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ABSTRACT 

 

BENDING ANALYSIS OF COMPOSITE PLATES USING MESHFREE 

METHODS 
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M.Sc. in Mechanical Eng. 

Supervisor: Assist. Prof. Dr. Ömer Yavuz BOZKURT 

August 2015, 109 pages 

 

 

In this study, bending problems of isotropic and layered orthotropic plates are 

presented using Element-Free Galerkin Method (EFGM). In the first section; the 

effects of selectable parameters of EFGM such as type of weight function, support 

domain size, number of Gauss integration point in a background cell, number of 

monomials and value of penalty coefficient are investigated on the solution accuracy 

of EFGM solutions and optimum values of them are determined for related examples 

of isotropic plates. In the second section; the reliability of EFGM solutions are 

examined by considering various number of layers, fiber orientation and thickness to 

span ratio for layered orthotropic plate bending problems.  

EFGM algorithms have been developed on MATLAB programming environment for 

both sections. Examples are solved by using developed algorithms and obtained results 

are compared with analytical results or reference study results in the literature. 

 

 

Keywords: Meshfree methods, Element-free Galerkin method, isotropic and layered 

orthotropic plate bending
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Bu çalışmada, izotropik ve tabakalı ortotropik plaka eğilme problemleri, Eleman 

Bağımsız Galerkin Yöntemi (EFGM) kullanılarak çözümlenmiştir. İlk kısımda 

izotropik plakalar için Eleman Bağımsız Galerkin Yönteminin sahip olduğu ağırlık 

fonksiyonu türü, destek etki büyüklüğü, arka plan hücrelerindeki entegrasyon nokta 

sayısı, monomiyallerin derecesi ve ceza katsayısı gibi seçilebilir parametrelerinin 

çözüm doğruluğuna etkisi araştırılmış ve ilgili problemlere göre parametrelerin 

optimum değerleri belirlenmiştir. İkinci kısımda ise tabakalı ortotropik plaka eğilme 

problemlerinde çeşitli tabaka sayısı, fiber yönelmesi ve kalınlık/uzunluk oranına göre 

EFGM çözümlerinin güvenilirliği incelenmiştir.  

Her iki kısım için MATLAB programı üzerinde EFGM algoritmaları geliştirilmiştir. 

Problemler geliştirilen algoritmalara göre çözülmüş ve elde edilen sonuçlar 

literatürdeki analitik sonuçları veya analitik sonucu bulunmayan problemler için 

referans sonuçları ile karşılaştırılmıştır. 

 

Anahtar Kelimeler: Ağsız yöntemler, Eleman Bağımsız Galerkin Yöntemi, 

izotropik ve ortotropik plaka bükme
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CHAPTER 1 

INTRODUCTION 

1.1. General Introduction 

The analysis of a system prior to its production in real life has a crucial importance in 

engineering applications. Analysis step is one of the most careful parts in engineering 

design, and in todays world, it is generally performed by using various numerical 

methods such as Finite Element Method (FEM), Boundary Element Method (BEM), 

Finite Difference Method (FDM), Meshfree Methods etc. The FEM can be accepted 

as the most popular and preferred one among these methods due to its successful 

applications in a wide range of engineering areas. The basic feature of FEM is to divide 

the whole domain into finite number of simpler small elements. This is called as finite 

element discretization which is used to create the finite element mesh of the domain.  

FEM has several advantages; 

- Ability to tackle problems with irregular boundaries, 

- Ability to deal with complex boundary conditions, 

- Easy modifications to improve solution quality, 

- Handling non-linear problems with linear approximations. 

Although having these properties, FEM has the following limitations; 

- Time consuming remesh procedure requirements for the geometry changes of 

problem domain 

- Reliability problems for the stress evaluations, 

- Remarkable accuracy losts for the large deformation problems, 

- Discontinuity problems for the derivatives of field variables at the boundaries 

of elements, 

- Mesh quality dependent solution accuracy.
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Meshfree methods have been developed as a new numerical approach to overcome 

above issues and improved remarkably in last decade. The mesh based discretization 

scheme for the problem domain definition is not found in the solution procedure of 

meshfree methods. A set of arbitrarily scattered nodes are used to define problem 

domain and its boundaries in the meshfree methods rather than used mesh in FEM. 

The local domains are constructed using instantly selected field nodes and the 

interpolation of field variables are carried out using the nodes of local domains. 

Meshfree methods suffer from some problems such as stability, singularity etc. In 

recent years, a lot of research has attempted to solve and improve the meshfree 

methods. 

1.2 Research Objectives and Tasks 

The main goals of this thesis are the investigation of effect of the selectable parameters 

such as weight functions, number of gauss points in a background cell, size of support 

domain, value of penalty coefficient and number of monomials on the solution 

accuracy of element-free Galerkin method (EFGM) for the non-layered isotropic plate 

bending problems, and the analysis of layered orthotropic plate bending problems 

using EFGM. 

The research tasks can be shown as follows; 

I. An overview of some important meshfree methods in the literature. 

II. Detailed review of the element-free Galerkin method in the literature. 

III. Construction of shape functions using the MLS Approximation. 

IV. Implementation of the MLS shape functions to EFGM. 

V. Revising of bending theories of plates. 

VI. Development of MATLAB source codes for the solution of non-layered 

isotropic and layered orthotropic plate bending problems using EFGM. 

VII. Investigation of effects of the selectable parameters on the solution 

accuracy of EFGM for the non-layered isotropic plate bending problems. 

VIII. Analysis of layered orthotropic bending problems using EFGM. 

1.3 Layout of Thesis 

A brief literature survey about meshfree methods and a special review of element-free 

Galerkin method are presented in chapter two. A short presentation about plate 
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bending theories are given in chapter three. The main concepts of element-free 

Galerkin method is summarized in chapter four. In chapter five, solution of some non-

layered isotropic plate bending problems using EFGM with different values of 

selectable parameters and discussions of the results are provided. The EFGM solutions 

of some layered orthotropic bending problems are presented in chapter six. The 

conclusions are revealed in chapter seven. 
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CHAPTER 2  

LITERATURE SURVEY 

2.1 Introduction 

There are many types of meshfree methods in the literature such as Smoothed Particle 

Hydrodynamics (SPH) method [1, 2], Diffuse Element Method (DEM) [3], Element-

Free Galerkin Method [4], Reproducing Kernel Particle Method (RKPM) [5], Point 

Interpolation Method (PIM) [6], Meshless Local Petrov Galerkin (MLPG) Method [7], 

Natural Element Method (NEM) [8], and Finite Particle Method (FPM) [9]. A short 

literature review only about the SPH, the DEM, the PIM, the MLPG and the RKPM 

are mentioned briefly in section 2.2. A detailed literature survey about the EFGM are 

presented in section 2.3. The EFGM for the solution of isotropic and layered 

orthotropic plate bending problems are revealed in section 2.4 and 2.5, respectively. 

The conclusions on literature survey are summarized in section 2.6. 

2.2 General Review of Some Meshfree Methods 

In this section, some popular meshfree methods (the SPH, the DEM, the PIM, the 

MLPG and the RKPM) are introduced briefly to acquire important knowledge’s about 

them. 

2.2.1 Smoothed Particle Hydrodynamics Method 

The smoothed particle hydrodynamics (SPH) method is a meshfree method which used 

Lagrangian numerical technique, firstly developed to solve gas dynamics problems in 

astrophysics. The SPH method was introduced by Gingold and Monaghan [1] and 

Lucy [2] in late 1970s. Its meshless character makes the method very flexible and 

enables simulations of physical problems which might be difficult to capture by 

conventional grid-based methods.  A set of moving particles are used in this method. 

These particles do not have any predefined relations and are used to represent physical 

problem domain. The mathematical model of physical problem is constructed using 
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partial differential equations which are transformed into selected finite integral form 

to compute integral over the particles [10]. There are a lot of variations in the original 

form of the SPH to improve stability and convergence of the method. An alternative 

approach similar to the approach adopted in Moving Particle Semi-implicit models 

[11] and was firstly proposed by Cummins and Rudman calling it as Incompressible 

SPH (ISPH).  

The SPH has a constantly evolving application areas such as fluid dynamics [12], 

explosion [13], large deformations and fracture in solid continuums [14]. However, 

SPH method is not foolproof; it has stability and consistency problems especially in 

solid mechanics [15]. 

2.2.2 Diffuse Element Method 

The DEM is considered as first example of meshfree methods based on Galerkin weak 

form, was developed by B. Nayroles et al [3] in 1992. The main difference between 

FEM and DEM is about field approximation. Unlike FEM, the field approximation of 

the DEM is obtained for local domains using Moving Least Squares (MLS) 

approximation and these local domains contain varying numbers of nodes. 

2.2.3 Point Interpolation Method 

The Point Interpolation method (PIM) was introduced by G.R. Liu in 2001 [6] as a 

new meshfree method. The PIM, originally based on the Galerkin method. The field 

variables are interpolated using point interpolation shape functions. The interpolation 

functions are constructed using polynomials chosen symmetrically from the Pascal’s 

Triangle. The point interpolation shape functions have the Kronecker Delta property 

which simplifies the enforcement of the boundary conditions by the elimination of any 

extra algorithm requirements. This increases the computational efficiency of the PIM.  

Despite these features, the PIM has a serious problem that is the singularity of moment 

matrix which avoids the construction of interpolation functions. To elimination of 

singularity problems, some algorithms have been proposed to overcome this problem 

such as diagonal offset algorithm [16], matrix triangularization method [17], and 

transformation of points in a local domain [18].  
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Another strategy to overcome singularity problems is the usage of radial basis 

functions for construction of point interpolation shape functions. This is also called as 

Radial Point Interpolation Method (RPIM) which was developed by Wang and Liu 

[19]. It solves the singularity problems but it has some drawbacks. The determination 

of shape parameters used in the RPIM shape functions are required for the accuracy 

solution. The RPIM also possess Kronecker Delta property but accuracy of the RPIM 

is less than accuracy of the PIM. 

The several applications of PIM can be found in the literature such as 2D and 3D 

problems [19], beams and shells [19], composite laminated plates [20], plate bending 

problems [21], thermoplastic problems [22], buckling [23], static problems [19], 

elastoplastic problems [24], dynamic response of thin and thick plates [25]. 

2.2.4 Meshless Local Petrov Galerkin Method 

Meshless Local Petrov Galerkin (MLPG) method is accepted as a truly meshfree 

method which eliminates the background cell requirement despite of other meshfree 

methods such as PIM, EFG method etc. The MLPG was proposed by Atluri and Zhu 

[7].  After this study; Atluri and Shen improved significantly the MLPG [26]. The 

MLPG method is based on a weak form which is constructed on a local subdomain. 

Background cells are not required in method. It is adopted the Moving Least Squares 

(MLS) as well as the augmented Radial Basis Functions (RBF) as the trial functions. 

Only nodal information is a requirement, element connectivity is not a necessity. This 

provides to a simple pre-processing. 

The MLPG are used in many application areas according to literature examination. 

Some examples can be given as analysis of thin and thick plates [27], heat transfer 

problems [28], fluid mechanics problems [29], large deformation problems [30], 

fracture mechanics [31], analysis of shell deformations [19] etc.  

2.2.5 Reproducing Kernel Element Method 

Reproducing Kernel Particle Method (RKPM) was developed by Liu [5] to ensure lack 

of consistency, especially in the SPH method. Then, RKPM is obtained as a new 

meshfree method. RKPM has been applied a lot of areas such as problems of solids, 

structures, fluids etc. 
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2.3 Element Free Galerkin Method 

Element Free Galerkin Method (EFGM) is a meshfree method which was proposed by 

Belytschko et al [4]. The EFGM approximation procedure, is based only on nodes, 

does not need to any mesh generation or remeshing operations. However, a set of 

background cells is used to take integral of Galerkin weak form. Additionally, EFGM 

converges more rapidly than the FEM [32, 33].  It has also more reliable than FEM in 

stress solutions. Despite of all these features, it has also some drawbacks against the 

FEM. Since MLS shape functions are used in EFGM, this requires to solve a set of 

algebraic equations for each sampling point. The computational cost of EFGM is 

higher than FEM since the requirement of more nodes for the construction of the MLS 

shape functions lead to larger band width for the resultant system matrix [19]. 

A set of arbitrary scattered nodes are used to represent problem domain and boundaries 

in the EFGM. The irregularity of node distribution does not suffer much degradation 

in accuracy [19]. Because of that, EFGM becomes one of the promising meshfree 

methods. 

The EFGM has lack of Kronecker Delta property since the MLS shape functions are 

used for interpolations. So, there is no resemblance between the boundary conditions. 

For implementation of boundary conditions, various special techniques are developed 

such as the penalty method [33], Lagrange multiplier method [34], coupling with FEM 

[35] and employment of singular weight functions [36]. However, the benefit of using 

MLS approximation is to achieve stability in function approximation and use of 

Galerkin procedure to provide stable and well behaved discretized global system 

equations.  

The EFGM is one of the most widely used meshfree method that can be seen in many 

engineering applications such as solid mechanics, fluid mechanics, heat transfer, and 

electromagnetic field problems. According to literature review, plane stress [37], plane 

strain [38], beams [39], shell [40], plate problems [41], composite laminated plate 

problems [42], axisymmetric [43] can be given as solid mechanics applications. Fluid 

mechanics applications are free surface flow [44], incompressible flow problems [45], 

fluid-structure interaction problems [46]. The simple list of heat transfer applications 

are axisymmetric heat transfer problems [47], moving heat source problems [48], heat 
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transfer of composite slabs [49], heat conduction analysis [50]. The applications of 

electromagnetic field problems can be summarized as 3D electromagnetic field [51], 

static and quasi-static electromagnetic field [52], 2D electromagnetic wave scattering 

[53], axisymmetric electromagnetic [54] problems. 

The EFGM is one of the best numerical methods to solve fracture mechanics and crack 

propagation problems because EFGM serves stable solutions, high convergence rates 

and application flexibility by eliminating mesh requirement. Several examples of 

fracture mechanics and crack analysis using EFGM [55] are found in the literature. 

Additionally, many techniques have been proposed of coupling EFG method with 

FEM [35] to improve the efficiency in the solution of a related problem. The EFGM 

is a developed method day by day as a mature and practical computational approach 

in the computational area of engineering.  

2.4 Element Free Galerkin Method in the Solution of Non-Layered Isotropic Plate 

Problems 

The solution of plate problems holds a very important place in the engineering area 

since they are used nearly everywhere in the life. Because of this, the analysis of plate 

problems have gained great significance. Some numerical techniques have been 

proposed for analysis them such as FEM, BEM and meshfree methods. Unlike FEM 

and BEM, the mesh-based discretization is not found in the meshfree methods. 

The EFGM is one of the commonly used meshfree methods to analyze of plates and is 

used in the various analysis of plates such as static analysis of thin plates [41], buckling 

[56], vibration [57], elasto-plastic [58], crack [59], and also bending analysis of 

Kirchhoff plates [60], Mindlin-Reissner plates [61], and composite plates [62] in the 

literature. 

