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ABSTRACT 

 
IMPROVEMENT OF CLASSIFICATION PERFORMANCE FOR TRIPLE 

TEST USING DATA MINING APPROACHES 
 
 

AY, Memet Merhad 

M.Sc. in Industrial Engineering 

Supervisor: Assist. Prof. Dr. Alptekin DURMUŞOĞLU 

December 2017 

122 pages 
 
The triple test is a screening test used to calculate the probability of a pregnant 

woman having a fetus that has an aneuploidy. AFP (Alpha-Fetoprotein), hCG 

(Human Chorionic Gonadotropin), and uE3 (Unconjugated Estriol) values of 

pregnant women are computed and compared with the similar records where the 

outputs (healthy baby or having a disease) are actually known. Bayes theorem is 

combined with a prior probability derived from maternal age at expected date of 

delivery is used to calculate the likelihood ratio of a fetus to have diseases like Down 

syndrome. Current approaches to the calculation of likelihood are known to produce 

high bias. In this paper, a data mining analysis has been performed to find the best 

model that is capable of explaining the likelihood of a fetus to have an aneuploidy. 

81 triple test records of actually completed pregnancies have been analyzed. 76 of 

the 81 singleton pregnancies were detected unaffected and 5 of them associated with 

Down syndrome. The number of 5 pregnancies were increased to 50 pregnancies 

with the over-sampling technique SMOTE (Synthetic Minority Over-sampling 

Technique). The Multilayer Perceptron model provided the least false positive rate 

(13%) and the best detection rate (94%) among several modeling alternatives with 

the proposed approach. It has been seen that performance of the triple screening test 

has been significantly improved when compared to the conventional risk assessment. 
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ÖZET 

 

VERİ MADENCİLİĞİ KULLANARAK ÜÇLÜ TESTİN SINIFLANDIRMA 

PERFORMANSININ İYİLEŞTİRİLMESİ 
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122 sayfa 

 

Üçlü tarama testleri gebelik döneminde fetüste herhangi bir kromozomal bozukluk 

olup olmadığının olasılığını hesaplamak için kullanılmaktadır. AFP (Alfa-

fetoprotein), hCG (Human Koryonik Gonadotropin) ve uE3 (Serbest Estriol) 

değerine sahip gebelerin verileri, gebelik bitimindeki sağlıklı ya da kromozomal 

bozukluğa sahip doğum yapmış gebelerin verilerine göre değerlendirildi ve 

kıyaslandı. Fetüsün Down sendromu gibi kromozomal bozukluklara sahip olma 

ihtimalini hesaplamak için Bayes teoremi, gebenin beklenen doğum anındaki 

yaşından oluşturulmuş olasılık ile birleştirilerek kullanılır. Günümüzde kullanılan 

olasılık hesaplama yaklaşımları yüksek derecede peşin hükümlü yani belli bir yöne 

eğilimliler. Bu çalışmada kromozomal bozukluklara sahip fetüsleri daha doğru 

olasılık oranları ile tespit edebilecek model araştırıldı. 81 tekil gebeliğe sahip 

gebelerin üçlü tarama testi verileri analiz edildi. 81 tekil gebeliğin 76’sında 

kromozal bir bozukluğa rastlanmamış olup 5 tanesinde ise Down sendromu tespit 

edilmiştir. Down sendromlu bebeğe sahip olan 5 gebe, örneklem tekniği olan 

SMOTE (Synthetic Minority Over Sampling) ile 50 gebeye arttırıldı. Birçok 

modelleme denemeleri arasında Multilayer Perceptron modeli en az yanlış pozitif 

oranına (%13) ve en iyi tespit oranına (%94) sahip oldu. Geleneksel risk 

değerlendirmeleri kıyaslandığında, üçlü test performansının önemli derecede 

geliştirildiği görülmektedir.  
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1. CHAPTER 1 

INTRODUCTION 

The number of data, which is stored in the digital environment, increases rapidly 

with the developing technology nowadays. Analysis of data and transformation of 

data into knowledge is an indispensable activity for the future. Data mining can be 

explained as extracting information from a large amount of data [1]. Data mining 

aims to forecast the future and acquire useful information by making it easy for 

people to understand difficult data stacks through computer programs. This process 

can be summarized as shown in Figure 1.1. It primarily begins with the identifying 

the goal and selecting the target data that is specific data set. After that, cleaning and 

integrating data are the next steps. Thirdly, the data are converted into the 

appropriate format for mining by performing data summaries or aggregations. 

Selecting data, cleaning and integrating data and steps of the transformation data are 

parts of preprocessing phase. After the data preprocessing is finished, next step is 

mining data. There are different techniques such as classification, clustering, and 

regression for extracting data patterns. Data patterns may represent hidden 

knowledge. As a consequence, useful and future-oriented knowledge is obtained.  

 

 

Figure 1.1  Knowledge Discovery Process [2]. 
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1.1 Data Mining Architecture 

Data mining consists of various parts [3]. Figure 1.2 shows the architecture of data 

mining. 

 

 

Figure 1.2  Data Mining Architecture [3] 

 

Some data sources such as the data warehouse, the internet, and other sources can 

cover the data sets after the data cleaning, integration, and selection processes. The 

database is accountable to get related data, place on user’s request for data mining. 

Knowledge base is information that is used to guide research or to calculate the 

relevance of emerging forms. Data mining engine is required for data mining 

structure and preferably contains a set of practical units for tasks for instance 

characterization, association and classification based on mining principles for data 

access, prediction, cluster analysis and evolutionary query languages (DMQL). The 

model calculation module collaborates with the data mining parts for yielding the 

research to determine attracting models [2]. A communication is provided between 

the users and the data mining system. It permits client for collaborating with the 
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approach by highlighting a data mining query or task. It permits user for scanning 

the data store or the data architecture, envision a models in the distinct shapes, and 

comment mined models [2]. 

1.2 Data Mining Techniques 

Data mining methods are generally divided into three types [2]. Figure 1.3 shows the 

basic data mining techniques:  

 

 

Figure 1.3  Some basic data mining techniques 

 

1.2.1 Predictive techniques 

It uses the values of several variables to estimate or procure the future values of the 

other variables. For instance, the average temperature of the climate can be used to 

estimate the temperature of the day.  

 

Classification: Fundamentally, each item use classification to categorize them in a 

set of the data into one of an identified previous set of classes, and sets. 

Mathematical techniques are used by the classification method like statistics, linear 

programming, decision trees, and neural network. An example of the classification is 

shown in Figure 1.4. 

 

Data 
Mining 

Predictive 

Classification Regression 

Descriptive 

Association Clustering 

Sequential 
Pattern 
Analysis 
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Figure 1.4  A classification models (a) If-Then rules, (b) a decision tree,                                          

(c) a neural network [4].  

 

Regression: This analysis is the most frequently used statistical methodology for 

numerical estimation, though other techniques exist as well. Besides, regression 

includes the identification of distribution trends that are being founded on the 

existing data [4].  

1.2.2 Descriptive techniques 

It describes the typical features of the data in the database.  

 

Association: This method is commonly used in data mining. In this connection, the 

shape is explored based on an association among objects in the similar operation. 

That is the cause why the relationship method is also known as relation method. The 

relationship method is applied in the market basket investigation for recognizing a 

set of goods that customers typically buy mutually. Suppliers are using association 

method to study customer’s buying behaviors. Based on old sale data, sellers can 

find that customers continuously buy crisps when customers buy beers, and so 

customers may place beers and crisps together to save time for the client and rise 

trades. 

 

Clustering: It creates a meaningful and practical set of items with similar properties 

using an automated technique. The classes and places objects in every class are 

described by clustering technique, clustering method assigns objects in default 

classes when in classification methods. 
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1.2.3 Sequential Pattern Analysis 

Sequential pattern analysis searches to find out and characterize same forms, 

standard procedures and trends in transactional data during a business cycle. 

Companies can recognize a set of products, which clients purchase together 

dissimilar periods in a year, with old transaction data in selling. Then companies may 

apply this info to advise to clients purchase it with improved contracts based on 

customers’ buying rate in the previous time. 

1.3 Data Mining in Medicine 

Nowadays, data mining is used in many sectors such as marketing, retail, finance, 

banking, transportation, medicine, governments, scientific analysis, insurance, etc. 

The role of data mining is also important in medicine. Figure 1.5 shows the 

relationship between medicine and data mining. In early diagnostics, correlating 

certain symptoms to each other increases the accuracy of the diagnosis. Most of the 

data in the medicine are laboratory results. Therefore, the diagnosis of many diseases 

depends on the understanding of the values in the laboratory results. Detection of 

disease with blood test outputs and status of fetus health during the pregnancy can be 

identified via data mining. During the pregnancy, the status of a baby who has Down 

syndrome or not is estimated by screening tests which are based on data mining 

techniques. 

 

 

Figure 1.5  Relationship between medicine and data mining 
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Down syndrome is a serious genetic disorder affecting the quality of life of a person. 

This chromosomal abnormality is seen on average every thousand births [5]. Some 

Down syndrome pregnancies are terminated with miscarriage. The births with Down 

syndrome bring dangerous health problems. For example, persons who have Down 

syndrome cannot perform their brain activities and they will have very serious health 

problems such as Alzheimer in 40s years old [6]. Therefore, it is tried to determine 

whether the baby has any genetic disorder before birth. These trials put forward a 

probability or sometimes a definite result with various data mining techniques and 

tests. Tests that give definite results are used in the latest stage since they may create 

danger for mother and fetus. The mentioned methods are referred to as “invasive 

methods” in the medical literature. However, non-invasive methods performed do 

not constitute any health threat to the fetus and the mother during pregnancy. 

Moreover, in terms of cost, invasive tests are more costly than non-invasive tests. 

Although invasive tests require surgical intervention and more medical equipment, 

non-invasive tests just need blood serum sample. Therefore, non-invasive methods 

are the most common techniques for using to predict Down syndrome. Also, the 

most common non-invasive method is a triple screening test in Turkey. The triple 

screening test was based on some data analysis. It measures three markers that are 

called alpha fetoprotein (AFP), human-chorionic-gonadotropin (hCG), and 

unconjugated-estriol (uE3) in a maternal serum sample. The main goal of this thesis 

is improving the accuracy of non-invasive triple screening tests to estimate 

chromosomal abnormalities in a cheaper and less dangerous way. 

1.4 Problem Statement 
 

Today, states and persons seriously contemplate for healthcare costs. Besides 

healthcare costs, human life and quality of life are becoming more important day 

after day. As a result, many studies are carried out in the medical field. One of these 

studies is the triple screening test which has estimated the risk of a baby birth with 

Down syndrome. It has been developed for reducing needs of invasive methods that 

are caused deaths and miscarriages. This test also gives parents a choice to the 

quality of their life by themselves, because test estimates whether the baby has 

chromosomal abnormalities before the birth. Triple screening tests were originally 

developed by scientist N. J. Wald [7]. In this test, it is estimated if a baby has or has 

not chromosomal abnormalities (Down syndrome) by using the variables like 



7 

 

 

maternal age, AFP, hCG, uE3, ethnicity, gestational age and smoking status, etc. 

When analyzing maternal information, historical records of the previous pregnants 

are used. Multiples of the median (MoM) term is used to provide a specific standard 

when using past records. MoM is used to standardize blood serum sample variables 

(AFP, hCG, and uE3) that are affected by ethnicity, geographic location, smoking 

etc. As a result, the triple test is an economical and non-invasive test.  Therefore, it 

has been a common and widely accepted test throughout the world.  

 

The working process of the triple screening test consists of three steps. First of all, a 

set of sample is prepared. This sample set obtained from women who have given 

birth and obtained maternal ages, maternal serum samples, weights, etc. At the 

second stage, the maternal serum sample, age, the weight of current pregnancy of a 

woman is examined. At the last stage, the probability of having Down syndrome in 

the fetus is calculated as a percentage by correlating statistically of the sample set 

with data of newly pregnancy. However, the detection rate of the triple screening test 

is reported as 60% [7]. This detection rate may not be at the desired level when the 

subject is mother and fetus. The test has a false positive rate (FPR) of 5%. This 

means that the fetus in the pregnancy that is healthy can be misdiagnosed as 5%. In 

this regard, the aim of this thesis is to improve the test by increasing the detection 

rate.  Thereby the invasive test preference will reduce. As a consequence, the 

abortion rate is expected to decrease. 

1.5 Contributions 

The health status of the baby seriously affects both the life quality of the family and 

the life quality of the baby. The birth of infants with Down syndrome is also one of 

these factors. Today, amniocentesis application which has a definite result and triple 

screening test which has average estimation in the diagnosis of this chromosomal 

abnormality are widely used. Amniocentesis is an invasive test, which is preferred if 

there is a high probability of a problematic fetus indicated by the triple screening 

test. This is endangering the health of mother and baby. Improving the performance 

of the triple screening test for minimizing the necessity of invasive tests also is aimed 

in the thesis. If better detection rate is achieved by keeping the cost of the test 

constant, the genetic disorder that is affecting daily life can be predicted earlier with 

more precise estimations and the preventions can be increased. The confidence of 



8 

 

 

pregnant women may increase when the output of the test will be a higher likelihood 

of success and they will not be mentally tired of thinking about the Down syndrome 

until the end of pregnancy. 

1.6 Organization of the Thesis 

 

This thesis is organized as follows. The current algorithm behind a triple screening 

test is explained in chapter 2. This is followed by the review of studies related to 

triple screening test, Down syndrome, invasive and non-invasive test and data 

mining in medicine. Postnatal and prenatal studies to detect Down syndrome have 

also been examined.  
 
In chapter 3, triple screening test performance is investigated in details. This section 

describes the subprocesses of analysis: preprocessing, feature extraction, and 

classification.  
 
In chapter 4 concludes the thesis. Analyzes and results to improve the performance 

of the test are shown in this chapter.  

In chapter 5, conclusion, discussion and future work are given. Performances are 

compared with other studies in the literature. It includes contributions besides 

potential future works. 
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2. CHAPTER 2 

RELATED WORKS 

 

Genetic anomalies occur approximately 10% - 20% of live births [8]. General 

chromosomal abnormality, which is trisomy 21, usually seems in live born infants 

[9]. Structural and nonstructural variables are included by sonographic findings in 

fetuses with Down syndrome. Various techniques which are including maternal age 

[10], biochemical markers [11], prenatal ultrasound and amniocentesis [12] have 

been used to describe females at risk of carrying a fetus with aneuploidy. On the 

other hand, 0.5% - 1% of the fetal mortality occurs in the invasive techniques [13]. 

Failure to treat Down syndrome has led to the development of prenatal screening 

tests. These screening tests aim to detect the anomalous fetus as early as possible in 

the pregnancy. A triple screening test is one of these tests. Estimating Down 

syndrome with prenatal tests was found after long-term studies. Before talking about 

prenatal tests, Down syndrome will be defined. Also, it is called trisomy 21. In the 

following section, the studies about methods of determining Down syndrome in the 

gestation period are discussed. These methods are divided into two categories. They 

are invasive methods and non-invasive methods. The development of non-invasive 

screening tests used during the pregnancy is closely related to the thesis. Studies on 

these will also be examined in this chapter. Then the historical development of the 

triple screening tests, which are widely used today, will be examined. Finally, the 

relationship between data mining and triple screening tests will be presented in this 

chapter. 

2.1 Down Syndrome 

There is a nucleus in each cell in a human body where the chromosomal substance is 

collected in the genes.  The genes have codes which are liable for the whole of our 

heritage features. Also, they are collected throughout some structures that are named 

chromosomes. Classically, each cell has 23 pairs of chromosomes in its core and half  
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of them are inherited from mother and father [14]. Figure 2.1 represents the 

chromosome and gene schematically. If a person has the complete or fractional 

additional copy of chromosome 21, that person has Down syndrome. 

 

 

Figure 2.1  A typical cell, nucleus, chromosome and gene 

 

This additional chromosomal substance switches the process of growth and reasons 

characteristics related to Down syndrome. The upward slant to the eyes, small 

stature, a single deep wrinkle across the center of the palm, and a low muscle tone 

are occurred in Down syndrome individuals [15]. Although people with Down 

syndrome are physically similar to each other, each of them has a unique personality. 

2.2 History of Down Syndrome 

Down syndrome was defined by John Langdon Down in 1866 [16]. Trisomy 21 or 

Down syndrome [17] is created by a defect of the 21
st
 chromosome until the egg 

or sperm is developed [18]. Consequently, a sperm or egg cell is created with an 

additional copy of chromosome 21 and the cell has 24 chromosomes. In recent 

history, researchers have found an opportunity to study about the features of a 

person with Down syndrome due to improvements in medicine and science. 

