 

        function Qnode=qdomaincalc(Qnode,Node)… 

    end 

end 

classdef gausscoefficient < inte 

    methods 

        function Gaussco=gausscoefficient(nquado)… 

        function Gaussco=gausscoefficientcalc(Gaussco)… 

    end 

end 

classdef localquadraturedomain < inte 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Qdomain=localquadraturedomain(xspace,yspace,x,y,xm)… 

        end 

        function Qdomain=localquadraturedomaincalc(Qdomain)… 

    end 

end 

… 
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MPLG methods can use these weight functions in the solution of equilibrium 

equation. 

  
























i

iiii

iii

i

r

rrrr

rrr

xW

1       0

0.15.03/4443/4

5.0443/2

ˆ 32

32

 (4.12) 

  













0.10

0.13861ˆ
432

i

iiii

i
r

rrrr
xW  (4.13) 

Matrices of weight functions (Ŵ ) and their derivatives ( tV̂ ) of related point are 

given in Eq. 4.14 and 4.15. 
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Figure 4.5. sdo class hierarch 

sdo 

gpos 

circular

sdomain 

supportdomain 

numnode 

x 

ds 

ndex 

nv 

testfunc 

dsi 

xcent 

w 

wxx 

wyy 

triangular

sdomain 
rectangular

sdomain 

 



42 
 

Figure 4.6. Matlab codes of sdo class and its inherited classes and member functions 

4.3.4 sf (Shape Function) Class 

Most meshfree methods are classified according to shape function construction. 

Therefore, sf class is defined for RPIM and MLS shape functions as shown in Fig. 

4.7. Their Matlab codes are given in Fig. 4.8. It has seven properties: ndex, 

mbasis, gpos, x, nv, phi and numnode. Formulation of interpolation methods 

are also given again for pointing sf class operations and properties. In rpim class, 

shape functions and their derivatives are obtained by computeradialbasis 

class. computeradialbasis includes basis functions and polynomial terms with 

their derivatives in rk property. Polynomial terms are given in Eq. 4.16, which are 

mainly derived from binomial expansion.  

    ,...,,,,,1  22 yxyxyxxpT   (4.16) 

Radial basis functions are calculated (Liu and Gu, 2005) using one of its sub-classes 

of mq (multi-quadrics), exp (Gaussian) or tsp (thin plate spline). multi-quadrics 

(MQ), the Gaussian (Exp), the thin plate spline (TSP) function are given in Eq. 4.17, 

4.18 and 4.19, respectively. 
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classdef sdo < handle 

    properties (GetAccess = public, SetAccess = protected) 

        gpos 

    end 

end 

classdef testfunc < sdo 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Test=testfunc(dsi,xcent,gpos)… 

        function Test=testfunccalc(Test)… 

    end 

end 

classdef supportdomain < sdo 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Sdomain=supportdomain(numnode,gpos,x,ds,ndex)… 

        function Sdomain=supportdomaincalc(Sdomain)… 

    end 

end 

classdef rectangularsdomain < supportdomain 

    methods 

        function Rectsdomain=rectangularsdomain(numnode,gpos,x,ds,ndex)… 

        function Rectsdomain=rectangularsdomaincalc(Rectsdomain)… 

    end 

end 

… 
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   n

ii ryxR  ,  (4.18) 

   i

n

ii rryxR log ,   (4.19) 

cd  is the average nodal spacing near the point of interest at x ; c  and n  are two 

arbitrary real numbers of dimensionless parameters, which are called shape 

parameters. It is (Liu and Gu, 2005; Liu, 2009) recommended to use q  as 1.03 and 

c  as 3.00 for MQ basis function. The radial distance is given in Eq. 4.20 for 2D.  

      22
        iii yyxxxr   (4.20) 

Shape functions can be constructed by using a field function,  xu  which includes 

polynomial and basis functions and is given in Eq 4.21. 

          bxPaxRbxPaxRxu TTm

i jj

n

i ii                 
11

  
 (4.21) 

 xRi  and  xPj  represent radial basis and polynomial basis functions, respectively. 

ia  and jb  are related constants, n  is the number of field nodes in the local support 

domain and m  is the number of polynomial terms. Interpolations between nodes are 

mainly accomplished within the local support domain for each node or point of 

interests. 

The matrix form of the above equation can be expressed in Eq. 4.22. eU  is the vector 

of function values at nodes in the local support domain. qR  is the moment matrix and 

mP  is the polynomial moment matrix (Liu and Gu, 2005), which are given in Eq. 

4.23 and 4.24, respectively. 
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a  is the vector of unknown coefficients for RBF and b  is the vector of unknown 

coefficients for polynomial basis functions. They are given in Eq. 4.25 and 4.26. 
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For solution of field function, unknown parameter a  in Eq. 4.21 must satisfy in 

polynomial function; 
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Combination of Eq. 4.21 and Eq. 4.22 supports the Eq. 4.28. 
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Unique solution is obtained if inverse of matrix G  exists: 
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Substituting Eq. 4.30 into Eq. 4.21, interpolation with respect to field function can be 

expressed as; 

          ee

TT UxUGxPxRxu
~

 ~~
        1     (4.31) 

Finally (Liu and Gu, 2005), RPIM shape functions for the corresponding n  field 

nodes can be obtained as; 
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The approximation function can be written as; 

     



n

i

iie

T uUxxu
1

          (4.33) 

The derivatives of  xu  can be easily obtained as; 

     e

T

kki Uxxu     ,,   (4.34) 

where k  denotes the coordinates and partial differentials are taken with respect to 

that defined coordinated by k .  

In mls class, the mls shape functions and their derivatives are obtained by using 

compute_basis and compute_ab sub-classes. compute_basis class 

computes base functions and their derivatives. compute_ab class computes the 

weights by using weight_w1 and weight_w2 and finally computes shape 

functions and their derivatives. When MLS shape functions are constructed, the field 

function   xu can be written with approximate formation of MLS in Eq. 4.35.   xa

is unknown coefficients and they are shown in Eq. 4.36. These coefficients are 

included to 2L norm for finding their values in Eq. 4.37. When minimizing 2L norm 

with applying 0J/   , a linear equation can be achieved in Eq. 4.38. 
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       sUxBxaxA   (4.38) 

As same as right hand side of Eq. 4.22, field functions can be expressed as; 

  Tns uuuU   ...    21  (4.39) 

In Eq. 4.38,  xA ,  xB  and  xa  can be expressed as in Eq. 4.40, 4.41 and 4.42, 

respectively; 
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Also  xa  can supply field function and the field function can be written with respect 

to shape functions as; 
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 x is represents the constructed shape functions. When they are regulated, they can 

be written as; 
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All calculated shape functions and their derivatives are stored in the property of phi. 

Strain matrix is constructed with RPIM or MLS shape functions and it is given in Eq. 

4.45. 
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Further step will be construction of stiffness and force matrices with respect to 

constructed shape functions. Stiffness formulation of LRPIM is given in Eq. 4.46 and 

it is regulated with Gauss quadrature in Eq. 4.47 for integration. qiJ  and quJ  are 

Jacobean matrices at curve boundary locations. 
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Applied traction and body forces are integrated in Eq. 4.48 and it is regulated with 
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Gauss quadrature for integration in Eq. 4.49. 
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Similar stiffness and force matrices can be integrated in MLS shape functions, which 

are given in Eq. 4.50 and 4.51. 
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Figure 4.7. sf class hierarch 
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Figure 4.8. Matlab codes of sf and its inherited classes and member functions 

 

 

 

classdef sf < handle 

    properties (GetAccess = public, SetAccess = protected) 

        ndex; mbasis; gpos; x; nv; phi; numnode 

    end 

end 

classdef mls < sf 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Shape=mls(gpos,x,nv,ds,numnode,ndex,mbasis)… 

        function Shape=mlscalc(Shape)… 

    end 

end 

classdef compute_basis < mls 

    methods 

        function Comp_basis=compute_basis(gpos,x,nv,ds,numnode,ndex,mbasis)… 

        function Comp_basis=compute_basispre(Comp_basis,gpos,mbasis)… 

        function Comp_basis=compute_basiscalc(Comp_basis)… 

    end 

end 

classdef compute_ab < mls 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Comp_ab=compute_ab(gpos,x,nv,ds,numnode,ndex,mbasis)… 

        function Comp_ab=compute_abpre(Comp_ab,gpos,x,nv,ds, 

                                                 numnode,ndex,mbasis)… 

        function Comp_ab=compute_abcalc(Comp_ab)… 

    end 

end 
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Figure 4.8. Matlab codes of sf and its inherited classes and member functions 

(continue) 

4.3.5 bc (Boundary Condition) Class 

bc is defined for the essential and natural boundary conditions as shown in Fig. 4.9. 

It has a single property of x. It inherits this property to integration_bcqt, 

integration_bcquqi and essentialbc classes in Fig. 4.10. 

integration_bcquqi is mainly used integration of Eq. 4.52, which is inside of 

stiffness matrix terms in Eq. 4.46 and 4.50. 

classdef weight_w1 < compute_ab 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Weight1=weight_w1(gpos,x,nv,ds,numnode,ndex,mbasis)… 

        function Weight1=weight_w1pre(Weight1,dif,nv,ds,ndex,numnode)… 

        function Weight1=weight_w1calc(Weight1)… 

    end 

end 

classdef weight_w2 < compute_ab 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Weight2=weight_w2(gpos,x,nv,ds,nx,numnode,ndex,mbasis)… 

        function Weight2=weight_w2pre(Weight2,dif,nv,ds,nx,ndex,numnode)… 

        function Weight2=weight_w2calc(Weight2)… 

    end 

end 

classdef rpim < sf 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Shape=rpim (gpos,x,nv,numnode,ndex,alfc,dc,q,nrbf,mbasis)… 

        function Shape=rpimcalc(Shape)… 

    end 

end 

classdef computeradialbasis < rpim 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Rbasis=computeradialbasis(gpos,x,nv,numnode,ndex, 

                                                alfc,dc,q,nrbf,mbasis)… 

        function Rbasis=computeradialbasispre(Rbasis,x,y,xv,ndex, 

                                                      R,q,nrbf,mbasis)… 

        function Rbasis=computeradialbasiscalc(Rbasis)… 

    end 

end 

classdef mq < computeradialbasis 

    methods 

        function Mqbasis=mq(gpos,x,nv,numnode,ndex,alfc,dc,q,nrbf,mbasis)… 

        function Mqbasis=mqrbasispre(Mqbasis,x,y,xv,ndex,R,q,nrbf,mbasis)… 

        function Mqbasis=mqrbasiscalc(Mqbasis)… 

    end 

end 

classdef expo < computeradialbasis 

    methods 

        function Expbasis=expo(gpos,x,nv,numnode,ndex,alfc,dc,q,nrbf,mbasis)… 

        function Expbasis=expbasispre(Expbasis,x,y,xv,ndex,R,q,nrbf,mbasis)… 

        function Expbasis=expbasiscalc(Expbasis)… 

    end 

end 

classdef tsp < computeradialbasis 

    methods 

        function Tspbasis=tsp(gpos,x,nv,numnode,ndex,alfc,dc,q,nrbf,mbasis)… 

        function Tspbasis=tspbasispre(Tspbasis,x,y,xv,ndex,R,q,nrbf,mbasis)… 

        function Tspbasis=tspbasiscalc(Tspbasis)… 

    end 

end 
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     


nDBdWnDBdW

quqi

T

I

T

I
ˆˆ    (4.52) 

integration_bcqt class is used integration of Eq. 4.53, which represents 

integration of traction at the inside of Eq. 4.48 and 4.51. 

    


dtW

qt

T

I
ˆ    (4.53) 

In integration_bcqt class, applied traction is transferred to the nodes and 

stored as nodal values in f property. Then, f is used to calculate force vector. 

integration_bcquqi class is used in the calculation boundary integrals in a 

local quadrature domain. Essential boundary conditions are handled by using 

essentialbc class and all calculated values are recorded into ak property.  

 

Figure 4.9. bc class hierarch 
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Figure 4.10. Matlab codes of bc, its inherited classes and member functions 

4.3.6 solv (Solution) Class 

The target in developing solv class is encapsulation of all classes that are related 

with solutions. Therefore, it has no property and it is the base class of 

dobmaxcalculator, solverband, sparsestorage and getinverse 

as shown in Fig. 4.11. gausseqsolver and bandsolver are subclasses of 

solverband. Its Matlab codes are partially given in Fig. 4.12. All these classes are 

generally used in the basic matrix operations and transfer their results to the class 

properties where they are called. bandsolver class is used solution of banded 

matrices and gausseqsolver class is used as alternatively usage of 

bandsolver for standard gauss elimination. matlabsolver class includes 

direct and different iterative methods for solution of linear equations (A*x=b), which 

are available in Matlab library. Some iterative solvers are directly imported as class 

functions and ready for calling, which are Biconjugate gradients method (bicg), 

Biconjugate gradients stabilized method (bicgstab), Biconjugate gradients stabilized 

(l) method (bicgstabl), Conjugate gradients squared method (cgs), Generalized 

minimum residual method (gmres), LSQR method (lsqr), Minimum residual method 

(minres), Preconditioned conjugate gradients method (pcg), Quasi-minimal residual 

method (qmr), Symmetric LQ method (symmlq) and Transpose-free quasi-minimal 

classdef bc < handle  

    properties (GetAccess = public, SetAccess = protected) 

        x 

    end 

end 

classdef integration_bcqt < bc 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Integbcqt=integration_bcqt(xc,f,x,numnode,nquado, 

                                               xm,xspace,yspace,xcent)… 

        function Integbcqt=integration_bcqtcalc(Integbcqt)… 

    end 

end 

classdef integration_bcquqi < bc 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Integbcquqi=integration_bcquqi(nod,xc,x,numnode,nquado, 

                                    dmat,xm,xspace,yspace,ak,alfs,ds,sfselect)… 

        function Integbcquqi=integration_bcquqicalc(Integbcquqi,Node)… 

    end 

end 

classdef essentialbc < bc 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Essenbc=essentialbc(x,numnode,ak,fk,ds,alfs, 

                                                npebcnum,npebc,pebc,sfselect)… 

        function Essenbc=essentialbccalc(Essenbc,Node)… 

    end 

end 
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residual method (tfqmr). These method are used for solution of linear equations 

(A*x=b) with iterations. Dimensions of matrices must be square (nxn) and symetric 

for term of A in minres, pcg and symmlq solvers. Other methods can be used with 

asymmetric matrices. Only lsqr method can be capable to solve mxn matrix 

dimensions of A. It is pointed (Liu and Gu, 2005) that stiffness matrices are generally 

sparse, banded and asymmetric. Hence all iterative solvers can be used compatible 

without minres, pcg and symmlq solvers. 

