

Real Time Human Computer Interface Application

Based on Eye Gaze Tracking and Head Detection

M.Sc. Thesis

in

Mechanical Engineering

University of Gaziantep

Supervisor

Prof. Dr. Sadettin KAPUCU

by

Sinan KESKİN

March 2018

© 2018 [Sinan KESKİN]

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Sinan KESKİN

ABSTRACT

REAL TIME HUMAN COMPUTER INTERFACE APPLICATION BASE D

ON EYE GAZE TRACKING AND HEAD DETECTION

KESKİN, Sinan

M.Sc. in Mechanical Engineering

Supervisor: Prof. Dr. Sadettin KAPUCU

March 2018

72 Pages

The localization of eye centers and the knowledge of eye movements is becoming an

important search area on human-computer interactions with increasing developments

in the computer vision branch. As software, obtaining the position of the small region

which the user look on the screen is a simple and efficient alternative way for use of

mice and touchy devices to control the cursor.

In this study, firstly, Viola Jones Algorithm is used to detect eye areas through

acquired webcam image on Matlab platform. Then, undistorting that is for making

the eye center points more accurate, a camera calibration algorithm is included. Grey

level and morphology level operations are achieved step by step. Eye centers are

described using Circular Hough Transform Method.

Finally, an application of kids interface is developed. Letters, objects, colors,

numbers become to be learned simply and funny by this interface. The applicability

of the proposed algorithm is tested and gathered results are presented.

Key Words: Eye Gaze interface, eye detecting and tracking, computer vision, Viola

Jones Algorithm, Hough Transform

ÖZET

GÖZ TAK İBİ VE BAŞ HAREKET İ SAPTAMIYLA GERÇEK ZAMANLI

İNSAN BİLGİSAYAR ARAYÜZÜ UYGULAMASI

KESKİN, Sinan

Yüksek Lisans Tezi, Makine Müh. Bölümü

Tez Yöneticisi: Prof. Dr. Sadettin KAPUCU

Mart 2018

72 Sayfa

Göz merkezlerinin tayini ve göz hareketlerinin bilgisi bilgisayar da görü dalında

artan gelişmelerle birlikte insan bilgisayar etkileşiminde önemli bir araştırma konusu

haline gelmiştir.Yazılımsal olarak, kullanıcının ekranda bakmış olduğu küçük

bölgelerin pozisyonunun belirlenmesi imleci kontrol etmek için fare yada dokumatik

cihazların kullanımına basit ve etkili bir alternatif olmaktadır.

Bu çalışmada, ilk olarak Viola Jones Algoritması Matlab platformunda web

kameradan elde edilmiş imaj üzerinden göz bölgelerinin saptanması için

kullanılmıştır.Sonra, imaj düzeltme (Göz merkez noktalarını daha hassas yapmak

kamera kalibrasyonu algoritması dahil edilmiştir.), gri seviye ve morfolojik seviye

işlemler sırasıyla gerçekleştirilmi ştir. Göz merkezleri dairesel Hough

transformasyonu metoduyla belirlenmiştir.

Son olarak ise bir çocuk arayüz uygulaması geliştirilmi ştir. Harfler, nesneler, renkler

ve rakamlar bu arayüz ile daha kolay ve eğlenceli bir şekilde öğrenilir olmuştur.

Önerilen algoritmanın uygulanabilirliği test edilmiş ve elde edilen sonuçlar

sunulmuştur.

Anahtar Kelimeler: Göz arayüzü, göz saptama ve takibi, bilgisayarda görü, Viola-

Jones algoritması, Hough transformasyonu

 To gaws…..

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Dr. Sadettin KAPUCU and Asst.

Prof. Dr. Ali KILIÇ without their guidance, motivation, and encouragement this

thesis would not have become a reality.They motivated me to pursue my studies in

all stages of the thesis.

I would also like to express the warmest gratitude to my friends for their moral

support.

This study would have never been completed without the moral support, continuous

help and encouragement of my dearest family. Therefore, my very special thanks are

due to them.

.

ix

TABLE OF CONTENT

 Page

ABSTRACT ...v

ÖZET ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENT .. ix

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ..xv

1. INTRODUCTION ...1

1.1 Introduction ...1

1.2 Human Computer Interaction ..2

1.3 Eye Gaze as a Tool ..2

1.4 Objectives and Methods ..5

1.5 Scope ...6

1.6 Structure ..7

1.7 Contributions ...8

2. BACKGROUND ...9

2.1 Introduction ...9

2.1 Human Eye Structure ..9

2.1 Motivation ...10

2.1 Eye Tracking Integration in e-Learning ..12

2.1 Gaze Tracking Techniques ..12

2.5.1 Feature - Based Gaze Estimation ...12

 2.5.1.1 Model Based Approaches ..13

 2.5.1.2 Interpolation Based Approaches ..13

2.5.2 Appearance-Based Gaze Estimation ..13

2.5.3 Eye-Tracking Applications ..14

 2.5.3.1 Intrusive Eye Gaze Trackers ..14

 2.5.3.2 Camera Based Eye Gaze Trackers ...15

x

2.6 State of the Art ..15

2.7 Challenges ...16

3. CAMERA CALIBRATION ...19

3.1 Introduction ...19

3.2 Estimating Parameters ...20

3.2.1 Intrinsic Parameters ...20

 3.2.1.1 Skewness ..21

 3.2.1.2 Lens Distortion...21

 3.2.1.3 Focal Length ..22

3.2.2 Extrinsic Parameters ..22

3.3 Calibration Process ...23

4. DESIGN & IMPLEMENTATION. ...26

4.1 Introduction ...26

4.1.1 Algorithm ...26

 4.1.2 Matlab as a Development environment...27

4.2 Image Acquisition ...27

 4.3 Image Calibration ..29

 4.3 Image Correction ..29

 4.4 Grey Level Operations ..30

 4.4.1 Eye Pair Detection ...31

 4.4.1.1 Viola-Jones Algorithm ..31

 4.4.2 Smoothing Operations ...32

 4.4.2.1 Gaussian Filtering ...32

 4.4.2.2 Average Disk Filtering ...34

 4.4.2 Local Contrast Stretching...35

 4.5 Thresholding ...35

 4.5.1 Otsu Thresholding ...36

 4.6 Morphological Operations ..37

 4.6.1 Logical - Not Function (~) ..37

 4.6.2 Small Pieces Remove Operation ..38

 4.6.3 Circular Hough Transform (CHT) ...39

 4.7 Application Design ...39

 4.7.1 Algorithm Process ..39

 4.7.2 Calibration Process ..40

 4.7.3 Graphical User Interface (GUI) ...41

xi

 4.8 Eye Gaze Interface ...41

 4.8.1 Eye Gaze Animals ..42

 4.8.2 Eye Gaze Alphabets ...43

 4.8.3 Eye Gaze Colors ..43

 4.8.4 Eye Gaze Numbers...44

5. EXPERIMENTAL RESULTS ...45

5.1 Introduction ...45

5.2 Eye Tracking Experiment ...45

5.3 Vertical Eye Points ..45

5.4 Horizontal Eye Points ...47

5.5 Diagonal Eye Points ..48

5.6 2D Gaze Controlling Experiment..49

6. CONCLUSION AND DISCUSSION ..50

6.1 Summary of the Results ..50

6.2 Conclusion for Eye Gaze Systems ..50

6.3 Further Work ...51

REFERENCES ..52

APPENDIX A ...56

APPENDIX B ...72

xii

LIST OF FIGURES

Page

Figure 1.1 Setup for eye gaze tracking .. 5

Figure 2.1 Eye regions by parts (A) with original eye (B) [11] 9

Figure 2.2 Eye tracking for disabled people [12] .. 10

Figure 2.3 Eye gaze tracker game for kids [14] .. 11

Figure 2.4 Getting difficult on reading [14] .. 11

Figure 2.5 Contact lenses for eye tracking [18] .. 14

Figure 2.6 EOG for eye tracking [19] ... 14

Figure 2.7 Head movements effects [26] .. 16

Figure 2.8 Lightening effects [27] .. 17

Figure 3.1 Camera calibration setup ... 19

Figure 3.2 Distortion factors for camera calibration [36] ... 21

Figure 3.3 Focal length for calibration [37] .. 22

Figure 3.4 Extrinsic parameter visualization... 23

Figure 3.5 Reprojection errors for images .. 24

Figure 3.6 Calibration images ... 25

Figure 4.1 Input image .. 28

Figure 4.2 Undistorted image .. 29

Figure 4.3 Extracted eye pair region image .. 30

xiii

Figure 4.4 Haar cascade features [42] ... 31

Figure 4.5 Filtered image .. 32

Figure 4.6 Box filters as lineaar vs.Gaussian filter as a non-linear[43] 33

Figure 4.7 Average filtered image... 34

Figure 4.8 LCN applied image ... 35

Figure 4.9 Thresholded image ... 36

Figure 4.10 Smal Pieces removed image .. 37

Figure 4.11 Edges chopped off image ... 38

Figure 4.12 Eye localization image .. 38

Figure 4.13 Block diagram of the application ... 39

Figure 4.14 Calibration process route ... 40

Figure 4.15 Eye gaze inteface for animals ... 42

Figure 4.16 Eye gaze inteface for alphabet ... 42

Figure 4.17 Eye gaze inteface for colors ... 43

Figure 4.18 Eye gaze inteface for numbers ... 44

Figure 5.1 Vertical eye gaze localization points ... 46

Figure 5.2 Vertically gaze points mapping to screen points ... 46

Figure 5.3 Horizontal eye gaze points ... 47

Figure 5.4 Horizontally gaze points mapping to screen points 47

Figure 5.5 Diagonal eye gaze points ... 48

Figure 5.6 Diagonally gaze points mapping to screen points 48

Figure 5.7 Eye gaze tracking game ... 49

xiv

LIST OF ABBREVIATIONS

EEG Electroencephalography

HCI Human Computer Interface

RSI Repetitive Strain Injury

HMI Human Machine Interface

GUI Graphical User Interface

EOG Electrooculography

GLHS Generalized Lightness Hue, Saturation Model

HDR High Dynamic Ratio

IDE Integrated Development Environment

GPU Graphical Processing Unit

LCN Local Contrast Normalization

CHT Circular Hough Transform

CV Computer Vision

HOG Histogram Of Oriented Gradients

LBP Local Binary Pattern

RTOS Real Time Operating System

RGB Red, Green Blue Color Space

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently, increasing the variety of computer-based products and the production of

high-speed processors has triggered a growing interest and focus of work in

developing natural interaction between human and computer. Getting the knowledge

of the position or region that user focus on the screen solves a lot of problems. So far,

some techniques as hand-arm, head-body movements, voice recognition, EEG

signals, brain control interfaces and vision-based software’s are compete in a better

interaction as simple, cheap, efficient and comfortable for a use of Human Computer

interface (HCI).

Human-computer interaction mainly grouped into two categories as hardware based

and software based. But these two groups cannot be considered quite different from

each other. Software (vision) type systems are generally more convenient to develop.

In last decades, several devices such as phones, tablets, TVs get progress in object

oriented and vision based programming issues. This provides people to become more

sociable and have an opportunity to contact people from all over the world on the

same media.

Nowadays, almost all students have smartphones for communication and

entertainment. This can be usable for teacher and parent interaction. It is happened

on the web platform to give kids the best education. At this point, instructive and

enjoyable solving techniques to home works, tutorials becoming more and more

important. A user, especially young people aged 5-20, looks at the screen and does

homework’s like playing puzzles. Also, the sounds are effective to make learning

easy. Developers keep that stuffs in mind as helpers of educationalists.

2

That developer-educationalist cooperation can be provided with web technology in a

better way and kids who get difficulty in reading, or learning letters and languages

get progress on it. These days, there are a lot of vision-based applications that use

image processing and Computer vision techniques succeed in communication

industries. While touchscreen technology uses hands, alternatively, this control of

processor event is about to be achieved by eye localization technique. The eye first

detected, tracked and decided where the user looks as information of control. Eye

tracking gives also information how long, where and when a user looks at which

region on the screen. This information gives statistical data for advertisements,

human psychologies and interests.

1.2 Human Computer Interaction

Human-computer interaction turned out by different methods for years. Mouse,

joysticks, sound processing techniques, vision-based techniques and brainwaves

based controls are all used as very modern technic in a time of history. Brainwaves

are not ready for today’s technology. So, eye tracking systems are accepted very

modern alternative for any other way of communication. Touch screens are

expensive, sound processing methods are hard to apply depending on environmental

conditions. Eye tracking devices as hardware are not comfortable because of being

wearable products. Eye gaze plays an important role in human communications.

Actually, there is a slogan like “What we look is actually what we get”. Eye position

informs us where to look. This simply sums up the software. First, detecting the eye

and taking the positions from one point to another means where the human look. This

principle results in many eye detecting and tracking approaches to compete.

Eye tracking approaches have a huge diversity on this area and they are separated

into two main groups as hardware based and software based. (Discussed in chapter 2)

1.3 Eye Gaze as a Tool

Eye-gaze interface looks hopeful as a new assistive technique. In general, people

with disabilities who are unable to move any organ except their own eyes, especially

students who have difficulty reading numbers of students, students and persons,

language-scientists who memorize vocabulary easily and enjoyable. The system is

simple and very fast. For this reason, the algorithm should be of a very good design

3

in terms of the user itself and especially the help of the disabled peoples and

children. Eye gaze HCI presents several benefits to users:

• Ease to use

Eye gaze tracking combines the hand movements for mouse and keyboard use

over the scene and the eye movements on the screen earlier and performs the

action with eye movements only so that the user can get rid of the arm and

elbow pain. There is no extra load on the eye. There is a calibration process of

several seconds.