Scientist Jérôme Lejeune described Down syndrome as a chromosomal disorder in 

1959 [19]. Jérôme detected 47 chromosomes in the person’s cells with Down 

syndrome instead of a typical 46 chromosomes exhibit. Later, he decided that the 
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additional fractional or full copy of the chromosome 21 outputs in features to with 

Down syndrome. After that, 329 genes on chromosome 21 was effectively defined 

and classified by some group of researchers until 2000. As a result, these 

successful studies and the results helped to be large improvements in Down 

syndrome research [20]. 

2.3 Trisomy 21 (Nondisjunction) 

Nondisjunction is generally brought some problems in cell divisions [21].    

Trisomy 21 occurs with three copies of chromosome 21 in an embryo that is in a 

habitation of the usual 2.  At perception, a couple of chromosomes 21 in both a 

sperm and an egg crashes for separating.  An extra chromosome is duplicated in 

every cell of a human body as the embryo improves.  General cell division is shown 

in Figure 2.2. Also, Trisomy21 cell division is shown in Figure 2.3. 

 

 

Figure 2.2  Typical Cell Division [14] 
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Figure 2.3  Nondisjunction Cell Division [14] 

 

2.4 Causes of Down Syndrome 

Whatever the type of Down's syndrome is, everybody with Down syndrome has the 

additional, serious part of the chromosome 21 present in several of his or her cells.  

The extra chromosomal substance changes the route of improvement and reasons 

personalities related to Down syndrome. The additional full or fractional 

chromosome is yet unidentified. Maternal age is first reason, which has increased 

the likelihood of nondisjunction or mosaicism of the baby with Down's syndrome 

[22].  Nevertheless, 80% of infants with Down syndrome who has a mother 

younger than 35 years are born due to higher birth rates in younger women. There 

isn’t a whole and complete scientific study, which signifies that environmental 

factors or the parents' activities affect Down syndrome before or during pregnancy. 

The added part or full copy chromosome 21 that reasons Down syndrome may 

create from both father and mother. Nearly 5% of the instances have been followed 

up to father [14].  

2.5 Relationship between Maternal Age and Down Syndrome 
 

Down syndrome may happen in persons of all nationalities and at different economic 

stages. However, mature females are more likely to have a child with Down 

syndrome. If the female is 35 years old and then she has about a 1:350 probability of 

considering a baby with Down syndrome, and the probability rises regularly to the 
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1:100 by forty year age. When age comes to 45, the frequency turns into nearly 1:30. 

Maternal age doesn’t appear to be connected to a substitution risk [23]. Figure 2.4 

and Table 2.1   shows the relationship between maternal age and Down syndrome. 

 

 

Figure 2.4  Line chart of relation maternal age and Down syndrome 

 

Several partners delay giving birth to a baby later in their life, a frequency of the 

Down syndrome concepts is estimated to rise. Consequently, the genetic 

consultation is happening progressively significant for partners. Nevertheless, most 

physicians do not fully inform partners about an incidence of the Down syndrome, 

the progress of identification, and cure of infants for Down‘s baby. 

 

 

Table 2.1  Relations between maternal age and Down syndrome [14] 
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20 1:2000   30 1:900   40 1:100 

21 1:1700   31 1:800   41 1:80 

22 1:1500   32 1:720   42 1:70 

23 1:1400   33 1:600   43 1:50 

24 1:1300   34 1:450   44 1:40 

25 1:1200   35 1:350   45 1:30 

26 1:1100   36 1:300   46 1:25 

27 1:1050   37 1:250   47 1:20 

28 1:1000   38 1:200   48 1:15 

29 1:950   39 1:150   49 1:10 
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2.6 Diagnosis of Down Syndrome  
 

Down syndrome may be detected in the two methods that are prenatally or 

postnatally (after birth). The postnatally, Trisomy 21 is generally defined by the 

existence of particular bodily characteristics: an upward slope to eyes, a solo deep 

crease across the palm of the hand, the mildly pressed facial profile and the weak 

muscle.  Since the characteristics can be given in the infants without Down 

syndrome, the chromosomal examination named the karyotype is completed to 

verify identification. Clinicians take a blood sample to analyze the cells of the baby 

to get a karyotype. They take pictures of the chromosomes and categorize 

chromosomes by dimension, quantity, and figure. Figure 2.5 shows karyotype of the 

woman with Down syndrome. Clinicians can diagnose Trisomy 21 after the 

analyzing the karyotype.  Another genetic test is called FISH (fluorescence in situ 

hybridization) can implement same procedures and check a diagnosis in a smaller 

sum of time [14]. 

 

 

Figure 2.5  Karyotype of a female with trisomy 21 [14] 

 

Before birth, there are 2 special tests which may be made for finding Down 

syndrome along the prenatal period [24]. They are a diagnostic test and the 

screening test. All female is under the risk of getting a baby with Down syndrome. 

In Turkey, the screening test is recommended for every female to look at the risk of 

baby's Down syndrome during early pregnancy but there is a critical aspect for 
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understanding which the screening test doesn’t provide an exact answer to whether 

the infant has Down syndrome. The diagnostic test will generally be recommended 

if the screening test indicates that the infant has a high risk of Down syndrome. A 

diagnostic prenatally tests are used to see a growing infant really does have Down 

syndrome. The main accessible prenatal diagnostic tests are two: chorionic villus 

sampling (CVS), and amniocentesis. Besides, if the pregnant make a diagnostic test, 

there may be risks of complications. It contains miscarriages, injuries, and 

infections. This is the reason why the diagnostic test is not recommended for all 

pregnancies [24]. 

2.6.1 Diagnostic tests for Down Syndrome 

There are 2 important tests which are amniocentesis and chorionic villus sampling 

to diagnose trisomy 21 prenatally.  

2.6.1.1 Amniocentesis 

Amniocentesis is a method that draws amniotic liquid that is coming from an 

uterine cavity with a needle, by a transabdominal method and below nonstop 

ultrasound support, so as to get a specimen of fetal exfoliated cells, transudates, 

urine or secretions [25]. A graph of amniocentesis method is shown Figure 2.6. The 

fluid sample is taken from the uterus by doctors and then they do several microbial, 

biochemicals, chromosomal, and molecular researches becoming acted on the 

amniotic liquid specimen [26–27]. A sample of the amniotic fluid in pregnant 

woman’s uterus, which is an immersive growing baby, is taken by a good injector 

during amniocentesis. The amniotic fluid sample contains specific cells which are 

coming from an infant’s derma, as well as unwanted materials such as urine, etc. 

Cells in the amniotic liquid include the infant’s chromosomal substance. The test is 

mostly recommended after the 15
th

 week of pregnancy. This is because it has been 

shown to be safe during this period of pregnancy. Amniocentesis has a risk of 

problems. After amniocentesis test, all risk of a woman who has a miscarriage is 

approximately 1% [14]. So, approximately 1 in every 100 females with an 

amniocentesis may have an abortion. There is also another risk that is less than 

1:1000 which test will end in serious infection. However, these risks cannot be 

ignored when the subject comes to the human health. But the reasons of 

miscarriages after the rest are still unknown certainly. Research has shown that 
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when a miscarriage occurs, there is a general reason from the amniotic sac is 

damaged or infected. It is also difficult to tell when a pregnant woman is most 

probable to miscarry after she has had an amniocentesis. Also, many of the 

miscarriages occur in two weeks after amniocentesis [14]. 

 

 

Figure 2.6  Amniocentesis 

 

2.6.1.1.1 Miscarriage on Amniocentesis 

Every each pregnancy has a risk of miscarriage, whether or not have an 

amniocentesis. Pregnant women with amniocentesis were thought to have an 

abortion risk of a 1 in 100 at the end of 15 weeks of gestation [28]. If the test is 

done before 15 weeks of pregnancy, the risk of the miscarriage increases. However, 

the reason of this miscarriage status is not clearly known. Reasons of the 

miscarriages may be a bleeding, infection, or harm to the amniotic tissue due to a 

process. The process associated miscarriages are unusual more than two weeks after 

amniocentesis [28]. 

2.6.1.1.2 Infection on Amniocentesis 

After an amniocentesis, infection rarely occurs. Less than 1:1000 pregnant 

individuals that have the amniocentesis will occur the critical infection in woman 

amniotic liquid. Something may cause infection [29]. For instance, it is used by 

injury to pregnant woman’s intestine with an injector through a process so 

microbes, which are typically included in the intestine, escape. By microbes, which 

exist on the derma of her abdomen, through a trail of the injector, circulating in the 
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abdomen/uterus. The microbes which are seen on ultrasound examine and in the 

ultrasound lotion can go throughout the trail of the injector into her abdomen or 

womb. Indicates of the infection may contain pyrexia, tenderness of her womb and 

spasms of her abdomen [29]. Nevertheless, if the right techniques are used to reduce 

infection, infection is unlikely. 

2.6.1.1.3 Injury to the Developing Baby on Amniocentesis 

When performing the amniocentesis, the baby can be damaged with a needle. 

Nevertheless, nonstop ultrasound control through amniocentesis is decreased a 

probability of the complication [30]. 

2.6.1.2 Chorionic Villus Sampling (CVS)  

The name of this test comes from a very small tissue sample that is taken from the 

piece of afterbirth named chorionic villi.  During CVS, it is received from the 

placenta. Chorionic villi cells include the similar chromosomal substance like the 

developing baby's cells. For this reason, tests can be performed in placental tissue in 

a laboratory to observe a genetic structure of infant. In other words, chromosome 

and genetic situations involving Down syndrome may be detected [31].  There are 

two methods of CVS as shown in Figure 2.7 and Figure 2.8. They are CVS 

throughout the abdomen and CVS throughout the cervix. 2.6.1.2 Chorionic villus 

sampling is frequently applied with passing well injector throughout the derma of 

the pregnant woman abdomen and inside of her womb to get the tissue of the 

afterbirth and it is called transabdominal CVS. The test is generally performed 

between an 11
th

 and 14
th

 weeks of the prenatal period. After CVS test, the risk of 

miscarriage is approximately 1% - 2%. Also, roughly one or two pregnant women 

per a hundred females with CVS may lose their baby [32]. 
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Figure 2.7  Chorionic Villus Sampling -through the abdomen 

 

 

Figure 2.8  Chorionic Villus Sampling - through the cervix (entrance to the womb) 

 

2.6.1.2.1 Miscarriage on CVS 

Regardless of whether your mother is CVS, every pregnancy has a risk of 

miscarriage. However, there is an additional risk for women who perform the CVS 

test. This additional risk of miscarriage is approximately 3 in 200. The extra risk of 

miscarriage after the CVS test is more than that after an amniocentesis. The reason 

for this more risk of a miscarriage of CVS when it is compared with amniocentesis 

might be as CVS is performed previous periods in pregnancy. Another factor is that 

Chorionic villus sampling is generally performed due to the suspicious troubles of 

the growing infant. If the troubles exist, they can increase the risk of baby’s life. 

Many of miscarriages in women who perform the CVS test occur within two weeks. 
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When passed the three weeks from the performing test, then miscarriage is less 

likely. Certainly, miscarriages depending on the CVS are not known [33].  

2.6.1.2.2 Infection on CVS 

After CVS, an infection can be seen.  Its percentage is about 0.1% (it means 1 

pregnant woman in 1000 pregnant women) who perform CVS can face with a 

critical infection. There may be many reasons for the infection. For instance, germs 

that are generally included inside the bowel can mess by a needle when the pregnant 

woman’s bowel is injured with a needle in transabdominal CVS. The microbes, 

which are currently on the derma of her abdomen, can travel throughout the trail of 

the injector inside her abdomen. Also, microbes may be located on an ultrasound 

examine and in the ultrasound lotion, so they can mess with a needle and they may 

travel throughout the trace of the injector inside the pregnant woman womb or 

uterus. On the other side, if germs mess with the biopsy needle, the infection may 

pass through the neck of her womb after transcervical CVS. Symptoms of infection 

can contain pyrexia, tenderness of her abdomen and spasms of her uterus [34]. 

2.6.1.2.3 Limb Abnormalities in the Developing Baby on CVS 

As a result of the research, five babies were reported to have limb abnormalities 

such as missing fingers and toes after CVS in the 1990s, researchers’ interests 

increased. However, CVS was performed before the 10
th

 week of pregnancy in all 

cases. Later studies showed that such problems were a source of concern did not 

have a higher risk than the general population. Nevertheless, CVS is not 

recommended prior to completing 10
th

 week of pregnancy. This is because CVS is 

more difficult to implement at this stage of the pregnancy [33]. 

2.6.1.2.4 Some Researches about Miscarriage on Diagnostic Test 

The landmark publication of Tabor and his friends in 1986 [35], clarifying the 

outputs of a randomized check trial of abortion next amniocentesis, lead to a 

suggestion via RCOG (Royal College of Obstetrics and Gynecology) Guidelines 

which pregnant females should be warned that low risk is 1% after amniocentesis. 

There haven’t been studied researches, which are associated entering the chorionic 

villus sample (CVS) and women who underwent no process; therefore the risk of 

CVS has been estimated from researches associating amniocentesis with CVS, led 
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to the RCOG direction to declare a process associated risk of 1.5% [36–38]. In 

North America, the risk of pregnancy loss based on professional opinion associated 

with prolonged amniocentesis is 0.5% [39]. Nevertheless, many publications from 

the scientist studies have named into issue these risk schemes and it is usually 

recognized, which developments in technology and improve in operative ability, are 

probable significantly to alter the risks [40]. The authors draw attention to the 

calculation process of associated risk for miscarriages by collation of prenatal 

period outputs in females who have CVS. Therefore, approximating process 

associated risk next prenatal specimen in studies is essential to accommodate for 

pregnancy and maternal features before competing them [39]. The last analysis of 

proof on “process associated miscarriages” prove, which the suggestion is clearly 

conflicting, however highlighted, which the generality of researches that analyze 

pregnancy loss proportions in females with the invasive process and they do not, tell 

no important change among a clusters; analysis accomplishes, which risk of 

miscarriage is dissimilar for woman, and according to maternal demographical 

features and constituent parts of its unlikely that the first trimester screening test and 

invasive example will contribute significantly to the individual patient [41]. 

2.6.2 Screening Test 

More than one study was conducted to improve the non-invasive tests. Firstly, 

Penrose, scientist, found an association between maternal age and Down syndrome 

[22]. The results of his study showed that paternal age was not a significant factor, 

while maternal age was to be regarded as very critical. In 1984, Merkeatz and 

partners reported a relationship between low maternal serum AFP and Down 

syndrome pregnancies [42]. Many teams were tried to estimate Down syndrome 

before birth in 1987. These were the studies done by looking maternal age and the 

AFP value. Cuckle and N.J. Wald [43], scientists who compiled these studies, found 

that the likelihood of having the Down syndrome pregnancy was 28% with FPR of 

2% to 8%. N. J. Wald's study showed that the detection rate with AFP, hCG, and 

uE3 was 61% and the false positive rate was 5% in 1988 [7]. After that, N.J. Wald 

developed new screening test with 4 markers which were AFP, hCG, uE3, and 

inhibin-A. Performance of this test was 70% DR (detection rate) and 5% FPR [44]. 

However, this study increased the cost of the test. Lately, many scientists focused 

on baby DNA which is in maternal blood and recent studies show that DNA of a 
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baby can find in maternal blood serum and these studies called as cell-free DNA for 

Down syndrome. Its detection rate is 99% and it is a quite successful test [45]. 

However, this test is extremely expensive and many pregnant women don’t prefer 

the cell-free DNA tests due to the costs. Therefore, the triple screening test is still 

popular nowadays.  

A screening test, which is a non-invasive test, is a procedure of to measure an 

inhabitant by a particular indicator or indicators described screening threshold value 

for recognizing persons in inhabitants at more risk for the specific disorder. A 

screening test is valid to the inhabitants; identification is used at the personal patient 

level [46]. An abnormality scan should only be done if the abnormality is 

considered important sufficient to require interference. The indicators that are 

utilized in the screening test should be of appropriate sensitivity to determine the 

maximum of the persons affected by the minus misidentification of unaffected 

persons. At the same time, there should be a perfect diagnostic test to decide 

whether the screen-positive individual is indeed abnormal and whether there is an 

interference with all the people classified as affected. Screen testing, including 

screening and intervention, should be inexpensive. For this reason, the screening 

test should be acceptable to everyone [47].  

2.6.2.1 Reasons to Perform Prenatal Screening Test 

Some patients may decide to terminate their pregnancy if they are exposed to a fatal 

anomaly. Abnormality recognition can permit specific prenatal care and replace 

perinatal care.  It may be reasonable to prevent cesarean delivery because of a fetal 

distress in a child with a fatal abnormality if the patient doesn’t select to end a 

gestation. To learn abnormalities earlier is much better for the parents. The families 

have time to be psychologically and economically prepared. They may train 

themselves about a family abnormality [48].  

