

UNIVERSITY OF GAZIANTEP

GRADUATE SCHOOL OF

NATURAL & APPLIED SCIENCES

DEVELOPMENT OF EMBEDDED SYSTEM FOR MONITORING

TEMPERATURE OF BLOOD BANK

M.Sc. THESIS

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

BY

KAIWAN SABER ISMAEL

MAY 2016

Development of Embedded System for Monitoring Temperature of

Blood Bank

M.Sc. Thesis

in

Electrical and Electronics Engineering

University of Gaziantep

Supervisor

Prof. Dr. Ergun ERÇELEBI

By

Kaiwan Saber ISMAEL

May 2016

© 2016 [Kaiwan Saber ISMAEL]

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Kaiwan Saber ISMAEL

ABSTRACT

DEVELOPMENT OF EMBEDDED SYSTEM FOR MONITORING

TEMPERATURE OF BLOOD BANK

ISMAEL, Kaiwan Saber

M.Sc. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ergun ERÇELEBI

May 2016

 Pages 99

The human blood is analyzed for three main components as plasma, platelets and red

blood cell. Those components of blood must be safekeeping inside refrigerators.

There are many refrigerators inside blood bank center. In this thesis, we have

developed a embedded hardware and software for monitoring of temperature of 24

refrigerators inside blood bank center. Embedded hardware is implemented with

microcontroller, oscillator circuit, CAN integrated circuit for CAN bus, and LCD.

Due to the security of locations in the blood bank hall and difficulty of monitoring of

each refrigerator separately, this work proposes a solution to monitor temperatures of

all the blood bank refrigerators in one location. CAN-bus system has been used

because it has many advantages. Especially it has been preferred due to easy in use,

low cost, providing a reduction in wiring, fast to repair and easily expanding.

PIC18F458 microcontroller has been used in embedded hardware design to execute

embedded software. As a temperature sensor, LM35 integrated circuit was utilized.

Embedded software's have been developed by using C language on MPLAB IDE.

The designed system has ability of detecting temperature in the range between –55°C

and +150°C. The temperature sensed by sensor is compared with the setting value by

the user and if the temperature goes beyond the preset temperature, then buzzer and a

red LED will be active. Also, the address of each refrigerator is sent to LCD display

so operator knows which refrigerator fails.

.

Keyword: Monitoring blood bank center, Control Area Network (CAN), PIC

microcontroller, MPLAB IDE.

ÖZET

KAN BANKASININ SICAKLIĞININ İZLENMESİ İÇİN GÖMÜLÜ

SİSTEMİN GELİŞTİRİLMESİ

ISMAEL, Kaiwan Saber

Yüksek lisans tezi: Elektrik-Elektronik Mühendisliği

Tez Yöneticisi: Prof. Dr. Ergun Erçelebi

MAY 2016

99 sayfa

İnsan kanı üç ana bölümden oluşan plazma, trombositler ve kırmızı kan hücresi için

analiz edilir. Kanın bu bileşenleri buzdolabı içerisinde saklanmalıdır. Kan bankası

merkezi içinde birçok buzdolapları vardır. Bu tezde, kan bankası merkezinde

bulunan 24 buzdolabının sıcaklıklarının gözlemlenmesi için gömülü donanım ve

yazılım geliştirdik. Gömülü donanım mikro denetleyici, osilatör devresi, CAN veri

yolu için CAN tümleşik devresi ve LCD ile gerçekleştirildi. Kan bankası

koridorlarındaki yerlerin güvenliği ve her buzdolabının ayrı ayrı izlenmesinin

zorluğu nedeniyle bu çalışma tek yerden tüm buzdolapların sıcaklılarının

gözlenmesi için çözüm sunmaktadır. CAN veri yolu bir çok avantajından dolayı

kullanıldı. Özellikle kolay kullanımı, düşük fiyatı, kablo gereksinimini azaltması,

hızlı tamiri ve kolay genişletilir olması nedenleriyle bu çalışmada tercih edildi.

Gömülü yazılımı koşturmak için gömülü donanım tasarımında PIC18F458 mikro

denetleyicisi kullanıldı. Sıcaklık algılayıcısı olarak LM35 tümleşik devresi kullanıldı.

Gömülü yazılımlar MPLAB platformunda C yazılım dili kullanılarak geliştirildi.

Tasarlanan sistem –55°C ve +150°C arasındaki sıcaklıkları algılayabilecek

kabiliyete sahiptir. Algılayıcı tarafından algılanan sıcaklık değeri belirlenen sıcaklık

değeri ile kıyaslanır ve şayet bu sıcaklık değeri belirlenen sıcaklık değerinin ötesine

geçerse LED ve sesli ikaz aktif hale geçecektir. İlaveten, operatör hangi buzdolabının

hatalı olduğunu bilmesi için buzdolaplarının adresi LCD ekranına iletilir.

Anahtar kelimeler: gömülü donanım, gömülü yazılım, kan bakası merkezi, CAN

veri yolu, mikro denetleyici.

Dedicated to

My dears mother, father, my wife and children

my brother and my sister

viii viii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the most Merciful. First of all I would like

to thank to Allah for all His guidance and giving while I was preparing, doing and

finishing this master thesis.

I would like to express my gratefulness to my supervisors Prof. Dr. Ergun

ERÇELEBI for his guidance, patience, kindness, and encouragement throughout this

research.

I would like to express my thanks to the staff members of the Department of

Electrical and Electronics Engineering in the University of Gaziantep and my thanks

to all other friends for their helping me in preparing this research.

Finally, my grateful thanks my parent‟s, wife and children for their great patience

and help to accomplish this research.

viii viii

TABLE OF CONTENT

 Pages

ABSTRACT .. v

ÖZET .. vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENT .. ix

LIST OF FIGURES ... xv

LIST OF TABLES .. xviii

LIST OF SYMBOLS/ABBREVIATIONS ... xx

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 GENERAL INTRODUCTION .. 1

1.2 OVERVIEW OF THE CHAPTERS ... 2

CHAPTER 2 ... 4

LITERATURE SURVEY .. 4

2.1 INTRODUCTION .. 4

2.2 MICROCONTROLLER .. 4

2.2.1 MICROPROCESSOR VERSUS MICROCONTROLLER .. 5

ix

viii viii

2.2.2 TYPE OF MICROCONTROLLER ... 6

2.2.3 PIC MICROCONTROLLER .. 6

2.2.3.1 PIC families ... 6

2.2.3.2 PIC18F458 ... 7

2.2.3.2.1 Vdd (Vcc) .. 8

2.2.3.2.2 VSS (GND) ... 8

2.2.3.2.3 Oscillator ... 8

2.2.3.2.4 MCLR ... 8

2.2.3.2.5 PIC18F CONFIG1H register... 9

2.2.3.2.6 PIC CONFIG2L register ... 10

2.2.3.2.7 Watchdog Timer (WDT) .. 11

2.2.4 ANALOG TO DIGITAL CONVERTER (ADC) .. 11

2.2.4.1 ADC Resolution ... 12

2.2.4.2 Digital data output of A/D converter ... 13

2.2.4.3 Configuration of the A/D converters register and bit control 13

2.2.4.3.1 ADRESL and ADRESH registers ... 14

2.2.4.3.2 A/D ACQUISITION REQUIREMENTS 15

2.2.4.4.3 ADC CLOCK PERIOD .. 15

2.2.4.3.4 ADCON0 Control register 0 ... 16

2.2.4.3.5 ADCON1 register.. 17

viii viii

2.2.5 CLOCK OSCILLATOR ... 18

2.2.5.1 Internal oscillator ... 18

2.2.5.2 External oscillator .. 19

2.2.6 ECS-100AC 4MHZ(QUARTZ CRYSTAL OSCILLATOR) 22

2.2.7 LM35 TEMPERATURE SENSOR .. 22

2.2.8 CONTROLLER AREA NETWORK (CAN) BUS SYSTEM 23

2.2.8.1 Introduction .. 23

2.2.8.2 CAN protocol ... 24

2.2.8.3 Layers of CAN ... 25

2.2.8.4 CAN Message Frames.. 25

2.2.8.4.1 Data frame ... 25

2.2.8.5 The CAN bus ... 27

2.2.9 LIQUID CRYSTAL DISPLAY (LCD) .. 29

2.2.9.1 LCD Display pins ... 30

2.2.9.2 LCD screen... 32

2.2.9.3 LCD memory ... 32

2.2.9.3.1 DDRAM (Display Data RAM) memory 32

2.2.9.3.2 CGROM .. 33

2.2.9.3.3 CGRAM .. 33

2.2.9.4 LCD Basic Commands .. 34

2.2.9.5 LCD Connecting ... 35

x

viii viii

2.2.10 LED DIODE .. 35

2.2.11 MCP2561 CONTROLLER AREA NETWORK (CAN) TRANSCEIVER 36

2.2.12 LM7805C VOLTAGE REGULATOR ... 37

2.2.13 ULN2003APG SEVEN CHANNEL DARLINGTON SINK DRIVER 38

2.2.14 BUZZER ... 38

2.2.15 RELATED WORK ... 39

2.2.16 SCOPE OF THE WORK .. 40

CHAPTER 3 ... 41

SOFTWARE AND CODE ... 41

3.1 INTRODUCTION .. 41

3.2 MPLAB IDE ... 41

3.3 PICKIT 3 .. 42

3.4 PROGRAMMING STEPS IN MICROCONTROLLER ... 42

3.5 C PROGRAMMING VERSUS ASSEMBLY ... 43

3.6 PIC COMPILERS .. 43

3.7 DOWNLOADING MPLAB C18 C COMPILER .. 44

3.8 MPLAB IDE CREATE PROJECT WIZARD CHOOSING PIC18F458 WITH C

LANGUAGE .. 45

3.9 MPLAB C18 C COMPILER LIBRARIES ... 48

3.9.1 XLCD DELAY FUNCTIONS .. 48

3.9.2 EXTERNAL LCD FUNCTIONS .. 49

4.9.3 PIC18F458 ADC C CONFIGURATION .. 52

xi

viii viii

CHAPTER 4 ... 55

SYSTEM DESIGN AND IMPLEMENTATION .. 55

4.1 INTRODUCTION .. 55

4.2 SYSTEM DESIGN .. 56

4.2.1 BIT TIMING PARAMETERS .. 56

4.2.2 THE IMPLEMENTED ALGORITHMS .. 58

4.2.2.1 Display node .. 58

4.2.2.1.1 Configuration CAN Module ... 60

4.2.2.1.2 Implementing the Node feature .. 60

4.2.2.2 Red Blood Cell (RBC), Platelet and Plasma Node 61

4.2.2.2.1 CAN module configurations ... 62

4.2.2.2.2 Implementing the Node feature ... 62

4.2.2.3 Hardware structure ... 63

CHAPTER 5 ... 67

RESULTS AND DISCUSION ... 67

4.1 INTRODUCTION .. 67

4.2 ... 67

CHAPTER 6 ... 71

6.1 CONCLUSION ... 71

6.2 SUGGESTIONS FOR FUTURE WORK .. 71

REFERENCES ... 73

xii

viii viii

APPENDIX - A ... 75

APPENDIX-B ... 85

APPENDIX - C ... 90

APPENDIX - D ... 92

APPENDIX-D ... 94

APPENDIX-E ... 96

APPENDIX-F ... 98

xiii

xiv

viii viii

LIST OF FIGURES

 Pages

Figure 2.1 Microcontroller Architecture………………………………………….......4

Figure 2.2 Microprocessor and Microcontroller block diagram……………………...5

Figure 2.3 PIC18F458 chip…………………………………………………………...7

Figure 2.4 PIC18F458 Component Architecture……………………………………..8

Figure 2.5 PIC18F458 Pin Diagram…………………………………………………8

Figure 2.6 PIC18F458 Basic Connection……………………………………………9

Figure 2.7 Microcontroller connection to Sensor via ADC………………………...12

Figure 2.8 PIC18 family10-bit ADC [8]………………………………..…………..12

Figure 2.9 Analog to digital converters register.[8]…………………………………14

Figure 2.10 Right justified A/D converter data storing(ADFM bit =1)……….…….14

Figure 2.11 Right justified A/D converter data storing (ADFM bit =0)………….…15

Figure 2.12 (10-bit) ADC expense period

…………………………….………….…16

Figure 2.13 ADCON0 register………………………………………………………16

Figure 2.14 ADCON1

register……………………………………………….………17

Figure 2.15 ADCON0 channel selection……………………………………………18

file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753390
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753391
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753392
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753393
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753394
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753395
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753396
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753397
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753398
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753399
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753400
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753400
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753400
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753401
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753402
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753402
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753403