Solution of complex geometries mostly causes to increase number of nodes in the 

solution. This phenomena cause to increase size of global stiffness matrix in 

meshfree methods. In most of the cases, global stiffness matrix holds zero values and 

its storage decrease computational effort. sparsestorage class is used for 

construction of sparse matrices, if it includes lots of zero terms. Sparse ratio function 

can calculate sparsity, which is the ratio of number of zero terms to all terms. Sparse 

matrices are also constructed with sparse function in Matlab alternatively. If only a 

linear equation is solved with small sizes, sparse function can be used without 

sparsestorage class.  

 

Figure 4.11. solv class hierarch 

solv 

 

solve

rband 

ak 

fp 

neq 

dobmax 

calculator 

a 

n 

m1 

b 

m2 

c 

gauss 

solver 

matlab 

solver 

band 

solver 

direct 

solver 

iterative 

solver 

tol 

maxit 

 

get 

inverse 

n 

a 

eps 

sparse 

storage 

data 

matrix 

ratio 



53 
 

 

Figure 4.12. Matlab codes of solv, its inherited classes and member functions 

4.3.7 post (Results) Class 

All methods, which are related with results of solution, are encapsulated in a single 

class; post. It is shown in Fig. 4.13. Its Matlab codes are partially given in Fig. 

4.14. It has three basic properties, x, numnode, u2. It inherits its properties to 

getdisplacement, getnodestress, output and getengerror classes. 

Displacements and stresses are calculated with respect to Eq. 4.54 and 4.55. 

         122313   nn uB    (4.54) 

               122333133313   nn uBDD     (4.55) 

getdisplacement class computes the nodal displacement under action of given 

classdef solv < handle 

end 

classdef dobmaxcalculator < solv 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Dobmax=dobmaxcalculator(A,N,M1,B,M2)… 

        function Dobmax=dobmaxcalculatorcalc(Dobmax)… 

    end 

end 

classdef solverband < solv 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Sband=solverband(ak,fp,neq)… 

        function Sband=solverbandcalc(Sband)… 

    end 

end 

classdef bandsolver < solv 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Bsolv=bandsolver(ak,fp,neq)… 

        function Bsolv=bandsolvercalc(Bsolv)… 

    end 

end 

classdef gausssolver < solv 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Gausssolv=gausssolver(ak,fp,neq)… 

        function Gausssolv=gausssolvercalc(Gausssolv)… 

    endç- 

end 

classdef getinverse < solv 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Getinv=getinverse(n,a,eps)… 

        function Getinv=getinversecalc(Getinv)… 

    end 

end 

classdef sparsestorage < solv 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Sparsestr=sparsestorage(data,matrix,ratio)… 

        function Sparsestr=sparseratio(Sparsestr)… 

        function Sparsestr=sparsestoragecalc(Sparsestr)… 

    end 

end 

… 
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loading condition and records them in u2 and disp properties. The nodal stresses 

are computed in getnodestress class and recorded in stress property. In the 

output class, calculated displacements and stresses are written in a text file using 

its methods. The class also inherits all its properties and methods to getengerror 

that computes the energy error in the solution together with totalgausspoints. 

 

Figure 4.13. post class hierarch 
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    properties (GetAccess = public, SetAccess = protected) 

        x; numnode; u2 

    end 

end 

classdef getdisplacement < post 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Getdisp=getdisplacement(x,ds,u2,alfs,numnode,sfselect)… 

        function Getdisp=getdisplacementcalc(Getdisp,Node)… 

    end 

end 

classdef getnodestress < post 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Getnstress=getnodestress(x,ds,Dmat,u2,alfs,numnode,sfselect)… 

        function Getnstress=getnodestresscalc(Getnstress,Node)… 

    end 

end 

classdef output < post 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Out=output(x,numnode,u2,u22,str)… 

        function Out=outputcalc(Out)… 

    end 

end 

classdef getengerror < post 

    properties (GetAccess = public, SetAccess = protected)… 

    methods 

        function Geteng=getengerror(x,numnode,u2,dmat,ds,numgauss,gs,alfs,sfselect)… 

        function Geteng=getengerrorcalc(Geteng,Node)… 

    end 

end   … 
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Figure 4.14. Matlab codes of post, its inherited classes and member functions 

4.4 Example Solution and Discussions 

A cantilever beam with an end load (case I) and an axial loaded bar (case II) are 

solved by using LRPIM and MLPG methods in developed program. In these 

solutions, rectangular support domains and local rectangular integration cells are 

used. The constructed model has a length of 48 cm and a height of 12 cm. Unit 

thickness is used in the analyses. The used material properties have Young modulus 

of 30.10
6
 N/cm

2
 and Poison's ratio of 0.0. Regularly distributed nodes have a nodal 

spacing of 4.8 cm in x (horizontal) and 3.00 cm in y (vertical) directions. Number of 

sub-division of quadrature domains is equal to 2 for both x and y directions. Number 

of gauss points is equal to 4 for each domain. 40 integration cells are used. Influence 

domain constant is selected as 3.00. Radial basis function parameters are selected as 

nrbf of 1.00, alfc of 1.00, dc of 3.00 and q of 1.03. The used number of basis 

functions is equal to 3. In both cases, the force (P) is taken as 1000 N as shown in 

Fig. 4.15. The shape parameters are taken from the compared study (Liu and Gu, 

2005) for getting same solution procedure. The number of regular distributed nodes 

is equal to 55 in all solutions. 

.  

Figure 4.15. Engineering (a), meshfree (b) and FEM (c) models of axial loaded and 

cantilever beam problems and their boundary conditions 

4.4.1 Key Design Principles and Solution Procedure 

A main framework is constructed to manage all objects and all base classes use the 

Matlab handle class. The overall scheme and interaction of classes can be seen in 

Fig. 4.16. nodes and material objects are used almost everywhere in the 

program. Therefore, they are created at the beginning of the solution. Construction of 

other classes is realized in sequence after these classes. All other classes are created 

by sending required data to their constructor functions. All computations are carried 

out inside of member functions and results are stored in objects as class properties. If 
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local variables are not defined as a property of that class, they are cleared at the end 

of the class function operations. Hence, it prevents unnecessary usage of memory. 

Only related and re-used from outside of class operators are assigned as class 

property.  

Node coordinates, geometry and boundary conditions, meshfree parameters and other 

properties are read from files with mc class and stored in nodes object. Then 

material object is created for construction of material matrix with respect to plane 

stress or plane strain. When model operations in the classes are finished, calculation 

of quadrature domain of nodes begins with inte class. qdomain object stores the 

quadrature domain size and gausscoefficient object stores the gauss weights. 

In the solutions, local quadrature domain integrations are used. Therefore, 

localquadraturedomain object stores the quadrature domain boundaries and 

it is divided to subdomains. nodes object is called inside of this class and node 

coordinates are directly used without any conflicts. It is commonly used in 

procedural programming that transferring parameters with assigning new parameter 

names between programs and subroutines which causes to conflicts, especially inside 

of much code sizes. However, parameters are stored as properties of class objects and 

re-assignment is not required. subdivisionlqdomain object stores the divided 

local quadrature domain and gauss node positions are stored in 

domaingausspoints object.  
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Figure 4.16. Overall flow and communications of classes during the solution for 

local quadrature domain 

The type of support domain geometry is selected as rectangular. The number of 

nodes and node numbers in a support domain of a gauss point are stored in 

supportdomain object. Cubic spline test functions are used and their weights are 

stored inside of testfunc object. Next step is the calculation of shape functions. 

They are calculated and stored in rpim object. computeradialbasis class 
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includes the derivatives of radial basis functions and it is used by rpim object. 3 

different basis function classes are available; mq, exp and tsp. mq class is used in 

this analysis. It can be also calculated by using mls object using MLPG method. If 

mls method is used, the calculated shape functions are stored in mls object. 

Inheritance property has large benefits on the developments of meshfree methods, 

especially similar structures and their sub-links are available. Superclass properties 

are directly transferred as properties of subclasses. Redefining of subclass properties 

is not required. Besides of that subclass includes its own special properties. Including 

new methods in shape function class can be easily handled by OOP, which can be 

defined as a subclass. Main properties like shape functions and their derivative 

values property phi directly assigns that new method. 

OOP can be able to provide to work RPIM and MLS shape functions together for 

construction of shape functions. Both methods have their own benefits and accuracy 

in the calculations. One of them can be used in determined locations and the other 

can be used in other locations. This procedure can more easily accomplished by 

OOP. A switch is used to select the method for the construction of shape functions. 

dobmaxcalculator object is used for arrangements and calculations of shape 

functions. integration_bcqt object stores the applied force at related nodes. 

Also integration_bcquqi object stores the calculations of boundary integrals. 

All the calculations are repeated for each node and stored in the related class object. 

When the calculations finish, essential boundary conditions are applied and they are 

stored in essentialbc object.  

Stiffness and force matrix includes lots of zero terms with respect to interpolation. 

sparsestorage class can be used for construction of sparse stiffness and force 

matrices. Also sparse function in Matlab can be directly used without using 

sparsestorage class. However, either using sparse function or using 

sparsestorage class consumes time for construction of sparse matrix. In this 

study, sparse function is directly used. Because solution model has few nodes and 

their properties are easily stored in memory. sparsestorage class also consumes 

time, especially %25 greater solution times in solv class when comparing solution 

with sparse function in this solution. solverband object is used for the solution of 

linear equations. After the solution, the nodal displacements are stored in 
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getdisplacement object. getnodestress object stores the nodal stresses, 

which are calculated with respect to nodal displacements. output object stores the 

output of the getdisplacement and getnodestress object for writing them 

to an external file. Energy error is calculated by using totalgausspoints and 

getengerror objects and stored inside of getengerror object.  

4.4.2 Solutions and Discussion 

Analytical and FEM solutions are available in the examined cases. The deformation 

and axial stress formulations are given in Eq. 4.56 and 4.57 for axial loaded bar 

problem. A is cross-section area of the bar, E is Young’s modulus of material, x is 

horizontal distance from one end of the bar and P represents applied force. 

 
EA

xP




  (4.56) 

 
A

P
  (4.57) 

For the cantilever beam problem, the displacements are plotted for the upper side 

where tensional stresses occur. The deflection and axial stresses of the cantilever 

beam are given in Eq. 4.58 and 4.59. I is moment of inertia, L is length of the beam 

and c is the distance between upper surface and natural axis of the beam. 

  23 3
6

xLx
IE

P
y 


  (4.58) 

 
I

cM 
  (4.59) 

In ANSYS, same geometrical model is constructed by using PLANE182 elements. 

These elements have 4 nodes at the edges for rectangular type. Plane stress 

assumption is used. Similar boundary conditions are applied as analytical solutions.  

The original procedural meshfree program (Liu and Gu, 2005) gives the same 

displacement results as OOP meshfree program as shown in Fig. 4.17 for cantilever 

beam and axial loaded bar problems. The analytical and ANSYS solutions are also 

given and it is seen that they are in good agreements. RPIM solutions are a little bit 

closer to analytical solutions than MLS results.  



60 
 

  

 

Figure 4.17. The displacement results of analytic, ANSYS, original meshfree (Liu 

and Gu, 2005) and OOP meshfree programs for cantilever beam problem (upper) and 

for axial loaded beam problem (lower) 

Stress results are given in Fig. 4.18 for cantilever beam and axial loaded bar 

problems. It is seen that both original procedural meshfree program and OOP 

program nearly give the same results. All numerical results have good agreements 

with analytical solutions. A little difference can be seen in the results of RPIM 

method at the left corner, but same difference exists in the original procedural 

program. All stress results of bar problem are in perfect agreements with analytical 

and ANSYS results. 
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Figure 4.18. The stress results of analytic, ANSYS, original meshfree (Liu and Gu, 

2005) and OOP meshfree programs for cantilever beam problem (upper), and for 

axial loaded bar problem (lower) 

4.5 Conclusion 

Object-oriented programming of meshfree methods are discussed in detail for 

solution of elasto-static problems. Since new meshfree techniques are continuously 

improved by different researchers, the goal is developing a program that can be 

easily adapted to new meshfree techniques. Therefore, a program is mainly organised 

based on types of support domains, integrations and shape functions. It can handle a 

solution in different ways: 

 using different integration cells; either global or local rectangular integration 

cells, 

 using different support domains; rectangular, circular or triangular support 

domains, 

 using different shape functions; either RPIM or MLS shape functions. 

 different Matlab functions are included for increasing modularity at solution 

A new technique, for example about shape functions, can be easily adapted by 
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creating its classes and objects without changing whole program structure. The 

source of a problem can be easily detected by only dealing with relevant classes.  

In a procedural program, the program is developed using functions and subroutines. 

The parameters that are transferred to them must be carefully selected and general 

flow must be designed without causing a “spaghetti code” which is hard to 

understand and maintain. All variables in a procedural program are initially defined 

as public. However, in an object oriented program, the variables inside the classes 

are initially defined as private. The program is constructed based on objects and 

works by their interactions. Objects are instances of classes. Each class encapsulates 

its properties and methods. So, an encapsulated class can be modified and improved 

without considering the whole program structure. 

The flexibility and modularity of OOP technique are used during developing of 

Meshfree code in Matlab. However, it was shown that Matlab OOP codes are slower 

against procedural Fortran codes. The reason of slowness of Matlab is based on 

slowness of it doing some certain operations such as loops (Berry et al., 2006; 

Eklund et al., 2012; Wang and Hopke, 2001). The results of Matlab OOP program, 

on the other hand, are in perfect agreement with results of Fortran procedural 

program. 

 

 

 

 

 

 
 

 

 

 

 

 



63 
 

 

 

 

CHAPTER 5 

NODAL INTEGRATION WITH TAYLOR SERIES EXPANSION 

5.1 Introduction 

Integration is an important phenomena and it is widely used in most of the 

mathematical applications of analysed systems. However, integration of problems is 

usually complex and very hard to solve. Hence numerical integration techniques are 

used to solve the complex conditions. These methods include some errors which 

must be checked for accuracy. Different researchers investigate and develop 

numerical integrations on different subjects. Lorenzini and Passoni (1999) develop 

numerical integration technique to decrease computational efficiency on the 

calculations of tropospheric chemistry. Monegato and Scuderi (1999) try to decrease 

the singularities on boundary integrals. Hadjifotinou (2002) uses numerical 

integration for the calculation of satellite orbits. A numerical integration (Ochiai, 

2003) is investigated for meshless BEM method on the subject of no requirement of 

internal cells. Masserey et al. (2005) solve electromagnetic problems by decreasing 

the singularity of integration. Marczak (2006) uses object oriented programming 

technique to gain more efficient on numerical integration of FEM and BEM. Saritas 

and Filippou (2009) develop an integration technique for investigation of 3D plastic 

damage of concrete models. Also, unlike other integrations techniques, wavelet 

methods (Hashish et.al, 2009) are used for numerical integration. Leontyev (2010) 

develops a numerical integration technique on the solution of dynamic problems. 