 

There are 2 main techniques of screening tests for Down syndrome; biochemical 

serum screening, and the ultrasound scan [32]:  

 

Nuchal translucency ultrasound scan (NT scan): It is a specific ultrasound scan 

which is completed between 11
th

 weeks 2 days and 14
th

 weeks 1 day of the prenatal 

period. It calculates the liquid group below the derma at a rear of the infant’s collum 



22 

 

 

as shown in Figure 2.9. All infants contain a group of fluids at this place; however 

infants with Down syndrome are inclined to have extra liquid in this part. 

Subsequently, other details such as fluid measurement, maternal age, baby size and 

maternal weight, ethnicity, and smoking status are inserted the computer software to 

calculate the risk of Down syndrome. It can be occasionally problematic to measure 

Nuchal Translucency correctly. This may be due to the infant's condition or because 

the pregnant woman is overweight [32].  

 

 

Figure 2.9  Nuchal translucency ultrasound scanning of fetus (NT) 

  

Blood tests: Blood tests are made to evaluate the stages of proteins and hormones 

in the bloodstream. The proteins and hormones are generated via a placenta or the 

growing infant. Samples contain unconjugated estriol (uE3), human chorionic 

gonadotropin and alpha-feta-protein. The quantities of the materials may be 

influenced if the infant is with Down syndrome. The computer software is worked 

to produce a risk of the infant who has Down syndrome, according to the blood test 

outputs, maternal age, and phase which a pregnant woman is in her pregnancy, her 

weight, ethnicity, and smoking condition [32]. 

 

Down syndrome can be estimated in two ways. These are the first trimester and 

second trimester screening tests [13]. 
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2.6.2.2 First Trimester Screening Tests  

In the early 1990s, Nicolaides tried to predict the Down syndrome by measuring 

nuchal truanslucency at the ultrasound, so that the estimate of Down syndrome was 

widespread considering the nuchal truanslucency [49–52]. Another study that 

contains 8514 pregnancies reported a 79% DR at the 5% FPR [53]. It is 

compounded maternal age, NT ultrasonography, and measurement of maternal 

serum hCG and PAPP-A in the first-trimester screening [25, 26, 54, 55]. Blood 

collection for the biochemical examination and ultrasound the evaluation for NT is 

generally done between 11
th

 and 13
th

 weeks of pregnancy. The raised NT, reduce in 

prenatal period that is related PAPP-A stages, and a rise in hCG may be a signal of 

Down syndrome, and help doctors in recognizing pregnancies for Down syndrome 

risk. NT measurement has the Down syndrome DR approximately 70% with a 5% 

FPR; however detection rates rise to 79%–90%, with the 5% FPR when mixed with 

the PAPP-A and hCG [54–57]. Many studies were done to calculate the optimum 

period to do the first trimester screening, with the aim of giving the highest DR 

when yet keeping a low FPR [58–61]. The researches advise that previous PAPP-A 

and hCG evaluations are obtained at 9
th

 and 10
th

 weeks of pregnancy, with the NT 

scan obtained at 12
th

  weeks of pregnancy, may raise DR to 90%, with a 3% FPR 

[58, 60, 61]. If the outputs find out a raised fetal abnormalities risk, a mother may 

be recommended hereditary guidance with a choice to select either first trimester 

CVS or second trimester amniocentesis [62]. A combined screening test is one of 

the first screening tests. 

2.6.2.2.1 Combined Screening Test 

Combining of nuchal translucency scan output, PAPP-A value and hCG value 

indicate a risk of trisomy 21. The blood tests are taken on the same day that the 

screening tests are done [58].  

2.6.2.3 Second Trimester Prenatal Screening Tests 

Second trimester prenatal screening might contain numerous blood tests, named 

several indicators. The indicators supply info about a mother’s risk of an infant with 

definite hereditary situations or birth abnormalities. In general, a screening test is 

used to predict the risk by getting a sample of the maternal blood between the 15
th

-

20
th

 weeks of prenatal period. These multiple markers are AFP screening, hCG, uE3 
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and Inhibin A [63]. In addition, anomalous test outputs of alpha fetoprotein and other 

indicators mean that it might require more examination. The ultrasound is generally 

used to verify the times of the prenatal period and for observing at the fetal vertebral 

column and other body elements for disorders. The amniocentesis can be required for 

precise identification. When looking to screening test with another perspective, 

multiple markers screening test is not invasive. This means that it is not completely 

correct and it gives only probability to determine who may be recommended extra 

tests for her pregnancy in the population. The FPR results may represent a problem 

about the infant on the contrary baby is an actually healthy or the normal result is 

represented with the false negative result when the infant really has a health 

difficulty [13]. 

2.6.2.3.1 Triple Screening Test 

The second trimester scan is usually based on the triple screening test [64]. Three 

maternal serum indicators, which are alpha-feto-protein, human-chorionic-

gonadotropin and unconjugated-estriol, are calculated and used to adjust the 

mother’s risk according to her age for producing a mother specific Down syndrome 

risk in this test [65]. So, compensate for the difference of the indicators with of 

gestational, evaluated concentration is separated by the median indicator stages in 

the important week of gestational yielding MoM (Multiples of Median). 

Additionally, MoM is modified to atone for aspects with another Down syndrome 

those different indicator stages [66]. Generally, marketable software packages trust 

a similar process for the risk evaluation. An accuracy of the outputs depends upon 

the specific markers: methodical performing of the immunoassays used [67]; correct 

dating of prenatal period [68], properly select of medians, which is used to evaluate 

MoM, also and acceptable elements in MoM setting and on the choice of 

convenient inhabitants limits [69].  

2.6.2.3.2 Quadruple Screening Test 

This test is based on the results of a blood test between 14
th

 weeks and 20
th

 weeks of 

gestation [70]. The test doesn’t contain the ultrasound. As previously mentioned, 

the test presents the risk in the prenatal period of Down’s syndrome infant. For 

instance, the test can present that there is 1:1000 risks of Down’s syndrome infant. 

It indicates that one pregnant woman will have an infant with Down syndrome for 
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every thousand pregnancies and rest of them will have a baby born without Down 

syndrome. As a consequence, that is a largely small risk. National Screening 

Committee, advised a threshold limit to separate between screening test outputs in 

the United Kingdom with an upper risk that infant is born with Down syndrome and 

persons has a minor risk. The threshold level is 1:150 and it represents that infant 

has Down syndrome if screening test outputs present a risk of between 1:2 and 

1:150, that is categorized like a maximum risk output. It is classified as a minimum 

risk output if the output shows the risk 1:151 or higher, then. The second number 

gets higher, the risk becomes lower [71].  

 

However, all of the tests don’t say for definite whether the infant has Down 

syndrome, so tests just ensure likelihood. Most ladies who have a screening test for 

trisomy 21 may have a lower risk output. She may assure again by it if this is the 

case. It doesn’t indicate her infant certainly doesn’t have Down syndrome. In some 

cases, a baby does have Down syndrome. If the mother has been given a higher risk 

output, it doesn’t indicate her infant absolutely has Down syndrome. Extra tests are 

required to approve the diagnosis and provide a certain response if she is given a 

higher risk output. In cases where infant doesn’t have Down syndrome, it is named 

false positive output [32]. Alternatively, diagnostic tests may supply the absolute 

diagnosis with 100% precision [14]. Also, the new progressive prenatal screening 

test can establish chromosomal substance from infant which is rotating in the 

maternal blood serum sample.  It isn’t invasive such as the diagnostic tests, however 

the tests support a high precision degree. Nevertheless, it is much expensive.  All 

screen tests still won’t absolutely diagnose Down syndrome. Because of that, the 

thesis aims to improve accuracy and reduce the deviations with minimum cost or 

economical price. 

  

2.7 Estimation Down Syndrome with Triple Screening Test 

The triple screening test is currently used based on statistical analysis of gestational 

age, maternal age and ethnicity, together with hCG, AFP, and uE3 values measured 

during the 15-21 weeks of pregnancy. Values obtained in the triple screening test 

may be different depending on factors such as race, geographic location, socio-

economic level, and prevalence of anomaly [72]. Additionally, the triple screening 
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tests can never give definite positive or negative results. They can only report a 

probability. However, the closeness of this probability to the exact findings can be 

expressed as the reliability of the test. Invasive tests such as amniocentesis may 

detect Down syndrome nearly 100%, but it should be the last option while it may 

cause the loss of mother’s life or end of pregnancy [73]. 

 

Biochemical markers which are AFP, hCG, and uE3 in the maternal serum sample 

and other factors that are age, gestational age, weight, multiple pregnancies, family 

health story, ethnicity, smoking, and diabetes are used in the triple screening test. 

 

2.7.1 Biochemical Markers 

Alpha-fetoprotein screening (AFP), Human chorionic gonadotropin (hCG) and 

Unconjugated estriol (uE3) are biochemical indicators or markers. 

2.7.1.1 Alpha-Fetoprotein (AFP) 

AFP was firstly identified as a fetal particular globulin in 1956 [74]. It is produced in 

a yolk sac, which is a membranous sac attached to an embryo, liver of the infant, and 

gastrointestinal tract. Fetal plasma quantities are highest between 10
th

 to 13
th

 weeks 

of pregnancy and decrease continuously till period [42] when maternal levels highest 

in 3
rd

 trimester [75]. Level of the AFP value during the unaffected pregnancy is 

given in Figure 2.10. Multiples of the Median, MoM, reports Laboratory 

measurements of AFP levels.  

 

 

Figure 2.10  AFP value in fetal serum [76] 
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Doctors require identifying how their reference laboratories tell AFP outputs. Several 

causes and conditions related to raised and dejected AFP quantities [75]. The general 

cause is an inaccurate guessed gestational age for an unnatural AFP level [77]. On 

the other side, AFP increases continuously in unaffected pregnancies as presented in 

Figure 2.11. AFP is better than ultrasonography to detect Neural tube defects and it is 

the only indicator on triple screening test suitable for Neural tube defect recognition. 

It may discover 90% of anencephalies pregnancies and 80% of spina bifida situations 

[75]. 

 

 

Figure 2.11  AFP levels during the unaffected pregnancies [78] 

 

 

Unnatural amounts of AFP can indicate: 

 Open neural tube defects like spina bifida 

 Trisomy 21 

 Chromosomal anomalies 

 Failures in an abdominal wall of the infants 

 Multiple pregnancies 

 A get it wrong due date, as the levels differ through the prenatal period 

2.7.1.2 Human Chorionic Gonadotropin (hCG) 

hCG, which is a complicated glycoprotein, is created completely via 

syncytiotrophoblast later sewing the uterus tissue. That rises quickly in the first 8 

weeks of pregnancy [79]. hCG reduces gradually till twenty weeks, when it plateaus 
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[80]. Figure 2.12 shows that the median level of hCG during the screening period in 

unaffected pregnancies. Maternal weight and parity have an impact hCG level [75]. 

The risen hCG amount is visible for the most delicate indicator [81, 82]. The low 

human chorionic gonadotropin level is related to Trisomy 18 [80]. The hCG levels 

are normal in Neural tube defects. Amniocentesis for females who are older than 35 

years and who are a younger than 35 years of an age calibrated AFP level signifying 

a risk of Down syndrome equal to that of a 35 year old,  cases of trisomy 21 can be 

detected with 25% – 50% [75]. The insertion of human chorionic gonadotropin to the 

alpha-fetoprotein screen rises discovery of Trisomy 21 nearly 40%- 50% over AFP 

alone [82]. 

 

 

Figure 2.12  Median levels of hCG during the screening period in unaffected 

pregnancies [83] 

 

2.7.1.3 Unconjugated Estriol (uE3) 

Placenta creates uE3 from precursors prepared by the fetal adrenal glands and the 

liver [80]. The uE3 rises continuously along the gestation to an upper level than 

ovaries produce [84]. The uE3 levels are reduced in trisomy 21 and trisomy 18 [75]. 

In unaffected pregnancies, it increases during the screening period as shown in 

Figure 2.13. The supplement of uE3, hCG, and AFP raises the recognition of Down 

syndrome in females who are younger than 35 years old [82, 85]. 
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Figure 2.13  Median levels of uE3 during the screening period in unaffected 

pregnancies [86] 

 

2.7.2 Other Factors Potentially Affecting Screening Test Performance 

Various variables were detected that affect the results while performing the triple 

tests. These include age, the method of gestational age determination, maternal 

weight, multiple pregnancies, family history, ethnicity, smoking, fetal sex, and 

diabetes [47].  

2.7.2.1 The Method of Gestational Age Determination 

The generally used method is the start date of last menstrual period and various 

ultrasonographic measurements. In the first trimester of pregnancy, CRL (Crown 

Rump Length) is important in defining the gestational age. In the second trimester, 

Biparietal Diameter (BPD) or long bone measurements that are femur or humeral 

length become important. CRL is very important in 7 days. As the baby grows, the 

measurement accuracy also reduces. Because of that, frequent ultrasonographic 

examination at first trimester increases sensitivity [47]. The false positive rate is 

lower about 2% for all marker combinations when pregnancy period is predicted 

with scanning. For instance, scan timing might decrease the false positive rate of 

maternal blood from 4.2% to 2.7% for a DR of 85% [13]. 
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2.7.2.2 Maternal Weight 

Studies showed that there was an association between maternal weight and Down 

syndrome. One of these studies was done by Reynold and Penney in 1991 [87]. 

Blood samples were taken from the pregnancies and biochemical markers were 

observed in the study. After analysis, there was a correlation between maternal 

weight and AFP, hCG. However, there was no relationship between uE3 and 

maternal weight. The relationship between maternal weight and markers is presented 

in Table 2.2 [87]. 

 

Table 2.2  Median serum AFP, hCG, and uE3 MoMs related to maternal weight [87] 

Maternal Weight(kg) AFP(MoM) hCG(MoM) uE3(MoM) 

< = 50 1.37 1.36 0.98 

51 – 60 1.30 1.04 0.95 

61 – 70 1.08 1.06 0.95 

71 – 80 0.94 1.00 0.89 

81 – 90 0.85 0.95 0.93 

> 90 0.83 0.75 0.94 

    
As the AFP value increases, the risk factor decreases. In addition, the increments in 

hCG value cause the risk factor to increase. As shown in Table 2.2, the value of AFP 

decreases as maternal weight increases. Low AFP causes a high risk factor. As a 

result, the possibility of Down syndrome baby increases according to AFP marker 

when maternal weight increases. 

 

The same probability is valid for hCG. Its value decreases as maternal weight 

increases. When hCG value decreases, the risk factor decreases. As a result, the 

possibility of having a baby with Down syndrome decreases according to AFP 

marker when maternal weight increases. In the study, two markers were combined 

and the effect of weight correction on the numbers of women designated as 

“increased risk” by calculation of Down syndrome risk factors was shown in Table 

2.3 [87]. 
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Table 2.3  Risk effects between weight and markers [87] 

  

No. of women 

in risk group 

(% of 1408) 

No. of women 

reclassified no longer 

at increased risk  

No. of women 

reclassified as now 

at increased risk 

No correction 78(5.5%) 

  
AFP only 91(6.5%) 4(89 ± 7 kg) 17(56 ± 6 kg) 

hCG only 74(5.3%) 9(56 ± 6 kg) 5(91 ± 13 kg) 

AFP+hCG 82(5.8%) 0 4(55 ± 9 kg) 

 

Use each of AFP and hCG correction decreases the women number who are 

reclassified as a modification of an analyze partially retrieve for the influence of the 

other. The average weight of women is low that is described by the bigger tilt of the 

association between weights and AFP. 

2.7.2.3 Multiple Pregnancies 

Since the marker values in multiple pregnancies are obtained by the contribution of 

both babies, they have generally doubled to 2.0 MoM instead of 1.0 MoM. uE3 is not 

like that. When compared to single pregnancies, the change in MoM in twin 

pregnancies is around 1.7 MoM. This screening test is not considered compatible 

with twin pregnancies [88]. 

2.7.2.4 Family History 

If family members have Down syndrome or other chromosomal abnormality stories, 

then the mother who is in the family has a higher risk [89]. 

2.7.2.5 Ethnicity  

Dissimilarities have in the stages of screening test indicators between females of 

various national ancestries afterward accounting for parental mass [90]. Maternal 

serum AFP is 15% higher, total hCG is 18% higher, Inhibin A is 8% lower, and 

PAPP-A is 35% higher in Black women than in Caucasian women [91]. AFP is 6% 

lower, uE3 is 7% higher, total hCG is 6% higher and PAPP-A is 17% higher in 

South Asian women. Higher levels of the first trimester PAPP-A and hCG are seen 

in Asian women, and higher uE3 is seen in Aboriginal Canadian women [92]. 