viii viii

Figure 2.16 Internal and external oscillator of

microcontroller………………….…..19

Figure 2.17 External oscillator (EC) mode………………………………………….19

xv

file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753404
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753404
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753405

viii viii

Figure 2.18 Quartz crystal oscillators and block diagram connection………………20

Figure 2.19 Ceramic oscillator……………………………………………………...21

Figure 2.20 RC oscillator and connection with a microcontroller………………….21

Figure 2.21 RCIO oscillator and connection with a microcontroller…………….….22

Figure 2.21 (a) EC-100AC waveform 2.21(b) Pin connections

(c) Oscillator package

……………………………………………………………….22

Figure 2.23 LM35 temperature sensor………………………………………..…….23

Figure 2.24 The Layered ISO 11898 Standard Architecture………………….…….24

Figure 2.25 Standard CAN (11-Bit Identifier) [10]…………………..………….…26

Figure 2.26 Physical Bus

Connections…………………………………….….…….27

Figure 2.27 CAN bus speed and bus length…………………………………………28

Figure 2.28 Twisted Pair CAN Bus and termination

connection…………………....28

Figure 2.29 (a) CANH and CANL bus voltage (b) CANH and CANL

Signals……..29

Figure 2.30 2×16 LCD

DISPLAY……………………………………….………….30

Figure 2.32 LCD pin description .. 31

Figure 2.33 LCD 5x8 pixel matrix ... 32

Figure 2.35 CGROM memory map .. 33

Figure 2.38 Lighting Emitting diode(LED) .. 36

file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753406
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753407
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753408
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753409
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753411
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753412
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753413
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753414
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753414
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753415
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753416
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753416
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753418
file:///D:\?????%20?????\edit%20-%20Copy.docx%23_Toc448753418

viii viii

Figure 2.39 (a) MCP2561 chip (b) MCP2561 CAN Transceiver Pin Diagram 37

Figure 2.40 Four Node CAN Bus Block Diagram .. 37

Figure 2.41 Voltage Regulator Circuit .. 37

Figure 2.42 (a) 7-Ch Darlington Sink Driver Pin Diagram (b) 1-ch sink

driver circuit (c) 7-ch Sink Driver chip ... 38

Figure 3.1 MPLAB IDE .. 41

Figure 3.2 PICkit 3 package .. 42

Figure 3.3 PICkit 3 Programmer Connector piout ... 42

Figure 3.4 PIC Microcontroller programming ... 43

Figure 3.5 choosing C programming download location .. 44

Figure 3.6 C downloading guide ... 45

Figure 3.7 MPLAB IDE with main program

………………………………………..46

Figure 3.8 MPLAB IDE Creating C project ... 47

Figure 3.9 MPLAB IDE choosing specific PIC .. 47

Figure 4.1 Blood Bank Center designed layout………………………………………….….55

Figure 4.2 Display Node Schematic

Diagram…………………………………….…59

Figure 4.3 Display Node Schematic Diagram.. 61

Figure 4.4 RBC, Platelet, and Plasma Node schematic

Diagram………………………..62

Figure 4.5 Flow Chart For CAN Based RBC, Platelet and Plasma Node 63

Figure 4.6 Four node circuit diagram of the four node monitoring system

based CAN system .. 65

xvi

viii viii

Figure 5.1 displays three different temperatures in three different nodes

and alarm address ... 68

Figure 5.2 The Actual hardware structure of the project system……………………………………….70

xvii

viii viii

LIST OF TABLES

 Pages

 Table 2.1 8-bit CONFIG1H register ... 9

Table2.2 8-bit CONFIG2L register .. 10

Table 2.3 PIC voltage level configuration ... 10

Table 2.4 bit versus resolution of the ADC.. 13

Table 2.5 Configure ADC Clock period…………………………………………….15

Table 2.6 ADCON0 channel selection. .. 17

Table 2.7 PIC18F458 Oscillator Frequency Choices and Capacitor Range 20

Table 3.1 LCD delay function .. 48

Table 3.2 LCD Busy function……………………………………………………….49

Table 3.3 Open LCD .. 49

Table 3.4 put string to the LCD ... 49

Table 3.5 function reads the address byte from the Hitachi HD44780 LCD

controller .. 50

Table 3.6 Reading Data from the LCD……………………………………………...50

Table 3.7 Character Generator Address function…………...………………………51

Table 3.8 Display Data Address Function ... 51

Table 3.9 Writing Command to the LCD……………………………….…………...51

 Table 3.10 ADC Busy function ... 52

xviii

viii viii

Table 3.11 Close the ADC function…………………………...…………………….52

Table 3.12 Start Conversion Function of ADC .. 53

Table 3.13 General Configuration of ADC function ... 53

Table 3.14 Reading Data function of ADC .. 53

Table 3.15 Channel Selection of ADC Function ... 54

Table 5.1 Practical Result of Implemented Board for monitoring

Three Different temperatures in Three Nodes and Reaction of

LED s and Buzzer………………………………………………...…………………68

xix

viii viii

LIST OF SYMBOLS/ABBREVIATIONS

RBC Red blood cell

WBC White blood cell

PLT Platelet

PIC Peripheral Interface Controller

LCD Liquid Crystal Display

PC Personal Computer

ADC Analog to Digital Converter

EEPROM Electrical Erasable Random Only Memory

MPLAB IDE Microchip LAB Integrated Development Environment

Soc Small Computer

OTP One Time Programmable

RAM Random Access Memory

RF Radio Frequency

OSC Oscillator

DLL Data Link Layer

xx

1

CHAPTER 1

INTRODUCTION

1.1 General Introduction

A blood donation center is a reserve or bank of blood or blood parts, assembled as an

aftereffect of blood gift or accumulation, put away and safeguarded for later use in

blood transfusion. The expression "blood donation center" normally alludes to a

division of a clinic where the capacity of blood item happens and where appropriate

testing is performed (to decrease the danger of transfusion-related antagonistic

occasions). Notwithstanding, it some of the time alludes to a gathering focus, and for

sure a few clinics additionally perform accumulation [1].

Blood is an exceptionally concentrated tissue made out of more than 4,000 various

types of parts. Four of the most critical ones are red cells(RBC), white cells (WBC),

platelets(PLT), and plasma.

Every blood segment is utilized for an alternate sign; along these lines, the part

partition has augmented the utility of one entire blood unit. Distinctive segments

need diverse capacity conditions and temperature prerequisites for remedial viability.

An assortment of types of gear to keep up suitable surrounding conditions amid

capacity and transportation are in vogue [2].

With the progress of development, the techniques are ending up being progressive

Complex. As a result of this development in capriciousness, for beneficial

examination of strategy, the amount of parameters required for data acquiring also

increases. Data Acquisition is basically the social event of information around a

structure or methodology.

It is the procedure of gathering information in a computerized design from analog

and digital measurement sources, for example, sensors and gadgets under test. Prior

2

to the PC age, most information was recorded physically or on strip graph recorders.

Numerous new era information securing items has been created because of the rise of

the microcontroller that empowers ongoing social ongoing, investigation.

Temperature is one of the fundamental parameters to control in the greater part of the

manufacturing industry, food processing, pharmaceutical and so forth. In these sorts

of industries, some item requires the obliged temperature to be kept up at most

elevated need the item will come up short. So the temperature controller is most

generally utilized in almost all the industries [3].

In this thesis, a monitoring of temperatures for a particular application has been

planned. The framework works around the well-known PIC18 family. The

framework outlines and created to quantify the temperature with the assistance of

temperature sensors. A Microcontroller based temperature information has been

developed for measuring the temperature at various input channels of analog to

digital converter (ADC). For real time displaying, An LCD display has been used for

a continuous showcase of Data procured from different sensors.

1.2 Overview of the Chapters

A brief review of the contents of this thesis is given as follows:

Chapter 2: It mentions about Microcontroller and the configuration of it, also,

analog to digital converter background and using it with Microcontroller as well as

mentions about CAN BUS System for communication and using it with

Microcontroller, also mentions about liquid crystal display (LCD) and basic

operation of it.

Chapter 3: It mentions about MPLAB IDE, using software and creating projects,

also mentions about the C language, especially C library for PIC18F458, also

mentions about PICkit 3 programmer tool for writing C Code to EEPROM of the

PIC via MPLAB IDE.

Chapter 4: In this chapter, an account is given for the practical development of

monitoring of 24 refrigerators. This process includes the design and implements

CAN bus system and Microcontroller for collecting temperature data, Also,

implementing the LCD (liquid crystal display) to display the temperature.

3

Chapter 5: In this chapter proffers the results of the LCD display and laboratory

instruments, also presents the measurement and test the result of all nodes. Also, the

result of monitoring of temperature obtained with the actual temperature is

compared.

Chapter 6: It mentions the thesis conclusion and future work.

4

 CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

It mentions about Microcontroller and the configuration of it, also mentions about

CAN Bus System for communication and using it with Microcontroller

2.2 Microcontroller

A microcontroller is a little PC (SoC) on a solitary incorporated circuit containing a

processor center, memory, and programmable input/output peripherals. Program

memory as Ferroelectric RAM, NOR flash or OTP ROM is regularly included on

chip and an ordinarily little measure of RAM. Microcontrollers are intended for

inserting applications, as opposed to the microprocessors utilized as a part of PCs or

other general purpose applications comprising of different discrete chips, as shown in

figure 2.1 [4].

All devices in the PIC family come with a many kinds of development tools, are easy

to obtain, remain relatively cheap, and have very good documentation [5].

Figure 2.1 Microcontroller Architecture

5

2.2.1 Microprocessor versus Microcontroller

1. Speed of the Central Processing Unit (CPU): speed of the Microcontroller is lower

than Microprocessor due to clock frequency. In other hand, Microcontroller has more

reliable than a processor.

 2. Protection: on the off chance that you programmed the microcontroller it is

difficult to get the program from the Rom by different clients. The Rom will be

bolted and it is difficult to recover the program from the ROM of microcontroller.

Processor won't give that much security to its program.

3. The Design Time: The configuration an application microcontroller will take less

time when contrasted with the processor. The interfacing between the peripherals and

programming group will be simple when compared with the processor.

4. Cost: Microprocessor expensive than Microcontroller. Also, Implementing of

Microprocessor costlier than Microcontroller if we compare together.

5. Applications: processors are primarily utilized as a part of calculation system,

communication of the Network, and so forth Microcontrollers are principally utilized

as a part of the inserted application like watches, cell phone, mp3 player, and so on.

Figure 2.2 Microprocessor and Microcontroller block diagram

6

2.2.2 Type of Microcontroller

Starting 2008, there are a few dozen microcontroller designs and sellers including:

 ARM core processors (numerous sellers)

 Atmel AVR

 Intel 8051, additionally produced by NXP Semiconductors, Infineon and

numerous others

 Infineon: XC800 for 8-bit, XE166 for 16-bit , XMC4000 for 32-bit

 MIPS

 Microchip Technology PIC, (8-bit PIC16, PIC18, 16-bit dsPIC33 / PIC24), (32-

bit PIC32)

 NXP Semiconductors LPC(1000, 2000, LPC3000), LPC4000 (32-bit).

 Renesas Electronics: RL78 for16-bit.

 Texas Instruments TI MSP430 for16-bit, MSP432 for 32-bit, C2000 for32-bit.

 Toshiba TLCS-870 for 8-bit and for 16-bit.

2.2.3 PIC Microcontroller

Microchip Technology is an American maker of microcontroller, memory and

memory and analog semiconductors. Products of this manufacture include

Microcontrollers (PICmicro (peripheral interface controller), dsPIC/PIC24, PIC32),

Serial EEPROM gadgets, Serial SRAM gadgets, KEELOQ gadgets, Radio

Frequency (RF) device, thermal, management of the battery or power of the analog

device, and also interface and mixed signal devices. A percentage of the interface

device consists USB, Controller Area Network (CAN), ZigBee/MiWi, and Ethernet

[6].