Despite the EFGM is widely used in several application areas, it has a main issue that 

named is shear locking problem. To overcome this problem, several techniques are 

seen used such as using of the higher order basis [63], using of the first derivatives of 

shape functions as shape functions for rotations [64] in the literature. 
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2.5 Element Free Galerkin Method in the Solution of Composite Plate Problems 

In recent years, composite plates are preferred in many application fields such as 

automotive industry, aircraft structure, compressed gas containers, sports equipments, 

marine vehicles etc. Because of this, they must be analyzed correctly. Due to the 

complex structure of composite plates, several numerical methods, such as FEM, BEM 

and meshfree methods, have been used for the analyses of composite plates in the 

literature. Sheikh et al. [65] used FEM on the solution of composite plates having 

different shapes. Moments and stresses using BEM were examined by Albuquerque 

and his friends [66]. Haddad et al. [67] applied to Finite Difference Method (FDM) for 

free vibration analysis of composite plates. 

The EFGM is seen as a promising candidate for the analysis of composite plates. It 

was used by Belinha and Dinis for the analysis of anisotropic plates and laminates 

[68]. Also, EFGM has been preferred for the various analysis of composite plates such 

as buckling problems [69], vibration problems [70], bending problems [68], crack 

analysis [71], fracture analysis [72], etc. 

2.6 Conclusions on Literature Survey 

The EFGM has some selectable parameters that effect the accuracy of solutions such 

as size of support domain, order of monomials, type of weight function, number of 

integration points in a background cell and value of penalty coefficient. Although 

solutions of several problems are found in the literature, but the literature examination 

shows that effects of these parameters have not been investigated for bending problems 

of non-layered isotropic plates in detail. 

According to literature survey; many studies are present about bending analysis of 

layered orthotropic plates using numerical methods such as FEM, BEM. But, the 

EFGM application is not common in the literature. This can be a new application area 

to examine reliability of the EFGM solutions. 
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CHAPTER 3 

PLATE THEORIES 

3.1 Introduction 

When a body is bounded by surfaces, flat in geometry, whose lateral dimensions are 

large compared to the between the surfaces is called as a plate. Plates are generally 

subjected to transverse lateral loads, as shown in Figure 3.1, and also may be subjected 

to in-plane loading according to purpose of usage in applications.  

 

 

Figure 3.1. Plate subjected to transverse lateral loads. 

Three main theories are present for bending analysis of plates in the literature. The 

theories are as follows; 

- Higher-Order Shear Deformation Theory, 

- Kirchhoff Plate Theory, 

- Reissner-Mindlin Plate Theory. 

A brief summary about Higher-Order Shear Deformation Theory is given in section 

3.2.1. The Kirchhoff Plate Theory is introduced in section 3.2.2 and the Reissner-

Mindlin Plate Theory, used in this study, is presented with governing equations for 

plate bending problems in section 3.2.3.
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3.2 Review of the Plate Theories 

3.2.1 Higher-Order Shear Deformation Theory 

The Higher-Order Shear Deformation Theory (HSDT) is used for bending analyses of 

thick plates. The thickness of the plate is bigger than 1/10 ratio when comparing other 

lateral dimensions [73]. The theory does not need to shear correction factors. The 

theory can generally guarantee zero transverse shear stress values on the top and 

bottom surfaces of the plate. 

3.2.2 Kirchhoff Plate Theory 

The Kirchhoff plate theory is also known as the classical plate theory (CPT). It is used 

for the bending analyses of thin plates. The plates with a ratio of thickness to minimum 

lateral dimension less than 1/100 is considered as thin plates [73]. The assumptions 

of the Kirchhoff Plate Theory is based on assumption of the Bernoulli beam analysis. 

Kirchhoff applied them to plates and shells. Three main assumptions are used [74] as 

follows;  

- Normal to the mid-plane before deformation remain straight and normal to the 

mid-plane after deformation. 

- Transverse direct and shear stress effects are negligible. 

- Deflections are small compared with the plate thickness. 

 

                               a)                                                               b) 

Figure 3.2. Deformed geometries of an edge according to Kirchhoff plate theory in 

plate cross-section a) 𝑦 − 𝑧 plane, b) 𝑥 − 𝑧 plane 
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The displacements of lateral axes 𝑥 and 𝑦 are 𝑢 and 𝑣, respectively, and can be 

expressed as 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
                                                         (3.1) 

𝑣 = −𝑧 
𝜕𝑤

𝜕𝑦
                                                        (3.2) 

where 𝑧 is the direction of the plate thickness. 

From the assumption of transverse shear effects elimination, the strains can be written 

as 

{ 𝜖𝑥  𝜖𝑦  𝛾𝑥𝑦 } =  −𝑧 { 𝜅𝑥  𝜅𝑦  𝜅𝑥𝑦 }                                      (3.3) 

where 𝜅, is the curvature,                   

          𝛋𝐓 = { 𝜅𝑥  𝜅𝑦  𝜅𝑥𝑦 } = { 
𝜕2𝑤

𝜕𝑥2
  
𝜕2𝑤

𝜕𝑦2
  2

𝜕2𝑤

𝜕𝑥𝜕𝑦
 }                            (3.4) 

 

By substituting Eq.(3.3) into equation of 𝛔 = 𝐃𝛜, the plane stress constitutive equation 

for an isotropic material can be written as 

𝛔 =  −𝑧𝐃𝛋                                                           (3.5) 

in which 𝛔 =  { 𝜎𝑥   𝜎𝑦   𝜏𝑥𝑦}   and 𝐃 is the material property matrix, 

𝐃 =
𝐸

1 − 𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
1 − 𝑣

2

]                                       (3.6) 

Moments are considered as 

𝐌 = ∫ 𝛔𝑧 𝑑𝑧       
ℎ/2

−ℎ/2

                                           (3.7) 

where 𝐌 = { 𝑀𝑥  𝑀𝑦  𝑀𝑥𝑦 } and ℎ is the thickness of plate. 

Substituting of Eq. (3.5) into Eq. (3.7), 

𝐌 = −𝐃𝛋                                                       (3.8)  

Equilibrium equations are obtained from the free body diagram as shown in Fig. 3.3. 

Moment equilibriums about the 𝑦 − and 𝑥 −axes and force equilibrium about the 

𝑧 −axis, after neglecting higher order terms, can be written as 

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 0                                            (3.9) 
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𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑄𝑦 = 0                                         (3.10) 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑝 = 0                                             (3.11) 

where 𝑄𝑥 and 𝑄𝑦 are the shear forces and 𝑝 is the distributed pressure load. 

 

Figure 3.3. Free body diagram of the plate element 

The shear forces are neglected from Eq. (3.9), Eq. (3.10) and Eq. (3.11) gives 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑝 = 0                                     (3.12) 

When combining of Eq. (3.4), Eq. (3.8) and Eq. (3.12), the governing equation for 

plate bending is produced in terms of the transverse displacement 𝑤. 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=
𝑝

𝐷𝑟
                                          (3.13) 

where 𝐷𝑟 =
𝐸ℎ3

12(1−𝑣2)
   is the rigidity of the plate. 

3.2.3 Reissner-Mindlin Plate Theory 

Reissner-Mindlin plate theory is also known as the First-Order Shear Deformation 

Theory (FSDT). It is used for moderately-thick plates that thickness of the plate is 

between 1/10 and 1/100  ratio comparing to other two dimensions [73]. Unlike 

Kirchhoff plate theory, the shear effects are considered in the analysis according to 

Reissner-Mindlin plate theory. The theory has assumptions which are based on 

Timoshenko beam theory assumptions.  
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Figure 3.4. A typical Reissner-Mindlin plate 

The assumptions of the Reissner-Mindlin plate theory as follows [74]; 

- Normal to the mid-plane before deformation remain straight but not 

necessarily normal to the mid-plane after deformation. 

- Stresses normal to the mid-plane may be neglected. 

- Deflections are small compared with the plate thickness. 

 

Figure 3.5. Deformed geometries of an edge according to Reissner-Mindlin plate 

theory in plate cross-section a) 𝑦 − 𝑧 plane    b) 𝑥 − 𝑧 plane 

The displacements of parallel to the undeformed neutral surface, 𝑢 and 𝑣, can be 

expressed by 

𝑢 = −𝑧𝜃𝑥(𝑥, 𝑦)                                                      (3.14) 

𝑣 = −𝑧𝜃𝑦(𝑥, 𝑦)                                                      (3.15) 
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where 𝜃𝑥 and 𝜃𝑦 are the normal rotations of the cross section of the plate about the 𝑦 − 

and 𝑥 −axis and can be expressed as 

𝜃𝑥 =
𝜕𝑤

𝜕𝑥
− 𝛾𝑥𝑧                                                        (3.16) 

𝜃𝑦 =
𝜕𝑤

𝜕𝑦
− 𝛾𝑦𝑧                                                        (3.17) 

The transverse displacement can be written as 

𝑤 = 𝑤(𝑥, 𝑦)                                                            (3.18) 

The strains are expressed as  

𝛆 = [ 𝜖𝑥  𝜖𝑦  𝛾𝑥𝑦  𝛾𝑥𝑧  𝛾𝑦𝑧 ]
𝑇                                           (3.19) 

where the strains are given as 

𝜖𝑥 = −
𝜕𝜃𝑥
𝜕𝑥

                                                            (3.20) 

and  

𝜖𝑦 = −
𝜕𝜃𝑦

𝜕𝑦
                                                           (3.21) 

and the shear strains are expressed as  

𝛾𝑥𝑦 = −(
𝜕𝜃𝑦

𝜕𝑥
+
𝜕𝜃𝑥
𝜕𝑦
)                                             (3.22) 

𝛾𝑥𝑧 = (
𝜕𝑤

𝜕𝑥
− 𝜃𝑥)                                                 (3.23) 

and 

𝛾𝑦𝑧 = (
𝜕𝑤

𝜕𝑦
− 𝜃𝑦)                                                (3.24) 

The constitutive relationships are given in the form  
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𝛔 = 𝐃 𝛜                                                               (3.25) 

where 

𝛔 = [𝑀𝑥  𝑀𝑦  𝑀𝑥𝑦  𝑄𝑥  𝑄𝑦]
𝑇                                        (3.26) 

in which 𝑀𝑥 and 𝑀𝑦 are the direct bending moments and 𝑀𝑥𝑦 is the twisting moment. 

The quantities 𝑄𝑥 and 𝑄𝑦 are the shear forces in the 𝑥 − 𝑧 and 𝑦 − 𝑧 planes. 

For an isotropic material, 𝐃 is given as; 

𝐃 =

[
 
 
 
 
 
𝐷 𝜐𝐷 0 0 0
𝜐𝐷 𝐷 0 0 0

0 0
(1 − 𝜐)𝐷

2
0 0

0 0 0 𝑆 0
0 0 0 0 𝑆]

 
 
 
 
 

                              (3.27) 

in which for a plate of thickness, 𝑡 

𝐷 =
𝐸𝑡3

12(1 − 𝜐2)
                                               (3.28) 

and 

𝑆 =
𝐺𝑡

1.2
                                                    (3.29) 

where 𝐺 is the shear modulus and the factor 1.2 is a correction term. 
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CHAPTER 4 

ELEMENT FREE GALERKIN METHOD  

FOR BENDING PROBLEMS OF REISSNER-MINDLIN PLATE  

4.1 Introduction 

Nowadays, composite materials have played an important role in the engineering 

applications that require high strength/weight or stiffness/weight ratios. Because of 

that, analysis of composite materials have gained great significance. Due to the 

complex structure of composite materials, several numerical methods, such as FEM, 

BEM and meshfree methods, have been used for the analysis of composite laminates 

in the literature. The performances of FEM and BEM depend on mesh quality of the 

problem model. Meshfree methods have been developed to overcome this limitation. 

Element Free Galerkin Method is a popular method in meshfree methods. In meshfree 

methods, problem domain and its boundaries are defined by using only informations 

of scattered nodes.  Despite its popularity, it has a drawback. The EFGM uses Moving 

Least Square (MLS) approximation to construct shape functions. The Kronecker delta 

feature is not provided by the MLS approximation. Because of that, extra algorithms 

are required to imply boundary conditions. These algorithms generally resulted with 

an increase in computational load and solution time.  

In this chapter, solution procedure of meshfree methods in solid mechanics is 

mentioned shortly in section 4.2. First-Order Shear Deformation Theory (FSDT) 

formulations for composite plates are reviewed in section 4.3. In last section 4.4, The 

EFGM is presented that includes the construction of MLS shape functions and 

Galerkin weak form for Reissner-Mindlin plate problems.
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4.2 Short Description of Implementation Procedure for Galerkin Meshfree 

Methods 

The implementation procedure of Galerkin meshfree methods can be classified into 

four basic steps as domain representation, field interpolation, formulation of system 

equations and solution of the system equations for field variables, respectively. In the 

first step, the problem domain and its boundaries are represented by a set of scattered 

nodes. There is no any predefined relation between the nodes which is the main 

difference between discretization of FEM and meshfree methods. After the domain 

representation, the field variables at any point are interpolated by constructing shape 

functions (approximation or interpolation functions). Shape functions are constructed 

using the nodes of local domain constructed for a point of interest. There is no 

predefined relationship to construct shape functions. In the third step, system equations 

are formulated for local domains and combined to obtain global system equations. The 

technique of formulations for system equations can be different for different meshfree 

methods. The last step includes the solution of the equations. It is similar to the FEM. 

Any equation solver depends on the problem type can be used for solution. 

4.2.1 Basic Definitions for Meshfree Methods 

In meshfree methods, terms such as local domain, background cell are mentioned 

every time. In this part of chapter 4, these terms are presented about what they mean 

or why they are used in meshfree methods. 

4.2.1.1 Local Domains (Support and Influence Domains) 

A local domain is defined as a domain which determines the nodes used for the 

approximation of field variables. Despite it is similar to the elements in FEM, there 

are three main differences between local domains in meshfree methods and elements 

in FEM. Firstly, while local domains are only used for interpolation, elements in FEM 

are used not only interpolation but also integration purposes. Another difference is 

their predefined shape conditions. The elements need to be predefined regular shapes, 

but it is not necessary for the local domains. Last difference is that the local domains 

don’t have any predefined nodes as the elements. 

The local domain size is determined by the following equation 4.1.  
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rs = αs x rc                                                                (4.1) 

where rc is the average nodal spacing and αs is the dimensionless size of support 

domain. 

4.2.1.2 Background Cells 

Background cells are used for the integration process in the Galerkin meshfree 

methods. These cells have no other use in the problem domain. They just subdivides 

the domain into either squares, triangles or any other chosen shape. Even if the 

background cells looks like elements in FEM, they are not similar for their usage. 

There isn’t any influence of background cell in the formation of the shape function as 

is the case with elements in FEM. The background cells and influence domains are 

shown clearly in Fig 4.1. 