Bettaieb et al. (2012) investigate elastoplastic strains of a single crystal by means of 

their developed numerical algorithm. Halilovic et al. (2009) develops an explicit 

numerical integration scheme for increasing efficiency on boundary value problems.  

Gaussian integration is one of the integration schemes and widely used in the 

literature studies, especially in FEM. The series expansion technique of Gaussian 

integration gain lots of benefits. The integration is directly influenced by Gaussian 

weights. New developments are continuously carried on. Rathod et al. (2007a) study 

on a new gauss integration technique that includes two sections. One of the sections 
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provides new gauss weights to increase efficiency. Also Rathod et al. (2007b) study 

on symmetric gauss integration technique for setting more gauss integration sections. 

They achieve better results without using high order Gaussian integration rules. 

Islam and Hossain (2009) use a composite numerical integration on FEM and 

achieve solutions which are not gained analytically. Babuška et al. (2009) estimate 

an integration formula for increase the efficiency of the Gaussian integration on 

meshfree methods. 

Taylor series expansion can be alternatively used on integrations. Liu et al. (2007) 

use Taylor series expansion on the solution of 2D elasto-static problems by using NI-

RPIM. The applicability of this method can be developed, especially on 3D cases. 

Both 2D and 3D integration schemes are mentioned in this section. Basic equilibrium 

equations and main solution structure are given again for pointing how the 

integration scheme is used. 

The approximated solution must be adapted to equilibrium equation with respect to 

applied boundary conditions. General form of equilibrium equation (Liu and Gu, 

2005; Liu et al., 2007) and natural and essential boundary conditions are given in Eq. 

5.1, 5.2 and 5.3, respectively. 

 0       bLT   (5.1) 

 iontn          (5.2) 

 uonuu         (5.3) 

TL  is (Liu and Gu, 2005) differential operator,   is the stress vector, u is the 

displacement vector, b is the body force vector, t  is prescribed traction on the 

natural boundaries, u  is prescribed displacement on the essential boundaries and n  

is the vector of unit outward normal on the natural boundary. 

5.2 2D Nodal Integration Scheme 

TL , , u  and b are given in Eq. 5.4, 5.5, 5.6 and 5.7, respectively. 
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Equilibrium equation and natural and essential boundary conditions are represented 

with respect to weak form formulation in RPIM. Hence, the equilibrium equation, 

Eq. 5.1 can be defined as in Galerkin weak formulation in Eq. 5.8, 

          0            dtudbuduLDuL TTT
  (5.8) 

D  matrix is material coefficient matrix and it is given for plane stress and plane 

strain in Eq. 5.9 and 5.10 as;  
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where E  is Young’s modulus and   is Poisson’s ratio (Liu and Gu, 2005). When 

substituting the approximated function in Eq. 3.49 or 4.33, into Eq. 5.8, general form 

of stiffness and force matrices are obtained.  

 fuK       (5.11) 

In Eq. 5.12, stiffness matrix formulation is represented. Force matrix formulation is 

given in Eq. 5.13. In addition, strain matrix, which includes derivatives of shape 

functions, is given in Eq. 5.14.  

   dBDBK j

T

iij       (5.12) 
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   bdtdf iii           (5.13) 
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A suitable integration method is needed to solve these equations. Various integration 

techniques are available. In NI-RPIM (Liu et al., 2007), a series integration scheme is 

used with Taylor series. Series are widely used in mathematical operations, 

especially in numerical studies. An unknown value of a valid function can be 

estimated with a known value with series operations. One of the series is Taylor 

series and it is widely used in computational fluid dynamics with respect to finite 

difference method (FDM). An example of its value estimation from 0x  to hx 0  can 

be defined serial expansion of functions and it is given in Eq. 5.15. nR  is the total 

error between value of )( 0 hxf   and its Taylor expansion results. In general, the 

degree of used terms in FDM increases the accuracy. In Eq. 5.15, Taylor series are 

expanded and derived to n th order. 
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Equations of integrations are expanded with respect to Taylor series expansion as Eq. 

5.15. Stiffness matrix is set as approximate function for 2D cases as  yxf , , which 

is given in Eq. 5.16, 
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The nodal integration of Eq. 5.16 can be written as Eq. 5.17, 
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If Eq. 5.18 is separated and arranged, the following form can be obtained, 
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In Eq. 5.19, 0xx   represents x  and 0yy   represents y . The distance is 

calculated from midpoint of related field node and integration cell, which is called 

Taylor integration cells. d  is equal to area of Taylor integration cell. Each Taylor 

integration cell for each field node includes an area that does not interact with other 

field nodes of Taylor integration cells. 

5.3 3D Nodal Integration Scheme 

The mentioned integration rule in chapter 5.2 is expanded for 3D cases in this 

section. The given equations of 
TL , , u  and b for 2D cases in Eq. 5.4, 5.5, 5.6 and 

5.7 are expanded for 3D cases in Eq. 5.20, 5.21, 5.22 and 5.23, respectively. 
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Same Galerkin weak formulation of equilibrium equation is valid in 3D cases, which 

is given in Eq. 5.8. D  matrix is material coefficient matrix and it is given for 

isotropic solids as;  
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B  matrix of 3D cases includes differences from 2D cases with respect to its sizes, 

which given in below. 
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Taylor series are also used in 3D cases. Stiffness matrix is set as approximate 

function as  zyxf ,, , which is given in Eq. 5.26, 
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The nodal integration of Eq. (5.26) can be written as Eq. (5.27), 
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If Eq. (5.27) is separated and arranged, the following form can be obtained, 
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In Eq. 5.29, 0xx   represents x , 0yy   represents y  and 0zz   represents z .

d  is equal to volume of Taylor integration cell.  
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CHAPTER 6 

INTEGRATIONS WITH VARIOUS TYPES OF CELLS 

6.1 Introduction 

It is required (Liu et al., 2007) to construction of integration domains for each node 

in the NI-RPIM of analysed model. These domains should not coincide with each 

other and must be fully integrated. Taylor integration domains are constructed with 

irregular triangular (2D cases) and tetrahedral (3D cases) geometries for irregular 

distributed nodes. These irregular domain construction supports to more flexible 

domains, rather than hexahedral cells. Delaunay triangulation method is used for 

creating triangular or tetrahedral cells between nodes by using Matlab. 

6.2 Rectangular Shaped Taylor Integration Cells for 2D Cases 

Various integration domains are available for integration. Rectangular integration 

domains are one of them and widely used especially regular distributed nodes in the 

analysed domains. General form of integrations for 2D domains is mentioned in the 

previous chapter of 5.2 and the integration equation is given in 5.19 for 2D domains. 

The represented integrals are taken on the constructed domains for field node. 

6.2.1 Numerical Examples 

Three different case studies are examined for application of rectangular shaped 

Taylor integration cells. Axial loaded, cantilever and simply supported beam with 

distributed loading problems have analytical solutions. Numerical techniques like 

FEM can be applied on these types of problems. Also nodal integration by using 

Taylor series expansion can be used with similar conditions. Increasing the orders of 

Taylor series expansions terms on these types of problems are examined in these 

cases. 

Three different loading conditions are formed on a beam. Beam models have same 

geometrical and material properties. The only changed parameters are applied 

boundary conditions. Beam is modelled unit thickness and in the calculations, plane 
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stress assumption is used. Young modulus of 200 GPa and Poisson’s ratio of 0.0 are 

used in material properties. The selection of Poisson’s ratio as 0.0 is mainly used for 

providing the similar condition as analytical solutions. The behaviour of material is 

assumed fully elastic.  

 

Figure 6.1. The models are used in analytical solution for; a) axial loaded beam (case 

I), cantilever beam (case II), b) simply supported beam problem with distributed 

loaded (case III) 

Beam models are given for analytical solution in Fig. 6.1. The beam has a length of 

1.00 m and a height of 0.1 m. P is applied as 1000 N and w is applied as 1000 N/m. 

In axial loaded beam, deformation and normal stress have more dominant effect on 

mechanical robustness. Results are taken at the natural axis of the beam in x-

direction. The deformation and x-stress (axial stress) are given in Eq. 6.1 and 6.2, 

respectively for analytical solution. 

 
EA

xP




  (6.1)

 
A

P
  (6.2) 

P  represents applied force, A  is area, E  is Young’s modulus in the notifications. x-

stress is also dominant effect on cantilever and simply supported beam problem. 

However, they occur at the maximum values on the surfaces. Hence the x-stress 

results are taken on the upper surface of the beams. They are given in Eq. 6.3 for 

cantilever and simply supported beam models. c  represents the distance between 

natural axis and upper surface of the beam. 

 
I

cM 
  (6.3) 

On the contrary to check x-direction deformation, y-direction deflection is 

considered in cantilever and simply supported beams. Deflection is given in Eq. 6.4 

P 
(case I) 

P (case II)  (a) 

 (b) 

w(case III) 

x 

y 
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for cantilever beam problem. I  is inertia of the beam. Deflection of distributed 

loaded simply supported beam model is given in Eq. 6.5, where w  is applied 

distributed force. 

  23 3
6

xLx
IE

P
y 


  (6.4) 

  xLxLx
IE

w
y         2    

    24
  334 


  (6.5) 

Numerical models of FEM are given in Fig. 6.2 for 10 elements (a) and 20 elements 

(b). 10 element model have 18 nodes and 20 element model have 33 nodes. Same 

boundary conditions as analytical models are applied on FEM models. Plane182 

element, which has 4 nodes for rectangular shape, is used in ANSYS. 

 
Figure 6.2. The models are used in FEM solutions; a) 10 elements model, b) 20 

elements model 

In Fig. 6.3, NI-RPIM models are given for 18 nodes and 33 nodes. These NI-RPIM 

models are both used for Gaussian and Taylor integration. In 18 nodes model, a 

nodal interval of 0.05 m in height and a nodal interval of 0.2 m in length are used. In 

33 nodes model, a nodal interval of 0.05 m in height and a nodal interval of 0.1 m in 

length are used. The used Taylor series expansion terms are up to 4
th

 and if Gaussian 

integration is used, 2*2 gauss points are available in each background cell. 

 
Figure 6.3. The models are used in NI-RPIM solutions for 2D shaped Taylor 

integration cells; a) 18 nodes model, b) 33 nodes model 

6.2.1.1 Axial Loaded Bar 

In Fig. 6.4, analytical, FEM (10 elements), RPIM (18 nodes) with Gaussian 

integration and Taylor integration (2
nd

 order NI-RPIM) results are given for axial 

 (a) 

 (b) 

nodes FEM elements 

 (a) 

 (b) 

nodes 
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loaded beam problem. Whole compared numerical results have good agreements 

with analytical solution. However, results of NI-RPIM (2
nd

 order terms) have larger 

deformation than analytical results at the force application location of the beam. But, 

general characteristics of compared results behave similar and the difference can be 

accepted. Further increasing the number of nodes to 33, the results of NI-RPIM (2
nd

 

order terms) get better and are drawn to analytical results, especially the force 

applied location in Fig. 6.5 FEM and Gaussian int. of PRIM results have good 

agreement with analytical results. 

 
Figure 6.4. Comparison of different solution techniques on vertical deformation of 18 

nodes 2D axial loaded beam 

 
Figure 6.5. Comparison of different solution techniques on vertical deformation of 33 

node 2D axial loaded beam 

The effect of used terms in Taylor Series expansion is given in Fig. 6.6 for 18 nodes 

and they are compared with only analytical results. The usage of 1
st
 order term in 

Taylor series expansion in NI-RPIM causes to a fluctuation at the vertical 

deformation results of the beam. The fluctuation disappears and the vertical 

deformation results are improved with increasing the used order of Taylor series 

expansion terms. However, the vertical deformations of tip locations of beam are 

same in all used terms of NI-RPIM scheme. 
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Figure 6.6. Effect of Taylor series expansion terms on vertical deformation of 18 

nodes axial loaded beam with 2D rectangular shaped Taylor integration cells 

 
Figure 6.7. Effect of Taylor series expansion terms on vertical deformation of 33 

nodes axial loaded beam with 2D rectangular shaped Taylor integration cells 

The increased node results in NI-RPIM are given in Fig. 6.7. It has seen that 2
nd

 and 

greater terms of NI-RPIM results have good agreements with compared analytical 

solution. However, the used 1
st
 term in NI-RPIM gives greater fluctuation results 

than 1
st
 term of 15 node NI-RPIM results. Besides of that vertical deformation of tip 

of the beam approximately overlaps with analytical result. 

 
Figure 6.8. Effect of Taylor series expansion terms on axial stress of 18 nodes axial 

loaded beam with 2D rectangular shaped Taylor integration cells 
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The effect of used terms can be seen more easily in stress results. Normal stress 

results in x-direction are given for 18 nodes in Fig. 6.8. NI-RPIM stress results at the 

support location of the beam have a great difference from analytical solution. This 

location influences the further sections results of the beam. But the fluctuation 

decreases at the far sections of support location. This local high stresses may be 

related with Saint Venant's principle. The results are improved with increasing the 

order of Taylor series expansion terms. In Fig. 6.9, increasing the number of nodes 

provide more suitable and better normal stress results. 4
th

 order terms of NI-RPIM 

results are the best results and have the least fluctuation. Besides of that, using only 

1
st
 term in NI-RPIM gives the worst stress results. 

 
Figure 6.9. Effect of Taylor series expansion terms on axial stress of 33 nodes axial 

loaded beam with 2D rectangular shaped Taylor integration cells 

Table 6.1. Comparison of solution times of RPIM with nodal and Gaussian 

integration techniques for axial loaded beam models of 33 and 1111 nodes 

RPIM with nodal integration 
Sol’n time (in 

Secs) 

Sol’n time (in 

Secs) 
RPIM with Gauss integration 

33 nodes 

1 term 0.442 0.187 2*2 

33 nodes 
2 terms 0.474 0.249 3*3 

3 terms 0.528 0.39 4*4 

4 terms 0.73   

1111 nodes 

1 term 22.58 22.259 2*2 

1111 nodes 
2 terms 24.064 42.557 3*3 

3 terms 27.033 70.98 4*4 

4 terms 31.944   

Solution time and computational performance are also important subjects for a 

numerical analysis. These properties can affect the usage of numerical analysis, if 

their requirements in the solution need high solution time and cause high 

computational cost. Hence, solution times of RPIM with nodal and Gaussian 

integration are investigated and their results are given in table 6.1. A computer has a 
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memory of 3GB and a processor speed of 2.4 GHz, is used in the analysis. 2 different 

numbers of nodes (33 and 1111) are used for observing the solution times. It is seen 

that in the results of 33 nodes, Gaussian integration works faster than nodal 

integration, even if 4*4 number of Gauss points are used in the each background cell. 