2.2.3.1 PIC families

PICmicro chips are composed with a Harvard design and are offered in different

device families. The pattern and mid-range families utilize 8-bit wide data memory,

and the top of the line families utilize 16-bit data memory. The most recent

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/List_of_common_microcontrollers#Infineon
https://en.wikipedia.org/wiki/XC800
https://en.wikipedia.org/wiki/XE166_family
https://en.wikipedia.org/wiki/Infineon_XMC4000
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/NXP_Semiconductors
https://en.wikipedia.org/wiki/Renesas_Electronics
https://en.wikipedia.org/wiki/RL78
https://en.wikipedia.org/wiki/Texas_Instruments#Microcontrollers
https://en.wikipedia.org/wiki/MSP430
http://www.ti.com/msp432
https://en.wikipedia.org/wiki/TMS320
https://en.wikipedia.org/wiki/Toshiba_TLCS

7

arrangement, PIC32MX is a 32-bit MIPS-based microcontroller. Guideline words are

in sizes of 12-bit (PIC10 and PIC12), 14-bit (PIC16) and 24-bit (PIC24 and dsPIC).

Representation of binary in the machine instruction is different due to change of

family.

2.2.3.2 PIC18F458

PIC18F458 is a 40-pin chip created by Microchip technology; it has five ports,

PORTA, PORTB, PORTC, PORTD, and PORTE. You can use all of them as input

or output according to your application, is must be programmed. Also,

Microcontroller operating frequency starts from a few kilohertz to 4o MHZ, it

additionally has Typical Data RAM has 1536 Bytes, For EEPROM it has 256 Bytes

and 34 Input/output Pins, 8 Channel (10-bit) ADC (Analog to digital converter), 4

Timer. Whatever is left of the pins are assigned as Vdd, GND (Vss),

OSC1(Oscillator 1 pins), OSC2(Oscillator 2 pins), and MCLR (master Clear reset),

as shown in figure 2.5.

Figure 2.3 PIC18F458 chip

8

Figure 2.4 PIC18F458 Component Architecture

 Figure 2.5 PIC18F458 Pin Diagram

2.2.3.2.1 Vdd (Vcc)

Two pins are utilized to give a voltage source to the PIC18F458. Normally the

voltage source of this chip is +5V.

2.2.3.2.2 VSS (GND)

PIC18F458 has two pins for grounding. This will decrease the Noise is called ground

bounce.

2.2.3.2.3 Oscillator

PIC18F458 has OSC1, OSC2 and it has more alternatives for the Clock source. A

quartz Crystal oscillator is a most often case for choosing to connect the PIC. The

quartz crystal oscillator connected to the pin 13 and 14 on this chip additionally need

two capacitors. One of them is associated with the ground.

2.2.3.2.4 MCLR

The pin one of the PIC18F458 is called Master Clear Reset (MCLR), this pin must

be high at normal operation (+ 5V across it). Also to activate the MCLR must be

9

applied low pulse to this pin, after doing that the activity of Microcontroller will

reset. Figure 2.6 shows the basic connection of the voltage source, MCLR, and

oscillator on the PIC18F458.

Figure 2.6 PIC18F458 Basic Connection

2.2.3.2.5 PIC18F CONFIG1H register

The CONFIG1H register in PIC18f458 is 8-bit (bit 0 –bit 7) register and it is used to

configure the clock oscillator, as shown in table 2.1

. Table 2.1 8-bit CONFIG1H register

U-0 does not used (Read as “0”), from bit (0 to 2) is used for Oscillator selection, for

example: for using RC Oscillator, mean is that FOSC2: FOSC0 (111), for using HS

(high-speed Oscillator), FOSC2: FOSC0(010).

Bit 5 is OSCSEN is used for enabling and disabling system Oscillator Clock Switch

OSCS = 1 is disabled.

10

OSCS = ON (oscillator switch is disabled). In my thesis enabled OSCS.

OSCS = 0 (oscillator switch is enabled).

OSCS = OFF (oscillator switch is enabled).

2.2.3.2.6 PIC CONFIG2L register

CONFIG12L register is used for the purpose of stability of the clock frequency and

voltage during a reset. See Table 2.2. There are two internal timers inside PIC

microcontroller, (OST) Oscillator start-up timer and (PWRT) Power-up timer, these

two internal timers help to reduce the delay associated with the voltage source and

frequency oscillator during the process of power-up.

Table2.2 8-bit CONFIG2L register

Table 2.3 PIC voltage level configuration

U-0 is Unimplemented (Read as “0”)

BOREN: Brown Out Reset Enable bit

BOREN = 0 disabled

11

BOREN = 1 enabled

PWRT: Power –up Timer enable bit

PWRT = 1 enable

PWRT = 0 disable

In my project BOREN enabled, BORV is 2V, PWRT is disabled.

2.2.3.2.7 Watchdog Timer (WDT)

A watchdog timer is a clock associated with a totally separate RC oscillator inside of

the microcontroller. We can use the watchdog timer to force the Microcontroller into

a Known state of reset when the system is hung up or out of the control due to the

execution of an incorrect sequence of codes.

WDT = ON (watchdog timer is enabled)

WDT =OFF (Watchdog timer is disabled)

In my project WDT is disabled.

2.2.4 Analog to Digital converter (ADC)

Analog-to-digital converters are among the most broadly utilized devices for data

acquisition. Advanced PCs use binary (discrete) values, yet in the physical world,

everything is analog (continuous). Temperature, pressure (wind or liquid), humidity,

and velocity are a couple of illustrations of physical quantities that we manage each

day. Converting a physical quantity to an electrical (voltage, current) signals using a

device called Transducer. Transducers are additionally alluded to as a sensor. Sensor

for velocity, temperature, light, pressure and numerous other natural quantities

produce an output that is voltage (or current). Subsequently, we require an analog-to-

digital converter to interpretation the analog signals to digital numbers so that the

microcontroller can read and process them, as shown in figure 2.7 [7].

12

Figure 2.7 Microcontroller connection to Sensor via ADC

2.2.4.1 ADC Resolution

ADC of PIC Microcontroller has a n-bit resolution, 8-bit is a lower resolution and

24-bit is the highest resolution, generally n can be 8, 10, 12, 16, and 24-bit

resolution. The smallest step size of the ADC depended on the n-bit of the ADC, then

a large number of n provides higher resolution. Where to step size is the littlest

change that can be recognized by an ADC. Resolution is the most important thing in

an ADC.

For instance, If the reference voltage of ADC is 0 to 5v then 8-bit ADC will beyond

the range in 256 divisions so it can measure it precisely up to 5/255v=19mv roughly.

While the 10-bit ADC will beyond the range in 5/1024=4.8mv roughly. So we can

see that the 8-bit ADC can't differentiate somewhere around 1mv and 18mv.

PIC18F458 is a 10-bit resolution as shown in figure 2.8. Also, Table 2.4 illustrates

the wide resolution of the ADC.

Figure 2.8 PIC18 family10-bit ADC [8][7]

13

Table 2.4 bit versus resolution of the ADC

2.2.4.2 Digital data output of A/D converter

In a 10-bit ADC we have a 10-bit digital data output of D0-D9 while in the 12-bit

ADC the data output is D0-D11.We have the following formula to find the output

voltage

 2.1

2.2.4.3 Configuration of the A/D converters registers and bit control

There are four registers of A/D converter;

1. ADRESL Contains low byte of conversion result (storing result).

2. ADRESH Contains high byte of conversion result (storing result).

3. Control register 0 (ADCON0).

4. Control register 1 (ADCON1).

Figure 2.9 shows the A/D register block diagram.

14

Figure 2.9 Analog to digital converters register[8].[7]

2.2.4.3.1 ADRESL and ADRESH registers

In PIC18 after completing analog to digital conversion process, the result is

achieved, this result includes the 10-bit number and stored in two 8-bit register is

called ADRESL and ADRESH. There are two methods for putting away these values

- left and right justification. The ADFM bit in ADCON1 register decides to select

right justification or left justification. If A/D converter is not used, these registers

may be used as general-purpose registers. Figure 2.10 and figure 2.11 shows the data

storing in ADRESL and ADRESH registers [8].

Figure 2.10 Right justified A/D converter data storing (ADFM bit =1)

15

Figure 2.11 Right justified A/D converter data storing (ADFM bit =0)

Right justified used in my project.

2.2.4.3.2 A/D ACQUISITION REQUIREMENTS

Necessary to increase the accuracy of ADC, To get this accuracy must be determined

the certain time delay between selecting specific analog input and measurement

itself. This time is called 'acquisition time'. There is a function used to determine this

time accurately, this time, must be greater than 20 µS OR 11 times TAD.

2.2.4.4.3 ADC CLOCK PERIOD

The required time during conversion process for completing one bit is called TAD.

This time, the period must be equal or greater than 1.6 µS. For full conversion 10-bit,

ADC required 11 TAD. According to using high frequency (short time period) in

PIC microcontroller and for solving this problem, need to increase the time period

without changing the clock source by configuring an ADCS1 and ADCS2 bits in

ADCON0 register. Illustrates in Tables 2.5.

Table 2.5 Configure ADC Clock period

16

In my project I used Fosc/32 and 4 MHz Oscillator, So the Clock period is 8 µS

(TAD), Thus total ADC time conversion is 88 µS. As shown in figure 2.12.

Figure 2.12 (10-bit) ADC expense period

2.2.4.3.4 ADCON0 Control register 0

There are 8-bit ADCON0, as shown in figure 2.13.

Figure 2.13 ADCON0 register

Bit 0 of ADCON0 used for enabling and disabling ADC, When ADON bit is (1)

means is that the converter is enabled and vice versa.

Bit-2 is an A/D Conversion Status bit (GO/DONE), It is used to start conversion and

monitor to see it, mean is that its use in determining the current status of the

conversion, if (GO/DONE =1) mean is that conversion in progress, or (GO/DONE

=0) mean is that conversion is complete, after completing the conversion ADON is

cleared automatically by the hardware.

Bit-3, bit-4 and bit-5 (CHS0-CHS2) are analog channel select bits; these 3- bits are

responsible for selecting a pin or an analog channel in the conversion process, Table

2.6 illustrates the channel selections.

17

Table 2.6 ADCON0 channel selection.

The conversion time is set with ADCS0, ADCS1 bits in ADCON0 register and

ADCS2 in ADCON1 register.

2.2.4.3.5 ADCON1 register

Figure 2.14 shows the ADCON1 register, PCFGs are analog to digital converter

configuration control bit, this 4-bit are responsible for which pin is analog or digital

and a voltage reference, as shown in figure 2.15.

Figure 2.14 ADCON1 register

18

Figure 2.15 ADCON0 channel selection

2.2.5 Clock oscillator

Oscillator circuit is a very important thing to generate a clock of the microcontroller.

The Clock is required for executing a program or program instructions. In generally;

there are two parts of oscillators in Microcontroller:

1. Internal oscillator

2. External oscillator

2.2.5.1 Internal oscillator

Internal oscillator consists of two internal oscillators separately:

The high-frequency internal oscillator (HFINTOSC) which works at 8MHz. After

using prescalers The Microcontroller can use this clock source in different

frequencies. Also, low-frequency internal oscillator (LFINTOSC) which works on 31

kHz. SCSEN bit decides to select which oscillator are used (internal or external) in

the CONFIG1H register, the figure 2.16 shows the types of oscillators block.

19

Figure 2.16 Internal and external oscillator of microcontroller

2.2.5.2 External oscillator

There are several modes of external oscillator clock, During the writing of the

programming process of Microcontroller, the operation mode is selected by the user.

The (EC) mode uses an external oscillator as a clock source. The limited range of

this Oscillator restricted about 20 MHz as shown in figure 2.17.

Figure 2.17 External oscillator (EC) mode

Quartz crystal or ceramic is used as an external clock to provide any mode of clock

source (LP, XT and HS) modes.

20

In PIC18F458, the OSC1 and OSC2 pins are connected to the quartz crystal and

ceramic resonator terminals and across the two capacitors for providing clock

frequency as shown in figure 2.18. Also, the size of capacitors selects the frequency

range of clock as shown in table 2.7.

Table 2.7 PIC18F458 Oscillator Frequency Choices and Capacitor Range

Figure 2.18 Quartz crystal oscillators and block diagram connection

The connection of Ceramic resonators to provide clock frequency is similar to crystal

oscillator additionally ceramic resonator cheaper than a crystal oscillator due to not

good characteristics. As shown in figure 2.19.