 

Figure 4.1. Support Domain; the centre is a quadrature point 

4.3 First-Order Shear Deformation Theory (FSDT) for composite plates 

A typical Mindlin-Reissner plate with mid-plane lying in the 𝑥 − 𝑦 plane of Cartesian 

coordinate system is depicted in Fig. 4.2. The displacement field of a point at a distance 

𝑧 to the mid-plane can be written as [68] 

𝐮 = {
𝑢
𝑣
𝑤
} = {

−𝑧𝜃𝑥(𝑥, 𝑦)
−𝑧𝜃𝑦(𝑥, 𝑦)

𝑤(𝑥, 𝑦)

}                                          (4.2)   
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where (𝑢, 𝑣, 𝑤) are the displacements of the plate in the 𝑥, 𝑦, 𝑧 directions. 𝜃𝑥 and 𝜃𝑦 

are the rotations of cross-section of the plate about 𝑦 and 𝑥 axes, respectively. The 

linear strains in the Mindlin-Reissner plate are the strains resulting from bending are 

obtained in terms of the rotations, 𝜃𝑥, 𝜃𝑦 and of the mid-surface displacement, 𝑤, as 

𝛆 =

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

=

{
 
 
 
 
 

 
 
 
 
 −𝑧

𝜕𝜃𝑥(𝑥, 𝑦)

𝜕𝑥

−𝑧
𝜕𝜃𝑦(𝑥, 𝑦)

𝜕𝑦

−𝑧
𝜕𝜃𝑥(𝑥, 𝑦)

𝜕𝑦
− 𝑧

𝜕𝜃𝑦(𝑥, 𝑦)

𝜕𝑥

−𝜃𝑦(𝑥, 𝑦) +
𝜕𝑤(𝑥, 𝑦)

𝜕𝑦

−𝜃𝑥(𝑥, 𝑦) +
𝜕𝑤(𝑥, 𝑦)

𝜕𝑥 }
 
 
 
 
 

 
 
 
 
 

                          (4.3) 

Using the generalized Hooke’s law for orthotropic linear elastic materials, the stresses 

for the 𝑖𝑡ℎ layer is given as, 

𝛔𝑖 = 𝐜̅𝑖𝛆                                                              (4.4) 

where 

𝛔𝑖 = {𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑥𝑧}𝑇                                  (4.5) 

𝐜̅𝑖 = 𝐓𝑇𝐜𝑖𝐓                                                            (4.6) 

where 𝐜𝑖 is the material matrix of the 𝑖𝑡ℎ layer. It includes six independent material 

properties that are 𝐸1, 𝐸2, 𝜈12, 𝐺12, 𝐺13 and 𝐺23. The material matrix of the orthotropic 

materials can be written as  

𝐜𝑖 =

[
 
 
 
 
 
 
 

𝐸1
1 − 𝜈12𝜈21

𝐸1𝜈21
1 − 𝜈12𝜈21

0 0 0

𝐸1𝜈12
1 − 𝜈12𝜈21

𝐸2
1 − 𝜈12𝜈21

0 0 0

0 0 𝐺12 0 0
0 0 0 𝐺23 0
0 0 0 0 𝐺31]

 
 
 
 
 
 
 

                      (4.7) 

and 𝐓 is the transformation matrix, which has lay-up of the laminae, can be given as 
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𝐓 =

[
 
 
 
 
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 −𝑠𝑖𝑛2𝜃 0 0
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 0 0

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃 0 0
0 0 0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
0 0 0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ]

 
 
 
 

       (4.8) 

where the 𝜃 is the lay-up or orientation of fiber on the 𝑖𝑡ℎ lamina.  

 

Figure 4.2.  A typical laminate plate 

Considering the {𝜀𝑥𝑥 𝜀𝑦𝑦 𝛾𝑥𝑦} = 𝑧 {𝜀𝑥̅𝑥 𝜀𝑦̅𝑦 𝛾̅𝑥𝑦} the stresses on the top face of 

layer (𝑖) are 

𝜎𝑥𝑥
𝑧𝑖+1 = 𝑧𝑖+1 [𝑐1̅1

𝑖 𝜀𝑥̅𝑥 + 𝑐1̅2
𝑖 𝜀𝑦̅𝑦 + 𝑐1̅3

𝑖 𝛾̅𝑥𝑦]                                            

𝜎𝑦𝑦
𝑧𝑖+1 = 𝑧𝑖+1 [𝑐1̅2

𝑖 𝜀𝑥̅𝑥 + 𝑐2̅2
𝑖 𝜀𝑦̅𝑦 + 𝑐2̅3

𝑖 𝛾̅𝑥𝑦]                                            

𝜏𝑥𝑦
𝑧𝑖+1 = 𝑧𝑖+1 [𝑐1̅3

𝑖 𝜀𝑥̅𝑥 + 𝑐2̅3
𝑖 𝜀𝑦̅𝑦 + 𝑐3̅3

𝑖 𝛾̅𝑥𝑦]                                   (4.9)

𝜏𝑥𝑧
𝑧𝑖+1 = [𝑐4̅4

𝑖 𝛾𝑥𝑧 + 𝑐4̅5
𝑖 𝛾𝑦𝑧]                                                                         

𝜏𝑦𝑧
𝑧𝑖+1 = [𝑐4̅5

𝑖 𝛾𝑥𝑧 + 𝑐5̅5
𝑖 𝛾𝑦𝑧]                                                                        

 

The bending moments (𝑀𝑖𝑗) and the shear forces (𝑉𝑖𝑗)are 

𝑀𝑥𝑥 =∑∫ 𝑧 𝜎𝑥𝑥
𝑖 𝑑𝑧

𝑧𝑖+1

𝑧𝑖

𝑛

𝑖

                                                                         

𝑀𝑦𝑦 =∑∫ 𝑧 𝜎𝑦𝑦
𝑖 𝑑𝑧

𝑧𝑖+1

𝑧𝑖

𝑛

𝑖

                                                             (4.10)

𝑀𝑥𝑦 =∑∫ 𝑧 𝜏𝑥𝑦
𝑖 𝑑𝑧

𝑧𝑖+1

𝑧𝑖

𝑛

𝑖
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and 

𝑉𝑥𝑥 = 𝑘𝑠ℎ∑∫ 𝜏𝑥𝑧
𝑖 𝑑𝑧

𝑧𝑖+1

𝑧𝑖

𝑛

𝑖

              

                                                                                                                                          (4.11)

𝑉𝑦𝑦 = 𝑘𝑠ℎ∑∫ 𝜏𝑦𝑧
𝑖 𝑑𝑧

𝑧𝑖+1

𝑧𝑖

𝑛

𝑖

            

 

where 𝑘𝑠ℎ is the shear correction factor. Substituting the stress values in Eqs. (4.9) into 

moment in Eqs. (4.10) and shear forces in Eqs. (4.11): 

𝑀𝑥𝑥 =∑[
𝑧𝑖+1
3

3
−
𝑧𝑖
3

3
] [𝑐1̅1

𝑖 𝜀𝑥̅𝑥 + 𝑐1̅2
𝑖 𝜀𝑦̅𝑦 + 𝑐1̅3

𝑖 𝛾̅𝑥𝑦]

𝑛

𝑖

             

𝑀𝑦𝑦 =∑[
𝑧𝑖+1
3

3
−
𝑧𝑖
3

3
] [𝑐1̅2

𝑖 𝜀𝑥̅𝑥 + 𝑐2̅2
𝑖 𝜀𝑦̅𝑦 + 𝑐2̅3

𝑖 𝛾̅𝑥𝑦]

𝑛

𝑖

             

𝑀𝑥𝑦 =∑[
𝑧𝑖+1
3

3
−
𝑧𝑖
3

3
] [𝑐1̅3

𝑖 𝜀𝑥̅𝑥 + 𝑐1̅2
𝑖 𝜀𝑦̅𝑦 + 𝑐1̅3

𝑖 𝛾̅𝑥𝑦]

𝑛

𝑖

              

𝑉𝑥𝑥 = 𝑘𝑠ℎ∑[𝑧𝑖+1 − 𝑧𝑖][𝑐4̅4
𝑖 𝛾𝑥𝑧 + 𝑐4̅5

𝑖 𝛾𝑦𝑧]

𝑛

𝑖

                               

𝑉𝑦𝑦 = 𝑘𝑠ℎ∑[𝑧𝑖+1 − 𝑧𝑖][𝑐4̅5
𝑖 𝛾𝑥𝑧 + 𝑐5̅5

𝑖 𝛾𝑦𝑧]

𝑛

𝑖

                               

                      (4.12) 

The Eqs. (4.12) can be arranged as in the following form: 

𝐌 = [

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

] =∑𝐃𝑖𝐋Φ(
𝑧𝑖+1
3

3
−
𝑧𝑖
3

3
) = [∑𝐃𝑖 (

𝑧𝑖+1
3

3
−
𝑧𝑖
3

3
)

𝑛

𝑖

] 𝐋Φ

𝑛

𝑖

                                                                                                                                              (4.13)

𝐕 = [
𝑉𝑥𝑥
𝑉𝑦𝑦
] = 𝑘𝑠ℎ∑[𝐀𝑠ℎ

𝑖 (∇𝐰 −Φ)(𝑧𝑖+1 − 𝑧𝑖)] =

𝑛

𝑖

𝑘𝑠ℎ  [∑𝐀𝑠ℎ
𝑖 (𝑧𝑖+1 − 𝑧𝑖)

𝑛

𝑖

] (∇𝐰 − Φ)

 

where,  

𝐋 =

[
 
 
 
 −

𝜕

𝜕𝑥
0 −

𝜕

𝜕𝑦

0 −
𝜕

𝜕𝑦
−
𝜕

𝜕𝑥]
 
 
 
 

                                      (4.14) 
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Φ = {𝜃𝑥 𝜃𝑦}𝑇                                              (4.15) 

∇= {
𝜕

𝜕𝑥

𝜕

𝜕𝑦
}
𝑇

                                            (4.16) 

and 𝐃𝑖 and 𝐀𝑠ℎ
𝑖  are the material properties related with bending and shear effects. They 

can be written in the matrix forms, as follows: 

𝐃𝑖 = [

𝑐1̅1
𝑖 𝑐1̅2

𝑖 𝑐1̅3
𝑖

𝑐1̅2
𝑖 𝑐2̅2

𝑖 𝑐2̅3
𝑖

𝑐1̅3
𝑖 𝑐2̅3

𝑖 𝑐3̅3
𝑖

]                                      (4.17) 

𝐀𝑠ℎ
𝑖 = [

𝑐4̅4
𝑖 𝑐4̅5

𝑖

𝑐4̅5
𝑖 𝑐5̅5

𝑖
]                                            (4.18) 

In the absence of mass forces, the equilibrium equations obtained using the virtual 

work principle are given as, 

𝐋𝑇𝐌− 𝐕 = 0
                                                                                                                                               (4.19)

∇𝑇𝐕 + 𝐛 = 0

 

where 𝐛 is the vector of applied external forces. EFGM is used for the solution of this 

system equations. 

4.4 Element-Free Galerkin Method 

4.4.1 Moving-Least Square (MLS) Approximation 

The MLS approximation for the function of a field variable 𝑢(x) in a local domain Ω 

is defined at a point x as 

𝑢ℎ(x) =∑𝑝𝑖(x)𝑎𝑖(x)

𝑚

𝑖=1

= pT(x)a(x)                                    (4.20) 

where 𝑚 is the number of basis terms, pT(x) = {𝑝1(x), 𝑝2(x), 𝑝3(x),⋯ , 𝑝𝑚(x)} is the 

vector of monomial basis functions, 𝒂T(x) = {𝑎1(x), 𝑎2(x), 𝑎3(x),⋯ , 𝑎𝑚(x)} is the 

vector of unknown coefficients, and xT = [𝑥, 𝑦] is the position vector for 2D problems. 

The monomials are selected from the Pascal triangle with providing minimum 
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completeness to build the basis function pT(x). For example, the linear and quadratic 

basis functions in 2D problems can be given by 

pT(x) = [1, 𝑥, 𝑦],                             𝑚 = 3                                   (4.21) 

pT(x) = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2],          𝑚 = 6                                  (4.22) 

The difference between the function 𝑢(x) and its local approximation 𝑢ℎ(x) must be 

minimized by weighted discrete 𝐿2 norm to obtain the vector of coefficients a(x). 

𝐽 =∑𝑤(x− x𝑖)[p
T(x𝑖)a(x) − 𝑢𝑖]

2

𝑛

𝑖=1

                             (4.23) 

where 𝑛 is the number of nodes in the support domain of point x, 𝑢𝑖 is the nodal value 

of 𝑢 at 𝐱 = x𝑖, 𝑤(x− x𝑖) is the weight function associated with the influence domain 

of node 𝑖. From weight function properties, it must be greater than zero for all nodes 

in the support domain of point x. 

The minimization of weighted residual with respect to a(x) at any arbitrary point x 

gives 

𝜕𝐽

𝜕a
= 0                                                            (4.24) 

which can be written as a set of linear equations. 

A(x)a(x) = B(x)U𝑠                                                (4.25) 

where U𝑠 = {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛}
T is the vector of nodal values of field function for the 

nodes of support domain. The matrices A and B have the following forms 

A(x) =∑𝑤𝑖(x)𝑝(𝑥𝑖)𝑝
T(𝑥𝑖)

𝑛

𝑖=1

,                 𝑤𝑖(x) = 𝑤(x− 𝑥𝑖)               (4.26) 

B(x) = [𝑤1(x)𝑝(𝑥1) 𝑤2(x)𝑝(𝑥2) ⋯ 𝑤𝑛(x)𝑝(𝑥𝑛)]                   (4.27) 

The matrix A is called as weighted moment matrix of MLS and if it is non-singular 

a(x) can be written as 
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a(x) = A
−1(x)B(x)U𝑠                                          (4.28) 

The local approximation 𝑢ℎ(x) can be rewritten by substituting Eq. (1) 

𝑢ℎ(x) =∑𝜙𝑖(x)𝑢𝑖

𝑛

𝑖=1

= Φ
T(x)US                               (4.29) 

where Φ𝑇 is the vector of MLS shape functions and it can be expressed as 

𝚽T(x) = {𝜙1(x) 𝜙2(x) ⋯ 𝜙n(x)} = pT(x)A−1(x)B(x)        (4.30) 

The partial derivatives of shape function can be achieved by the following equation. 

Φ,i = (𝐩
T𝐀−1𝐁),i = p

,𝑖
TA

−1
B+ pTA,𝑖

−1
B+ pTA

−1
B,𝑖              (4.31) 

where 

A,𝑖
−1 = −A

−1
A,𝑖A

−1                                           (4.32) 

The spatial derivative are designated with index 𝑖 following a comma. The weight 

functions are one of the most important points for derivation of MLS shape functions. 

The continuity and locality features of the MLS approximation are mainly based on 

weight functions. The weight function must be positive inside the support domain by 

taking its maximum value at the centre of support domain and must be zero outside 

the support domain using a monotonically decrease. There are various weight 

functions in literature [19]. The cubic spline weight function is used in this work and 

is given by 

𝑤𝑖(𝐱 − 𝑥𝑖) = 𝑤(𝑟𝑖̅) = {

2 3⁄ − 4𝑟𝑖̅
2 + 4𝑟𝑖̅

3 𝑟𝑖̅ ≤ 0.5

4 3⁄ − 4𝑟𝑖̅ + 4𝑟𝑖̅
2 − 4 3⁄ 𝑟𝑖̅

3 0.5 < 𝑟𝑖̅ ≤ 1
0 𝑟𝑖̅ > 1

       (4.33) 

For rectangular influence domain in 2-D problems, weight functions can be obtained 

by 

𝑤(𝑟𝑖̅) = 𝑤(𝑟𝑥)𝑤(𝑟𝑦) = 𝑤𝑥𝑤𝑦                                          (4.34) 

𝑟𝑥 =
|𝑥 − 𝑥𝑖|

𝑟𝑤𝑥
     and     𝑟𝑦 =

|𝑦 − 𝑦𝑖|

𝑟𝑤𝑦
                                    (4.35) 
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where 𝑟𝑤𝑥 and 𝑟𝑤𝑦 are the size of support domain in the 𝑥 and 𝑦 direction. 