• Reliable interaction

Especially, when using the touchscreen, such as smartphones, tablets. It can

get rid of any false keystrokes. Random searches, unwanted page entries are

prevented. Because every part of the tracking application is software, so is the

situation caused by the slow operation of the processor on the computer and

the processor and computer become more efficient.

• Clean interface

It would be beneficial for people with disabilities to use the eye-gaze

interface of people injured or injured in places that require high hygiene such

as hospitals. In places where common computer use is common in various

places, such as internet cafes, the use of the same devices will take place with

the entry of the eye-gaze interface.

• Maintenance free

The vision-based eye tracking system does not require any maintenance

because it does not use any device. Cleaning and repair of devices such as a

mouse, keyboards are not possible. This is especially good way on behalf of

protecting devices from kid’s vandalism. Kids can only use their eyes on the

screen and use their eyes with no harm.

• Interaction speed-up

Eyes are bodies that perform the fastest physical movements in the human

body. If the methods of gaze-writing are slow, the eye-gaze tracking method

will provide significant benefits for improving it.

4

• Remote control

Increasing zoom cameras and high-resolution camcorders will allow

computers to be controlled from a distance of 100-150 cm, not 30-40 cm. So,

the user's eye health will be more secure. The user will be able to use the

computer more effectively and for longer periods of time.

• User identification as mentality

Eyes tell a lot of things about the user emotions and interests. For example, as

an internet seller, some programs can detect what colors, designs; shapes

are more suitable to sell. Eye gazes provide a huge database for sales on the

internet. There is a huge development on the artificial intelligence in today’s

century. In the next few decades, computers that recognize the user and work

according to the user's tastes, interests and expectations will be produced.

In addition, the user will react and perform both mentally (sad, happy,

excited, nervous) and physically (sleepless, sleeping or sleeping, looking at

the screen or not). On the other hand, there are a few negative aspects of

using Eye-Gaze Tracking method. These are:

• Saccading issue

A saccade is a quick, simultaneous movement of both eyes between two or

more phases of fixation in the same direction [1]. Eyes as defined build

unexpected movements itself. To overcome this saccading issue, it is

necessary computers, cameras are much more expensive, more sensitive and

at higher speeds. In this study, the idea of saccading is accepted at a very

sensitive level and is neglected since the application is completed with fewer

resolution things.

• Midas touch problem

It is accepted as one of the biggest challenges for eye-gaze interaction as

known “Midas touch problem”. The problem is simply defined eyes are

inspecting the object on the screen or starting an action. Misinterpretation of

the looks, i.e. gestures can cause unexpected actions to use the interface. The

developer of an eye gaze interaction system should define whether the

looking contain an intention or natural movements as a reflex, distraction

mode, blinking issues.

5

• Repetitive strain injury (RSI)

RSI is defined a physical injury to muscles or muscle groups that may be

caused by repetitive tasks, forceful exertions. The problem is also eye

muscles can be caused. This has to be taken seriously for any constant and

repetitive movement study of eyes.

In a paper, in 2000, Sibert and Jacob [2], declared that eye gaze interaction is useful

input for an HMI and can be designed advance programs in the future. In this study,

eyes natural movements are studied and affirmed that eyes should be used for the

interface but not become an unnatural movements machine.

In this dissertation, we investigate how an eye gaze tracking technique becomes a

simple, accurate and funny way of communication and socializing.

1.4 Objectives and Methods

 In this thesis, an application for kids training on the Pc without using special device

is designed and application is studied in an uncontrolled environment. Obviously, the

most difficulty in developing an application for kids training is to make it a feasible,

funny and hardware independent.

In this study, the main objective is to design an application for kids to teach objects

like animals using an interface HCI with respect to the gaze points of the mouse. The

vision-based software approaches for precise and accurate eye detection are

generally regarded as 5 categories [3].

Figure 1.1 Setup for eye gaze tracking

6

• Eye template matching method, the kernel acts as a sliding window and is

considered the center of maximum matching. .

• Eye shape, edge, corner characteristics.

• Machine learning methods are used to decide whether or not all the regions

in the image are an optimal match on a plane.

• Parallax regions reflected in pupil with infrared lights.

• Studies on the color and brightness of the eye.

Appearance-based methods are done with traditional computer vision techniques or

some training algorithms [5,7].These technics require building a dataset for a very

great perceptivity of eyes with different variations. Eyes strategic location color,

shape and environment conditions make this problem very challenging. The

appearance-based method is very popular for detection any object but not

recommendable to attain precise coordinates.

Feature-based methods use the geometry, shape, color, texture of the eye. These

approaches are effectively applicable depending on the resolution of the cameras.

Snake algorithms [8], isophote curvatures [9], skin color subtraction [10] all need

very close camera captures or high-resolution webcams. In this study, an algorithm

to detect eye circles and control gaze points, efficient, fast and funny for a kid

training game is presented. Both right and left iris areas are localized with using a

low-resolution camera. The overview of the proposed Eye Tracking Game is

illustrated in Figure 1.1. The system objects consist of a webcam and a lap top. A

user, staying away from the monitor 50-80 cm, looks at the top-left corner before

bottom-right corner for the calibration step by step, and then the game is ready for a

play. Proposed algorithms are analyzed different scenarios like vertical, horizontal

and diagonal gaze situations. So this system cannot be used with eyeglass. Head

movements are excluded and lighting conditions are not feasible for any conditions.

7

1.5 Scope

The most common limitation for an eye gaze tracking application is to get the precise

data of coordinate of eyes. Many studies using image process gives the result of eye

gaze as a direction with up, down, right, left. That data is not enough for a kid

training system. So that many possibilities that impair the algorithm is studied in this

dissertation but not for a higher educational level. As a nature of the user, some

aspects such as ethnicity, gender are not included. This study is not suitable for

outdoor environments. Different lighting effects are excluded. Biometric features like

eye sizes, eye colors that are changing person to person are not be considered as in

the scope of this dissertation. Any wearable tool or accessories like eyeglasses that

comes to the eye region or make-up on these areas like darken or enlighten of one’s

eyelid things are out of the subject. Finally, for an image acquisition error, any frame

cannot be included coordinate of the eyes depend on the frame rate or being the eye-

closed position. This condition is disregarded.

1.6 Structure
The remainder of this dissertation is organized as follows:

The introduction (this chapter) gives a huge overview of the study, then, main

purpose, the methods, approaches, discusses on eye gaze as an input and thesis

roadmap is presented. The contributions to the field of research are finally listed.

Chapter two as background starts with a definition of eye structure, motivation

followed by eye tracking history. It describes existing systems and technologies with

their application. It also presents the eye tracker used in this thesis. Furthermore, it

discusses the current challenges and the scientific work is done up to now on a

general level. Special related work sections are part of the corresponding chapters.

In chapter three, camera calibration process will be presented. The camera calibration

results as internal and external parameters of the camera are classified and explained

in detail. Finally, calibration results and acquired data are presented. All things to be

acquired for the use of a camera application are computed. For image processing,

camera parameters are used to correct the distorted image.

In chapter four, design and implementation steps are all explained step by step. All

background is presented from image acquisition to eye localizing for the eye tracking

8

application. Applications as GUI are presented as eye gaze alphabet, animals and

color.

Chapter five is a presentation of the experimental results of eye gaze motion of

acquired diagonal, horizontal and vertical from the image plane to screen plane.

Finally, conclusion and discussion is covered with the relations between solutions

and results. Recommendations are provided for the further researchers.

1.7. Contributions

In this thesis, the screen is divided vertically and diagonally into the smallest unit

squares. The letters, numbers and various object detection tests for various users

have tested. The usability of the eye tracking system is analyzed. Briefly, in this

thesis:

Eye gaze interaction techniques: it is tried to find out if the proposed algorithm can

detect the coordinates of the objects correctly in different colors and different sizes

on the screen. The main aim of this study is to solve the problem in a very simple and

amusing way by comparing our approach with the approaches of the other. The

child-specific interfaces using pictures, colors and various sounds are prepared.

Finally, the eye gaze can really be used as a PC appliance input.

Gaze tool technologies: the difficulties and problems that were encountered, the

possible methods (discussed in Section1,3) are discussed. Sensitivity was also

improved by implementing camera calibration. Many thoughts and predictions for

the future were shared.

9

CHAPTER 2

BACKGROUND

2.1 Introduction

Eye tracking can be defined to get the knowledge of the coordinates of the gazes on

the screen. Eye as a software tool is very handy for a much technological area.

Automotive, psychology, computer science are very known areas for eye detection

and tracking systems. There is no completely vision-based eye tracking techniques.

That is, all methods use hardware. Since low-resolution camera based studies use the

only webcam, they are very famous and valuable as a topic to research.

2.2 Human Eye Structure

Eye is an interactive agency for a human body that senses light. Eye muscles with

white striped have mechanically the fastest gestures. Eyes reflect not only the light

but also the emotions, personal interests, and some psychological situation of a

human to a research subject. It is given in Figure 2.1.

 Figure 2.1 Eye regions by parts (A) with original eye (B) [11]

10

The eye is also described as the most easily and repeatedly segment able part of a

face part. Moreover, eye has the most diversity of features for a computer vision

area. Circles, ellipses, colors, sharp borders, reflectivity and movement factors make

it unique for a face recognition and eye tracking field. Sclera is white area of the eye.

Iris is colored that change person to person, used in biometric.

2.3 Motivation

Eye tracking applications mostly happen with some devices known “Eye Trackers”.

These devices are not comfortable with a wearing technology even a person does not

need support for its activities.

Figure 2.2 Eye tracking for disabled people [12]

Vision-based interfaces are fast, cheap and easiest way to interact with getting a

frame of a visual device. Especially, these software based solutions play a key role

on HCI as an assistive technology using a GUI environment for severely disabled

peoples, paralyzed patients, elders as seen in Figure 2.2. Letting these peoples work,

socialize and entertain is the most notable goal of this study.

On the other hand, Eye gaze tracking related to HCI is very modern as a vision-

based system for the education of some child getting difficulty in reading and kids to

learn. On the side, Eye tracking game is played with the kids to learn. Mother says

the name of the object and kid points it with his eyes. Thus, mother communicates

with her child as seen on Fig 2.3, understand what he or she desires and teaches the

11

name of the objects. This study also gives to know the kids interests as seen on

Figure 2.3. Moreover, eye tracking solutions are preferable for learning language

letters.

Figure 2.3 Eye gaze tracker game for kids [14]

As seen in Figure 2.4. A child who is getting difficulty in reading is pictured. Eye

gaze indirectly helps the students to read in a short time. Pc is used for another

distinct purpose as an entertaining device between parent and child. Only eye gaze

movements are used for this desktop study. As result, e-learn makes all studies

effective and enjoyable.

 Figure 2.4 Getting difficulty on reading [14]

12

2.4 Eye Tracking Integration in e-Learning

Eye tracking technology in the e-learn platform has been grown to decide user’s

intention, behaviors, even in the mood. The first and most effective study is adaptive

e-learning system developed as assistance for translation in language courses.

The main objectives about e-learn are observing the behavior of learners in learning

processes in real time, by monitoring characteristics such as areas of interest, time

spent watching them, a frequency of visits and sequences or patterns, evaluating the

learner’s awareness according to which content is studied.

In the last years, various technologies (like collaborative Software, cloud computing,

screen casting, portfolios, virtual classroom) and different devices (e.g. mobile

devices, webcams, audio/video systems or smart boards) were used to facilitate e-

learning development and to increase the effectiveness and accessibility of e-learning

platforms [15]. E-learning gets importance decade to decade, especially for kids and

disabled peoples that watching multimedia elements, such as images, video and

animations.

2.5 Gaze Tracking Techniques

Eye tracking techniques are categorized into two main groups as hardware based

methods and software-based methods.

Gaze tracking is a subject of video oculography as software-based systems to infer

the knowledge of image data from cameras. Firstly, it is the detection of the eye area,

then, gaze estimation is determined. Pupil as eye part lets the light in. Iris controls

the sclera and pupil areas. This eye parts and their functions play an important role in

eye tracking issues. These factors are very challenging due to the vision and eye as a

region that mentioned about in chapter 1.

Video-based eye tracking uses dark or bright pupil technique. And this technique is

separated into two groups: feature and appearance based gaze tracking.

2.5.1 Feature-based Gaze Estimation

Feature-based methods approach to the problem of gaze track for some distinct

features of eyes on the face such as ellipse as sclera contour, circle as pupil contours,

corneas reflections.

13

The goal of the feature-based method is to attain a robust feature or feature

combination to describe the gaze direction independent from the environment and

device effects. If light independency does not improve, the accuracy of gaze

detection fails. There are two types of feature-based approaches exists Model-based

(geometric) and interpolation-based (regression-based) Hansen and Ji [16].

2.5.1.1 Model Based Approaches

Model-based approaches utilize geometry of eye for estimating of gaze direction.

This method uses camera calibration. Pre-generated 3D eye models are used to

compute eye direction. Models base parts are the position, tilt and rotation. These

models are constructed with the rotation of eye shape degree by degree. The system

does not use any learning algorithm. To compare this model to others, and it is more

convenient to high-resolution devices.

2.5.1.2 Interpolation-Based Approaches

These type methods focus on the mapping from image features to 2D gaze

coordinates. This can be polynomial (parametric form) or neural networks (non-

parametric form). Some linear mapping studies occurred as video-based trackers but

did not get popularity like polynomial mappings. The interpolation-based approaches

do not use the geometry of the eye; instead, they use more general image vectors as

gaze points. Neural network based methods; some points are used as features

predefined in the face. Then, a model is chosen to train. Features data are trained and

eye gaze coordinates are determined.

2.5.2 Appearance - Based Gaze Estimation

Appearance-based methods without the need of any camera calibration, occurred

mapping directly based on the photometric view of the objects. This method made

with gaze data by looking different angles to the screen.