21

Figure 2.19 Ceramic oscillator

For the purpose of connecting RC mode OSC1 pin connected to RC circuit, another

pin (OSC2) provides less frequency by 4 times the (OSC1/4. This frequency is useful

for several applications like calibration, synchronization etc., as shown in figure

2.20.

Figure 2.20 RC oscillator and connection with a microcontroller

Also in RCIO mode, it has the same way for connection OSC1 pin to the RCIO

circuit, but another pin (OSC2) it‟s free to be used as input or output of general

purpose. As shown in figure 2.21.

22

Figure 2.21 RCIO oscillator and connection with a microcontroller

2.2.6 ECS-100AC 4Mhz (quartz crystal oscillator)

The ECS-100 clock oscillator is fully compatible with TTL (transistor-transistor

logic) circuitry. The metal package with pin-7 case ground acts as shielding to

minimize radiation. Also, this type oscillator is low cost. Figure 2.22 illustrates

the pin diagram and output waveform.

(a) (b) (c)

Figure 2.22 (a) ECS-100AC waveform 2.21(b) pin connections (c) Oscillator

package

2.2.7 LM35 temperature sensor

The LM35 is an incorporated circuit sensor. As shown in Figure 2.23. It senses the

temperature and changed to electricity in the output relative to the temperature in

centigrade (°C).

The output voltage of this sensor higher than thermocouples consequently does not

need it for amplification. The scale of voltage output versus temperature is 10 mV for

each one degree (10mV/°C). Also the important thing of LM35 is, does not need

external calibration, Also it has good accuracy about+/- 4.0
 o

C at room temperature,

But at out the range of (0
o
C to 100

 o
C)

as its accuracy decreases to +/- 0.8°C. Also

the LM35 has very low power consumption about 60µA. [9].

23

Figure 2.23 LM35 temperature sensor

2.2.8 Controller Area Network (CAN) bus System

2.2.8.1 Introduction

The CAN bus was developed by Robert Bosch in the 1980‟s and is used as a multi-

master protocol that can have a maximum signal rate of 1Mbps(CIA). The idea of

CAN came about to solve an ever-increasing demand for the multiple Electronic

Control Module (ECM) networking. Unlike USB or Ethernet protocols, CAN uses

smaller packet sizes to deliver messages throughout the CAN bus. For this reason,

messages like temperature, humidity or even engine RPM(revolution per minute)

could be sent from one node to another with accuracy and with little cost.

CAN is an International Standardization Organization (ISO) characterized serial

communications bus. Initially created for the car business that helps to reduce wiring.

For these elements, CAN's prevalence is utilized as a part of an assortment of

commercial enterprises, including automation of building, medical, and factories.

The communication of CAN protocols, ISO-11898 depicts how data are gone

between devices on the network. The actual communication between gadgets

associated with the physical medium is characterized by the physical layer of the

model. The ISO 11898 architecture defines the Data Link Layer (DLL) and the

Physical Layer to ensure compatibility between CAN transceivers and only the

transceivers.

24

The CAN communications protocol, ISO-11898 describes how information is passed

between devices on the network. Actual communication between devices connected

by the physical medium is defined by the physical layer of the model. The ISO

11898 architecture defines the Data Link Layer (DLL) and the Physical Layer to

ensure compatibility between CAN transceivers and only the transceivers.

Figure 2.24 The Layered ISO 11898 Standard Architecture

In Figure 2.24, the DLL alongside the Medium Access Control (MAC) layer of the

CAN protocol characterizes the non-damaging bit-wise arbitration, so the message

with the most elevated earlier identifier will get sent first.

2.2.8.2 CAN protocol

 CAN is a serial protocol.

 It‟s a Multimaster, Multicast, protocol.

 It supports distributed real-time control.

 Currently, Controller Area Network (CAN) is not restricted to the auto

industry.

Multi-master; when the bus is free any node might begin to send a message. Which

node has the largest priority can send the message to the bus.

Multicast; numerous node might get and follow up on the message at the same time.

25

2.2.8.3 Layers of CAN

CAN divide into three layers:

 The Object Layer

 The Transfer Layer

 The Physical Layer

The Object and Transfer Layers include all administrations and elements of the Data

Link layer characterized by the ISO/OSI model. Likewise, the physical layer

performs the real exchange of bits between various nodes.

2.2.8.4 CAN Message Frames

Can message includes four sorts of frame:

1. Data frame: It conveys information from a transmitter to the collectors.

2. Remote frame: It is transmitted by a node to ask for the transmission of a Data

frame with the same identifier.

3. Error frame: It is transmitted by any hub in the wake of distinguishing a bus

mistake.

4. Overload frame: It is utilized to give extra defer between two information or

remote frames.

2.2.8.4.1 Data frame

 Standard CAN (11-bit identifier)

 Extended CAN (29-bit identifier)

Data Frame consists a 7 field. As shown in figure 2.25.

26

Figure 2.25 Standard CAN (11-Bit Identifier) [10]

 Start of Frame (SOF) has denoted the start of a data or remote frame. It

comprises of one and an only dominant bit. All nodes need to synchronize with the

main node of the begin of frame bit.

 Identifier- The 11-bit identifier establishes the priority of the message.

 RTR–The single remote transmission request (RTR) bit RTR is 0 means this

node need to receive data from another node. Also, if RTR is 1 means this node need

to transmit data to the other node.

 IDE–A dominant single identifier extension (IDE) bit implies that a standard

CAN identifier with no extension is being transmitted.

 r0–Reserved bit.

 DLC–The 4-bit data length code (DLC) contains the number of bytes of data

being transmitted. This field can be in lengths of 0-8 bytes.

 Data The data field contains the data to be transmitted.

 CRC– It‟s a 16-bit field used to improve transfer reliability

 ACK– This field consists of 2-bits, 1-bit for the acknowledge slot and the other

1-bit is for the acknowledge delimiter. A transmitting message sends two recessive

bits while a receiving node will send a dominant bit after a valid message.

27

 EOF – Each message is ended by a flag sequence, including of seven recessive

bits.

 IFS–This 7-bit interframe space (IFS) consists the time required between

messages that are being sent over the bus.

2.2.8.5 The CAN bus

The data link and physical signaling layers of Figure 2.27 are regularly

straightforward to the system operator and are included with any controller that

implements the CAN protocol. Connection to the physical medium is then is

implemented through a line transceiver, such as MicroChip‟s MCP2561 (MicroChip)

which was the chosen Transceiver for my project. Figure 2.26 below shows the bus

connections for any amount of nodes connected to a system. Here you will also see

the data direction for which the controllers and transceivers send and receive

messages.

Figure 2.26 Physical Bus Connections

Messages are sent across the bus using differential signals. Differential signals offer

superior in the reduction of noise immunity and allow for fault tolerance. This is

done using a twisted-pair cable which helps reduce noise and allows for high signal

rates. Since the cable is twisted, the signal line current flows in each line of pairs

equally but in a different direction. The resulting field-canceling effect. Unwanted

noise has the potential for data corruption and ultimately leads a system to be

unstable.

28

The ISO 11898 standard specifies that a signal rate of 1Mbps can have a maximum

bus length of 40 meters. As the bus length increases the rate at which the bus can

operate decreases. Figure 2.27 [11] below shows the correlation. In this figure, You

can see that a 400-meter bus length will have a bus rate of 100Kb/s. The reason why

the bus speed decreases because the capacitance builds up between the two wires.

Figure 2.27 CAN bus speed and bus length [11]

The twisted wire or cable can be shielded or it can be unshielded depending on the

location of the application. The standard also calls for the twisted-pair to be connected

with a 120Ω resistor at each of pair ends which minimize signal reflection. As shown in

Figure 2.28.

Figure 2.28 Twisted Pair CAN Bus and termination connection

29

The data on CAN bus is different and can be in two states: dominant(CANL) and

recessive (CANH). The state of voltages on the bus. The bus defines a logic bit 0 as a

dominant bit and a logic bit 1 as a recessive bit. as displayed in Figure 2.29.

(a) (b)

Figure 2.29 (a) CANH and CANL bus voltage (b) CANH and CANL Signals [10]

2.2.9 Liquid Crystal Display (LCD)

LCD is a very suitable instrument for displaying the standard map character. A

(2x16) LCD consists 2 lines of character displays, Also the number of 16 means,

This LCD has the capacity of 16 characters for displaying. An LCD is capable of

interfacing with a microcontroller and normally used in various devices, as shown in

figure 2.30. Additionally, it has more popularity than 7-segment and multi-segment

LED displays. The advantages of LCD‟s are as follows

 Less expensive.

 It can program easily.

 Display long number of characters.

 Very light and compact.

 Power consumption is very low.

 Easy programming for displaying the characters and graphics [12].

30

Figure 2.30 2×16 LCD DISPLAY

2.2.9.1 LCD Display pins

Normally the LCD display has 14 pins some of them has extra 2 pins for the

backlight of it. These pins used for communication with microcontroller one side of

the small printed board of the LCD display there are pins that enable it to be

connected to the microcontroller. There are all together of 16 pins as appeared in

figure 2.31. Their function is portrayed in the figure 2.32.

Figure 2.31 LCD Pin Diagram

31

Figure 2.32 LCD pin description

Vcc, Vss, and VEE, While VCC and Vss provide +5V and ground, respectively,

VEE is used for controlling LCD contrast. Also RS is called select register, this

register is used for their selection as follows. If RS is a logic zero(0V) allowing the

user to send commands to the display throw D0-D7 pins, such as a clear display as

shown in figure 2.32. If RS is a logic one(+5V), allowing the user to send data to be

displayed on the screen.

R/W(read/write) input allows the user to write information to the LCD or read

information from it.

E (Enable) pin is used by the LCD to latch information presented to its data pins.

32

Also, the remaining 8-bit pins, are used to send data to the LCD or read contents of

the LCD‟s internal register.

2.2.9.2 LCD screen

 A 2x16 LCD means it is able to display 32 characters for the entire display. Also,

the first and second row have the capacity of 16 characters. Each of character

includes (5x8) or (5x11) pixel matrix. But a 5x8 character display which is most

ordinarily utilized. The dots matrix as shown in figure 2.33.

Figure 2.33 LCD 5x8 pixel matrix

2.2.9.3 LCD memory

There are three main blocks in LCD memory:

 Display Data RAM (DDRAM)

 Character Generator RAM (CGRAM)

 Character Generator ROM (CGROM)

2.2.9.3.1 DDRAM (Display Data RAM) memory

DDRAM memory is utilized for putting away characters to be shown. The memory

size of DDRAM is equipped for putting away 80 characters. Some memory locations

straightforwardly interface with the characters on display. The first line addresses,

starts from 00hex to 27hex, also the second line address starts from 40hex to 67hex,

as shown in figure 2.34.

33

Figure 2.34 DDRAM memory address

2.2.9.3.2 CGROM

CGROM memory contains a standard character map with all characters that can be

shown on the screen. Every character is allocated to one memory location:

Figure 2.35 CGROM memory map

The addresses of CGROM memory locations match the characters of ASCII. In the

event that the system being right now executed encounters a command „send

character P to port‟ then the binary value 0101 0000 shows up on the port. This value

is the ASCII equivalent to the character P, as shown in figure 2.35.

2.2.9.3.3 CGRAM

Aside from standard characters, the client can characterize the images and show it on

the LCD. Additionally, the span of images must match with the 5x8 pixels. CGRAM

has 64 bytes of size. Memory registers have 8 bits wide, but Only 5 lower bits are

34

utilized in light of the restricted of (5x8 pixels). Putting away each logic (1)

represented a dot on the screen, while 8 locations gathered to together represent one

character. It is shown in figure 2.36.

Figure 2.36 CGRAM memory location a dress

2.2.9.4 LCD Basic Commands

 If RS is a logic one, D0 to D7 pins ready for displaying the data.

 If RS is a logic zero, D0 to D7 pins acts as a command for setting the display

mode.

The figure 2.37, Shows the most commands is used daily.

35

Figure 2.37 LCD display command setting

2.2.9.5 LCD Connecting

There are two modes for interfacing between microcontroller and LCD. In 4-bit

mode, only four higher bits (D4-D7) are used and connected to the microcontroller

means the data is sent to the LCD in two stages, four higher bits are sent first

(normally through the lines D4-D7), then four lower bits. Initialization enables the

LCD to link and interpret received bits correctly. Another mode is 8-bits, in this

mode all pins (D0 to D7) are used for connecting with a microcontroller to transmit

and receive data.