4.4.2 Galerkin Weak Form and Enforcement Boundary Conditions 

The Galerkin weak form for Mindlin-Reissner plates can written as 

∫𝛿(𝐋𝑑𝑢)
T𝐷𝐿𝑑𝑢𝑑Ω

 

Ω

− ∫𝛿(𝐋𝑢𝑢)
T𝑏𝑑Ω

 

Ω

− ∫𝛿(𝐋𝑢𝑢)
T𝑡Γ𝑑𝑆

 

Γ𝑡

                                           

+ 𝛿 ∫
1

2
(𝑢𝑏 − 𝑢Γ)

T𝛼(𝑢𝑏 − 𝑢Γ)𝑑Γ

 

Γ𝑢

= 0                                           (4.36) 

The discrete system equation can be written as 

(K+K
𝛼)U = (F+ F

𝛼)                                                  (4.37) 

where K is the global stiffness matrix and is obtained by assembling the point stiffness 

matrices 

𝐾𝑖𝑗 = ∫B𝑖
T

DB𝑗𝑑Ω
 

Ω

                                                        (4.38) 

in which 

B𝑖 =

[
 
 
 
 
 
 0 0 0

𝜕𝜙𝑖
𝜕𝑥

𝜕𝜙𝑖
𝜕𝑦

𝜕𝜙𝑖
𝜕𝑥

0
𝜕𝜙𝑖
𝜕𝑦

𝜙𝑖 0

0
𝜕𝜙𝑖
𝜕𝑦

𝜕𝜙𝑖
𝜕𝑥

0 𝜙𝑖 ]
 
 
 
 
 
 
T

                             (4.39) 

and 

The K𝛼 is the matrix of penalty factors defined by 

(K𝛼)𝑖𝑗 = ∫ 𝜑𝑖
Tα𝜑𝑗𝑑Γ

 

Γ𝑢

                                               (4.40) 

where 𝜑𝑖 is a diagonal matrix. If the relevant DOF is free, the diagonal elements of 𝜑𝑖 

are equal to 0, otherwise equal to 1. 
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The force vector F in Eq. (4.37) is the global force vector assembled using the nodal 

force vector of 

𝐹𝑖 = ∫(𝐋𝑢Φ𝑖)
T𝑏𝑑Ω

 

Ω

+∫(𝐋𝑢Φ𝑖)
T𝑡Γ𝑑𝑆

 

Ω

                         (4.41) 

where Φ𝑖 is a diagonal matrix of shape functions.  

The F𝛼 vector shows the forces obtained by the implementation of essential boundary 

conditions and can be obtained as follows 

𝐹𝑖
𝛼 = ∫ 𝜑𝑖

T𝛼𝑢Γ𝑑Γ
 

Γ𝑢

                                                  (4. 42) 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSIONS FOR BENDING ANALYSIS 

OF NON-LAYERED ISOTROPIC PLATES 

5.1 Introduction 

Four numerical examples have been performed to investigate the effects of selectable 

parameters of the EFGM on the solution accuracy of the non-layered isotropic plate 

bending problems based on Reissner-Mindlin plate theory. The numerical examples 

are; 

- Clamped square plate under transverse centric point load, 

- Clamped square plate under uniform transverse load, 

- Simply supported circular plate under uniform transverse load, 

- Simply supported Morley’s skew plate under uniform transverse load. 

In this chapter; the obtained EFGM results by using different values of selectable 

parameters are compared with analytical results in the literature and are discussed 

effects on the solution accuracy. 

Tables and figures are used to represent results of numerical examples. However, 

invalid/unacceptable results are not given into figures and tables to show more clearly 

variations of normalized displacements/moments against the values of selectable 

parameters. The value of penalty coefficient is presented in the form of 10𝛼𝑝. The 

number of gauss points in a background cell, central deflections and moments of plates 

are symbolized with 𝑛𝑔, 𝑤𝑐, and 𝑀𝑐 respectively. 

5.2 Clamped square plate under transverse centric point load 

The square plate has fully clamped boundary condition and is loaded with transverse 

centric point load as shown in Fig.5.1. The material properties are as follows; Young’s 

modulus E of material is 10920 Pa and Poisson's ratio is ν = 0.3. The thickness and 

length of the plate are given by h = 0.01 m and L = 1 m, respectively. The value of 

applied transverse centric point load, P is 16.3527 N. Due to symmetry, only one
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quarter of the plate is modelled for EFGM solutions. The EFGM models used in the 

solutions are shown in Fig. 5.2. 1089 field nodes and 1024 background cells are used 

for regular and irregular node distributions in the quarter model of square plate. Quartic 

spline is considered as weight function in this case. The normalized deflection values 

at the centre of square plate are used as the critical value for the evaluation of accuracy 

and are compared exact solution [75]. 

 

 

 

Figure 5.1. Clamped square plate under transverse centric point load 

 

Figure 5.2. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

The normalized central displacement results obtained using the different values of 

selectable parameters values are presented in Table 5.1 to Table 5.4 and variations can 

be seen in Figure 5.3 to Figure 5.6. Since, the clamped square plate under transverse 

centric point load has stress singularity problem at the centre of plate, only 

displacement results are used for accuracy performance investigations. The 

normalized central displacements against the number of gauss points in a background 

cell are given in Table 5.1 and Table 5.2. The effect of value of penalty coefficient on 

the displacement is given in Table 5.3 and Table 5.4.  

According to obtained results, it is not observed that any significant accuracy loss for 

regular node distribution in Fig. 5.3. However, solutions obtained by using irregular 

node distribution have some fluctuations are seen for value of nGauss = 4 and 

nGauss = 8 in Fig. 5.4. From Table 5.3 and 5.4 and Figures 5.5 and 5.6, it can be 

understood that several variations are found for value of penalty coefficient is bigger 

ℎ 
𝐿 

𝐹 
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than 1 × 109. If the value of penalty coefficient is selected between 1 × 106 and 1 ×

109, acceptable results are observed for different values of αs. However, αs = 2.5 and 

mBasis = 10 results are not shown in figures because they have unacceptable results. 

Also, it can be observed that the choice of small number of monomials give more 

accurate results. 
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Table 5.1. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate under transverse centric point load for regular node 

distribution with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                3.0                 3.5                  4.0                4.5 

Exact 

[75] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.005629 0.005637 0.005643 0.005644 0.005652 

0.005619 0.005637 0.005641 0.005644 0.005652 

0.005622 0.005637 0.005642 0.005644 0.005649 

0.005621 0.005637 0.005641 0.005644 0.005650 

0.005622 0.005637 0.005642 0.005644 0.005648 

0.005600 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.005638 0.005641 0.005669 0.005650 0.005666 

0.005636 0.005641 0.005668 0.005650 0.005666 

0.005636 0.005641 0.005668 0.005650 0.005665 

0.005637 0.005641 0.005668 0.005650 0.005665 

0.005637 0.005642 0.005668 0.005650 0.005665 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

--------- 0.005643 0.005672 0.005677 0.005690 

--------- 0.005643 0.005672 0.005676 0.005687 

--------- 0.005643 0.005672 0.005676 0.005687 

--------- 0.005643 0.005672 0.005676 0.005687 

--------- 0.005643 0.005672 0.005677 0.005687 
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Figure 5.3. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

clamped square plate under transverse centric point load and regular node distribution 

with 𝛼𝑝 = 6. 
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Table 5.2. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate under transverse centric point load for irregular node 

distribution with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

       2.5        3.0         3.5                 4.0                   4.5 

Exact 

[75] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.005686 0.005736 0.005742 0.005801 0.005964 

0.005642 0.005655 0.005664 0.005677 0.005718 

0.005640 0.005646 0.005650 0.005654 0.005662 

0.005638 0.005644 0.005648 0.005651 0.005654 

0.005639 0.005636 0.005643 0.005686 0.005622 

0.005600 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.005698 0.005714 0.005794 0.005801 0.005834 

0.005649 0.005651 0.005661 0.005665 0.005676 

0.005647 0.005650 0.005653 0.005656 0.005660 

0.005646 0.005648 0.005650 0.005648 0.005648 

0.005661 0.005628 0.005613 0.005551 0.006354 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

--------- 0.005812 0.005922 0.005995 0.005909 

--------- 0.005662 0.005665 0.005672 0.005675 

--------- 0.005658 0.005657 0.005664 0.005665 

--------- 0.005651 0.005656 0.005671 0.005658 

--------- 0.005694 0.005692 0.005804 0.005534 
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Figure 5.4. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

clamped square plate under transverse centric point load using and irregular node 

distribution with 𝛼𝑝 = 6. 
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Table 5.3. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate under transverse centric point load using regular node 

distribution with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5             3.0               3.5               4.0                4.5 

Exact 

[75] 

3 6 

7 

8 

9 

10 

11 

0.005619 0.005637 0.005641 0.005644 0.005652 

0.005619 0.005637 0.005642 0.005650 0.005663 

0.005619 0.005636 0.005639 0.005655 0.005641 

0.005619 0.005636 0.005636 0.005639 0.005634 

0.005619 0.005627 0.005633 0.005071 0.005596 

0.005661 0.005658 0.009021 0.006120 0.007032 

0.005600 

 

6 6 

7 

8 

9 

10 

11 

0.005636 0.005641 0.005668 0.005650 0.005666 

0.005636 0.005641 0.005667 0.005650 0.005665 

0.005636 0.005641 0.005668 0.005639 0.005716 

0.005637 0.005641 0.005667 0.005634 0.005693 

0.005639 0.005641 0.005601 0.005950 0.006067 

0.005605 0.006694 0.004530 0.001139 0.006195 

 

10 6 

7 

8 

9 

10 

11 

0.000280 0.005643 0.005672 0.005676 0.005687 

0.000214 0.005643 0.005673 0.005676 0.005688 

0.000465 0.005643 0.005672 0.005676 0.005672 

0.000261 0.005642 0.005651 0.005680 0.005738 

-0.000048 0.005665 0.005267 0.005862 0.011795 

0.002589 0.005491 0.005560 0.003655 0.004805 
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Figure 5.5. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

clamped square plate under transverse centric point load and regular node distribution 

with 𝑛𝑔 = 5. 
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Table 5.4. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate under transverse centric point load using irregular node 

distribution with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5             3.0                3.5                4.0                  4.5 

Exact 

[75] 

3 6 

7 

8 

9 

10 

11 

0.005642 0.005655 0.005664 0.005676 0.005716 

0.005642 0.005655 0.005664 0.005677 0.005718 

0.005642 0.005656 0.005664 0.005676 0.005681 

0.005642 0.005656 0.005654 0.005664 0.005583 

0.005642 0.005550 0.005709 0.005680 0.005726 

0.005788 0.005278 0.005612 0.005255 0.004676 

0.005600 

 

 

6 6 

7 

8 

9 

10 

11 

0.005649 0.005651 0.005661 0.005665 0.005675 

0.005649 0.005651 0.005661 0.005665 0.005676 

0.005649 0.005651 0.005661 0.005666 0.005676 

0.005651 0.005650 0.005646 0.005665 0.005682 

0.005655 0.005640 0.005079 0.005499 0.007328 

0.005680 0.002720 -0.000739 0.012371 0.005607 

 

10 6 

7 

8 

9 

10 

11 

-0.005153 0.005662 0.005665 0.005672 0.005675 

-0.000328 0.005662 0.005665 0.005672 0.005675 

0.000337 0.005662 0.005666 0.005669 0.005675 

0.000058 0.005663 0.005671 0.005661 0.005700 

0.000397 0.005666 0.005497 0.005652 0.004943 

0.000060 0.004912 0.060423 0.005582 0.005901 
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Figure 5.6. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against α𝑝 for 

clamped square plate under transverse centric point load and irregular node 

distribution with 𝑛𝑔 = 5

0.980

0.990

1.000

1.010

1.020

1.030

1.040

6 7 8 9

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sq
u

ar
e 

p
la

te

Penalty coefficient

𝑚=3

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.980

0.990

1.000

1.010

1.020

1.030

1.040

6 7 8 9

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sq
u

ar
e 

p
la

te

Penalty coefficient

𝑚=6

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.980

0.990

1.000

1.010

1.020

1.030

1.040

6 7 8 9

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sq
u

ar
e 

p
la

te

Penalty coefficient

𝑚=10

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact



39 

 

ℎ 
𝐿 

5.3 Clamped square plate under uniform transverse load 

A clamped square plate under uniform transverse load, shown in Fig. 5.7, is analysed 

by using different values for the selectable parameters [83]. The thickness and length 

of the plate are given by ℎ = 0.01 𝑚 and 𝐿 = 1 𝑚, respectively. The Young's modulus 

𝐸 of material is 10920 𝑃𝑎 and Poisson's ratio is 𝑣 = 0.3. Because of the symmetry, 

one quarter of the plate is modelled in EFGM solutions. In the model of square plate, 

1089 field nodes and 1024 background cells are used for regular and irregular node 

distributions. The value of applied uniform transverse load 𝑃 is 1 𝑃𝑎. The normalized 

deflection and normalized moment values at the center of square plate are taken as the 

critical value for assessment of accuracy. Cubic spline is used as weight function in 

this example. The results obtained using different values for the selectable parameters 

are presented and compared with exact solutions [76] in Table 5.5 to Table 5.12.  

 

 

 

Figure 5.7. Clamped square plate under uniform load. 

