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ABSTRACT

BENDING ANALYSIS OF COMPOSITE PLATES USING MESHFREE
METHODS

OZBEK, Ozkan
M.Sc. in Mechanical Eng.
Supervisor: Assist. Prof. Dr. Omer Yavuz BOZKURT
August 2015, 109 pages

In this study, bending problems of isotropic and layered orthotropic plates are
presented using Element-Free Galerkin Method (EFGM). In the first section; the
effects of selectable parameters of EFGM such as type of weight function, support
domain size, number of Gauss integration point in a background cell, number of
monomials and value of penalty coefficient are investigated on the solution accuracy
of EFGM solutions and optimum values of them are determined for related examples
of isotropic plates. In the second section; the reliability of EFGM solutions are
examined by considering various number of layers, fiber orientation and thickness to
span ratio for layered orthotropic plate bending problems.

EFGM algorithms have been developed on MATLAB programming environment for
both sections. Examples are solved by using developed algorithms and obtained results

are compared with analytical results or reference study results in the literature.

Keywords: Meshfree methods, Element-free Galerkin method, isotropic and layered
orthotropic plate bending



OZET

AGSIZ YONTEMLER iLE KOMPOZIT PLAKALARIN EGILME ANALIZi

OZBEK, Ozkan
Yiiksek Lisans Tezi, Mak Miih. Bolimii
Tez Yoneticisi: Yrd. Dog. Dr. Omer Yavuz BOZKURT
Agustos 2015, 109 sayfa

Bu c¢alismada, izotropik ve tabakali ortotropik plaka egilme problemleri, Eleman
Bagimsiz Galerkin Yoéntemi (EFGM) kullanilarak ¢oziimlenmistir. Ik kisimda
izotropik plakalar i¢in Eleman Bagimsiz Galerkin Yonteminin sahip oldugu agirlik
fonksiyonu tiirli, destek etki biiyiikliigii, arka plan hiicrelerindeki entegrasyon nokta
sayisi, monomiyallerin derecesi ve ceza katsayist gibi secilebilir parametrelerinin
¢oziim dogruluguna etkisi arastirilmis ve ilgili problemlere gore parametrelerin
optimum degerleri belirlenmistir. Ikinci kisimda ise tabakali ortotropik plaka egilme
problemlerinde ¢esitli tabaka sayisi, fiber yonelmesi ve kalinlik/uzunluk oranina gore

EFGM coziimlerinin giivenilirligi incelenmistir.

Her iki kisim icin MATLAB programi tizerinde EFGM algoritmalar1 gelistirilmistir.
Problemler gelistirilen algoritmalara gore ¢ozlilmiis ve elde edilen sonuglar
literatlirdeki analitik sonuglari veya analitik sonucu bulunmayan problemler igin

referans sonuglari ile karsilagtirilmistir.

Anahtar Kelimeler: Agsiz yontemler, Eleman Bagimsiz Galerkin Yontemi,
izotropik ve ortotropik plaka biikme
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CHAPTER 1
INTRODUCTION
1.1. General Introduction

The analysis of a system prior to its production in real life has a crucial importance in
engineering applications. Analysis step is one of the most careful parts in engineering
design, and in todays world, it is generally performed by using various numerical
methods such as Finite Element Method (FEM), Boundary Element Method (BEM),
Finite Difference Method (FDM), Meshfree Methods etc. The FEM can be accepted
as the most popular and preferred one among these methods due to its successful
applications in a wide range of engineering areas. The basic feature of FEM is to divide
the whole domain into finite number of simpler small elements. This is called as finite

element discretization which is used to create the finite element mesh of the domain.
FEM has several advantages;

- Ability to tackle problems with irregular boundaries,
- Ability to deal with complex boundary conditions,
- Easy modifications to improve solution quality,

- Handling non-linear problems with linear approximations.

Although having these properties, FEM has the following limitations;

- Time consuming remesh procedure requirements for the geometry changes of
problem domain

- Reliability problems for the stress evaluations,

- Remarkable accuracy losts for the large deformation problems,

- Discontinuity problems for the derivatives of field variables at the boundaries
of elements,

- Mesh quality dependent solution accuracy.



Meshfree methods have been developed as a new numerical approach to overcome
above issues and improved remarkably in last decade. The mesh based discretization
scheme for the problem domain definition is not found in the solution procedure of
meshfree methods. A set of arbitrarily scattered nodes are used to define problem
domain and its boundaries in the meshfree methods rather than used mesh in FEM.
The local domains are constructed using instantly selected field nodes and the
interpolation of field variables are carried out using the nodes of local domains.
Meshfree methods suffer from some problems such as stability, singularity etc. In
recent years, a lot of research has attempted to solve and improve the meshfree

methods.

1.2 Research Objectives and Tasks

The main goals of this thesis are the investigation of effect of the selectable parameters
such as weight functions, number of gauss points in a background cell, size of support
domain, value of penalty coefficient and number of monomials on the solution
accuracy of element-free Galerkin method (EFGM) for the non-layered isotropic plate
bending problems, and the analysis of layered orthotropic plate bending problems
using EFGM.

The research tasks can be shown as follows;

l. An overview of some important meshfree methods in the literature.

. Detailed review of the element-free Galerkin method in the literature.

. Construction of shape functions using the MLS Approximation.

IV.  Implementation of the MLS shape functions to EFGM.

V. Revising of bending theories of plates.

VI.  Development of MATLAB source codes for the solution of non-layered
isotropic and layered orthotropic plate bending problems using EFGM.

VII.  Investigation of effects of the selectable parameters on the solution
accuracy of EFGM for the non-layered isotropic plate bending problems.

VIIIl.  Analysis of layered orthotropic bending problems using EFGM.

1.3 Layout of Thesis

A brief literature survey about meshfree methods and a special review of element-free

Galerkin method are presented in chapter two. A short presentation about plate



bending theories are given in chapter three. The main concepts of element-free
Galerkin method is summarized in chapter four. In chapter five, solution of some non-
layered isotropic plate bending problems using EFGM with different values of
selectable parameters and discussions of the results are provided. The EFGM solutions
of some layered orthotropic bending problems are presented in chapter six. The

conclusions are revealed in chapter seven.



CHAPTER 2
LITERATURE SURVEY
2.1 Introduction

There are many types of meshfree methods in the literature such as Smoothed Particle
Hydrodynamics (SPH) method [1, 2], Diffuse Element Method (DEM) [3], Element-
Free Galerkin Method [4], Reproducing Kernel Particle Method (RKPM) [5], Point
Interpolation Method (P1M) [6], Meshless Local Petrov Galerkin (MLPG) Method [7],
Natural Element Method (NEM) [8], and Finite Particle Method (FPM) [9]. A short
literature review only about the SPH, the DEM, the PIM, the MLPG and the RKPM
are mentioned briefly in section 2.2. A detailed literature survey about the EFGM are
presented in section 2.3. The EFGM for the solution of isotropic and layered
orthotropic plate bending problems are revealed in section 2.4 and 2.5, respectively.

The conclusions on literature survey are summarized in section 2.6.
2.2 General Review of Some Meshfree Methods

In this section, some popular meshfree methods (the SPH, the DEM, the PIM, the
MLPG and the RKPM) are introduced briefly to acquire important knowledge’s about
them.

2.2.1 Smoothed Particle Hydrodynamics Method

The smoothed particle hydrodynamics (SPH) method is a meshfree method which used
Lagrangian numerical technique, firstly developed to solve gas dynamics problems in
astrophysics. The SPH method was introduced by Gingold and Monaghan [1] and
Lucy [2] in late 1970s. Its meshless character makes the method very flexible and
enables simulations of physical problems which might be difficult to capture by
conventional grid-based methods. A set of moving particles are used in this method.
These particles do not have any predefined relations and are used to represent physical
problem domain. The mathematical model of physical problem is constructed using



partial differential equations which are transformed into selected finite integral form
to compute integral over the particles [10]. There are a lot of variations in the original
form of the SPH to improve stability and convergence of the method. An alternative
approach similar to the approach adopted in Moving Particle Semi-implicit models
[11] and was firstly proposed by Cummins and Rudman calling it as Incompressible
SPH (ISPH).

The SPH has a constantly evolving application areas such as fluid dynamics [12],
explosion [13], large deformations and fracture in solid continuums [14]. However,
SPH method is not foolproof; it has stability and consistency problems especially in
solid mechanics [15].

2.2.2 Diffuse Element Method

The DEM is considered as first example of meshfree methods based on Galerkin weak
form, was developed by B. Nayroles et al [3] in 1992. The main difference between
FEM and DEM is about field approximation. Unlike FEM, the field approximation of
the DEM is obtained for local domains using Moving Least Squares (MLS)

approximation and these local domains contain varying numbers of nodes.
2.2.3 Point Interpolation Method

The Point Interpolation method (PIM) was introduced by G.R. Liu in 2001 [6] as a
new meshfree method. The PIM, originally based on the Galerkin method. The field
variables are interpolated using point interpolation shape functions. The interpolation
functions are constructed using polynomials chosen symmetrically from the Pascal’s
Triangle. The point interpolation shape functions have the Kronecker Delta property
which simplifies the enforcement of the boundary conditions by the elimination of any

extra algorithm requirements. This increases the computational efficiency of the PIM.

Despite these features, the PIM has a serious problem that is the singularity of moment
matrix which avoids the construction of interpolation functions. To elimination of
singularity problems, some algorithms have been proposed to overcome this problem
such as diagonal offset algorithm [16], matrix triangularization method [17], and

transformation of points in a local domain [18].



Another strategy to overcome singularity problems is the usage of radial basis
functions for construction of point interpolation shape functions. This is also called as
Radial Point Interpolation Method (RPIM) which was developed by Wang and Liu
[19]. It solves the singularity problems but it has some drawbacks. The determination
of shape parameters used in the RPIM shape functions are required for the accuracy
solution. The RPIM also possess Kronecker Delta property but accuracy of the RPIM

is less than accuracy of the PIM.

The several applications of PIM can be found in the literature such as 2D and 3D
problems [19], beams and shells [19], composite laminated plates [20], plate bending
problems [21], thermoplastic problems [22], buckling [23], static problems [19],

elastoplastic problems [24], dynamic response of thin and thick plates [25].
2.2.4 Meshless Local Petrov Galerkin Method

Meshless Local Petrov Galerkin (MLPG) method is accepted as a truly meshfree
method which eliminates the background cell requirement despite of other meshfree
methods such as PIM, EFG method etc. The MLPG was proposed by Atluri and Zhu
[7]. After this study; Atluri and Shen improved significantly the MLPG [26]. The
MLPG method is based on a weak form which is constructed on a local subdomain.
Background cells are not required in method. It is adopted the Moving Least Squares
(MLS) as well as the augmented Radial Basis Functions (RBF) as the trial functions.
Only nodal information is a requirement, element connectivity is not a necessity. This

provides to a simple pre-processing.

The MLPG are used in many application areas according to literature examination.
Some examples can be given as analysis of thin and thick plates [27], heat transfer
problems [28], fluid mechanics problems [29], large deformation problems [30],

fracture mechanics [31], analysis of shell deformations [19] etc.
2.2.5 Reproducing Kernel Element Method

Reproducing Kernel Particle Method (RKPM) was developed by Liu [5] to ensure lack
of consistency, especially in the SPH method. Then, RKPM is obtained as a new
meshfree method. RKPM has been applied a lot of areas such as problems of solids,

structures, fluids etc.



2.3 Element Free Galerkin Method

Element Free Galerkin Method (EFGM) is a meshfree method which was proposed by
Belytschko et al [4]. The EFGM approximation procedure, is based only on nodes,
does not need to any mesh generation or remeshing operations. However, a set of
background cells is used to take integral of Galerkin weak form. Additionally, EFGM
converges more rapidly than the FEM [32, 33]. It has also more reliable than FEM in
stress solutions. Despite of all these features, it has also some drawbacks against the
FEM. Since MLS shape functions are used in EFGM, this requires to solve a set of
algebraic equations for each sampling point. The computational cost of EFGM is
higher than FEM since the requirement of more nodes for the construction of the MLS

shape functions lead to larger band width for the resultant system matrix [19].

A set of arbitrary scattered nodes are used to represent problem domain and boundaries
in the EFGM. The irregularity of node distribution does not suffer much degradation
in accuracy [19]. Because of that, EFGM becomes one of the promising meshfree

methods.

The EFGM has lack of Kronecker Delta property since the MLS shape functions are
used for interpolations. So, there is no resemblance between the boundary conditions.
For implementation of boundary conditions, various special techniques are developed
such as the penalty method [33], Lagrange multiplier method [34], coupling with FEM
[35] and employment of singular weight functions [36]. However, the benefit of using
MLS approximation is to achieve stability in function approximation and use of
Galerkin procedure to provide stable and well behaved discretized global system

equations.