But all solution cases are completed in less than one second. 

However, when increasing the used number of nodes to 1111, the results of 1
st
 order 

term of nodal integration and 2*2 gauss points of Gaussian integration have similar 

solution times. When increasing the number of gauss points (3*3 and 4*4), the 

solution time increases rapidly rather than the increment of terms of nodal 

integration. The increment of order of Taylor series expansion in nodal integration is 

not dominant as the used number of gauss points in Gaussian integration for solution 

time. Nearly, the solution of RPIM with 4
th

 order terms of nodal integration needs 

half of solution time of Gaussian integration (4*4 gauss point). 

6.2.1.2 Cantilever Beam 

The deflection results of cantilever beam for different methods are given in Fig. 6.10. 

The compared methods give sufficient results with respect to analytical solution. 

However, there is a small gap between analytical and NI-RPIM results, which have 

2
nd

 order Taylor series expansion terms. This gap between the compared results is 

eliminated with increasing the number of nodes in Fig. 6.11. Nearly whole of the 

compared methods have perfectly agreement with analytical solution. 

 
Figure 6.10. Comparison of different solution techniques on vertical deformation of 

18 nodes 2D cantilever beam 
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Figure 6.11. Comparison of different solution techniques on vertical deformation of 

33 nodes 2D cantilever beam 

The effect of used terms in horizontal deformation of the beam is given in Fig. 6.12. 

1
st
 order term of NI-RPIM gives insufficient results. When increasing the order of 

terms, the results become close enough to analytical results. 

 
Figure 6.12. Effect of Taylor series expansion terms on vertical deformation of 18 

nodes cantilever beam 

But increasing the number of nodes to 33, the results are approximately same as 

analytical solution without 1
st
 order term results in Fig. 6.13. 

 
Figure 6.13. Effect of Taylor series expansion terms on vertical deformation of 33 

nodes cantilever beam with 2D rectangular shaped Taylor integration cells 

-2.5E-05

-2.0E-05

-1.5E-05

-1.0E-05

-5.0E-06

0.0E+00

0 0.2 0.4 0.6 0.8 1

h
o
ri

zo
n
ta

l 
d
ef

o
rm

at
io

n
 o

f 
th

e 
b
ea

m
 (

m
) 

length of the beam (m) 

Analytical Sol'n

NI-RPIM (2 terms)

RPIM with Gauss Int.

FEM (ANSYS)

-3.0E-05

-2.5E-05

-2.0E-05

-1.5E-05

-1.0E-05

-5.0E-06

0.0E+00

0 0.2 0.4 0.6 0.8 1

h
o

ri
zo

n
ta

l 
d

ef
o

rm
at

io
n
 o

f 
th

e 
b

ea
m

 (
m

) 

length of the beam (m) 

Analytical Sol'n

NI-RPIM (1 term)

NI-RPIM (2 terms)

NI-RPIM (3 terms)

NI-RPIM (4 terms)

-3.0E-05

-2.5E-05

-2.0E-05

-1.5E-05

-1.0E-05

-5.0E-06

0.0E+00

0 0.2 0.4 0.6 0.8 1

h
o
ri

zo
n
ta

l 
d
ef

o
rm

at
io

n
 o

f 
th

e 
b
ea

m
 (

m
) 

length of the beam (m) 

Analytical Sol'n

NI-RPIM (1 term)

NI-RPIM (2 terms)

NI-RPIM (3 terms)

NI-RPIM (4 terms)



79 
 

 
Figure 6.14. Effect of Taylor series expansion terms on axial stress of 18 nodes 

cantilever beam with 2D rectangular shaped Taylor integration cells 

The stress results of cantilever beam for 18 nodes are given in Fig. 6.14. The results 

of 1
st
 order term give insufficient results. However increasing the order of NI-RPIM 

terms gives similar results as analytical solution. A high distortion on the results of 

1
st
 order terms is seen in Fig. 6.15 and causes to not behave similar behaviour as 

analytical results. But 2
nd

 and greater order of NI-RPIM terms nearly gives the same 

results as analytical solution. 

 
Figure 6.15. Effect of Taylor series expansion terms on axial stress of 33 node 

cantilever beam with 2D rectangular shaped Taylor integration cells 

6.2.1.3 Simply Supported Beam 

The horizontal deformation results of simply supported beam are given for 18 nodes 

in Fig. 6.16. FEM results are the closest results to analytical solution. Besides, the 

results of 2
nd

 order terms in NI-RPIM are the farthest results, general behaviour of 

the results has similar characteristics with analytical solution. When increasing the 

number of nodes, nearly all the compared methods overlap with the analytical 

solution in Fig. 6.17. 
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Figure 6.16. Comparison of different solution techniques on vertical deformation of 

18 nodes 2D simply supported beam 

 
Figure 6.17. Comparison of different solution techniques on vertical deformation of 

33 nodes 2D simply supported beam 

 
Figure 6.18. Effect of Taylor series expansion terms on vertical deformation of 18 

nodes simply supported beam with 2D rectangular shaped Taylor integration cells 

The effect of terms of NI-RPIM is given in Fig. 6.18 for 18 node results. It is seen 

that 2
nd

, 3
rd

 and 4
th

 order terms give similar and less deformation values than 

analytical solution. But 1
st
 order term results have great difference from analytical 

solution and greater deformation values than analytical solution. When increasing 

number of nodes to 33, the results of 2
nd

, 3
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 and 4
th

 order terms approximately 
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overlap with analytical solution in Fig. 6.19. The difference between 1
st
 order term 

and analytical results decreases, but it has not vanished. 

 
Figure 6.19. Effect of Taylor series expansion terms on vertical deformation of 33 

nodes simply supported beam with 2D rectangular shaped Taylor integration cells 

 
Figure 6.20. Effect of Taylor series expansion terms on axial stress of 18 nodes 

simply supported beam with 2D rectangular shaped Taylor integration cells 
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solution. The difference between 1
st
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Figure 6.21. Effect of Taylor series expansion terms on axial stress of 33 nodes 

simply supported beam 

It has been reported that first-order finite difference scheme (Anderson, 1995) does 

not give sufficient results in most of the computational fluid dynamics (CFD) 

analysis and second-order terms is suggested. Similar condition is detected in this 

section for 2D elastic problems. 

6.2.2 Results and Discussions 

In this section, the effect of higher order terms of Taylor series expansion is 

investigated up to 4
th

 order within the method of NI-RPIM, which is used by Liu et 

al. (2007). Rectangular shaped Taylor integration cells are used. Three different case 

studies for elastic problems are examined with plane stress assumption. Also the 

effect of number of nodes is observed by changing the used number of nodes. 

Some findings can be summarized that; 

 increasing the number of nodes gives better results 

 it has been detected that 2
nd

 order Taylor terms can satisfy suitable result with 

respect to analytical solution 

 fluctuation may occur in the 1
st
 order terms in NI-RPIM 

 in axial loaded beam results, higher order terms give more realistic results, 

especially on the investigation of stress conditions 

 FEM, NI-RPIM with Gaussian and Taylor integration can give similar results 

as analytical solution 

 on the contrary, high solution times in fewer nodes; NI-RPIM with Taylor 

series expansion has benefits and faster than Gaussian integration in the 

solution times, especially using lots of numbers in the analysis 
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6.3 Triangular Shaped Taylor Integration Cells for 2D Cases 

The usage of rectangular shaped Taylor integration cells may not be available, when 

irregular distributed nodes are used. Highly distorted node distribution creates 

rectangular integration cells with rough shapes. In that case, the usage of triangular 

shaped Taylor integration cells supports more flexible and easily created integration 

cells. The cells need only three nodes, which is enough for the integration operation. 

Its application is mentioned in the below. 

 
Figure 6.22. Sub-division of triangular background cell for each node 

 

In Fig. 6.22, a triangular background cell is given. The cell which is formed by field 

nodes of P1 (x1,y1), P2 (x2,y2) and P3 (x3,y3) is further divided into 2 different 

integration cells (ic I and II) for each node. So, the total number of integration cells 

for a field node can be calculated by multiplying 2 by the number of triangular cells 

that are connected to the field node. P12, P13 and P23 are centre point of each side line 

of triangular cell. P123 is centre point of surface area. Subdivision of tetrahedral 

integration cell components for each node is tabulated in Table 6.2.  

 

P1 

P13 

P12 

P23 

P3 

P2 

P123 

ic II (node I) 

ic I 

(node III) 

P12 
P2 

P123 P123 

P12 
P1 

P1 

P13 

P123 

P13 

P123 

P3 

ic I (node I) 

ic I (node II) 

P23 
P123 

P2 

P123 

P23 

ic II 

(node II) 

P3 

ic II (node III) 



84 
 

Table 6.2. Components of edges for subdivided Taylor Integration cells for each 

node (triangular geometry) 

 
integration 

cell (ic) 

components of 

edges 

P
1
 I P1 P12 P123 

II P1 P123 P13 

P
2
 I P2 P123 P12 

II P2 P23 P123 

P
3
 I P3 P123 P13 

II P3 P23 P123 

 

The integrations in Eq. 5.19,  d1 ,    dx ,    dy ,    dx2
… must be 

calculated for triangular background cells. However, integration of terms of 

,...,, 2xyx  includes complex operations for irregular triangular shapes. Hence, 

geometry can be transformed into natural coordinates by using Jacobian 

transformation. In Fig. 6.23, the transformation of triangular geometry from global to 

natural coordinates is shown. P1', P123' and P13' represent the transformed natural 

coordinates from global coordinates of P1, P123 and P13 points, respectively.  

 
 

Figure 6.23. Transformation of a triangular integration cell from global (a) to natural 

(b) coordinates 

The bounds of integral starts from zero to upper natural coordinate. Hence P1, P2 and 

P3 are placed at P1’ in integral calculations. This condition can provide to no usage of 

parallel axis theorem to carry integration results to related edge node. Hence, x1 and 

y1 in Eq. 5.17, 5.18 and 5.19 are assigned x and y coordinates of P1, P2 and P3 in 

related integral node calculation. 

The transformation of coordinates is given in Eq. 6.6 and 6.7 (Bhowmick and 

Shontz, 2012).   and   are natural coordinates. 

      
13121

xxxxxx   (6.6) 

 

y 

x P1 

P13 

P123 

(1,0) 
P123' 

P13' 

P1' 
 

 

(0,1) 

(0,0) 
(a) (b) 
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      
13121

yyyyyy   (6.7) 

 

Determinant of Jacobian (J) transformation matrix are given in Eq. 6.8. 

 Area
yy

xx

JDET 
















 2)(




  (6.8) 

The transformation of integration of uniform geometry in natural coordinates is given 

in Eq. 6.9. Its application to tetrahedron geometry is given in Eq. 6.10. Hence 

integration in terms of ,...,, 2xyx  can be easily calculated as follows:  

           '*,,,, dJDETyxfdyxf    (6.9) 

         






1

0

1

0

,,,*, dyxfdJDETdDyxf
D

  (6.10) 

Even if suitable orientation is used in Table 6.2, in some cases node coordinate 

orientations changes with respect to construction of triangular cells in Delaunay 

triangulation technique. Its symptoms can be determined with negative value of 

determinant of Jacobian matrix. For this reason, upper integration bounds in Eq. 6.9 

are updated with respect to where the subdivided tetrahedral cell exists, which are 

given in Table 6.3. 

Table 6.3. Direction of triangular cell and used bounds of integral in natural 

coordinates. 

 
12

x  13
y  

[]

0

],[ dyxf  
[]

0

],[ dyxf  

I + + 1  +1 

II + -   1  +1 

III - + 1  -1 

IV - -   1  -1 

  

Where 12x  is the sign of difference between 12 xx   and 13y  is the sign of 

difference between 13 yy   for each sub-divided integration cell. The signs of   and 

  in Eq. 6.6 and 6.7 is also regulated with respect to signs of 12x  and 13y . 

These calculations are applied for each triangular cell and the results are summed for 

the corresponding field node. Hence, a node includes more than one triangular 
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integration cells, which looks like a polyhedron geometry. However, all main 

structure of integrations is carried on each subdivided triangular cells for related 

nodes.  

6.4 Hexahedral Shaped Taylor Integration Cells for 3D Cases 

Rectangular shaped Taylor integration cells are extended and adapted for 3D solution 

by using hexahedral shaped Taylor integration cells. Each integration domains 

include 8 field nodes. 

6.4.1 Numerical Examples 

Three different case studies are examined for solution of nodal integration by using 

hexahedral shaped Taylor integration cells. Effects of Taylor expansion terms in 

nodal integration are investigated by using a program that is developed in Fortran. 

The code is written based on the studies in literature (Liu and Gu, 2005; Liu et al., 

2007). A computer has a processor speed of 2.4 GHz and a memory capacity of 3 GB 

is used in the analyses.  

A simply supported beam with distributed load, a torsion bar and an L-shaped beam 

under uniform load are examined. They are given in Fig. 6.24. A linear elastic 

material is used with a Young Modulus of 200 GPa and Poisson’s ratio of 0.0. The 

selection of Poisson’s ratio as 0.0 is aimed for providing similar conditions as 

analytical solutions. 

A bar/beam with square section of 0.1 m × 0.1 m and a length of 1.00 m is used in 

case I and II. L shaped beam has a length of 1.00 m in the x and 0.5 m in the z-

direction. A force couple is used for applied torque in case I, which is equal to 75 

Nm. Applied distributed load is 22500 N/m
2
 in case II. Uniformly varying load is 

used as 2250 N/m in case III. Node distributions are same in FEM and meshfree 

models. 
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Figure 6.24. The used models in the analyses and boundary conditions, a) bar under 

torsion (case I) b) simply supported beam problem with distributed loaded (case II), 

c) L-shaped beam under uniformly varying load (case III) 

SOLID 185 finite elements are used in FEM models, which have 8 nodes at the 

edges. ANSYS 14 software package program is used in FEM pre-processor, solution 

and post-processor steps. An element length of 0.05 m is selected in models as 

shown in Fig. 6.25. 