Adjusting for ethnic origin slightly increases the detection rate (DR) for a given 
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false positives (FP), but, more importantly, it tends to equalize the FP among 

women of different ethnic groups [92]. In a statistical way, considerable differences 

in Neural tube measurement have been found between ethnic groups [91, 93, 94]. 

Nevertheless, it appears these differences might be very small to assure correction 

[11].  

2.7.2.6 Smoking  

The risk ratios for the association of cigarette smoking around the time of beginning 

with Down syndrome was 58% in the case defect control comparison and 56% in 

the case normal control comparison [95]. First and second trimester hCG levels are 

25% lower, while Inhibin A is 50% - 60% higher in smoker mothers [95].  

2.7.2.7 Insulin-Dependent Diabetes Mellitus 

Some second trimester blood indicators incline to be lesser in pregnancies with 

insulin dependent diabetes mellitus. AFP and hCG are lower in diabetic females 

after weight checking. Other indicators don’t change in diabetic women [92, 96, 

97]. In order not to differ, the observed MoM for a diabetic female is divided into 

related median MoM in diabetic females without Down's syndrome gestations. Due 

to deficiency of information in diabetic females that have a Down syndrome 

gestation, the pseudo risk may be computed for diabetic females [92]. So that the 

amounts of hCG, PAPP-A, and nuchal translucency aren't differed so much with or 

without insulin dependent diabetes [98]. 

2.8 Mathematical Expressions and Calculations Used in Screening Tests 

Screening tests can never be expressed as positive or negative. However, the 

likelihood of that may be related to the reliability of the test. Some mathematical 

expressions are used to estimate the Down syndrome risk. 

These expressions are: 

 Detection rate (DR) 

 F-Measure 

 Specifity 

 False positive rate (FPR) 

 Receiver Operating Characteristic (ROC) Area 

 Multiples of Median (MoM) 
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 Normal Distribution 

 Likelihood Ratio (LR) 

 

2.8.1 Detection Rate (DR) 
 
The accepted description of DR is a proportion of Down syndrome fetuses which are 

accurately recognized. Otherwise, it is a ratio of true positives to all positives [99]. 

Also, the detection rate is called sensitivity and recall [100]. Equation 2.1 defines 

detection rate.  

 

Detection Rate = True Positives / All Positives                                   (2.1) 

2.8.2 F-Measure 

The F-measure is identified by measuring of a test's precision in a statistical analysis 

of binary classification. A precision and a recall are analyzed of the test to evaluate 

the value. Its value can be clarified as a weighted mean of the precision and recall. 

The best score of F-measure is 1 and worst value is 0 [101]. It is as defined in 

Equation 2.2.  

 

F-Measure = (2 x Precision x Recall) / Precision + Recall            (2.2) 

2.8.3 Precision 

Precision can be named true positive accuracy, being a compute of an accuracy of 

estimated positives contrary to the rate of detection of real positives [100]. Precision 

is as defined in Equation 2.3. 

 

Precision = True Positives / (True Positives + False Positives)          (2.3) 

2.8.4 Specifity 

It is true negatives in all negative (unaffected) results [100]. It is as defined in 

Equation 2.4.  

 

Specifity = True Negatives / (False Positives + True Negatives)                           (2.4) 

2.8.5 False Positive Rate (FPR) 

Actually, the statistical examination is an error examination. A statistical test does 

not assure confidential results; it just calculates the possibility of error of a given the 
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result [102].  FPR means that a subject without the chromosomal aneuploidy is 

misclassified like having the chromosomal aneuploidy on the essential of the 

screening test. The subject gives the uncertain impression that the baby has the 

disease and therefore endures the redundant psychological results as well as having 

to undertake possibly invasive diagnostic or treatment procedures [103]. It is a 

percentage of all negative results in all positive results as defined in Equation 2.5. 

 

False Positive Rate=False Positives / (False Positives + True Negatives)             (2.5) 

 

2.8.6 Receiver Operating Characteristic (ROC) Area 

Receiver operating characteristic arc [104] is a diagrammatic depiction of a 

diagnostic capability of the binary classifier technique like the discriminative cut off 

value changes. The ROC curve is plotted by plotting the true positive ratio at various 

threshold settings with a false positive rate. The ROC arc can be created by drawing 

the accumulative distribution function of the true positive rates on the “y axis” 

against the accumulative distribution function of the false positive rates on the “x 

axis”. ROC analyses support instruments to choose the best possible patterns and to 

reject non-optimal models regardless of the cost circumstance or class distribution. 

The ROC analysis is clearly and definitely associated with cost and benefit analysis 

of diagnostic decision making. A point that shows 100% accuracy and 100% 

specificity in the upper left corner or coordinate (0, 1) of the ROC area are given by 

the best possible estimation method. (0, 1) is also called an excellent classification. 

In other words, area 1 represents an excellent test; an area of 0.5 represents a 

worthless test. 

 

2.8.7 Multiples of Median (MoM) 

It means that an amount of how far a single test output diverges from the median. 

The outputs of the single tests are highly flexible and it is generally declared outputs 

of the screening test [105, 106]. The risk factor is assessed based on normal blood 

tests after blood test results are calculated. A mean of normal results is named as 

population median.  As a result, the "mean" value is standardized 1.0 MoM. AFP and 

uE3 levels are lower in pregnancies of Trisomy 21, so the levels are below the 

average and therefore lower than 1.0 MoM. Likewise, hCG would be more than 1.0 
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MoM in a trisomy 21 pregnancy. The laboratory result as a total risk factor is 

computed by a specific computer program in the screening tests. Then, these 

statistically significant normal screening tests are calculated for each gestational 

week (8
th

 -11
th

 weeks and 15
th

 – 22
nd

 weeks). Two large organizations are preparing 

data for these processes. The SURUSS (Serum Urine Research and Ultrasound 

Screening Study) and FASTER (First and Second Trimester Evaluation of Risk) are 

research institutes that collect data on this issue. The findings are subjected to a 

different calculation. The values for each gestational week are sorted from small to 

large or from large to small. The value in the middle is considered “average” 

(median). Then, the result of each test is divided by a median. The last column, 

which is MoM in Table 2.4, was obtained by dividing the values in a first column by 

a middle value in a sequence. 

 

Table 2.4  Calculation of MoM 

Marker Value          Sorted Marker Value            MoM  

(Ng/ml)  

10       10  (10/40)  = 0.25  

40      20  (20/40)  =  0.50  

20       40  (40/40)  =  1.00  

80       60 (60/40)  =  1.50  

60       80  (80/40)  =  2.00 

2.8.7.1 Importance of the MoM 

1- It prevents systematic changes between laboratories from making it difficult 

evaluation. (Unit, mode of operation, method, etc.) 

2- It stabilizes marker levels that have fluctuations variables with pregnancy. It 

makes evaluation easier. 

3- MoM values are unitless and can be evaluated on the same chart, regression 

curve, and criteria. Thus, it is easier to reach the patient's MoM value from a flat 

skew by working with fewer women [107].  

The previous table has shown the calculation of the MoM. However, if it is desired 

to compare the results of two different laboratories as shown in Figure 2.14, the 

marker values that are under different conditions must be standardized and 

converted to MoM. As shown in the Figure 2.15, the Laboratory B looks at the 
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marker value at 11
th

 weeks while the Laboratory A looks at the marker value at 13
th

 

weeks.  

 

 

Figure 2.14  Calculation of median and MoM graphically. 

 

It is necessary to eliminate the difference between the laboratories and to 

standardize their values. Standardized and converted values, which are under the 

different conditions, are shown as MoM in Figure 2.14. So that the measured 

marker values at different conditions in different laboratories can be compared by 

means of the MOM. 

 

 

Figure 2.15  Two marker values on the same chart with MoM 
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2.8.8 Normal Distribution 

The Gaussian distribution is widely used for probability. In statistics, Normal 

distribution is critical and it is frequently used in the natural and social sciences to 

present actual valued random variables whose distributions aren’t known [108, 

109]. The normal distribution graph is shown in Figure 2.16. 

 

 

Figure 2.16  Normal distribution graph 

 

The normal distribution is important due to the central limit theorem. Physical 

amounts that are estimated to be the sum of many independent procedures 

frequently have distributions that are closely normal. Moreover, numerous outputs 

and techniques may be created from systematically in the specific model when the 

related variables are normally distributed [110]. 

 

Though various other distributions are bell-shaped, the normal distribution is 

occasionally named the bell curve [111]. The first object to estimate Down 

syndrome is to draw the Gaussian curve for the markers and reach from there to the 

average. These values are the MoM values for each patient on the x axis and the 

number of cases on the y-axis for the test. Example of the subject is shown in the 

Figure 2.17.  
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Figure 2.17  Distribution of second trimester AFP MoM values in unaffected 

pregnancies 

 

2.8.9 Likelihood Ratio (LR) 

The first definition of probability ratios for decision rules was made on the 

information theory in 1954 [112]. Probability ratios were represented between 1975 

and 1980 in medicine [113–115]. It is the mathematical expression of the possibility 

which the given test is truly positive and it is defined in Equation 2.6. 

 

Likelihood Ratio = Sensitivity / (1- Specifity)                         (2.6) 

 

The affected and unaffected pregnancies of positive results are drawn as a Gaussian 

curve on the same coordinate plane to calculate the LR. It is seen that two curves 

coincide in one place after drawing. If a straight line is drawn upward from the 

mean (MoM) value which is previously determined, with the help of the Gaussian 

curve, the ratio of the unaffected of the curve to the affected curve pregnancies 

gives the LR of that test. The purpose of searching this value is to show whether the 

test is a good parameter for a screening test or not. The following curves in Figure 

2.18 show the DR (detection rate) value of that parameter. The middle overlap area 

of both curves (darkened area) is a false positive area. This value will be given as 

“Odds of being affected given a positive result (OAPR)” of any test.  

Example: 

The value, which is set for the marker, is 2.5 MoM 

A vertical line drawn up from here will give the LR of the patient. For this example, 

it is LR = 75/3 = 25. 
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The prevalence of the disease in a certain period of time in that society is 2/1000. So 

2 out of 1000 people get Down syndrome. 

Then; 

OAPR = 25x2/1000 = 50/1000 = 1/20 

So, on this value of MoM; 

The risk of Down syndrome will be 1 negative patient in 20 positive patients with 

the same parameter value at the same age and condition. Figure 2.18 shows all 

calculations and its graph. 

 

 

Figure 2.18  Calculation of Likelihood ratio graphically 

 

Another example:  

The value, which is set for the marker, is 3.0 MoM 

 

 

Figure 2.19  Likelihood ratio (LR), Detective rate (DR), false positive rate (FPR) 
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In Figure 2.19, the area of the affected and unaffected curves in the line drawn up 

from 3.0 MoM is 6.5 and 1. They are 65% for DR and 1% for FPR. 

Also assume that the prevalence is 2: 1000 

OAPR = 65x2/1000 = 130/1000 = 1/8. 

That is 1 out of every 8 positive results are negative (false positive rate).  

2.8.10 Calculation of Specific Risk Analysis for Triple Screening Test 

Consider a patient with a serum AFP value of 2.5 MoM: 

 

 

Figure 2.20  Likelihood for calculation specific risk analysis 

 

In Figure 2.20, the unaffected area is 8 and affected area is 2 in the vertical line 

which is drawn up. 

LR = 8/2 = 4 

OAPR = 4x2/1000 = 8/1000 or 0.8% 

The result is expressed as 8:1000. The test result for this patient is negative as 

shown in Figure 2.21. 
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Figure 2.21  The result of specific risk analysis 

 

A patient with a MoM value of 1.0: 

The vertical line drawn to the unaffected section is mostly in the area of the affected 

pregnancies. 

LR = 1/10 

In Figure 2.22 is given that the prevalence is 2:1000, and the result is 1x2/10000 = 

2/10000.  

 

 

Figure 2.22  Another result of specific risk analysis 
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2.8.11 Calculation of Risk Analysis with Combining All Markers 

A complex formula called Bayes Theorem [114] is used to find the correlation that 

determines the relationship of each value. Also, N.J. Wald and colleagues reported 

that the calculation using Likelihood Ratio, DR, FPR, and the prevalence is more 

accurate in 2004 [97]. All of these parameters are mathematically combined with 

the previously prepared log linear curves and the reflection of the healthy 

populations to the current markers described above. Then the computerized 

combination is used to analyze the risk of the mother. A correlation coefficient for 

each marker is calculated and a mathematical indicator of the relationship between 

them is formulated. Age, ethnicity, smoking, illnesses in the family, individual and 

family stories, last menstrual period, age, weight and pre-calculated median values, 

table values are included in this set. When the information from the patient is 

entered into the system, they are mathematically combined with the tables in the 

memory and a risk analysis of the patient is given.  
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3. CHAPTER 3 

METHODOLOGY 

 

In this part of the study, the types of data used in the study, the characteristics of the 

data used, the elimination of data, a balancing of an unbalanced dataset, the variables 

in the balanced data, the software used in the study, the relationship between the 

variables, a brief summary of the algorithms which are used in the data 

classification, and the analysis of the classification will be explained. 

3.1 Data Acquisition for Study 

In order to develop a classification performance of a triple screening test via using 

data mining, this study was carried out to examine the pregnancies that have records 

in Sahinbey Research and Practice Hospital of Gaziantep University. The 

permissions for this study were obtained from the ethics committee of Gaziantep 

University, the head of the Industrial Engineering Department of Gaziantep 

University and Administration of Sahinbey Research and Practice Hospital of 

Gaziantep University. Ethics committee decision papers can be found in    

APPENDIX A. 

 

The thesis population consisted of women who attended Sahinbey Training and 

Research Hospital, Gaziantep, for their antenatal care between 2010 and 2016. 

Patient records or data were received from the department of statistics, obstetrics & 

gynaecology clinic, biochemistry laboratory and molecular genetics laboratory of the 

hospital.  Amniocentesis records from patient data were added to the data set by 

accessing the amniocentesis report of each patient from the molecular genetics 

laboratory. Maternal serum samples that had AFP, hCG, uE3 levels, and maternal 

age, weight, etc., were taken from the triple screening test results reports in the 

biochemistry laboratory. Samples of amniocentesis and triple test reports can be
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found in APPENDIX B. 6340 patients who have given birth, 324 patients who 

aborted, and 2815 patients who have amniocentesis data were reached. 

Approximately 8,000 patient data were examined in total. Also, the hospital uses an 

algorithm to determine Down syndrome (Trisomy 21). Figure 3.1 represents a 

specific algorithm for Down syndrome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First trimester: Discussing Down syndrome, estimation 

risk based on maternal age, sensitivity and the possibility 

of a FP screening test result 

Ultrasound at 8 to 15 weeks’ gestation 

Triple screening test at 16 to 18 weeks’ gestation 

Is risk of Trisomy 21 

1:250 or higher? 

Obtain ultrasound to 

verify gestational age 

if not done already 

Inform the patient of 

the results. Counsel 

that Down syndrome 

is unlikely but not 

excluded 

Dates used for 

triple screening test 

found to be 

Ultrasound 

dates show 

that triple test 

was done at 

<15 weeks’ 

gestation 

Provide ultrasound dates 

to screening laboratory 

for recalculation of risk 

Repeat triple test at 16 

to 18 weeks’ gestation 

Is risk of Trisomy 21 1:250 or higher? Inform patient of the results.  

Counsel that likelihood of 

trisomy 21 after a positive 

triple test is about 2%.  

Offer amniocentesis.  

Discuss risk of fetal loss due 

to amniocentesis. 
Inform patient of the 

results. Counsel that 

Down syndrome is 

unlikely but not 

excluded. 

Yes No 

No No 

Yes 

Yes 

Yes 

No 

Figure 3.1  Algorithm for determining Down syndrome 
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3.2 Elimination of Data 

The pregnant women must have all examinations and surveys in the same hospital 

until the birth so that the patient records could be part of the study. Thus a patient 

who gives birth healthy or with an anomaly, and who had the amniocentesis and 

triple screening result entered into the data set with matching patient numbers, file 

numbers and patient names. The remaining patient data was deleted from the data 

set. As a result, there were 81 pregnant women who have the whole record indicating 

the baby's genetic disorder status. 76 of them had no genetic disorder and 5 of them 

had trisomy 21. The number of patients extremely decreased to 81. The reason of 

decreasing is some women who have not gone the same hospital for all examinations 

and surveys during the pregnancy and births were not in the same hospital. 