The EFGM is one of the most widely used meshfree method that can be seen in many
engineering applications such as solid mechanics, fluid mechanics, heat transfer, and
electromagnetic field problems. According to literature review, plane stress [37], plane
strain [38], beams [39], shell [40], plate problems [41], composite laminated plate
problems [42], axisymmetric [43] can be given as solid mechanics applications. Fluid
mechanics applications are free surface flow [44], incompressible flow problems [45],
fluid-structure interaction problems [46]. The simple list of heat transfer applications
are axisymmetric heat transfer problems [47], moving heat source problems [48], heat



transfer of composite slabs [49], heat conduction analysis [50]. The applications of
electromagnetic field problems can be summarized as 3D electromagnetic field [51],
static and quasi-static electromagnetic field [52], 2D electromagnetic wave scattering

[53], axisymmetric electromagnetic [54] problems.

The EFGM is one of the best numerical methods to solve fracture mechanics and crack
propagation problems because EFGM serves stable solutions, high convergence rates
and application flexibility by eliminating mesh requirement. Several examples of

fracture mechanics and crack analysis using EFGM [55] are found in the literature.

Additionally, many techniques have been proposed of coupling EFG method with
FEM [35] to improve the efficiency in the solution of a related problem. The EFGM
is a developed method day by day as a mature and practical computational approach

in the computational area of engineering.

2.4 Element Free Galerkin Method in the Solution of Non-Layered Isotropic Plate
Problems

The solution of plate problems holds a very important place in the engineering area
since they are used nearly everywhere in the life. Because of this, the analysis of plate
problems have gained great significance. Some numerical techniques have been
proposed for analysis them such as FEM, BEM and meshfree methods. Unlike FEM

and BEM, the mesh-based discretization is not found in the meshfree methods.

The EFGM is one of the commonly used meshfree methods to analyze of plates and is
used in the various analysis of plates such as static analysis of thin plates [41], buckling
[56], vibration [57], elasto-plastic [58], crack [59], and also bending analysis of
Kirchhoff plates [60], Mindlin-Reissner plates [61], and composite plates [62] in the

literature.

Despite the EFGM is widely used in several application areas, it has a main issue that
named is shear locking problem. To overcome this problem, several techniques are
seen used such as using of the higher order basis [63], using of the first derivatives of

shape functions as shape functions for rotations [64] in the literature.



2.5 Element Free Galerkin Method in the Solution of Composite Plate Problems

In recent years, composite plates are preferred in many application fields such as
automotive industry, aircraft structure, compressed gas containers, sports equipments,
marine vehicles etc. Because of this, they must be analyzed correctly. Due to the
complex structure of composite plates, several numerical methods, such as FEM, BEM
and meshfree methods, have been used for the analyses of composite plates in the
literature. Sheikh et al. [65] used FEM on the solution of composite plates having
different shapes. Moments and stresses using BEM were examined by Albuquerque
and his friends [66]. Haddad et al. [67] applied to Finite Difference Method (FDM) for
free vibration analysis of composite plates.

The EFGM is seen as a promising candidate for the analysis of composite plates. It
was used by Belinha and Dinis for the analysis of anisotropic plates and laminates
[68]. Also, EFGM has been preferred for the various analysis of composite plates such
as buckling problems [69], vibration problems [70], bending problems [68], crack

analysis [71], fracture analysis [72], etc.
2.6 Conclusions on Literature Survey

The EFGM has some selectable parameters that effect the accuracy of solutions such
as size of support domain, order of monomials, type of weight function, number of
integration points in a background cell and value of penalty coefficient. Although
solutions of several problems are found in the literature, but the literature examination
shows that effects of these parameters have not been investigated for bending problems

of non-layered isotropic plates in detail.

According to literature survey; many studies are present about bending analysis of
layered orthotropic plates using numerical methods such as FEM, BEM. But, the
EFGM application is not common in the literature. This can be a new application area

to examine reliability of the EFGM solutions.



CHAPTER 3
PLATE THEORIES
3.1 Introduction

When a body is bounded by surfaces, flat in geometry, whose lateral dimensions are
large compared to the between the surfaces is called as a plate. Plates are generally
subjected to transverse lateral loads, as shown in Figure 3.1, and also may be subjected

to in-plane loading according to purpose of usage in applications.

ke
111 ‘1}1

Transverse
- Lateral Load

|

MM

—

—
—

Thickness

Figure 3.1. Plate subjected to transverse lateral loads.
Three main theories are present for bending analysis of plates in the literature. The

theories are as follows;

- Higher-Order Shear Deformation Theory,
- Kirchhoff Plate Theory,
- Reissner-Mindlin Plate Theory.

A brief summary about Higher-Order Shear Deformation Theory is given in section
3.2.1. The Kirchhoff Plate Theory is introduced in section 3.2.2 and the Reissner-
Mindlin Plate Theory, used in this study, is presented with governing equations for

plate bending problems in section 3.2.3.
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3.2 Review of the Plate Theories
3.2.1 Higher-Order Shear Deformation Theory

The Higher-Order Shear Deformation Theory (HSDT) is used for bending analyses of
thick plates. The thickness of the plate is bigger than 1/10 ratio when comparing other
lateral dimensions [73]. The theory does not need to shear correction factors. The
theory can generally guarantee zero transverse shear stress values on the top and
bottom surfaces of the plate.

3.2.2 Kirchhoff Plate Theory

The Kirchhoff plate theory is also known as the classical plate theory (CPT). It is used
for the bending analyses of thin plates. The plates with a ratio of thickness to minimum
lateral dimension less than 1/100 is considered as thin plates [73]. The assumptions
of the Kirchhoff Plate Theory is based on assumption of the Bernoulli beam analysis.
Kirchhoff applied them to plates and shells. Three main assumptions are used [74] as

follows;

- Normal to the mid-plane before deformation remain straight and normal to the
mid-plane after deformation.

- Transverse direct and shear stress effects are negligible.

- Deflections are small compared with the plate thickness.

ow
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\ /\' : 7w
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i

i

Figure 3.2. Deformed geometries of an edge according to Kirchhoff plate theory in

plate cross-section a) y — z plane, b) x — z plane
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The displacements of lateral axes x and y are u and v, respectively, and can be

expressed as

where z is the direction of the plate thickness.

From the assumption of transverse shear effects elimination, the strains can be written

as

{ex €y Yxy } = -z { Ky Ky ny} (3.3)
where k, is the curvature,

2 2 2
9w 0d0°w 6W} (3'4)

T — —
K _{Kx Ky ny}_{ax2 dy? zaxay

By substituting Eq.(3.3) into equation of & = Deg, the plane stress constitutive equation
for an isotropic material can be written as

o = —zDk (3.5)
inwhiche = {0, 0, 7,,} and D is the material property matrix,

1 v 0

_F v 1 o0
_1—1]2 1—v
00

2

D

(3.6)

Moments are considered as
h/2
M= f oz dz (3.7)
~h/2
where M = { M,, M,, M,, }and h is the thickness of plate.
Substituting of Eq. (3.5) into Eq. (3.7),
M = —-Dxk (3.8)
Equilibrium equations are obtained from the free body diagram as shown in Fig. 3.3.
Moment equilibriums about the y — and x —axes and force equilibrium about the

z —axis, after neglecting higher order terms, can be written as

oM, OM,,
5%ty Q=0 (3.9)
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2 5 Q,=0 (3.10)
an aQy
Ox +W+p—0 (311)

Figure 3.3. Free body diagram of the plate element

The shear forces are neglected from Eq. (3.9), Eg. (3.10) and Eq. (3.11) gives
0% M, o 0% My, N a*M,,
d0x? dxdy  0y?

When combining of Eq. (3.4), Eqg. (3.8) and Eq. (3.12), the governing equation for

+p=0 (3.12)

plate bending is produced in terms of the transverse displacement w.

0w 0w W _ 3.13
dx* dx20y? = dy* D, (313)

where D, = is the rigidity of the plate.

E
12(1-v2)

3.2.3 Reissner-Mindlin Plate Theory

Reissner-Mindlin plate theory is also known as the First-Order Shear Deformation
Theory (FSDT). It is used for moderately-thick plates that thickness of the plate is
between 1/10 and 1/100 ratio comparing to other two dimensions [73]. Unlike
Kirchhoff plate theory, the shear effects are considered in the analysis according to
Reissner-Mindlin plate theory. The theory has assumptions which are based on

Timoshenko beam theory assumptions.
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Figure 3.4. A typical Reissner-Mindlin plate
The assumptions of the Reissner-Mindlin plate theory as follows [74];

- Normal to the mid-plane before deformation remain straight but not
necessarily normal to the mid-plane after deformation.
- Stresses normal to the mid-plane may be neglected.

- Deflections are small compared with the plate thickness.

Figure 3.5. Deformed geometries of an edge according to Reissner-Mindlin plate

theory in plate cross-section a) y — z plane  b) x — z plane

The displacements of parallel to the undeformed neutral surface, u and v, can be

expressed by
u=—z0,(x,y) (3.14)

v =—20,(x,y) (3.15)
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where 6, and 6,, are the normal rotations of the cross section of the plate about the y —

and x —axis and can be expressed as

ow

O = a — Vxz
ow

Hy = E Vyz

The transverse displacement can be written as
w=w(x,y)

The strains are expressed as

€=¢ €y Vxy Vxz Vyz ]T

where the strains are given as

00,
= "5
and
a6
y
S
and the shear strains are expressed as
26
Yoy = — <a_xy +
ow
VYxz = (a -
and
ow
Yyz = (E -

90,
oy

5)

The constitutive relationships are given in the form

15

)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



c=De (3.25)
where
6 = [My; My My, Q Qy]T (3.26)

in which M, and M,, are the direct bending moments and M,,, is the twisting moment.

The quantities Q,, and @Q,, are the shear forces in the x — z and y — z planes.

For an isotropic material, D is given as;

D uD 0 0 0
vD D 0 0 0
1—-v)D
D={0 o0 % 0 0 (3.27)
0 0 0 S 0
L0 0 0 0 S
in which for a plate of thickness, t
D= Bt (3.28)
C12(1—v?2) '
and
S = ot 3.29
1.2 (3.29)

where G is the shear modulus and the factor 1.2 is a correction term.
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CHAPTER 4
ELEMENT FREE GALERKIN METHOD
FOR BENDING PROBLEMS OF REISSNER-MINDLIN PLATE
4.1 Introduction

Nowadays, composite materials have played an important role in the engineering
applications that require high strength/weight or stiffness/weight ratios. Because of
that, analysis of composite materials have gained great significance. Due to the
complex structure of composite materials, several numerical methods, such as FEM,
BEM and meshfree methods, have been used for the analysis of composite laminates
in the literature. The performances of FEM and BEM depend on mesh quality of the

problem model. Meshfree methods have been developed to overcome this limitation.

Element Free Galerkin Method is a popular method in meshfree methods. In meshfree
methods, problem domain and its boundaries are defined by using only informations
of scattered nodes. Despite its popularity, it has a drawback. The EFGM uses Moving
Least Square (MLS) approximation to construct shape functions. The Kronecker delta
feature is not provided by the MLS approximation. Because of that, extra algorithms
are required to imply boundary conditions. These algorithms generally resulted with

an increase in computational load and solution time.

In this chapter, solution procedure of meshfree methods in solid mechanics is
mentioned shortly in section 4.2. First-Order Shear Deformation Theory (FSDT)
formulations for composite plates are reviewed in section 4.3. In last section 4.4, The
EFGM is presented that includes the construction of MLS shape functions and

Galerkin weak form for Reissner-Mindlin plate problems.
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4.2 Short Description of Implementation Procedure for Galerkin Meshfree
Methods

The implementation procedure of Galerkin meshfree methods can be classified into
four basic steps as domain representation, field interpolation, formulation of system
equations and solution of the system equations for field variables, respectively. In the
first step, the problem domain and its boundaries are represented by a set of scattered
nodes. There is no any predefined relation between the nodes which is the main
difference between discretization of FEM and meshfree methods. After the domain
representation, the field variables at any point are interpolated by constructing shape
functions (approximation or interpolation functions). Shape functions are constructed
using the nodes of local domain constructed for a point of interest. There is no
predefined relationship to construct shape functions. In the third step, system equations
are formulated for local domains and combined to obtain global system equations. The
technique of formulations for system equations can be different for different meshfree
methods. The last step includes the solution of the equations. It is similar to the FEM.

Any equation solver depends on the problem type can be used for solution.
4.2.1 Basic Definitions for Meshfree Methods

In meshfree methods, terms such as local domain, background cell are mentioned
every time. In this part of chapter 4, these terms are presented about what they mean

or why they are used in meshfree methods.
4.2.1.1 Local Domains (Support and Influence Domains)

A local domain is defined as a domain which determines the nodes used for the
approximation of field variables. Despite it is similar to the elements in FEM, there
are three main differences between local domains in meshfree methods and elements
in FEM. Firstly, while local domains are only used for interpolation, elements in FEM
are used not only interpolation but also integration purposes. Another difference is
their predefined shape conditions. The elements need to be predefined regular shapes,
but it is not necessary for the local domains. Last difference is that the local domains

don’t have any predefined nodes as the elements.

The local domain size is determined by the following equation 4.1.
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I's = Og X I'c (4.1)

where r. is the average nodal spacing and oy is the dimensionless size of support

domain.
4.2.1.2 Background Cells

Background cells are used for the integration process in the Galerkin meshfree
methods. These cells have no other use in the problem domain. They just subdivides
the domain into either squares, triangles or any other chosen shape. Even if the
background cells looks like elements in FEM, they are not similar for their usage.
There isn’t any influence of background cell in the formation of the shape function as
is the case with elements in FEM. The background cells and influence domains are

shown clearly in Fig 4.1.

