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ABSTRACT 

A COMPARATIVE STUDY ON SWITCHING SURFACE DESIGN FOR 

SLIDING MODE CONTROL 

 

AL-NUAIMI, Ibrahim Ismail Ibrahim  

M.Sc. in Electrical and Electronics Engineering 

Supervisor:  Assist. Prof. Dr. Tolgay KARA 

January 2018  

50 page 

One of the important steps to build the sliding mode control system is to design the 

switching surface. There are many methods that have been developed in order to 

obtain the switching surface. The aim of this thesis is to study and analyze different 

switching surface design methods for sliding mode control of the uncertain systems. 

The main problem to be solved is how to design the switching surface with different 

methods. The design methods are applied to the same systems which are operating 

under the uncertainty conditions. The required objective is to attract all the state 

vectors to the switching surface so as to obtain the desired performance. The final 

step will be designing the sliding mode controller to enforce the state vectors towards 

the designed switching surface and to remain on the manifold until reaching the 

equilibrium point. Three different approaches of designing switching surface are 

studied here, the variable structure controllers are presented according to each 

method through the reaching condition of sliding mode. 

 

 

 

Key Words: Variable structure systems, sliding mode control, switching surface. 

 



 

 

ÖZET 

KAYAN KIPLI KONTROL ANAHTARLAMA YÜZEYİ TASARIMI 

ÜZERINE KIYASLAMALI ÇALIŞMASI 

 

AL-NUAIMI, Ibrahim Ismail Ibrahim 

Yüksek Lisans Tezi, Elektrik-Elektronik Müh. Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Tolgay KARA 

Ocak 2018 

50 sayfa 

Kayan kipli kontrol sistemini tasarlamanın önemli adımlarından biri de anahtarlama 

yüzeyi tasarlamaktır. Anahtarlama yüzeyini tasarlamak için geliştirilmiş birçok 

yöntem vardır. Bu tezin amacı, belirsiz sistemlerin kayan kipli kontrolü için farklı 

anahtarlama yüzey tasarımı yöntemlerini araştrmak ve analiz etmektir. Çözülmesi 

gereken ana problem, anahtarlama düzeyinin farklı yöntemlerle nasıl 

tasarlanacağıdır. Tasarım yöntemleri, belirsizlik şartlarında çalışan aynı sistemlere 

uygulanmıştır. Beklenen sonuç, tüm durum vektörlerini istenen başarımı verecek 

şekilde anahtarlama yüzeyine çekmektir. Son aşamada, durum  vektörlerini 

tasarlanan anahtarlama yüzeyine çekecek ve denge noktasına ulaşıncaya kadar 

manifold üzerinde tutacak kayan kipli denetleyici tasarlanacaktır. Anahtarlama 

yüzeyini tasarlamak için üç farklı yaklaşım önerilmiştir, değişken yapılı 

denetleyiciler kayar kipli kontrolün ulaşılma koşuluyla her bir yönteme göre 

sunulmuştur. 

 

Anahtar Kelimeler: Değişken yapı sistemleri, kayan kipli kontrol, anahtarlama 

yüzeyi. 
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CHAPTER ONE 

INTRODUCTION 

1.1  Motivation 

A variable structure system (VSS) is a functional system whose frame changes as per 

the present estimation. VSS is a system composed of independent frames jointly with 

a switching logic amidst each of the frames. VSS composed of a group of continual 

subsystems with the switching logic so that control actions are discontinuous 

functions of the system state, disturbances and reference input. VSS was presented 

and studied in the beginning of 1950’s in the former Soviet Union by a group of 

Russian scientists. Their first case of the study was a linear second-order system and 

then the VSS has been developed to be applied in a wide range of systems such as 

nonlinear, MIMO, discrete time, large-scale and infinite dimensional, and stochastic 

systems. The most important feature of Variable structure control system (VSCS) is 

the ability to result in very robust control plants. Nowadays the improvement of 

VSCS is continuing to apply it to a wide spectrum of plants [9]. The main purpose of 

VSCS is to collect the useful properties of each structure [21], [22]. This feature of 

flexibility allows the designer to get the valuable and good dynamic properties of the 

structures which cannot be used in a wide continuous period of time [1]. The 

principle operation mode in VSS became the Sliding mode control (SMC) which 

makes it independent to parameters changes, uncertainty and outer disorders. The 

mathematical models of any physical systems are always given in an approximate 

way. SMC is one of the most efficient approaches to building robust controllers for 

complex nonlinear dynamic systems which operating under the uncertainty 

conditions. The connotation of SMC saw the light in the Russian scientific research 

in the late of 1950s. However, some earlier research can be considered as SMC such 

as V. Kulebakin (1932) who made a search about the vibration of  DC generators of 

an aircraft and Nikolski (1934) who use the relays to control the course of a ship 

[28], but Emelyanov was the first scientist who finds that the properties could be 

achieved
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according to change the structure of controlling process even if the properties are not 

available in each structure. Then the work was developed and became more popular 

in the English world because of the research was done by Utkin (1977) [22]. The 

sliding mode turn into the precept process mode in seeming VSS. The principle of 

SMC is to drive the system state towards the manifold and then constrain it to stay 

there on which the system will offer eligible features. The controlled system in 

sliding mode is settled from the effects of the uncertainties so that the SMC is the 

appropriate option for robust control. The main subject of this thesis is to give a key 

point to studying and understanding the VSCS with SMC. The designing of SMC 

system is considered based on different methods to see the benefits and flexibility of 

each method as well as to achieve one similar performance for the same system. The 

entire idea of designing the switching surface was presented with theoretical and 

mathematical aspects including the simulation results for each method. Since the 

Lyapunov stability will be a tool to design sliding mode control to achieve the 

required performance, the definition and stability of feedback system in the sense of 

Lyapunov is considered. The theory of stability has a distinctive feature with its 

different types in control systems. It’s necessary to obtain the desired plant 

performance, despite its different types which the researchers face in their work. This 

study focuses on the stability of equilibrium points in the sense of  Lyapunov and 

illustrates the different stability definitions. 

1.2 Statement of the Problem 

One of the phases to design sliding mode control for the uncertain system is 

designing the switching surface. There are different ways and types of switching 

surface have been introduced. In this study, the design approach introduced for the 

switching surface design will be considered. Special attention will be given to Linear 

matrix inequality (LMI) to design the switching surface. A comparative study on 

designing of sliding mode control will be performed for the different class of 

dynamical systems. 
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1.3 Thesis contribution 

Since the Lyapunov stability will be a tool to design sliding mode control to achieve 

the desired performance, this thesis deals with the definitions and stability of 

feedback system in the sense of  Lyapunov. Literature survey is given on VSS and 

SMC. 