 

Figure 5.8. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

The normalized central displacements/moments against the number of gauss points in 

a background cell are given in Table 5.5 and Table 5.8. The effect of value of penalty 

coefficient on the displacement is given in Table 5.9 and Table 5.12. From the results 

in Table 5.5 to 5.12, it can be observed that irregularity of node distribution does not 

show any accuracy loss. The results of small domains seem to be more stable and more 

accurate. Also, it can be found that an increase for the number of gauss points results 
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an increase in the accuracy for the irregular node distributions and the accuracy of 

smaller penalty coefficients are higher than the bigger ones. 
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Table 5.5. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate subjected to uniform load for regular node distribution 

with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5              3.0             3.5             4.0             4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.126440 0.126780 0.126909 0.126852 0.126836 

0.126433 0.126763 0.126794 0.126826 0.126905 

0.126439 0.126767 0.126808 0.126848 0.126778 

0.126434 0.126766 0.126013 0.123538 0.126812 

0.126437 0.126766 0.126839 0.126695 0.127163 

0.126532 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.126770 0.126770 0.126868 0.127450 0.128110 

0.126756 0.126771 0.126859 0.126768 0.126887 

0.126760 0.126771 0.126860 0.127049 0.127118 

0.126758 0.126770 0.126861 0.126915 0.126957 

0.126759 0.126770 0.126859 0.127089 0.127085 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.007554 0.126791 0.126879 0.127113 0.127235 

0.001913 0.126790 0.126873 0.127169 0.127226 

0.000925 0.126790 0.126874 0.127357 0.127214 

-0.069174 0.126790 0.126873 0.127301 0.127217 

0.003803 0.126790 0.126875 0.127215 0.127226 
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Table 5.6. Normalized central moments Mc (
pL2

10
)⁄   of clamped square plate subjected to uniform load for regular node distribution using 

with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                   3.5                  4.0                  4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.220273 0.226801 0.233437 0.234838 0.228536 

0.220256 0.226747 0.228009 0.224284 0.230803 

0.220309 0.226746 0.233083 0.229562 0.227977 

0.220251 0.226761 0.160449 0.058100 0.228516 

0.220282 0.226748 0.232194 0.213945 0.232311 

0.22905 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.228807 0.227187 0.226751 0.283487 0.357014 

0.227876 0.227075 0.226848 0.230692 0.241907 

0.228263 0.227122 0.226788 0.247138 0.244159 

0.228126 0.227101 0.226860 0.237759 0.237510 

0.228147 0.227107 0.226696 0.256088 0.242944 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

11.66488 0.2264135 0.2209203 0.212290 0.264404 

-9.673737 0.2261617 0.222392 0.267805 0.269976 

1.138023 0.2256435 0.2216954 0.317124 0.267672 

23.62524 0.2253575 0.2220767 0.282098 0.267732 

4.410360 0.2253424 0.2220136 0.288722 0.270582 
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Table 5.7. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate subjected to uniform load for irregular node distribution 

with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                    4.0       4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.126526 0.127108 0.129390 0.131393 0.132356 

0.126468 0.126901 0.127498 0.128500 0.128037 

0.126448 0.126819 0.127041 0.127481 0.127414 

0.126437 0.126763 0.126898 0.127183 0.127198 

0.126437 0.126731 0.126864 0.127017 0.127015 

0.126532 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.126791 0.126832 0.127033 0.127750 0.128852 

0.126760 0.126800 0.126878 0.127062 0.127299 

0.126755 0.126794 0.126855 0.126968 0.127109 

0.126753 0.126791 0.126842 0.126935 0.127027 

0.126752 0.126791 0.126837 0.126929 0.127005 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

-0.004057 0.126944 0.127063 0.127537 0.128154 

-0.001433 0.126862 0.126888 0.127072 0.127260 

-0.009520 0.126857 0.126870 0.127013 0.127149 

-0.000343 0.126841 0.126864 0.126975 0.127096 

0.017142 0.126838 0.126862 0.126968 0.127080 
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Table 5.8. Normalized central moments Mc (
pL2

10
)⁄   of clamped square plate subjected to uniform load for irregular node distribution 

with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                4.0                 4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.021998 0.021107 0.027677 0.036261 0.057237 

0.023409 0.023524 0.026204 0.024145 0.026202 

0.021854 0.022761 0.022327 0.023133 0.022873 

0.022754 0.022726 0.022813 0.023184 0.023526 

0.022403 0.022833 0.022672 0.023118 0.022976 

0.22905 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.022811 0.023237 0.019257 0.016366 0.043108 

0.023369 0.023341 0.023096 0.023736 0.025337 

0.021578 0.022464 0.022991 0.022190 0.022951 

0.023468 0.023040 0.022567 0.023212 0.023480 

0.022241 0.022730 0.022987 0.022804 0.023120 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

-0.026270 0.017281 0.021681 0.027778 0.029866 

-0.032685 0.022477 0.023398 0.024282 0.018642 

1.274110 0.020917 0.022219 0.022354 0.024074 

-1.330267 0.023630 0.022338 0.023230 0.022410 

0.361232 0.021181 0.023202 0.022355 0.022603 
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Table 5.9. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate subjected to uniform load using regular node distribution 

with 𝑛𝑔 = 5. 

 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                 3.5                  4.0                 4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

0.126433 0.126763 0.126794 0.126826 0.126905 

0.126433 0.126763 0.126214 0.126764 0.126848 

0.126433 0.126764 0.126737 0.127082 0.126776 

0.126436 0.126801 0.126729 0.126834 0.126565 

0.126432 0.126248 0.127530 0.129988 0.126057 

0.126278 0.126041 0.111635 0.134735 0.131717 

0.126532 

6 6 

7 

8 

9 

10 

11 

0.126756 0.126771 0.126859 0.126768 0.126887 

0.126756 0.126771 0.126865 0.126999 0.126907 

0.126756 0.126772 0.129389 0.126375 0.126852 

0.126758 0.126783 0.127891 0.125890 0.127375 

0.126951 0.124576 0.129112 0.125334 0.129903 

0.127008 0.123518 0.129367 0.124725 0.062518 

 

10 6 

7 

8 

9 

10 

11 

0.001913 0.126790 0.126873 0.127169 0.127226 

0.017516 0.126790 0.126869 0.127334 0.127305 

-0.001358 0.126787 0.126941 0.127336 0.127672 

0.011062 0.126802 0.126606 0.126857 0.145203 

0.001619 0.126975 0.132896 0.124583 0.131461 

-0.191121 0.129141 0.135977 0.073397 0.145359 
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Table 5.10. Normalized central moments Mc (
pL2

10
)⁄   of clamped square plate subjected to uniform load using regular node distribution 

with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                  4.0                  4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

0.222778 0.228234 0.229455 0.225712 0.231116 

0.222778 0.228235 0.197497 0.229492 0.226305 

0.222779 0.228273 0.228941 0.231400 0.229474 

0.222796 0.228899 0.246187 0.228458 0.226305 

0.223014 0.225801 0.205424 0.233262 0.228310 

0.222326 0.227809 0.219824 0.284981 0.215284 

0.22905 

6 6 

7 

8 

9 

10 

11 

0.228165 0.227480 0.227903 0.231240 0.241860 

0.228163 0.227482 0.228011 0.248146 0.233347 

0.228159 0.227547 0.214909 0.188005 0.228315 

0.228170 0.227141 0.250154 0.316561 0.109148 

0.229887 0.509683 0.185733 0.199848 0.422719 

0.213197 0.240821 0.669066 0.364602 0.802180 

 

10 6 

7 

8 

9 

10 

11 

--------- 0.226334 0.223033 0.286704 0.270394 

--------- 0.226322 0.223115 0.259484 0.252641 

--------- 0.226397 0.223542 0.252302 0.247275 

--------- 0.226106 0.240292 0.003620 0.748420 

--------- 0.233004 0.237098 1.836826 1.056695 

--------- 0.320446 1.895828 0.460924 6.398777 
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Table 5.11. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped square plate subjected to uniform load using irregular node distribution 

with 𝑛𝑔 = 5. 

 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                   3.5                  4.0                  4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

0.126468 0.126901 0.127498 0.128500 0.128037 

0.126468 0.126901 0.127496 0.128494 0.128307 

0.126467 0.126901 0.127485 0.128406 0.127735 

0.126479 0.126895 0.126604 0.128657 0.127684 

0.126330 0.126486 0.128813 0.130046 0.126236 

0.125608 0.059782 0.130317 0.118880 0.164985 

0.126532 

6 6 

7 

8 

9 

10 

11 

0.126760 0.126800 0.126878 0.127062 0.127299 

0.126760 0.126800 0.126878 0.127060 0.127293 

0.126759 0.126797 0.126881 0.127047 0.127288 

0.126777 0.126796 0.126869 0.126914 0.126754 

0.127332 0.126829 0.126812 0.145521 0.121012 

0.133478 0.129931 0.137213 0.141025 0.141995 

 

10 6 

7 

8 

9 

10 

11 

-0.001433 0.126862 0.126888 0.127072 0.127260 

-0.012535 0.126862 0.126891 0.127075 0.127266 

0.147390 0.126869 0.126895 0.127055 0.127272 

-0.000455 0.126922 0.127046 0.126714 0.111222 

-0.000074 0.126081 0.128956 0.130919 0.159409 

0.000004 0.133288 -0.058304 0.043413 0.044011 
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Table 5.12. Normalized central moments Mc (
pL2

10
)⁄   of clamped square plate subjected to uniform load using irregular node distribution 

with 𝑛𝑔 = 5.

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                  4.0                  4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

0.231408 0.235186 0.262691 0.231896 0.259817 

0.231402 0.235174 0.262759 0.234450 0.252804 

0.231328 0.235297 0.265312 0.217930 0.222152 

0.230140 0.230743 0.210371 0.124551 0.238444 

0.235161 0.357763 3.927675 0.271700 0.198007 

0.234608 1.875189 0.224397 0.698783 0.378160 

0.22905 

6 6 

7 

8 

9 

10 

11 

0.233808 0.232184 0.231906 0.235700 0.253998 

0.233808 0.232174 0.231761 0.235217 0.246653 

0.233962 0.231705 0.232194 0.236094 0.210382 

0.225913 0.246280 0.242021 0.222640 0.277255 

0.197897 0.242759 0.245568 2.687105 0.146298 

0.271154 4.881884 0.357481 1.502087 0.586453 

 

10 6 

7 

8 

9 

10 

11 

0.130951 0.243652 0.233719 0.244129 0.188343 

0.198299 0.243399 0.231613 0.237502 0.191071 

0.215736 0.235826 0.236902 0.245416 0.091169 

-0.752781 0.320773 0.263018 0.287695 0.102685 

0.342614 0.565406 0.707094 2.294113 0.512227 

1.063893 4.553931 3.670624 4.143685 0.762874 
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5.4 Simply supported circular plate under uniform load 

A simply supported circular plate under uniform transverse load, shown in Fig. 5.29, 

is examined as a third numerical example [83]. The thickness, radius, Young's modulus 

and Poisson's ratio are ℎ = 1 𝑚, 𝑅 = 5 𝑚, 10.92 𝑃𝑎, and 𝑣 = 0.3, respectively. Due 

to the symmetry, one quarter of the plate is modelled. In the model of quarter circular 

plate, 817 field nodes and 768 background cells are used for regular and irregular 

node distributions. The value of applied uniform transverse load 𝑃 is 1 𝑃𝑎. Table 5.13 

to Table 5.20 provide normalized deflection and moment and comparison with exact 

solutions [76] using different values of the selectable parameters by using quartic 

spline weight function.  

 

 

 

Figure 5.9. Simply supported circular plate under uniform load. 

 

Figure 5.10. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

The normalized central displacements/moments against the number of gauss points in 

a background cell are given in Table 5.13 and Table 5.16. The effect of value of penalty 

coefficient on the displacement is given in Table 5.17 and Table 5.20. It can be found 

from the results in Table 5.13-5.20 that irregularity of node distribution shows small 

fluctuations for moments, an increase for the order of monomials does not always 

result an increase in accuracy, the smaller penalty coefficients increase the accuracy 

of results.
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Table 5.13. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported circular plate subjected to uniform load for regular node 

distribution with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5              3.0             3.5             4.0             4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.665931 0.666042 0.666102 0.666105 0.666254 

0.665933 0.666047 0.666121 0.666100 0.666272 

0.665932 0.666047 0.666106 0.666098 0.666267 

0.665932 0.666046 0.666116 0.666101 0.666265 

0.665931 0.666046 0.666108 0.666098 0.666323 

0.665600 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.665871 0.665972 0.666509 0.666368 0.666552 

0.665870 0.665971 0.666495 0.666368 0.666520 

0.665871 0.665971 0.666505 0.666368 0.666533 

0.665870 0.665971 0.666499 0.666368 0.666527 

0.665869 0.665970 0.666502 0.666367 0.666526 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.004753 0.085714 0.666467 0.667353 0.667174 

-0.027194 -0.038747 0.666436 0.667324 0.667152 

0.026288 0.080240 0.666416 0.667322 0.667153 

-0.001611 -0.031465 0.666419 0.667325 0.667147 

0.001901 0.012682 0.666414 0.667318 0.667147 
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Table 5.14. Normalized central moments Mc (
pL2

10
)⁄   of simply supported circular plate subjected to uniform load for regular node 

distribution with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                   3.5                  4.0                  4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

2.005078 2.029307 2.049496 2.053753 2.071245 

2.005447 2.029614 2.049892 2.053702 2.071104 

2.005517 2.029666 2.049522 2.053578 2.071281 

2.005341 2.029566 2.049800 2.053667 2.071092 

2.005548 2.029562 2.049635 2.053637 2.071519 

2.062344 

6 4×4 

5×5 

6×6 

7×7 

8×8 

2.040578 1.974229 2.056917 2.050842 2.086076 

2.032278 1.973078 2.055204 2.052620 2.086334 

2.037076 1.973751 2.056129 2.052318 2.085494 

2.033614 1.973492 2.056071 2.052388 2.085883 

2.036204 1.973332 2.055370 2.052219 2.085808 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

-2305.325 216.5278 2.040810 2.418292 2.311396 

602.6892 -208.0641 2.041055 2.382921 2.290838 

-935.5124 -12.22692 2.033994 2.377163 2.298903 

22.12304 165.3259 2.038753 2.388402 2.294604 

760.4520 12.31105 2.039714 2.384878 2.295134 
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Table 5.15. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported circular plate subjected to uniform load for irregular node 

distribution with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                    4.0       4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.665990 0.666097 0.666268 0.666176 0.666300 

0.665970 0.666008 0.666088 0.666062 0.666143 

0.665974 0.665983 0.666033 0.666025 0.666049 

0.665970 0.665989 0.666020 0.666022 0.666048 

0.665970 0.665983 0.666013 0.666015 0.666048 

0.665600 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.666006 0.665990 0.666038 0.666084 0.666165 

0.665993 0.665987 0.665990 0.666038 0.666067 

0.665992 0.665986 0.665987 0.666039 0.666048 

0.665992 0.665985 0.665987 0.666023 0.666051 

0.665991 0.665985 0.665985 0.666028 0.666048 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.678353 0.666031 0.666020 0.666090 0.666225 

0.670335 0.665991 0.666002 0.666043 0.666106 

0.669178 0.665982 0.665992 0.666030 0.666092 

0.668574 0.665979 0.665991 0.666022 0.666068 

0.667464 0.665977 0.665989 0.666024 0.666073 
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Table 5.16. Normalized central moments Mc (
pL2

10
)⁄   of simply supported circular plate subjected to uniform load for irregular node 

distribution with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                4.0                 4.5 

Exact 

[76] 

3 4×4 

5×5 

6×6 

7×7 

8×8 

2.059970 2.044946 2.000748 2.039810 2.052553 

2.047096 2.060184 2.071364 2.051118 2.057045 

2.051420 2.052160 2.057042 2.063346 2.058350 

2.049566 2.051656 2.052576 2.052570 2.059945 

2.049352 2.052420 2.057177 2.057336 2.060921 

2.062344 

6 4×4 

5×5 

6×6 

7×7 

8×8 

2.053699 2.059687 2.027205 1.998922 2.018057 

2.065549 2.058194 2.064023 2.080776 2.050086 

2.079550 2.057942 2.048976 2.060772 2.047013 

2.084744 2.056180 2.047976 2.053766 2.049384 

2.070313 2.055901 2.049883 2.057525 2.047272 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

40.86512 2.137203 2.068406 1.939528 2.043022 

13.32584 2.091290 1.959436 2.076705 2.086221 

6.295620 2.054560 2.016260 2.011183 2.043642 

3.465794 2.069183 2.000256 2.025050 2.055499 

2.296053 2.044456 2.011382 2.021311 2.045132 

 