     

Figure 6.25. 3D FEM models of analysed cases; a) beam for case II, b) L shaped 

beam for case III 

 (a) 
 (b) 

w (case II) 

x 

y 

z 

P (case I) 

w (case III) 

 (c) 

z 

y 

x 

 (a)  (b) 



88 
 

Meshfree models are given in Fig. 6.26, which have 189 nodes in case II and 270 

nodes in case III. FEM and meshfree models of case I have 6561 nodes with an 

element length of 0.0125 m.  

  

Figure 6.26. 3D meshfree models of analysed cases; a) beam for case II, b) L shaped 

beam for case 

The vertical deflection of simply supported beam (Beer et al., 2009) with distributed 

loading (case II) is given as follows;  

  xLxLx
IE

w
y         2    

    24
  334 


  (6.11) 

where w  is applied distributed load and I  represents inertia of the beam. E  is the 

Young’s Modulus and x  is the distance from fixed support location. L  is also total 

length of beam. Its bending stress at the upper and below surfaces is given as;  

 
I

cM   
  


  (6.12) 

where c  is the distance between upper surface and neutral axis of the beam. 

The twist angle ( ) and maximum shear stress (
max

 ) in a torsion bar (case I) are 

analytically given (Beer et al., 2009; Timoshenko and Goodier, 1951) as follows;  
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where T  is applied torque, a  and b  are height and width of the beam, which are 

equal to 0.1 m and 0.1 m. 1c  and 2c  are constants for non-circular torsion of 

members, which are equal to 0.208 and 0.1406 with respect to square cross section. 

c  is used as 3.00, support domain size is used as 1.30 and q  is used as 1.03 as a 

default parameters in the solutions of RPIM method. 

6.4.1.1 Torsion Bar 

Torsion of a non-circular bar with square cross section is investigated. Twist angle 

results are taken from side surface of bar, where the maximum shear stresses occur. 

Shear stress results are taken from the upper surface at the mid-length of bar. 

 

Figure 6.27. Comparison of twist angle results of a non-circular bar under torsion 

(case I) for analytical, FEM and nodal int. techniques 

 

Figure 6.28. Comparison of twist angle results of a non-circular bar under torsion 

(case I) for analytical, Gauss and nodal int. (2
nd

 order terms) techniques 

Twist angle results (case I) are given in Fig. 6.27 and 6.28 for nodal and Gauss 

integrations. It is observed that 1
st
 terms of nodal integration includes serious errors 

with respect to analytical solution. 2
nd

, 3
rd

, 4
th

 and 5
th

 orders of nodal integration 
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results have similar characteristics with analytical results. But FEM results are closer 

than RPIM to nodal integration results. RPIM with Gauss integrations give similar 

results as 2
nd

 and higher order terms results of nodal integration in Fig. 6.28. The 

number of sampling points has no effect on the results for this case. 

Table 6.4. Comparison of shear stress results of a 3D non-circular bar under torsion 

(case I) for analytical, FEM and nodal int. techniques 

Solution technique xy
  (kPa) 

FEM (ANSYS) 352.19 

Nodal Int. (1 term) 388.90 

Nodal Int. (2 terms) 366.11 

Nodal Int. (3 terms) 365.96 

Nodal Int. (4 terms) 366.04 

Nodal Int. (5 terms) 366.04 

Gauss Int. (2x2) 369.88 

Gauss Int. (3x3) 359.47 

Gauss Int. (4x4) 354.01 

Analytical solution 360.57 

Shear stress results are compared in Table 6.4. 2
nd

 and further order terms in nodal 

integration and Gauss integration with 3x3 and 4x4 sampling points give better 

results than FEM compared to analytical solution. Gauss integration with 3x3 

sampling points gives the closest results to analytical results. 1
st
 order terms of nodal 

integration and 2x2 sampling points of Gauss integration results include less 

sensitivity. 

 

Figure 6.29. Comparison of effect of on twist angle results of a 3D non-circular bar 

under torsion (case I) for 4×4 gauss int. 
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Figure 6.30. Comparison of effect of 
c

  on twist angle results of a non-circular bar 

under torsion (case I) for nodal int. (2
nd

 order terms) 

Effect of c  on twist angle results (case I) are given in Fig. 6.29 and 6.30. Nearly 

c  values of 1.00, 3.00 and 5.00 have the same results on the solutions of Gauss 

integration. c  values of 7.00 and 9.00 cause failure of shape function construction. 

c  values of 1.00, 3.00, 7.00 and 9.00 in nodal integration have similar results and 

enough accuracy with analytical solution. c  value of 5.00 in nodal integration has 

the least accuracy. 

 

Figure 6.31. Comparison of effect of sd on twist angle results of a 3D non-circular 

bar under torsion (case I) for 4×4 Gauss int. 

Effects of support domain size are given in Fig. 6.31 and 6.32 for case I. Support 

domain size of 6.5×L/100 has similar results as analytical solution in Gauss 

integration. The usage of support domain size of 7.5×L/100 decreases accuracy. 

Further increments of support domain sizes cannot satisfy construction of shape 

functions and fail. Results of different support domain sizes have similar results and 

enough accuracy without 1.5×L/10 in nodal integration. 
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Figure 6.32. Comparison of effect of sd on twist angle results of a 3D non-circular 

bar under torsion (case I) for nodal int. (2
nd

 order terms) 

 

Figure 6.33. Comparison of effect of on twist angle results of a 3D non-circular bar 

under torsion (case I) for 4×4 Gauss int. 

 

Figure 6.34. Comparison of effect of on twist angle results of a 3D non-circular bar 

under torsion (case I) for nodal int. (2
nd

 order terms) 
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and 0.98 cause to failure in construction of shape functions in RPIM with Gauss 

integration. q  values of 0.7 and 1.03 have better accuracy than 1.30. In nodal 

integration results, all q  values have high fluctuations when it is used a different 
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Table 6.5. Comparison of effect of c  on shear stress results of a 3D non-circular 

bar under torsion (case I) for nodal int. (2
nd

 order terms) and 4×4 Gauss int. 

Effect of c  xy  (kPa) xy  (kPa) Effect of c  

Nodal Int. ( c =1) 379.95 362.64 Gauss Int. ( c =1) 

Nodal Int. ( c =3) 366.11 354.01 Gauss Int. ( c =3) 

Nodal Int. ( c =5) 357.56 350.63 Gauss Int. ( c =5) 

Nodal Int. ( c =7) 681.29 - Gauss Int. ( c =7) 

Nodal Int. ( c =9) 344.64 - Gauss Int. ( c =9) 

Table 6.6. Comparison of effect of sd on shear stress results of a 3D non-circular bar 

under torsion (case I) for nodal int. (2
nd

 order terms) and 4×4 Gauss int. 

Effect of sd xy  (kPa) xy  (kPa) Effect of sd 

Nodal Int. (sd=6.5×L/100) 366.11 354.01 Gauss Int. (sd=6.5×L/100) 

Nodal Int. (sd=7.5×L/100) 366.11 366.93 Gauss Int. (sd=7.5×L/100) 

Nodal Int. (sd=8.5×L/100) 366.11 - Gauss Int. (sd=8.5×L/100) 

Nodal Int. (sd=L/10) 366.11 - Gauss Int. (sd=L/10) 

Nodal Int. (sd=1.5×L/10) 370.82 - Gauss Int. (sd=1.5×L/10) 

Table 6.7. Comparison of effect of q  on shear stress results of a 3D non-circular bar 

under torsion (case I) for nodal int. (2
nd

 order terms) and 4×4 Gauss int. 

Effect of q  xy  (kPa) xy  (kPa) Effect of q  

Nodal Int. ( q =0.5) 176.78 - Gauss Int. ( q =0.5) 

Nodal Int. ( q =0.7) 356.05 357.75 Gauss Int. ( q =0.7) 

Nodal Int. ( q =0.98) -796.27 - Gauss Int. ( q =0.98) 

Nodal Int. ( q =1.03) 366.11 354.01 Gauss Int. ( q =1.03) 

Nodal Int. ( q =1.30) 80.77 363.03 Gauss Int. ( q =1.30) 

 

Effects of c , sd and q  on shear stress results (case I) are given in Table 6.5, 6.6 and 

6.7, respectively. Analytical solution results of shear stress are equal to 360.57 kPa 

for Table 6.5, 6.6 and 6.7. αc values of 7.00 and 9.00, sd values of 8.5×L/100, L/10 

and 1.5×L/10, q  values of 0.5 and 0.98 in Gauss integration cannot satisfy 

construction of shape functions and fail. c  value of 1.00 has the closest results. 

When increasing its value, accuracy decreases. sd values of 6.5×L/100 and 

7.5×L/100 have similar accuracy. Different values of q  results have closed enough to 

analytical solution. When nodal integration results are discussed, c  value of 5.00 

has the closest result to analytical solution. Other results of c  values have less 

accuracy, especially c  value of 7.00. All results of sd values are same without sd 
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value of 1.5×L/10. Results of the highest sd value has less accuracy. q  values of 0.7 

and 1.03 have good accuracy. However, other q  values, especially q  value of 0.98, 

have wrong results. 

6.4.1.2 Simply Supported Beam 

 

Figure 6.35. Comparison of vertical deformation results of distributed loaded simply 

supported beam (case II) for analytical, FEM and nodal int. techniques 

 

Figure 6.36. Comparison of vertical deformation results of distributed loaded simply 

supported beam (case II) for analytical, Gauss and nodal int. (2
nd

 order terms) 

techniques 
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 order term of Taylor series expansion in nodal integration 

gives less accurate results with respect to analytical solution. However using more 

than one term in nodal integration rapidly provides accuracy, which has greater 

conformity with analytical solution than FEM (ANSYS). Results of two or more 

terms in nodal integration nearly show similar characteristics. Gauss integration 

results are also compatible with analytical solution. 

Bending stress results are given in Fig. 6.37 and 6.38 for simply supported beam 
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includes high fluctuations. But usage of two or more terms in nodal integration 

provides accuracy with respect to analytical solution. Gauss integration results have 

similar characteristics with second term results of nodal integration. 

 

Figure 6.37. Comparison of bending stress results of distributed loaded simply 

supported beam (case II) for analytical, FEM and nodal int. techniques 

 

Figure 6.38. Comparison of bending stress results of distributed loaded simply 

supported beam (case II) for analytical, Gauss and nodal int. (2
nd

 order terms) 

techniques 
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values include greater deformation values than analytical solution. In Gauss 

integration, deformation results are less than analytical solution. 

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 0.2 0.4 0.6 0.8 1

b
en

d
in

g
 s

tr
es

s 
in

 x
-d

ir
ec

ti
o
n

 (
k

P
a)

 

length of the beam (m) 

Analytical Sol'n
Nodal Int. (1 term)
Nodal Int. (2 term)
Nodal Int. (3 term)
Nodal Int. (4 term)
Nodal Int. (5 term)
FEM (ANSYS)

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 0.2 0.4 0.6 0.8 1

b
en

d
in

g
 s

tr
es

s 
in

 x
-d

ir
ec

ti
o
n

 (
k

P
a)

 

length of the beam (m) 

Analytical Sol'n
Nodal Int. (2 term)
Gauss Int. (2x2)
Gauss Int. (3x3)
Gauss Int. (4x4)



96 
 

 

Figure 6.39. Comparison of effect of c  on vertical deformation results of 

distributed loaded simply supported beam (case II) for 4×4 Gauss int. 

 

Figure 6.40. Comparison of effect of c  on vertical deformation results of 

distributed loaded simply supported beam (case II) for nodal int. (2
nd

 order terms) 

 

Figure 6.41. Comparison of effect of sd on vertical deformation results of distributed 

loaded simply supported beam (case II) for 4×4 Gauss int. 

Effects of support domain size are given on bending stress results in Fig. 6.41 and 

6.42. Results of sd value of 6.5×L/100 are compatible with analytical solution in 

Gauss integration results. Increasing support domain size to 7.5×L/100 and 

8.5×L/100 increases accuracy. But larger support domain sizes as L/10 and 1.5×L/10 
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decrease accuracy of solution. Same results of various support domain sizes occur in 

nodal integration. 

 

Figure 6.42. Comparison of effect of sd on vertical deformation results of distributed 

loaded simply supported beam (case II) for nodal int. (2
nd

 order terms) 

 

Figure 6.43. Comparison of effect of q  on vertical deformation results of distributed 

loaded simply supported beam (case II) for 4×4 Gauss int. 

 

Figure 6.44. Comparison of effect of q  on vertical deformation results of distributed 

loaded simply supported beam (case II) for nodal int. (2
nd

 order terms) 

Effects of q  on deformation results of simply supported beam (case II) are given in 

Fig. 6.43 and 6.44. q  does not have any effect in Gauss integration results. Various 
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q  values have not effect in nodal integration without q  value of 0.98. q  value of 

0.98 decreases accuracy of solution. 

 

Figure 6.45. Comparison of effect of c  on bending stress results of distributed 

loaded simply supported beam (case II) for 4×4 Gauss int. 

Results of bending stress distribution (case II) for various c  values are given in Fig. 

6.45 and 6.46. It is observed that results of c  values of 1.00, 3.00, 5.00 and 9.00 

have nearly same result in Gauss integration. But result of c  value of 7.00 has high 

fluctuations and cannot satisfy accuracy. Same c  responses are available in nodal 

integration. However, c  value of 5.00 gives the best responses in simply supported 

beam analyses. 

 

Figure 6.46. Comparison of effect of c  on bending stress results of distributed 

loaded simply supported beam (case II) for nodal int. (2
nd

 order terms) 

Effect of support domain sizes on bending stress results are given in Fig. 6.47 and 

6.48 for case II. sd sizes of 7.5×L/100 and 8.5×L/100 have the highest accuracy in 

the results of Gauss integration. But also sd sizes of 7.5×L/100 satisfy required 

accuracy with respect to analytical solution. Results of sd sizes of L/10 and 1.5×L/10 
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have high fluctuations. Same responses on results of sd size are observed in nodal 

integration. 

 

Figure 6.47. Comparison of effect of sd on bending stress results of distributed 

loaded simply supported beam (case II) for 4×4 Gauss int. 

 

Figure 6.48. Comparison of effect of sd on bending stress results of distributed 

loaded simply supported beam (case II) for nodal int. (2
nd

 order terms) 

 

Figure 6.49. Comparison of effect of q  on bending stress results of distributed 

loaded simply supported beam (case II) for 4×4 Gauss int. 

q  is not effective on Gauss integration results of bending stress in Fig. 6.49 for 

simply supported beam (case II). However q  value of 0.98 gives different stress 

responses in nodal integration in Fig. 6.50. 
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Figure 6.50. Comparison of effect of q  on bending stress results of distributed 

loaded simply supported beam (case II) for nodal int. (2
nd

 order terms) 

Solution times of RPIM with nodal and Gauss integration techniques are 

approximately given in Table 6.8 for simply supported beam. It is seen that usage of 

only first term in nodal integration has the best solution time. When the used terms in 

nodal integration increases, solution time in nodal integration increases. The 

increment rate of solution time in nodal integration is greater than Gauss integration.  