3.3 Variables Used in the Study 

Variables used in the study are gestational age, maternal age, smoking status, 

ethnicity, pregnancies by IVF method, amniocentesis result or health status of baby 

AFP, hCG and uE3 levels. 81singleton pregnancies had triple screening tests and 

complete records of whether or not the baby had Down syndrome. The markers AFP, 

hCG, and uE3 were observed from maternal serum samples. Gestational age based 

on ultrasonography bi-parietal diameter (BPD) measurements. An example figure of 

the BPD is as shown in Figure 3.2.  

 

 

Figure 3.2  BPD example 
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All biochemical tests were performed on a Beckman Coulter Unicel DXI 800 

medical device as shown in Figure 3.3. Besides these data, maternal age, gestational 

age, maternal weight, ethnicity, and smoking condition were also examined in the 

study.  

 

 

Figure 3.3  Beckman Coulter Unicel DXI 800 Synchron Clinical Systems 

 

The data set is composed of 14 different variables of 81 patients in the initial 

unregulated case. The initial size of the dataset is 81x14 and statistical information 

about the initial dataset of patients is given in APPENDIX C. The description of the 

variables that make up the data set is as follows: 

 

Patient ID:  It is the identification number for each patient from 1 to 81. 

 

Age: It includes the age of the patient. The unit is years. 

 

Weight: Includes the weight of the patient. The unit is kg. 

 

GestationalAge: It indicates the gestational week and day when measured the 

maternal serum values of the patient. 

 

Smoking: It includes the status of the maternal smoking status. 

 

IVF (In Vitro Fertilization): Express whether or not the mother candidate has 

performed the pregnancy with the tube baby method. 
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Ethnicity: It indicates the race of the mother. 

 

AFP: Specifies the value of the AFP marker in the maternal serum sample. The unit 

is in the form of IU / ml. 

 

AFPMoM: Standardized AFP level. 

 

uE3: Specifies the value of the uE3 marker in the maternal serum sample. The unit 

is in the form of IU / ml. 

 

uE3MoM: Standardized uE3 level. 

 

hCG: Specifies the value of the hCG marker in the maternal serum sample. The unit 

is in the form of IU / ml. 

 

hCGMoM: Standardized hCG level. 

 

Result: It indicates the genetic disorder status of the baby.  It is defined Negative or 

trisomy 21. 

3.4 Used Software for Data Mining 

Weka and SPSS software products were used in this thesis.  

3.4.1 Weka 

Weka includes a collection of imagining instruments and algorithms for the data 

examination and estimator forming, together with graphical user interfaces (GUI) for 

simple entry to the functions [116]. The non-Java version of Weka is a Tcl / Tk front 

end for modeling algorithms implemented in other programming languages, as well 

as data preprocessing utilities in C and a Makefile based system for running machine 

learning experiments. The original version of Weka was first prepared to analyze the 

data in agricultural areas [117, 118], but nowadays the new version of Weka is used 

in many areas such as education and researches. WEKA has many advantages and 

these are: 

 Free accessibility under the GNU General Public License. 
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 Compactness, because it is entirely applied in Java programming language and 

therefore runs on approximately several latest computing platform. 

 The extensive accumulation of the data preprocessing and modeling methods. 

 It provides ease of use due to user friendly GUI. 

 

Various standard data mining missions, extra specially, data preprocessing, 

clustering, classification, regression, visualization, and feature choice are supported 

by the Weka. All of Weka's methods are established on a hypothesis which the data 

is accessible like one suitable file or relationship, where all data element is defined 

by a rigid number of features. Weka ensures access to Structured Query Language 

(SQL) databases through Java Database Connectivity and it might manage an output 

reverted by the database inquiry. It isn’t skillful of multi relational data mining; 

however there is various computer programming to transform a group of related 

database boards into the single board which is proper for evaluating with using Weka 

[119]. Additional significant area, which isn’t involved by the algorithms currently in 

Weka distribution, is array modeling. There are 3 base modes in the main menu of 

Weka as given in Figure 3.4.  

 

 

Figure 3.4  Main menu of Weka 

 

Explorer is the main user interface of the Weka and it is as presented in Figure 3.5, 

but basically, the similar functionality may be reached from the component based 

interface and command line. 
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Figure 3.5  Explorer mode of Weka 

 

There is also the Experimenter as given in Figure 3.6 that allows an organized 

collation of the predicted performance of Weka machine learning algorithms in a set 

of data. 

 

 

Figure 3.6  Experimenter mode of Weka 

 

Explorer has a few panels. They provide access to the main components of the 

workbench [120]: 
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 Preprocessing panel contains a possibility to import data from a database, a 

comma-separated values (CSV) file, etc. These filters can be used to convert the 

data and delete the samples and build based on certain criteria. 

 Classification panel allows classification and regression algorithms to be applied 

to the resulting data set. 

 The association panel has access to the rule learner, which tries to recognize 

every important relation between the attributes in the data. 

 Cluster module provides reach to clustering methods in the software.  

 The Selection module enables algorithms for determining the cleverest estimator 

options in the data set. 

 The Visualize module represents a scatter plot matrix, where individual scatter 

draws may be chosen, enlarged or examined with extra several choice operatives.  

Weka was used in the thesis to oversample, evaluate relations between markers, 

classify data and analyze results. 

3.4.2 SPSS Software 

SPSS is a software package that is logically used for batch and non-blended 

statistical analysis. The SPSS graphical user interface shows in Figure 3.7. The 

software name was originally Statistical Package for the Social Sciences (SPSS) 

[121]. Software that is widely used for statistical analysis in social sciences is SPSS. 

Marketplace analysts, medicine analysts, questionnaire firms, administration, 

education analysts, advertising societies, data miners, and the others use SPSS. The 

original SPSS manual that was found by Nie, Bent, and Hull in 1970 has been 

identified for permitting common scientists to analyze their specific statistical 

analysis [122]. 

 

 

Figure 3.7  User interface of SPSS 
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Furthermore, data management and data documentation are basic characteristics of 

SPSS to analyze statistically. 

Statistics that are contained in the main SPSS: 

 Descriptive statistics: Cross tabulation, Frequencies, Descriptive, Explore, 

Descriptive Ratio Statistics 

 Bivariate statistics: Means, t-test, ANOVA, Correlation (bivariate, partial, 

distances), Nonparametric tests 

 Estimation for numerical results: Linear regression 

 Estimation to identify clusters: Factor analysis, cluster analysis (two-step, K-

means, hierarchical), Discriminant 

Several characteristics of SPSS Statistics can be accessed by pop-up menus and 

programmable in copyrighted 4GL command syntax language. It provides a 

beneficial repeatable result, making simpler cyclical missions, and using complicated 

data processing and analysis. Also, specific multipart applications may just be 

designed in syntax and aren’t available throughout the menu structure. A pop-up 

menu list additionally generates command syntax: it may be shown in the output; 

however the original sets must be transformed for doing the syntax to the user. The 

settings might additionally be attached into a syntax file using the "paste" button 

present in every menu. Programs may be compete interactively or unclaimed by 

using a provided Production Job Facility. 

 

SPSS Statistics brings restrictions on interior folder construction, data kinds, data 

processing and matching file restrictions and simplifies programming significantly. 

SPSS data sets have 2 dimensional chart construction where the rows 

characteristically signify situations and the columns signify measurements. Barely, 2 

data styles are described. They are numeric and string. Each data operations take 

place in order throughout the data set. Files may be paired one-to-one and one-to-

many, however they cannot be many-to-many. Also, SPSS cannot store data cells 

may just include numbers and text, and formulas in cells [123]. Cells can be 

manually edited, describe the file architecture, and permit data input devoid of using 

command syntax. It can be enough for minor datasets. But major datasets like 

statistical examinations are further frequently used by online surveys. The datasets 

are computed into SPSS [124]. 
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SPSS software was used in the thesis because Weka software was lacking in 

examining the relationship between variables. The relationship between variables 

was examined in SPSS and variables that did not satisfy p <0.01 were deleted from 

the data set. 

3.5 Data Preprocessing 

Data pre-processing is the primary most important step for data mining or data 

analysis. Data preprocessing outputs entered directly into the data mining model and 

last outputs are detailed. The useful data resource doesn’t just raise a precision of 

mining furthermore dramatically increases the productivity of the algorithm. Before 

the data mining algorithm is used, generally the data is processed [125]. Figure 3.8 

presents preprocessing stages graphically.  

 

 

Figure 3.8  Data preprocessing stages 

 

There are various tools and methods for selecting a sample cluster from the 

population. One of them is the transformation which changes raw data to create a 

particular record. Another one is denoising that eliminates noise from the data sets. 

Another one is normalization that arranges dataset for additional effective access and 

lastly, feature subtraction that gives specific data which is important in a particular 

context. 
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3.5.1 Completion of Missing Values 

Weights of patients were found to lack in collected data.  In total, 15 of 81 patients’ 

weights were found to be missing. "ReplaceMissingValues" method is used to 

complete this missing data. It allows replacing every missing value of nominal and 

numeric attributes in a data set with modes and means in a training dataset. Thus, the 

missing 15 values were completed through the Weka by looking at the average of 66 

patients.  Average of them is 67.30303 as given in Figure 3.9. The statistical 

information about full data set of patients with completed missing values is given 

APPENDIX C. 

 

 

Figure 3.9  Replace missing values on Weka 

 

3.5.2 Balancing Work for Imbalanced Data 

Imbalanced data often indicate a problem with classification troubles where classes 

are not evenly represented. It was observed that the pregnancies with the definite 

records of 76 of the 81 singleton pregnancies were detected unaffected and 5 of them 

associated with Down syndrome. This makes an imbalanced situation. Figure 3.10 

shows this imbalance data attributes as a column chart in Weka. 
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Figure 3.10  Imbalanced data set 

 

3.5.2.1 Synthetic Minority Over-sampling Technique (SMOTE) 

SMOTE (Synthetic Minority Oversampling Technique) [126] algorithm was found 

by Nitesh V. Chawla, Kevin W. Bowyer, and their teammates. Their approach about 

SMOTE was encouraged by a method which demonstrated accomplished in 

handwritten character identification [127]. In the examples, the minority class was 

over-sampled by taking each minority class sample and presenting synthetic samples 

along line segments participating all of the closest neighbors of the minority class. 

Neighbors are randomly selected from nearest neighbors as a requirement of 

excessive sampling. They used five close neighbors in the study. For example, just 2 

neighbors from the 5 nearest neighbors are selected and 1 sample is created in the 

way of every one if the quantity of oversampling required is 200%. SMOTE 

algorithm is as shown in Figure 3.11 and synthetic examples are created as follows: 

Property taken into consideration sample is taken with the difference between its 

closest neighbors. This difference is multiplied by a random number between 0 and 1 

and added to the feature vector of interest. This causes a random point to be selected 

along the line between the two special properties.  
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Figure 3.11  Algorithm of SMOTE [126]. 

 

According to their study, the method successfully makes the determination area of 

minority class to happen more common. Also, it combines oversampling the 

minority (abnormal) class and under sampling the majority (normal) class to do 

improved classifier execution [128]. Therefore, SMOTE was used to increase the 

data set over Weka which is data mining software. The minority (trisomy 21) class 

was over-sampled at 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 

1000%, 1100%, 1200%, 1300%, 1400%, 1500%, and 2000% of its original size. 

Accuracy was calculated by the area under the ROC curve. SMOTE percentages and 

ROC are values are as shown in Table 3.1.  
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Table 3.1  Percentages of SMOTE and ROC are values 

Percentages of 

SMOTE 

ROC Area 

Value 

Percentages of 

SMOTE 

ROC Area Value 

0 0.207 900* 0.897 
100 0.424 1000 0.802 
200 0.634 1100 0.838 
300 0.765 1200 0.870 
400 0.842 1300 0.848 
500 0.783 1400 0.886 
600 0.799 1500 0.843 
700 0.825 2000 0.882 
800 0.842   

* The best percentage is given by ROC Area value 

 

An area of 1.0 represents a great accuracy, for example, the ROC curve transfers 

towards the left and top limits of the ROC chart [128]. The best ROC Area value was 

provided with 76 negatives and 50 positive patients.  Totally there were 126 patient 

data in the thesis. Column chart of balanced data set is shown in Figure 3.12. Also, 

statistical information about balanced data set of patients is as presented in 

APPENDIX C. 

 

 

Figure 3.12  Balanced data set 

 

3.5.3 Relations between Variables in the Balanced Data Set  

Correlation coefficients were analyzed to observe a relationship between 

independent variables of the 126 acquired pregnancies.  A correlation coefficient is a 

number between –1 and 1 which decides whether two combined sets of data are 

associated linearly. It becomes a positive linear correlation and more "confident" 

relation as an approach to 1. On the other side, when the approach to -1, it has a 

negative linear correlation. Also, if it closes to zero then there is no evidence about 



57 

 

 

relations [129]. Figure 3.13 shows correlations examples with some sample 

variables. 

 

 

Figure 3.13  Correlation coefficient relations 

 

The confidence in an association is properly decided not only by the correlation 

coefficient but also by the number of couples in the dataset. The coefficient should 

be very close to 1 or -1 in order to be accepted as “statistically significant” if there 

are very few couples, but if there are a huge number of couples, a coefficient close to 

0 may yet be measured “highly significant”. A normal technique used by 

mathematicians to calculate the “significance” of the experimental analysis is the “p 

value”. p value represents probability by taking a number between 0 and 1. 

Statisticians say that a p-value of 0.01 is “highly significant” or say that “the data is 

significant at the 0.01 level” [129].  

 

The small significance level “0.01” was chosen and any possible significant 

difference in variables was tried to ensure. In addition, Logistic Regression was used 

to look at the relationship between variables because the dependent variable was a 

categorical variable [130].  As a result of analyzes, when looking into the 

relationship between the variables, only AFP, uE3, and hCG markers ensured 

significance level and other markers such as maternal age, weight, etc. were 

eliminated from the data set.  

3.6 Algorithms Used in Classifying Data 

Many classification algorithms have been tried in this thesis. These algorithms were 

fundamental and well-known algorithms of data mining. The summary description of 

the classifiers is as follows;  
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3.6.1 ZeroR 

It is the easiest classification technique. It trusts the goal and it does not take into 

account all estimators. It easily forecasts the majority group. Though there isn’t 

liability control in ZeroR, it is practical to determine a reference point performance 

like a standard with other classification techniques. The logic of ZeroR is pretty 

simple. It looks at the ratio between the results in the train data set, and the result in 

the most adjacent is used as the predictor in the next data.  In other words, the 

accuracy of the ZeroR algorithm is calculated dividing the true positives to all 

positives. Figure 3.14 shows the model evaluation of ZeroR. The confusion matrix 

shows that ZeroR only predicts the majority class correctly.  

 

 

Figure 3.14  Model Evaluation of ZeroR 

  

3.6.2 The k-Nearest Neighbors (k-NN) 

The K-nearest neighbors observe all existing events and classify new events 

according to similarities. k-NN was found by Cover and Hart in statistical 

approximation and model identification even now in the beginning of 1967’s [131]. 

It is used for classification and regression. In both situations, the input contains k-

nearest training samples in a characteristic field. The output changes due to whether 

k-NN is used for classification or regression [132].  “k” represents odd numbers 

since there may be equality in even numbers for the nearest neighbors. The nearest 

neighbor is examined as many as k when a new member needs to be classified. The 

distance between the new member and its neighbors are taken into consideration. 

There are three different distance calculation functions. These are the Euclidean, 

Manhattan and Minkowski distances. Their formulas are as given in Equation 3.1, 

3.2 and 3.3. After the nearest neighbors are identified, a new member is assigned to 

the nearest neighbors’ class. 
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Euclidean Distance Function = √∑ (     )
  

                                                    (3.1) 

Manhattan Distance Function =  ∑ |     |
 
                                                        (3.2) 

 

Minkowski Distance Function = (∑ (|     |)
  

   )
    

                                     (3.3) 

  

3.6.3 OneR 

It is an easy and precise classification algorithm and it composes of one rule for any 

estimators in a dataset and it chooses the rule with the smallest total error [133]. To 

generate a rule for an estimator, a frequency table for each estimator in contrast to 

the target is built. OneR algorithm is presented as Figure 3.15. 

 

 

Figure 3.15  OneR Algorithm 

  

3.6.4 Bayesian Network 

Judea Pearl was one of the pioneers of Bayesian networks [134]. It is one of the 

methods used to express data modeling and state transition in computer science. In 

the literature, the characteristics of networks, which are also known as Bayesian 

network or belief network, are statistical networks, and the transition edges between 

nodes are chosen as stated by statistical choices. Bayesian networks are guided 

acyclic graphs (DAGs), and each node represents the separate variable. Additionally, 

the gathering of the variables may be indicated by Bayesian networks. A broader 

form of Bayesian networks is uncertain decision trees. 
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Nodes in Bayesian networks define variables, and connections define the 

relationship between nodes. Dependencies are quantified by the probabilities of the 

conditions given to the parents on the network. The network supports the calculation 

of the probabilities of the subset of variables which are given evidence for any 

subset. Pearl explained a general Bayesian network in his study [135]. Figure 3.16 

shows the causal associations between the seasons of a year, whether it's raining, 

whether the fountain is on, whether the sidewalk is wet, and whether the sidewalk is 

slippery and these states are expressed as X1, X2, X3, X4, and X5.  For example, the 

nonappearance of the direct relationship between X1 and X5 indicates that the season 

is not a direct effect on slipperiness and that the effect is due to the wetness of the 

pavement. 