54 

 

Table 5.17. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported circular plate subjected to uniform load using regular node 

distribution with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                 3.5                  4.0                 4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

0.665933 0.666047 0.666121 0.666100 0.666272 

0.665933 0.666048 0.666121 0.666100 0.666272 

0.665933 0.666048 0.666121 0.666100 0.666272 

0.665933 0.666047 0.666121 0.666100 0.666272 

0.665934 0.666048 0.666121 0.666096 0.666297 

0.665935 0.666031 0.666110 0.666279 0.665609 

0.665600 

6 6 

7 

8 

9 

10 

11 

0.665870 0.665971 0.666495 0.666368 0.666520 

0.665870 0.665971 0.666495 0.666368 0.666520 

0.665870 0.665971 0.666495 0.666368 0.666520 

0.665870 0.665971 0.666495 0.666368 0.666519 

0.665870 0.665968 0.666499 0.666368 0.666514 

0.665837 0.665958 0.666534 0.666385 0.666624 

 

10 6 

7 

8 

9 

10 

11 

-0.027194 -0.038747 0.666436 0.667324 0.667152 

0.000307 0.379188 0.666436 0.667324 0.667152 

-0.021853 0.080286 0.666436 0.667324 0.667152 

0.035885 -0.312649 0.666436 0.667324 0.667152 

-0.059948 -0.001439 0.666435 0.667329 0.667151 

0.017107 -0.215847 0.666451 0.667153 0.667138 
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Table 5.18. Normalized central moments Mc (
pL2

10
)⁄   of simply supported circular plate subjected to uniform load using regular node 

distribution with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                  4.0                  4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

2.038665 2.051753 2.062857 2.062440 2.074044 

2.038666 2.051753 2.062857 2.062441 2.074045 

2.038664 2.051759 2.062858 2.062439 2.074070 

2.038621 2.051762 2.062860 2.062476 2.074317 

2.038768 2.052071 2.062705 2.062607 2.075679 

2.037018 2.049616 2.063898 2.060986 2.045592 

2.062344 

6 6 

7 

8 

9 

10 

11 

2.038260 1.990853 2.067618 2.059376 2.092070 

2.038259 1.990852 2.067619 2.059379 2.092067 

2.038254 1.990833 2.067594 2.059388 2.092056 

2.038096 1.991126 2.067880 2.059279 2.091862 

2.039576 1.991938 2.068262 2.060470 2.095709 

2.038165 1.983722 ---------- 2.061213 2.150306 

 

10 6 

7 

8 

9 

10 

11 

40.31616 34.00839 2.047673 2.384500 2.290476 

28.69866 59.78704 2.047688 2.384441 2.290471 

13.01323 1211.134 2.047688 2.384977 2.290531 

46.24900 70.77776 2.047242 2.383174 2.290936 

15.95353 127.5712 2.049562 2.398362 2.290834 

6.116528 39.44529 2.042506 2.289148 2.298392 
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 Table 5.19. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported circular plate subjected to uniform load using irregular node 

distribution with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                   3.5                  4.0                  4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

0.665978 0.666024 0.666042 0.666043 0.666058 

0.665978 0.666024 0.666042 0.666043 0.666058 

0.665978 0.666024 0.666042 0.666043 0.666058 

0.665978 0.666024 0.666042 0.666043 0.666058 

0.665977 0.666024 0.666043 0.666042 0.666059 

0.665978 0.666028 0.666044 0.666039 0.666054 

0.665600 

6 6 

7 

8 

9 

10 

11 

0.665994 0.665996 0.666032 0.666055 0.666078 

0.665994 0.665996 0.666032 0.666055 0.666078 

0.665994 0.665996 0.666032 0.666055 0.666078 

0.665994 0.665996 0.666032 0.666055 0.666078 

0.665995 0.665995 0.666032 0.666053 0.666082 

0.665993 0.665980 0.666015 0.666053 0.666065 

 

10 6 

7 

8 

9 

10 

11 

0.671484 0.666017 0.666065 0.666102 0.666131 

0.671495 0.666017 0.666065 0.666102 0.666131 

0.671422 0.666017 0.666065 0.666102 0.666131 

0.671423 0.666018 0.666065 0.666102 0.666131 

0.672539 0.666017 0.666062 0.666111 0.666132 

0.705717 0.666027 0.666156 0.666131 0.666201 
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Table 5.20. Normalized central moments Mc (
pL2

10
)⁄   of simply supported circular plate subjected to uniform load using irregular 

node distribution with 𝑛𝑔 = 5.

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                  4.0                  4.5 

Exact 

[76] 

3 6 

7 

8 

9 

10 

11 

2.059636 2.060674 2.059273 2.056814 2.060339 

2.059636 2.060674 2.059273 2.056814 2.060339 

2.059650 2.060674 2.059276 2.056816 2.060339 

2.059532 2.060759 2.059229 2.056857 2.060350 

2.059328 2.060444 2.059252 2.056824 2.060097 

2.055589 2.060238 2.059215 2.056537 2.062454 

2.062344 

6 6 

7 

8 

9 

10 

11 

2.055047 2.036481 2.034838 2.063106 2.048245 

2.055046 2.036486 2.034840 2.063098 2.048245 

2.054987 2.036496 2.034741 2.063091 2.048287 

2.055207 2.037036 2.035031 2.062719 2.048693 

2.056375 2.034727 2.035754 2.063723 2.046757 

2.052038 2.038904 2.033516 2.068601 2.061346 

 

10 6 

7 

8 

9 

10 

11 

17.86555 2.076705 1.855043 2.064847 2.046155 

17.84520 2.076680 1.855018 2.064868 2.046150 

18.73009 2.076745 1.855431 2.064868 2.046170 

7.851396 2.075146 1.854292 2.060386 2.047742 

4.338912 2.070534 1.857914 2.046806 2.049600 

530.4940 2.168797 1.892390 2.195134 2.134634 
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5.5 Simply supported Morley’s skew plate under uniform transverse load 

The Morley’s skew plate has simply supported boundary conditions with all edge and 

is loaded with uniform transverse load as shown in Fig.5.1. The material properties are 

as follows; Young’s modulus E of material is 1092000 Pa and Poisson's ratio is ν =

0.3. The thickness and length of the plate are given by h = 20 m and L = 50 m, 

respectively. Due to the asymmetry, the whole plate is modelled. In the model of whole 

skew plate, 289 field nodes and 256 background cells are used for regular and 

irregular node distributions. The value of applied uniform transverse load 𝑃 is 1 𝑃𝑎. 

Figure 5.13 to Figure 5.24 provide variations of normalized deflection, normalized 

maximum and minimum moments with different values of the selectable parameters 

by using cubic spline weight function, respectively. 

 

 

 

Figure 5.11. Simply supported Morley’s skew plate under uniform load 

 

                           a)                                                     b) 

Figure 5.12. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

The variations according to obtained results of normalized displacements, maximum 

and minimum moments using the different values of selectable parameters values are 

presented and compared with exact solutions [77] in Figure 5.13 to Table 5.24. The 

variations against the number of gauss points in a background cell are given in Table 

5.13 to Table 5.18. The effect of value of penalty coefficient on the displacement is 

given in Table 5.19 and Table 5.24.  

ℎ 
𝐿 
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According to displacement results, it is observed that obtained results by using 

irregular node distribution are closer to exact solutions than regular ones. There is no 

significant difference between regularity and irregularity for maximum and moment 

moment results. It can be said that 3 monomials are enough to get acceptable results 

for different values of αs. However, some fluctuations are seen for value of nGauss =

8 and penalty coefficient is 1 × 1011.  
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Figure 5.13. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported skew plate subjected to uniform load and regular node distribution 

with 𝛼𝑝 = 6. 
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Figure 5.14. Variations of normalized central maximum moments Mc (
pL2

10
)⁄   against 

𝑛𝑔 for simply supported skew plate subjected to uniform load and regular node 

distribution with 𝛼𝑝 = 6. 
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Figure 5.15. Variations of normalized central minimum moments Mc (
pL2

10
)⁄   against 

𝑛𝑔 for simply supported skew plate subjected to uniform load and regular node 

distribution with 𝛼𝑝 = 6. 
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Figure 5.16. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported skew plate subjected to uniform load and irregular node distribution 

with 𝛼𝑝 = 6. 

0.9998

1.0000

1.0002

1.0004

1.0006

1.0008

1.0010

1.0012

1.0014

4 5 6 7 8

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sk
ew

p
la

te

Number of Gauss points in a background cell

𝑚=3

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.9998

1.0000

1.0002

1.0004

1.0006

1.0008

1.0010

1.0012

1.0014

4 5 6 7 8

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sk
ew

p
la

te

Number of Gauss points in a background cell

𝑚=6

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.9900

0.9950

1.0000

1.0050

1.0100

4 5 6 7

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sk
ew

p
la

te

Number of Gauss points in a background cell

𝑚=10

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact



64 

 

 

Figure 5.17. Variations of normalized central maximum moments Mc (
pL2

10
)⁄   against 

𝑛𝑔 for simply supported skew plate subjected to uniform load and irregular node 

distribution with 𝛼𝑝 = 6. 
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Figure 5.18. Variations of normalized central minimum moments Mc (
pL2

10
)⁄   against 

𝑛𝑔 for simply supported skew plate subjected to uniform load and irregular node 

distribution with 𝛼𝑝 = 6. 
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Figure 5.19. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported skew plate subjected to uniform load and regular node distribution 

with 𝑛𝑔 = 5.
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Figure 5.20. Variations of normalized central maximum moments Mc (
pL2

10
)⁄  against 

𝛼𝑝 for simply supported skew plate subjected to uniform load and regular node 

distribution with 𝑛𝑔 = 5. 
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Figure 5.21. Variations of normalized central minimum moments Mc (
pL2

10
)⁄  against 

𝛼𝑝 for simply supported skew plate subjected to uniform load and regular node 

distribution with 𝑛𝑔 = 5.
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Figure 5.22. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported skew plate subjected to uniform load and irregular node distribution 

with 𝑛𝑔 = 5. 
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Figure 5.23. Variations of normalized central maximum moments Mc (
pL2

10
)⁄  against 

𝛼𝑝 for simply supported skew plate subjected to uniform load and irregular node 

distribution with 𝑛𝑔 = 5. 
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Figure 5.24. Variations of normalized central minimum moments Mc (
pL2

10
)⁄  against 

𝛼𝑝 for simply supported skew plate subjected to uniform load and irregular node 

distribution with 𝑛𝑔 = 5. 
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CHAPTER 6 

NUMERICAL RESULTS AND DISCUSSIONS FOR BENDING ANALYSIS 

OF LAMINATED COMPOSITE PLATES 

6.1 Introduction 

Seven numerical examples have been performed to apply EFGM and FEM solutions 

on bending analyses of laminated composite plates. The numerical examples are; 

- Clamped square plate angle-ply orientation, 

- Clamped square plate cross-ply orientation, 

- Simply supported square plate angle-ply orientation, 

- Simply supported square plate cross-ply orientation, 

- Simply supported square plate asymmetric orientation, 

- Clamped circular orthotropic plate, 

- Simply supported skew plate cross-ply and angle-ply orientation, 

In this chapter; the obtained EFGM using regular and irregular node distributions and 

FEM results are compared with analytical or reference results in the literature and are 

discussed on the solution accuracy. 

Various number of nodes in the problem domain are used for EFGM and FEM 

solutions. Tables are used to represent the obtained central normalized displacements 

and stresses of numerical examples. The 4-node quadrilateral displacement based 

linear element is considered in the FEM solutions. The selectable parameters are 

chosen the best ones in the solution of isotropic plate bending problems. The value of 

penalty coefficient, the number of gauss integration points, support domain size are 

used as 106, 5𝑥5 and 3.0 in the EFGM solutions, respectively. Also, cubic spline is 

used as weight function in examples. Shear correction factor is given as 5/6 in all 

solutions. The properties of materials used in the examples are given in Table 6.1. The 

deflections of the laminated composite plates are obtained on the midpoint of the first 
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layer and are symbolized with 𝑤𝑐. The stresses of laminated composite plates are 

obtained on first layer for the 𝑥 component and second layer for the 𝑦 component and 

are symbolized with 𝜎𝑐.  

Table 6.1 Material properties of laminated composite plates 

 M1 M2 M3 M4 M5 M6 

𝑬𝟏, 𝑃𝑎 40 × 106 30 × 109 250 × 109 40 × 106 5.6 × 106 25 × 106 

𝑬𝟐, 𝑃𝑎 1.0 × 106 1.2 × 109 10 × 109 1.0 × 106 1.2 × 106 1.0 × 106 

𝑮𝟏𝟐, 𝑃𝑎 0.5 × 106 0.6 × 109 5 × 109 0.6 × 106 0.6 × 106 0.5 × 106 

𝑮𝟏𝟑, 𝑃𝑎 0.5 × 106 0.6 × 109 5 × 109 0.6 × 106 0.6 × 106 0.5 × 106 

𝑮𝟐𝟑, 𝑃𝑎 0.5 × 106 0.24 × 109 2 × 109 0.5 × 106 0.6 × 106 0.2 × 106 

𝒗𝟏𝟐 0.25 0.25 0.25 0.25 0.26 0.25 

 

6.2 Clamped square plate angle-ply orientation 

The clamped square plate has two layers having [−𝜃𝑜/𝜃𝑜] fiber orientation. The 

material is considered as M1, presented in Table 6.1, with length, 𝐿 is 10 and the 

thickness, 𝑡 is 0.02. The applied uniform load, 𝑞 is 1.0. Due to asymmetry, whole plate 

is modelled using 9, 25, 81, 289 and 1089 number of nodes in problem domain for 

EFGM and FEM solutions. The normalized central deflection results obtained from 

EFGM and FEM solutions are presented and compared with exact solutions [78] in 

Table 6.2.  