• Mathematical contribution 

1. Different switching surface design methods are studied with 

mathematical and simulation aspects. 

1.4 Thesis structure 

This thesis is built as follows: 

1. Chapter one presents the thesis in general.  

2. Chapter two introduces Lyapunov stability.  

3. Chapter three gives an introduction to the VSS and a literature review 

with the principles and main parts of SMC. 

4. Chapter four gives the different methods to design switching surface for 

systems, the studied approaches are illustrated with mathematical and 

simulation aspects. A comparison between the obtained results are also 

given in this chapter. 

5. Finally, a conclusion and possible future studies are given in chapter five. 
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CHAPTER TWO 

LYAPUNOV STABILITY OF THE DYNAMICAL SYSTEMS 

2.1  Lyapunov Stability 

The stability of Lyapunov became well known when the Russian mathematician 

Aleksandr Lyapunov issued his book "The general problem of stability of motion" in 

1892. He was the first scientist who considers that the alterations are needful for 

nonlinear plants to the linear theory of stability based on linearizing near a point of 

equilibrium. Lyapunov research at first issued in Russian and then translated into 

French. [2]. The interest in this work arises in the period between (1953-1962)  when 

the " Lyapunov second method " was considered to be usable in the aerospace 

guidance systems which are usually contain robust nonlinearities. which cannot be 

studied within the other methods. The theory of stability has a very important 

function in the theory of control systems and engineering. In the study of dynamical 

systems there are different types of stability problems which appear, such that 

stability of equilibrium points, input-output stability and stability of periodic orbits. 

Here a detailed explanation of stability of equilibrium points will be presented which 

is generally described in the sense of Lyapunov. 

2.1.1  The  stability  in  the  sense  of  Lyapunov    

Consider the nonlinear system given in Equation 2.1 

 ̇   ( )                                                                                                               (2.1)    

Where      is state variables and  ̇ is their derivatives 

The system at the equilibrium point  when 

 (   )                                                                                                              (2.2)                                          

For a given state variable initial condition     (  ) the system trajectory will be 
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 (      )                                                                                         (2.3) 

An equilibrium state (   ) of the system is said to be stable in the sense of Lyapunov 

if corresponding to each  ( ) there is an  ( ) such that trajectories starting in 

 ( )  do not leave  ( ) as      . In general, the region for the system solution 

 ( )  is determined. Then the system trajectory start within the region of  ( )  which 

do not leave  ( )  as     is determined [15]. To determine the stability of an 

equilibrium point in Equation 2.2 a region is illustrated for      phase plane in 

Figure 2.1. 

 

  

 

 

 

 

 

 

 

2.1.2  Asymptotic  stability  in  the  sense  of  Lyapunov  

Consider the nonlinear system defined in Equation 2.1 with the equilibrium point in 

Equation 2.2. Let the radius of  ( )   ‖       ‖      and the radius of  ( )  

 ‖ (      )      ‖     . Again the system solution for the state initial condition 

    (  ) is   (       )             . The equilibrium point     is 

asymptotically stable if all solutions starting with  ( ) region and do not leave  ( ) 

and tend to the equilibrium point     as time approaches infinity,    . The 

equilibrium of the above system (   ) is said to be asymptotically stable if it is 

Lyapunov stable and if there exists δ > 0 such ‖        ‖     , then 

𝑥2 

𝑥  

𝑆(휀) 

𝑆(𝛿) 

𝑥𝑒𝑞 

𝑥𝑜 

Figure 2.1 An equilibrium point and stability in the sense of  Lyapunov. 
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      ‖ (       )      ‖   . In another word, an equilibrium point, (    ) of 

the system is said to be asymptotically stable if it is stable in the sense of Lyapunov 

and if every solution starting within  ( ) converges, without leaving  ( ), to 

(    ) as    . Establishing asymptotic stability does not mean that the plant will 

work duly. The important thing to be known is the size of the largest region of 

asymptotic stability and this region is called the domain of attraction [15]. The 

asymptotical stability is illustrated in Figure 2.2. 

 

 

 

 

 

 

 

 

 

2.1.3  Asymptotic  stability  in the  large  

When asymptotic stability holds for all states from which the trajectories originate, 

the equilibrium state is said to be asymptotically stable in the large. The equilibrium 

state (    ) of the system is said to be asymptotically stable in large if it is stable and 

if every solution converges to  (    ), as    . Obviously, a necessary condition 

for asymptotic stability in the large is that there be only one equilibrium state in the 

whole state space. In control engineering problems, a desirable feature is an 

asymptotic stability in the large. When the equilibrium state (   ) is not 

asymptotically in large, then the problems becomes that of determining the largest 

region of asymptotic stability and this is usually very difficult to obtain [15]. In the 

actual applications however, it is appropriate to define a region of asymptotic 

𝑥2 

𝑥  

𝑆(휀) 

𝑆(𝛿) 

𝑥𝑒𝑞 

𝑥𝑜 

Figure 2.2 An equilibrium point and asymptotic stability in the sense of Lyapunov. 
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stability large enough so that no disturbance will exceed it [30]. Note that in linear 

control theory, the only system that are asymptotically stable are called stable 

systems, and those systems that are stable in sense of Lyapunov, but are not 

asymptotically stable, are called unstable systems. The asymptotic stability in the 

large is illustrated in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

2.1.4  Exponentially stable in the sense of Lyapunov  

Consider the nonlinear system defined in Equation 2.1 with the equilibrium point in 

Equation 2.2. Let the radius of  ( )   ‖       ‖      and the radius of  ( )  

 ‖ (      )      ‖     . Again the system solution for the state initial condition 

    (  ) is   (       )             . The equilibrium point of the above 

system, (   ) is said to be exponentially stable if it is asymptotically stable and if 

there exist             such that if ‖       ‖     , then  ‖ (      )      ‖   

   ‖       ‖  
    for every     . Exponential stability means that solutions do 

not only converge but in fact, converges faster than asymptotically stable system or 

at least as fast as a particularly known rate   ‖       ‖  
    [15]. The exponential 

stability is illustrated in Figure 2.4. 