 

 

Figure 3.16  Bayesian network representing casual influences among five 

variables[135]. 

 

Arrows on the chart represent true causal connections, and they aren’t a flow of 

knowledge through the causing. The causing procedures may work on Bayesian 

networks by spreading the knowledge in any route. For instance, if fountain system 

is on, the sidewalk is probably wet (estimated). Also, if somebody slides on the 

sidewalk, it gives evidence which the sidewalk is wet. Conversely, if it is seen which 

sidewalk is wet, it is possible that rain system is open or it is raining; however if it is 

observed that the fountain system is open, it decreases a chance of rainfall. It is 

particularly problematic to demonstrate naturally on rule based organizations and 

neural networks. 
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3.6.5 Naïve Bayes 

This classifier gets its name from famous mathematician Thomas Bayes who lived in 

the 17
th

 century. Naïve Bayesian classifier is a simplified version of the Bayesian 

theory with suggesting independence [136]. The Bayes theorem is as shown in 

Equation 3.4. The Naïve Bayes classification target to determine a class or a 

category of the dataset which is shown to a structure by a series of computations 

described in compliance with likelihood values. 

 

Bayes Theorem: 

 

   ( | )  
 ( | ) ( )

 ( )
                                                                    (3.4) 

 

 P(A|B) : The probability of event A occurring when event B occurs. 

 P(B|A) : The probability of event B occurring when event A occurs. 

 P(A) and P(B) : The posterior probabilities of events A and B. 

 

Learning data set at a certain rate is given to the system in Naïve Bayes 

classification. The Naïve Bayes theorem [137] is as shown in Equation 3.5 and 3.6. 

There must be a class of data presented for learning. The probability tests on the 

learning data and the new test data that are shown to a structure are performed in 

compliance with a previously obtained likelihood values and it is tried to decide 

which group of training dataset is presented. If there is a big number of the learned 

dataset, it may be so accurate for detecting the true category of the test data. 

 

Naïve Bayes Theorem: 

  ( |          )  
 ( ) (          | )

 (          )
                                 (3.5) 

  ( | )   (  | )   (  | )      (  | )    ( )                 (3.6) 

 

 P(c|X) is the posterior probability of class given predictor (attribute).  

 P(c) is the prior likelihood of class.  

 P(X|c) is the probability that is the likelihood of estimator given class.  
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 P(X) is the prior probability of estimator. 

3.6.6 C4.5  

Ross Quinlan proposed this algorithm again in 1993 to handle the restrictions of the 

Iterative Dichotomiser 3 (ID3) algorithm which is discussed earlier [138]. A 

restriction of ID3 is extremely sensitive to features with large numbers of values. 

The sensitivity of ID3 to features with many values is indicated by citizenship 

identification numbers. Since the numbers of citizenship identification numbers are 

specific to each individual, testing a value will continuously give a small conditional 

entropy value. Nevertheless, it isn’t a functional test. C4.5 uses "Information gain" to 

overcome that problem. The calculation creates nothing new. Nonetheless, it permits 

measuring a gain ratio. The gain ratio is defined as in Equation 3.7. 

 

          (   )  
    (   )

         (   )
                                                                            (3.7) 

 

where SplitInfo is; 

         (      )  ∑   (
 

 
) 

       (  (
 

 
))                                                 (3.8) 

 

“P’ x (j/p)” is the ratio of elements shows at a location p that is getting the value of 

the j
th

 test. Consider the dissimilar entropy; an above description is independent of 

the distribution of samples within dissimilar classes. As ID3, the dataset is arranged 

on each node of a tree to decide the finest discrimination characteristic. Gain ratio 

impurity technique is used to assess the discrimination qualities. As in ID3, decision 

trees were constructed using training data or datasets in C4.5 [139]. At each node of 

the tree, C4.5 chooses a data attribute that best divides its sample set into subgroups 

which are developed in a class. The criterion is the normalized information gain 

resulting from selecting an attribute to divide the data. The attribute with the highest 

normalized knowledge gain is selected to make a decision. 

3.6.7 Fisher Linear Discriminant Analysis (FLDA) 

It is a classification technique that is improved by R. A. Fisher in 1936 [140]. 

Although the method is simple, it produces good results in complex problems. 

FLDA is based on the search for a linear combination that greatest divides the 
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variables between the 2 classes. The function of Fisher score [141] is as shown in 

Equation 3.9. 

 

 ( )  
         

    
                                                                                                 (3.9) 

 

When considering the score function, it is to estimate the linear coefficients that 

yield the problem solvable score to the maximum with the Equations 3.10 and 3.11. 

 

Model coefficients:       (     )                                                               (3.10) 

 

Pooled covariance matrix:     
 

     
(         )            (3.11) 

where; 

 : Linear model coefficients 

     : Covariance matrices 

     : Mean vectors  

 

The best way to determine discrimination is to calculate the Mahalanobis distance, 

which is as shown in Equation 3.12, between 2 groups. A distance bigger than 3 

between the groups means that the two averages are more different than the 3 

standard deviations. This means that the overlap is very little. 

 

 

     (     )                                                                                               (3.12) 

 : Mahalanobis distance between two groups 

 

 

 

Finally, if the condition in Equation 3.13 is satisfied, the new incoming point is 

classified as “c1”. 

 

  (  (
     

 
))     

 (  )

 (  )
                                       (3.13) 
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         : Coefficients vector 

x      : Data vector 

(
     

 
)    : Mean vector 

   
 (  )

 (  )
    : Class probability 

 

3.6.8 Logistic Regression 

Logistic regression estimates a possible output which may just have two values. 

Forecasting is based on using one or more forecasts. Linear regression [142] isn’t 

suitable to estimate the value of a binary variable due to 2 causes. First one is that a 

linear regression will estimate values outdoor the suitable limit. Next, because the 

dichotomous trials may barely be carried out with two probable values for every trial, 

the residuals won’t be normally distributed along the estimated edge [143]. 

Alternatively, the logistic regression creates a logistic arc that is restricted to values 

between zero and one. The logistic regression is same to the linear regression, except 

that the arc is structured with using the normal algorithm of the odds of the goal 

variable instead of likelihood. Furthermore, the estimators don’t need to be normally 

distributed or evenly distributed in every group. Figure 3.17 shows differences 

between linear and logistic models. The constant (b0) changes the arc left and right 

and the slope (b1) describes the steepness of the arc curve in the logistic regression. 

 

 

Figure 3.17  Logistic and Linear Models [144]. 

The logistic regression equation, which is as shown in Equation 3.14, can be written 

as a probability ratio. 
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    (                   )
                  (3.14) 

 

There are a few analogies between linear regression and logistic regression. The 

logistic regression also uses the maximum likelihood estimation to get the equation 

coefficients which link the estimators to the target, for example, the technique used 

to predict the most suitable line coefficients in the linear regression is the regression 

of ordinary least squares [145]. MLE is as represented in Equation 3.15. After the 

first function is predicted, the procedure is recurred until Log Likelihood (LL) 

doesn’t modify notably. 

 

      [    ]     (   )             (3.15) 

 

 :  Vector of the logistic regression coefficients. 

 : Square matrix of order N with elements     (    ) on the diagonal and zeros 

everywhere else. 

 :  A vector of length N with elements         

3.6.9 Multilayer Perceptron (MLP) 

The perceptron was first used in the visual perception model (retina) [146]. Although 

Single Layer Perceptron (SLP) is extremely limited, it is one of the oldest neural 

networks. Perceptron produces a single output from input into the nerve cell. A 

single layer perceptron (SLP) is a feed-forward network based on a threshold 

transfer function. SLP, which is as shown in Figure 3.18, is the easiest kind of 

artificial neural networks and may just classify linear discrete problems with a binary 

target (1, 0). Examples of these problems are "AND, OR, NOT” states. 

 

 

Figure 3.18  Single Layer Perceptron (SLP) [147]. 
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SLP does not already have the knowledge, so the initial weights are randomly 

assigned. Single layer perceptron collects every the weighted entry and if the total is 

overhead the cut off level, the SLP is said to be active (output=1) as represented in 

Figure 3.19. 

 

 

Figure 3.19  SLP Algorithm 

 

Also, the input values are given to the perceptron. The performance is measured 

acceptable and no revolutions are completed in weight if the estimated result is 

similar to the expected result. Nevertheless, the weights have to be modified to 

decrease the error if the output doesn’t complement the expected output. Perceptron 

weight adjustment is as shown in Equation 3.16.  

 

                                                                                        (3.16) 

 

 : Predicted output 

 : Learning rate, usually between 0 and 1 

 : Input data 

 

The most well-known instance of an inadequacy of the sensor for solving difficulties 

with nonlinear no separation cases is the XOR (exclusive or) problem. But, MLP, 

which uses the back propagation algorithm, may satisfactorily classify the XOR data. 

Multilayer perceptron has the similar construction as a single layer perceptron with 

one or more hidden layers that are as shown in Figure 3.20.  
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Figure 3.20  Multilayer Perceptron [147]. 

 

The back propagation algorithm contains 2 steps. The forward phase (Figure 3.21) in 

which the activations are forwarded from the input to the output stage and backward 

to change the weight and bias values of the error between the real and the desired 

nominal value observed in the output stage. 

 

Figure 3.21  Forward phase in MLP 

 

Spread the inputs by enhancing every the weighted input and then compute the 

outputs using the sigmoid cut off level in forwarding phase. On the other side, in 

backward phase, spreads the errors backward by sharing out them to all elements in 

accordance with the quantity of this error the element is liable for [148]. Error in any 

output neuron is as defined in Equation 3.17 and error in any hidden neuron is as 
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identified in Equation 3.18. Also, the equation of change in the weights is same in 

SLP. 

 

     (   )  (   )                                (3.17) 

 

      (    )  (     )              (3.18) 

 

3.6.10 Sequential Minimal Optimization (SMO) 

SMO is an optimization algorithm used to train a Support Vector Machine (SVM) on 

a data set. The SVM makes classification by discovering the hyperplane which 

increases the margin between the two classes [149]. The vectors (cases), which are 

shown in Figure 3.22, describe the hyperplane are the support vectors. It is possible 

to separate two groups by drawing a border between the two groups in a plane for 

classification. The place where this border can be drawn is that the two groups 

should be the farthest from their members. SVM determines how this vector or line 

is drawn. 

 

 

Figure 3.22  Support Vectors 

 

SVM algorithm has three steps; Define an optimal hyperplane (maximize margin), 

spread the overhead description for the nonlinearly separable problem, and map the 

data to the high dimensional area where it is simpler for classifying with linear 
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decision surfaces. To describe the ideal hyperplane, it is necessary to maximize the 

width (w) of the margin. Figure 3.23 shows the width of the margin (w) and its 

equation.  

 

 

Figure 3.23  Width of the margin (w) 

 

Also, “w” and “b” is found by solving the objective function, as shown in Equation 

3.19, with using Quadratic Programming (QP). A solution of the QP problems is 

hard and it takes a long time. The SMO may rapidly answer the SVM QP problems 

without any additional matrix storage and without using numerical QP optimization 

stages at all [150]. 

   
 

 
‖ ‖                     (3.19) 

 

s.t.    (      )                  

 

Two sets of data can be extracted from each other in three ways. They are a straight 

line, a flat plane, and hyperplane but, there are states in which a nonlinear area may 

distribute datasets more effectively. SMO processes use a kernel function, non-

linear, to match the data to a dissimilar area where a hyperplane (linear) cannot be 

used to differentiate. It means that a nonlinear function is learned by a linear learning 

machine in the area of a high dimensional feature when the capability of the system 

is measured by a parameter which isn’t dependent on the dimensionality of the field. 

This is named the “kernel trick” [151] that is as shown in Figure 3.24; it transforms 

the data into a higher dimensional feature space to allow the kernel for performing 

the linear division of the data. 
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Figure 3.24  Kernel Trick 

 

SMO able to use various kernel functions for determining the support vectors. These 

are the polynomial kernel, normalized polynomial kernel, Pearson VII universal 

function kernel (PUK), and radial basis function kernel. 

 

Polynomial Kernel 

The polynomial kernel is the continuous nucleus. The polynomial kernel is finely 

adapted for difficulties where all training data are normalized. Equation 3.20 shows 

polynomial kernel function. Adjustable parameters are the slope α, the constant term 

“c” and the polynomial degree “d”. Where x and y are vectors in the input field, that 

is the vectors of the features computed from training or test samples, and c ≥ 0 is a 

free parameter that loses the effect of high order terms in the polynomial. When c = 

0, the kernel is named homogeneous. 

 

 (   )  (      )                (3.20) 

 

Normalized Polynomial Kernel 

It is as defined in Equation 3.21 by normalizing the norm in high dimensional feature 

space. The kernel value is between 0 and 1 by normalizing an output of standard 

polynomial kernel [152]. 

 

 (   )  
(     )

 

√(     ) (     ) 
              (3.21) 
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Pearson VII Universal Function Kernel (PUK) 

The Pearson VII function kernel [153] for two vectors is as given in Equation 3.22 

 

 (     )  
 

[  (( √|     |
 √ (   )  )  )

 

]

              (3.22) 

 

where; 

    and    are two vector arguments, 

  and ω control the half-width and the tailing factor of the peak. 

 

Radial Basis Function Kernel 

The Radial basis function (RBF) kernel is a kernel which is in the form of a radial 

basis function. The RBF kernel is as defined in Equation 3.23 [154].  

 

 (    )     [  ‖    ‖ ]              (3.23) 

 

where; 

 γ is a parameter that sets the “spread” of the kernel, 

   is a free parameter, 

       ,  

‖    ‖  : may be known like the squared Euclidean distance between the two 

feature vectors. 
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4. CHAPTER 4 

RESULTS 

 

The results of the SMOTE over-sampling minority class according to ROC Area are 

shown in Table 4.1. 

  

Table 4.1  Percentages of SMOTE and patient numbers with ROC area values 

Percentages of SMOTE ROC Area Value # of Unaffected 

Pregnancies 

#of Down 

Syndrome  
0 0,207 76 5 
100 0,424 76 10 
200 0,634 76 15 
300 0,765 76 20 
400 0,842 76 25 
500 0,783 76 30 
600 0,799 76 35 
700 0,825 76 40 
800 0,842 76 45 
900* 0,897 76 50 
1000 0,802 76 55 
1100 0,838 76 60 
1200 0,870 76 65 
1300 0,848 76 70 
1400 0,886 76 75 
1500 0,843 76 80 
2000 0,882 76 105 
* The best percentage is given by ROC Area value 

 

The ROC area values were examined in the modified data set and minority class 

(negative result pregnancies) was oversampled by certain coefficients. The best ROC 

Area value was obtained with 76 negatives and 50 positive pregnancies with a value 

of ROC Area value 0.897 at 900% coefficient. Figure 4.1 shows the best ROC Area 

graph which is at 900% rate. 
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Figure 4.1  The best ROC Area graph with 900% coefficient of SMOTE 

 

The relationship between variables was examined as shown in Table 4.2. Logistic 

regression analysis was used for relationships on SPSS statistical software because 

there was a categorical (nominal) dependent variable and Logistic regression method 

has the capability to calculate the relations between nominal variables and numeric 

variables. Variables that provide p<0.01 significance level subjected to the thesis and 

other variables eliminated from the study. As a result, it was found acceptable to use 

AFP, hCG and uE3 variables for analysis. The statistical information about 

eliminated data set for the thesis is given in APPENDIX C. 

 

Table 4.2  The results of Logistic Regression analysis 

  Score df Significance 

Variables Maternal Age 3,515 1 ,061 

 Weight 2,814 1 ,093 

 Gestational Age 5,626 1 ,018 

 AFP* 7,586 1 ,006 

 uE3* 16,709 1 ,000 

 hCG* 19,003 1 ,000 

*Variables that provide p<0.01 inequality subject to the thesis. 
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The modified data set had been run on experimenter mode of Weka software via 10 

fold cross validation technique with classification algorithms which are zeroR, k-NN, 

OneR, Bayesian Network, Naive Bayes, J48(C4.5), FLDA, Logistic Regression, 

Multilayer Perceptron and SMO respectively. All classification algorithms were run 

only a time one by one.  