2.2.10 LED diode

LEDs have two terminals one of them anode and the other is the cathode. Which

emits light during applying a suitable voltage across the ends.

The largest current flows by the diode do not exceed 20 mA, so as to prevent this

from damaging must connect resistance with it serially, shown in figure 2.38.

36

Figure 2.38 Lighting Emitting diode(LED)

2.2.11 MCP2561 Controller Area Network (CAN) Transceiver

The MCP2561 Shown in figure 2.39, is a high-speed CAN, fault-tolerant device that

serves as the communication between a CAN protocol controller and the physical

bus. The MCP2561 gives differential transmit and get the ability for the CAN

protocol controller and is totally perfect with the ISO-11898 standard physical layer,

including 5V necessities. It will work at speeds of 1 Mb/s.

Figure 2.39 (a) MCP2561 chip (b) MCP2561 CAN Transceiver Pin Diagram

Regularly; In CAN system any node need to the device to convert the digital data

provide by the CAN controller to a proper information over the twisted-pair wire are

called CAN bus as shown in figure 2.40. It likewise gives a support between the

CAN controller and the high voltage spikes that can be produced on the CAN Bus

[13].

37

Figure 2.40 Four-Node CAN Bus Block Diagram

2.2.12 LM7805C Voltage Regulator

Voltage Regulator (7805) is a voltage regulator integrated circuit (IC) as shown in

Figure 2.41. The voltage source in a circuit may have variations and would not give

the constant output voltage. The voltage regulator means the output voltage at a

stable value. 7805 provides +5V regulated power supply. Used 7805 prototypes of

the regulator to feed the microcontroller.

Figure 2.41 Voltage Regulator Circuit

38

2.2.13 ULN2003APG Seven channel Darlington Sink Driver

The ULN2003APG is integrated circuit(IC) consist of 7 NPN transistors, Also the

output voltage and current capacity about 50V,500mA respectively [14][12]. As

shown in figure 2.42.

Figure 2.42 (a) 7-Ch Darlington Sink Driver Pin Diagram (b) 1-ch sink driver circuit

(c) 7-ch Sink Driver chip

 2.2.14 Buzzer

A bell or beeper is a sound flagging device, which might be mechanical,

electromechanical, or piezoelectric. In this project this device is used for the purpose

of alarm, this buzzer will activate when the override temperature of each refrigerator

is occurring, figure 2.43 displays the 5v buzzer.

Figure 2.43 (5V) buzzer

https://en.wikipedia.org/wiki/Darlington_transistor

39

2.2.15 Related work

The relevant research reports in the literature with regards to the field of Controller

Area Network (CAN) system, Microcontrollers, and their conclusions are briefly

cited below:

Steve Corrigan (2008) presented a brief introduction to the CAN operating

principles, the execution of a fundamental CAN bus using Texas Instrument‟s CAN

transceivers and DSPs. Some of the properties of CAN, especially relating to the

electrical layer and features of transceiver products, are then discussed at a tutorial

level [10].

Presi, T.P.(2013) Proposed and implemented by a CAN protocol using PIC for

vehicle monitoring system. The main feature of the system includes monitoring of

various vehicle parameters such as Temperature, presence of CO level in the exhaust,

Battery Voltage and Light due to spark or fire. The software part is done in MPLab

IDE using Embedded C. Schematic is prepared using OrCAD[15].

Sekhar, N.C, Reddy, T.S. ; Bhavani, G. et al (2014) proposed to implement low-cost

MEMS (MicroElectro MechanicalSystems) based real-time temperature

measuring, monitoring and control system which uses

monolithic temperature sensors that provides a pulse width modulated digital output

signal corresponding to its input temperature. Two different platforms are chosen to

implement the MEMS based temperature control system. First one is using real time

controlling software NI LabVIEW and another is using the PIC Microcontroller. As

the implemented system uses advanced technologies [16].

Badri, M.A, Halim, A.K.,(2008) presented a design of moving

message LCD display system (MMDS) via short message service (SMS) entry using

Rabbit 2000 microcontroller. The objectives of the project are to design and integrate

the hardware and software that interface the RCM2000 microcontroller, GSM

module and LCD module in order to create MMDS [17].

Muhammad Ali Mazidi and Janice Gillispe Mazidi (2000) discussed the overview of

8051 microcontrollers. Microcontrollers and microprocessors are widely used in

embedded system products. An embedded product uses a microcontroller to do one

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Presi,%20T.P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sekhar,%20N.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Reddy,%20T.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bhavani,%20G..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Badri,%20M.A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Halim,%20A.K..QT.&newsearch=true

40

task and one task only. In addition to the description of criteria for choosing a

microcontroller, the interfacing with the real world devices such as LCDs, ADCs,

sensors and a keyboard is described in detail [18].

S.J.Perez, M.A.Calva, R.Castañeda(2014) proposed a Microcontroller-based data

logging system to record temperature and relative humidity for acoustic

measurement applications. The system is simple to use, requires no additional

hardware and allows the selection of the amount of data and the time intervals

between them. The collected data can easily be exported to a PC computer via a

serial port [19].

2.2.16 Scope of the work

The aim of the present work is to design and implement the circuit to monitor the

temperature of 24 refrigerators inside blood bank center The developed system

includes four nodes, which are named as RBC, plasma, platelet, and display nodes.

One node (called DISPLAY node) requests the temperature periodically and displays

it on an LCD. This process is then repeated continuously. The second, third and

fourth node reads the temperature of all refrigerators from an external semiconductor

temperature sensor, this will be a linear active sensor that converts temperature to an

analog voltage. The temperature sensor of choice is the LM35DZ, which provides us

a10mV per degree Centigrade output with no calibration necessary. By using this

sensor to read the output signal into PORTA, pin RA1of of the microcontroller. Also,

each node is far from together in a different place. In addition, each node sends alarm

address of each refrigerator to the LCD display when override temperature is

occurring. PIC18F458 are used to implement the hardware architecture of each

node, for programming of Microcontroller, MPLAB and C code is used. Also,

PIC18F458 build in CAN module for communication between nodes [20].

41

CHAPTER 3

SOFTWARE AND CODE

3.1 Introduction

This chapter mentions about MPLAB IDE, using software and creating projects, also

mentions about the C language, especially C library for PIC18F458, also mentions

about PICkit 3 programmer tool for writing C Code to EEPROM of the PIC via

MPLAB IDE.

3.2 MPLAB IDE

MPLAB IDE is a free integrated development environment for the development of

embedded applications on PIC and dsPIC microcontrollers, and is produced by

Microchip Technology [21]. MPLAB is intended to work with MPLAB-certified

devices such as the MPLAB ICD 3 and MPLAB REAL ICE, for programming and

debugging PIC Microcontrollers utilizing a personal PC. PICKit programmers are

likewise upheld by MPLAB [22], figure 3.1 displays the screenshot of MPLAB IDE

software.

Figure 3.1 MPLAB IDE

42

3.3 PICkit 3

Microchip technology created a group of programmers, among of them is PICkit as

shown in 3.2. They are utilized to program and debug Microcontrollers, additionally

program EEPROM. Some models likewise feature logic analyzer and serial

communications (UART) instrument, figure 3.3 displays the pin diagram of PICKit

3. The general population who create open-source programming for the PICkit utilize

a mailing list for collaboration [23].

Figure 3.2 PICkit 3 package

Figure 3.3 PICkit 3 Programmer Connector pinout

3.4 programming steps in Microcontroller

Generally, Programming of PIC Microcontroller includes the following stages

43

1. Write the code

2. Compile the code

3. Upload the code into a Microcontroller, as shown in figure 3.4.

Figure 3.4 PIC Microcontroller programming

3.5 C programming versus Assembly

 If compare C language to another language, it is easy for transporting when this

language transferred from one processor to next one. Also, no need more for

changing.

 C programming in high-level language rather than assembler, also developing

of C language more quickly than assembler.

 Typically, a program which takes a couple of weeks in assembler agent Can be

composed in C in a couple days.

Also, C is not as efficient as the assembly because the assembly programmer can

usually do better than the compiler, no matter what the optimal level – C will use

more memory.

3.6 PIC compilers

A compiler converts a high-level language program to machine instructions for the

target processor. Likewise, a compiler that keeps running on a processor (for the

most part a PC), that is not quite the same as the objective processor. Additionally,

44

the C18 compiler is a free program for understudies utilized for programming the

PIC as a part of C Language [24].

3.7 Downloading MPLAB C18 C Compiler

After installing MPLAB IDE from Microchip website on the PC, once in

Microchip‟s site, choose to download this file: MPLAB C for PIC18 v3.46

 Execute file. Click to accept the license agreement. Next

 This window in figure 3.5 shows the path where the compiler will be installed

and then next.

Figure 3.5 choosing C programming download location

 Continue installation. When the last window appears, click “Finish” as shown

in figure 3.6.

45

Figure 3.6 C downloading guide

The installation program generates four applications

1. mcc18.exe (compiler).

2. mplink.exe (linker).

3. mplib.exe (library management).

4. MPASMWIN.EXE (assembler).

These four applications must be included by the user in any C18 project.

3.8 MPLAB IDE Create Project wizard choosing PIC18F458 with C language

 Projects are groups of files associated with language tools.

 A project consists of source files, header files, object files, library files and a

linker script.

 At minimum, one header file is required to identify the register names of the

objective microcontroller.

 At least one header file is required to identify the register names of the target

microcontroller.

 The project‟s output files consist of executable code to be loaded into the

objective microcontroller.

1. Write source text(.c) into this new file.

46

2. Open File Go to save this file. Browse by specific location as you want, as

shown in figure 3.7.

3. Click Save.

Figure 3.7 MPLAB IDE with the main program

For creating project wizard must do the following:

4. To create a new project, go to the project then Project Wizard, displays in

figure 3.8.

47

Figure 3.8 MPLAB IDE Creating C project

5. Choose device (specific PIC), In this project Choose PIC18F458 as shown in

figure 3.9.

Figure 3.9 MPLAB IDE choosing specific PIC

6. Select the language toolsuite. “Microchip C18 Toolsuite” as the “Active

Toolsuite”.

48

7. As shown in figure 3.10, Click on each language tool in the toolsuite (under

“Toolsuite Contents”) and check or set up its associated executable location.

MPASM Assembler should point to the assembler executable, MPASMWIN.exe,

under “Location”. If it does not, enter or browse to the executable location, which is

by default: C:\mcc18\mpasm\MPASMWIN.exe.

Figure 3.10 Choosing executable location

3.9 MPLAB C18 C COMPILER LIBRARIES

For my project used MPLAB C18 C language for configuring the following

1. Delay Function.

2. PIC18F458 external LCD function.

3. PIC18F458 ADC.

4. PIC18F458 CAN system.

3.9.1 XLCD DELAY FUNCTIONS

The XLCD libraries additionally require that the accompanying functions

characterized by the user to give the proper defers:

Table 3.1 LCD delay function

49

3.9.2 External LCD functions

1. BusyXLCD

Used for is the LCD is busy?

Table 3.2 LCD Busy function

2. OpenXLCD

This function is used to Configure the PIC port that connected to the LCD and

initializes it.

Table 3.3 Open LCD function

3. putsXLCD & putrsXLCD

This function is used to writing a string to the LCD controller.

Table 3.4 put string to the LCD

50

4. ReadAddrXLCD

This function is used to read the address of (CGRAM or DDRAM) depended the

previous function. Also, before performing this function, the controller should not

busy (BusyXLCD must be used).

Table 3.5 function reads the address byte from the Hitachi HD44780 LCD

controller

5. Read a data byte from the LCD controller

This function is used to read the data LCD controller. Before performing this

function, the controller should not busy (BusyXLCD must be used).

Table 3.6 Reading Data from the LCD

6. Set the character generator address

51

This function sets the character generator address of the LCD controller. Before

performing this function, the controller should not busy (BusyXLCD must be used).

Table 3.7 Character Generator Address function

7. Set the display data address

This function sets the display data address of the LCD controller. Before performing

this function, the controller should not busy (BusyXLCD must be used).