Some studies about appearance-based methods: gaze tracking is proposed based on

Run Length Coding (RLC). The appearance-based methods detect and track eyes

directly based on the photometric appearance. Appearance-based techniques use

image data to get the gaze direction by mapping image data to screen coordinates

[17]. These methods require preprocessing and post-processing steps including

image analysis but not camera calibration.

14

2.5.3 Eye Tracking Applications

Eye tracking technology is used many technical studies such as Pc and gaming,

psychology, market research, academic and educational research.

But even today it is not directly applicable. It does exceed laboratory experiments.

Many devices become more reliable and hopeful about this area. But many of the

interests are related to the HCI based eye gaze. Because, artificial intelligence give

the best researches areas to involve a software-based application development. It is

more convenient due to its natural. The software-based methods directly play an

important role in daily life in a way of e-learn, e-game, e-socialize. These software-

based techniques mainly divided into two categories: intrusive eye gaze trackers and

camera-based eye trackers.

 2.5.3.1 Intrusive Eye Gaze Trackers

Intrusive eye tracking techniques can be contact lenses, EOG signals. These are very

close to the eye as seen in Figure 2.5. Intrusive gaze trackers are more accurate

because of it is closeness.

The contact lenses type eye tracking system as seen in Figure 2.5 consists of an

enclosure material, a three point electrooculography EOG sensor and a controller.

Two type enclosure materials concave and convex are mounted on the eye region.

There is a sensor that indicates the voltage levels of this material. The capacitive

sensor system is disposed within the enclosure material. The capacitive sensor

system has at least one capacitance value that varies with changes in a gazing

direction of controller both controlling of sensor power and also evaluating the eye

position.

Figure 2.5 Contact lenses for eye tracking [18]

15

The electro-oculogram signals (EOG) are both cheap and easy to use. It measures

skin potentials as seen in Figure 2.6. It is more common in medical applications not

for human-computer interaction. Some electrodes are placed around the eye with

some distances. These electrodes measure the change of these distances changing the

skin.

2.5.3.2 Camera Based Eye Gaze Trackers

Camera-based eye gaze tracking uses a feature of an eye that is detected and tracked

by a camera or optic devices. This method is non-intrusively.

As a feature of eye tracking sclera, limbus and pupil detection is used. Limbus does

not capture when eyelids cover. So it is not reliable for full-time detection. The pupil

is hard to segment but unique due to circularity. To detect eye easily IR light is used

as assistive. It is turned on and off in a range of time. So pupil is detected easily.

2.6 State of The Art

There are many approaches to a use of eye tracking efficiently. For instance, Sclera-

based ellipse detection proposed by Hansen et al [20] and [21]. This approach is

directly related to the resolution. Very near taken frames are required. Technically

two circle measures can give more accurate result. But it takes more calculation time.

Wrinkled regions and eyelash edges are ellipsoidal. That makes difficult to find the

most obvious geometry on the face is iris circle.

M.Ramezanpour et al [22] studied color feature to localize eye point as a new

method. They apply a new color space, GLHS that is converted from RGB data. This

method works well. The user faces a huge accuracy problem and the energy of

Figure 2.6 EOG for eye tracking [19]

16

algorithm by means of calculating power is too big to compute. That is, algorithm is

too long and exaggerates the calculating time

A light reflection based method proposed by Shubham Singh et al [23]. Light comes

to the eye region in a condition spot lightening. This method based on controlled-

environment. Bright and dark images taken by light source and camera subtracted.

This method is uncomfortable and makes a general application hard due to different

shapes of the eye region.

Bülent Turan et al [24] proposed a method which does not require any additional

hardware but a webcam. Neural networks are used for gaze point control. Because of

declaring saccading and fixing problems inevitable, they declared 100% efficiency

on their own dataset study. But, this method troubled with saccadic movements on

mice points because of uncontrolled environmental conditions.

Over the last decade, many techniques are developed on the task of vision-based eye

detection [25]. These are separated into two main categories, respectively

appearance-based and feature-based methods.

2.7 Challenges

This study also discusses some difficulties to handle use of an eye gaze as Pc input.

There are plenty of challenging things to overcome to use an eye as a pointer to a Pc

or any devices with a processor. The most difficulty is illumination of the

environment as seen in Figure 2.8 and head movements as a posed problem as

described in Figure 2.7.

Figure 2.7 Head movements effects [26]

17

Uncontrolled environment lighting and object diversity, the biggest problem that

needs to be overcome in applications using image background. The variety of objects

causes heterogeneous light distributions as seen in Figure 2.8, different reflections

and indirectly local light changes on the face. This is also evident as a bad quality

image.

Pose, the user can hold his hand on his head, rub his eyes and be in distractibility. If

the user is using a portable device, the user can keep it at different angles and thus, it

occur a posing problem.

Eyelash (Half, fully open state), there is a half or full or unmeasured open and closed

state of each one of the left and right eyes. This faces a huge problem to tackle.

Distance, the user may need to use the application at changing distances in different

HMI. For example, when a patient is lying in a bed, on a passenger seat, or when a

student is studying. The point detected at different distances is expressed by a

different number of pixels. As result, for a geometrical image analysis, dimension

problem occurs.

Camera Properties, with the webcam focus feature, the image has the HDR feature

as the lighting feature. HDR features of cameras are very important in uncontrolled

environments. Since the eye movements are very fast so, Fps specifications of the

cameras are also blurring and boosting at this point. The resolution of the camera

must be a certain standard in order to overcome sensitivity problems due to regional

differences to be used for this application.

Figure 2.8 Lightening effects [27]

18

Calculation time, almost all HMIs have video cards. Frames processed in image

processing techniques, even if they are not in high resolution, must be at a certain

speed in order to be able to respond to eye movements and the user's instant requests.

This point is also making it more important to do high-speed calculations in parallel

with the main processor using graphics cards.

19

CHAPTER 3

CAMERA CALIBRATION

3.1 Introduction

Camera is a much-known occurrence for daily and industry life for a long-long time.

Camera measurements are pixels. It is necessary to convert pixel values to metric

values for a physical estimation as a process before coding. Camera’s internal and

external properties are calculated and taken a session of data have to use on the

acquisition of a calibrated image. There is an image in Figure 3.1 which is

represented the way of the calibration.

As for internal quantities that affect imaging process, image center is not on the half

of height and width size. Focal length must be recalculated. Scaling factors for the

pixels are not exact. That is, row and column sizes are not proportioned to a stable

value.

Figure 3.1 Camera calibration setup

20

Skewness of the pixels is changeable to the camera to camera that has to be

computed. Very much type of lenses has too many diversity of distortion. Lens

distortion meets an overcoming problem to use camera, effectively. As for the

external quantities of the camera is related to the rotational and translational

positioning of the camera due to the world frame that is a fixed coordinate system for

representing an object in the world. The external parameters are very significant if

the camera or taken object is moving.

3.2 Estimating Parameters

Camera calibration can be defined to the determination of internal camera optical and

geometric behaviors and 3-D orientation and localization of the camera for world

coordinate system. Computer vision and machine vision applications highly require

the accurate camera calibration process.

Several methods for camera calibration are in the literature. The classic methods [28]

solve the problem by decreasing the non-linear error. The time algorithm efficiency

is taken into account, some other method like closed-form solutions are suggested

(e.g. [28], [29] and [30]). But, these methods take the problem so easy and therefore,

they do not provide better results as nonlinear minimization. There are also

calibration procedures where both nonlinear minimization and a closed form solution

are used. [31] In this study, it is used Matlab calibration application depending on the

paper [32], [33], [34]. The calibration parameters are simply taken several steps.

Calibration process in the background of the codes occurs below:

Object coordinates (3D) >> world coordinates (3D, extrinsic) >> camera

coordinates (3D, extrinsic) >> image plane coordinates (2D, intrinsic)>> pixel

coordinates (2D, intrinsic).

 3.2.1 Intrinsic Parameters

Camera intrinsic matrix is acquired after calibration. This matrix transformation

occurs post-projection and can be decomposed shear, scaling and translation

transformations. This matrix gives the parameters of the skewness, focal length and

principal point offset.

21

3.2.1.1 Skewness

Skew factor is added to the intrinsic matrix to calculate also pixel orientation. If this

orientation is not corrected as a rectangle, distortion is not accurate. Images

row/column value is named ‘aspect ratio’. This shapes the pixel how much amount

of deviation from a square geometry is.

3.3.1.2 Lens Distortion

Distortion parameter changes camera to camera. It is about lens manufacturing

technology. Moreover, cameras or lenses have usability for many purposes in many

fields. In some areas, lens distortion becomes more important, for example, vision

applications. There are two types of well-known lens distortion.

Barrel distortion , when straight lines are curved inwards in a shape of a barrel, this

type of aberration is called “barrel distortion”. Commonly seen on wide angle lenses,

barrel distortion happens because the field of view of the lens is much wider than the

size of the image sensor and hence it needs to be “squeezed” to fit. As a result,

straight lines are visibly curved inwards, especially towards the extreme edges of the

frame. [36]

Pincushion distortion is the opposite of barrel distortion as seen in Figure

3.2.Pincushion distortion is the exact opposite of barrel distortion – straight lines are

curved outwards from the center. This type of distortion is commonly seen on

telephoto lenses, and it occurs due to image magnification increasing towards the

edges of the frame from the optical axis. This time, the field of view is smaller than

the size of the image sensor and it thus needs to be “stretched” to fit. As a result,

straight lines appear to be pulled upwards in the corners, as seen below:

Figure 3.2 distortion factors for camera calibration [36]

22

3.3.1.3 Focal Length

Focal length is defined as a distance between the pinhole and the film. It is shown in

Figure 3.3. Focal length measurement is pixel which it plays an important role in

image characteristics. For example;

• The image has been non-uniformly scaled in post-processing.

• The camera's lens introduces unintentional distortion.

• The camera uses an anamorphic format where the lens compresses a

widescreen scene into a standard-sized sensor.

• Errors in camera calibration, in all of these cases, the resulting image has non-

square pixels. There are plenty of pinhole cameras.

3.3.2 Extrinsic Parameters

There are two reference frames to get the extrinsic parameters of the camera. First,

camera reference frame and second reference world frame. Transformation matrix

between these two frames determines the translation and rotation parameters of the

camera. Recall the fundamental equations of perspective projection – assumed the

orientation of the camera and world frame known–this is actually a difficult problem

known as extrinsic pose problem – using only image information recover the relative

position and orientation of the camera and world frames [38]. Scale factor w, image

points x, y and X, Y, Z world points are given in equation (3.1)

 W[x y 1] = [X Y Z 1] P (3.1)

Figure 3.3 Focal length for calibration [37]

23

Camera matrix P, rotation R, translation t, K intrinsic matrix given in equation (3.2);

 (3.2)

3.3 Calibration Process

Camera calibration is the process of estimating the parameters of the lens and the

image sensor. Camera calibration is done for getting a better accuracy to compute

gaze points. Matlab Camera Calibrator App is used to estimate that camera intrinsic,

extrinsic, and lens distortion parameters [39]. For the calibration data, sampled 20

frames with a checkerboard (7x9) are computed to get camera parameters. The

acquired .mat file is included by main eye detection algorithm. The world points are

transformed to camera coordinates using the extrinsic parameters. The camera

coordinates are mapped into the image plane using the intrinsic parameters. Image

with respect to camera is plotted 3D as shown on Figure 3.4.

 Figure 3.4 Extrinsic parameter visualization

24

As camera internal properties center point, focal length, skewness factor) and

external properties (rotation, translation) are included in the algorithm as camera

parameters data in Figure 3.5. The bar graph indicates the accuracy of the calibration.

Each bar shows the mean reprojection error for the corresponding calibration image.

The reprojection errors are the distances between the corner points detected in the

image, and the corresponding ideal world points projected into the image. Camera

parameters are to use lens distortion and undistorted image as a part of the algorithm

and provided that better results.

All the calibration samples are shown in Figure 3.6.

Figure 3.5 Reprojection errors for images

25

 Figure 3.6 Calibration images

26

CHAPTER 4

DESIGN & IMPLEMENTATION

4.1 Introduction

This chapter consists of two main parts. First, the algorithm, second, interface design

and implementation of algorithm are presented, respectively. Eye tracking and eye

processing techniques has several steps to apply. At this work, very famous Viola &

Jones algorithm is used to detect face and eye pair region. At this point, as a strategy

of preprocessing, all edges, corners noises in the eye region are smoothed and

removed. And there is only three kind regions. Finally, a suitable threshold is

applied. After some morphological operations, Circular Hough Transform is applied

to this region and eye-ball is easily detected. To sum up, this study, mainly, consist

of capturing, distortion, processing and analyzing of image step by step.

4.1.1 Algorithm

The algorithm is based on the Matlab programming language and as a compiler.

Image acquisition, Image processing and Computer Vision Toolboxes and some GUI

applications are used. Script is simply a list of commands to run different from

function that is return a value or needs some arguments. This command means a

function or an object that is already built in Matlab. It is constructed with a lot of

process in the algorithm so that functions and objects are returned in an order just

writing their name. If the script that ends in the (.m file) is placed in our Matlab

directory, it runs successfully. The algorithm consists of several basic image

processes such as image acquisition, image calibration, and image processing and

eye localization for tracking. The image is processed in order to find the point on the

screen to find the gaze point. In this sequence, gray conversion, extracting of eye

regions, image intensity processes and some filtering operations (Median, Gaussian)

are performed. There are two main stages at this point.

 i) The presence of the center of the eye

ii) Determination of the coordinates of the eye points on the screen.