Background cells
tor quadrature

The influence @  ———1————=——7——————# -
domains of the

field nodes e S Ti‘ie'lﬂ_nodes

. ! [ .
x: quadratire or sanipling pou

o: field node

H————

t

Figure 4.1. Support Domain; the centre is a quadrature point
4.3 First-Order Shear Deformation Theory (FSDT) for composite plates

A typical Mindlin-Reissner plate with mid-plane lying in the x — y plane of Cartesian
coordinate system is depicted in Fig. 4.2. The displacement field of a point at a distance

z to the mid-plane can be written as [68]

u —20x(x,y)
u= {v} ={-z0,(x,y) (4.2)
w w(x,y)
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where (u, v, w) are the displacements of the plate in the x, y, z directions. 6, and 6,,
are the rotations of cross-section of the plate about y and x axes, respectively. The
linear strains in the Mindlin-Reissner plate are the strains resulting from bending are

obtained in terms of the rotations, 6,, 8, and of the mid-surface displacement, w, as

( 00,(x,y) 3\
—z—
0x
20, (x,y)
SN
Eyy 00, (x 20, (x
€ = 4)}?01 ¥ =< —z xa(y' y) —Z ya(x y) ; (43)
) ow(x,y)
—0,(x,y) + oy
ow(x,y)
| )+ ——

Using the generalized Hooke’s law for orthotropic linear elastic materials, the stresses

for the it" layer is given as,

¢! =cle (4.4)

where
6! ={Oxx Oyy Txy Tyz Txz}7 (4.5)
¢ =TTc'T (4.6)

where c! is the material matrix of the i*" layer. It includes six independent material
properties that are E, E,, V15, G12, G153 and G,3. The material matrix of the orthotropic

materials can be written as

E; E1vy, 0 0
1—-viver 1 —=vgpvp
Eiviy E,
C =1 —vipvy 1 —vipvp 0 0 0 (4.7)
0 0 Gy, O 0
0 0 0 Gy, O
0 0 0 0 Gzl

and T is the transformation matrix, which has lay-up of the laminae, can be given as
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[ cos?6 sin%6 —sin26 0 0 ]
| sin?%6 cos?6 sin26 0 0 |
T = |sm9 cos® —sinf cosd cos?0 —sin?0 0 0 | (4.8)
0 0 cosf —sinf
l 0 0 0 sinf  cos6 J

where the 6 is the lay-up or orientation of fiber on the i* lamina.

Figure 4.2. A typical laminate plate

Considering the {€xx  &yy  Yxy} =z {&x &y Vxy} the stresses on the top face of

layer (i) are

zi+1 _ = iz = iz = =
Oxx = Zi+1 [011 Exx T C12 Eyy +C13 ny]
zi+1 _ = i = iz = =
yy = Zi+1 [012 Exx T C22 €yy T C23 ny]
zi+1 __ = i = iz = =
xy = Zit+1 [C13 Exx + C23 Eyy + C33 yxy] (4-9)
zitl _ = i = 1
Txz - [C44 Vxz + Cs5 Vyz]
zitl _ = i = 1
Tyz - [C45 Vxz + Css Vyz]

The bending moments (M;;) and the shear forces (V;;)are

zi+1 )
My, = J Z Oy dz
zZi+1
f z ayy (4.10)
Zj

4

zZi+1
f Z Txy
z;

14
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and
n

zi+1 .
Vix = ks Zf Talczdz
7

i 4

n zi+1
— i
Vyy = ksh2f 75,42
- Z;

i 4

(4.11)

where kg, is the shear correction factor. Substituting the stress values in Egs. (4.9) into

moment in Egs. (4.10) and shear forces in Eqgs. (4.11):

n ,
3 3
_ N (A iy 4 is 4
Mxx - Z 3 - ? [Cll Exx T C12 Eyy + C13 yxy]
i L B
n . ,
3 3
N A iy o mis aAis
Myy - Z 3 - ? [C12 Exx T C22 Eyy + C23 yxy]
i L B
n :
3 3
7z Z; ] . ,
= i+1 t = iz =~ iz — i -
Mxy - Z 3 - ? [C13 Exx T C12 Eyy + C13 ny] (4-12)
; i

Vix = ksp, Z[Zi+1 - Zi][C_44i Yz + Cas’ Vyz]
n
Vyy = ksp, z[zi+1 — zi][Cas" Vaz C_55i Vyz]
i
The Egs. (4.12) can be arranged as in the following form:

Mxx n 3 n 3
M = Myy — DiLCI) <Zi3+1 _ Z_l> — Di <Zi3+1 _ Z_l>
M Z 3 3 Z 3 3
xy i i

n

Lo

(4.13)
Vix , =
V= [Vy y] = kan ) [ALy (VW = @) (7111 — 2)] =k Z AL, 214y — zl-)] (Vw — @)

l

where,
20 -2
0x dy
= | |
L l ; P aJ (4.14)
dy 0x
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® = {0y Hy}T (4.15)

(2 o (@16

and D* and A%, are the material properties related with bending and shear effects. They

can be written in the matrix forms, as follows:

= i = i = i
€11 C12 (13
i_ =i =i =i
D" = ¢, Gt 03 (4.17)
PP
Ci3 Cy3 (33

. Cast  Cact
= tf4i _fSJ (4.18)
C45 Css

In the absence of mass forces, the equilibrium equations obtained using the virtual

work principle are given as,

L'M-V=0
(4.19)
VIV+b =0

where b is the vector of applied external forces. EFGM is used for the solution of this

system equations.
4.4 Element-Free Galerkin Method
4.4.1 Moving-Least Square (MLS) Approximation

The MLS approximation for the function of a field variable u(x) in a local domain Q

is defined at a point x as

W) = D pi®a) = pT0a®) (4:20)
i=1

where m is the number of basis terms, pT(x) = {p;(x), p2(x), p3(x), -, P (x)} is the
vector of monomial basis functions, a™(x) = {a,(x), a,(x), az(x), -, a,, (x)} is the
vector of unknown coefficients, and xT = [x, y] is the position vector for 2D problems.

The monomials are selected from the Pascal triangle with providing minimum
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completeness to build the basis function pT(x). For example, the linear and quadratic

basis functions in 2D problems can be given by

Il
w

pT(X) = [1,x,], m (4.21)
T — 2 2 —
P =[Lxyx%xy,y’, m=6 (4.22)

The difference between the function u(x) and its local approximation u"(x) must be

minimized by weighted discrete L, norm to obtain the vector of coefficients a(x).
n
J =) wx=x)pT a0 - u? (4.23)
i=1

where n is the number of nodes in the support domain of point x, u; is the nodal value
of u at x = x;, w(x — x;) is the weight function associated with the influence domain
of node i. From weight function properties, it must be greater than zero for all nodes

in the support domain of point x.

The minimization of weighted residual with respect to a(x) at any arbitrary point x

gives

]

5.=0 (4.24)

which can be written as a set of linear equations.
A(x)a(x) = B(x)Us (4.25)

where Ug = {uy,uy,us3, -+, u,}7 is the vector of nodal values of field function for the

nodes of support domain. The matrices A and B have the following forms
n
AR = ) wiOpCpT (D), W) =wx—x)  (426)
i=1

B(x) = [wi(®)p(x1) w,(0p(xz) - wa(X)p(x)] (4.27)

The matrix A is called as weighted moment matrix of MLS and if it is non-singular

a(x) can be written as
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a(x) = A" (x)Bx) U (4.28)

The local approximation u"(x) can be rewritten by substituting Eq. (1)
n
W) = ) di(w = BTUs (4:29)
i=1

where @7 is the vector of MLS shape functions and it can be expressed as
D7) = (P10 $2(x) - PN} =p"AT (B  (4.30)
The partial derivatives of shape function can be achieved by the following equation.
®; = (p"A"'B); = piAT'B+p'A;'B+p'AT'B; (4.31)
where
Ail=-A"TA AT (4.32)

The spatial derivative are designated with index i following a comma. The weight
functions are one of the most important points for derivation of MLS shape functions.
The continuity and locality features of the MLS approximation are mainly based on
weight functions. The weight function must be positive inside the support domain by
taking its maximum value at the centre of support domain and must be zero outside
the support domain using a monotonically decrease. There are various weight

functions in literature [19]. The cubic spline weight function is used in this work and

is given by
2/3 — 417 + 473 7, <05
wi(x—x;) =w() ={4/3 — 47, + 47> —4/37° 05<r <1 (433)
0 7> 1

For rectangular influence domain in 2-D problems, weight functions can be obtained

by
w() = W(Tx)W(Ty) = W,Ww,, (4.34)

lx — x;]
Ty = and 7,
er

_ ly — il
Twy

(4.35)
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where 1, and r,,,, are the size of support domain in the x and y direction.

4.4.2 Galerkin Weak Form and Enforcement Boundary Conditions

The Galerkin weak form for Mindlin-Reissner plates can written as
f S(Lyuw)TDL udQ — f S(L,u)ThdQ — f S(L,w)TtrdS
Q Q I't
1
+6 fz (ub - uF)Ta(ub - uF)dF =0 (4‘36)
Ty

The discrete system equation can be written as
(K+K*U = (F+ F%) (4.37)

where K is the global stiffness matrix and is obtained by assembling the point stiffness

matrices
Q
in which
[ dp; Api1
|99 0¢;
B; = I 0 W ¢, 0 (4.39)
0p; 0o;
% 9
y  0x |
and

The K¢ is the matrix of penalty factors defined by
(K% = J @;Tap;dl (4.40)
Ty

where ¢; is a diagonal matrix. If the relevant DOF is free, the diagonal elements of ¢;

are equal to 0, otherwise equal to 1.
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The force vector F in Eq. (4.37) is the global force vector assembled using the nodal

force vector of
F; = f (L, ®)ThdO + f (L, ®)"trdS (4.41)
Q Q

where ®@; is a diagonal matrix of shape functions.

The F* vector shows the forces obtained by the implementation of essential boundary

conditions and can be obtained as follows

Ff = f @;Taurdl' (4.42)
r

u
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSIONS FOR BENDING ANALYSIS
OF NON-LAYERED ISOTROPIC PLATES

5.1 Introduction

Four numerical examples have been performed to investigate the effects of selectable
parameters of the EFGM on the solution accuracy of the non-layered isotropic plate
bending problems based on Reissner-Mindlin plate theory. The numerical examples

are;

- Clamped square plate under transverse centric point load,
- Clamped square plate under uniform transverse load,
- Simply supported circular plate under uniform transverse load,

- Simply supported Morley’s skew plate under uniform transverse load.

In this chapter; the obtained EFGM results by using different values of selectable
parameters are compared with analytical results in the literature and are discussed
effects on the solution accuracy.

Tables and figures are used to represent results of numerical examples. However,
invalid/unacceptable results are not given into figures and tables to show more clearly
variations of normalized displacements/moments against the values of selectable
parameters. The value of penalty coefficient is presented in the form of 10%. The
number of gauss points in a background cell, central deflections and moments of plates

are symbolized with ng, w,, and M, respectively.

5.2 Clamped square plate under transverse centric point load

The square plate has fully clamped boundary condition and is loaded with transverse
centric point load as shown in Fig.5.1. The material properties are as follows; Young’s
modulus E of material is 10920 Pa and Poisson's ratio is v = 0.3. The thickness and
length of the plate are given by h = 0.01 m and L. = 1 m, respectively. The value of

applied transverse centric point load, P is 16.3527 N. Due to symmetry, only one
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quarter of the plate is modelled for EFGM solutions. The EFGM models used in the
solutions are shown in Fig. 5.2. 1089 field nodes and 1024 background cells are used
for regular and irregular node distributions in the quarter model of square plate. Quartic
spline is considered as weight function in this case. The normalized deflection values
at the centre of square plate are used as the critical value for the evaluation of accuracy

and are compared exact solution [75].

Figure 5.1. Clamped square plate under transverse centric point load

Figure 5.2. The EFGM models for a) regular node distributions, b) irregular node
distributions

The normalized central displacement results obtained using the different values of
selectable parameters values are presented in Table 5.1 to Table 5.4 and variations can
be seen in Figure 5.3 to Figure 5.6. Since, the clamped square plate under transverse
centric point load has stress singularity problem at the centre of plate, only
displacement results are used for accuracy performance investigations. The
normalized central displacements against the number of gauss points in a background
cell are given in Table 5.1 and Table 5.2. The effect of value of penalty coefficient on

the displacement is given in Table 5.3 and Table 5.4.