𝑥2 

𝑥  

𝑆(휀) 

𝑆(𝛿) 

𝑥𝑒𝑞 𝑥𝑜 

Figure 2.3  Asymptotic stability in the large in the sense of  Lyapunov. 
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2.2  Instability in the sense of Lyapunov  

Consider the nonlinear system defined in Equation 2.1 with the equilibrium point in 

Equation 2.2. Let the radius of  ( )   ‖       ‖      and the radius of  ( )  

 ‖ (      )      ‖     . Again the system solution for the state initial condition 

    (  ) is   (       )             . The equilibrium point of the above 

system, (   ) is said to be unstable if for some real numbers (     ) any real 

number (    ), no matter how small, there is always initial state (  ) in   ( ) such 

that the trajectory starting at this states leaves  ( ) [15]. The Instability is illustrated 

in Figure 2.5. 

 

 

 

𝑥2 

𝑥  

𝑆(휀) 

 

𝑆(𝛿) 

 

𝑥𝑒𝑞 𝑥𝑜 

Figure 2.4 Exponential stability in the sense of Lyapunov. 
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𝑥2 

𝑥  

𝑆(휀) 

 

𝑆(𝛿) 

 

𝑥𝑒𝑞 

𝑥𝑜 

Figure 2.5 Instability in the sense of Lyapunov. 
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CHAPTER THREE 

VARIABLE STRUCTURE SYSTEM AND SLIDING MODE CONTROL 

3.1 Variable Structure System 

The VSS is a functional system whose frame changes as per the present estimation. 

The state plane of VSS is illustrated in Figure 3.1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

VSS is a system collected of separate structures jointly with an appropriate logical 

surface amidst each of the structures and within this surface the VSS can take 

advantage of the required features of each of the structures which forms the system 

itself, also the VSS can own a feature which isn’t available in any of its frames [30]. 

𝑥  

𝑥2 

Figure 3.1  State plane of variable structure system. 
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VSS was presented and studied in the beginning of 1950’s in the former Soviet 

Union by a group of Russian scientists. Their first case of the study was a linear 

second-order system and then the VSS has been developed to be applied in a broad 

field of systems such as nonlinear, MIMO, discrete time, large-scale and infinite 

dimensional, and stochastic systems. The most important merit of VSCS is the power 

to achieve very robust control plants. Nowadays the improvement of VSCS is 

continuing to apply it to a wide spectrum of plants [9]. The main purpose of VSCS is 

to collect the useful properties of each structure [21], [22]. This feature of flexibility 

allows the designer to get the valuable and good dynamic properties of the structures 

which cannot be used in a wide continuous period of time [1]. The principle 

operation mode in VSS became the SMC which makes it insensitive to parameter 

variations, uncertainty and external disturbances. 

3.2 Motivation for Sliding Mode Control 

For any actual system, its mathematical representation will be estimated. Each 

designer aims to maintain the desired function and stability of the system should take 

in mind the uncertainties so that the designing of feedback control system is 

necessary to be robust to the uncertainties. From a wide range of techniques used for 

controlling the uncertain plants, the SMC is a basic and powerful strategy. The SMC 

is a specific sort of variable structure control. The main function of SMC is to drive 

the system state towards the manifold and after that constrain it to stay there on 

which the system will offers eligible features. The SMC transforms the N-

dimensional single-input single-output tracking problem into the stabilization 

problem of the first order which is simple to be controlled. The controlled system in 

the SMC has the insensitivity to parameters changes, uncertainty and outer disorders 

which exclude the need of exact modeling so that the desired performance and 

stability are kept up. Because of this feature, the SMC is the proper choice for the 

robust control. 

3.3 Literature Review of Sliding Mode Control  

The SMC strategy is one of the most effective approaches to build robust controllers 

for complex nonlinear dynamic systems which affected by the uncertainties [27]. The 

concept of SMC showed up for the first time in the case of VSS especially in the 

relay plants, and then became the key working mode for such a plants. The research 
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in this field was first done in the former Soviet Union in the late of 1950’s. Some 

earlier research can be considered as SMC such as V. Kulebakin (1932) who made a 

search about the vibration of  DC generators of an aircraft and Nikolski (1934) who 

use the relays to control the course of a ship [28], but Emelyanov was the first 

scientist who finds that the properties could be achieved according to change the 

structure of controlling process even if the properties are not available in each 

structure [26]. Then the work was developed and became more popular in the 

English world because of the research was done by Utkin (1977) [22]. The theory of 

VSS with SMC was applied to controller design for the manipulator by Kar-keung d. 

Young (1978) [11]. Thereafter the SMC has been used for adaptive control, chemical 

processes, electrical motors and underwater vehicles [17]. Ryan and Corless [16] 

proposed the extreme limitations and asymptotic steadiness of a group of uncertain 

plants (1984). Burton and Zinober [3] used the Continuous approximation of variable 

structure control for the smoothness of the control scheme (1986). Spurgeon and 

Davies [19] proposed the robust sliding mode for the plants which operating under 

the unmatched uncertainty (1993). The full state information is required for sliding 

mode controller which is always not easy to obtain so that an observer is needed for 

the prediction of the system states [4,18,31]. Furat and Eker (2014) proposed 

Second-order integral SMC and the stability and robustness properties of the 

proposed controller are proved by means of Lyapunov stability theorem [13]. In 

(2016) Furat and Eker proposed the chattering-eliminated adaptive SMC and The 

proposed controller is compared experimentally using an electromechanical system 

with five different conventional sliding-mode controllers presented in the literature, 

their experimental results are presented to show the effectiveness of the proposed 

controller particularly regarding the accuracy of control input, disturbance rejection, 

and being an alternative controller to use in industrial applications [14]. SMC is 

characteristically a nonlinear strategy, so that SMC usage is not limited to linear 

plants. For controller design, the SMC gives a free area for a broad field of nonlinear 

systems. Any controller based on a nonlinear model can be expected to perform in an 

efficient way more than the controller based on a linear approximation. The 

applications of this theory have been expanded in different directions. The SMC 

became well known because of its ability to be applied to a broad field of plants. 
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3.4 Principles of Sliding Mode 

SMC system is a group of continuous subsystems together by utilizing a high speed 

switching control which forced the system state to be oriented towards a certain 

surface called switching surface. 

Consider the following second order nonlinear system,     . 

 ̇    (    2  )                                                                                               (3.1) 

 ̇2   2(    2  )                                                                                               (3.2) 

where   (    2)
  Rn  is state variable. If a scalar control    is regarded, then the 

function  ( ) is scalar as well and its points of discontinuity, 

 ( )  {       |   ( )     are a line in the state space.  