27

4.1.2 Matlab as a Development Environment

Matlab, which stands for Matrix Laboratory, is a complete programming

environment that encompasses its own programming language, IDE (integrated

development environment), libraries (called toolboxes in Matlab), amongst many

other things [40]. Matlab is a high-level language that means the developer does not

have to deal with some detailed stuff. As a language, it is very easy to build an

algorithm, applications and any kind of calculation because of its well documented

resources and Mathworks site (file exchange, webinars etc.). Matlab provides very

effective tools to handle with image processing environments. Developing an image

processing algorithm is made easy due to all toolboxes are in the same ecosystem.

There is a lot of GUI s to help for simple calculations and predictions and so on. For

example for image processing, many process such as camera calibration,

morphological operations, segmentation, color analysis, image acquisition are

handled with GUI’s.

4.2 Image Acquisition

Image acquisition is both first stage of the image processing and the most significant

part of an application developed with image processing techniques. There are plenty

of camera module provides different data formats, color spaces, color patterns and so

on. But they simply produce image that is the 2D array in our case. Chroma

resampling that is the way to sample image data sent by an image sensor. For

instance, 4:4:4, 4:4:2 (r, g, b); color correction that is used to adjust white balance,

brightness; gamma correction that is used to encode linear luminance or RGB values

to match the non- linear characteristics of display devices [Xilinx]; deinterlacing is

used to incoming interlaced frame joining a progressive image; timing controller is

very important for image processing which types the image is shuttered and exposed.

One of the ways of image data streaming is known Real-Time image acquisition. It

can be defined retrieving image data automatically from a source such as, a camera,

telescope, and microscope etc. There is a huge problem when acquisition from a

webcam is timing due to many frames storage and processing time. The camera fps

changes with time. If triggering happens in a range, then timing and latency problems

may occur.

28

But in this study, there is no more focus on these issues. Device properties are fixed

by Matlab Image Acquisition Toolbox and Image Acquisition GUI. The GUI detects

and configures hardware options. The toolbox enables acquisition modes, such as

processing in-the-loop, hardware triggering, background acquisition, and

synchronizing acquisition across multiple devices. Acquired image for this

application is shown in Figure 4.1.The image is taken from the webcam as 800x600

resolutions, 30fps in RGB color space. Acquisition parameters such as fps, exposure,

and frame size and color mode are firstly fixed. 640x480 resolution of the camera is

easy to calculate but gives not accurate results.1280x1024 resolution is very good but

hard to process for our algorithm. Approximately 4 frames per second is used for our

program adding calculation time of the algorithm. Real-time image process did not

happen because of processing time and camera changing frame rates. Reasons are

discussed in the future work section.

4.3 Image Calibration

Cameras are used for a long time in the HCI environments. However, the

cheap pinhole cameras became a common occurrence in our everyday life. This

cheapness brought its significant distortions which are constants and with a

calibration and some remapping that it could be fixed.

Furthermore, with calibration it is possible to determine the relation between the

camera’s natural units (pixels) and the real world units (for example millimeters)

[41]. Camera calibration for a measurement is so important. Distortion parameters

for a use of image sensor and lens as internal parameters changes from the camera to

Figure 4.1 Input image

29

camera. To obtain these parameters and use of them in an image acquisition

algorithm gives more accurate results. Shortly, a raw image enters and an undistorted

image is acquired.

4.3.1 Image Correction

There are two physical defects on the cameras while providing us an image. More

accurate parabolic lenses are hard to manufacture and this causes to positioning a

lens in a camera after through the image sensor. Finally, these two types of distortion

are inevitable in the end. Radial distortion is about the how spherical the lens is and

tangential distortion is relevant to the lens if it is parallel to imaging plane or non-

parallel. Without undistorting the image, we cannot measure a distance between two

objects like eye pairs. In Matlab, user does not know what happens in the

background while calling system objects, classes and structs. Undistorted image

objects give the camera parameters to apply for a frame. As seen in Figure 4.2.

Undistorted image is attained implementing camera parameters to the raw image.

Camera parameters are included to algorithm after image acquired. External

properties (rotation and translation) of webcam and internal properties such as skew

coefficient, focal length, and optic center are used to correct the image. Real world

object points are mapped on a new plane called image points. A new origin is

defined. Finally, the frame is linearized as it can be that means the distances between

objects are proportional to the image as in the 3D world. So, the fully calibrated

image is obtained and image pixels are then more accurate for the measurement.

Figure 4.2 Undistorted image

30

4.4 Grey Level Operations

Cameras can be grouped as monochrome and color. The monochrome camera as a

device gives the 2D gray level image. Gray level means 2D image to be processed

with its values changing 255 from 0.It can be any image or image component such as

R, G, B; Y, Cb, Cr etc. taken from the camera. Color image is 3D but can be easily

converted to gray level with hardware or software wise design. After converting, the

image is going to be ready for spatial and frequency domain filtering, intensity-based

operations, enhancement, smoothing, sharpening and so on. The monochrome

cameras have higher sensitivity and give more details. Webcams produce the RGB

image that loads the conversion to the processor. A color image sensor captures 1/3

of light because of its sensors. There are three filter layers red, green and blue. Thus,

light coming through lens is divided. And then, finally one image is produced.

Output depends on the demosaicing method. That proves every software application

including data conversion can replace using a binary image sensor. At least, it is

more appropriate for the prototyping process. That is, webcams with color image

sensors can be accepted wrong choice for computer vision applications. It decreases

of calculation time and pixel data precision. Especially, to detect an object or some

features of it must be extracted. The feature can be defined anything that differs the

target object or region on an image. Eye circle, eye color, eye edges can be used as

features. Feature extraction algorithms are consisting of grey level operations,

segmentation and binary level operations. Grey level operations in this study can be

summed into first, neighborhood kernel operations as Gaussian, averaging filters;

second, as a shading correction operation contrast stretching; third, as a Thresholding

method, Otsu. Grey level operations ends with Thresholding. A value locally or

globally turns to image binary values

4.4.1 Eye Pair Detection

After calibration process, Image is first converted to gray level. Well-known

computer vision technique, Face detection by Paul & Viola Jones algorithm [37] is

applied and eye pair is clipped as right eye end left eye image from eye pair image as

seen in Figure 4.3.

Figure 4.3 Extracted eye pair region image

31

 Pre-built system objects for Computer vision toolbox are used for detection. After

detection operation, Eye pairs are respectively preprocessed by Gaussian and

Averaging disk filters to get rid of noises and entropy of image. Then, Contrast

normalization is done. After all, a global threshold level is computed by Otsu Method

and it is used to convert this intensity image to a binary image.

4.4.1.1 Viola-Jones Algorithm

In paper [43], Yi-Qing Wang has studied Viola-Jones algorithm in detail. Viola-

Jones algorithm is a revolutionary work has been done in the field of computer vision

using Haar as seen in Figure 4.4.

Robust and fast detection of face and face parts make it so applicable. They

discovered the best features that are on a face but not in any other object. Lightening

conditions are minimized, almost compensated and the most suitable features as Haar

cascades are described using machine learning algorithms to tackle that problem. To

sum up this framework; first, a database is built from both positive (There is a face

on the image) and negative images known as train images and also some more to test

in another folder known as test images. Second, training a model and it produces a

classifier that detects face in an image taken from all around. Classifier is an .xml file

that is produced. It stores the all image characteristics and used as comparing the

input image to this stored values. The main algorithm consists of four steps as Haar

features, integral image, AdaBoost, cascading.

Haar features, there are many types of features of black and whites. All features are

like vertical, horizontal, diagonal stripes. These features are applied to the image. If

there is any match of these features on the image, this region is pointed. For example,

Figure 4.4 Haar cascade features [42]

32

eye regions are black. To find eye areas first feature is applied to the image as seen in

Figure 4.5. Noise region is most bright are on the face. This information is extracted

using second features. Viola-Jones algorithm uses 24x24 images. And a sliding

window of this features scan all of the pixels one by one.

Integral image, Image features that match the Haar features is calculated by

summing both black and white pixels. This is an intense computation of the

processor. Viola-Jones uses a trick of computing of only corner pixels. Logic is any

rectangular area on an image is adjacent to another.

AdaBoost algorithm is to eliminate the redundant features. After features detected,

there are 160 000 features to construct a face. To complete a face, relevant and

irrelevant features must be separated.

Cascading, after AdaBoost 2 500 features are to handle. These features are grouped

and decided if it is face or not.

4.4.2 Smoothing Operations

In this assertation, two smoothing operations are made. First, as a non-linear filtering

operation, Gaussian, second; as a linear filtering average. If you compare these two

filters, both filters attenuate high frequencies more than low frequencies,

But the mean filter exhibits oscillations in its frequency response. The Gaussian on

the other hand shows no oscillations. In fact, the shape of the frequency response

curve is itself (half a) Gaussian as seen in Figure 4.5. So by choosing an

appropriately sized Gaussian filter it may be fairly confident about what range of

spatial frequencies are still present in the image after filtering, which is not the case

of the mean filter 43].

Figure 4.5 Filtered image

33

4.4.2.1 Gaussian Filtering

 Gaussian operation is used to blur images and

noise removal as a smoothing operation. In this study, it is noticed that Gaussian

Filtering can be used to accelerate the algorithms. For instance, image acquisition

size can be decreased from 1920x1800 to 800x 600, additively, applying the

Gaussian filter.

The Gaussian filters as a nonlinear filtering used for the images as 2D. The Gaussian

kernel formula is:

Sigma is used for the degree of smoothing. Gaussian kernels are decreased far from

the center of kernel. Main purpose to use of Gaussian filters is frequency domain

responses and it is low pass filters. As seen in Figure 4.6, the image is

smoothed,while sclera and eyeball edges and corners are weakening, also, eyeball

and sclera is regionally distributed uniform. Edges after applying the Gaussian filters

become geometrically more smooth. As a pre-process before thresholding gaussian

filtering is so significant to utilize. The Gaussian filter includes a little more

mathematical calculations so; it is not preferable for the GPU Calculations compared

to CPU.

4.4.2.2 Average Disk Filtering

Common names of this filter are known box, mean, average to be used to reduce of

intensity difference between one pixel and the next.

The average filter is a smoothing operation implemented for getting noise reduced

and blurred the image. It is a linear filter and easy to apply. Center pixel becomes the

average of all neighbor pixels related to selected window which must be an odd

number. Generally, it is used as 3x3 kernels but default 5x5. Smoothing degree

comes with calculation problems. So the smaller window is better. In this

application, circular average filter is used to get circular object more segmental.

Figure 4.6 Box filter as linear vs. Gaussian filter as a non-linear [43]

34

This function increases the accuracy of detected eye and gives better results. As

compared Figure 4.5 to Figure 4.7, it is obvious to realize that Figure 4.7 is not more

complex, edges are removed. There are only black, white and skin color regions.

Now there is only one more step remaining is to apply contrast normalization

through the whole image. Average filters act as low pass filters because of positive

values. The sum of all the elements should be one. If gain is greater than one, the

filter attenuate, otherwise the filters amplify.

4.4.3 Local Contrast Normalization (LCN)

Contrast stretching is used generally in medical imaging applications. It can be

grouped as local and global, partial, dark and bright contrast stretching [44]. It is a

good study to compare different contrast enhancement technique. In this study, local

contrast enhancement is implemented to the filtered image. Contrast is a useable

factor for a human eye in an image. Contrast normalization is used non-linearly

change of an image to normalize. The most important part of the grey level operation

is to eliminate the intensity distribution through the image. Local contrast

normalization makes the dark areas darker, bright areas brighter. As an alternative to

histogram equalization, at this point, gives locally better results to clear eye

localization while normal or adaptive histogram equalization methods are global.

LCN is pixel basis. Every pixel is particularly processed by removing the mean of

the neighborhood and divide by its variation. It can be said that this Contrast

normalization technique as seen in the Figure 4.8 gives better results for the well-

blurred image.

 Figure 4.7 average filtered images

Figure 4.8 LCN applied image

35

It admits whole intensity values as a low and high and then mapped to the whole

image. It can be noticed that eye balls are blacker and around are not. Matlab contrast

adjusting tool is a good way of seeing the contrast values. This tool presents a scaled

histogram of pixel data. Maximum and minimum values are known and a range can

be defined.

4.5 Thresholding

Segmentation is a separation of an image into regions related to target objects. So,

Thresholding is the simplest segmentation method to find eye region which is used to

obtain binary images from grey images. It simply happens to define a constant and to

compare it with every single pixel. If the pixel value is greater, it is allowed this pixel

to white, otherwise, admitted as black. Thresholding techniques can be categorized

into six groups as presented below.

Histogram shape-based method is based on the shape of the histogram. For example,

convex hulls take the deepest concavity point; the peaks, valleys, and curvatures of

the smoothed histogram are analyzed and taken one or two points as the threshold.

Clustering - Based methods where the gray-level samples are clustered in two parts

as background and foreground object, or alternatively are modeled as a mixture of

two Gaussians.

Entropy-based methods result in algorithms that use the entropy of the foreground

and background regions, the cross-entropy between the original and binaries image,

etc.

Object attribute-based methods search a measure of similarity between the gray-level

and the binaries images, such as fuzzy shape similarity, edge coincidence, etc.

Spatial methods use higher-order probability distribution and/or correlation between

pixels. These methods use grey value distribution and pixel neighborhood. For

example, context probabilities, correlation functions, 2-D entropy etc.

Local methods adapt the threshold value on each pixel to the local image

characteristics. In these methods, a different threshold is selected for each pixel in the

image. The threshold is computed with every pixel depend on some local statistics

36

like range, the variance of neighborhood pixels. Versions of local contrast and

variance are developed.

4.5.1 Otsu Thresholding

Image processing continues after grey level operations converting into a binary

image. There are several methods to decide a threshold value. Some thresholds are

local or global, some thresholds are multi-level. The aim is to acquire best non-

overlapping regions or images whose foreground is exactly separated from the

background. In this study, Thresholding is used to binaries the preprocessed image.