Table 3.8 Display Data Address Function

8. Write a command to the LCD controller

Table 3.9 Writing Command to the LCD

52

9. Writes a byte to the Hitachi HD44780 LCD controller

This function is used to write a data byte of (CGRAM or DDRAM) depended on

previous function. Also, before performing this function, the controller should not

busy (BusyXLCD must be used).

Table 3.9 Writing Command to the LCD

4.9.3 PIC18F458 ADC C configuration

There are five main function use for converting ADC:

1.Is the A/D converter at present performing a conversion (BusyADC)?

This function shows if the A/D peripheral is in the process of converting a value.

Table 3.10 ADC Busy function

53

1. Disable the A/D converter (CloseADC)

This function disables the A/D converter and A/D interrupt technique.

Table 3.11 Close the ADC function

2. Starts the A/D conversion procedure (ConvertADC)

This function starts an A/D conversion. Before performing this function, The

BusyADC () function may be used.

Table 3.12 Start Conversion Function of ADC

3. Open ADC for PIC18F458

Table 3.13 General Configuration of ADC function

54

4. Read the result of an A/D conversion(ReadADC)

Using this function dedicated to reading the result of 10 bit of analog to digital

conversion. In light of the configuration of the A/D converter (e.g., using the

OpenADC () function), the result will be contained in the Least Significant or Most

Significant bits of the 10-bit result.

Table 3.14 Reading Data function of ADC

5. This function is used for selecting channels to be as analog input.

Table 3.15 Channel Selection of ADC Function

55

CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

4.1 Introduction

This system is made up of four CAN nodes. One node (called DISPLAY node)

requests the temperature periodically and displays it on an LCD. This process is then

repeated continuously. The second, third and fourth node reads the temperature of 24

refrigerators from an external semiconductor temperature sensor. This will be a

linear active sensor that converts temperature to an analog voltage. Also, each node

is far from together in a different place inside Blood Bank as shown in figure 4.1.

The chosen Microcontroller will be the cost Efficient is seeing that the controller

consists of an already included CAN module [25].

Figure 4.1 Blood Bank Center designed layout

56

4.2 System Design

The system is designed such that each node will send and receive messages across a

network. Given I chose ECS Inc‟s 4 MHz Oscillator (ECS) our nominal Baud Rate

will be 25Kb/s. Nodes will be networked together such that each node will perform

some action given the voltage output of a temperature sensor. The temperature sensor

of choice is the LM35DZ which provides us a10mV per degree Centigrade output

with no calibration necessary. By using this sensor to read the output signal into

PORTA, pin RA1of the one of the PIC18F458 [24]. Controller‟s Analog to Digital

Converter. A final PIC18F458 microcontroller will be used to display the

temperature in C°.

4.2.1 BIT Timing Parameters

The CAN Module Bit Timing is made up of non-overlapping segments. Each of

these segments is made up of integer units called Time Quanta (TQ). The Nominal

Bit Rate (NBR) is defined as the number of bits per second transmitted by an ideal

transmitter with no resynchronization [26].

 (4.1)

Where ; = Nominal Bit Time

 NBR = Nominal Bit Rate

 (4.2)

 Where; Sync_Seg= Synchronization Segment

 Prop_Seg = Propagation Time Segment

 Phase_Seg1= Phase Buffer Segment 1

 Phase_Seg2=Phase Buffer Segment

 (4.3)

Where; BRP=Baud Rate Prescaler

57

IF

SO on equation (4.2)

)

)

Nodes must have same Nominal Bit Rate (number of bits per second)

• The Nominal Bit Time is defined as: TBIT = 1/Nominal Bit Rate

• Synchronization Jump Width (SJW): 1-4

• Baud Rate Prescaler (BRP): 1-64

• Propagation Time Segment (Prop_Seg) 1 - 8

• Phase Buffer Segment 1 (Phase_Seg1) 1- 8

• Phase Buffer Segment 2 (Phase_Seg2) 1-8

Prop Seg + Phase Seg 1 ≥ Phase Seg 2

Phase Seg 2 ≥ Sync Jump Width

These timing bits of our project were found to be:

 SJW = 1;

58

 BRP = 4;

 Phase_Seg1 = 4;

 Phase_Seg2 = 3;

 Prop_Seg = 3;

Prop_ Seg+ Phase_ Seg 1 ≥ Phase_ Seg 2

 3 + 4 ≥ 3 (True)

Phase Seg 2 ≥ Sync Jump Width

 3 ≥ 1 (True)

4.2.2 The Implemented Algorithms

This project is a four node CAN bus project, which are Display, Plasma, platelet, and

RBC node as shown in figure 4.1.

4.2.2.1 Display node

The display node is consisting of a PIC18f458, a 4 MHz Oscillator, a transceiver

MCP2561, the input of 7-channel Darlington Sink Driver ULN2003APG is

connected to the PORTE of PIC to turn on and off Buzzer and LED, also an LCD is

connected to the PIC via port D. All the components interface with each other and

work based on a specified algorithm. Using C-Language that is compiled on MPLAB

v.92 we have programmed the PIC. The PIC18f458 has one build in CAN module

and CAN controller. This facilitates the CAN project because there is an internal

interface between the CAN module and the CAN controller. Figure 4.2 shows the

circuit diagram of the Node.

59

Figure 4.2 Display Node Schematic Diagram

60

4.2.2.1.1 Configuration CAN Module

The first thing must be done is initializing the CAN module. Using the specified

CAN initializing parameter and written code functions in C, the CAN module is

initialized. Then it should be put the CAN module in the CONFIG mode and must be

set some parameters in the masks and filters. We assign the filter B2-F3 for this node

and set the band pass as 6 for RBC, 7 for platelet and 8 for plasma node. That means

this CAN module passes any messages with the identification of 6 during setting

filter to 6 and so on. Then the Module is put back to NORMAL mode, which means

that it is ready to work.

4.2.2.1.2 Implementing the Node feature

Initializing the LCD so as to be ready to get the data and show it. After initializing

the LCD, the node should send a message to the bus that contains character “T”, as a

symbol of temperature, with a specified identifier, for example, 65 in our case.

Reading the messages on the bus, this module passes all messages that have 6 during

filter setting as 6 identifiers. The messages with ID=6 contain the data of temperature

that has been sent by another node, which is RBC (Red Blood Cell) node in our case

and so on. This node sends the character “T” to the bus, reads the temperature data

on the bus every second, and shows the Temperature in a suitable position on the

LCD continuously which is the updated temperature from the Temperature Node.

All the necessary procedures to achieve the display node algorithm is shown in figure

4.3.

61

Figure 4.3 Display Node Schematic Diagram

4.2.2.2 Red Blood Cell (RBC), Platelet and Plasma Node

This node has the following components: a PIC18f458, an LM35 temperature sensor,

a 4 MHz Oscillator, and an MCP2561 transceiver. The temperature sensor is

connected to the (ADC) which is a module inside the PIC through Port A (RA1). The

structure of the node has illustrated the figure 4.4.

These three nodes have the following components: a PIC18f458, an LM35

temperature sensor, a 4 MHz Oscillator, and an MCP2561 transceiver. The

temperature sensor is ADC, which is a module inside the PIC through Port A (RA1).

The structure of all three nodes has the same components, but in software are

different, especially in the identification of nodes and setting of collecting

temperature.

62

Figure 4.4 RBC, Platelet and Plasma Node schematic diagram

4.2.2.2.1 CAN module configurations

I configure the module in the similar way we do for the Display Node except the

filter that needs to be set to 65 so that it passes the messages on the bus that are being

sent by the display node.

4.2.2.2.2 Implementing the Node feature

The ADC module should be configured and turned on so as that it can convert the

analog input signal that comes from the temperature sensor. The temperature sensor

continuously reads the actual temperature and sends the temperature as a voltage

signal to ADC input pin which is RA1 in my case. The node reads the messages on

the bus and filters all the messages except the ones have 65 as an identifier. As soon

as the node reads the message with the correct identifier, it checks if the data

63

contains the character “T”. If there is a character “T” in the message, the RBC node

reads the output of the ADC and builds a CAN packet message that contains the

actual temperature data and sends it to the bus with the identifier of 6. Similarly, the

platelet and plasma nodes build the messages containing the temperature information

and send them to the CAN bus with difference identifier. Means the platelet sends

the ID = 7, also, plasma sends ID=8. The reading bus and sending temperature to the

bus is a loop procedure that occurs every second. Figure 4.5 shows the flowchart that

explains the algorithm of the RBC, platelet, and plasma node.

Figure 4.5 Flow Chart for CAN Based RBC, Platelet, and Plasma Node

4.2.2.3 Hardware structure

As it is shown in figure 4. all the four nodes have been connected to the CAN bus.

The interfaces between all the nodes and the CAN bus are done successfully. In my

project, practically each node has been connected throw one temperature sensor

represented as 8 refrigerators, nevertheless PIC18F458 has 8 analog channels, it's

capable of connecting 8 refrigerators until send data to the Bus of each of them

respectively. Actually my project consists of four parts of the boards (nodes),

64

Display, RBC, plasma, and platelet boards, each of them located in different places

in inside blood bank center but I simulated in one board just for easy testing and

transporting purpose. Also, this simulated board is more rugged than four parts of the

board. As shown in Figure 4.7. The all four nodes simulated Wiring diagram as

shown in figure4.6.

As long as we power up the system, it continuously monitors the temperature and

shows it on the LCD. This temperature is compared with the value stored by the user

and if the temperature goes beyond the preset temperature, then buzzer and a red

LED will switch on. If the temperature goes below to preset value, then white LED

will switch on. In these cases, the address of each refrigerator will send to the LCD

display. Figure - shows the temperature of three refrigerators connected with three

nodes and the alarm address (R3H) indicated the high temperature of the refrigerator

of plasma node.

65

Figure 4.6 Four node circuit diagram of the four node monitoring system based CAN system

66

Figure 4.7 The Actual hardware structure of the project system.

67

CHAPTER 5

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the LCD display and laboratory instruments have been used to carry

out measurements and test the result of all nodes. Also, the result of monitoring of

temperature obtained with the actual temperature is compared.

4.2

1. Figure 5.1 shows the result of the designed system after collecting and running the

system. The LCD node that sends the data to the bus, collecting data on the bus and

then shows the three nodes Temperature in Celsius in the 2‟nd row of the LCD.

While showing the name of each Refrigerator and the alarm address on the first row

of the LCD. The temperature shown on the LCD changes based on the data, which is

generated and sent to the bus by the RBC, platelet and plasma node. The temperature

sensor continuously reads the temperature and the (RBC, platelet, and plasma) nodes

generate the CAN packet data and put it on the bus every second. Therefore, a

temperature that is shown on the LCD gets updated every second.

68

Figure 5.1 displays three different temperatures in three different nodes and alarm

address

Table 5.1 Practical Result of Implemented Board for monitoring Three Different

temperatures in Three Nodes and Reaction of LED s and Buzzer

Node

sensor

Temp.Setting

(ºC)

Override

Temp.

Red

LED

Blue

 LED
Alarm address

RBC
High 24 > 24 0N OFF R1H (Refrigerator 1 high temp.)

Low 20 < 20 OFF ON R1L (Refrigerator 1 low temp.)

Platelet

High 4 > 4 ON OFF R2H (Refrigerator 2 high temp.)

Low 1 < 1 OFF ON R2L (Refrigerator 2 low temp.)

Plasma

High -24 > -24 ON OFF R3H (Refrigerator 3 high temp.)

Low -18 < -18 OFF ON R3L (Refrigerator 3 low temp.)

1. Table - shows the result of this project as follows;

The alarm address on the LCD, Buzzer, and LED works properly according to

the designed algorithm.

(a) RBC node:

This refrigerator set's the temperature from minimum 20 ºC and maximum 24 ºC

,when the temperature decreased below 20 ºC the buzzer turned on, white LED

turned on (indicated low-temperature alarm), Also the alarm address (R1L)

appeared in the first row of the LCD display(indicated low-temperature of

refrigerator number one), when the temperature increased beyond the 24 ºC the

buzzer and Red LED turned on (indicated high-temperature alarm), also the alarm

address R1H will appear in the first row (indicated the high-temperature of

Refrigerator number one). When the temperature remained between 20 ºC to 24 ºC

(normal state), All alarm didn't appear.