Table 6.8. Comparison of solution times of RPIM with nodal and Gauss integration 

techniques for simply supported beam model of 189 nodes 

RPIM with nodal 

integration 

Sol’n 

time (in 

Secs) 

Sol’n 

time (in 

Secs) 

RPIM with 

Gauss integration 

189 

nodes 

1 term 1.669 1.794 2×2×2 

189 

nodes 

2 terms 4.337 3.635 3×3×3 

3 terms 11.107 6.084 4×4×4 

4 terms 30.466 
  

5 terms 55.724 

6.4.1.3 L-Shaped Beam 

 

Figure 6.51. Comparison of vertical deformation results of L-shaped beam (case III) 

for FEM and nodal int. techniques 
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Figure 6.52. Comparison of vertical deformation results of L-shaped beam (case III) 

for FEM, Gauss and nodal int. (2
nd

 order terms) techniques 

Displacement results of L-shaped beam (case III) are taken from centre of the beam 

in x-direction. Bending stress results are taken from middle of upper surface of the 

beam. RPIM with nodal and Gauss integration results are compared with FEM 

(ANSYS) solutions in Fig. 6.51 and 6.52. 1
st
 order nodal integration includes 

fluctuations and cannot satisfy accuracy. But further orders of nodal integration and 

Gauss integration results with sampling points of 2×2, 3×3 and 4×4 have similar 

results as FEM (ANSYS). 

 

Figure 6.53. Comparison of bending stress results of L-shaped beam (case III) for 

FEM and nodal int. techniques 

Bending stress results for L-shaped beam (case III) are given in Fig. 6.53 and 6.54. 

Nodal integration with 1
st
 term cannot satisfy accuracy and includes high 

fluctuations. 2
nd

 and further terms of nodal integration and Gauss integration results 

give suitable results with respect to FEM (ANSYS), but a little difference occurs in 

the results. 
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Figure 6.54. Comparison of bending stress results of L-shaped beam (case III) for 

FEM, Gauss and nodal int. (2
nd

 order terms) techniques 

 

Figure 6.55. Comparison of effect of c  on vertical deformation results of L-shaped 

beam (case III) for 4×4 Gauss int. 

 

Figure 6.56. Comparison of effect of c  on vertical deformation results of L-shaped 

beam (case III) for nodal int. (2
nd

 order terms) 

Effects of c  on deformation results of L-shaped beam (case III) are given in Fig. 

6.55 and 6.56. It is shown that there is no c  effect in Gauss integration results. c  

values of 1.00, 3.00, 5.00 and 9.00 have same deformation results, but c  value of 

7.00 has less accuracy in results of nodal integration. 
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Figure 6.57. Comparison of effect of sd on vertical deformation results of L-shaped 

beam (case III) for 4×4 Gauss int. 

Effects of support domain size (sd) on deformation of L-shaped beam (case III) are 

given in Fig. 6.57 and 6.58. sd values of 6.5×L/100, 7.5×L/100 and 8.5×L/100 in 

Gauss and nodal integration have same results with FEM (ANSYS) results. 

However, accuracy of solution decreases when sd value is increased to L/10 and 

1.5×L/10. 

 

Figure 6.58. Comparison of effect of sd on vertical deformation results of L-shaped 

beam (case III) for nodal int. (2
nd

 order terms) 

In Fig. 6.59 and 6.60, effect of q  for nodal and Gauss integration results are given 

for deformation results of L-shaped beam (case III). There is no effect of q  on results 

of Gauss integration. q  value of 0.98 has a difference on deformation results in nodal 

integration. Other deformation results of q  values have same results. 
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Figure 6.59. Comparison of effect of q  on vertical deformation results of L-shaped 

beam (case III) for 4×4 Gauss int. 

 

Figure 6.60. Comparison of effect of q  on vertical deformation results of L-shaped 

beam (case III) for nodal int. (2
nd

 order terms) 

 

Figure 6.61. Comparison of effect of c  on bending stress results of L-shaped beam 

(case III) for 4×4 Gauss int. 

Bending stress results of L-shaped beam (case III) are given in Fig. 6.61 and 6.62 for 

various c  values. It is detected that changes on αc has no positive effects on both 

Gauss and nodal integrations. When c  value of 7.00 is used, high fluctuations on 

the results occur and accuracy is lost in nodal integration. 

-2.50E-05

-2.00E-05

-1.50E-05

-1.00E-05

-5.00E-06

0.00E+00

0 0.5 1

v
er

ti
ca

l 
d

ef
o

rm
at

io
n

 o
f 

b
ea

m
 

(m
) 

length of the beam (m) 

FEM (ANSYS)
Gauss Int. q=0.5
Gauss Int. q=0.7
Gauss Int. q=0.98
Gauss Int. q=1.03
Gauss Int. q=1.30

-2.50E-05

-2.00E-05

-1.50E-05

-1.00E-05

-5.00E-06

0.00E+00

0 0.2 0.4 0.6 0.8 1

v
er

ti
ca

l 
d

ef
o
rm

at
io

n
 o

f 
th

e 
b

ea
m

 

(m
) 

length of the beam (m) 

FEM (ANSYS)
Nodal Int. q=0.5
Nodal Int. q=0.7
Nodal Int. q=0.98
Nodal Int. q=1.03
Nodal Int. q=1.30

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

b
en

d
in

g
 s

tr
es

s 
in

 x
-d

ir
ec

ti
o
n

 (
M

P
a)

 

length of the beam (m) 

FEM (ANSYS)
Gauss Int. αc=1 
Gauss Int. αc=3 
Gauss Int. αc=5 
Gauss Int. αc=7 
Gauss Int. αc=9 



105 
 

 

Figure 6.62. Comparison of effect of c  on bending stress results of L-shaped beam 

(case III) for nodal int. (2
nd

 order terms) 

 

Figure 6.63. Comparison of effect of sd on bending stress results of L-shaped beam 

(case III) for 4×4 Gauss int. 

 

Figure 6.64. Comparison of effect of sd on bending stress results of L-shaped beam 

(case III) for nodal int. (2
nd

 order terms) 

Effect of support domain sizes are given for L-shaped beam (case III) in Fig. 6.63 

and 6.64. Results of sd values of 6.5×L/100, 7.5×L/100 and 8.5×L/100 have similar 

results and give sufficient accuracy in both Gauss and nodal integrations. However 

sd values of L/10 and 1.5×L/10 affect negatively and cause high fluctuations on the 

results. 
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Effects of various q  values are given in Fig. 6.65 and 6.66 for bending stress of L-

shaped beam. Without q  value of 0.98, all q  values have similar results in both 

nodal and Gauss integration.  

 

Figure 6.65. Comparison of effect of q  on bending stress results of L-shaped beam 

(case III) for 4×4 Gauss int. 

 

Figure 6.66. Comparison of effect of q  on bending stress results of L-shaped beam 

(case III) for nodal int. (2
nd

 order terms) 

6.4.2 Results and Discussions 

Two different (nodal and Gauss) integration techniques are used for RPIM solutions 

and their effects on 3D elasto-static solutions are investigated. Taylor series 

expansion is used in nodal integration and investigated up to 5
th

 order. 2×2, 3×3 and 

4×4 numbers of sampling points are used in Gauss integration. In addition, effects of 

shape parameters and support domain sizes are also investigated. Results are 

summarized as follows; 

 usage of single term of Taylor series expansion in nodal integration cannot 

satisfy accuracy with respect to analytical solutions 
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 nodal integrations with 2
nd

 and higher order of terms give sufficient results 

and they have better performance than FEM (ANSYS) in some cases 

 2
nd

, 3
rd

, 4
th

 and 5
th

 order terms of nodal integration give nearly the same 

results 

 Gauss integration in RPIM also gives good results in all numbers of sampling 

points 

 the recommendation of 2
nd

 order terms (Anderson, 1995) in CFD is also valid 

in the results of this section 

 shape parameter c  is nearly not effective on Gauss integration results in 

cases II and III. However when c  is equal to 7.00 in nodal integration 

results, accuracy of the solution vanishes. c  values of 7.00 and 9.00 cause 

failure in construction of shape function in case I 

 support domain sizes of 6.5×L/100, 7.5×L/100 and 8.5×L/100 of both nodal 

and Gauss integration give good agreements with analytical and FEM 

solutions in cases II and III. However, increasing support domain size to L/10 

and 1.5×L/10 cause to decrease in accuracy. sd values of 8.5×L/100, L/10 and 

1.5×L/10 in Gauss integration cannot support construction of shape functions 

in case I 

 shape parameter q  is not effective in Gauss integration. Similar results are 

also obtained in nodal integration. But when q  is equal to 0.98, accuracy 

decreases in nodal integration solutions. q  values of 0.5 and 0.98 cause to 

failures in Gauss integration in case I. When q  is used as a different value 

from 1.03, the results include high fluctuations 

6.5 Tetrahedral Shaped Taylor Integration Cells for 3D Cases 

The creation of tetrahedral shaped Taylor integration cells is more flexible and easy 

than hexahedral shaped Taylor integration cells. They are mentioned in this section. 
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Figure 6.67. Sub-division of tetrahedral background cell for each node 

In Fig. 6.67, a tetrahedral background cell is given. The cell which is formed by field 

nodes of P1 (x1,y1,z1), P2 (x2,y2,z2), P3 (x3,y3,z3) and P4 (x4,y4,z4) is further divided 

into 6 different integration cells (ic I, II...). So, the total number of integration cells 

for a field node can be calculated by multiplying 6 by the number of tetrahedral cells 

that are connected to the field node. P12, P13, P14, P23, P24 and P34 are centre point of 

each side line of tetrahedral cell. P123, P124, P134 and P234 are centre points of surface 

areas. O is the centre point. Subdivision of tetrahedral integration cell components 

for each node is tabulated in Table 6.9. Subdivision of tetrahedral cell can cause 

negative volumes (Toron, 2004; Kovalev, 2005). Therefore, the orientation of 

subdivided cell nodes is placed with an order of preventing negative volume results. 
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Table 6.9. Components of edges for subdivided Taylor Integration cells for each 

node (tetrahedral geometry) 

 
integration 

cell (ic) 

components of 

edges 
 

integration 

cell (ic) 

components of 

edges 
N

o
d
e 

I 
(P

1
) 

I P1 P12 P123 O 

N
o
d
e 

II
I 

(P
3
) 

I P3 P13 P123 O 

II P1 P123 P13 O II P3 P123 P23 O 

III P1 P124 P12 O III P3 P134 P13 O 

IV P1 P14 P124 O IV P3 P34 P134 O 

V P1 P13 P134 O V P3 P23 P234 O 

VI P1 P134 P14 O VI P3 P234 P34 O 

N
o
d
e 

II
 (

P
2
) 

I P2 P123 P12 O 

N
o
d
e 

IV
 (

P
4
) 

I P4 P124 P14 O 

II P2 P23 P123 O II P4 P24 P124 O 

III P2 P12 P124 O III P4 P14 P134 O 

IV P2 P124 P24 O IV P4 P134 P34 O 

V P2 P234 P23 O V P4 P234 P24 O 

VI P2 P24 P234 O VI P4 P34 P234 O 

 

The first integration;  d1  represents the volume of tetrahedron and can also be 

calculated as determinant of edge distances (Bhowmick and Shontz, 2012) in Eq. 

6.15.  

 

141312

141312

141312

6

1

zzzzzz

yyyyyy

xxxxxx

Volume







   (6.15) 

Jacobian transformation is used as similar as 2D cases for integration of the terms of 

,...,,, 2xzyx  In Fig. 6.68, the transformation of tetrahedron geometry from global to 

natural coordinates is shown for ic II of field node I. P1', P123', P13' and O' represent 

the transformed natural coordinates from global coordinates of P1, P123, P13 and O 

points, respectively. Also for other integration cells, P1', P123', P13' and O' in Fig. 6.68 

correspond to second, third, fourth and fifth columns in Table 6.9, respectively.  

The bounds of integral starts from zero to upper natural coordinate. Hence P1, P2, P3 

and P4 are placed at P1’ in integral calculations. This condition can provide to no 

usage of parallel axis theorem to carry integration results to related edge node. 

Hence, x1, y1 and z1 in Eq. 6.16, 6.17 and 6.18 are assigned x, y and z coordinates of 

P1, P2, P3 and P4 in related integral node calculation. 
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Figure 6.68. Transformation of a tetrahedral integration cell (ic II in Fig.6.67) from 

global (a) to natural (b) coordinates 

The transformation of coordinates is given in Eq. 6.16, 6.17 and 6.18 (Bhowmick 

and Shontz, 2012).  ,  and  are natural coordinates. 

         1413121 xxxxxxxx  (6.16) 

         1413121 yyyyyyyy  (6.17) 

         1413121 zzzzzzzz  (6.18) 

Determinant of Jacobian (J) transformation matrix are given in Eq. 6.19. 

 Volume

zzz

yyy

xxx

JDET 



































 6)(







 (6.19) 

The transformation of integration of uniform geometry in natural coordinates is given 

in Eq. 6.20. Its application to tetrahedron geometry is given in Eq. 6.21. Hence 

integration in terms of ,...,,, 2xzyx  can be easily calculated as follows:  

             '*,,,,,,,,,, dJDETzyxfdzyxf    (6.20) 

          







1

0

1

0

1

0

,,,,,,,,*,, dzyxfddJDETdDzyxf
D

(6.21) 

Even if suitable orientation is used in Table 6.9, in some cases node coordinate 

orientations can be changed with respect to construction of tetrahedral cells in 

O ((x1+x2+x3+x4)/4, 

     (y1+y2+y3+y4)/4,      

     (z1+z2+z3+z4)/4) 

 

P13 ((x1+x3)/2, 

      (y1+y3)/2, (z1+z3)/2) 

 

P123  

((x1+x2+x3)/3, 

(y1+y2+y3)/3, 

(z1+z2+z3)/3) 

  

y 
x 

z 

(1,0,0) 

P123' 

P13' 

O' 

P1' 

 

 

(0,0,1) 

(0,1,0) 

(0,0,0) 

(a) (b) 

  P1  

(x1,y1,z1) 
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Delaunay triangulation technique. For this reason, upper integration bounds in Eq. 

6.21 are updated with respect to where the subdivided tetrahedral cell exists, which 

are given in Table 6.10. 