To explain Otsu method, first all possible threshold values are calculated as variance

and weight. Foreground and background pixel values are separated. To both region,

minimum variance value is purposed. Finally, a mean-variance class is calculated

with the weights to foreground and background images. If the mean -variance class is

min, that value is picked as a threshold value. As seen in Figure 4.9, after

Thresholding process, gray image is separated to foreground and background to

show the target object.

4.6 Morphological Operations

Morphological operations can be defined an image built with black and white regions

instead of pixel values. These operations that only need an image and a structuring

element are simple to implement. What the important is pixel order, connectivity and

neighborhood. The structuring element is binary image or kernel which assign to the

structure of neighborhood. Structuring elements play the same role as convolution

kernels in linear filtering operations. The structuring element has dimensions, shape

and an origin to apply. Matrix size changes depending on the size of an image or

asked shape of the feature. The structure shape consists of 1 and 0 values and applied

to every pixel with sliding window method. There are actually two main operations

as Dilation and Erosion but different from of these operations, there are other

operations such as opening, closing, top-hat, gradient etc. Dilation is simply adding

Figure 4.9 Threshold image

37

pixels to the boundary and erosion just opposites of it depend on the kernel shape and

size. Opening is used to remove noises, small areas between regions and closing is

reverse of opening. Gradient can be defined as the difference between erosion and

dilation. Top - hat is the difference of the image and the opening of this image.

 4.6.1 Logical - Not Function (~)

As binarization process, Logical - not function is most important to apply to the

image and so, noises, small pieces are removed both white and black regions. To

inverse of any pixel value (1 to 0 or 0 to 1) and then apply the structuring element to

the image provides to overcome big challenges. Finally, It is gotten a more clear,

descriptive and usable image.

4.6.2 Small Pieces Remove Operation

Preprocessing operations are aimed to get a clean binary image. However, it does not

happen complete as expected. Because, there is not perfect segmentation and

contours of the objects. So, small pieces and noises removing operations must be

applied as the first operation of the binary process. As seen in Figure 4.11, some

small pieces, noises are eradicated applying this process if it is compared to Figure

4.10.Small pieces removing algorithms work that way; first, connected components

are defined and computed the area of each component, then removed small pieces.

The connected components are composed of the steps of searching unlabeled pixels,

using flood-fill to label all the pixels in the connected component containing this

Figure 4.10 Small Pieces removed image

 Figure 4.11 Edges chopped off image

38

pixel, repeat this for all pixels. For area calculations, segmentation of grey image is

necessary to discover the binary objects and analyze the original gray scale pixel

values corresponding to each object in the binary image. There are three general

neighborhood parameters 4-6-8. To label of an object after calculating the area is

first encoded with run-length, scanned and assigned the preliminary labels to a table

separated the classes to be relabeled again. Finally objects built with 4 connected

components are labeled [39].

At the end of this step, one more operation as named chopping is made using

morphological binary tools. The detected region before is eroded with a structuring

element. This is done to get more accurate circle just chopping off the edges. An

object that composed of connected components shrinks after this operation.

4.6.3 Circular Hough Transform (CHT)

Hough transform is a feature extraction technique that is used to find eye circles.

Hough transform is first utilized to identify the line positions, but then developed to

localize circles, ellipses and some other arbitrary shapes. The transformation begins

first to find the aligned points that create lines. This is achieved by applying edge

detection operation and lines are extracted. The main logic is what defines a line or a

circle. Circular Hough transform is used to find eye circles as shown in Figure 4.12.

Eyes are simple and easy to find because of it is unique in the face area as the circle.

Circles can be detected dark and bright areas which to the choice. To implement

Hough circle extraction, three parameters are necessary such as x, y coordinate and

radius.

4.7 Application Design

Pointing (showing something with your body action) to user interfaces in human-

computer interaction is a very high-level communication. Pointing to an object is

easy to say or write its name. Most user interfaces use the mouse, trackball, track

point, joystick, touchpad or a touchscreen while scrolling a folder, for example,

Figure 4.12 Eye localization image

39

setting the cursor position when writing, selecting an option from the menu. The use

of mice from traditional pointing devices can cause physical problems. Many

designers and computer players suffer from the carpal tunnel syndrome. In most

cases, it is very difficult to locate the pharynx while the dual screen is running.

The big part of our study is to develop an eye gaze interface which is going to be

suitable, friendly and funny for the kids.

4.7.1 Algorithm Process

As a developing process, firstly, all documents published, books, journals to control

the cursor and to track an eye gaze are scanned. These materials proved that there

exists a lot of way of making eye controlled. Main blocks are shown in Figure 4.13.

Image acquisition application is used to take videos with putting some points on the

screen as horizontal, vertical and diagonal with equal distances. Distances are

pointed to get better results with eye gaze skipping as far as the gaze pointing

sensibility is enough. Videos divided into individual frames based on the gaze point

on focus. Videos are taken in different environmental conditions and different rooms

with different backgrounds and lightening. Then, video and frames for calibration are

acquired with same methods. Since the taken images are distorted, they are to be

corrected firstly and then processed and analyzed consequently. After algorithm is

developed, it is run with a GUI. To start an application, calibration step is first

launched after clicking on the start button with mouse and also pointing this icon

with eyes to localize itself with respect to PC screen. During calibration, piano music

rings two times. User must look first top left corner on the screen with first ring and

then, to bottom right corner. Now, eye gaze interface is ready for e-learn.

Image

acquisition

Eyeg

tracking

Image

calibration

Perform

events

Figure 4.13 Block diagram of the application

40

4.7.2 Calibration Process

As a priority, every user needs to undergo a personal calibration process after the

user looks at the screen. This is because there are a lot of people have a different

shape, color, size vs. characteristics. In this application the user stares at 1 second for

predefined points as shown in Figure 4.14 and totally calibration ends up within 5

seconds.

If this is compared to other studies, it is noticeable that the process is incredibly

short. As a calibration process, two points are chosen that the user look at both top

left corner and bottom right corner. It is important to keep the calibration process

short and easy because it might be done several times. As shown in the figure, the

calibration process is completed in three steps. First, gaze is focused on the start

button, second, top left corner and then bottom right. At his point, while focusing on

these dots, time- based information could be sent making the dots exploded and turn

into pieces spread. A click mechanism is taken 0,5 s per a station as seen in the

Figure 4.14.

4.7.3 Graphical User Interface (GUI)

GUI is a kind of communication between human and computer. It makes the things

easier. Many interfaces existed and these interfaces are completed for user

experiences. GUI is can be called the second generation for HCI after command line

interactions with typing commands. Next interaction is going to be eye gaze systems

to make things easiest and efficient. Matlab provides an easy environment that

Figure 4.14 Calibration process route

41

eliminates the use of language and type commands to run an application to build a

GUI. In this eye-gaze application, pushbuttons to the image process, axes to show the

image and text spaces to show the coordinates of eye gaze are used. One more ability

to our application is to use voice to communicate with a computer. The use of voice

makes the application more dynamic. When a kid looks at the bear, and hearing the

roar of the bear helps the kid to learn more effectively. It is believed that learning is a

process which is related to how many sense organs are active in it. The more the

sense organs work, the easier kid learns. So that also can be admitted another reason

to add some voices to the application.

4.8 Eye Gaze Interface

Involving technology needs to make the use of hands faster or another method

because of new generation processors and high-speed computing units. In this study,

eye gaze as the fastest organ of the human body is used to give commands to the

computer. Four types of eye gaze interface are designed for kid’s education to learn

letters, to teach animals, to learn colors and to teach the kids the numbers. There are

a lot of challenges to be handled like clicking, calibration, environment issues and

physical issues. The clicking is the most challenging task. This is achieved by timing

issues with the computer operating system facilities. Further studies can be done

using an RTOS (real time operating system) due to its task managing and timing

accuracy. The application depends on the calculation of the position of user gaze on

screen and test results are presented as a written text feedback.

4.8.1 Eye Gaze Animals

Many types of communication and gaming devices are nowadays in the hands of the

kids. They are mostly in use of game and social media interaction programs. Many

enjoyable things on the internet harm the education because of the intention of joy.

Also, urbanization makes the next generation out of the nature of plants and animals.

In this interface is first designed for the kids to learn objects like animals as a

beginning. It could also be developed by indoor and outdoor objects on different

pages on this application to meet the children with the world and, but it was the out

of the target.

42

Simply, kids are toughed to look the first calibration then asked to look an animal

said by its name. Figure 4.15 shows the eye gaze interface for animal names.

If the kid is wrong, hears the different voice of animals and tries again. Both voices

hearing and seeing the letters of the animal makes the learning fast. It also increases

the reading capability of kids. The interface is not only for the kids, and also could be

used for learning languages to adults.

4.8.2 Eye Gaze Alphabet

Alphabet interface is one of our best studies for preschoolers to learn letters in a

playful and funny manner. Learning A, B and C happen quickly, easily and correctly

pronounced vowels and consonants of the ABC for toddlers. Some sounding of

voices in the background lets the toddler pronounce truly.

 Figure 4.16 Eye gaze interface for alphabet

Figure 4.15 Eye gaze interface for animals

43

This interface helps the kids to stimulate fine motor skills and useful for future study

at school. The game is played after calibration process looking at three points on the

screen. Then, kid looks a letter and hears what it is. This game also assists for the

adults to get forced to learn letters of a language such as Arabic, Russian and

Chinese etc. as seen in Figure 4.16. The study showed that the distance between the

letters should be enough to detect and for better result higher resolution cameras are

needed for getting better results.

4.8.3 Eye Gaze Color

Eye gaze color interface for the babies, kids and toddlers provide to name the colors

and ability to tell by heart. It is simple and joyful to learn. This application could be

joined with animal objects and teach kids both color and animals. Color names are

universal but hard to explain in different densities. Color is a valuable pointing

feature in daily life. So that it is important to kids to socialize. Kids learn ten basic

colors with this eye gaze color app. In learn colors section, the kids can be trained

with memorizing of ten basic colors. Kids easily navigate among color icons as seen

in Figure 4.17. Toddlers look at a color button and see the name of it and hear.

4.8.4 Eye Gaze Number

Kids are very pure mind to learn easily and must be tended to learn with love. This

can be done with fun and easy manner with supported a kind of music and pictures

like a game. In this interface, there is a start button to begin to play the game. First,

Figure 4.17 Eye gaze interface for colors

44

calibration is done and then e-learn GUI is ready. Alternatively, this application as

number usage can be also modified for telephones. Telephones allow the user to

place and receive calls. If the interface is figured as a mobile application, frequently

used numbers can be stored in a telephone "book”.

On-verbal users or disabled peoples may access the numbers as shown in Figure 4.18

with their eyes non-using a speech synthesizer to talk [45].

Figure 4.18 Eye gaze interface for numbers

45

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

The application is primarily developed on a Windows 7 PC with Intel Core i7-

3630QM, 2,4 GHz. Monitor size is 13.6x7.6 in. Image is acquired by Logitech

webcam at 30 fps. The image is processed as gray scale of 800x600 pixels using

some structs of Matlab Toolboxes. The images are acquired and processed by Matlab

Image Processing and Computer Vision Toolbox after the calibration.

5.2 Eye Tracking Experiment

Screen coordinates are mapped to image points before application tests. The

algorithm is verified one point by one point through the screen in three directions.

Matlab image acquisition application is used, an A3 paper is painted and glued to the

screen and thus, eye gazes are navigated from left screen edge to right, up screen

edge to down and up left screen edge to downright edge and diagonal eye

localizations are computed with respect to screen points as a millimeter.

5.3 Vertical Eye Points

PC screen is equally divided into 12 points vertical and eyes are focused on these

points one after one. Images are acquired that eyes are looking at different points of

the screen vertically.

It is noticed that eye pair sizes are different from each due to Viola-Jones face

detection. Some points are clearly very exact. It can be inferred from the images that

eye centers are not much exact in y-direction because of eyelashes and eyelid. The

eye circles are not detected very accurate.

46

Semi black circle in a white area is not clear. Figure 5.1 illustrates the images

taken and Figure 5.2 demonstrates the position of the eyes with respect to the

image points. Eye circles accuracy is weak at down point of the screen. When the

points are matched, the error is less than 2mm and this can be negligible for the

application.

Figure 5.2 Vertically gaze points mapping to screen points

Figure 5.1 Vertical eye gaze localization points

47

 5.4 Horizontal Eye Points

As a pre-study, eye localization is mapped through the screen using the algorithm.

First, PC screen is divided into 12 points and eyes are focused on these points. The

images are acquired that eyes are looking at different positions of the screen

horizontally. Figure 5.3 illustrates the images taken and Figure 5.4 demonstrates the

position of the eyes with respect to the image points.

 It is noticed that eye pair sizes are different from each due to Viola-Jones face

detection. It is obtained that there is a good detection/match at the left side of the

screen points when compared with right side. Error is added to the algorithm and

divided by two. This error is not big enough to fit for the eye positioning.

Figure 5.4 Horizontal eye gaze points

Figure 5.3 Horizontally gaze points mapping to screen points

48

5.5 Diagonal Eye Points

PC screen is divided into 11 points and eyes are focused on these points. Images are

acquired that eyes are looking at different positions of the screen diagonally. Figure

5.5 illustrates the images taken and Figure 5.6 demonstrates the position of the eyes

with respect to the image points. At first glance, results seem not accurate but for a

middle-level application, results are good. At the of the screen points, matches are

not good enough so that algorithm is not going to work well at this points. Button

sizes are as big as it is fitted with the algorithm.

Figure 5.5 Diagonal eye gaze points

Figure 5.6 Diagonally gaze points mapping to screen points

49

5.6 2D Gaze Controlling Experiment

Users are trained about how to calibrate, start and stop the application. Whenever

kids want to use this GUI some like shown in Figure 5.7, the first calibration process

is rapidly run. After calibration, the time user or kid looks at the picture on the

screen, animal voices sound and animals name are seen on the screen as a response.