According to obtained results, it is not observed that any significant accuracy loss for
regular node distribution in Fig. 5.3. However, solutions obtained by using irregular
node distribution have some fluctuations are seen for value of nGauss = 4 and
nGauss = 8 in Fig. 5.4. From Table 5.3 and 5.4 and Figures 5.5 and 5.6, it can be

understood that several variations are found for value of penalty coefficient is bigger
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than 1 x 10°. If the value of penalty coefficient is selected between 1 x 10° and 1 x
10%, acceptable results are observed for different values of ag. However, o = 2.5 and
mBasis = 10 results are not shown in figures because they have unacceptable results.
Also, it can be observed that the choice of small number of monomials give more

accurate results.
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Table 5.1. Normalized central deflections w./ (—D) of clamped square plate under transverse centric point load for regular node

distribution with a;, = 6.

Number of monomials

10

Number

gauss points
4x4
5x%5
6x6
7x7
8x8
4x4
5x%5
6x6
7x7
8x8
4x4
5x%5
6%6
7x7
8x8

of

pL
100

2.5
0.005629
0.005619
0.005622
0.005621
0.005622
0.005638
0.005636
0.005636
0.005637
0.005637
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Dimensionless size of support domain (o)

3.0
0.005637
0.005637
0.005637
0.005637
0.005637
0.005641
0.005641
0.005641
0.005641
0.005642
0.005643
0.005643
0.005643
0.005643
0.005643

3.5
0.005643
0.005641
0.005642
0.005641
0.005642
0.005669
0.005668
0.005668
0.005668
0.005668
0.005672
0.005672
0.005672
0.005672
0.005672

4.0
0.005644
0.005644
0.005644
0.005644
0.005644
0.005650
0.005650
0.005650
0.005650
0.005650
0.005677
0.005676
0.005676
0.005676
0.005677

4.5
0.005652
0.005652
0.005649
0.005650
0.005648
0.005666
0.005666
0.005665
0.005665
0.005665
0.005690
0.005687
0.005687
0.005687
0.005687

Exact
[75]
0.005600
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Figure 5.3. Variations of normalized central deflections w./ (%) against n, for
clamped square plate under transverse centric point load and regular node distribution

with a, = 6.
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Table 5.2. Normalized central deflections w./ (%) of clamped square plate under transverse centric point load for irregular node

distribution with a,, = 6.

Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [75]
3 4x4 0.005686 0.005736 0.005742 0.005801 0.005964 0.005600
5%5 0.005642 0.005655 0.005664 0.005677 0.005718
6%6 0.005640 0.005646 0.005650 0.005654 0.005662
7x7 0.005638 0.005644 0.005648 0.005651 0.005654
8x8 0.005639 0.005636 0.005643 0.005686 0.005622
6 4x4 0.005698 0.005714 0.005794 0.005801 0.005834
5%5 0.005649 0.005651 0.005661 0.005665 0.005676
6%6 0.005647 0.005650 0.005653 0.005656 0.005660
7x7 0.005646 0.005648 0.005650 0.005648 0.005648
8x8 0.005661 0.005628 0.005613 0.005551 0.006354
10 N 0.005812 0.005922 0.005995 0.005909
5x5 e 0.005662 0.005665 0.005672 0.005675
6x6 - 0.005658 0.005657 0.005664 0.005665
TXT e 0.005651 0.005656 0.005671 0.005658
R 0.005694 0.005692 0.005804 0.005534
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Figure 5.4. Variations of normalized central deflections w./ (%) against n, for
clamped square plate under transverse centric point load using and irregular node

distribution with a;, = 6.
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Table 5.3. Normalized central deflections w./ (%) of clamped square plate under transverse centric point load using regular node

distribution with ng = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 25 3.0 3.5 4.0 45 [75]
3 6 0.005619 0.005637 0.005641 0.005644 0.005652 0.005600
7 0.005619 0.005637 0.005642 0.005650 0.005663
8 0.005619 0.005636 0.005639 0.005655 0.005641
9 0.005619 0.005636 0.005636 0.005639 0.005634
10 0.005619 0.005627 0.005633 0.005071 0.005596
11 0.005661 0.005658 0.009021 0.006120 0.007032
6 6 0.005636 0.005641 0.005668 0.005650 0.005666
7 0.005636 0.005641 0.005667 0.005650 0.005665
8 0.005636 0.005641 0.005668 0.005639 0.005716
9 0.005637 0.005641 0.005667 0.005634 0.005693
10 0.005639 0.005641 0.005601 0.005950 0.006067
11 0.005605 0.006694 0.004530 0.001139 0.006195
10 6 0.000280 0.005643 0.005672 0.005676 0.005687
7 0.000214 0.005643 0.005673 0.005676 0.005688
8 0.000465 0.005643 0.005672 0.005676 0.005672
9 0.000261 0.005642 0.005651 0.005680 0.005738
10 -0.000048 0.005665 0.005267 0.005862 0.011795
11 0.002589 0.005491 0.005560 0.003655 0.004805
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Figure 5.5. Variations of normalized central deflections w./ (&) against a,, for
100D p
clamped square plate under transverse centric point load and regular node distribution

with ng = 5.
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Table 5.4. Normalized central deflections w./ (%) of clamped square plate under transverse centric point load using irregular node

distribution with ng = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 2.5 3.0 3.5 4.0 4.5 [75]
3 6 0.005642 0.005655 0.005664 0.005676 0.005716 0.005600
7 0.005642 0.005655 0.005664 0.005677 0.005718
8 0.005642 0.005656 0.005664 0.005676 0.005681
9 0.005642 0.005656 0.005654 0.005664 0.005583
10 0.005642 0.005550 0.005709 0.005680 0.005726
11 0.005788 0.005278 0.005612 0.005255 0.004676
6 6 0.005649 0.005651 0.005661 0.005665 0.005675
7 0.005649 0.005651 0.005661 0.005665 0.005676
8 0.005649 0.005651 0.005661 0.005666 0.005676
9 0.005651 0.005650 0.005646 0.005665 0.005682
10 0.005655 0.005640 0.005079 0.005499 0.007328
11 0.005680 0.002720 -0.000739  0.012371 0.005607
10 6 -0.005153  0.005662 0.005665 0.005672 0.005675
7 -0.000328  0.005662 0.005665 0.005672 0.005675
8 0.000337 0.005662 0.005666 0.005669 0.005675
9 0.000058 0.005663 0.005671 0.005661 0.005700
10 0.000397 0.005666 0.005497 0.005652 0.004943
11 0.000060 0.004912 0.060423 0.005582 0.005901
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Figure 5.6. Variations of normalized central deflections w./ (%) against ay, for
clamped square plate under transverse centric point load and irregular node

distribution with ng =5
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5.3 Clamped square plate under uniform transverse load

A clamped square plate under uniform transverse load, shown in Fig. 5.7, is analysed
by using different values for the selectable parameters [83]. The thickness and length
of the plate are givenby h = 0.01 m and L = 1 m, respectively. The Young's modulus
E of material is 10920 Pa and Poisson's ratio is v = 0.3. Because of the symmetry,
one quarter of the plate is modelled in EFGM solutions. In the model of square plate,
1089 field nodes and 1024 background cells are used for regular and irregular node
distributions. The value of applied uniform transverse load P is 1 Pa. The normalized
deflection and normalized moment values at the center of square plate are taken as the
critical value for assessment of accuracy. Cubic spline is used as weight function in
this example. The results obtained using different values for the selectable parameters

are presented and compared with exact solutions [76] in Table 5.5 to Table 5.12.

A
N Z4ERy
WAL
_T___I

Figure 5.7. Clamped square plate under uniform load.

Figure 5.8. The EFGM models for a) regular node distributions, b) irregular node

distributions

The normalized central displacements/moments against the number of gauss points in
a background cell are given in Table 5.5 and Table 5.8. The effect of value of penalty
coefficient on the displacement is given in Table 5.9 and Table 5.12. From the results
in Table 5.5 to 5.12, it can be observed that irregularity of node distribution does not
show any accuracy loss. The results of small domains seem to be more stable and more

accurate. Also, it can be found that an increase for the number of gauss points results
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an increase in the accuracy for the irregular node distributions and the accuracy of
smaller penalty coefficients are higher than the bigger ones.
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Table 5.5. Normalized central deflections wc/(%) of clamped square plate subjected to uniform load for regular node distribution
with a, = 6.
Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [76]
3 4x4 0.126440 0.126780 0.126909 0.126852 0.126836 0.126532
5x5 0.126433 0.126763 0.126794 0.126826 0.126905
6x6 0.126439 0.126767 0.126808 0.126848 0.126778
TxT 0.126434 0.126766 0.126013 0.123538 0.126812
8x8 0.126437 0.126766 0.126839 0.126695 0.127163
6 4x4 0.126770 0.126770 0.126868 0.127450 0.128110
5%5 0.126756 0.126771 0.126859 0.126768 0.126887
6x6 0.126760 0.126771 0.126860 0.127049 0.127118
7x7 0.126758 0.126770 0.126861 0.126915 0.126957
8x8 0.126759 0.126770 0.126859 0.127089 0.127085
10 4x4 0.007554 0.126791 0.126879 0.127113 0.127235
5%5 0.001913 0.126790 0.126873 0.127169 0.127226
6x6 0.000925 0.126790 0.126874 0.127357 0.127214
7x7 -0.069174  0.126790 0.126873 0.127301 0.127217
8x8 0.003803 0.126790 0.126875 0.127215 0.127226
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Table 5.6. Normalized central moments MC/(%) of clamped square plate subjected to uniform load for regular node distribution using

with a, = 6.
Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [76]

3 4x4 0.220273 0.226801 0.233437 0.234838 0.228536 0.22905
5%5 0.220256 0.226747 0.228009 0.224284 0.230803
6x6 0.220309 0.226746 0.233083 0.229562 0.227977
7x7 0.220251 0.226761 0.160449 0.058100 0.228516
8x8 0.220282 0.226748 0.232194 0.213945 0.232311

6 4x4 0.228807 0.227187 0.226751 0.283487 0.357014
5%5 0.227876 0.227075 0.226848 0.230692 0.241907
6%6 0.228263 0.227122 0.226788 0.247138 0.244159
7x7 0.228126 0.227101 0.226860 0.237759 0.237510
8x8 0.228147 0.227107 0.226696 0.256088 0.242944

10 4x4 11.66488 0.2264135  0.2209203  0.212290 0.264404
5x5 -9.673737  0.2261617  0.222392 0.267805 0.269976
6%6 1.138023 0.2256435  0.2216954  0.317124 0.267672
7x7 23.62524 0.2253575  0.2220767  0.282098 0.267732
8x8 4.410360 0.2253424  0.2220136  0.288722 0.270582
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Table 5.7. Normalized central deflections w./ (%) of clamped square plate subjected to uniform load for irregular node distribution
with a, = 6.
Number of monomials Number of Dimensionless size of support domain (o) Exact
gausspoints | 5 g 3.0 35 4.0 45 [76]
3 4x4 0.126526 0.127108 0.129390 0.131393 0.132356 0.126532
5x5 0.126468 0.126901 0.127498 0.128500 0.128037
6%6 0.126448 0.126819 0.127041 0.127481 0.127414
7x7 0.126437 0.126763 0.126898 0.127183 0.127198
8x8 0.126437 0.126731 0.126864 0.127017 0.127015
6 4x4 0.126791 0.126832 0.127033 0.127750 0.128852
5x%5 0.126760 0.126800 0.126878 0.127062 0.127299
6x6 0.126755 0.126794 0.126855 0.126968 0.127109
7x7 0.126753 0.126791 0.126842 0.126935 0.127027
8x8 0.126752 0.126791 0.126837 0.126929 0.127005
10 4x4 -0.004057  0.126944 0.127063 0.127537 0.128154
5%5 -0.001433  0.126862 0.126888 0.127072 0.127260
6%6 -0.009520  0.126857 0.126870 0.127013 0.127149
7x7 -0.000343  0.126841 0.126864 0.126975 0.127096
8x8 0.017142 0.126838 0.126862 0.126968 0.127080
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Table 5.8. Normalized central moments MC/(%) of clamped square plate subjected to uniform load for irregular node distribution

with a, = 6.
Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [76]

3 4x4 0.021998 0.021107 0.027677 0.036261 0.057237 0.22905
5%5 0.023409 0.023524 0.026204 0.024145 0.026202
6%6 0.021854 0.022761 0.022327 0.023133 0.022873
7x7 0.022754 0.022726 0.022813 0.023184 0.023526
8x8 0.022403 0.022833 0.022672 0.023118 0.022976

6 4x4 0.022811 0.023237 0.019257 0.016366 0.043108
5x%5 0.023369 0.023341 0.023096 0.023736 0.025337
6%6 0.021578 0.022464 0.022991 0.022190 0.022951
7x7 0.023468 0.023040 0.022567 0.023212 0.023480
8x8 0.022241 0.022730 0.022987 0.022804 0.023120

10 4x4 -0.026270  0.017281 0.021681 0.027778 0.029866
5%5 -0.032685  0.022477 0.023398 0.024282 0.018642
6%6 1.274110 0.020917 0.022219 0.022354 0.024074
7x7 -1.330267  0.023630 0.022338 0.023230 0.022410
8x8 0.361232 0.021181 0.023202 0.022355 0.022603
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Table 5.9. Normalized central deflections w./ (—D) of clamped square plate subjected to uniform load using regular node distribution

with ng =5.