Table 6.10. Direction of tetrahedral cell and used bounds of integral in natural 

coordinates 

 12
x  13

y  14
z  

[]

0

],,[ dzyxf

 

[]

0

],,[ dzyxf

 

[]

0

],,[ dzyxf

 
I + + +  1  1  1  

II + + -    1  1  1  

III + - +  1    1  1  

IV + - -    1    1  1  

V - + +  1  1  1  

VI - + -    1  1  1  

VII - - +  1    1  1  

VIII - - -    1    1  1  

  

Where 12x is the sign of difference between 12 xx  , 13y  is the sign of difference 

between 13 yy   and 14z  is the sign of difference between 14 zz   for each sub-

divided integration cell. The signs of  ,   and   in Eq. 6.16, 6.17 and 6.18 is also 

regulated with respect to signs of 12x , 13y  and 14z . 

6.5.1 Numerical Examples 

Three different case studies are investigated with different boundary conditions by 

using NI-RPIM. An axial loaded bar problem (case I), a cantilever beam problem 

(case II) and torsion of cylindrical shaft problem (case III) are examined. Tetrahedral 

integration cells and subdivision calculations are accomplished with Matlab and 

effects of Taylor series expansion terms in nodal integration are investigated by 

using a program that is developed in Fortran.  

The used material properties have linear elastic behaviour with a Young’s Modulus 

of 200 GPa and Poisson’s ratio of 0.0. The selection of Poisson’s ratio as 0.0 is 

aimed for providing similar conditions as analytical solutions. 
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Figure 6.69. The models used in the analyses and boundary conditions, a) an axial 

loaded bar (case I) b) cantilever beam (case II), c) torsion of cylindrical shaft (case 

III) 

All used model geometries and boundary conditions are illustrated in Fig. 6.69. The 

used bar/beam in case I and II have a length of 1.0 m with square section of 0.1m

0.1m. A cylindrical shaft with a length of 1.0 m and a diameter of 0.1 m is used in 

case III. Applied force (P) is case I and II is 20000 N. A force couple is applied for 

creating a torque, which is equal to 100 Nm in case III. Other end edges of bar, beam 

and shaft are fixed.  

Axial deformation ( ) of bar (case I) is given in Eq. 6.22. Where P  is applied force, 

x  is distance from fixed support location, A  is cross-sectional area and E  is 

Young’s Modulus. 

 
EA

xP




  (6.22) 

Axial stress ( ) of bar (case I) is given in Eq. 6.23,  

 
A

P
  (6.23) 

For case II, vertical deflection of cantilever beam (Beer et al., 2009) is given in Eq. 

6.24, where I  represents inertia of beam. 

  xL
IE

xP
y 




 3

6

2

 (6.24) 

The bending stress at upper and lower surfaces of beam is given as; 

 
I

cM 
  (6.25) 

 (a) 

x 

y 

z 

P (case I) 

P (case II) P (case III) 
 (b) 
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c  is the distance between upper/lower surface and natural axis of the beam. Angle of 

twist ( ) for torsion (Timoshenko and Goodier, 1951) of cylindrical shaft (case III) 

is given in Eq. 6.26. 

 
GJ

xT




  (6.26) 

where T  is applied torque, J  is polar moment of inertia and G  is shear modulus of 

shaft.  

 
(a)     (b) 

Figure 6.70. FEM models for; a) case I and II, b) case III 

FEM models are given in Fig. 6.70, which are constructed with SOLID185 

tetrahedral shaped finite elements. ANSYS 14 package program is used in FEM pre-

processor, solution and post processor steps.  

 

(a)     (b) 

Figure 6.71. Meshfree models of analysed cases for; a) case I and II, b) case III 

Meshfree models are shown in Fig. 6.71, which have 489 nodes in case I and II and 

659 nodes in case III. Same numbers of nodes are used in FEM. In meshfree 

solutions, 
c

 is used as 3.00, dimensionless support domain size (
s

 ) parameter is 

used as 1.30 and q is used as 1.03 as default parameters. 
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6.5.1.1 Axial Loaded Bar 

An axial loaded bar problem (case I) is investigated with different orders of Taylor 

series terms in NI-RPIM. Orders of Taylor series expansion are basically represented 

in Eq. 5.15, where the term,  
0

xf , is called 0
th

 order. When it includes  
0

xf  , in Eq. 

5.15, it is called 1
st
 order and so on.  

 

Figure 6.72. Comparison of axial deformation of bar (case I) for analytical, FEM and 

nodal int. techniques 

 

Figure 6.73. Comparison of axial stress of bar (case I) for analytical, FEM and nodal 

int. techniques 

NI-RPIM, analytical and FEM solutions of case I are given for axial deformation in 

Fig. 6.72 and for axial stress in Fig. 6.73. Deformation and stress results of FEM 

solution nearly give same results as analytical solution. 0
th

 order term of NI-RPIM 

has similar characteristic results as analytical solution but less close range than FEM 

results on deformation. However, stress results are same as FEM. 1
st
 order term 

causes the highest fluctuation and the least accurate results in both deformation and 

stress results. The usage of 2
nd

 order terms decreases the consisting fluctuations and 

difference. 3
rd

 order terms have less fluctuation, but decreases solution accuracy. 4
th
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order terms of NI-RPIM results are well achieved same results as analytical solution. 

Accuracy decreases when 5
th

 order terms are used.  

 
Figure 6.74. Comparison of effect of sd on deformation results of axial loaded bar 

(case I) for nodal int. (4
th

 order terms) 

Effect of support domain size (sd) on deformation and stress results of case I are 

given in Fig. 6.74 and 6.75, respectively. It is observed that increment on support 

domain size causes to fluctuations and decreases accuracy. This behaviour is 

similarly mentioned in the study (Liu, 2009), which can be caused from formation of 

ill-conditioned moment matrix. Hence least, but enough number of nodes must be 

consisted in the local support domain. Approximately between 14-16 nodes are 

consisted in sd size of 5*L/100. 

 

Figure 6.75. Comparison of effect of sd on stress results of axial loaded bar (case I) 

for nodal int. (4
th

 order terms) 

Effect of 
c

  on case I, which is used inside RBF, is investigated for deformation in 

Fig. 6.76 and stress in Fig. 6.77. 
c

 value of 7.00 has the least accuracy and includes 

fluctuations. 
c

  value of 1.00 also includes less accuracy but less fluctuations. Both 

c
  values of 1.00 and 7.00 should not be used. 

c
 values of 5.00 and 9.00 has similar 
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characteristics with analytical solution, but their accuracy is low. 
c

  value of 3.00 

gives the best suitable results in both deformation and stress.  

 

Figure 6.76. Comparison of effect of 
c

  (alfc) on deformation results of axial loaded 

bar (case I) for nodal int. (4
th

 order terms) 

 

Figure 6.77. Comparison of effect of 
c

  (alfc) on stress results of axial loaded bar 

(case I) for nodal int. (4
th

 order terms) 
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Figure 6.78. Comparison of effect of q  on deformation results of axial loaded bar 

(case I) for nodal int. (4
th

 order terms) 

Effect of q  on deformation and stress results of case I is given in Fig. 6.78 and 6.79, 

respectively. q  value of 0.5 contains errors and is not accurate. Also q  value of 0.7 

does not have enough accuracy and contains fluctuations. The best accuracy is 

achieved with q  values of 0.98 and 1.03. q  value of 1.30 has also enough accuracy 

but less than q  values of 0.98 and 1.03. 

 

Figure 6.79. Comparison of effect of q  on stress results of axial loaded bar (case I) 

for nodal int. (4
th

 order terms) 

6.5.1.2 Cantilever Beam 

 

Figure 6.80. Comparison of deflection of cantilever beam (case II) for analytical, 

FEM and nodal int. techniques 

Effects of orders of Taylor terms in NI-RPIM are investigated with analytical and 

FEM results for case II. Deformation and stress results are given in Fig. 6.80 and 

6.81. 0
th

 order terms have more accurate deformation and stress results than results of 

FEM. However, usage of 1
st
 order term losses accuracy of solution and fluctuates. 2

nd
 

order terms provide to decrease fluctuations and errors, but it has less accurate results 
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than FEM. The usage 3
rd

 order terms gets deflection results away from analytical 

results. However, the usage of 4
th

 order terms gives the best results, which is nearly 

as same deformation results as analytical solution. Accuracy is lost with usage of 5
th

 

order terms.  

 

Figure 6.81. Comparison of bending stress results of cantilever beam (case II) for 

analytical, FEM and nodal int. techniques 

Stress results include high fluctuations, even if displacement results are stable. The 

main reason is the structure of nodal integrations in calculations of strain matrices. 

This problem is commonly detected in literature. Stabilized conforming technique 

(Chen et al., 2001) is the one of the method for avoiding these fluctuations. This 

technique substantially reduce the fluctuations, which is also applied on different 

point interpolation methods; NS-PIM (Zhang et al., 2007), ES-PIM (Liu and Zhang, 

2008) and CS-RPIM (Liu and Zhang, 2009). However, no stabilized 

conforming/smoothing method is used in this study for NI-RPIM (Liu et al., 2007) 

and stress fluctuations are tried to be reduced by selecting appropriate Taylor series 

terms and shape parameters. 
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Figure 6.82. Comparison of effect of sd on deflection of cantilever beam (case II) for 

nodal int. (4
th

 order terms) 

Effect of support domain size (sd) is given in Fig. 6.82 and 6.83 for deformation and 

stress results of case II. The best result is achieved, when less support domain size is 

used. Increment of support domain size decreases accuracy results of deformation 

and increases fluctuations in stress results. 

 

Figure 6.83. Comparison of effect of sd on bending stress results of cantilever beam 

(case II) for nodal int. (4
th

 order terms) 

 

Figure 6.84. Comparison of effect of 
c

  (alfc) on deflection results of cantilever 

beam (case II) for nodal int. (4
th

 order terms) 
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Figure 6.85. Comparison of effect of 
c

  (alfc) on bending stress results of cantilever 

beam (case II) for nodal int. (4
th

 order terms) 

Effect of 
c

  on deformation and stress results of case II is given in Fig. 6.84 and 

6.85, respectively. 
c

  values of 1.00, 3.00, 7.00 and 9.00 give similar deformation 

results as analytical and FEM solution. 
c

  value of 5.00 has the least accurate 

deformation results and highly fluctuates in stress results. 
c

  value of 1.00 gives 

good accuracy. The best accuracy is achieved with 
c

  value of 3.00. 

 

Figure 6.86. Comparison of effect of q  deflection results of cantilever beam (case II) 

for nodal int. (4
th

 order terms) 

Effect of q  on deformation and stress results of case II is given in Fig. 6.86 and 6.87. 

q  values of 0.98 and 1.30 have the least accurate results in deformation results and 

include high fluctuations in stress results. The best accuracy is achieved with q  

value of 1.03. q  of 0.7 has same deformation results with FEM. q  value of 0.5 has 

also less accurate than q  value of 1.03. 
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Figure 6.87. Comparison of effect of q  on bending stress results of cantilever beam 

(case II) for nodal int. (4
th

 order terms) 

6.5.1.3 Torsion of Cylindrical Shaft 

Torsion of cylindrical shaft problem (case III) is solved with NI-RPIM method and 

effects of orders of Taylor terms in are given in Fig. 6.88 for angle of twist results. 

Results of 0
th

 order term have good accuracy with analytical solution, which is 

similar as FEM results. However, 1
st
 order term decreases accuracy and fluctuates. 

2
nd

 and 3
rd

 order terms have also less accurate but fluctuation in the results decreases. 

The best result is achieved with the usage of 4
th

 order terms, which is nearly as same 

as analytical results. 5
th

 order terms decrease accuracy again.  

 

Figure 6.88. Comparison of twist angle results of circular shaft under torsion (case 

III) for analytical, FEM and nodal int. techniques 

Effect of support domain size (sd) is given in Fig. 6.89 for case III. The best accuracy 

is achieved with support domain size of 5*L/100, which is the smallest support 

domain size. It includes 14-17 nodes in the local support domain. Support domain 

size of 7.5*L/100 also gives closer results to analytical solution. Increasing the 

support domain size decreases accuracy. 
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Figure 6.89. Comparison of effect of sd on twist angle results of circular shaft under 

torsion (case III) for nodal int. (4
th

 order terms) 

c
  values on angle of twist results for case III are given in Fig. 6.90. 

c
  values of 

1.00 and 7.00 have errors and fluctuations. 
c

  value of 5.00 is not suitable in case 

III, which give negative value results. The best accuracy is achieved with 
c

  value of 

3.00.  

 

Figure 6.90. Comparison of effect of 
c

  (alfc) on twist angle results of circular shaft 

under torsion (case III) for nodal int. (4
th

 order terms) 

Effect of q  on angle of twist results are given in Fig. 6.91 for case III. The best 

results are obtained with q  value of 1.03, which has the closest results with 

analytical solution. Remaining q  values have less accuracy and cause fluctuations in 

some locations. 

 

Figure 6.91. Comparison of effect of q  on twist angle results of circular shaft under 

torsion (case III) for nodal int. (4
th

 order terms) 

6.5.1.4 Comparison of Solution Times 
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The CPU time (central processing unit time) of the NI-RPIM is another important 

parameter and it is obviously related with the solution algorithm. In this study, two 

different solution algorithms are used: a standard Gauss elimination solver and a 

linear equation solver that is a part of the Intel Math Kernel Library (MKL) (Intel
®

,
 

2014). In Fig. 6.92, results of case II with standard Gauss elimination solver are 

given for different order Taylor expansion terms with a fixed local support domain 

size. A computer is used in all solutions, which has a memory of 3 GB and a 

processor speed of 2.4 GHz. The CPU time increases parabolic when the number of 

nodes increases. It also increases when the order of Taylor Series terms increases.  

 

Figure 6.92. Effects of order of Taylor series terms on CPU time against number of 

nodes with standard Gauss elimination solver 

The rate of increment suddenly changes when order becomes greater than 3. The 

CPU time is seriously decreased when the solver of MKL is used as shown in Fig. 

6.93. On the contrary, to standard Gauss elimination solver, CPU time of MKL 

increases linearly as the number of nodes increases. It is concluded that the usage of 

higher order terms in NI-RPIM causes using higher order derivatives of radial basis 

functions and consequently it causes increasing CPU time. 
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Figure 6.93. Effects of order of Taylor series terms on CPU time against number of 

nodes with Intel Math Kernel Library (MKL) 

CPU time results of NI-RPIM are also compared with a finite element CPU time 

results (ANSYS) in Fig. 6.94. When the used number of nodes is smaller than 207, 

ANSYS and NI-RPIM show similar characteristics. However, when it is greater than 

207, ANSYS solutions are completed in a short time compared with NI-RPIM 

solutions. The reason is that ANSYS use sparse direct and pre-condition conjugate 

gradient (CG) solvers. 