 

Weka software has two options to verify the test. These are percentage split and k-

fold cross-validation techniques. Percentage split is usually used in datasets with a 

big number of samples. Because the percentage split divides the data set into the two 

parts according to the given percentages and one part becomes the training set while 

the remaining part becomes the test set. For example, if a selected percentage is 66%, 

then the remaining part, 33%, will be used as the test set, and 66% of the data set will 

be used for training and test set result will be the final result of the classifier test set. 

If the number of instances in the data set is very large, dividing the certain parts 

(training and test parts) of the data set does not affect results of the test.    However, 

if the sample size is small, using most of the samples for training part and testing part 

at the same time are more reliable. In such a case, using k-fold cross-validation 

technique will give more reliable results [155]. Because this technique splits the 

dataset into k subsets that consist randomly selected samples and k-1 subsets are used 

for training and 1subset are used for testing. Then the chosen subset for the test is 

changed by another and the process is repeated. This process is performed k times in 

total and the average of the test results is calculated. So, more valid and reliable 

results are obtained in the small data set. Table 4.3 shows the k-fold cross-validation 

technique, training, and test subsets in k steps. When determining the value of k, 

some values such as mean absolute error and F-measure are taken into account. The 

k value, which is used commonly in the literature, is 10 but it may vary according to 

the number of samples in the dataset. As the number of k increases, the number of 

samples that is divided into subsets will decrease and the number of training subsets 

will increase, so it may affect the success rate and accuracy in the wrong direction 

due to the decrease in the number of samples to be tested. Also, if the number of k 

decreases, the number of samples, which is divided into subsets increases and the 

number of training subsets decreases. Because of this situation, the performance of 

the algorithm that is generated by the restricted training set may be affected wrongly. 
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Table 4.3  k-fold cross-validation technique (k=10) 

 

 

Therefore, the k value should be determined correctly by taking into account various 

experiments and the number of samples in the dataset. When criteria, which are 

mean absolute error and F-measure, are taken into consideration, k=10 is found to be 

correct. In the data set of the study, the k parameter was tried with the Bayes network 

classifier at values 9, 10, 11 and 15 and the smallest mean absolute error with the 

largest F-measure value was found at the k = 10, which is as shown in Table 4.4. 

 

Table 4.4 Determination of the k value 

    k Value 

    k=9 k=10 k=11 k=15 

B
ay

es
ia

n
 

N
et

w
o
rk

 

Mean  

Absolute Error 
0.1915 0.1654 0.1779 0.1799 

F-Measure 0.835 0.874 0.859 0.859 

 

 

Details of the results are shown in figures for each classification algorithm. First of 

all, ZeroR was applied to the data set. It is the most basic classification algorithm and 

it simply estimates majority class. Because of that, it is practical for a deciding a 

baseline performance as a benchmark for other classifiers. The results of the 

classification are given in Figure 4.2.  

The results show that the correctly classifies percentage of other classifiers should be 

at least 60%. A lower success rate means that the using classifier has failed. Another 

k=10 1. Subset 2. Subset 3. Subset 4. Subset 5. Subset 6. Subset 7. Subset 8. Subset 9. Subset 10. Subset

1. Step Test Training Training Training Training Training Training Training Training Training

2. Step Training Test Training Training Training Training Training Training Training Training

3. Step Training Training Test Training Training Training Training Training Training Training

4. Step Training Training Training Test Training Training Training Training Training Training

5. Step Training Training Training Training Test Training Training Training Training Training

6. Step Training Training Training Training Training Test Training Training Training Training

7. Step Training Training Training Training Training Training Test Training Training Training

8. Step Training Training Training Training Training Training Training Test Training Training

9. Step Training Training Training Training Training Training Training Training Test Training

10. Step Training Training Training Training Training Training Training Training Training Test
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parameter passed in the output is a total number of instances 126. This means that 

126 patients (instances) were used in this test. Also, ZeroR predicts negative class. 

Because ZeroR chooses a base class which has more instances then another class. On 

the other hand, the coefficient of Kappa statistic measures the fit between two 

observers in the evaluation of categorical items [156]. Kappa can take a value 

between -1 and +1. A value of -1 indicates that the incompatibility between the two 

observers is perfect, on the other side, when the value is +1 indicates that the Kappa 

value is a perfect fit between the two observers [157]. If a kappa value of 0 is found, 

then the harmony between these two observers shows that there is a purely random 

association. Kappa value is 0 in the result of the zeroR classifier and it means that 

association between observers was purely chance. In addition, the output shows the 

error rates that mean the distinctness between the real and estimated value. In a 

confusion matrix, a classifier shows which class the instances placed and which class 

is the actually for the instances. 

 

 

Figure 4.2  Detailed results of the zeroR classification algorithm for the data set 
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Next classification algorithm was the k-NN algorithm. Firstly k parameter should be 

determined. Weka helps for determining to k parameter with cross validation 

techniques. When the cross validation was performed for k, Weka found best k value 

was 3. Also, k parameter could be found with trial and error method or trial and 

observation method. The k parameter was observed at various values according to 

some criteria as shown in Figure 4.3. The best k value was found when k = 3. 

Although some criterion values were the same at k = 1, some criterion values were 

lower than k = 3. Therefore the value of the parameter k was chosen 3. 

 

 

Figure 4.3  Determining k parameter for the k-NN classifier 

 

Also, k-NN classifier uses training and classification algorithms which are as shown 

in Figure 4.4. This algorithm supposes all samples communicate to points in the n-

dimensional space Rn
 [158]. 
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Figure 4.4  Algorithms of the k-NN classifier [158]. 

 

The output of the k-NN classifier is shown in Figure 4.5. The Kappa statistic value 

was calculated 0.74 for this classifier. It means that the harmony between the 

observers was close to perfection. Other parameters, which are notable, are TP and 

FP ratios. 90% detection rate (TPR) and 14.5% FP rate was found by the k-NN 

classifier. The aim of the study is to increase the detection rate as much as possible 

and decrease the FP rate at the same time. When looking at the confusion matrix, 45 

of the 50 Trisomy21 samples were estimated correctly and 5 of them were 

mispredicted. Also, 65 of the 76 negative samples were correctly estimated and 11 of 

them were mispredicted and 11 mispredictions are called false positives at the same 

time. 

 

Training Algorithm: 

 For each training instance  𝑥 𝑓(𝑥)   which is in training set, add the instance 

to the training examples list.  

 

Classification Algorithm: 

 Given a query instance 𝑥𝑞to be classified,  

o Let 𝑥  𝑥𝑘 denote the k instances from training example list that are 

nearest to 𝑥𝑞 

o Return 

 

𝑓 (𝑥𝑞) ← 𝑎𝑟𝑔𝑚𝑎𝑥     
𝑣∈𝑉

∑ 𝛿(𝑣 𝑓(𝑥𝑖))
𝑘
𝑖    

      

         where 𝛿(𝑎 𝑏)    if 𝑎  𝑏 and where 𝛿(𝑎 𝑏)  0 otherwise. 
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Figure 4.5  Detailed results of the k-NN classification algorithm for the data set 

 

The third classification algorithm was OneR algorithm. It is a simple and precise 

classification algorithm and it composes of one rule for any estimators in the data 

and it chooses the rule with the smallest total error. Results of the OneR algorithm 

are as shown in Figure 4.6. Firstly, OneR found the most frequent class which was 

Negative class with 76 instances. Secondly, it made the rules for each predictor 

(AFP, hCG, uE3) and calculated the total errors of the rules. The error rate for AFP 

was 0.2063, for HCG was 0.4524 and for uE3 was 0.3016. So, AFP had the 

minimum error rate with 0.2063. Then the classifiers selected the AFP predictor and 

estimated the results.  The predictor rule for the AFP is as following; 
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 If AFP is smaller than 23.33 or bigger/equal than 29.92 then the prediction is 

Negative.  

 If AFP is between 23.33 and 29.92 then the prediction is Trisomy21. 

 

Kappa statistics of OneR shows that compatibility between observers is neither 

perfect and nor bad. Percentage of correctly classified is %79 and it's better than 

zeroR classifier. The OneR correctly predicted 34 of the 50 Trisomy21 instances and 

66 of the 76 Negative instances. It has not bad result although it is a simple classifier. 

Also, the F-Measure parameter is important in the results. In this result, F-Measure is 

0.791 and when the value of F-Measure increases to 1, it means good, since F-

measure is associated with the precision and recall. 

 

 

Figure 4.6  Detailed results of the OneR classification algorithm for the data set 
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Next one was Bayesian Network classification algorithm. It is a probabilistic 

graphical model that shows a series of random variables and an acyclic graph guided 

by their conditional dependencies. Figure 4.7 shows detailed results of the Bayesian 

Network classification algorithm for the data set. There are 3 nodes (AFP, hCG, and 

uE3) in output. All nodes are associated with Result class. Also, the results show 5 

types of local score metrics. LogScore returns the log of the quality of a network. 

Score-based algorithms constitute a Bayesian network that maximizes the score 

function, which indicates the correctness of the causality structure for a multivariate 

data set [159]. The lines, which are in output, list the logarithmic score of the 

network structure for the network for various methods of scoring. The score type 

specifies the measure used to evaluate the quality of a network structure. It may be 

one of Bayes, Bayesian Dirichlet equivalence (BDeu), Minimum Description Length 

(MDL), Akaike Information Criterion (AIC), and Entropy. In addition, a number of 

correctly classified instances are 110. The classifier incorrectly predicted 16 

instances and all of them are negative class. They classified as Trisomy21, however, 

they should have been Negative. Also, the classifier predicted correctly all of the 

Trisomy21 instances. But, it should be run many times such as 100 run for stable and 

accurate results. On the other hand, FP rate is 21% and it is too much for the aim of 

the study. Kappa statistic value is nearly same with k-NN classifier kappa statistic 

and compatibility or harmony between observers are near the perfection. 
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Figure 4.7  Detailed results of the Bayesian Network classification algorithm for the               

data set 

 

Another algorithm was Naive Bayes classifiers that are a family of simple 

probability classifiers. It is based on the application of Bayesian theory with strong 

(naive) independence estimates between features. The results are shown in Figure 

4.8. The probability of the Trisomy21 class is 0.4 and probability of the Negative 
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class is 0.6 in the output. Mean, standard deviation and precision of each attribute 

were calculated by Naïve Bayes classifier. The mean and standard deviation are 

classical statistical terms. Weight sum means a number of instances for each class. 

Another term is precision and it is the percentage of positive predictions which are 

correctly predicted [True Positives / (True Positives + False Positives)]. Also, the 

precision is the minimum standard deviation permitted for the characteristic in the 

problem. It is taken by a heuristic executed in Naïve Bayes that calculates a mean of 

the difference between adjacent values of a characteristic. The classifier estimated 

102 of 126 instances correctly and its percentage is 80.92%. Kappa statistic is the 

average value. Detection rate (TP rate) is high value, but FPR is also high and that is 

the unwanted situation. A value of 1.0 represents a perfect accuracy as the ROC 

curve moves towards the left and top boundaries of the ROC graph. Because of that, 

Naïve Bayes has good accuracy with 0.933 ROC are value. Also as seen in the 

confusion matrix, the classifier predicted most of the Trisomy21 instances correctly. 

However, the same thing cannot be said for the Negative class instances, because the 

third one of the instances in this class was predicted wrongly. 
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Figure 4.8  Detailed results of the Naïve Bayes classification test  

 

C4.5 is an extension of Quinlan's previous ID3 algorithm. Decision trees created by 

C4.5 may be used for classification, so C4.5 is frequently called a statistical 

classifier.  Details of the classifying results with Weka are found in Figure 4.9. A 

decision tree was created as seen in Figure 4.9. According to the decision tree, if the 

uE3 value is greater than 0.8, the result is Negative. Otherwise, the value of AFP is 
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checked. If the AFP value is greater than 30.1 then the result is Negative. If the AFP 

value is between 30.1 and 24.2, the result is Trisomy21. But if the AFP value is less 

than or equal to 24.2, the hCG value is checked. If hCG value is greater than 40425, 

the result is negative, otherwise the result is Trisomy21. Also, a decision tree is as 

shown in Figure 4.10. 

 

 

Figure 4.9  Detailed results of the C4.5 classification algorithm for the data set 
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There are 5 leaves and 9 trees in the Figure 4.10.  Estimates were made according to 

the decision tree and the number of correctly classified samples was 105. F-Measure 

and precision are 0.833 and ROC area value is 0.862. However, the detection rate is 

0,780 and the detection rate is lower for this classifier when compared to the 

classifiers which were tested before. 

 

 

Figure 4.10  Decision tree of C4.5 

 

Next classifier was FLDA. This technique searches for directives on the data with 

the greatest variance and subsequent project the data onto it. The results are given in 

Figure 4.11.  The discriminant equation should be remembered in order to 

understand the weights in the output. Linear discriminant analysis yields equilibrium 

as a linear combination of independent variables which will the greatest 

distinguishes between clusters in the dependent variable. The linear combination is 

identified as the discriminant function [160]. The weights allocated to every 

independent variable are corrected for the associations between all variables. The 

weights are mentioned to as discriminant coefficients. The discriminant equation is 

as defined in Equation 4.1. 

 

                                                     (4.1) 

 

where, F is a latent variable made by the linear combination of the dependent 

variable, X1, X2,…, Xp are the p independent variables,   is the error term and 

              are the discriminant coefficients. 
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Weights of AFP, uE3, and hCG are               in the equation and classifier 

use of them to find specific discriminant function. The results show that the FLDA 

performs worse than the classifiers that are previously used. Kappa statistic value 

shows higher dependence on chance and false positive rate is excessive value.  In 

general, FLDA classifier has shown poor performance four the study. 

 

 

Figure 4.11  Detailed results of the FLDA classification algorithm for the data set 
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Another classifier was the Logistic Regression. The detailed results are given in 

Figure 4.12.  As mentioned before in Equation 3.14, coefficients for Trisomy21 class 

refer to bi. Odds ratios are exponential of the coefficients. For example,             

   (0 0   ) is equal to 0.9686 and the log of the odds ratio is the value of the 

coefficient attached to the variable AFP in the logistic regression. So, logistic 

regression equation can be written as in Equation 4.2. 

 

 

   
    ( ( ))     ( 0 0       )   (           )   (0     )                                 

        (4.2) 

 

If AFP increases for 1 unit, then    ( ( )) will be 0.9686    ( ( )). This means 

that the predicted odds of Trisomy21increases for 0.9686 times when AFP increases 

for 1 unit. So, when looking the odds ratios in the output, firstly hCG, secondly AFP 

and lastly uE3 are most favorable to the Trisomy21 output. On the other hand, 87 

samples from 126 are correctly classified when look at the number of correctly 

classified samples. 28 of them are instances of Trisomy21class and the rest of them 

are instances of Negative class. TP rate is 56% and FP rate is 22%, so these values 

are lower than the other studies which were presented before. Also, Matthews’s 

correlation coefficient (MCC) is 0.343. The MCC is firstly used in machine learning 

by biochemist Brian W. Matthews in 1975 [161]. It is often regarded as a balanced 

criterion that can be used even if the classes are very different in size. In essence, 

MCC is a correlation coefficient between observed and predicted binary 

classifications. It returns a value between −1 and +1. The +1 coefficient represents 

the perfect estimate, 0 is not better than the random estimate, and -1 represents the 

total disagreement between the estimate and the observation. So MCC of the logistic 

regression classifier is close to 0 and it means that predictions are attached to the 

chance. 
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Figure 4.12  Detailed results of the Logistic regression algorithm for the data set 

 

MLP (Multilayer Perceptron) is a feed forward artificial neural network model which 

maps sets of input data onto a set of suitable outputs. MLP involves multiple layers 

of knots in an oriented graph, with each layer fully attached to the next layer. It was 

used in the thesis and it had best results between other classifiers. Detail of the 

results is presented in Figure 4.13. The MLP used 3 input variables that were AFP, 

hCG, and uE3 to predict classes (Trisomy21 and Negative). The training stage was 

to adjust the internal weights to get as close as possible to the known classes values. 
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Figure 4.13  Detailed results of the Multilayer Perceptron classification algorithm for             

the data set 

 

In the output, there are 4 sigmoid nodes. Node 0 and node 1 are output nodes and 

node 2 and node 3 hidden nodes which are attribute nodes. The number of nodes or 

hidden layers was defined as (number of attributes+ number of class) / 2. This 

equation was called wildcard values on Weka. There are some wildcard values on 

Weka and they are “a” = (attributes + classes) / 2, “i” = attributes, “o” = classes, “t” 

= attributes + classes. “a” was selected in the study and number of nodes was 
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calculated as 2. Figure 4.14 represents a neural network of MLP classifier for the 

study. All nodes have weight values of attributes and all the values given are 

interconnection weights between hidden and output nodes. 