Number of monomials

10

Value of penalty
coefficient

pL
100

2.5

0.126433
0.126433
0.126433
0.126436
0.126432
0.126278
0.126756
0.126756
0.126756
0.126758
0.126951
0.127008
0.001913
0.017516
-0.001358
0.011062
0.001619
-0.191121

Dimensionless size of support domain (o)

3.0

0.126763
0.126763
0.126764
0.126801
0.126248
0.126041
0.126771
0.126771
0.126772
0.126783
0.124576
0.123518
0.126790
0.126790
0.126787
0.126802
0.126975
0.129141

45

3.5

0.126794
0.126214
0.126737
0.126729
0.127530
0.111635
0.126859
0.126865
0.129389
0.127891
0.129112
0.129367
0.126873
0.126869
0.126941
0.126606
0.132896
0.135977

4.0

0.126826
0.126764
0.127082
0.126834
0.129988
0.134735
0.126768
0.126999
0.126375
0.125890
0.125334
0.124725
0.127169
0.127334
0.127336
0.126857
0.124583
0.073397

4.5

0.126905
0.126848
0.126776
0.126565
0.126057
0.131717
0.126887
0.126907
0.126852
0.127375
0.129903
0.062518
0.127226
0.127305
0.127672
0.145203
0.131461
0.145359

Exact
[76]
0.126532
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Table 5.10. Normalized central moments MC/(%) of clamped square plate subjected to uniform load using regular node distribution

withn, = 5.
Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 2.5 3.0 35 4.0 45 [76]
3 6 0.222778 0.228234 0.229455 0.225712 0.231116 0.22905
7 0.222778 0.228235 0.197497 0.229492 0.226305
8 0.222779 0.228273 0.228941 0.231400 0.229474
9 0.222796 0.228899 0.246187 0.228458 0.226305
10 0.223014 0.225801 0.205424 0.233262 0.228310
11 0.222326 0.227809 0.219824 0.284981 0.215284
6 6 0.228165 0.227480 0.227903 0.231240 0.241860
7 0.228163 0.227482 0.228011 0.248146 0.233347
0.228159 0.227547 0.214909 0.188005 0.228315
9 0.228170 0.227141 0.250154 0.316561 0.109148
10 0.229887 0.509683 0.185733 0.199848 0.422719
11 0.213197 0.240821 0.669066 0.364602 0.802180
10 6 e 0.226334 0.223033 0.286704 0.270394
7 e 0.226322 0.223115 0.259484 0.252641
8 e 0.226397 0.223542 0.252302 0.247275
9 e 0.226106 0.240292 0.003620 0.748420
10 e 0.233004 0.237098 1.836826 1.056695
11 e 0.320446 1.895828 0.460924 6.398777
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Table 5.11. Normalized central deflections wc/(%) of clamped square plate subjected to uniform load using irregular node distribution
withn, = 5.
Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 2.5 3.0 35 4.0 45 [76]

3 6 0.126468 0.126901 0.127498 0.128500 0.128037 0.126532
7 0.126468 0.126901 0.127496 0.128494 0.128307
8 0.126467 0.126901 0.127485 0.128406 0.127735
9 0.126479 0.126895 0.126604 0.128657 0.127684
10 0.126330 0.126486 0.128813 0.130046 0.126236
11 0.125608 0.059782 0.130317 0.118880 0.164985
6 6 0.126760 0.126800 0.126878 0.127062 0.127299
7 0.126760 0.126800 0.126878 0.127060 0.127293
0.126759 0.126797 0.126881 0.127047 0.127288
9 0.126777 0.126796 0.126869 0.126914 0.126754
10 0.127332 0.126829 0.126812 0.145521 0.121012
11 0.133478 0.129931 0.137213 0.141025 0.141995
10 6 -0.001433  0.126862 0.126888 0.127072 0.127260
7 -0.012535  0.126862 0.126891 0.127075 0.127266
8 0.147390 0.126869 0.126895 0.127055 0.127272
9 -0.000455  0.126922 0.127046 0.126714 0.111222
10 -0.000074  0.126081 0.128956 0.130919 0.159409
11 0.000004 0.133288 -0.058304  0.043413 0.044011

47



2
Table 5.12. Normalized central moments MC/(%) of clamped square plate subjected to uniform load using irregular node distribution

withn, = 5.
Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 2.5 3.0 35 4.0 45 [76]

3 6 0.231408 0.235186 0.262691 0.231896 0.259817 0.22905
7 0.231402 0.235174 0.262759 0.234450 0.252804
8 0.231328 0.235297 0.265312 0.217930 0.222152
9 0.230140 0.230743 0.210371 0.124551 0.238444
10 0.235161 0.357763 3.927675 0.271700 0.198007
11 0.234608 1.875189 0.224397 0.698783 0.378160

6 6 0.233808 0.232184 0.231906 0.235700 0.253998
7 0.233808 0.232174 0.231761 0.235217 0.246653
8 0.233962 0.231705 0.232194 0.236094 0.210382
9 0.225913 0.246280 0.242021 0.222640 0.277255
10 0.197897 0.242759 0.245568 2.687105 0.146298
11 0.271154 4.881884 0.357481 1.502087 0.586453

10 6 0.130951 0.243652 0.233719 0.244129 0.188343
7 0.198299 0.243399 0.231613 0.237502 0.191071
8 0.215736 0.235826 0.236902 0.245416 0.091169
9 -0.752781  0.320773 0.263018 0.287695 0.102685
10 0.342614 0.565406 0.707094 2.294113 0.512227
11 1.063893 4.553931 3.670624 4.143685 0.762874
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5.4 Simply supported circular plate under uniform load

A simply supported circular plate under uniform transverse load, shown in Fig. 5.29,
is examined as a third numerical example [83]. The thickness, radius, Young's modulus
and Poisson's ratio are h = 1 m, R = 5m, 10.92 Pa, and v = 0.3, respectively. Due
to the symmetry, one quarter of the plate is modelled. In the model of quarter circular
plate, 817 field nodes and 768 background cells are used for regular and irregular
node distributions. The value of applied uniform transverse load P is 1 Pa. Table 5.13
to Table 5.20 provide normalized deflection and moment and comparison with exact

solutions [76] using different values of the selectable parameters by using quartic

spline weight function.

Figure 5.10. The EFGM models for a) regular node distributions, b) irregular node

distributions

The normalized central displacements/moments against the number of gauss points in
a background cell are given in Table 5.13 and Table 5.16. The effect of value of penalty
coefficient on the displacement is given in Table 5.17 and Table 5.20. It can be found
from the results in Table 5.13-5.20 that irregularity of node distribution shows small
fluctuations for moments, an increase for the order of monomials does not always
result an increase in accuracy, the smaller penalty coefficients increase the accuracy

of results.
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Table 5.13. Normalized central deflections wc/(%) of simply supported circular plate subjected to uniform load for regular node

distribution with a,, = 6.

Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [76]
3 4x4 0.665931 0.666042 0.666102 0.666105 0.666254 0.665600
5%5 0.665933 0.666047 0.666121 0.666100 0.666272
6x6 0.665932 0.666047 0.666106 0.666098 0.666267
7x7 0.665932 0.666046 0.666116 0.666101 0.666265
8x8 0.665931 0.666046 0.666108 0.666098 0.666323
6 4x4 0.665871 0.665972 0.666509 0.666368 0.666552
5%5 0.665870 0.665971 0.666495 0.666368 0.666520
6%6 0.665871 0.665971 0.666505 0.666368 0.666533
7x7 0.665870 0.665971 0.666499 0.666368 0.666527
8x8 0.665869 0.665970 0.666502 0.666367 0.666526
10 4x4 0.004753 0.085714 0.666467 0.667353 0.667174
5%5 -0.027194  -0.038747  0.666436 0.667324 0.667152
6%6 0.026288 0.080240 0.666416 0.667322 0.667153
7x7 -0.001611  -0.031465  0.666419 0.667325 0.667147
8x8 0.001901 0.012682 0.666414 0.667318 0.667147
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Table 5.14. Normalized central moments MC/(%) of simply supported circular plate subjected to uniform load for regular node

distribution with a, = 6.

Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [76]
3 4x4 2.005078 2.029307 2.049496 2.053753 2.071245 2.062344
5%5 2.005447 2.029614 2.049892 2.053702 2.071104
6x6 2.005517 2.029666 2.049522 2.053578 2.071281
7x7 2.005341 2.029566 2.049800 2.053667 2.071092
8x8 2.005548 2.029562 2.049635 2.053637 2.071519
6 4x4 2.040578 1.974229 2.056917 2.050842 2.086076
5%5 2.032278 1.973078 2.055204 2.052620 2.086334
6%6 2.037076 1.973751 2.056129 2.052318 2.085494
7x7 2.033614 1.973492 2.056071 2.052388 2.085883
8x8 2.036204 1.973332 2.055370 2.052219 2.085808
10 4x4 -2305.325  216.5278 2.040810 2.418292 2.311396
5%5 602.6892 -208.0641  2.041055 2.382921 2.290838
6%6 -935.5124  -12.22692  2.033994 2.377163 2.298903
7x7 22.12304 165.3259 2.038753 2.388402 2.294604
8x8 760.4520 12.31105 2.039714 2.384878 2.295134
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Table 5.15. Normalized central deflections wc/(%) of simply supported circular plate subjected to uniform load for irregular node

distribution with a;, = 6.

Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points | 5 g 3.0 35 4.0 45 [76]
3 4x4 0.665990 0.666097 0.666268 0.666176 0.666300 0.665600
5%5 0.665970 0.666008 0.666088 0.666062 0.666143
6%6 0.665974 0.665983 0.666033 0.666025 0.666049
7x7 0.665970 0.665989 0.666020 0.666022 0.666048
8x8 0.665970 0.665983 0.666013 0.666015 0.666048
6 4x4 0.666006 0.665990 0.666038 0.666084 0.666165
5x%5 0.665993 0.665987 0.665990 0.666038 0.666067
6%6 0.665992 0.665986 0.665987 0.666039 0.666048
7x7 0.665992 0.665985 0.665987 0.666023 0.666051
8x8 0.665991 0.665985 0.665985 0.666028 0.666048
10 4x4 0.678353 0.666031 0.666020 0.666090 0.666225
5%5 0.670335 0.665991 0.666002 0.666043 0.666106
6%6 0.669178 0.665982 0.665992 0.666030 0.666092
7x7 0.668574 0.665979 0.665991 0.666022 0.666068
8x8 0.667464 0.665977 0.665989 0.666024 0.666073
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Table 5.16. Normalized central moments MC/(%) of simply supported circular plate subjected to uniform load for irregular node

distribution with a, = 6.

Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45 [76]
3 4x4 2.059970 2.044946 2.000748 2.039810 2.052553 2.062344
5%5 2.047096 2.060184 2.071364 2.051118 2.057045
6%6 2.051420 2.052160 2.057042 2.063346 2.058350
7x7 2.049566 2.051656 2.052576 2.052570 2.059945
8x8 2.049352 2.052420 2.057177 2.057336 2.060921
6 4x4 2.053699 2.059687 2.027205 1.998922 2.018057
5x5 2.065549 2.058194 2.064023 2.080776 2.050086
6%6 2.079550 2.057942 2.048976 2.060772 2.047013
7x7 2.084744 2.056180 2.047976 2.053766 2.049384
8x8 2.070313 2.055901 2.049883 2.057525 2.047272
10 4x4 40.86512 2.137203 2.068406 1.939528 2.043022
5x5 13.32584 2.091290 1.959436 2.076705 2.086221
6%6 6.295620 2.054560 2.016260 2.011183 2.043642
7x7 3.465794 2.069183 2.000256 2.025050 2.055499
8x8 2.296053 2.044456 2.011382 2.021311 2.045132
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Table 5.17. Normalized central deflections wc/(%) of simply supported circular plate subjected to uniform load using regular node

distribution with ng = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 2.5 3.0 35 4.0 45 [76]

3 6 0.665933 0.666047 0.666121 0.666100 0.666272 0.665600
7 0.665933 0.666048 0.666121 0.666100 0.666272
8 0.665933 0.666048 0.666121 0.666100 0.666272
9 0.665933 0.666047 0.666121 0.666100 0.666272
10 0.665934 0.666048 0.666121 0.666096 0.666297
11 0.665935 0.666031 0.666110 0.666279 0.665609
6 6 0.665870 0.665971 0.666495 0.666368 0.666520
7 0.665870 0.665971 0.666495 0.666368 0.666520
0.665870 0.665971 0.666495 0.666368 0.666520
9 0.665870 0.665971 0.666495 0.666368 0.666519
10 0.665870 0.665968 0.666499 0.666368 0.666514
11 0.665837 0.665958 0.666534 0.666385 0.666624
10 6 -0.027194  -0.038747  0.666436 0.667324 0.667152
7 0.000307 0.379188 0.666436 0.667324 0.667152
8 -0.021853  0.080286 0.666436 0.667324 0.667152
9 0.035885 -0.312649  0.666436 0.667324 0.667152
10 -0.059948  -0.001439  0.666435 0.667329 0.667151
11 0.017107 -0.215847  0.666451 0.667153 0.667138
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Table 5.18. Normalized central moments MC/(%) of simply supported circular plate subjected to uniform load using regular node

distribution with ng = 5.