The user can listen to all the voices of the animals which (s) he points out. As a

response, the name of the animal is typed in the area below. Exit button is clicked

and application is quitted. It must be specified that application cannot be used

without a mouse. This makes senses when all use of a device is eye gazed. For

example, if a disabled people have no ability to talk, (s) he can show the letters on

the screen in such a way.

Figure 5.7 Eye gaze tracking game

50

CHAPTER 6

CONCLUSION AND DISCUSSION

6.1 Summary of the Results

The purpose of the study was to whether eye gaze assisting technology would create

a new interaction method for some peoples. The work is clearly understood that

using the only conventional computer vision (CV) techniques (Viola-Jones

Algorithm) is not sufficient to solve this problem, completely. But the results

presented here are promising interaction technique for the future. The eye is a

moving object so that changing the accuracy of the eye is limited. When people stare

at something on the monitor, they are generally stationary. If could be possible to

exclude head movements with some sensors, this might assist the proficiency of the

gaze system.

Behind the chapter four scenes, working with a single frame at any fps can give

irrelevant results from time to time, so it will increase usability by getting more than

one frame at a time and reaching a result with a mean of these frames. This is

achieved by more sample frames and averaging. Maybe a more microprocessor helps

at least on acquisition part. Eye detection cannot be precise to curser between two

letters. But large items are suitable for the beginning. The problem is achieved

enlarging the GUI elements. The huge picture buttons are studied in this study. As a

step forward, gif files could be used to pictures, some animations like lighting

fireworks. On the other hand, reading, awareness, physical and emotional states,

desires, attention would be the valuable further topics in this field. Eye complexity

and gaze tracking issues requires special instrumentation and/or devices more than

one computer and a webcam as devices.

6.2 Conclusion for Eye Gaze Systems

In this dissertation, a simple eye-tracking technology is described. The most unique

of this system is completely software wise. That is, no wearable, any touchy things

51

required. We proposed a low-cost camera for the users to learn objects having fun

with the sounds. Pupils at a circular geometry are scanned through eye pair region.

The system can be implemented depending on well-lightened environment and tilt of

the camera. The experimental results approved that usability of our proposed kids’

training method although, conscious and unconscious moves of eye occur. But still,

mouse and keyboard are more efficient and this eye gaze technology needs more

expensive tools to compete with others. Furthermore, head movements can be

included in the algorithm and more accurate detection can be achieved. In the end,

more funny and flexible algorithm for the game is gained.

6.3 Further Work

To the results obtained the point of gaze on the computer screen or the accuracy of

an area processed will contribute to ease and time efficiency. Because, the user looks

at the screen as fast as possible and communicates with it only applying a calibration

process as an entry. For this purpose, it is foreseen that hardware-based work is

unnecessary. It can be further work to use eye blink as right and left clicks to assign

the mice moves. An advanced Viola-Jones Algorithm in the OpenCV library can be

tried for next step study in this direction. Also, a constant threshold value can be

calculated by performing tests on different lighting media, and adaptive Thresholding

can be done to increase the sensitivity of the eyeball. Designing a specific eye

detector using a traditional CV techniques (CASCADE, HOG, LBP), a system object

can be programmed.

It can also be run on specialized face detection libraries as a pre-process to go even

further for getting clear and clear results, but, face landmarks could be more accurate

but no efficiency. Obviously, deep learning as an artificial intelligence is the most

effective way to solve many problems of image processing. It is only necessary to

create a database and create shape browser software. It is proven by this article that

deep learning can make more real and definitive decisions compared to the human

mind today. One more thing, a parallel computing library might be included to go

further.

52

REFERENCES

[1]. Saccading as eye movement: https://www.wikizero.com/en/Saccade 20.11.2017

[2]. Sibert and Jacob.2000. Evaluation of Eye Gaze Interaction : www.cs.tufts.edu

20.11.2017

[3]. Kyung-Nam Kim.1999.Vision-Based Eye-Gaze Tracking for Human Computer,

Department of Information and Communications, Kwangju Institute of Science and

Technology, Kwangju, 500-712

[5]. Bülent Turan.2015. Eye Tracing and Cursor Control Method with Domestic

Webcam doctorate thesis, https://tez.yok.gov.tr/UlusalTezMerkezi /tezSorguSonuc

17.10.2017

[6]. D.W.Hansen and Q.Ji.2010. In the eye of the beholder: a survey of models for

eyes and gaze. Pattern analysis and Machine intelligence, IEEE transactions on, pp.

478-500

[7]. I.Fasel, B.Fortenberry and J.Movellan.2005.A Generative Framework for real

time object Detection and Classification ”,Computer Vision and Image

Understanding,98 (1),182-210

[8]. Kass, M. Witkin, A. Terzopoulos, D. Snakes.1998.Active contour models,

International Journal of Com5puter Vision, 1(4), pp.321-331.

[9]. R.Valenti and T.Gevers.2008.Accurate eye center localization and tracking using

isophote curvature” in international Conference on Computer Vision and Pattern

Recognition (CVPR’08),Amsterdam, the Netherlands, pp.1-8

[10].R.L.Hsu, M. Abdel-Mottaleb, and A.K.Jain.2002.Face detection in color

images, Pattern Analysis and Machine Intelligence, IEEE Transactions on , pp-.696-

706

53

[11]. Eye regions figüre: https://pocketdentistry.com/2-surface-anatomy/ 20.11.2017

[12]. Eye Tracking for Disabled People, https://www.psfk.com/2014/12/new-eye-

tracking-mouse-opens-computing-to-users-with-disabilities.html 20.10.2017

[13]. Eye tracking in infant and child research, https://www.tobiipro.com/fields-of-

use/infant-child-research/ 20.09.2017

[14]. Eye Gaze Tracker Game for Kids, http://www.eyegaze.com/eye-tracking-

assistive-technology-device/ 20.11.2017

[15]. S.V. Sheela et al. 2011. An Appearance based Method for Eye Gaze Tracking

Journal of Computer Science 7(8): 1194-1203

[16]. D.W.Hansen and Q.Ji.2010. In the eye of the beholder: a survey of models for

eyes and gaze. Pattern analysis and Machine intelligence, IEEE transactions on, 32,

pp.478-500

[17]. Rikert and Jones, Morphable Model. 1998.Kar-Han et al.2002.Appearance

manifold Gaussian interpolation Sugano et al.2012. and Flavio et al. H.R.

Chennamma et. al. cross-ratio / Indian Journal of Computer Science and Engineering

(IJCSE) ISSN: 0976-5166 4(5) Oct-Nov 2013 391

[18]. Contact lenses, http://www.colormecontacts.com/colored-lens-haul-splash-of-

color-freshlook-and-acuvue/ 20.11.2017

[19]. EOG electrodes,http://aibolita.com/sundries/23641-overview-of-major-

eyemovement - recording-technologies.html 20.11.2017

[20]. Yoo, D.H et al. 2006.Non-intrusive eye gaze estimation using a projective

invariant under head movement, In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA'06), pp. 3443- 3448

[21]. M.Ramezanpour et al. 2010. A New Method for Eye Detection in Color

Images. Journal of Advance in Computer Research,

http://jacr.iausari.ac.ir/article_2393 e3b9 f237 e0b7e3dd32803.pdf 20.11.2017

54

[22]. Shubham Singh et al.2014.Cursor Control Using Pupil Tracking. International

Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, 2,

Issue-11,

[24]. Bülent Turan “Eye Tracing and Cursor Control Method with Domestic

Webcam” Doctorate Thesis

[25]. Visal Kith et al.2008.A feature and appearance based method for eye

detection on gray intensity face images, Computer Engineering & Systems, ICCES.

International Conference on, http://ieeexplore.ieee.org/document /4772963 .

20.11.2017

[26]. Head movements Figure, https://www.qualcomm.com/ news/on/2016/ 08/11

/device-motion-tracking 20.11.2017

[27]. Different lighting effects on a face Figure, https://www.computer.org/csdl

/trans/tp/ 2009/11/ttp2009111968-abs.html 20.11.2017

[28]. Slama, C. C. (ed.) (1980) Manual of Photogrammetry, 4th edition, American

Society of Photogrammetry, Falls Church, Virginia.

[29]. Abdel-Aziz, Y. I. & Karara, H. M.1971. Direct linear transformation into object

space coordinates in close-range photogrammetry. Proc. Symposium on Close-Range

Photogrammetry, Urbana, Illinois, p. 1-18.

[30]. Melen, T. 1994. Geometrical modelling and calibration of video cameras for

underwater navigation. Dr. ing thesis, Norges tekniske høgskole, Institutt for teknisk

kybernetikk.

[31]. Zhang, Z.2000. A Flexible New Technique for Camera Calibration. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 22(11) pp. 1330–1334

[32]. Heikkila et al.1997. A Four-step Camera Calibration Procedure with Implicit

Image Correction. IEEE International Conference on Computer Vision and Pattern

Recognition.

[33]. Bradski, G et al. 2008. Learning OpenCV: Computer Vision with the OpenCV

Library. Sebastopol, CA: O'Reilly.

55

[34]. Bouguet, J. Y. Camera Calibration Toolbox for Matlab. Computational Vision

at the California Institute of Technology. Camera Calibration Toolbox for MATLAB

[35]. Richard Hartley, Multiple View Geometry in Computer Vision, Second Edition

[36]. Distortion types Figure, https://photographylife.com/what-is-distortion

20.10.2017

[37]. Focal length Figure, https://www.learnopencv.com/tag/focal-length/20.10.2017

[38]. Course notes, http://ftp.cs.toronto.edu/pub/psala/VM/camera-parameters.pdf

20.10.2017

[39]. Matlab single camera calibrate webpace, https://www.mathworks.com/single-
camera-calibrator
20.10.2017

[40]. Matab as a programming language,http://www.matlabtips.com/what-is-matlab-

where-how-and-when-to-use-it, 20.10.2017

[41]. OpenCV camera calibration, https://docs.opencv.org/2.4 /doc/tutorials/calib3d/

camera_calibration/ 20.10.2017

[42]. Yi-Qing Wang.2014. An Analysis of the Viola - Jones Face Detection

Algorithm, Published in Image Processing On Line (IPOL) on 06–26.

[43]. Gaussian Filtering, https://homepages. inf. ed.ac. uk/rbf/HIPR2/gsmooth. htm.

20.10.2017

[44]. N.R. Mokhtar.2009. Image Enhancement Techniques Using Local, Global,

Bright, Dark and Partial Contrast Stretching For Acute Leukemia Images,

Proceedings of the World Congress on Engineering 2009 I, WCE 2009, July 1 - 3,

London, U.K

45].Eye gaze system use, http://www.gschlosser.de/eyegaze_english.htm. 20.10.2017

[46]. Rafael C. Gonzalez, Richard E.Woods, Digital Image Processings, third edition

56

APPENDIX A

Matlab Code (.m file)

A.1 Main GUI
% ---
% * Matlab Script (TEZ_GUI. m) which is main script for the application.
% * Purpose: Creating a user interface with axes, buttons to eye interact and also,
% use of callbacks for other scripts.
% ********** Author: Sinan KESKIN
% ********** Date: August 12, 2017
% ********** Version: 1,0
% ********** (c) 2017,University of Gaziantep, Turkey
% ********** E-mail: sinankeskin15@gmail.com
% ---
function varargout = TEZ_GUI(varargin)
% TEZ_GUI MATLAB code for TEZ_GUI. fig
% TEZ_GUI, by itself, creates a new TEZ_GUI or raises the existing
% singleton*.
% H = TEZ_GUI returns the handle to a new TEZ_GUI or the handle to
% the existing singleton*.
% TEZ_GUI('CALLBACK',hObject, eventData, handles, ...) calls the local
% function named CALLBACK in TEZ_GUI. M with the given input arguments.
% TEZ_GUI('Property','Value', ...) creates a new TEZ_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before TEZ_GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to TEZ_GUI_OpeningFcn via varargin.
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help TEZ_GUI
% Last Modified by GUIDE v2.5 02-Sep-2017 13:46:09
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State=struct('gui_Name'mfilename,
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @TEZ_GUI_OpeningFcn, ...
 'gui_OutputFcn', @TEZ_GUI_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})

 gui_State. gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}]=gui_mainfcn(gui_State,

57

varargin{:});
Else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
 % --- Executes just before TEZ_GUI is made visible.
function TEZ_GUI_OpeningFcn(hObject, ~, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to TEZ_GUI (see VARARGIN)
% Choose default command line output for TEZ_GUI
% Images are loaded to the user interface in the beginning.
handles. output = hObject;
bg_image = imread('cow. png');
bg_image=imresize(bg_image,[170,170]);
Set(handles. q, 'CData', bg_image);
bg_image1 = imread('elephant. png');
bg_image1=imresize(bg_image1,[170,170]);
Set(handles. C, 'CData', bg_image1);
bg_image1 = imread('dog. png');
bg_image1=imresize(bg_image1,[170,170]);
Set(handles. E, 'CData', bg_image1);
bg_image1 = imread('frog. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. T, 'CData', bg_image1);
bg_image1 = imread('zebra. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. U, 'CData', bg_image1);
bg_image1 = imread('kangaroo. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. O, 'CData', bg_image1);
bg_image1 = imread('bear. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. M, 'CData', bg_image1);
bg_image1 = imread('lion. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. B, 'CData', bg_image1);
bg_image1 = imread('dankey. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. Z, 'CData', bg_image1);
bg_image1 = imread('snake. png');
bg_image1=imresize(bg_image1,[170,170]);
set(handles. L, 'CData', bg_image1);
% Animal sounds are loaded to the memory in the beginning.
handles. c=audioread('cow.mp3');
handles. bu=audioread('buffalo.mp3');
handles. f=audioread('frog.mp3');
handles. z=audioread('zebra.mp3');
handles. k=audioread('kangaroo.mp3');
handles. d=audioread('dog.mp3');
handles. e=audioread('elephant.mp3');
handles. l=audioread('lion.mp3');