According to results in Table 6.2, there is no significant difference between EFGM 

solutions using regular and irregular node distributions. However, it is observed that 

stability of FEM solutions occurs earlier than EFGM solutions. The closer results are 

obtained at the fiber orientations of [−25𝑜 +25𝑜]⁄ , [−35𝑜 +35𝑜]⁄  and 

[−45𝑜 +45𝑜]⁄  than [−5𝑜 +5𝑜]⁄  and [− 15𝑜 +15𝑜]⁄  ones. Also, it is seen that an 

increase in number of node gives more accurate results as expected.
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Table 6.2. Normalized central deflections 𝑤𝑐 ∗ (
100𝐸2ℎ

3

𝑞𝐿4
⁄ )  for clamped square plate angle-ply orientation. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[78] 

−𝟓𝒐/+𝟓𝒐 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

0.000120 0.107109 0.100520 0.103496 0.104289 

0.000077 0.045024 0.099546 0.103130 0.103451 

0.000077 0.010272 0.096953 0.102832 0.103492 

0.0946 

 

−𝟏𝟓𝒐/+𝟏𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.000120 0.196349 0.193969 0.197657 0.198648 

0.000077 0.053431 0.175606 0.194078 0.196739 

0.000077 0.010694 0.164672 0.190876 0.196273 

0.1691 

−𝟐𝟓𝒐/+𝟐𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.000120 0.256195 0.254440 0.257632 0.258483 

0.000077 0.056140 0.216774 0.249666 0.254993 

0.000077 0.010809 0.199583 0.243300 0.253976 

0.2355 

−𝟑𝟓𝒐/+𝟑𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.000120 0.290350 0.285876 0.287706 0.288222 

0.000077 0.057086 0.234245 0.276630 0.283658 

0.000077 0.010845 0.214170 0.268053 0.282325 

0.2763 

−𝟒𝟓𝒐/+𝟒𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.000120 0.302215 0.295981 0.297075 0.297407 

0.000077 0.057338 0.239247 0.284894 0.292472 

0.000077 0.010855 0.218913 0.275591 0.291049 

0.2890 



75 

 

6.3 Clamped square plate cross-ply orientation 

The clamped laminated square plate with four different aspect ratios of ℎ ⁄ 𝐿 = 0.1, 

ℎ ⁄ 𝐿 = 0.05, ℎ ⁄ 𝐿 = 0.02 and ℎ ⁄ 𝐿 = 0.01 are analyzed [84] to determine 

deformations under the uniformly distributed transverse load 𝑞 = 1.0. The 

unidirectional laminate of material M2, presented in Table 6.1, is used with four layer 

of [0°/90°/90°/0°] orientation. Due to the symmetry, only a quarter of plate is 

modelled using 9, 25, 81, 289 and 1089 number of nodes in the EFGM and FEM 

solutions. The dimensionless central normalized deflections and stresses of plate are 

presented and compared with reference solutions [79] in Table 6.3 to 6.5.  

Although some stability problems can be observed in solutions, acceptable results, 

especially in the usage of 81, 289 and 1089 number of nodes in the problem domain, 

have been obtained at all thickness/span ratios. The FEM solutions and EFGM 

solutions using regular node distribution are similar characteristics in the usage of 

higher number of nodes. The EFGM solutions using irregular node distribution is not 

reliable for this example since it has not stability even usage of 1089 number of nodes 

in the problem domain. 

 

 

 

 

 

 

 

 

 

 



76 

 

 

Table 6.3. Normalized central deflections 𝑤𝑐 ∗ (
100𝐸2ℎ

3

𝑞𝐿4
⁄ )  for clamped square plate cross-ply orientation. 

𝒉/𝑳 Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Umasree 

 (2009) 

0.1 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

0.486870 0.469849 0.466177 0.465328 0.468663 

0.456036 0.465089 0.464637 0.463908 0.465349 

0.445830 0.464201 0.467845 0.465675 0.464425 

0.4651 

 

0.05 FEM 

EFGM (regular) 

EFGM (irregular) 

0.234835 0.234359 0.234190 0.234183 0.237496 

0.193383 0.232024 0.233620 0.233264 0.234940 

0.191572 0.233289 0.236746 0.234754 0.233618 

0.2342 

0.02 FEM 

EFGM (regular) 

EFGM (irregular) 

0.149961 0.156778 0.158426 0.158866 0.161679 

0.057701 0.152424 0.158020 0.158000 0.159474 

0.059125 0.156465 0.160390 0.159137 0.158332 

0.1590 

0.01 FEM 

EFGM (regular) 

EFGM (irregular) 

0.136678 0.144799 0.146825 0.147355 0.149549 

0.017597 0.136933 0.146091 0.146423 0.147563 

0.018312 0.142701 0.147528 0.147233 0.146796 

0.1475 
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Table 6.4. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑥 direction for clamped square plate cross-ply orientation. 

𝒉/𝑳 Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Umasree 

 (2009) 

0.1 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

0.108627 0.062883 0.216119 0.222794 0.232011 

0.099846 0.178515 0.198981 0.203050 0.209034 

0.099846 0.186854 0.207505 0.211147 0.233421 

0.2251 

 

0.05 FEM 

EFGM (regular) 

EFGM (irregular) 

0.112652 0.077509 0.254294 0.262198 0.267739 

0.094862 0.213884 0.237190 0.241519 0.245117 

0.096575 0.221354 0.243390 0.249630 0.276463 

0.2649 

0.02 FEM 

EFGM (regular) 

EFGM (irregular) 

0.101138 0.088500 0.274363 0.282196 0.284693 

0.043443 0.229565 0.260819 0.262963 0.263241 

0.000077 0.238793 0.264331 0.268755 0.297891 

0.2848 

0.01 FEM 

EFGM (regular) 

EFGM (irregular) 

0.091784 0.091487 0.277866 0.285492 0.287689 

0.045234 0.226709 0.267798 0.270234 0.267989 

0.015135 0.240894 0.269076 0.271158 0.303518 

0.2880 
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Table 6.5. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑦 direction for clamped square plate cross-ply orientation. 

𝒉/𝑳 Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Umasree 

 (2009) 

0.1 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

0.267717 0.220471 0.258811 0.257558 0.259777 

0.129153 0.222633 0.241980 0.245497 0.247761 

0.096998 0.228414 0.251496 0.243411 0.225320 

0.2572 

 

0.05 FEM 

EFGM (regular) 

EFGM (irregular) 

0.191338 0.152727 0.164716 0.162881 0.166876 

0.072665 0.143834 0.154623 0.155121 0.157609 

0.119044 0.148857 0.161135 0.153765 0.142673 

0.1623 

0.02 FEM 

EFGM (regular) 

EFGM (irregular) 

0.144280 0.114994 0.113172 0.111746 0.115308 

0.023768 0.096981 0.107927 0.107015 0.108132 

0.023910 0.107721 0.109018 0.104416 0.098836 

0.1113 

0.01 FEM 

EFGM (regular) 

EFGM (irregular) 

0.135831 0.108403 0.103895 0.102656 0.105220 

0.007345 0.086856 0.099850 0.099632 0.099703 

0.005977 0.104334 0.096759 0.095059 0.091261 

0.1012 
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6.4 Simply supported square plate angle-ply orientation 

The simply supported square plate has two layers with [−𝜃𝑜/𝜃𝑜] fiber orientation. 

The material is considered as M1, presented in Table 6.1, having length, 𝐿 is 10 and 

the thickness, 𝑡 is 0.02. The applied uniform load, 𝑞 is 1.0. Due to asymmetry, whole 

plate is modelled using 9, 25, 81, 289 and 1089 number of nodes in problem domain 

for EFGM and FEM solutions. The normalized central deflection results obtained from 

EFGM and FEM solutions are presented and compared with exact solutions [78] in 

Table 6.6.  

From the results of this example, it seems that FEM solutions have better results than 

EFGM solutions on the solution accuracy. It is observed that stability of FEM solutions 

occurs after the usage 25 number of node. However, 289 or 1089 number of node 

must be used to get acceptable results in the EFGM solutions. Also, the EFGM 

solutions using regular node distribution has the closer results than irregular ones. 

 

 

 

 

 

 

 

 

 

 

 



80 

 

Table 6.6. Normalized central deflections 𝑤𝑐 ∗ (
100𝐸2ℎ

3

𝑞𝐿4
⁄ )  for simply supported square plate angle-ply orientation. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[78] 

−𝟓𝒐/+𝟓𝒐 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

0.367679 0.475091 0.476975 0.473006 0.473607 

0.092492 0.337607 0.466782 0.475550 0.472790 

0.059945 0.120580 0.445527 0.465969 0.472620 

0.4736 

 

−𝟏𝟓𝒐/+𝟏𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.548045 0.704311 0.720024 0.713363 0.714243 

0.099539 0.429831 0.677921 0.713447 0.713486 

0.062914 0.131511 0.637184 0.691953 0.711491 

0.7142 

−𝟐𝟓𝒐/+𝟐𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.618079 0.772782 0.789009 0.786093 0.787070 

0.100583 0.448338 0.731024 0.779325 0.781995 

0.063377 0.133251 0.684872 0.753283 0.779058 

0.7870 

−𝟑𝟓𝒐/+𝟑𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.608697 0.744053 0.754794 0.755206 0.756085 

0.100037 0.435543 0.698472 0.744468 0.747576 

0.063135 0.132015 0.656412 0.720478 0.744752 

0.7561 

−𝟒𝟓𝒐/+𝟒𝟓𝒐 FEM 

EFGM (regular) 

EFGM (irregular) 

0.598153 0.723813 0.729709 0.731630 0.732267 

0.099687 0.426204 0.674919 0.718336 0.721392 

0.062970 0.131122 0.635699 0.696859 0.718744 

0.7322 
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6.5 Simply supported square plate cross-ply orientation 

The deformation and stresses of a simply supported square laminated plate subjected 

to a uniformly distributed transverse load, 𝑞 = 105 is analysed [84] using different 

lamination schemes with thickness/span ratios of ℎ ⁄ 𝐿 = 0.1, ℎ ⁄ 𝐿 = 0.05 and ℎ ⁄

𝐿 = 0.01 where length, 𝐿 𝑖𝑠 20. The laminates used are symmetric cross-plies with 

three, four, five and seven layers of [0°/90°/0°], [0°/90°/90°/0°], [0°/90°/0°/90°/

0°] and [0°/90°/90°/0°/90°/90°/0°] orientations, respectively. The material M3, 

presented in Table 6.1, is used in this example.  

Due to the symmetry, only a quarter of plate is modelled using 9, 25, 81, 289 and 

1089 number of nodes in the EFGM and FEM solutions. The normalized central 

deflections and stresses according to thickness/span ratios of ℎ ⁄ 𝐿 = 0.1, ℎ ⁄ 𝐿 =

0.05 and ℎ ⁄ 𝐿 = 0.01 are presented and compared with exact solutions [80] in Tables 

6.7 to 6.15, respectively. 

According to results in Tables 6.7 to 6.15, stability problem, especially in the stress 

solutions, has been occurred in the usage of EFGM using irregular node distribution. 

It is seen that there is no significant difference between EFGM solutions using regular 

and the FEM solutions. While all solutions have acceptable results, FEM ones are 

closer to exact solution.
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Table 6.7. Normalized central deflections 𝑤𝑐 ∗ (
100𝐸2ℎ

3

𝑞𝐿4
⁄ )  according to ℎ ⁄ 𝐿 = 0.1 for simply supported square plate cross-ply 

orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

1.052046 1.027597 1.023212 1.022245 1.023610 

1.019537 1.024719 1.027076 1.027261 1.027900 

1.025495 1.023276 1.027458 1.028617 1.029729 

1.0219 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

1.043563 1.028626 1.025836 1.025218 1.026448 

1.015265 1.026491 1.029009 1.029220 1.029748 

1.015072 1.025677 1.029085 1.030162 1.031657 

1.025 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.982837 0.974351 0.973075 0.972823 0.973888 

0.960644 0.972762 0.975322 0.975547 0.976021 

0.957094 0.972063 0.975205 0.976301 0.978003 

0.9727 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.963368 0.957785 0.957160 0.957065 0.957963 

0.943319 0.956100 0.958683 0.958912 0.959291 

0.937504 0.955692 0.958369 0.959280 0.961339 

0.9643 
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Table 6.8. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑥 direction according to ℎ ⁄ 𝐿 = 0.1 for simply supported square plate cross-

ply orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.455712 0.699143 0.754124 0.767498 0.768027 

0.588401 0.689606 0.708955 0.714686 0.716178 

0.621959 0.713637 0.709024 0.732600 0.828454 

0.7719 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.438888 0.678911 0.738171 0.752911 0.754095 

0.574024 0.675832 0.695763 0.701527 0.703096 

0.605755 0.698983 0.696232 0.717860 0.802960 

0.7577 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.445260 0.684957 0.744964 0.759976 0.761259 

0.581295 0.683995 0.703838 0.709503 0.711006 

0.611138 0.706117 0.704118 0.724417 0.801022 

0.7649 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.441579 0.678758 0.739410 0.754657 0.756418 

0.582100 0.682405 0.702175 0.707655 0.709171 

0.610859 0.702878 0.702214 0.719248 0.777554 

0.7605 
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Table 6.9. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑦 direction according to ℎ ⁄ 𝐿 = 0.1 for simply supported square plate cross-

ply orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.365614 0.321747 0.310837 0.308275 0.308222 

0.297402 0.304159 0.302031 0.300357 0.300022 

0.273055 0.309793 0.306789 0.294096 0.280569 

0.3072 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.527118 0.508839 0.502772 0.501253 0.501335 

0.424910 0.473583 0.481821 0.483237 0.483861 

0.385739 0.485263 0.494260 0.478467 0.443306 

0.5006 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.556814 0.555030 0.553237 0.552757 0.553031 

0.452208 0.514081 0.525689 0.528306 0.529363 

0.407074 0.529067 0.542938 0.527897 0.480935 

0.5525 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.612591 0.627640 0.630344 0.630974 0.631402 

0.497607 0.292863 0.592466 0.596438 0.598035 

0.445966 0.596988 0.616957 0.603219 0.537153 

0.6016 
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Table 6.10. Normalized central deflections 𝑤𝑐 ∗ (
100𝐸2ℎ

3

𝑞𝐿4
⁄ )  according to ℎ ⁄ 𝐿 = 0.05 for simply supported square plate cross-ply 

orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.755446 0.756019 0.756870 0.757149 0.757642 

0.728314 0.754624 0.759073 0.759642 0.760014 

0.736906 0.755724 0.759163 0.759996 0.762093 

0.7572 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.757584 0.766561 0.768664 0.769201 0.769706 

0.730094 0.766916 0.771171 0.771757 0.772103 

0.737088 0.768028 0.771197 0.771974 0.774128 

0.7694 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.741153 0.754184 0.757161 0.757901 0.758386 

0.714957 0.755265 0.759489 0.760104 0.760437 

0.717356 0.756522 0.759386 0.760239 0.762470 

0.7581 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.736030 0.751419 0.754906 0.755767 0.756227 

0.711101 0.752913 0.757100 0.757720 0.758028 

0.712384 0.754398 0.756882 0.757703 0.760053 

0.7575 
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Table 6.11. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑥 direction according to ℎ ⁄ 𝐿 = 0.05 for simply supported square plate cross-

ply orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.473739 0.725602 0.780732 0.793989 0.796477 

0.596434 0.722359 0.739139 0.741852 0.743464 

0.619996 0.740241 0.741644 0.759162 0.856243 

0.7983 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.465016 0.720489 0.783723 0.799353 0.802557 

0.592680 0.725962 0.744277 0.747626 0.749387 

0.616515 0.743711 0.747176 0.763910 0.852101 

0.8045 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.465563 0.720982 0.786327 0.802638 0.806114 

0.593268 0.730405 0.749015 0.752065 0.753702 

0.615019 0.746891 0.751720 0.766781 0.845646 

0.8080 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.462390 0.715284 0.781688 0.798381 0.802090 

0.593226 0.728932 0.747714 0.750886 0.752470 

0.614915 0.744439 0.749829 0.762226 0.822120 

0.8059 
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Table 6.12. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑦 direction according to ℎ ⁄ 𝐿 = 0.05 for simply supported square plate cross-

ply orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.276912 0.235296 0.225788 0.223643 0.223068 

0.223186 0.223362 0.219464 0.216176 0.214897 

0.208076 0.228098 0.219466 0.211058 0.204767 

0.2227 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.421400 0.404673 0.398828 0.397404 0.397003 