 

Figure 6.94. Comparison of CPU time of NI-RRIM (0
th

 order term) with Intel Math 

Kernel Library (MKL) and ANSYS solvers 

6.5.2 Results and Discussions 

Tetrahedral background cells are used for the nodal integration of RPIM. Effects of 

orders of Taylor series terms on solution accuracy of 3D elasto-static problems are 

investigated. The terms are used up to 5
th

 order. Iso-parametric transformation is 

used for irregular tetrahedral cells for higher order integration calculations in NI-

RPIM. Negative volume calculations are prevented with respect to orientation of 

tetrahedral cells and bounds of integration. Also effect of support domain size and 

RBF terms (
c

  and q ) are investigated. Results can be summarized as follows: 

 the usage of various orders of Taylor terms directly influences solution results 

 the best accuracy in orders of Taylor terms in NI-RPIM results is achieved 

with 4
th

 order, which can capable of giving more accurate results than FEM. 

 even order terms of Taylor series expansion generally gives more accurate 

results than odd order terms of Taylor series expansion in NI-RPIM with 

tetrahedral background cells 
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 the usage of small local support domain size (sd) with enough dimension can 

give less fluctuation and more accurate results 

 approximately, 14-16 nodes in case I and case II and 14-17 nodes in case III 

are used, which can be able to satisfy enough accuracy 

 shape parameters of RBF (
c

  and q ) influences the results and it is 

recommend that value of 3.00 and value of 1.03 can be used in most of NI-

RPIM solutions 

 2
nd

 order scheme gives suitable results similarly rather than 1
st
 order, which is 

recommended for CFD analyses by Anderson (1995). It is valid in this 

section 

 beside of accuracy of solution, CPU time is another important section of a 

numerical analyses and it can be improved by using different solution 

methods. However, more improvements are required 

 stress results include high fluctuations, even if displacement results are stable. 

The main reason is the structure of nodal integrations in calculations of strain 

matrices. In literature, different smoothing methods are used to minimize 

these fluctuations. However, in this section, they are tried to be reduced by 

selecting appropriate Taylor series terms and shape parameters. This problem 

will be investigated in detail and tried to be fixed using different algorithms 

in the future work/sections of this study 

Today’s computer technology is continuously advancing and high capable computers 

take place in market. By high-speed computers, complex problems can be solved 

easily. In numerical methods such as finite element method, the most difficult stage 

is obtaining a good mesh structure. Generally, analysts spent important amount of 

times to overcome this stage. New numerical methods such as NI-RPIM, completely 

overcome the mesh dependency problem and can obtain solutions directly from 

nodes. 3D laser scanners generally give high-resolution clouds of points for a solid 

model in a short time. Therefore, in spite of high CPU time disadvantage of NI-

RPIM, it can be an important alternative method to other well-known numerical 

methods. 
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CHAPTER 7 

METHODS OF STRESS STABILIZATION 

7.1 Introduction 

In the previous sections of NI-RPIM results, it is observed that the nodal integration 

of radial point interpolation method (RPIM) based on Taylor series terms with 

tetrahedral background cells include some fluctuations in stress results. Therefore, it 

is attempted to stabilize stresses using average stress distributions for local support 

domain of each node and least square stress stabilization method in this section. 

7.2 Average Stress Distribution for Each Local Support Domain 

It is observed in nodal integration that high stress fluctuations occur at far away from 

application locations of force and boundary conditions. It is not expected that 

formation of these high fluctuations occur at that conditions with respect to Saint 

Vernant’s principle.  

For decreasing the fluctuations, average stress distributions are taken for each local 

support domain. The stresses of nodes in a local support domain of a related node is 

summed and averaged for number of nodes in that support domain. 

7.3 Stiffness Effect on Boundary Locations 

In the previous section of NI-RPIM, some stress peak points are observed, especially 

on the application location of boundary conditions. Hence local stiffness matrix of 
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nodes on boundary condition locations are changed for decreasing stress peak points. 

Its effects are investigated. 

7.4 Least Square Stabilizations 

In order to decrease fluctuations, least square stabilization method (LSS) (Biessel 

and Belytschko, 1996; Fries and Belytschko, 2007; Duan and Belytschko, 2008) is 

used in nodal integration scheme. This method adds two equations ( K  and 
f ) in 

Galerkin weak form of governing equation for providing stress stabilization. The 

main governing equation is previously given in Eq. 4.1/5.1. Addition of stress 

stabilization equations and detail transformation operations about governing 

equations can be reached from the study of Duan and Belytschko (2008). The 

simplified equation is given in Eq. 7.1. K  and 
f  equations are given in Eq. 7.2 

and 7.3. 

    PP fffdKKK     (7.1) 

      


DDLNLDLNLK TTT
 (7.2) 

    


DbDLNLf
TT

 (7.3) 

  is the stabilization parameter and it is given in Eq. 7.4. 

 
E

lcs

22
   (7.4) 

s  is the dimensionless stabilization parameter and used as 0.3 in this section. cl  is 

used as nodal spacing, which is nearly equal to 0.04*L/100. 

7.5 Numerical Examples 

Two different case studies are examined for investigation of NI-RPIM with stress 

stabilization methods. A 2D axial loaded bar is used in the first case. Its model 

geometry and meshfree model are given in Fig. 7.1. The model includes 179 

irregularly distributed field nodes. The axial loaded bar has a length of 1m and a 

height of 0.1m. The axial loaded force is applied as 5000 N. 
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Figure 7.1. The used axial loaded bar model geometry and meshfree model for 2D 

case analysis 

In the 2
nd

 case study, a 3D cantilever beam problem is examined for investigation of 

stress stabilization methods. All the nodal integration of RPIM solutions is mainly 

prepared with respect to the study of Liu et al. (2007). The solutions of formulations, 

creation of tetrahedral integration cells and subdivision calculations are 

accomplished with Matlab.  

The geometry and meshfree model is given in Fig. 7.2. The used beam has a length 

of 1.0 m with square section of 0.1m 0.1m. The used meshfree model has 878 

irregularly distributed nodes.  

 

 

Figure 7.2. The used cantilever beam model geometry and meshfree model for 3D 

cases 

The used material properties have linear elastic behaviour with a Young’s Modulus 

of 200 GPa and Poisson’s ratio of 0.0. Applied force (P) is used as 29000 N in 

cantilever beam problem and other side of force application location is determined as 

application of boundary condition location. This location is fixed.  

Formulation of axial deformation and stress (Beer et al., 2009) of the bar is given in 

Eq. 7.5 and 7.6. A  represents cross-section area of the bar. 

 
EA

xP




  (7.5) 

 
A

P
  (7.6) 

x 

y 

z 

P  



129 
 

Vertical deflection equation (Beer et al., 2009) of cantilever beam is given in Eq. 7.7. 

Where P  is applied force, x  is distance from fixed support location, E  is Young’s 

Modulus and I  represents inertia of beam. 

  xL
IE

xP
y 




 3

6

2

 (7.7) 

The bending stress at upper and lower surfaces of beam is given as; 

 
I

cM 
  (7.8) 

c  is the distance between upper/lower surface and natural axis of the beam. In 

meshfree solutions, c  is used as 3.00, dimensionless support domain size ( s ) 

parameter is used as 1.30 and q  is used as 1.03 as default parameters. 

7.6 Results and Discussions 

Axial deformation results of 2D bar are given in Fig 7.3. It is observed that NI-RPIM 

with 0
th

 order term gives suitable results, when they are compared with analytical 

solution. 

 

Figure 7.3. Axial deformation results of the bar (2D case) for NI-RPIM with 0th term 

and analytical solution 

Stress results of analytical solution, NI-RPIM with unstabilized and averaged stress 

distributed (ASD) method are shown in Fig. 7.4. It is observed that the usage of ASD 

method in stress stabilization decreases fluctuations and high stress peak points at the 

BC. 
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Figure 7.4. Axial stress results of the bar (2D case) for NI-RPIM with 0
th

 term and 

analytical solution 

 

 

Figure 7.5. Comparison of deflection results of cantilever beam for analytical and 

pure nodal int. technique 

Deflection results of cantilever beam is shown in Fig. 7.5 for NI-RPIM with 0
th

, 1
st
, 

2
nd

, 3
rd

 and 4
th

 order Taylor terms. It is observed that 0
th

 and 4
th

 order terms give the 

best results when they are compared with analytical solution. There is no fluctuation 

occurs on deflection results of these order terms. However the used other terms 

includes less accuracy and small distortions at the results. 
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Figure 7.6. Comparison of bending stress results of cantilever beam (3D case) for 

analytical and pure/unstabilized nodal int. technique 

The bending stress results are given in Fig. 7.6 for pure/unstabilized nodal 

integration, which include highly fluctuation results. The best results achieved with 

0
th

 order terms, when results of all terms are compared with each other. The stress 

results of 1
st
 and 4

th
 order terms include high stress values at the location of boundary 

conditions.  

 

Figure 7.7. Comparison of bending stress results of cantilever beam (3D case) for 

analytical and nodal int. technique with ASD 

Stress results are given in Fig. 7.7, when averaged stress distribution (ASD) of local 

support domain method is applied for each node. It is observed that fluctuations of 

stress results are decreased. The best accuracy is achieved with the usage of 0
th

 order 

term. However, results of higher terms without 0
th

 order term have poor accuracy and 

include fluctuations.  

 

Figure 7.8. Comparison of bending stress results of cantilever beam (3D case) for 

analytical and nodal int. technique of 0
th

 order term with ASD and LSS 

In Fig.7.8, 0
th

 order term results of NI-RPIM with unstabilized, ASD and LSS 

methods are compared. It is observed that the usage of both stress stabilization 

methods decreases fluctuations in the results.  
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Figure 7.9. Comparison of bending stress results of cantilever beam (3D case) for 

analytical and nodal int. technique of 0
th

 order term with ASD/ASD+BC Stiffness E. 

The effect of local stiffness matrix changes is given in Fig. 7.9. NI-RPIM results of 

0
th

 order term have a difference from analytical solution at the application location of 

boundary conditions (BC). NI-RPIM results have less stress values than analytical 

solution at BC. Hence, the stiffness values are decreased about %30 at this location 

for achieving same results at BC. 

 

Figure 7.10. Comparison of effect of sd on bending stress results of cantilever beam 

(3D case) for nodal int. with ASD (0
th

 order term) 

Effect of support domain size is shown for 0
th

 order term results of NI-RPIM with 

ASD in Fig. 7.10. When sd value of 3.9*L/100 is used, there is high fluctuation 

occurs about at a beam length of 0.6 m. sd size of 4.42*L/100 gives better stress 

results, which is used default sd size in other solutions in this study. The average 

number of nodes in the local support domains is approximately equal to 44. When sd 

is increased, the accuracy begins decreasing. 
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Figure 7.11. Comparison of effect of alfc ( c ) on bending stress results of cantilever 

beam (3D case) for nodal int. with ASD (0
th

 order term) 

Effect of alfc ( c ) results are given in Fig. 7.11. The only dominant effect is 

observed at BC and its near locations. Different alfc ( c ) results have similar 

characteristics. 

 

Figure 7.12. Comparison of effect of q on bending stress results of cantilever beam 

(3D case) for nodal int. with ASD (0
th

 order term) 

Effect of q results is given in Fig. 7.12. Nearly all the stress results of different q 

values have same values. 

7.7 Conclusions 

Triangular and tetrahedral background cells are used for the nodal integration of 

RPIM. The fluctuation problem in stress results of nodal integration method is 

investigated with application of different methods. Averaged stress distribution 

(ASD) on local support domain and least square stabilization (LSS) methods are 

used. Effect of orders of Taylor terms, support domain size and RBF terms are 

investigated at NI-RPIM with ASD. 

Results can be summarized as follows: 
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- the usage of various orders of Taylor terms directly affects deflection and 

stress results 

- there is no fluctuation on deflection results of 0
th

 and 4
th

 order terms, which 

gives good accuracy with respect to analytical solution 

- less fluctuated stress values are obtained with the usage of 0
th

 order Taylor 

series terms in NI-RPIM when no stabilization method is used 

- fluctuations on stress results are decreased with the usage of ASD and LSS 

methods 

- 0
th

 order term results of NI-RPIM with ASD gives the best stress results and 

less fluctuation values in the solutions 

- high stress fluctuations on boundaries where essential boundary conditions 

are applied can be decreased with changing local stiffness values of 

corresponding nodes 

- support domain size (sd) can affect stress results of NI-RPIM with ASD 

method 

- changes of alfc (
c

 ) with ASD method do not have significant effect on NI-

RPIM stress results in the regions where the essential boundary conditions are 

not included. Different values of q show similar stress distribution 

characteristics on NI-RPIM with ASD method.  

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

 

 

CONCLUSIONS 

The results of literature review shows that meshfree methods need more 

developments and its applicability in computers must be increased with suitable 

programming structures. In the first part of this study, an object oriented program is 

constructed with including different classes and objects for the solution of 2D elasto-

static problems by using LRPIM and MLPG methods. Inheritance and encapsulation 

properties are fully applied for increasing modularity. Some properties are included 

inside of the program that; 

 subclasses use its superclass properties which prevents redefining similar 

properties again, especially on construction of shape functions, different 

support domain shapes/sizes, etc.. 

 different integration cells, new support domain sizes/shapes, shape function 

methods are easily included with prepared object oriented program 

 no properties or assigned value can be changed outside of class 

In the second part, a structural program is prepared, which includes nodal integration 

inside of RPIM for solution of 2D and 3D elasto-static problems. Higher order terms 

of Taylor series expansion are used. Various integration domain shapes are used for 

integrations of regular and irregular distributed nodes in 2D/3D problem domains. It 

is obtained that; 

 2
nd

 order Taylor expansion terms can satisfy suitable results in 2D rectangular 

and 3D hexahedral integration domains 

 4
th

 order Taylor expansion terms give the best accuracy in NI-RPIM results 

for 3D tetrahedral integration domains 

 in general, the usage of too large support domain sizes decreases accuracy, 

 increasing the used number of nodes in the analysed model generally 

increases the accuracy of solutions 
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Optimum shape parameters of RPIM are determined. Generally q  value of 1.03 and 

c  value of 3.00 is recommended in the most of the examined cases. 

In the last part, stress fluctuations in nodal integration results have been decreased 

with three different applications, which provide; 

 fluctuations on stress results are decreased with the usage of ASD and LSS 

methods 

 high stress fluctuations on boundaries where essential boundary conditions 

are applied can be decreased with changing local stiffness values of 

corresponding nodes 
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