58

handles. be=audioread('bear.mp3');
handles. s=audioread('snake.mp3');
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);
setappdata(0,'hMainGUI',gcf);
setappdata(gcf,'mainHandles',handles);
setappdata(0,'mainHandles',handles);
% --- Outputs from this function are returned to the command line.
function varargout = TEZ_GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles. output;
% Enlarge GUI to full screen and logo is loaded.
set (gcf, 'Position', get(0,'Screensize'));
set (gcf,'name','CURSOR MOVEMENT','numbertitle','off')
Axes (handles. logo);
imshow('C:\Users\WORLD\Documents\MATLAB\MATLAB-TEZ-GUI\calısma_02\logo.
png')
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
a='C';
set(handles.edit1,'String',a);
% Update handles structure
% --- Executes on button press in q.
function q_Callback(hObject, eventdata, handles)
% hObject handle to q (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. output = hObject;
oldString=get(handles. typing,'String');
newString='COW';
textstring=strcat(oldString, newString);
sound(handles. c);
pause(2,4);
clear sound
set(handles. typing,'String',textstring);
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

59

İf is pc && is equal (get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
 % --- Executes on button press in exit.
function exit_Callback(hObject, eventdata, handles)
% hObject handle to exit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
delete(handles.figure1);
% function img_acq_Callback(hObject, eventdata, handles)
% % hObject handle to img_acq (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
% img_acq;
% --- Executes on button press in E.
function E_Callback(hObject, eventdata, handles)
% hObject handle to E (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='BUFFALO';
sound(handles. bu);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
Set(handles. typing,'String',textstring);
% --- Executes on button press in T.
function T_Callback(hObject, eventdata, handles)
% hObject handle to T (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='FROG';
sound(handles. f);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
Set(handles. typing,'String',textstring);
% --- Executes on button press in U.
function U_Callback(hObject, eventdata, handles)
% hObject handle to U (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='ZEBRA';
sound(handles. z);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);
% --- Executes on button press in O.
function O_Callback(hObject, eventdata, handles)
% hObject handle to O (see GCBO)

60

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='KANGAROO';
sound(handles. k);
pause(2.4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);
% --- Executes on button press in L.
function L_Callback(hObject, eventdata, handles)
% hObject handle to L (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='SNAKE';
sound(handles. s);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);
% --- Executes on button press in Z.
function Z_Callback(hObject, eventdata, handles)
% hObject handle to Z (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='DANKEY';
sound(handles. d);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);
% --- Executes on button press in C.
function C_Callback(hObject, eventdata, handles)
% hObject handle to C (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='ELEPHANT';
sound(handles. e);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);

 % --- Executes on button press in B.
function B_Callback (hObject, eventdata, handles)
% hObject handle to B (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='LION';
sound(handles. l);

61

pause(2.4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);

 % --- Executes on button press in M.
function M_Callback(hObject, eventdata, handles)
% hObject handle to M (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
oldString=get(handles. typing,'String');
newString='BEAR';
sound(handles. be);
pause(2,4);
clear sound
textstring=strcat(oldString, newString);
set(handles. typing,'String',textstring);
% --- Executes on button press in pushbutton100.
function pushbutton100_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton100 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 set(handles. typing,'String','');
% --- Executes on button press in Del.
function Del_Callback(hObject, eventdata, handles)
% hObject handle to Del (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
yazilan=get(handles. typing,'String');
ekle='';
yeni=strcat(yazilan(1:end-1),ekle);
set(handles. typing,'String',yeni);
% --- Executes on button press in start.
function start_Callback(hObject, eventdata, handles)
% hObject handle to start (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Calibration process before app runs.
[a,b]=One_Frame(); % Top left corner coordinates of the UI
a=abs(a);
b=abs(b);
pause(1);
[m,n]= One_Frame (); % Bottom right corner coordinates of the UI
m=abs(m);
n=abs(n);
% abs(a-m)
% abs(n-b)
pause(1);
%% Application process run.
While(1);
[x,y] = One_Frame ();
x=abs(x);
y=abs(y);
pause(0.5);

62

end
%% For verification of the coordinates acquired.
% a,m,x
% b,n,y
% Close All;
% Outputs for top row images
if (x<a+abs(a-m)*3/28 & x>a+abs(a-m)-20 & y>b-abs(b-n)*0.5 & y<b+20)
 oldString=get(handles. typing,'String');
 newString='COW';
 textstring=strcat(oldString, newString);
 set(handles. typing,'String',textstring);
end
 if (x>=a+abs(a-m)*3/28 & x<a+abs(a-m)*105/280 & y>b-abs(b-n)*0.5 & y<b+20)
 oldString=get(handles. typing,'String');
 newString='BUFFALO';
 textstring=strcat(oldString, newString);
 set(handles. typing,'String',textstring);
end
 if (x>=a+abs(a-m)*105/280 & x<a+abs(a-m)*175/280 & y>b-abs(b-n)*0.5 & y<b+20)
 oldString=get(handles. typing,'String');
 newString='FROG';
 textstring=strcat(oldString, newString);
 set(handles. typing,'String',textstring);
end
if (x>=a+abs(a-m)*175/280 & x<a+abs(a-m)*245/280 &y>b-abs(b-n)*0.5 & y<b+20)
 oldString=get(handles. typing,'String');
 newString='ZEBRA';
 textstring=strcat(oldString, newString);
 set(handles. typing,'String',textstring);
end
 if (x>=a+abs(a-m)*245/280 & x<a+abs(a-m)+100 & y>b-abs(b-n)*0.5 & y<b+20)
 oldString=get(handles. typing,'String');
 newString='KANGAROO';
 textstring=strcat(oldString, newString);
 set(handles. typing,'String',textstring);
end
% Outputs for bottom row images
 if (x<a+abs(a-m)*3/28 & x>a+abs(a-m)-20 & y<=b-abs(b-n)*0.5 & y>n-20)
 oldString=get(handles. typing,'String');
 newString='DANKEY';
 textstring = strcat(oldString, newString);
 set(handles. typing,'String',textstring);
 end
 if (x>=a+abs(a-m)*3/28 & x<a+abs(a-m)*105/280 & y<=b-abs(b-n)*0.5 & y>n-20)
 oldString=get(handles. typing,'String');
 newString='ELEPHANT';
 textstring = strcat(oldString, newString);
 set(handles. typing,'String',textstring);
 end
 if (x>=a+abs(a-m)*105/280 & x<a+abs(a-m)*175/280 & y<=b-abs(b-n)*0.5 & y>n-20)
 oldString=get(handles. typing,'String');
 newString='BEE';
 textstring = strcat(oldString, newString);
 set(handles. typing,'String',textstring);

63

 end
 if (x>=a+abs(a-m)*175/280 & x<a+abs(a-m)*245/280 & y<=b-abs(b-n)*0.5 & y>n-20)
 oldString=get(handles. typing,'String');
 newString='BEAR';
 textstring = strcat(oldString, newString);
 set(handles. typing,'String',textstring);
 end
 if (x>=a+abs(a-m)*245/280 & x<a+abs(a-m)+100 & y<=b-abs(b-n)*0.5 & y>n-20)
 oldString=get(handles. typing,'String');
 newString='SNAKE';
 textstring = strcat(oldString, newString);
 set(handles. typing,'String',textstring);
 end

A.2 One Frame Detect Function (One_Frame. m)
% ---
% * Matlab Script (One_Frame. m) which is eye localization script for the
% application.
% * Purpose: This function takes a one frame of video and find the coordinates of
% eye circle using Circular Hough transform.
% ********** Author: Sinan KESKIN
% ********** Date: August 12, 2017
% ********** Version: 1,0
% ********** (c) 2017, University of Gaziantep, Turkey
% ********** E-mail: sinankeskin15@gmail.com
% ---
% Image Acquisition Camera Settings
% Date: 14:04:2017
% A point between eyes is described using right and left eye center points.
function[x_ori, y_ori]=ilkFrame()
%% Voice is loaded and a frame is acquired.
a=audioread('instr_piano. wav');
vidobj=videoinput('winvideo',2,'MJPG_640x480');
start (vidobj);
sound(a);
pause(1);
data = getsnapshot(vidobj);
% Imwrite(data,'1.jpg');
figure, imshow(data);
% Camera Calibration Settings
% Calibrated camera parameters are loaded and new origin is assigned %
After undistorting image.
load cameraParamsyd2.mat;
[imx, newOrigin] = undistortImage(data,cameraParamsyd2, 'OutputView', 'full');
% Face Detection Part
% Viola Jones algorithm is used to find eye regions.
faceDetector = vision. CascadeObjectDetector('EyePairBig');
faceDetector. MergeThreshold=3;
faceDetector. ScaleFactor=1.1;
boxFace = step(faceDetector, imx);

% Eye pairs are extracted.

64

for i = 1:size(boxFace,1)
detectedFace = imx(boxFace(i,2): boxFace(i,2)+ boxFace(i,4),...
 boxFace(i,1): boxFace(i,1)+boxFace(i,3),:);
 end
figure, imshow(detectedFace);
% Localizing of Iris positions
% Right Eye localization
rightFace = detectedFace(5:round(size(detectedFace,1) * 4.5/ 5),...
 5:round(size(detectedFace,2) / 2));
% figure, imshow (rightFace); title('RightFace');
[r1,r2]=right(rightFace, newOrigin,cameraParamsyd2,boxFace, vidobj);
% Left Eye localization
leftFace = detectedFace(1:round(size(detectedFace,1)*4/5),...
 round(size(detectedFace,2) / 2):size(detectedFace,2));
% figure, imshow(leftFace);title('LeftEye')
[l1,l2]=left(leftFace, newOrigin,cameraParamsyd2,boxFace, vidobj);
x_ori=(l1+r1)/2;
y_ori=(l2+r2)/2;
stop (vidobj);
end

A.3 Left eye Detect Function
% ---
% * Matlab Script (left. m) which is auxiliary script for the application.
% * Purpose: Finding the left eye coordinates of the acquired image.
% ********** Author: Sinan KESKIN
% ********** Date: August 12, 2017
% ********** Version: 1,0
% ********** (c) 2017,University of Gaziantep, Turkey
% ********** E-mail: sinankeskin15@gmail.com
% ---
% localization of left eye center
function[x_ori, y_ori]=left(leftFace, newOrigin,cameraParamsyd2,boxFace, vidobj)
% Preprocessing Steps
% Apply Gaussian Filter
gaussSigma = 0.01*length(leftFace);
filter = fspecial('gaussian',[5 5], gaussSigma);
ima = imfilter(leftFace, filter);
% Apply Average Disc Filter
filt2 = fspecial('Disk',5);
im1 = imfilter(ima,filt2);
% Contrast Adjusting Step
im3 = imadjust(im1,stretchlim(im1),[]);
thresh = 14;
med = median(double(im3(:)));
imBW = im2bw(im3,med / 255 * thresh / 100);
figure, imshow(imBW);
% Morphological Process
% Remove of small objects
closingParameter = 15;
imBW = ~imBW;
imBW = bwareaopen(imBW, closingParameter);
imBW = bwareaopen(imBW, closingParameter);

65

imBW = ~imBW;
% Cut off the Edges
imBW = ~imBW;
imBW = bwmorph(imBW,'majority');
imBW = ~imBW;
% Circular Hough Transform
Rmin = 4;
Rmax = 20;
% [centersBright, radiiBright] = imfindcircles(imBW,[Rmin Rmax], 'ObjectPolarity',
'bright');
[centersDark, radiiDark] = imfindcircles(imBW,[Rmin Rmax],'ObjectPolarity','Dark');
if isempty(centersDark)
error('no circle found');
else
% viscircles(centersDark, radiiDark,'LineStyle','--');
end
%Calibration Distance Measurement Steps
load impyd2; % Image Points
load wopyd2; % World Points
% Compute extrinsics
% Detect the checkerboard, Compute rotation and translation of the camera.
[R, t] = extrinsics(imagePoints, worldPoints,cameraParamsyd2);
% Get the top-left and the top-right corners.
box1 = [centersDark(: ,1),centersDark(: ,2),-radiiDark: radiiDark,-adiiDark: radiiDark];
box1(: , 1: 2) = bsxfun(@plus, box1(: , 1 :2), newOrigin);
imagePoints1 = [box1(1: 2); ...
 box1(1) + box1(3), box1(2)];
% Get the world coordinates of the corners
worldPoints1 = pointsToWorld(cameraParamsyd2, R, t, imagePoints1);
% Compute the diameter of the coin in millimeters.
d = worldPoints1(2, :) - worldPoints1(1, :);
diameterInMillimeters = hypot(d(1), d(2));
fprintf('Measured diameter of one eye = %0.2f mm\n',diameterInMillimeters);
% Distance Measure
 box2 = [newOrigin(:,1),newOrigin(:,2),centersDark(:,1),centersDark(:,2)];
 box2(:,1:2) = bsxfun(@plus, box2(:, 1:2), newOrigin);
 imagePoints2 = [box2(1:2);...
 box2(1) + box2(3)+boxFace(1,1), box2(2)];
 worldPoints2 = pointsToWorld(cameraParamsyd2, R, t, imagePoints2);
 x_ori = worldPoints2(2, :) - worldPoints2(1, :);
 x_ori=hypot(x_ori(1), x_ori(2));
% fprintf('Measured x_distance of eye center = %0.2f mm\n', x_ori);
 imagePoints3 = [box2(1: 2); ...
 box2(1),(box2(2)+ box2(4)+boxFace(1,2))];
 worldPoints3 = pointsToWorld(cameraParamsyd2, R, t, imagePoints3);
 y_ori = worldPoints3(2, :) - worldPoints3(1, :);
 y_ori=hypot(y_ori(1), y_ori(2));
% fprintf('Measured y_distance of Eye center = %0.2f mm\n', y_ori);
% centerX=x_ori;
% centerY=y_dist;
End