When a control action is designed according to 

  {
   (   )               ( )   

   (   )                ( )   
                                                                       (3.3) 

The control input   ( ) should be designed in a way which guarantees that the state 

track is oriented to the manifold. When the state track reaches the manifold it will be 

forced to stay there by the control action and the system will move on the manifold 

until reaching the equilibrium point and this motion will call sliding mode. The 

sliding mode control scheme guarantee that the control action has the ability to keep 

the system state on the manifold on which the system will get the desirable properties 

and this is the basic principle of sliding mode. 
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An actual movement of the system state plane for the second-order nonlinear system 

when the control action is applied, the movement is consist of  two parts: 

 First part is the reaching phase (the system state moves towards the 

manifold for any initial condition). 

 Second part is the sliding phase (the system state moves along the 

manifold until reaching the equilibrium point in a finite time). 

3.5 Sliding Mode Controller Design 

The designing of sliding mode controller is divided into two main parts: 

 First part is designing the sliding surface to obtain the wanted dynamic 

conduct (stability to the equilibrium point). 
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Figure 3.2  State plane of an actual movement of the system state. 
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 Second part is the designing of discontinuous control law which provides 

the attractivity to the system state when it is in the vicinity of the sliding 

surface and provides the stability to the closed-loop system when it’s on 

the sliding surface. 

The main advantages which the designer obtain from the system when the system is 

operating in the sliding mode are as follows [30]: 

 The system is robust to the effect of matched uncertainties. 

 The system performance is dominated by reduced set differential 

equations. 

 

3.5.1  Sliding Surface 

The sliding surface  ( ) is always characterized a linear surface   ( )   , which is 

considered as the switching surface. The sliding surface is designed to obtain the 

desired behavior from the plant so that the system state is governed by the sliding 

surface when it is sliding on the sliding surface. For example, if any system is 

maintained to be stable at zero, the sliding surface will be designed to be a stable 

differential equation of the system itself. When the system state which is in the 

vicinity of the sliding surface oriented towards the surface, sliding mode will exist 

and the surface will pull in all the system states which lie in its vicinity. The sliding 

surface will be attractive in two cases, the state trajectory starts on the surface will 

stay there and the state trajectory starts outside the surface will head for the surface 

asymptotically. In general, the sliding surface can be defined as :  

 ( )                                                                                                                   (3.4) 

Where  ( ) is m-dimensional and   is the n-dimensional constant row vector. The 

main condition to the sliding mode to have occurred is 

        ̇                ̇                                                                            (3.5) 

The previous conditions in Equation 3.5 [30] gave a guarantee that the system states 

on each side of the sliding surface are head for the sliding surface as it will be seen in 

the Figure 3.3. 
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In the Figure 3.3 we notice that: 

1. When     the state derivative must be negative definite so that the state 

can reach the sliding surface. 

2. When      the state remain on the sliding surface. 

3. When     the state derivative must be positive definite so that the state 

can reach the sliding surface.  

3.5.2 Reaching Conditions and Reaching Law 

The motion of the system states toward the sliding surface is subject to a certain 

condition which called the reaching condition. And the system states under the 

reaching conditions is called the reaching law or the reaching mode. According to 

[9], there are three main approaches to determine the reaching conditions. 

1. The Lyapunov function approach:  (   )      according to [21] the 

general reaching condition ensures the finite reaching time which is  ̇(   )  

   when    . In another word, the derivative of the Lyapunov function 

𝑆    

𝑆    

𝑆    

�̇� 

�̇�(𝑥)  (∇𝑆)𝑇�̇� 

Figure 3.3 Sufficient condition of the attractivity to the sliding surface. 
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should be negative definite. So that this approach leading to the final sliding 

mode switch scheme.  

2. The straight switching function approach: which is proposed by [5],[23] 

{
 ̇( )            ( )   

 ̇( )             ( )   
}                                                                                 (3.6)                                                                     

In general, the reaching condition does not ensure a finite reaching time and also its 

difficult to be applying for the multi-input variable structure system. 

3. The reaching law approach: the base of this approach is specifying the 

characteristics of the plant when the system states are moving towards the 

sliding surface and also set up the reaching conditions. And according to [29] 

this approach can be used for the facilitation of variable structure systems 

problems and also for measurement for the lowering of chattering. 

The reaching law approach general formula is: 

  ̇ ( )         (  ( ))    ( )                                                                         (3.7) 

Where      are positive gains and different values of these gains will give different 

rates for   and product different structure in the reaching law. 

3.5.3  Control Law 

The control law  ( ) provide the attractivity to the system state when it is in the 

vicinity of the sliding surface and provides the stability to the closed-loop system 

when it’s on the sliding surface. In another word, the control law  ( ) is the 

responsible for driving the system state towards the sliding surface. The control law 

 ( ) can be obtained through two approaches: 

1. Using the formula in equation 3.3 and the control action will be: 

 ( )           ( )                                                                                             (3.8) 

2. Substituting the state Equation [ ̇       ] in the time derivative of 

the Equation 3.4 [ ̇( )    ̇] and the control action will be: 

  ̇ ( )    (     )                                                                                              (3.9) 
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CHAPTER FOUR 

SWITCHING SURFACE DESIGN 

4.1 Motivation 

VSS is a system collected of separate structures jointly with an appropriate logical 

surface amidst each of the structures, and this surface is known as sliding surface or 

switching surface [30]. The switching surface is considered as the first main part of 

the SMC system design. The proper switching surface allows the designer to achieve 

the desirable dynamics features of the system and maintain the system stability in the 

sliding mode. For the multi-input system (m-input) there is multi-switching surface 

(    ). The first one may call the basic sliding surface since each one of the others 

is related with a single switching surface, and the last one is the surface where all the 

states should reach finally so that it may call the eventual sliding surface [29]. 

According to [9], there are some possible plans to force the system states to enter 

different sliding surfaces, for example: 

1. Fixed order sliding surface in which the sliding mode happen in a particular 

order while the system state is crossing its space. It seems to be simple but for 

the VSS it has a long period of transient time as shown in Figure 4.1.a. 

2. Eventual sliding surface in which the sliding mode happen where the system 

state is directed toward the final surface. It provides a faster transient time 

than the fixed order for VSS as shown in Figure 4.1.b. 

3. Free order sliding surface in which the sliding mode happen where the system 

state reaches any sliding surface (the first surface where the state intersects 

with). The motion of the system state is faster in the sliding mode than the 

previous types as shown in Figure 4.1.c. Also, it provides a very fast transient 

time with less saturation to happen. 
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A. Fixed order 
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surface. 
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B. Eventual sliding 

surface. 
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C. Free order 

sliding surface. 