(b) Platelet Node:

69

This refrigerator set‟s the temperature from 1 ºC to 6 ºC in the same way of RBC

node, when the temperature is overriding the buzzer and LED turned on, Also the

alarm address R2L, R2H indicated to low, high temperature, respectively, this alarm

appeared on the first row on the display, When the temperature remained between 1

ºC to 6 ºC (normal state), all alarm didn't appear, the result shown in table 5.1.

(c) Plasma Node

This refrigerator set‟s the temperature from -18 ºC to -24 ºC in the same way of RBC

and platelet node, when the temperature overrides the buzzer and LED turned on,

Also the alarm address R3L, R3H indicated to low, high temperature, respectively,

this alarm appeared on the first row on the display, When the temperature remained

between -18 ºC to -24 ºC (normal state), all alarm didn't appear, the result is shown in

table 5.1 , Also figure 5.1 shows the temperature of this refrigerator is 24 ºC in the

same time alarm address showed R3H indicated high temperature of refrigerator

number 3.

2. We can see the data flow on the bus using an oscilloscope as it is Illustrated in

figure 5.2. Also, We can see the data as a pulse train on both CAN high and CAN

low. The upper part which is in yellow is CAN high while the lower part which is in

blue color is the data on CAN low. Notice that there is the same data on CAN high

and low part, except they are negative to each other.

70

Figure 5.2 The Actual hardware structure of the project system

3. Although the system works perfectly, there are some noises appears on the

pulses. The reason of those noises is the imperfection of the wires and components

that are used in the system, for example, the bus is a normal twisted wire instead of a

shielded twisted wire bus. Also, most of the components are cheaper versions that I

bought to implement the CAN bus system, if I use the most advanced system which

is more expensive, we will see less noise on the pulse trains.

71

CHAPTER 6

CONCLUSION AND SUGGESTIONS

6.1 Conclusion

The four nodes CAN bus system designed and implemented successfully and the

data exchanges between all the four nodes. The PIC18f458 is used in each of the four

nodes. The PIC18f458 that used in display node interfaced with an LM35

temperature sensor and the CAN bus. The node is read the temperature from the

sensor and build a CAN package data and then put it on the can bus as well as the

node read the data on the bus successfully. Another node has been designed in this

project that connected to an LCD and has sent the data to show on the LCD

successfully. The LCD (display) node could send and read the data on the bus

perfectly, also it turned on and off the LED and Buzzer successfully in case the

temperature is greater or less than the limited range. We conclude that one of the

most important and sensitive parts in CAN system at the baud rate and timing

parameters. It‟s necessary to follow the CAN data sheet and all the component data

sheets, which has been used in the design, to build the correct timing parameters and

consequently get the accurate interface between the PICs that have been used in the

CAN bus system.

6.2 Suggestions for Future Work

Monitoring of the temperature related to many factors for people's life for example;

industry, medicine, military, agricultural, automotive, for all these uses the

temperatures for a specific purpose, Also the future work of this work can extend to

design:

1. This system can be developed for central monitoring station in the Intensive Care

Unit (ICU) department inside the hospital, In this case, must increase some analog to

digital sensors like pressure sensor for measuring the blood pressure, special

72

oxygen sensor for measuring O2 inside the human‟s blood, Electrocardiogram sensor

(ECG or EKG) for sensing the heart pulses and so on.

2. In future, the circuit can be enhanced by connecting a GSM or a wireless module

for increasing the screen monitor in many places.

3. Using the monitoring and controlled the temperature in industry factories like an

asphalt factory for collecting of temperature of the mixer, tar, dryer system, Filter

system, Weighbridges system, heating fuel and controlling the variety of electrical

valves and motors. Also, Wireless controller area network (WCAN) can be used for

communication between sensors and actuators.

73

REFERENCES

[1] Psychology. (n.d.). In Wikipedia. Retrieved October (2009). from http:/ /en

.wikipedia.org /wiki/Psychology.

[2] J Anaesth (2014). In NCBI website. Retrieved from http: //www.ncbi.nlm

.nih.gov/pmc/articles/PMC4260297

[3] Mishra, M. (2013). Department of Electronics & Communication

Engineering (Doctoral dissertation, National Institute of Technology, Rourkela).

[4] Microcontroller. (n.d.). In Wikipedia. Retrieved from https: //en .wikipedia

.org/wiki/Microcontroller#Interrupts.

[5] Microcontroller. (n.d.). Retrieved from http: //internetofthingsagenda .techtarget

.com/definition/microcontroller.

[6] Microchip Technology. (n.d.). Retrieved from URL:

http://www.worldlibrary.org/articles/microchip_technology website of World

Public Library.

[7] Mazidi, M. A., Mazidi, J. G., & McKinlay, R. D. (2000). The 8051

 microcontroller and embedded systems. New Delhi.

[8] Verle, M. (2009). PIC Microcontrollers Programming in C: A Complete Guide to

 Pic Microcontrollers. MikroElektronika.

[9] Sheet, N. D. (2000). LM35CZ: Precision Centigrade Temperature

 Sensor.National Semiconductor Corporation, USA (November 2000).

[10] Steve Corrigan (2008). Introduction to the Controller Area Network, Published

by Texas Instruments Application Report, SLOA101A.

[11] Singh, M. N. (2006). Designing a Microcontroller Based Temperature Data

Logger.

[12] Singh, M. N. (2006). Designing a Microcontroller Based Temperature Data

Logger.

[13] Microchip technolog Inc. (2013). High-Speed CAN Transceiver, MCP2561/2,

Device Document DS25167B.

[14] Kundariya, R. C., Agravat, M. N., Vekariya, D. M., Bhatti, C. C., &

Bambhroliya, C. B. (2016). Electronic Grocery Machine. International Journal

for Innovative Research in Science and Technology, 2(9), 140-145.

[15] Presi, T. P. (2013). Design and development Of PIC microcontroller based

vehicle monitoring system using Controller Area Network (CAN) protocol. In

Information Communication and Embedded Systems (ICICES), 2013

International Conference on (pp. 1070-1076). IEEE.

74

[16] Sekhar, N. C., Reddy, T. S., & Bhavani, G. (2014). Implementation of low-cost

MEMS based temperature measurement and control system using Lab VIEW

and microcontroller. In Power, Control and Embedded Systems (ICPCES),

2014 International Conference on (pp. 1-4). IEEE.

[17] Badri, M. A., & Halim, A. K. (2008, December). Design of moving massage

LCD display system (MMDS) via Short Message Service (SMS) entry using

Rabbit 2000 microcontroller. In RF and Microwave Conference, 2008. RFM

2008. IEEE International (pp. 81-85). IEEE.

[18] Mazidi, M. A., Mazidi, J. G., & McKinlay, R. D. (2000). The 8051

microcontroller and embedded systems. New Delhi.

[19] S.J.Perez, M.A.Calva, R.Castañeda(2014).Microcontroller Based Automatic

Multichannel Temperature Monitoring System IJAREEIE.

[20] Kaiwan S,Ergun E.,Majed N., et al. (2015). Development of Monitoring Blood

bank Center Based PIC Microcontroller Using CAN communication.

International .Journal of Electrical, Computer, Energetic, Electronic and

Communication Engineering Vol:9, No:12.

[21] MPLAB. (n.d.). In Wikipedia. Retrieved from https://en.wikipedia.org /wiki

/MPLAB.

[22] PICkit. (n.d.). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/PICkit.

[23] PICkit. (n.d.). In Wikipedia. Retrieved from https ://en.wikipedia.org

/wiki/PICkit#cite_note-1.

[24] Farahmand (2012) Programming the PIC18 Using C- Coding.

[25] Kaiwan S,Ergun E.,Majed N., et al. (2015). Development of Monitoring Blood

bank Center Based PIC Microcontroller Using CAN communication.

International .Journal of Electrical, Computer, Energetic, Electronic and

Communication Engineering Vol:9, No:12.

[26] Richards, P. (2001). Understanding Microchip‟s CAN Module Bit Timing.

Application Note AN754, Microchip Technology Inc.

75

APPENDIX - A

76

Display Node code in C language of PIC18F458 for receiving CAN message from the

bus and send it to the display.Also includes the temperature setting of each refrigerator :

#include <p18f458.h>

#include <xlcd.h> //LCD display, modified header to set pins

#include <delays.h>

#include <string.h>

#include <stdlib.h>

#include "can18xx8.h"

#pragma config WDT = OFF

#pragma config OSCS = ON

#pragma config OSC = HS

#pragma config LVP = OFF

#pragma config DEBUG=ON

//int count; //Stores the number of hits of the Pushbutton

char Celc[10] = "C ";

char Odata[10]; //Store old value of the pushbutton

unsigned long id, mask;

unsigned char temperature, data[8];

//time delays for LCD

 void DelayFor18TCY(void);

 void DelayPORXLCD(void);

 void DelayXLCD(void);

 void Delay1(void);

//write to LCD function

 void writeLCD (char buffer[]);

 void Disp_sec(void);

//time delay functions

void DelayPORXLCD(void) //provides at least 15ms delay

{

 Delay1KTCYx (15); //delay of 15*1000 microseconds

77

}

void DelayXLCD(void) //provides at least 5ms delay

{

 Delay1KTCYx (5); //delay of 5*1000 microseconds

}

void Delay1(void) //provides at least 000ms delay

{

 Delay1KTCYx (1000); //delay of 1000*1000 microseconds= 1 S

}

//write function for LCD

void writeLCD (char buffer[])

{

 TRISDbits.TRISD7 = 0; //VEE = 1, turn on lcd

 LATDbits.LATD7 = 1;

 DelayPORXLCD();

 DelayPORXLCD();

 while(BusyXLCD()); // Wait if LCD busy

 WriteCmdXLCD(0x01); // Clear display

 DelayPORXLCD(); //time for LCD to be ready

 putrsXLCD (" ");

 putsXLCD(buffer); //prints the text

 putrsXLCD (" ");

 DelayPORXLCD(); //time for LCD to be ready

}

void Disp_sec(void)

{ if(id == 6)

{

 SetCGRamAddr(0x40);

 SetDDRamAddr(0x40);

 WriteCmdXLCD(0xc0);

78

 putsXLCD(Odata);

 putsXLCD(Celc);

}

else if(id == 7)

{

SetCGRamAddr(0x40);

 SetDDRamAddr(0x40);

WriteCmdXLCD(0xc5);

 putsXLCD(Odata);

 putsXLCD(Celc);

}

else if(id == 5)

{

SetCGRamAddr(0x40);

 SetDDRamAddr(0x40);

WriteCmdXLCD(0xcA);

 putsXLCD(Odata);

 putsXLCD(Celc);

}

}

//time delay functions for the LCD

void DelayFor18TCY(void) //provides a 18 Tcy delay

{

 Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(), Nop(),Nop(),Nop();

 Nop(),Nop(),Nop(), Nop();

}

void DelayFor10TCY(void) //provides a 10 Tcy delay

{

Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop();

79

}

//---

void main()

{

int l;

unsigned char temperature, data[8];

unsigned short init_flag, dt;

BYTE SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg;

unsigned char len;

enum CAN_RX_MSG_FLAGS read_flag;

enum CAN_TX_MSG_FLAGS send_flag;

unsigned int j;

TRISE = 0x00; //Set PORTE as an Output

PORTD = 0x00; //Clear PORTD

TRISD = 0x00; //Set PORTD as an Output

PORTE = 0x00; //Clear PORTE

TRISB = 0x08; // (0000 1000)RB2 is output, RB3 is input

// CAN BUS Parameters

//SJW = 1;

//BRP = 4;

//Phase_Seg1 = 4;

//Phase_Seg2 = 3;

//Prop_Seg = 3;

SJW = 1;

BRP = 4;

Phase_Seg1 = 4;

Phase_Seg2 = 3;

Prop_Seg = 3;

init_flag = CAN_CONFIG_SAMPLE_THRICE &

 CAN_CONFIG_PHSEG2_PRG_ON &

80

 CAN_CONFIG_STD_MSG &

 CAN_CONFIG_DBL_BUFFER_ON &

 CAN_CONFIG_ALL_VALID_MSG &

 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &

 CAN_TX_XTD_FRAME &

 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;

// Initialize CAN module

CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);

// Set CAN CONFIG mode

//CANSetOperationMode(CAN_OP_MODE_CONFIG);

//mask = -1;

mask = 0xFFFFFFFF;

// Set all MASK1 bits to 1's

CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_STD_MSG);