Number of monomials  Value of penalty Dimensionless size of support domain (o) Exact
coefficient 25 3.0 35 4.0 45 [76]
3 6 2.038665 2.051753 2.062857 2.062440 2.074044 2.062344
7 2.038666 2.051753 2.062857 2.062441 2.074045
8 2.038664 2.051759 2.062858 2.062439 2.074070
9 2.038621 2.051762 2.062860 2.062476 2.074317
10 2.038768 2.052071 2.062705 2.062607 2.075679
11 2.037018 2.049616 2.063898 2.060986 2.045592
6 6 2.038260 1.990853 2.067618 2.059376 2.092070
7 2.038259 1.990852 2.067619 2.059379 2.092067
8 2.038254 1.990833 2.067594 2.059388 2.092056
9 2.038096 1.991126 2.067880 2.059279 2.091862
10 2.039576 1.991938 2.068262 2.060470 2.095709
11 2.038165 1.983722 - 2.061213 2.150306
10 6 40.31616 34.00839 2.047673 2.384500 2.290476
7 28.69866 59.78704 2.047688 2.384441 2.290471
8 13.01323 1211.134 2.047688 2.384977 2.290531
9 46.24900 70.77776 2.047242 2.383174 2.290936
10 15.95353 127.5712 2.049562 2.398362 2.290834
11 6.116528 39.44529 2.042506 2.289148 2.298392
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Table 5.19. Normalized central deflections wc/(%) of simply supported circular plate subjected to uniform load using irregular node

distribution with ng = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 25 3.0 3.5 4.0 45 [76]
3 6 0.665978 0.666024 0.666042 0.666043 0.666058 0.665600
7 0.665978 0.666024 0.666042 0.666043 0.666058
8 0.665978 0.666024 0.666042 0.666043 0.666058
9 0.665978 0.666024 0.666042 0.666043 0.666058
10 0.665977 0.666024 0.666043 0.666042 0.666059
11 0.665978 0.666028 0.666044 0.666039 0.666054
6 6 0.665994 0.665996 0.666032 0.666055 0.666078
7 0.665994 0.665996 0.666032 0.666055 0.666078
8 0.665994 0.665996 0.666032 0.666055 0.666078
9 0.665994 0.665996 0.666032 0.666055 0.666078
10 0.665995 0.665995 0.666032 0.666053 0.666082
11 0.665993 0.665980 0.666015 0.666053 0.666065
10 6 0.671484 0.666017 0.666065 0.666102 0.666131
7 0.671495 0.666017 0.666065 0.666102 0.666131
8 0.671422 0.666017 0.666065 0.666102 0.666131
9 0.671423 0.666018 0.666065 0.666102 0.666131
10 0.672539 0.666017 0.666062 0.666111 0.666132
11 0.705717 0.666027 0.666156 0.666131 0.666201
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Table 5.20. Normalized central moments MC/(%) of simply supported circular plate subjected to uniform load using irregular

node distribution withn, = 5.

Number of monomials  Value of penalty Dimensionless size of support domain (o) Exact
coefficient 25 3.0 35 4.0 45 [76]

3 6 2.059636 2.060674 2.059273 2.056814 2.060339  2.062344
7 2.059636 2.060674 2.059273 2.056814 2.060339
8 2.059650 2.060674 2.059276 2.056816 2.060339
9 2.059532 2.060759 2.059229 2.056857 2.060350
10 2.059328 2.060444 2.059252 2.056824 2.060097
11 2.055589 2.060238 2.059215 2.056537 2.062454
6 6 2.055047 2.036481 2.034838 2.063106 2.048245
7 2.055046 2.036486 2.034840 2.063098 2.048245
2.054987 2.036496 2.034741 2.063091 2.048287
9 2.055207 2.037036 2.035031 2.062719 2.048693
10 2.056375 2.034727 2.035754 2.063723 2.046757
11 2.052038 2.038904 2.033516 2.068601 2.061346
10 6 17.86555 2.076705 1.855043 2.064847 2.046155
7 17.84520 2.076680 1.855018 2.064868 2.046150
8 18.73009 2.076745 1.855431 2.064868 2.046170
9 7.851396 2.075146 1.854292 2.060386 2.047742
10 4.338912 2.070534 1.857914 2.046806 2.049600
11 530.4940 2.168797 1.892390 2.195134 2.134634
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5.5 Simply supported Morley’s skew plate under uniform transverse load

The Morley’s skew plate has simply supported boundary conditions with all edge and
is loaded with uniform transverse load as shown in Fig.5.1. The material properties are
as follows; Young’s modulus E of material is 1092000 Pa and Poisson's ratio isv =
0.3. The thickness and length of the plate are given by h =20 m and L = 50 m,
respectively. Due to the asymmetry, the whole plate is modelled. In the model of whole
skew plate, 289 field nodes and 256 background cells are used for regular and
irregular node distributions. The value of applied uniform transverse load P is 1 Pa.
Figure 5.13 to Figure 5.24 provide variations of normalized deflection, normalized
maximum and minimum moments with different values of the selectable parameters

by using cubic spline weight function, respectively.

L]
Ses o s o,
LRI R R

a) b)

Figure 5.12. The EFGM models for a) regular node distributions, b) irregular node
distributions

The variations according to obtained results of normalized displacements, maximum
and minimum moments using the different values of selectable parameters values are
presented and compared with exact solutions [77] in Figure 5.13 to Table 5.24. The
variations against the number of gauss points in a background cell are given in Table
5.13 to Table 5.18. The effect of value of penalty coefficient on the displacement is
given in Table 5.19 and Table 5.24.
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According to displacement results, it is observed that obtained results by using
irregular node distribution are closer to exact solutions than regular ones. There is no
significant difference between regularity and irregularity for maximum and moment
moment results. It can be said that 3 monomials are enough to get acceptable results
for different values of ag. However, some fluctuations are seen for value of nGauss =

8 and penalty coefficient is 1 x 101,
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with a, = 6.
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Figure 5.14. Variations of normalized central maximum moments M./ (%) against
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Figure 5.16. Variations of normalized central deflections w./ (%) against n, for
simply supported skew plate subjected to uniform load and irregular node distribution

with a, = 6.
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Figure 5.17. Variations of normalized central maximum moments M./ (%) against
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with ng = 5.
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distribution withn, = 5.
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CHAPTER 6

NUMERICAL RESULTS AND DISCUSSIONS FOR BENDING ANALYSIS
OF LAMINATED COMPOSITE PLATES

6.1 Introduction

Seven numerical examples have been performed to apply EFGM and FEM solutions

on bending analyses of laminated composite plates. The numerical examples are;

- Clamped square plate angle-ply orientation,

- Clamped square plate cross-ply orientation,

- Simply supported square plate angle-ply orientation,

- Simply supported square plate cross-ply orientation,

- Simply supported square plate asymmetric orientation,
- Clamped circular orthotropic plate,

- Simply supported skew plate cross-ply and angle-ply orientation,

In this chapter; the obtained EFGM using regular and irregular node distributions and
FEM results are compared with analytical or reference results in the literature and are

discussed on the solution accuracy.

Various number of nodes in the problem domain are used for EFGM and FEM
solutions. Tables are used to represent the obtained central normalized displacements
and stresses of numerical examples. The 4-node quadrilateral displacement based
linear element is considered in the FEM solutions. The selectable parameters are
chosen the best ones in the solution of isotropic plate bending problems. The value of
penalty coefficient, the number of gauss integration points, support domain size are
used as 10°, 5x5 and 3.0 in the EFGM solutions, respectively. Also, cubic spline is
used as weight function in examples. Shear correction factor is given as 5/6 in all
solutions. The properties of materials used in the examples are given in Table 6.1. The

deflections of the laminated composite plates are obtained on the midpoint of the first
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layer and are symbolized with w,. The stresses of laminated composite plates are
obtained on first layer for the x component and second layer for the y component and

are symbolized with o,.

Table 6.1 Material properties of laminated composite plates

M1 M2 M3 M4 M5 M6

E{,Pa 40x10° 30x10° 250x10° 40x10° 56x10° 25x 10°

E,,Pa 1.0x10° 1.2x10° 10x10° 1.0x10° 1.2x10° 1.0x 10°

Gy2,Pa 05%x10° 0.6x10° 5x10° 0.6x10° 0.6x10° 0.5x10°

Gy3,Pa 05%x10° 0.6x10° 5x10° 0.6x10° 0.6x10° 0.5x10°

Gy3,Pa 0.5x10° 0.24x10° 2x10° 0.5x10° 0.6x10° 0.2x10°

6.2 Clamped square plate angle-ply orientation

The clamped square plate has two layers having [—6°/6°] fiber orientation. The
material is considered as M1, presented in Table 6.1, with length, L is 10 and the
thickness, t is 0.02. The applied uniform load, g is 1.0. Due to asymmetry, whole plate
is modelled using 9, 25, 81, 289 and 1089 number of nodes in problem domain for
EFGM and FEM solutions. The normalized central deflection results obtained from
EFGM and FEM solutions are presented and compared with exact solutions [78] in
Table 6.2.

According to results in Table 6.2, there is no significant difference between EFGM
solutions using regular and irregular node distributions. However, it is observed that
stability of FEM solutions occurs earlier than EFGM solutions. The closer results are
obtained at the fiber orientations of [—25°/425°], [-35°/+435°] and
[—45°/+45°] than [—5°/45°] and [—15°/+15°] ones. Also, it is seen that an

increase in number of node gives more accurate results as expected.
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Table 6.2. Normalized central deflections w, * (100E2h /qL4) for clamped square plate angle-ply orientation.
Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [78]
—5%/45° FEM 0.000120 0.107109 0.100520 0.103496 0.104289 0.0946

EFGM (regular) 0.000077 0.045024 0.099546 0.103130 0.103451

EFGM (irregular) 0.000077 0.010272 0.096953 0.102832 0.103492
—-15°/+15° FEM 0.000120 0.196349 0.193969 0.197657 0.198648 0.1691

EFGM (regular) 0.000077 0.053431 0.175606 0.194078 0.196739

EFGM (irregular) 0.000077 0.010694 0.164672 0.190876 0.196273
—25°%/+25° FEM 0.000120 0.256195 0.254440 0.257632 0.258483 0.2355

EFGM (regular) 0.000077 0.056140 0.216774 0.249666 0.254993

EFGM (irregular) 0.000077 0.010809 0.199583 0.243300 0.253976
—35°%/+35° FEM 0.000120 0.290350 0.285876 0.287706 0.288222 0.2763

EFGM (regular) 0.000077 0.057086 0.234245 0.276630 0.283658

EFGM (irregular) 0.000077 0.010845 0.214170 0.268053 0.282325
—45°/+45° FEM 0.000120 0.302215 0.295981 0.297075 0.297407 0.2890

EFGM (regular) 0.000077 0.057338 0.239247 0.284894 0.292472

EFGM (irregular) 0.000077 0.010855 0.218913 0.275591 0.291049
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6.3 Clamped square plate cross-ply orientation

The clamped laminated square plate with four different aspect ratios of h / L = 0.1,
h/L=0.05 h/L=0.02 and h/L=0.01 are analyzed [84] to determine
deformations under the uniformly distributed transverse load q = 1.0. The
unidirectional laminate of material M2, presented in Table 6.1, is used with four layer
of [0°/90°/90°/0°] orientation. Due to the symmetry, only a quarter of plate is
modelled using 9, 25, 81, 289 and 1089 number of nodes in the EFGM and FEM
solutions. The dimensionless central normalized deflections and stresses of plate are
presented and compared with reference solutions [79] in Table 6.3 to 6.5.

Although some stability problems can be observed in solutions, acceptable results,
especially in the usage of 81,289 and 1089 number of nodes in the problem domain,
have been obtained at all thickness/span ratios. The FEM solutions and EFGM
solutions using regular node distribution are similar characteristics in the usage of
higher number of nodes. The EFGM solutions using irregular node distribution is not
reliable for this example since it has not stability even usage of 1089 number of nodes

in the problem domain.
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Table 6.3. Normalized central deflections w, * (

h/L

0.1

0.05

0.02

0.01

Method

FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)

100E,

9
0.486870
0.456036
0.445830
0.234835
0.193383
0.191572
0.149961
0.057701
0.059125
0.136678
0.017597
0.018312

Number of nodes in the problem domain

76

25
0.469849
0.465089
0.464201
0.234359
0.232024
0.233289
0.156778
0.152424
0.156465
0.144799
0.136933
0.142701

81
0.466177
0.464637
0.467845
0.234190
0.233620
0.236746
0.158426
0.158020
0.160390
0.146825
0.146091
0.147528

3
h /qL4) for clamped square plate cross-ply orientation.