0.332215 0.378395 0.382963 0.381740 0.381293 

0.307634 0.386027 0.389491 0.377257 0.351861 

0.3968 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.488002 0.487295 0.485234 0.484693 0.484511 

0.384084 0.453642 0.462247 0.462369 0.462492 

0.352561 0.464066 0.474268 0.461200 0.421963 

0.4844 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.569393 0.586553 0.589014 0.589571 0.589692 

0.447311 0.543069 0.556096 0.557375 0.558111 

0.409070 0.557759 0.576017 0.562786 0.502377 

0.5475 
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Table 6.13. Normalized central deflections 𝑤𝑐 ∗ (
100𝐸2ℎ

3

𝑞𝐿4
⁄ )  according to ℎ ⁄ 𝐿 = 0.01 for simply supported square plate cross-ply 

orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.656733 0.666003 0.668731 0.669453 0.669659 

0.520528 0.657996 0.669175 0.670721 0.671185 

0.418022 0.662874 0.668804 0.670672 0.673310 

0.6697 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.660659 0.678133 0.682027 0.682989 0.683248 

0.520692 0.671283 0.682956 0.684610 0.685088 

0.423705 0.674744 0.682860 0.684545 0.687101 

0.6833 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.661104 0.681476 0.685918 0.687001 0.687287 

0.518291 0.674850 0.686934 0.688664 0.689156 

0.422738 0.677858 0.686871 0.688596 0.691118 

0.6874 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.661661 0.684081 0.688948 0.690129 0.690435 

0.517722 0.677895 0.690063 0.691814 0.692308 

0.430155 0.680875 0.690034 0.691719 0.694232 

0.6896 
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Table 6.14. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑥 direction according to ℎ ⁄ 𝐿 = 0.01 for simply supported square plate cross-

ply orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.480457 0.735678 0.789847 0.802902 0.806122 

0.487330 0.736080 0.774068 0.768696 0.758989 

0.399531 0.186854 0.768303 0.765377 0.871963 

0.8072 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.474142 0.737063 0.801675 0.817564 0.821512 

0.487286 0.747363 0.787459 0.782647 0.773416 

0.403905 0.766157 0.784718 0.779292 0.875919 

0.8420 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.472071 0.736030 0.803958 0.820840 0.825046 

0.485274 0.749629 0.791820 0.787939 0.778372 

0.404007 0.768735 0.788764 0.781890 0.870299 

0.8264 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.469797 0.731247 0.800707 0.818130 0.822481 

0.484705 0.748021 0.790451 0.787169 0.778090 

0.410243 0.766784 0.787761 0.778841 0.847160 

0.8260 
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Table 6.15. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ )  in the 𝑦 direction according to ℎ ⁄ 𝐿 = 0.01 for simply supported square plate cross-

ply orientations. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Exact 

[80] 

𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.243989 0.203523 0.195223 0.193337 0.192860 

0.162723 0.192208 0.192325 0.190778 0.187996 

0.122505 0.209076 0.175232 0.180446 0.181997 

0.1925 

 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.379438 0.362880 0.357645 0.356406 0.356087 

0.244080 0.336190 0.349673 0.349371 0.345107 

0.185587 0.353280 0.335124 0.335138 0.319635 

0.3558 

𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.459420 0.458635 0.456658 0.456164 0.456033 

0.291493 0.422876 0.444394 0.444107 0.438923 

0.222590 0.440500 0.432956 0.430284 0.400028 

0.4559 

𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎°/𝟗𝟎°/𝟗𝟎°/𝟎° FEM 

EFGM (regular) 

EFGM (irregular) 

0.550848 0.568400 0.570794 0.571334 0.571463 

0.346518 0.523138 0.553082 0.552396 0.545728 

0.268718 0.540908 0.546767 0.540762 0.488047 

0.5241 
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6.6 Simply supported square plate asymmetric angle-ply orientation 

The deformation of an angle-ply simply supported square plate subjected to a 

uniformly distributed transverse load, 𝑞 = 1 is examined [84] using four layers 

[𝜃°/−𝜃°/𝜃°/−𝜃°]. The solutions are presented with a constant thickness-to-span ratio, 

ℎ ⁄ 𝐿, of 0.1. The material M4 is used, presented in Table 6.1, in this example. 

Because of the asymmetry, the whole plate is modelled using 9, 25, 81, 289 and 1089 

number of nodes in the EFGM and FEM solutions. Table 6.16 presents the normalized 

center deflection of plate and comparison of FEM, EFGM and reference [80] solutions.  

It is visible that the accuracy of FEM solutions is more accurate than the EFGM. Also, 

EFGM solutions have some stability problems that can be seen fluctuations in Table 

6.16. 
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Table 6.16. Normalized central deflections 𝑤𝑐 ∗ (
1000𝐸2ℎ

3

𝑞𝐿4
⁄ )  for simply supported square plate asymmetric angle-ply orientation. 

Fiber orientation Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Reddy  

(1997) 

+𝟓𝒐 − 𝟓𝒐/+𝟓𝒐/−𝟓𝒐 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

7.472839 7.114253 6.795589 6.757223 6.745030 

6.411681 6.926699 6.764587 6.749272 6.746870 

6.431757 6.775039 6.758258 6.732890 6.757196 

6.741 

 

+𝟏𝟓𝒐 − 𝟏𝟓𝒐/+𝟏𝟓𝒐/−𝟏𝟓𝒐 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

6.689615 6.354364 6.118003 6.113182 6.093797 

5.932476 6.265513 6.112581 6.080432 6.070224 

5.914719 6.123560 6.100832 6.080572 6.079005 

6.086 

+𝟑𝟎𝒐 − 𝟑𝟎𝒐/+𝟑𝟎𝒐/−𝟑𝟎𝒐 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

5.454464 5.040349 4.858959 4.868983 4.836944 

5.010505 5.080280 4.878929 4.818350 4.795679 

4.949157 4.959900 4.862130 4.863859 4.803643 

4.825 

+𝟒𝟓𝒐 − 𝟒𝟓𝒐/+𝟒𝟓𝒐/−𝟒𝟓𝒐 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

5.070192 4.622783 4.462457 4.466135 4.436225 

4.673825 4.674571 4.484520 4.419934 4.395635 

4.605979 4.571114 4.485889 4.472319 4.400596 

4.426 
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6.7 Clamped circular orthotropic plate 

The clamped circular plate has one layer with [0𝑜] fiber orientation. The orthotropic 

material is considered as M5, presented in Table 6.1, having radius, 𝑅 is 5. The plate 

have six different aspect ratios of 𝑅 ⁄ ℎ = 1000, 𝑅 ⁄ ℎ = 100, 𝑅 ⁄ ℎ = 50 ,𝑅 ⁄ ℎ =

25, 𝑅 ⁄ ℎ = 16.67  and 𝑅 ⁄ ℎ = 10 are analyzed to determine deformations under the 

uniformly distributed transverse load 𝑞 = 1.0.  

Due to symmetry, only one quarter of the plate is modelled using 37, 127, 271 and 

817 number of nodes in problem domain for EFGM and FEM solutions. The 

normalized central deformations of the circular plate in all solutions is 𝑤 = 𝑤𝑐 ∗
𝐷

𝑞𝑅4
 

with 𝐷 = 3(𝐷11 +𝐷22) + 2(𝐷12 + 2𝐷66) where 𝐷11, 𝐷22, 𝐷12, 𝐷66 are bending 

rigidity coefficients of the laminate. The normalized central deflection results obtained 

from EFGM and FEM solutions are presented and compared with reference solution 

[81] in Table 6.17.  

From the results in Table 6.17, the EFGM solutions have better solution accuracy than 

FEM solutions. It is observed that various radius/thickness, 𝑅 ⁄ ℎ ratios did not cause 

any problem and acceptable results have been achieved in solutions. Also, it can be 

seen that increasing the usage of number of node in the problem domain gives more 

accurate results.
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Table 6.17. Normalized central deflections 𝑤𝑐 ∗ (
𝐷
𝑞𝑅4⁄ ) for clamped circular orthotropic plate. 

𝑹/𝒉 Method Number of nodes in the problem domain 

           37           127           271           817                

Nguyen  

(2007) 

1000 

 

FEM 

EFGM (regular) 

EFGM (irregular) 

0.121796 0.123743 0.124564 0.124927  

0.029822 0.085802 0.101390 0.116942  

0.025682 0.075350 0.096190 0.112665  

0.1258 

 

100 FEM 

EFGM (regular) 

EFGM (irregular) 

0.122014 0.124431 0.124832 0.125065  

0.121879 0.125882 0.126018 0.126057  

0.118743 0.125751 0.125961 0.125998  

0.1259 

50 FEM 

EFGM (regular) 

EFGM (irregular) 

0.122536 0.124887 0.125260 0.125483  

0.126078 0.127049 0.126805 0.126582  

0.125585 0.127093 0.126813 0.126563  

0.1264 

25 FEM 

EFGM (regular) 

EFGM (irregular) 

0.124307 0.126562 0.126925 0.127144  

0.129426 0.129049 0.128632 0.128300  

0.130160 0.129045 0.128629 0.128286  

0.1280 

16.67 FEM 

EFGM (regular) 

EFGM (irregular) 

0.127092 0.129309 0.129671 0.282196  

0.133001 0.131939 0.131454 0.129890  

0.133768 0.131891 0.131441 0.131074  

0.1308 

10 FEM 

EFGM (regular) 

EFGM (irregular) 

0.135734 0.137943 0.138310 0.138530  

0.142633 0.140774 0.140220 0.139829  

0.143118 0.140684 0.140199 0.139815  

0.1394 
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6.8 Simply supported skew plate cross-ply and angle-ply orientations 

The simply supported skew plates have three layers with [0°/90°/0°] and 

[45°/−45°/45°] fiber orientations. The material is considered as M6, 

presented in Table 6.1, having length, 𝐿 is 10 and the thickness, 𝑡 is 0.1. The 

applied uniform load, 𝑞 is 1.0.  

Due to asymmetry, whole plate is modelled using 9, 25, 81, 289 and 1089 

number of nodes in problem domain for EFGM and FEM solutions. Table 

6.18 and 6.19 show that the normalized central deflection and stress results 

obtained from EFGM and FEM solutions for angle-ply and cross-ply 

orientation. All results are considered with two various skew angle 15𝑜 and 

30𝑜 which are relative to vertical axis of the plate, and are compared with 

reference solutions [82] in Table 6.18 and 6.19.  

According to obtained results, it seems that FEM and EFGM solutions show 

similar characteristics in deflection results, but FEM solutions have better 

solution accuracy than EFGM solutions for stress results. It is observed that 

289 or 1089 number of node must be used to get acceptable results in the 

FEM and EFGM solutions.  
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Table 6.18. Normalized central deflections 𝑤𝑐 ∗ (
1000𝐸2ℎ

3

𝑞𝐿4
⁄ )  for simply supported skew plate angle-ply and cross-ply orientations. 

Fiber orientation Skew  

Angle 

Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Chakrabarti 

(2004) 

+𝟒𝟓𝒐/−𝟒𝟓𝒐/+𝟒𝟓𝒐 

 

𝟏𝟓𝒐 FEM 

EFGM (regular) 

5.840285 6.429780 6.467096 6.521025 6.546342 

1.122156 5.474735 6.249868 6.382581 6.457338 

6.4332 

 

 𝟑𝟎𝒐 FEM 

EFGM (regular) 

5.842700 5.836345 5.820975 5.837574 5.846956 

0.431166 5.159519 5.686199 5.774858 5.806842 

5.7904 

𝟎𝒐/𝟗𝟎𝒐/𝟎𝒐 𝟏𝟓𝒐 FEM 

EFGM (regular) 

5.192128 6.358929 6.404640 6.426853 6.434468 

1.140922 5.944378 6.420126 6.439451 6.452504 

6.4321 

 𝟑𝟎𝒐 FEM 

EFGM (regular) 

4.718031 5.426954 5.448885 5.476687 5.485953 

0.400004 4.951664 5.413463 5.487663 5.510602 

5.4654 
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Table 6.19. Normalized central stresses 𝜎𝑐 ∗ (
ℎ2

𝑞𝐿2⁄ ) in the 𝑥 direction for simply supported skew plate angle-ply and cross-ply 

orientations. 

Fiber orientation Skew  

Angle 

Method Number of nodes in the problem domain 

    9                25                  81                  289                1089 

Chakrabarti 

(2004) 

+𝟒𝟓𝒐/−𝟒𝟓𝒐/+𝟒𝟓𝒐 

 

𝟏𝟓𝒐 FEM 

EFGM (regular) 

0.111112 0.265031 0.270111 0.271836 0.273139 

0.026613 0.184604 0.245983 0.257516 0.261057 

0.2693 

 

 𝟑𝟎𝒐 FEM 

EFGM (regular) 

0.147447 0.253191 0.257896 0.264100 0.265602 

0.011362 0.179738 0.237999 0.251119 0.254626 

0.2651 

𝟎𝒐/𝟗𝟎𝒐/𝟎𝒐 𝟏𝟓𝒐 FEM 

EFGM (regular) 

0.261322 0.641146 0.743913 0.767035 0.772915 

0.055785 0.488790 0.697461 0.751603 0.766647 

0.7812 

 𝟑𝟎𝒐 FEM 

EFGM (regular) 

0.238854 0.547272 0.633941 0.653867 0.659471 

0.019955 0.405482 0.588878 0.638208 0.652156 

0.6634 
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CHAPTER 7 

CONCLUSIONS 

In the first part of the study, the effects of selectable parameters such as size of support 

domain, number of monomials, type of weight function, number of integration points 

in a background cell and value of penalty coefficient, on the accuracy of the EFGM 

solutions of the isotropic Reissner-Mindlin plate bending have been investigated. Four 

numerical examples as benchmark problems are solved using regular and irregular 

node distributions. According to obtained results, the regularity and irregularity do not 

so much effects in the solutions. The number of integration points in a background cell 

has some fluctuations for the value of 4 and 8 at the examined range. Also, the value 

of penalty coefficient does not exhibit any accuracy loss or fluctuation up to 1 × 109. 

Finally, the smaller support domain size gives more accurate results. These 

assessments are valid for both displacement and moment. 

From the results of isotropic plate solutions, 3.0, 5 × 5, 1 × 106 for an isotropic plate 

bending problem can be suggested as size of support domain , number of gauss points 

in a background cell, and value of penalty coefficient, respectively. These values may 

not be the optimum values for every situation, however, in general, give the results 

with sufficient accuracy.  

In the second part of the study, the EFGM reliability on the solution accuracy of 

bending analysis of laminated composite plates has been examined by comparing FEM 

solutions and exact solutions in the literature. Seven numerical examples have been 

performed to apply EFGM and FEM solutions. According to obtained results, the 

usage of small number of nodes in the solutions is not sufficient accuracy since 

laminated plates have a complex structure. 289 and 1089 number of nodes must be 

used to get acceptable results in general. However, the EFGM solutions obtained by 

using regular and irregular node distributions have close results to exact solutions and 

show higher convergency rate than FEM solutions in some numerical examples. Also, 

there is no significant difference between solutions of regular and irregular node 
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distributions. In conclusion, the EFGM is a reliable method in the bending analyses of 

laminated composite plates. 
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