Figure 4.1 The switching surface schemes. 
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4.2 Switching Surface Design Methods 

In the last decades, the designing of switching surface took much attention from the 

international control engineering community. All known results about switching 

surface design are founded according to restrictive appropriate assumption [9,6]. 

According to [7,12] all the existing design methods in their time do not ensure that 

the sliding mode dynamics features are fully constant with the matched and 

mismatched uncertainties. This section presents the idea of designing the switching 

surface in different approaches. The design of switching surface can be achieved via 

different approaches according to the system dynamics behavior and the desired 

features from such a design. Different methods are considered to design the 

switching surface with a special attention about the LMI method. 

4.2.1 Switching surface design based on LMI 

In the dynamical systems analysis, the usage of LMI returns back to the 1890’s when 

the Russian scientist Lyapunov presented his main idea in this field which nowadays 

known as the Lyapunov theory. Lyapunov theory shows that the differential equation   

 

  
 ( )    ( ) is stable if there is a positive definite matrix   such that     

      so that the two conditions     &          are the Lyapunov 

inequality on  , which is a particular shape of an LMI. In another word the first 

attempts of analysing the stability of dynamical systems in terms of LMI was done 

by solving a set of linear equations in order to solve the Lyapunov inequality. The 

second step in this field was done by a group of Russian scientists Lur'e, Postnikov 

and others in the former Soviet Union in the 1940’s. These scientists used the 

Lyapunov’s method to solve the problem of stability of a control system with a 

nonlinearity in the actuator, but the resulting LMI were solved analytically by hand 

and this limited their work only for the small systems. The major contribution in this 

field starts in the 1960’s when Kalman, Yakubovich, Popov and other scientists 

achieved the desired aim in reduction the solution of the LMIs which appeared in the 

problem of Lur'e to be simple schematic criteria as possible using what nowadays 

known as a positive-real lemma PR and this point leads to many criterion which 

applied to the higher order systems but could not applied to the systems with more 

than one nonlinearity. In 1971 a group of scientists finds out some methods to solve 

special forms of LMIs for the small systems by solving the Lyapunov or Riccati 
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equations and these methods were already an analytic solution to the special forms of 

LMIs. In the early 1980’s a group of researchers finds out that the solution of many 

LMIs can be achieved according to convex programming and the late of 1980’s was 

the time for the evolution of interior-point algorithms for LMIs [20]. According to 

the work done in [6], many researchers have presented the switching surface design 

based on LMI for uncertain systems with matched and mismatched uncertainties. 

This section proposes an unrivaled design method of the switching surface which 

portray a linear sliding surface in terms of the LMI’s. This approach ensures that the 

sliding mode dynamics features are stable and fully independent of the matched and 

mismatched uncertainties [6]. The main advantages of this approach are offering 

additional design flexibility and some ease in the computational aspect so that the 

switching surface for extensive systems can be readily achieved [8]. 

Example 4.1 Consider the following uncertain second-order system described by the 

Equation 4.1. The sliding mode control system will be designed according to the 

Table 4.1. 

Table 4.1 Information table 

 

 

 

[
 ̇ 

 ̇2
]  *

  
  

+ *
  

 2
+  *

 
 
+ (   )                                                                          (4.1) 

Where      ( ) is measurable and matched disturbance. 

Designing the switching surface based on LMI as following: 

 ( )     

 ( )                                                                                                                (4.2) 

Where           is positive matrix and   is the input matrix. To solve  the matrix 

 , the system controller is designed as : 

  ( )     ( )     ( )                                                                                         (4.3) 

States Initial states Desired states 

  ( )     

 2( )     
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Where   ( ) is the total controller,   ( )        is the linear feedback controller 

(K        ) vector matrix and   ( ) is the sliding controller. 

Consider the following Lyapunov function: 

 ( )                                                                                                                (4.4) 

 ( )  [   2] *
  

 2
+ 

 ( )   ( 2
   2

2)  

the derivative of  ( ) will be: 

 ̇( )   (    ̇    2 ̇2) 

 ̇( )   [   2] [
 ̇ 

 ̇2
] 

 ̇( )       ̇                                                                                                       (4.5) 

The closed loop system is:  

 ̇                                                                                                                  (4.6) 

Substituting Equation 4.3 in the Equation 4.6 

 ̇      (      ( )) 

 ̇  (    )     ( ) 

Let ( ̅      ) 

 ̇   ̅     ( )                                                                                                   (4.7) 

Now subsituting Equation 4.7 in the Equation 4.5 

 ̇( )      ( ̅     ( )) 

 ̇ ( )                      ( )   

When       , there exists  ( )            

therefore   ( )          , it leads to :  ̇ ( )           
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 ̇ ( )     (      
 
  )   

The condition to make  ̇ ( )    is  

(      
 
  )     

Multiplying above inequality by   2 

           
 

      , Let           

      
 

                                                                                                        (4.8) 

(    )   (     )     

                   

Let      

                                                                                                     (4.9) 

The matrix    can be obtained by solving the inequality defined in Equation 4.9 by 

using MATLAB M-File given in the Table 4.2. 

 

 

 

 

 

 

 

 

 

  *
               
               

+  

Table 4.2 MATLAB M-File for LMI 

Calculation M* matrix %%%%% 

A=[0 1;1 0] 

B=[0;2] 

setlmis([]); 

M=lmivar(1,[2 1]); 

L=lmivar(2,[1 2]); 

lmiterm([1 1 1 M],A,1,'S'); 

lmiterm([-1 1 1 L],B,1,'S'); 

lmiterm([-2 1 1 M],1,1); 

lmis=getlmis; 

[tmin,xfeas]=feasp(lmis); 

M=dec2mat(lmis,xfeas,M) 

P=inv(M) 

L=dec2mat(lmis,xfeas,L) 

k=L*inv(M) 
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  *
            
            

+ 

  [             ]   

  [            ] 

      [            ] 

Now the switching surface will be: 

 ( )                     2 

Equating the Equation 3.9 with the Equation:  ̇ ( )         (  ( ))     ( ) 

See the Equations A1, A2 and A3 in the Appendix A. 

       (  ( ))     ( )    (     )                                                         (4.10) 

       (  ( ))     ( )          

Then the nonlinear sliding mode controller based on exponential reaching law can be 

obtained as follows: 

  ( )  (       (  ( ))     ( )     )  (  )                                        (4.11) 

And the linear sliding mode controller can be obtained as follows: 

  ( )                                                                                                            (4.12) 

The total sliding mode controller can be obtained as follows: 

  ( )     ( )     ( )                                                                                       (4.13) 

          ,             ,    [           ] 

The positive gains of the nonlinear sliding mode controller are selected as follows: 

              

  ( )                       2 

  ( )  (       (  ( ))     ( )     ) (  )   
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  ( )  (         ( )    ( )                   2 )         

  ( )  (                ( )          ( )                    2 )  

  ( )  (                 2)  (                ( )          ( )

                  2)  

  ( )                  ( )          ( )                  2 

The design of the SMC system in its two main stages (Switching surface design and 

control action design) is done for the previous second order system. Our main point 

is to design the switching surface  ( ) and its achieved through the LMI method. 