// Set all MASK2 bits to 1's

CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_STD_MSG);

// Set id of filter B2_F3 to 6

CANSetFilter(CAN_FILTER_B2_F3,7,CAN_CONFIG_STD_MSG);

// Set CAN module to NORMAL mode

//CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

CANSetOperationMode(CAN_OP_MODE_NORMAL);

// Configure LCD

 // initialization for the LCD starts here

 LATDbits.LATD7 = 1;

 DelayPORXLCD();

 DelayPORXLCD();

 OpenXLCD(FOUR_BIT & LINES_5X7); //initialize LCD 4 bit mode

while(BusyXLCD());

81

WriteCmdXLCD(0x80); //display on the LCD (2x16 character)from first Line & first colum

Delay1();

putrsXLCD (" University of ");

while(BusyXLCD());

WriteCmdXLCD(0xC3); //display on the LCD (2x16 character)start from second Line & 4 colum

putrsXLCD ("Gaziantep");

while(BusyXLCD());

Delay1();

Delay1();

WriteCmdXLCD(DON&CURSOR_OFF&BLINK_OFF);

Delay1(),Delay1(),Delay1(),Delay1(),Delay1(),Delay1(),Delay1(),Delay1(),Delay1(),Delay1();

for(l=0;l<15;l++) //counter loop 15 times

{

WriteCmdXLCD(0x1c); //shift display to right side

Delay1KTCYx (400);

}

while(BusyXLCD());

WriteCmdXLCD(0x01);

Delay1();

// Program loop. Read the temperature from Node:plasma ,platelet,RBC and display

// on the LCD continuously

for(;;) // Endless loop

{

data[0] = 'T'; // Data to be sent

id = 65; // Identifier

CANSendMessage(id, data, 1, send_flag); // send 'T'

// Get temperature from node:plasma ,platelet,RBC

dt = 0;

82

while(!dt)

dt=CANReceiveMessage(&id, data, &len, &read_flag);

if(id == 6) // id 6 is RBC node id

{

temperature = data[0];

itoa(temperature,Odata); // convert integer data to charecter

if(temperature > 4)

{

while(BusyXLCD());

WriteCmdXLCD(0x8D);

putrsXLCD("R1H"); // R :Refrigerator , 1:Refr. number ,H: High temperature

PORTEbits.RE1 = 1; // Turn on portE1(red LED & Buzzer)

}

else {

while(BusyXLCD());

WriteCmdXLCD(0x80); //display on the LCD (2x16 character)from first Line & first colum

putrsXLCD("R1 ");

while(BusyXLCD());

WriteCmdXLCD(0x8A); //display on the LCD (2x16 character)start from second Line & 10 colum

 putrsXLCD("R3 ");

PORTEbits.RE1 = 0; // Turn off portE1(red LED & Buzzer)

}

Disp_sec(); //Display the value of count on the second line of the LCD

}

Delay1KTCYx (1000);

if(id == 7) // id 7 is plstelet node id

{

temperature = data[0];

itoa(temperature,Odata);

if(temperature > 24)

83

{

while(BusyXLCD());

WriteCmdXLCD(0x8D); //display on the LCD (2x16 character)from first Line & colum 13

putrsXLCD("R2H");

PORTEbits.RE1 = 1; // Turn on portE1(red LED & Buzzer)

}

else {

while(BusyXLCD());

WriteCmdXLCD(0x85);

putrsXLCD("R2 ");

while(BusyXLCD());

WriteCmdXLCD(0x8A);

putrsXLCD("R3 ");

PORTEbits.RE1 = 0; // Turn off portE1(red LED & Buzzer)

}

Disp_sec();//Display the value of count on the second line of the LCD

}

Delay1KTCYx (1000);

if(id == 5) // id 5 is plasma node id

{

temperature = data[0];

itoa(temperature,Odata); // convert integer data to charecter data

if(temperature > -24)

{

while(BusyXLCD());

WriteCmdXLCD(0x8D); //display on the LCD (2x16 character)from first Line & colum 13

putrsXLCD("R3H");

PORTEbits.RE1 = 1; // Turn on portE1(red LED & Buzzer)

}

else {

84

while(BusyXLCD());

WriteCmdXLCD(0x8A);

putrsXLCD("R3 ");

PORTEbits.RE1 = 0; // Turn on portE1(red LED & Buzzer)

}

Disp_sec();

}

}

}

85

APPENDIX-B

86

RBC,Platelet,Plasma Node code in C language of PIC18F458 for receiving data

from Temperature sensor and sending to the bus in CAN message , The same

program for each three nod jut in different ID, for example RBC ID is 7, Platelet ID

is 8, Also Plasma ID is 5:

#include <p18f458.h>

#include <xlcd.h> //LCD display, modified header to set pins

#include <delays.h>

#include <string.h>

#include <stdlib.h>

#include <adc.h>

#include "can18xx8.h"

#pragma config WDT = OFF

#pragma config OSCS = ON

#pragma config OSC = HS

#pragma config LVP = OFF

#pragma config DEBUG=ON

char Odata[10]; //Store old value of the pushbutton

char Ndata[10]; //Store new value of the Pushbutton

char result_disp [1];

double output = 0;

double temp;

//time delays for LCD

 void DelayFor18TCY(void);

 void DelayPORXLCD(void);

 void DelayXLCD(void);

 void Delay1(void);

//write to LCD function

 void writeLCD (char buffer[]);

 void Disp_sec(void);

//time delay functions

87

void DelayPORXLCD(void) //provides at least 15ms delay

{

 Delay1KTCYx (15); //delay of 15*1000 microseconds

}

void DelayXLCD(void) //provides at least 5ms delay

{

 Delay1KTCYx (5); //delay of 5*1000 microseconds

}

void Delay1(void) //provides at least 000ms delay

{

 Delay1KTCYx (1000); //delay of 1000*1000 microseconds= 1 S

}

//--

//time delay functions for the LCD

void DelayFor18TCY(void) //provides a 18 Tcy delay

{

 Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop();

Nop(),Nop(),Nop(),Nop(),Nop(),Nop();

}

void DelayFor10TCY(void) //provides a 10 Tcy delay

{

Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop(),Nop();

}

//---

void main()

{

unsigned char temperature, data[8];

unsigned short init_flag, dt;

BYTE SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg;

unsigned long id, mask;

88

unsigned char len;

enum CAN_RX_MSG_FLAGS read_flag;

enum CAN_TX_MSG_FLAGS send_flag;

//unsigned int j;

TRISE = 0x00; //Set PORTE as an Output

PORTD = 0x00; //Clear PORTD

TRISD = 0x00; //Set PORTD as an Output

PORTE = 0x00; //Clear PORTD

 //configure ADC

 OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_1ANA_0REF,

 ADC_CH1 & ADC_INT_OFF);

 Delay10TCYx(4); // Delay for 40TCY

TRISB = 0x08; // RB2 is output, RB3 is input

// CAN BUS Parameters

SJW = 1;

BRP = 4;

Phase_Seg1 = 4;

Phase_Seg2 = 3;

Prop_Seg = 3;

init_flag = CAN_CONFIG_SAMPLE_THRICE &

 CAN_CONFIG_PHSEG2_PRG_ON &

 CAN_CONFIG_STD_MSG &

 CAN_CONFIG_DBL_BUFFER_ON &

 CAN_CONFIG_ALL_VALID_MSG &

 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &

 CAN_TX_STD_FRAME &

 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;

// Initialize CAN module

89

CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);

// Set CAN CONFIG mode

CANSetOperationMode(CAN_OP_MODE_CONFIG);

//mask = -1;

mask = 0xFFFFFFFF;

CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_STD_MSG); // Set all MASK1 bits to 1's

CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_STD_MSG); // Set all MASK2 bits to 1's

CANSetFilter(CAN_FILTER_B2_F3,65,CAN_CONFIG_STD_MSG); // Set id of filter B2_F3 to 65

CANSetOperationMode(CAN_OP_MODE_NORMAL); // Set CAN module to NORMAL mode

// Program loop. Read the temperature from Node:RBC,Platelet,plsma

// on the LCD continuously

for(;;) // Endless loop

 { dt=0;

while(!dt)

dt=CANReceiveMessage(&id, data, &len, &read_flag);

if(id==65 && data[0]=='T')

 { ConvertADC(); // Start conversion

 while(BusyADC()); // Wait for completion

 output = ReadADC(); // Read result

 temp=(output*500)/1023; //FORMULA TO change to TEMP

 data[0]= temp;

 id = 7; // Identifier for RBC ID=7,Platelet ID=8,Plasma ID=5

 CANSendMessage(id, data, 1, send_flag); // send 'T'

 PORTE = 0xFF;

 }

 }

90

APPENDIX - C

91

ECS-100 Oscillator :

92

APPENDIX - D

93

POSITIVE VOLTAGE REGULATORS

 output current to 1.5a output voltages of 5; 5.2; 6; 8; 8.5; 9; 10; 12; 15; 18;

24v

 thermal overload protection

 short circuit protection

 output transition SOA protection

Description

The L7800 series of three-terminal positive regulators is available in TO-220, TO-

220FP, TO-220FM, TO-3 and D2PAK packages and several fixed output voltages,

making it useful in a wide range of applications. These regulators can provide local

on-card regulation, eliminating the distribution problems associated with single point

regulation. Each type employs internal current limiting, thermal shut-down and safe

area protection, making it essentially indestructible. If adequate

heat sinking is provided, they can deliver over 1A output current.

Although designed primarily as fixed voltage regulators, these

devices can be used with external components to obtain

adjustable voltage and currents.

Electrical Characteristics Of L7805 (refer to the test circuits,

TJ = -55 to 150°C, VI = 10V, IO = 500 mA, CI = 0.33 μF, CO =

0.1 μF unless otherwise specified).

94

APPENDIX-D

95

PIC18F458 :

High-Performance RISC CPU:

• Linear program memory addressing up to 2 Mbytes

• Linear data memory addressing to 4 Kbytes

• Up to 10 MIPS operation

• DC – 40 MHz clock input

• 4 MHz-10 MHz oscillator/clock input with PLL active

• 16-bit wide instructions, 8-bit wide data path

• Priority levels for interrupts

• 8 x 8 Single-Cycle Hardware Multiplier
Advanced Analog Features:

• 10-bit, up to 8-channel Analog-to-Digital Converter

module (A/D) with:

- Conversion available during Sleep

- Up to 8 channels available

• Analog Comparator module:

- Programmable input and output multiplexing

• Comparator Voltage Reference module

• Programmable Low-Voltage Detection (LVD) module:

- Supports interrupt-on-Low-Voltage Detection

• Programmable Brown-out Reset (BOR)

PIC18F458 specification

PIC18F458 pin

96

APPENDIX-E

97

LM35 Temperature sensor

 LM35 temperature sensor

98

APPENDIX-F

99

MCP2561 CAN Tranceiver
Features:
• Supports 1 Mb/s Operation

• Implements ISO-11898-5 Standard Physical Layer Requirements

• Very Low Standby Current (5 μA, typical)

• VIO Supply Pin to Interface Directly to CAN Controllers and Microcontrollers with 1.8V to 5.5V I/O

• SPLIT Output Pin to Stabilize Common Mode in Biased Split Termination Schemes

• CAN Bus Pins are Disconnected when Device is Unpowered

- An Unpowered Node or Brown-Out Event will Not Load the CAN Bus

• Detection of Ground Fault:

- Permanent Dominant Detection on TXD

- Permanent Dominant Detection on Bus Protection on VDD and VIO Pin

• Power-on Reset and Voltage Brown-Out

• Protection Against Damage Due to Short-Circuit Conditions (Positive or Negative Battery Voltage)

• Protection Against High-Voltage Transients in Automotive Environments

• Automatic Thermal Shutdown Protection

• Suitable for 12V and 24V Systems

• Meets or exceeds stringent automotive design requirements including “Hardware Requirements for LIN, CAN

and FlexRay Interfaces in Automotive Applications”, Version 1.3, May 2012

• High-Noise Immunity Due to Differential Bus Implementation

• High ESD Protection on CANH and CANL, Meets IEC61000-4-2 greater ±8 kV

• Available in PDIP-8L, SOIC-8L and 3x3 DFN-8L

• Temperature ranges:

- Extended (E): -40°C to +125°C

- High (H): -40°C to +150°C