289
0.465328
0.463908
0.465675
0.234183
0.233264
0.234754
0.158866
0.158000
0.159137
0.147355
0.146423
0.147233

1089
0.468663
0.465349
0.464425
0.237496
0.234940
0.233618
0.161679
0.159474
0.158332
0.149549
0.147563
0.146796

Umasree
(2009)
0.4651

0.2342

0.1590

0.1475



Table 6.4. Normalized central stresses o, * (hz/qu) in the x direction for clamped square plate cross-ply orientation.

h/L

0.1

0.05

0.02

0.01

Method

FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)

9
0.108627
0.099846
0.099846
0.112652
0.094862
0.096575
0.101138
0.043443
0.000077
0.091784
0.045234
0.015135

Number of nodes in the problem domain

77

25
0.062883
0.178515
0.186854
0.077509
0.213884
0.221354
0.088500
0.229565
0.238793
0.091487
0.226709
0.240894

81
0.216119
0.198981
0.207505
0.254294
0.237190
0.243390
0.274363
0.260819
0.264331
0.277866
0.267798
0.269076

289
0.222794
0.203050
0.211147
0.262198
0.241519
0.249630
0.282196
0.262963
0.268755
0.285492
0.270234
0.271158

1089
0.232011
0.209034
0.233421
0.267739
0.245117
0.276463
0.284693
0.263241
0.297891
0.287689
0.267989
0.303518

Umasree
(2009)
0.2251

0.2649

0.2848

0.2880



Table 6.5. Normalized central stresses o, * (hz/qu) in the y direction for clamped square plate cross-ply orientation.

h/L

0.1

0.05

0.02

0.01

Method

FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)

9
0.267717
0.129153
0.096998
0.191338
0.072665
0.119044
0.144280
0.023768
0.023910
0.135831
0.007345
0.005977

Number of nodes in the problem domain

78

25
0.220471
0.222633
0.228414
0.152727
0.143834
0.148857
0.114994
0.096981
0.107721
0.108403
0.086856
0.104334

81
0.258811
0.241980
0.251496
0.164716
0.154623
0.161135
0.113172
0.107927
0.109018
0.103895
0.099850
0.096759

289
0.257558
0.245497
0.243411
0.162881
0.155121
0.153765
0.111746
0.107015
0.104416
0.102656
0.099632
0.095059

1089
0.259777
0.247761
0.225320
0.166876
0.157609
0.142673
0.115308
0.108132
0.098836
0.105220
0.099703
0.091261

Umasree
(2009)
0.2572

0.1623

0.1113

0.1012



6.4 Simply supported square plate angle-ply orientation

The simply supported square plate has two layers with [—6°/6°] fiber orientation.
The material is considered as M1, presented in Table 6.1, having length, L is 10 and
the thickness, t is 0.02. The applied uniform load, q is 1.0. Due to asymmetry, whole
plate is modelled using 9, 25, 81, 289 and 1089 number of nodes in problem domain
for EFGM and FEM solutions. The normalized central deflection results obtained from
EFGM and FEM solutions are presented and compared with exact solutions [78] in
Table 6.6.

From the results of this example, it seems that FEM solutions have better results than
EFGM solutions on the solution accuracy. It is observed that stability of FEM solutions
occurs after the usage 25 number of node. However, 289 or 1089 number of node
must be used to get acceptable results in the EFGM solutions. Also, the EFGM

solutions using regular node distribution has the closer results than irregular ones.
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Table 6.6. Normalized central deflections w, * (100E2h /qL4) for simply supported square plate angle-ply orientation.
Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [78]
—5%/45° FEM 0.367679 0.475091 0.476975 0.473006 0.473607 0.4736

EFGM (regular) 0092492  0.337607  0.466782  0.475550  0.472790

EFGM (irregular) ~ 0.059945  0.120580  0.445527  0.465969  0.472620
—15°/+15° FEM 0548045 0704311 0720024  0.713363  0.714243  0.7142

EFGM (regular) 0.099539  0.429831  0.677921  0.713447  0.713486

EFGM (irregular) ~ 0.062914  0.131511  0.637184  0.691953  0.711491
—259/+425° FEM 0618079  0.772782  0.789009  0.786093  0.787070  0.7870

EFGM (regular) 0.100583  0.448338  0.731024  0.779325  0.781995

EFGM (irregular) ~ 0.063377  0.133251  0.684872  0.753283  0.779058
—359/+35° FEM 0.608697  0.744053  0.754794  0.755206  0.756085  0.7561

EFGM (regular) 0.100037  0.435543  0.698472  0.744468  0.747576

EFGM (irregular) ~ 0.063135  0.132015  0.656412  0.720478  0.744752
—45°/+45° FEM 0598153  0.723813  0.729709  0.731630  0.732267  0.7322

EFGM (regular) 0.099687 0426204  0.674919  0.718336  0.721392

EFGM (irregular) ~ 0.062970  0.131122  0.635699  0.696859  0.718744
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6.5 Simply supported square plate cross-ply orientation

The deformation and stresses of a simply supported square laminated plate subjected
to a uniformly distributed transverse load, g = 10° is analysed [84] using different
lamination schemes with thickness/span ratiosof h /L =0.1, h /L = 0.05 and h /
L = 0.01 where length, L is 20. The laminates used are symmetric cross-plies with
three, four, five and seven layers of [0°/90°/0°], [0°/90°/90°/0°], [0°/90°/0°/90°/
0°] and [0°/90°/90°/0°/90°/90°/0°] orientations, respectively. The material M3,
presented in Table 6.1, is used in this example.

Due to the symmetry, only a quarter of plate is modelled using 9, 25, 81, 289 and
1089 number of nodes in the EFGM and FEM solutions. The normalized central
deflections and stresses according to thickness/span ratios of h /L =0.1, h /L =
0.05and h / L = 0.01 are presented and compared with exact solutions [80] in Tables

6.7 to 6.15, respectively.

According to results in Tables 6.7 to 6.15, stability problem, especially in the stress
solutions, has been occurred in the usage of EFGM using irregular node distribution.
It is seen that there is no significant difference between EFGM solutions using regular
and the FEM solutions. While all solutions have acceptable results, FEM ones are

closer to exact solution.
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100E,

3
Table 6.7. Normalized central deflections w, * ( h /qL4) according toh / L = 0.1 for simply supported square plate cross-ply

orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 1.052046 1.027597 1.023212 1.022245 1.023610 1.0219

EFGM (regular)  1.019537  1.024719  1.027076  1.027261  1.027900
EFGM (irregular)  1.025495  1.023276  1.027458  1.028617  1.029729
0°/90°/90°/0° FEM 1.043563  1.028626  1.025836  1.025218  1.026448  1.025
EFGM (regular)  1.015265  1.026491  1.029009  1.029220  1.029748
EFGM (irregular)  1.015072  1.025677  1.029085  1.030162  1.031657
0°/90°/0°/90°/0° FEM 0.982837  0.974351  0.973075 0972823  0.973888  0.9727
EFGM (regular)  0.960644  0.972762 0975322  0.975547  0.976021
EFGM (irregular)  0.957094  0.972063 0975205  0.976301  0.978003
0°/90°/90°/0°/90°/90°/0° FEM 0.963368  0.957785  0.957160  0.957065  0.957963  0.9643
EFGM (regular)  0.943319  0.956100  0.958683  0.958912  0.959291
EFGM (irregular)  0.937504  0.955692  0.958369  0.959280  0.961339
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Table 6.8. Normalized central stresses o, * (hz/qu) in the x direction according to h / L = 0.1 for simply supported square plate cross-

ply orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.455712 0.699143 0.754124 0.767498 0.768027 0.7719

EFGM (regular) 0588401  0.689606  0.708955  0.714686  0.716178
EFGM (irregular)  0.621959  0.713637  0.709024  0.732600  0.828454
0°/90°/90°/0° FEM 0438888  0.678911  0.738171  0.752911  0.754095  0.7577
EFGM (regular) 0574024  0.675832  0.695763  0.701527  0.703096
EFGM (irregular)  0.605755  0.698983  0.696232  0.717860  0.802960
0°/90°/0°/90°/0° FEM 0445260  0.684957  0.744964  0.759976  0.761259  0.7649
EFGM (regular) 0581295  0.683995  0.703838  0.709503  0.711006
EFGM (irregular) 0.611138  0.706117  0.704118  0.724417  0.801022
0°/90°/90°/0°/90°/90°/0° FEM 0441579  0.678758  0.739410  0.754657  0.756418  0.7605
EFGM (regular) 0582100  0.682405  0.702175  0.707655  0.709171
EFGM (irregular)  0.610859  0.702878 0702214  0.719248  0.777554
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Table 6.9. Normalized central stresses o, * (hz/qu) in the y direction according to h / L = 0.1 for simply supported square plate cross-

ply orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.365614 0.321747 0.310837 0.308275 0.308222 0.3072

EFGM (regular) ~ 0.297402  0.304159  0.302031  0.300357  0.300022
EFGM (irregular)  0.273055  0.309793  0.306789  0.294096  0.280569
0°/90°/90°/0° FEM 0527118 0508839 0502772 0501253 0501335  0.5006
EFGM (regular)  0.424910  0.473583  0.481821  0.483237  0.483861
EFGM (irregular)  0.385739  0.485263  0.494260  0.478467  0.443306
0°/90°/0°/90°/0° FEM 0556814 0555030  0.553237  0.552757 0553031  0.5525
EFGM (regular) 0452208 0514081 0525689  0.528306  0.529363
EFGM (irregular) 0407074 0529067  0.542938  0.527897  0.480935
0°/90°/90°/0°/90°/90°/0° FEM 0612591  0.627640  0.630344  0.630974  0.631402  0.6016
EFGM (regular)  0.497607  0.292863  0.592466  0.596438  0.598035
EFGM (irregular) ~ 0.445966 0596988  0.616957  0.603219  0.537153
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Table 6.10. Normalized central deflections w, * ( h /qL4) according to h / L = 0.05 for simply supported square plate cross-ply

orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.755446 0.756019 0.756870 0.757149 0.757642 0.7572

EFGM (regular)  0.728314  0.754624  0.759073  0.759642  0.760014
EFGM (irregular)  0.736906  0.755724  0.759163  0.759996  0.762093
0°/90°/90°/0° FEM 0.757584  0.766561  0.768664  0.769201  0.769706  0.7694
EFGM (regular)  0.730094  0.766916 0771171  0.771757  0.772103
EFGM (irregular)  0.737088  0.768028  0.771197  0.771974  0.774128
0°/90°/0°/90°/0° FEM 0741153 0754184 0757161 0757901  0.758386  0.7581
EFGM (regular)  0.714957  0.755265  0.759489  0.760104  0.760437
EFGM (irregular)  0.717356  0.756522  0.759386  0.760239  0.762470
0°/90°/90°/0°/90°/90°/0° FEM 0.736030  0.751419  0.754906  0.755767  0.756227  0.7575
EFGM (regular) 0711101 0752913  0.757100  0.757720  0.758028
EFGM (irregular)  0.712384  0.754398  0.756882  0.757703  0.760053
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Table 6.11. Normalized central stresses o, * (hz/qu) in the x direction according to h / L = 0.05 for simply supported square plate cross-

ply orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.473739 0.725602 0.780732 0.793989 0.796477 0.7983

EFGM (regular) 0596434  0.722359  0.739139  0.741852  0.743464
EFGM (irregular)  0.619996 0740241  0.741644  0.759162  0.856243
0°/90°/90°/0° FEM 0.465016  0.720489  0.783723  0.799353  0.802557  0.8045
EFGM (regular) 0592680  0.725962  0.744277  0.747626  0.749387
EFGM (irregular)  0.616515  0.743711  0.747176  0.763910  0.852101
0°/90°/0°/90°/0° FEM 0.465563  0.720982  0.786327  0.802638  0.806114  0.8080
EFGM (regular) 0593268  0.730405  0.749015  0.752065  0.753702
EFGM (irregular)  0.615019  0.746891  0.751720  0.766781  0.845646
0°/90°/90°/0°/90°/90°/0° FEM 0462390 0715284  0.781688  0.798381  0.802090  0.8059
EFGM (regular) 0593226  0.728932  0.747714  0.750886  0.752470
EFGM (irregular) ~ 0.614915 0744439  0.749829  0.762226  0.822120
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Table 6.12. Normalized central stresses g, * (hz/qu) in the y direction accordingto h / L = 0.05 for simply supported square plate cross-

ply orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.276912 0.235296 0.225788 0.223643 0.223068 0.2227

EFGM (regular) 0223186  0.223362  0.219464  0.216176  0.214897
EFGM (irregular) ~ 0.208076  0.228098  0.219466  0.211058  0.204767
0°/90°/90°/0° FEM 0421400 0404673  0.398828  0.397404  0.397003 0.3968
EFGM (regular) 0332215  0.378395  0.382963  0.381740  0.381293
EFGM (irregular) 0307634  0.386027  0.389491  0.377257  0.351861
0°/90°/0°/90°/0° FEM 0488002 0487295 0485234 0484693  0.484511 0.4844
EFGM (regular) 0384084  0.453642 0462247 0462369  0.462492
EFGM (irregular) ~ 0.352561  0.464066  0.474268  0.461200  0.421963
0°/90°/90°/0°/90°/90°/0° FEM 0569393 0586553  0.589014 0589571  0.589692 0.5475
EFGM (regular) ~ 0.447311 0543069 0556096  0.557375  0.558111
EFGM (irregular) ~ 0.409070 0557759 0576017  0.562786  0.502377
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Table 6.13. Normalized central deflections w, * ( h /qL4) according to h / L = 0.01 for simply supported square plate cross-ply

orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.656733 0.666003 0.668731 0.669453 0.669659 0.6697