The procedure and the results of this design method are clarified what we said earlier 

about the advantages of the LMI in the ease of the computational aspect so that the 

desired function and stability of the system are ensured. The design of switching 

surface based on LMI method will be applied to linearized inverted pendulum system 

in order to see the system required function and stability in a much clear way than 

what is done earlier. 

Example 4.2 Consider the linearized inverted pendulum system described by the 

Equation 4.14. The cart and the unstable inverted pendulum shown in the Figure 4.2. 

The sliding mode control system will be designed according to the Table 4.3. 

Table 4.3 Information table 

States States type Initial states Desired states 

  ( )    Angle  response        

 2( )   ̇ Angle speed 

response 
    

  ( )    Cart position 

response 
     

  ( )   ̇ Cart speed response     
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Figure 4.2 A cart and an inverted pendulum. 

[
 
 
 
 
 ̇ 

 2̇

  ̇

  ̇]
 
 
 
 

  [

    
               
    
                

]        [

  

 2

  

  

]    [

 
      

 
      

]   (   )          (4.14) 

Where         ( ) is measurable and matched disturbance. 

Designing the switching surface based on LMI as following: 

 ( )     

 ( )                                                                                                              (4.15) 

Where           is positive matrix and   is the input matrix. To solve  the matrix 

 , the system controller is designed as : 

  ( )     ( )     ( )                                                                                       (4.16) 

Where   ( ) is the total controller,   ( )        is the linear feedback controller 

(K        ) vector matrix and   ( ) is the sliding controller. 

Consider the following Lyapunov function: 

 ( )                                                                                                              (4.17) 

 

𝜃 

𝑀 
𝐹 
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 ( )   [   2        ]  [

  

 2

  

  

] 

 ( )    (  2
    2

2    2
    2

 )  

the derivative of  ( ) will be: 

 ̇( )   (    ̇    2 ̇2      ̇      ̇ ) 

 ̇ ( )          ̇                                                                                                   (4.18)                  

The closed loop system is  

 ̇                                                                                                                 (4.19)                                                                                 

Substituting Equation 4.16 in the Equation 4.19 

 ̇      (      ( )) 

 ̇  (    )     ( ) 

Let ( ̅      ) 

 ̇   ̅     ( )                                                                                                 (4.20) 

Now subsituting Equation 4.20 in the Equation 4.18 

 ̇( )      ( ̅     ( )) 

 ̇ ( )                      ( )   

When       , there exists  ( )            

therefore   ( )          , it leads to :  ̇ ( )           

 ̇ ( )     (      
 
  )   

The condition to make  ̇ ( )    is  

(      
 
  )     
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Multiplying above inequality by   2 

           
 

      , Let           

      
 

                                                                                                      (4.21) 

(    )   (     )     

                   

Let      

                                                                                                   (4.22) 

The matrix    can be obtained by solving the inequality defined in Equation 4.22 by 

using MATLAB M-File given in the Table 4.4. 

 

 

 

  [

                          
                          
                          
                          

] 

  [

                          
                           
                            
                          

] 

  [                         ] 

Table 4.4 MATLAB M-File for LMI 

Calculation M* matrix %%%%% 

A=[0 1 0 0;0 -0.1818 2.6727 0;0 0 0 1;0 -0.4545 31.1818 0] 

B=[0;1.8182;0;4.5455] 

setlmis([]); 

M=lmivar(1,[4 1]); 

L=lmivar(2,[1 4]); 

lmiterm([1 1 1 M],A,1,'S'); 

lmiterm([-1 1 1 L],B,1,'S'); 

lmiterm([-2 1 1 M],1,1); 

lmis=getlmis; 

[tmin,xfeas]=feasp(lmis); 

M=dec2mat(lmis,xfeas,M) 

P=inv(M) 

L=dec2mat(lmis,xfeas,L) 

k=L*inv(M) 
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  [                           ] 

      [                          ] 

Now the switching surface will be: 

 ( )                      2                    

Equating the Equation 3.9 with the equation:  ̇ ( )         (  ( ))     ( ) 

See the Equations A1, A2 and A3 in the Appendix A. 

       (  ( ))     ( )    (     )                                                         (4.23) 

       (  ( ))     ( )          

Then the nonlinear sliding mode controller based on exponential reaching law can be 

obtained as follows: 

  ( )  (       (  ( ))     ( )     )  (  )                                        (4.24) 

And the linear sliding mode controller can be obtained as follows: 

  ( )                                                                                                            (4.25) 

The total sliding mode controller can be obtained as follows: 

  ( )     ( )     ( )                                                                                       (4.26) 

         ,             

   [                     ] 

The positive gains of the nonlinear sliding mode controller are selected as follows: 

              

  ( )                      2                     

  ( )  (       (  ( ))     ( )     ) (  )   

  ( )  (         ( )    ( )         2                      )        
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  ( )  (              ( )         ( )         2           

          ) 

  ( )  (                2                    )

 (              ( )         ( )         2           

         )  

  ( )                ( )         ( )                  2           

          

4.2.2 Switching surface design based on Ackermann’s formula 

In the control system design Ackermann’s formula is an approach used to solving the 

problem of pole allocation, and it’s also a proper method to mark a linear state-

feedback control law in a certain feature which results in the feedback system with 

desired eigenvalues [10]. The equation of SMC is linear and depends on the 

coefficients of the surface equation a similar task emerge in the design of SMC for 

the linear system with a linear surface [24]. The design of scalar SMC based on 

Ackermann’s formula to obtain a discontinuity plane equation in explicit form as 

well as in terms of the original system. 

Example 4.3 Consider the linearized inverted pendulum system described by the 

Equation 4.27. the cart and the unstable inverted pendulum shown in the Figure 4.3. 

The sliding mode control system will be designed according to the Table 4.5. 

Table 4.5 Information table 

States States type Initial states Desired states 

  ( )    Angle  response        

 2( )   ̇ Angle speed 

response 
    

  ( )    Cart position 

response 
     

  ( )   ̇ Cart speed response     
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Figure 4.3 A cart and an inverted pendulum. 
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]   (   ( ))                                (4.27) 

Where  ( )        (  ) is measurable and matched disturbance. 