 

 

Figure 4.14  Neural network of the MLP classifier test 

 

As a result, classified correctly instances are 112 and it has high percentage rate with 

88.89%. Alternatively, kappa statistic value is near to perfect harmony between 

observers. The high value of precision-recall curve area (PRC) and ROC areas values 

indicate that accuracy of the classifier is sufficiently high. Also, error rates are low 

and they show that differences between predicted and observed values are small. 

MLP is the classifier with the best detection rate (92%) among all classifiers, which 

are tested so far. 

 

As the last classifier algorithm used in the study was Sequential Minimal 

Optimization (SMO) that was designed by John Platt in 1998 at Microsoft Research. 

Figure 4.15 shows the results of the SMO classifier. Normalized polynomial kernel 

function was used to normalization in the kernel function. The normalized 

polynomial function was intended to normalize the mathematical expression of the 

polynomial kernel instead of normalizing the data set [162]. It can be said that the 

normalized polynomial kernel is a generalized version of the polynomial kernel. As 

you can see on the output, 95 support vectors are found along with 7686 kernel 

evaluations. Some of these vectors are seen on the output. A new instance was 

predicted with these support vectors. It is seen that the number of true positives is 

high with a number of false positives. However, the aim of the study is high true 
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positive rate with the low positive rate. Also, that kappa statistic values shows that 

predictions were most dependent on chance. On the other side, the F-Measure value 

influenced the accuracy of classifier negatively. In general, it cannot be said that the 

performance of the classifier is very good because the parameter values in the output 

have average values. 

 

 

Figure 4.15  Detailed results of the SMO classification algorithm for the data set 

 

After running all algorithms one by one, the results had to be run multiple times to be 

stable and accurate results. Also, randomness is an important criterion for completing 

the study. Many runs of the test provide randomness of the instances and randomness 
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of other parameters which are used in classification. Thus, bias and deviation to any 

direction in the results can be avoided with randomness. Therefore, the selected three 

independent variables and a dependent variable examined 1000 runs with 

classification algorithms which are zeroR, k-NN, OneR, BayesNET, Naive Bayes, 

J48, FLDA, Logistic Regression, MLP and SMO on experimenter mod of WEKA 

software.  In addition, the confidence level was set to 0.01 for all criteria.  

 

Firstly, correct classifying percentages were observed. Figure 4.16 represents correct 

classification percentages of each classifier. The ZeroR was selected as the base 

classifier and the results of the other classifiers were compared with ZeroR. The 

expression used by Weka is “(v/ /*)”. “v” signifies that the result is significantly 

better or more than base classifier. “*” indicates that the result is significantly worse 

or less than base classifier and the space in the middle indicates that the result is 

neither good nor bad from the base classifier. For example, the result of the 7
th

 

classifier was neither good nor bad; it approximately had the same result with the 

base classifier. 6 classifiers gave better results than base classifier when it continued 

to compare. Also, MLP had the best result with 89.93% for a correct classification 

percentage. The worst classifier was SMO with 68.17% according to correct 

classification percentages. 

 

 

Figure 4.16  Percentages of correctly classified for classifiers 
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Detection rate or recall was defined before in Equation 2.1. Figure 4.17 presents 

detection rates of classifiers and base classifier (ZeroR) had 0 values. It means that 

the base classifier did not predict any instances of Trisomy 21 class correctly. In 

earlier cases, it was explained why ZeroR classified all instances of Trisomy21 

wrong. So, all classifiers had the better results than the ZeroR. But the best one was 

Bayesian Network algorithm with 97% percentage. The one with the closest result to 

Bayesian Network was Naïve Bayes classifier. Also, Logistic regression classifier 

had the worst detection rate. 

 

 

Figure 4.17  Detection rates of classifiers 

 

FPR means that a subject without the chromosomal aneuploidy is misclassified like 

having the chromosomal aneuploidy on the essential of the screening test. The 

subject gives the uncertain impression that the baby has the disease and therefore 

endures the redundant psychological results as well as having to undertake possibly 

invasive diagnostic or treatment procedures [103]. It is a percentage of all negative 

results in all positive results. The false positive rates of classifiers are presented in 

Figure 4.18. The smallest values are more important for the study because the 

objective of the study is to minimize the FPR. Therefore, MLP is the best classifier 

according to false positive rates. Also, the base classifier has 0.0 FP rate. Its reason 
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that ZeroR classified all instances as Negative and thus there was no actual Negative 

instance (false positive) which was classified as Trisomy21. Lastly, the SMO has the 

worst false positive rate with 41%. 

 

 

Figure 4.18  False positive rates of classifiers 

 

Another result is the area under ROC. The best possible estimation method gives a 

point that represents 100% accuracy (no false negatives) and 100% specificity (no 

false positives) in the upper left corner or coordinate (0, 1) of the ROC area. (0, 1) is 

also called an excellent classification. In other words, area 1 represents an excellent 

test; an area of 0.5 represents a worthless test. The best result should have a 

maximum value. Therefore, Bayesian Network and Naïve Bayes classifiers have the 

best results with 94% as shown in Figure 4.19. So, they are close to the excellent test. 

After them, MLP and k-NN classifiers have the good ROC area values with 93%. 

The worst classifier is the ZeroR (base classifier) according to ROC area. 
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Figure 4.19  Area under ROC of classifiers 

 

Last analysis was F-measure. In a statistical analysis of binary classification, the F-

measure is a measure of a test's accuracy. It analyzes the precision and the recall of 

the test to calculate the score. Its score can be clarified as a weighted mean of the 

precision and recall, and the best value of F-measure is 1 and the worst value is 0 

[163]. As a result, Multilayer Perceptron had best F-measure value (88%) for the 

study as given in Figure 4.20. After the MLP classifier, k-NN and Bayesian Network 

classifiers had the best F-measure values with 85%. Logistic regression had the worst 

F-measure value when the base classifier excluded from comparing. 

 

 

Figure 4.20  F-measures of classifiers 
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Table 4.5 shows the averages which were calculated for each algorithm after 100 

runs of the data set. 1000 runs were totally made for the study. Percentage of 

Correctly Classified, Detection Rate, False Positive Rate, Area under ROC and       

F-Measure were the most important criteria for the study. While using these criteria 

in the study, the criteria were weighted according to their importance.  

 

Table 4.5  The results of the classification algorithms tests 

  

%  

Correctly 

Classified 

% 

Detection 

Rate 

(DR) 

%  

False 

Positive 

Rate 

(FPR) 

%  

Area 

Under 

ROC 

%  

F 

Measure 

Total 

Weighted 

Scores 

Weights 35 50 -40 35 30   

ZeroR (Base) 0.6 0 0 0.5 0   

Weighted Score 0 0 0 0 0 0 

k-NN 0.86 0.92 0.17 0.9 0.85   

Weighted Score 9.1 46 -6.8 14 25.5 87.8 

OneR 0.78 0.66 0.14 0.66 0.7   

Weighted Score 6.3 33 -5.6 5.6 21 60.3 

Bayesian Network 0.86 0.97 0.21 0.93 0.85   

Weighted Score 9.1 48.5 -8.4 15.05 25.5 89.75 

Naïve Bayes 0.81 0.96 0.28 0.92 0.81   

Weighted Score 7.35 48 -11.2 14.7 24.3 83.15 

C4.5 0.82 0.81 0.17 0.85 0.78   

Weighted Score 7.7 40.5 -6.8 12.25 23.4 77.05 

FLDA 0.68 0.74 0.36 0.78 0.65   

Weighted Score 2.8 37 -14.4 9.8 19.5 54.7 

Logistic 

Regression 
0.68 0.55 0.24 0.77 0.56   

Weighted Score 2.8 27.5 -9.6 9.45 16.8 46.95 

MLP 0.9 0.94 0.13 0.92 0.88   

Weighted Score 10.5 47 -5.2 14.7 26.4 93.4* 

SMO 0.68 0.81 0.41 0.7 0.67   

Weighted Score 2.8 40.5 -16.4 7 20.1 54 

* The best test according to total weighted scores 
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The weight given for the percentage correctly classified criteria was 35, and the 

weight for the detection rate was 50. The detection rate was the most important 

criteria for the study. Therefore the weight of the detection rate should have had the 

largest value. The ROC area was weighted with 35 and the F-measure was weighted 

with 30. Lastly, the weight of the FPR was determined as -40. It had the minus sign 

because FPR never gives any benefit to the improvement of the triple screening test. 

In other words, if the weight of the FPR had a plus value, then every increment in the 

FPR would appear as a benefit in the scoring model and an error would occur in the 

calculations. Also, an equation that considered the base classifier was also added to 

the scoring model. The weighted score for any classifier was described as in 

Equation 4.3. 

 

 (  )  (     )                    (4.3) 

 

where 

  is the classifier, 

  is the base classifier, 

  is the criteria, 

   is the value of the specified criterion of the particular classifier, 

   is the value of specified criterion of the base classifier, 

   is the weight of the specified criterion. 

 

After calculating the weighted scores for all the classifiers and criteria, these scores 

were summed and the total weighted score was calculated. Equation 4.4 represents 

total weighted score formula. 

 

∑  (  )  ∑(     )                     (4.4) 

 

Thus, the best test and improvement was observed with the weighted scoring model. 

As a result, the best test was provided Multilayer Perceptron algorithm with 94.24% 

detection rate and 13% false positive rate. 
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5. CHAPTER 5 

CONCLUSION & DISCUSSION 

 

In this thesis, it is aimed to predict Down syndrome in a more precise manner. 

Improving the performance of the triple screening test will reduce the need for 

invasive testing so that there will be no risk of the pregnant woman and fetus due to 

invasive tests. The detection rate of the triple screening test, which was used in the 

thesis, was increased from 61% to 94%. However, the false positive rate increased 

from 5% to 13%. In addition, while N.J. Wald's study had 80% detective rate versus 

16% false positive rate, the thesis had 94% detection rate and false positive rate 13%. 

Detection rates and false positive rates of N. J. Wald’s study are shown in Table 5.1. 

When detection rate increased, the false positive rate increased proportionally. Their 

relations and equation are as shown in Figure 5.1. As a result, if detection rate is 

94%, the false positive rate will be approximately 25.2% according to their 

relationship. So, the false positive rate in the thesis is smaller than Wald’s study. 

  

Table 5.1  Detection rates and false positive rates for N. J. Wald’s study 

Detection  rate (%) of Down syndrome False positive rate (%) 

80% 16 

75% 12 

70% 8.6 

65% 6.4 

60% 4.7 

55% 3.4 

50% 2.5 

45% 1.7 

40% 1.2 

35% 0.8 

30% 0.5 

25% 0.3 

20% 0.2 
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Figure 5.1  Relationship and equation between DR and FPR for Wald’s study 

 

This demonstrates that the thesis improved the performance of the triple screening 

test in a significant amount. Future works can be improving the performance of the 

triple screening test by reducing the false positive rate from 13% to less or detection 

rate can be increased when the false positive rate is constant. Hereby, invasive tests 

like amniocentesis won’t be needed and life of baby and mother won’t risk anymore. 
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APPENDIX C  
  

 

Section A 

The Initial Data Set of Patients 

 

 
 

Section B 

Data Set of Patients with Completed Missing Values 

 

 
 

Section C 

Balanced Data Set of Patients  

 

 
 

 

 

 

 

Attributes Age Weight GestationalAge Smoking IVF Ethnicity AFP AFPMoM uE3 uE3MoM hCG hCGMoM Result

Type of Attribute Numeric Numeric Numeric Nominal Nominal Nominal Numeric Numeric Numeric Numeric Numeric Numeric Nominal

Unit of Attribute Years Kg Days Yes/No Yes/No Black/White IU/ml - ng/ml - mlU/ml - Trisomy21/Negative

Number of Values 81 66 81 81 81 81 81 81 81 81 81 81 81

Number of

Categorical Values
- - -

1 Yes

80 No

0 Yes

81 No

0 Black

81 Black
- - - - - -

5 Trisomy21

76 Negative

Number of 

Missing Values
0 15 0 0 0 0 0 0 0 0 0 0 0

Minumum Value 18.2 45 112 0 0 0 10 0.34 0.208 0.19 3508 0.18 0

Maximum Value 45.2 100 137 0 0 0 83.4 2.49 5.73 2.17 100000 4.37 0

Mode 23.9 60 116 - - - 30.9 0.83 2.73 0.57 - 1.07 -

Median 34.5 65 118 - - - 26.6 0.74 0.723 0.75 30683 1.34 -

Mean 33.89 67.30 119.83 - - - 29.70 0.82 1.12 0.85 35217.32 1.53 -

Standard Deviation 6.24 11.90 5.82 - - - 15.02 0.40 1.02 0.40 21546.09 0.90 -

Variance 38.42 139.48 33.48 - - - 222.91 0.16 1.04 0.16 458502561 0.80 -

Attributes Age Weight GestationalAge Smoking IVF Ethnicity AFP AFPMoM uE3 uE3MoM hCG hCGMoM Result

Type of Attribute Numeric Numeric Numeric Nominal Nominal Nominal Numeric Numeric Numeric Numeric Numeric Numeric Nominal

Unit of Attribute Years Kg Days Yes/No Yes/No Black/White IU/ml - ng/ml - mlU/ml - Trisomy21/Negative

Number of Values 81 81 81 81 81 81 81 81 81 81 81 81 81

Number of 

Categorical Values
- - -

1 Yes

80 No

0 Yes

81 No

0 Black

81 Black
- - - - - -

5 Trisomy21

76 Negative

Number of 

Missing Values
0 0 0 0 0 0 0 0 0 0 0 0 0

Minumum Value 18.2 45 112 0 0 0 10 0.34 0.208 0.19 3508 0.18 0

Maximum Value 45.2 100 137 0 0 0 83.4 2.49 5.73 2.17 100000 4.37 0

Mode 23.9 67.30303 116 - - - 30.9 0.83 2.73 0.57 - 1.07 -

Median 34.5 67.30303 118 - - - 26.6 0.74 0.723 0.75 30683 1.34 -

Mean 33.89 67.30 119.83 - - - 29.70 0.82 1.12 0.85 35217.32 1.53 -

Standard Deviation 6.24 10.73 5.82 - - - 15.02 0.40 1.02 0.40 21546.09 0.90 -

Variance 38.42 113.65 33.48 - - - 222.91 0.16 1.04 0.16 458502562 0.80 -

Attributes Age Weight GestationalAge Smoking IVF Ethnicity AFP AFPMoM uE3 uE3MoM hCG hCGMoM Result

Type of Attribute Numeric Numeric Numeric Nominal Nominal Nominal Numeric Numeric Numeric Numeric Numeric Numeric Nominal

Unit of Attribute Years Kg Days Yes/No Yes/No Black/White IU/ml - ng/ml - mlU/ml - Trisomy21/Negative

Number of Values 126 126 126 126 126 126 126 126 126 126 126 126 126

Number of 

Categorical Values
- - -

1 Yes

80 No

0 Yes

81 No

0 Black

81 Black
- - - - - -

50 Trisomy21

76 Negative

Number of 

Missing Values
0 0 0 0 0 0 0 0 0 0 0 0 0

Minumum Value 18.2 45 112 0 0 0 10 0.34 0.208 0.19 3508 0.18 0

Maximum Value 45.2 100 137 0 0 0 83.4 2.49 5.73 2.17 100000 4.37 0

Mode 23.9 67.30303 116 - - - 30.9 0.83 2.73 0.57 - 1.07 -

Median 34.35 67.30303 118.1997785 - - - 26.4094645 0.730331 0.664727 0.710629 36164 1.5981665 -

Mean 34.23 68.38 119.43 - - - 28.04 0.79 0.94 0.79 39303.63 1.69 -

Standard Deviation 5.17 9.30 5.09 - - - 12.45 0.33 0.86 0.34 20175.55 0.82 -

Variance 26.52 85.82 25.67 - - - 153.72 0.11 0.73 0.11 403822158 0.67 -
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Section D 

Data Set of Patients after the Elimination  

 

 

Attributes AFP uE3 hCG Result

Type of Attribute Numeric Numeric Numeric Nominal

Unit of Attribute IU/ml ng/ml mlU/ml Trisomy21/Negative

Number of Values 126 126 126 126

Number of 

Categorical Values
- - -

50 Trisomy21

76 Negative

Number of 

Missing Values
0 0 0 0

Minumum Value 10 0.208 3508 0

Maximum Value 83.4 5.73 100000 0

Mode 30.9 2.73 - -

Median 26.41 0.66 36164 -

Mean 28.04 0.94 39303.63 -

Standard Deviation 12.45 0.86 20175.55 -

Variance 153.72 0.73 403822157.62 -