EFGM (regular) 0520528  0.657996  0.669175  0.670721  0.671185
EFGM (irregular)  0.418022  0.662874  0.668804  0.670672  0.673310
0°/90°/90°/0° FEM 0.660659  0.678133  0.682027  0.682989  0.683248  0.6833
EFGM (regular) 0520692  0.671283  0.682956  0.684610  0.685088
EFGM (irregular)  0.423705  0.674744  0.682860  0.684545  0.687101
0°/90°/0°/90°/0° FEM 0.661104  0.681476  0.685918  0.687001  0.687287  0.6874
EFGM (regular) 0518291  0.674850  0.686934  0.688664  0.689156
EFGM (irregular)  0.422738  0.677858  0.686871  0.688596  0.691118
0°/90°/90°/0°/90°/90°/0° FEM 0.661661  0.684081  0.688948  0.690129  0.690435  0.6896
EFGM (regular) 0517722  0.677895  0.690063  0.691814  0.692308
EFGM (irregular)  0.430155  0.680875  0.690034  0.691719  0.694232
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Table 6.14. Normalized central stresses o, * (hz/qu) in the x direction accordingto h / L = 0.01 for simply supported square plate cross-

ply orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.480457 0.735678 0.789847 0.802902 0.806122 0.8072

EFGM (regular) ~ 0.487330  0.736080  0.774068  0.768696  0.758989
EFGM (irregular) ~ 0.399531  0.186854  0.768303  0.765377  0.871963
0°/90°/90°/0° FEM 0474142 0737063  0.801675  0.817564  0.821512 0.8420
EFGM (regular) ~ 0.487286  0.747363  0.787459  0.782647  0.773416
EFGM (irregular) ~ 0.403905  0.766157  0.784718  0.779292  0.875919
0°/90°/0°/90°/0° FEM 0472071 0736030  0.803958  0.820840  0.825046 0.8264
EFGM (regular) ~ 0.485274  0.749629 0791820  0.787939  0.778372
EFGM (irregular) ~ 0.404007  0.768735  0.788764  0.781890  0.870299
0°/90°/90°/0°/90°/90°/0° FEM 0469797 0731247  0.800707  0.818130  0.822481 0.8260
EFGM (regular) ~ 0.484705  0.748021  0.790451  0.787169  0.778090
EFGM (irregular) ~ 0.410243  0.766784  0.787761  0.778841  0.847160
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Table 6.15. Normalized central stresses g, * (hz/qu) in the y direction accordingto h / L = 0.01 for simply supported square plate cross-

ply orientations.

Fiber orientation Method Number of nodes in the problem domain Exact
9 25 81 289 1089 [80]
0°/90°/0° FEM 0.243989 0.203523 0.195223 0.193337 0.192860 0.1925

EFGM (regular)  0.162723  0.192208  0.192325  0.190778  0.187996
EFGM (irregular)  0.122505  0.209076  0.175232  0.180446  0.181997

0°/90°/90°/0° FEM 0379438  0.362880  0.357645  0.356406  0.356087 0.3558
EFGM (regular)  0.244080  0.336190  0.349673  0.349371  0.345107
EFGM (irregular) ~ 0.185587  0.353280  0.335124  0.335138  0.319635

0°/90°/0°/90°/0° FEM 0459420 0458635  0.456658  0.456164  0.456033 0.4559
EFGM (regular)  0.291493  0.422876  0.444394  0.444107  0.438923
EFGM (irregular) ~ 0.222590  0.440500  0.432956  0.430284  0.400028

0°/90°/90°/0°/90°/90°/0° FEM 0550848 0568400 0570794 0571334  0.571463 0.5241
EFGM (regular) ~ 0.346518 0523138  0.553082  0.552396  0.545728
EFGM (irregular) ~ 0.268718  0.540908  0.546767  0.540762  0.488047
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6.6 Simply supported square plate asymmetric angle-ply orientation

The deformation of an angle-ply simply supported square plate subjected to a
uniformly distributed transverse load, g = 1 is examined [84] using four layers
[6°/—6°/6°/—6°]. The solutions are presented with a constant thickness-to-span ratio,

h / L, of 0.1. The material M4 is used, presented in Table 6.1, in this example.

Because of the asymmetry, the whole plate is modelled using 9, 25, 81, 289 and 1089
number of nodes in the EFGM and FEM solutions. Table 6.16 presents the normalized

center deflection of plate and comparison of FEM, EFGM and reference [80] solutions.

It is visible that the accuracy of FEM solutions is more accurate than the EFGM. Also,
EFGM solutions have some stability problems that can be seen fluctuations in Table
6.16.
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Table 6.16. Normalized central deflections w, * (

Fiber orientation

+5° — 59/45°/—59

+15° — 15°/415°/—15°

+30° — 30°/+30°/—30°

+45° — 45°/+45°/—45°

Method

FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)

1000E,

9
7.472839
6.411681
6.431757
6.689615
5.932476
5.914719
5.454464
5.010505
4.949157
5.070192
4.673825
4.605979

Number of nodes in the problem domain

92

25
7.114253
6.926699
6.775039
6.354364
6.265513
6.123560
5.040349
5.080280
4.959900
4.622783
4.674571
4571114

81
6.795589
6.764587
6.758258
6.118003
6.112581
6.100832
4.858959
4.878929
4.862130
4.462457
4.484520
4.485889

289
6.757223
6.749272
6.732890
6.113182
6.080432
6.080572
4.868983
4.818350
4.863859
4.466135
4.419934
4.472319

1089
6.745030
6.746870
6.757196
6.093797
6.070224
6.079005
4.836944
4.795679
4.803643
4.436225
4.395635
4.400596

3
h /qL4) for simply supported square plate asymmetric angle-ply orientation.

Reddy
(1997)
6.741

6.086

4.825

4.426



6.7 Clamped circular orthotropic plate

The clamped circular plate has one layer with [0°] fiber orientation. The orthotropic
material is considered as M5, presented in Table 6.1, having radius, R is 5. The plate
have six different aspect ratios of R / h = 1000, R /h=100,R/h=50 ,R /h =
25,R / h =16.67 and R / h = 10 are analyzed to determine deformations under the

uniformly distributed transverse load g = 1.0.

Due to symmetry, only one quarter of the plate is modelled using 37, 127, 271 and
817 number of nodes in problem domain for EFGM and FEM solutions. The

. . . . . . D
normalized central deformations of the circular plate in all solutions is w = w, * PP

with D = 3(D;q + Dy3) + 2(D15 + 2Dgg) Where Dy, D,y, D15, D are bending
rigidity coefficients of the laminate. The normalized central deflection results obtained
from EFGM and FEM solutions are presented and compared with reference solution
[81] in Table 6.17.

From the results in Table 6.17, the EFGM solutions have better solution accuracy than
FEM solutions. It is observed that various radius/thickness, R / h ratios did not cause
any problem and acceptable results have been achieved in solutions. Also, it can be
seen that increasing the usage of number of node in the problem domain gives more

accurate results.
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Table 6.17. Normalized central deflections w, * (D/qR4) for clamped circular orthotropic plate.

R/h

1000

100

50

25

16.67

10

Method

FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)
FEM

EFGM (regular)
EFGM (irregular)

Number of nodes in the problem domain

37
0.121796
0.029822
0.025682
0.122014
0.121879
0.118743
0.122536
0.126078
0.125585
0.124307
0.129426
0.130160
0.127092
0.133001
0.133768
0.135734
0.142633
0.143118

94

127
0.123743
0.085802
0.075350
0.124431
0.125882
0.125751
0.124887
0.127049
0.127093
0.126562
0.129049
0.129045
0.129309
0.131939
0.131891
0.137943
0.140774
0.140684

271
0.124564
0.101390
0.096190
0.124832
0.126018
0.125961
0.125260
0.126805
0.126813
0.126925
0.128632
0.128629
0.129671
0.131454
0.131441
0.138310
0.140220
0.140199

817
0.124927
0.116942
0.112665
0.125065
0.126057
0.125998
0.125483
0.126582
0.126563
0.127144
0.128300
0.128286
0.282196
0.129890
0.131074
0.138530
0.139829
0.139815

Nguyen
(2007)
0.1258

0.1259

0.1264

0.1280

0.1308

0.1394



6.8 Simply supported skew plate cross-ply and angle-ply orientations

The simply supported skew plates have three layers with [0°/90°/0°] and
[45°/—45°/45°] fiber orientations. The material is considered as M6,
presented in Table 6.1, having length, L is 10 and the thickness, t is 0.1. The
applied uniform load, q is 1.0.

Due to asymmetry, whole plate is modelled using 9, 25, 81, 289 and 1089
number of nodes in problem domain for EFGM and FEM solutions. Table
6.18 and 6.19 show that the normalized central deflection and stress results
obtained from EFGM and FEM solutions for angle-ply and cross-ply
orientation. All results are considered with two various skew angle 15° and
30° which are relative to vertical axis of the plate, and are compared with
reference solutions [82] in Table 6.18 and 6.19.

According to obtained results, it seems that FEM and EFGM solutions show
similar characteristics in deflection results, but FEM solutions have better
solution accuracy than EFGM solutions for stress results. It is observed that
289 or 1089 number of node must be used to get acceptable results in the
FEM and EFGM solutions.
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Table 6.18. Normalized central deflections w, * (

Fiber orientation

+45°/—45°/+45°

0°/90°/0°

Skew
Angle

15°

30°

15°

30°

Method

FEM
EFGM (regular)
FEM
EFGM (regular)
FEM
EFGM (regular)
FEM
EFGM (regular)

1000E,

9

5.840285
1.122156
5.842700
0.431166
5.192128
1.140922
4.718031
0.400004

Number of nodes in the problem domain

96

25

6.429780
5.474735
5.836345
5.159519
6.358929
5.944378
5.426954
4.951664

81

6.467096
6.249868
5.820975
5.686199
6.404640
6.420126
5.448885
5.413463

289

6.521025
6.382581
5.837574
5.774858
6.426853
6.439451
5.476687
5.487663

1089

6.546342
6.457338
5.846956
5.806842
6.434468
6.452504
5.485953
5.510602

3
h /qL4) for simply supported skew plate angle-ply and cross-ply orientations.

Chakrabarti
(2004)

6.4332

5.7904

6.4321

5.4654



Table 6.19. Normalized central stresses o, * (hz/qLZ) in the x direction for simply supported skew plate angle-ply and cross-ply

orientations.

Fiber orientation Skew
Angle

+45°/—45°/+45° 15°

30°

0°/90°/0° 15°

30°

Method

FEM
EFGM (regular)
FEM
EFGM (regular)
FEM
EFGM (regular)
FEM
EFGM (regular)

9

0.111112
0.026613
0.147447
0.011362
0.261322
0.055785
0.238854
0.019955

Number of nodes in the problem domain

97

25

0.265031
0.184604
0.253191
0.179738
0.641146
0.488790
0.547272
0.405482

81

0.270111
0.245983
0.257896
0.237999
0.743913
0.697461
0.633941
0.588878

289

0.271836
0.257516
0.264100
0.251119
0.767035
0.751603
0.653867
0.638208

1089

0.273139
0.261057
0.265602
0.254626
0.772915
0.766647
0.659471
0.652156

Chakrabarti
(2004)

0.2693

0.2651

0.7812

0.6634



CHAPTER 7
CONCLUSIONS

In the first part of the study, the effects of selectable parameters such as size of support
domain, number of monomials, type of weight function, number of integration points
in a background cell and value of penalty coefficient, on the accuracy of the EFGM
solutions of the isotropic Reissner-Mindlin plate bending have been investigated. Four
numerical examples as benchmark problems are solved using regular and irregular
node distributions. According to obtained results, the regularity and irregularity do not
so much effects in the solutions. The number of integration points in a background cell
has some fluctuations for the value of 4 and 8 at the examined range. Also, the value
of penalty coefficient does not exhibit any accuracy loss or fluctuation up to 1 x 10°.
Finally, the smaller support domain size gives more accurate results. These

assessments are valid for both displacement and moment.

From the results of isotropic plate solutions, 3.0, 5 x 5, 1 x 10° for an isotropic plate
bending problem can be suggested as size of support domain , number of gauss points
in a background cell, and value of penalty coefficient, respectively. These values may
not be the optimum values for every situation, however, in general, give the results

with sufficient accuracy.

In the second part of the study, the EFGM reliability on the solution accuracy of
bending analysis of laminated composite plates has been examined by comparing FEM
solutions and exact solutions in the literature. Seven numerical examples have been
performed to apply EFGM and FEM solutions. According to obtained results, the
usage of small number of nodes in the solutions is not sufficient accuracy since
laminated plates have a complex structure. 289 and 1089 number of nodes must be
used to get acceptable results in general. However, the EFGM solutions obtained by
using regular and irregular node distributions have close results to exact solutions and
show higher convergency rate than FEM solutions in some numerical examples. Also,

there is no significant difference between solutions of regular and irregular node
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distributions. In conclusion, the EFGM is a reliable method in the bending analyses of
laminated composite plates.
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