Designing the switching surface  ( ) based on Ackermann’s as follows: 

The desired eigenvalues of sliding motion are: [       2          ] 

 ( )                                                                                                           (4.28) 

      ( )                                                                                                         (4.29) 

   [    ][    2    ]                                                       (4.30)                 

  ( )  (     )(   2 )(     )                                                                 (4.31) 

  [    ][    2    ]  (     )(   2 )(     )        (4.32) 

The matrix   can be obtained by solving the Equation 4.32 by using MATLAB M-

File given in the Table 4.6. 

 

 

𝜃 

𝑀 𝐹 
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  [                          ] 

Now the switching surface  ( )       will be: 

 ( )                   2                     

Equating the Equation 3.9 with the equation:  ̇ ( )         (  ( ))     ( ) 

See the Equations A1, A2 and A3 in the Appendix A. 

       (  ( ))     ( )    (     )                                                         (4.33) 

       (  ( ))     ( )          

Then the sliding mode controller based on exponential reaching law can be obtained 

as follows: 

  ( )  (       (  ( ))     ( )     )  (  )                                        (4.34) 

(  )    ,  (  )     

   [                ]  

    ,                   

 ( )  (       ( )    ( )         2               ) 

 

Table 4.6 MATLAB M-File for  Ackermann’s formula 

Calculation C*  matrix %%%%% 

A=[0 1 0 0;0 0 -0.98 0;0 0 0 1;0 0 1 0] 

B=[0;1;0;1] 

r1=-1;r2=-2;r3=-3; 

M=inv([B A*B A*A*B A*A*A*B]) 

E=[0 0 0 1]*M 

I=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1] 

P=(A-(r1*I))*(A-(r2*I))*(A-(r3*I)) 

C=E*P 
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4.2.3 Switching surface design based on Classical method 

This section presents the idea of designing switching surface as well as the design of 

SMC system based on the classical approach to be considered as a basic stage among 

the previous two approaches (Switching surface design based on LMI and Switching 

surface design based on Ackermann’s formula). To clarify this approach we consider 

the single-dimensional motion of a unit mass as shown in the Figure 4.4. 

Example 4.4 Consider the system described in the Equation 4.35. The sliding mode 

control system will be designed according to the Table 4.7. 

Table 4.7 Information table 

 

Figure 4.4 Single-dimensional motion of a unit mass. 

[
 ̇ 

 ̇2
]  *

  
  

+ *
  

 2
+  *

 
 
+ (   (    2  ))                                                         (4.35) 

 (    2  )     (  ) which is disturbance force. 

Designing the switching surface  ( ) based on this method as follows: 

 ( )       2,                                                                                           (4.36) 

The sliding mode controller will be considered as: 

 ( )     2         ( )                                                                                 (4.37) 

States States type Initial states Desired states 

  ( ) Position     

 2( ) Velocity       

𝑢 

𝑓(𝑥 𝑡) 
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The positive gains are selected as follows:       and     

 ( )         2  

 ( )       2         ( ) 

4.3 Simulation results 

This section presents the simulation results of all previous examples. 

1. Simulation results for the design method applied in Example 4.1. 

 

Figure 4.5a The system states. 

 

 

Figure 4.5b The sliding mode controller. 
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Figure 4.5c The switching surface. 

In the Figure 4.5a we notice the movement of the system states from its initial 

conditions [  ( )     2( )   ] to the desired destination (switching surface) and 

it approaches to zero as     with approximately 12 to 13 seconds as settling time 

for    and 9 to 10 seconds as settling time for  2. Figure  4.5b shows the sliding 

mode controller signal which has less of chattering effect. In the Figure 4.5c we 

notice the switching surface curve goes to zero as     with settling time 

approximately between 12 to 13 seconds. 

 

2. Simulation results for the design method applied in Example 4.2. 

 

Figure 4.6a The system states. 
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Figure 4.6b The sliding mode controller. 

 

Figure 4.6c The switching surface. 

In the Figure 4.6a we notice the movement of the system states from its initial 

conditions [  ( )        2( )      ( )          ( )   ] to the desired 

destination (switching surface) and it approaches to zero as     with settling time 

approximately 6 seconds for    and  2, 1.5 to 2 seconds for    and 2.5 seconds for 

  . Figure 4.6b shows the sliding mode controller signal which has less of chattering 

effect. In the Figure 4.6c we notice the switching surface curve goes to zero as 

    with settling time about 5 seconds. 
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3. Simulation results for the design method applied in Example 4.3. 

 

Figure 4.7a The system states. 

 

 

Figure 4.7b The sliding mode controller. 

 

Figure 4.7c The switching surface. 
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In the Figure 4.7a we notice the movement of the system states from its initial 

conditions [  ( )        2( )      ( )          ( )   ] to the desired 

destination (switching surface) and it approaches to zero as     with settling time 

approximately 5 seconds for    and  2, 5 seconds for    and   . Figure 4.7b shows 

the sliding mode controller signal which has less of chattering effect. In the Figure 

4.7c we notice the switching surface curve goes to zero as     with settling time 

approximately between 1.5 to 2 seconds. 

4. Simulation results for the design method applied in Example 4.4. 

 

Figure 4.8a The system states. 

 

 

Figure 4.8b The sliding mode controller. 
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Figure 4.8c The switching surface. 

 

In the Figure 4.8a we notice the movement of the system states from its initial 

conditions [  ( )     2( )     ] to the desired destination (switching surface) 

and it approaches to zero as     with approximately 3 seconds as settling time. 

Figure 4.8b shows the sliding mode controller signal which has less of chattering 

effect. In the Figure 4.8c we noticed the switching surface curve goes to zero as 

    with settling time approximately about 1 seconds. 

4.4 Comparison of results 

This part submits a comparison of the results which obtained in the previous three 

approaches which are LMI, Ackermann’s formula and the Classical method in order 

to see the differences between them and also to point to the advantages and 

disadvantages of each method. The comparison will be given in figures and words to 

increase the clarity and emphasizes the comparison.  

4.4.1 Comparison between LMI and Ackermann’s formula 

In the following figures the dash line representing the LMI method while the 

continuous line representing the Ackermann’s formula method. 
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Figure 4.9a The system states. 

 

Figure 4.9b The system states. 

 

Figure 4.9c Switching surface and Sliding mode controller. 
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In the Figure 4.9a and 4.9b we notice the motion of the system states in the two 

methods from its initial values [  ( )        2( )      ( )          ( )  

 ] to the desired destination (switching surface) and it approaches to zero as     

with settling time approximately as follows: 

1. LMI method 

 6 seconds for the    and  2. 

 1.5 to 2 seconds for the   . 

 2.5 seconds for the   . 

2. Ackermann’s formula method 

 5 seconds for the   ,  2,   and   . 

So that for the given inverted pendulum system the cart position response and the 

cart speed response reaches the stability in the LMI method in less time than the time 

taken in the Ackermann’s formula method, while the angle response and the angle 

speed response reaches the stability in the LMI method in one second after it reaches 

the stability in the Ackermann’s formula method. Figure 4.9c shows the switching 

surface curve of the two methods starting from different quantities and goes to zero 

as     with settling time approximately about 1.5 to 2 seconds for the 

Ackermann’s formula method and about 5 seconds for the LMI method. In the same 

figure, we notice that the sliding mode control signal for the LMI method seems to 

more convenient than the sliding mode control signal for the Ackermann’s formula 

method. From the previous results we can see that the Ackermann’s formula gives 

the result with simple way according to its procedure but its faces some difficulties 

compared with the LMI method which enables the designer to easily attack various 

interesting problems and also for its ability of robustness against matched 

disturbances.  

4.4.2 Comparison between LMI and Classical method 

In the following figures the dash line representing the LMI method while the 

continuous line representing the Classical method. 
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Figure 4.10a The system states. 

 

Figure 4.10b Switching surface and Sliding mode controller. 
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time taken in the LMI method.  Figure 4.10b shows the switching surface curve of 

the two methods starting from different quantities and goes to zero as     with 

settling time approximately about 1 second for the Classical method and about 0.1 

second for the LMI method. In the same figure, we notice that the sliding mode 

control signal for the LMI method seems to more convenient than the sliding mode 

control signal for the Classical method. Despite the fact that the previous results 

show the ease of the Classical method to be applied but the LMI method have the 

advantage that its results seem more logical especially in the acquired switching 

surface and the sliding mode controller. This chapter displayed what the switching 

surface is and presented different methods to design the proper switching surface. In 

the next chapter, a conclusion about the achieved results will be given as well as the 

possible future studies in the area of SMC.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE STUDIES 

5.1 Conclusion 

The stability of the dynamical system is an important subject in the control systems 

theory so that one of the most common approaches has been studied within this 

thesis which is the Lyapunov method. The stability of equilibrium points is given 

with different cases for stability and the case of instability in the sense of Lyapunov. 

Since the prime core of this study is the designing of switching surface, it was 

necessary to enter this topic by presenting an introduction about VSS with a 

historical view and the main concepts of SMC to create some ideas which can help 

any researcher to give an answers to the following questions: 

1. What is the meaning of SMC? 

2. What are the main parts of SMC system? 

3. Where did this topic come from?  

4. What is the major contribution of this topic in the field of control systems?  

5. What are the main developments which took place on this topic? 

After studying the main points which mentioned earlier, it was important to clarify 

the implicit details of this subject, which can be considered as the cornerstone of 

understanding how this system work and thus the ability to build a solid control 

system against the matched disturbances so as to reach the stability and obtain the 

desired performance of such a system. From the obtained switching surface through 

different design methods the following main points can be inferred: 

1. The LMI method has a unique procedure depends on the positive Lyapunov 

function and some mathematical aspects in order to achieve the desired 

formula in terms of LMIs to describing linear sliding surfaces and obtain the 

desired properties from such a design. 
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2. The Ackermann’s formula method has proposing a scalar sliding mode 

control design depends on the desired eigenvalues and the controllability 

matrix to achieve the desired SMC performance with respect to its flexibility 

of solution when its applied to special types of systems. 

3. The Classical method has the easiest procedure to obtain the switching 

surface but it can be only applied to specific types of system to achieve the 

desired results. 

As a result of the previous three conclusions, it’s possible to consider the best 

approach to design the switching surface according to the ability of the selected 

approach to give the most accurate results with respect to the capability of such a 

method dealing with a various types of systems with the existence of the  matched 

disturbances. The  LMI method gave the designer the ability to attack interesting 

problem for even higher order system and this is the main reason to consider the LMI 

method as a comprehensive design approach compared to the other two methods. 

The simulation results of each method clarify the system states behavior under the 

matched disturbances conditions as well as displays the normal path which is taken 

by the switching surface curve and the SMC signal until reaching the stability point 

in a specific period of time. 

5.2 Future studies 

According to the fast evolution taking place in the scientific field, it’s necessary to 

keep up with this huge progress by developing the previous methods and planning to 

find a new approaches which allow us to achieve the desired aims in order to present 

the valuable things to the humanity and society. In the area of SMC it will be a great 

contribution to develop and find the switching surface design based on feedback 

linearization besides designing the SMC for aircraft systems. 
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APPENDIX 

Appendix A: Exponential  reaching  law 

In general, the reaching law determines the dynamic characteristics of the system 

during the reaching phase and establishes the reaching condition in addition, it 

contains a simplification of the solution for (VSC) and providing a measure for the 

reduction of chattering. Reaching law consist of two main parts which are : 

 Reaching stage: it drives the plant toward the sliding surface  

 Sliding stage: it can constrain the system on the sliding manifold and lead it 

to the origin ( Equilibrium Point )    

The general formula for exponential reaching law is: 

   ̇ ( )         (  ( ))     ( )                                                                       (A1)                               

Where     ,       and   ̇ ( )      ( ) is the exponential term, can be solved as:  

  ( )

  
     ( )  

  ( )

 ( )
      

∫
  ( )

 ( )
   ∫           ( )       

Leads to  ( )   ( )       

By adding the proportional rate term     ( ) to this reaching law forces the state to 

approach the switching surface faster when  ( ) is enough large. 

It can be shown that the reaching time for   state is move from an initial state 

 ( )  to the switching surface  ( )        is finite and given by T = 
 

 
   

  | |  
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To obtain the sliding mode controller we have the direct switching function approach   

  ̇ ( )            ( )      

  ̇ ( )            ( )       

Where 

  ̇ ( )    ̇                                                                                                              (A2)                        

From equating the two equations (A1) and (A2) we obtain: 

       (  ( ))     ( )    ̇                                                                                                                                             

Where  ̇        

       (  ( ))     ( )    (     )  

       (  ( ))     ( )          

Then the nonlinear sliding mode controller can be obtained as : 

  ( )  (       (  ( ))     ( )     )  (  )                                          (A3) 

 

 

 

 