66

A.4 Right Eye Detect Function
% ---
% * Matlab Script (TEZ_GUI. m) which is main script for the application.
% * Purpose: Finding the right eye coordinates of the acquired image.
% ********** Author: Sinan KESKIN
% ********** Date: August 12, 2017
% ********** Version: 1. 0
% ********** (c) 2017,University of Gaziantep, Turkey
% ********** E-mail: sinankeskin15@gmail.com
% ---
% Localization of left eye center
function[x_ori,y_ori]=right(rightFace, newOrigin,cameraParamsyd2,boxFace,vidobj)
% Preprocessing Steps
% Apply Gaussian Filter
gaussSigma = 0.01*length(rightFace);
filter = fspecial('gaussian',[5 5], gaussSigma);
ima = imfilter(rightFace, filter);
% Apply Average Disc Filter
filt2 = fspecial('Disk',5);
im1 = imfilter(ima,filt2);
% Contrast Adjusting
im3 = imadjust(im1,stretchlim(im1),[]);
thresh = 14;
med = median(double(im3(:)));
imBW = im2bw(im3,med / 255 * thresh / 100);
% figure, imshow(imBW);
% Morphological Process
closingParameter=15;
imBW = ~imBW;
imBW = bwareaopen(imBW, closingParameter);
imBW = bwareaopen(imBW, closingParameter);
imBW = ~imBW;
% Skeletonization
imBW = ~imBW;
imBW = bwmorph(imBW,'majority');
imBW = ~imBW;
% Circular Hough Transform
Rmin = 4;
Rmax = 20;
[centersBright, radiiBright] = imfindcircles(imBW,[Rmin Rmax],'ObjectPolarity','bright');
[centersDark, radiiDark] = imfindcircles(imBW,[Rmin Rmax],'ObjectPolarity','Dark');
if isempty(centersDark)
error('no circle found');
else
viscircles(centersDark, radiiDark,'LineStyle','--');
end

%Calibration Distance Measurement Steps
load impyd2; % Image Points
load wopyd2; % World Points
% Compute extrinsics, Detect the checkerboard
% Compute rotation and translation of the camera.
[R, t] = extrinsics(imagePoints, worldPoints,cameraParamsyd2);

67

% Get the top-left and the top-right corners.
box1 = [centersDark(: ,1),centersDark(: ,2),-radiiDark: radiiDark,-radiiDark: radiiDark];
box1(: , 1: 2) = bsxfun(@plus, box1(: , 1:2), newOrigin);
imagePoints1 = [box1(1: 2); ...
 box1(1) + box1(3), box1(2)];
 % Get the world coordinates of the corners
 worldPoints1 = pointsToWorld(cameraParamsyd2, R, t, imagePoints1);
 % Compute the diameter of the coin in millimeters.
 d = worldPoints1(2, :) - worldPoints1(1, :);
 diameterInMillimeters = hypot(d(1), d(2));
 fprintf('Measured diameter of one eye = % 0.2f mm\n', diameterInMillimeters);
 % Distance Measure
 box2 = [newOrigin(:,1),newOrigin(:,2),centersDark(:,1),centersDark(:,2)];
 box2(: ,1: 2) = bsxfun(@plus, box2(: , 1. 2), newOrigin);
 imagePoints2 = [box2(1: 2); ...
 box2(1) + box2(3)+boxFace(1,1), box2(2)];
 worldPoints2 = pointsToWorld(cameraParamsyd2, R, t, imagePoints2);
 x_ori = worldPoints2(2, :) - worldPoints2(1, :);
 x_ori=hypot(x_ori(1), x_ori(2));
% fprintf('Measured x_distance of eye center = %0.2f mm\n', x_ori);
 imagePoints3 = [box2(1: 2); ...
 box2(1),(box2(2)+ box2(4)+boxFace(1,2))];
 worldPoints3 = pointsToWorld(cameraParamsyd2, R, t, imagePoints3);
 y_ori = worldPoints3(2, :) - worldPoints3(1, :);
 y_ori=hypot(y_ori(1), y_ori(2));
% fprintf('Measured y_distance of Eye center = %0.2f mm\n', y_ori);
% centerX=x_ori;
% centerY=y_dist;
end

A.5 Algorithm Development Environment with GUI
% ---
% * Matlab Script (algorithm_dev. m) which is main script for the application.
% *********** Purpose: Creating a GUI for fast and efficient algorithm develop.
% ********** Author: Sinan KESKIN
% ********** Date: August 12, 2017
% ********** Version: 1. 0
% ********** (c) 2017,University of Gaziantep, Turkey
% ********** E-mail: sinankeskin15@gmail.com
% --

function algorithm_dev(varargin)
% Create a figure;
clear, close, clc;
h= figure();
setappdata(h,'slidervalue',50);
% Enlarge figure to full screen.
set(gcf, 'Position', get(0,'Screensize'));
set(gcf,'name','CURSOR MOVEMENT','numbertitle','off')
b = axes(h,'Position',[0.7,0.5,0.29,0.49]);
% 4 Tane Push Button Oluştur
start = uicontrol('Parent',h,'Style', 'pushbutton', ...
 'String','START', ...

68

 'Units','normalized', ...
 'Position', [0.45 0.93 0.08 0.06]);
 start. ForegroundColor=[1 0 0];
 start. BackgroundColor=[0 0 0];
btn1 = uicontrol('Parent',h,'Style', 'pushbutton', ...
 'String','1.Input Image', ...
 'Units','normalized', ...
 'Position', [0.01 0.86 0.08 0.06]);
Set (btn1,'Callback',@inputim);
btn2 = uicontrol('Style', 'pushbutton', ...
 'String','2.Undistorted Image', ...
 'Units','normalized', ...
 'Position', [0.01 0.76 0.08 0.06], ...
 'Callback', {@undistorted,btn1});
btn3 = uicontrol('Style', 'pushbutton', ...
 'String','3.EyePairDetect', ...
 'Units','normalized', ...
 'Position', [0.01 0.66 0.08 0.06], ...
 'Callback', {@detect,btn2});
btn4 = uicontrol('Style', 'pushbutton', ...
 'String','4.GaussianFilter', ...
 'Units','normalized', ...
 'Position', [0.01 0.56 0.08 0.06], ...
 'Callback', {@blur,btn3});
btn5 = uicontrol('Style', 'pushbutton', ...
 'String','5.averagingDisk', ...
 'Units','normalized', ...
 'Position', [0.01 0.46 0.08 0.06], ...
 'Callback', {@averaging,btn4});
btn6 = uicontrol('Style', 'pushbutton', ...
 'String','6.ContrastStretch', ...
 'Units','normalized', ...
 'Position', [0.01 0.36 0.08 0.06], ...
 'Callback', {@contrast,btn5});

btn7 = uicontrol('Parent', h,'Style', 'pushbutton', ...
 'String','7.Thresholding', ...
 'Units','normalized', ...
 'Position', [0.01 0.26 0.08 0.06], ...
 'Callback', {@threshold,btn6});
% Create slider
sld = uicontrol('Parent', h,'Style', 'slider', ...
 'Min',1,'Max',50,'Value',45, ...
 'Position', [170 195 120 20], ...
 'Callback', {@slidore,btn7});
% yazi = uicontrol('Style','Edit', ...
% 'String','50','Position',[220, 220, 30, 20], ...
% 'CallBack', {@yazi, sld}) ;
btn8 = uicontrol('Style', 'pushbutton', ...
 'String','8.SmallPiecesDelete', ...
 'Units','normalized', ...
 'Position', [0.15 0.86 0.08 0.06], ...
 'Callback', {@tbwareaopen,btn7});
btn9 = uicontrol('Style', 'pushbutton', ...

69

 'String','9.CuttinEdges', ...
 'Units','normalized', ...
 'Position', [0.15 0.76 0.08 0.06], ...
 'Callback', {@tbwmorph,btn8});
btn10 = uicontrol('Style', 'pushbutton', ...
 'String','10.Circular hough Transform', ...
 'Units','normalized', ...
 'Position', [0.15 0.66 0.12 0.06], ...
 'Callback', {@though,btn9});
% btn11= uicontrol('Style', 'pushbutton', ...
% 'String','8.SmallPiecesDelete', ...
% 'Units','normalized', ...
% 'Position', [0.15 0.56 0.08 0.06], ...
% 'Callback', {@tbwareaopen,btn10});
function inputim(hObject, eventdata, handles)
handles = guidata(hObject)
handles. vidobj=videoinput('winvideo',2);
start (handles. vidobj) ;
handles. image=getsnapshot(handles. vidobj);
imshow(handles. image);
stop (handles. vidobj);
guidata(hObject, handles);
function undistorted(hObject, eventdata, handles)
load cameraParamsyd2.mat
handles=guidata(handles);
handles. b=handles. image;
[handles. imx, handles. newOrigin] = undistortImage(handles. b, cameraParamsyd2,
'OutputView', 'full');
imshow(handles. imx);
guidata(hObject, handles);

function detect(hObject, eventdata, handles)
handles=guidata(handles);
handles. detect=handles. imx;
faceDetector = vision. CascadeObjectDetector('EyePairSmall');
faceDetector. MergeThreshold=3;
faceDetector. ScaleFactor=1.1;
handles. boxFace = step(faceDetector, handles. detect);
for i = 1:size(handles. boxFace,1)handles. detectedFace = handles. imx(handles.
boxFace(i,2): handles. boxFace(i,2)+ handles. boxFace(i,4), handles. boxFace(i,1) :handles.
boxFace(i,1) +handles. boxFace(i,3),:);
end
imshow(handles. detectedFace);
guidata(hObject, handles);
function blur(hObject, eventdata, handles)
handles=guidata(handles);
a=handles. detectedFace;
gaussSigma=0.01*length(a);
filter = fspecial('gaussian',[5 5], gaussSigma);
handles. ima = imfilter(a,filter);
imshow(handles. ima);
guidata(hObject, handles);
function averaging(hObject, eventdata, handles)
handles=guidata(handles);

70

a=handles. ima;
filt2 = fspecial('Disk',7);
handles.im1 = imfilter(a,filt2)
imshow(handles.im1);
guidata(hObject, handles);
function contrast(hObject, eventdata, handles)
handles=guidata(handles);
handles.im3=imadjust(handles.im1,stretchlim(handles.im1),[]);
imshow(handles.im3);
guidata(hObject, handles);
function threshold(hObject, eventdata, handles)
handles=guidata(handles);
im3=handles.im3;
handles. gray=rgb2gray(im3);
handles. thresh=getappdata(hObject. Parent,'slidervalue');
med = median(double(handles. gray(:)));
handles. imBW = im2bw(handles. gray, med / 255 * handles. thresh / 100);
imshow(handles. imBW);
guidata(hObject, handles);
function tbwareaopen(hObject, eventdata, handles)
handles=guidata(handles);
imBW=handles. imBW;
closingParameter=15;
imBW = ~imBW;
imBW = bwareaopen(imBW, closingParameter);
handles.imBW2 = bwareaopen(imBW,closingParameter);
handles.imBW2 = ~handles.imBW2;
imshow(handles.imBW2);
guidata(hObject, handles);
function tbwmorph(hObject, eventdata, handles)
handles=guidata(handles);
imBW3=handles.imBW2;
imBW3 = ~imBW3;
handles.imBW4 = bwmorph(imBW3,'majority');
handles.imBW4 = ~handles.imBW4;
imshow(handles.imBW4);
guidata(hObject, handles);
function though(hObject,eventdata,handles)
handles=guidata(handles);
circlein=handles.imBW4;
Rmin = 4;
Rmax = 20;
% [centersBright, radiiBright] = imfindcircles(imBW,[Rmin Rmax],'ObjectPolarity','bright');
[handles. centersDark, handles. radiiDark] = imfindcircles(circlein,[Rmin
Rmax],'ObjectPolarity','Dark');
if isempty(handles. centersDark)
error('no circle found');
else
% viscircles(centersBright, radiiBright,'EdgeColor','b');
viscircles(handles. centersDark, handles. radiiDark,'LineStyle','--');
end
guidata(hObject, handles);
function slidore(hObject, eventdata, handles)
handles = guidata(hObject)

71

handles. thresh = 100 - hObject. Value;
% im3=handles.im3;
% handles. gray=rgb2gray(im3);
% handles. thresh=getappdata(hObject. Parent,'slidervalue');
med = median(double(handles. gray(:)));
handles. imBW = im2bw(handles. gray, med / 255 *handles. thresh / 100);
imshow(handles. imBW);
disp(handles. thresh);
% set(yazi, 'String', num2str(handles. thresh));
% function yazi(varargin)
% num = str2num(get(yazi,'String'));
% if length(num) == 1 & num <=100 & num >=0
% set(Slider,'Value',num);
% else
% msgbox('The value should be a number in the range [0,100]','Error','error','modal');
% end

72

APPENDIX B
Databases

B.1 Camera Parameters

RadialDistortion : [0,0322 -0,1293]
TangentialDistortion : [0 0]
WorldPoints : 42x2 double
WorldUnits : ‘mm’
EstimateSkew : 0
Num Radial Distortion Coefficients : 2
EstimateTangentialDistortion : 0
TranslationVectors : 18x3 double
ReprojectionErrors : 42x2x18 double
RotationVectors : 18x3 double
NumPatterns : 18
IntrinsicMatrix : [886,8111 0 0;0889,38740;539, 0331 280,1611 1]
FocalLength : [889,3874 886,8111]
PrincipalPoint : [539,0331 280,1611]
Skew : 0
MeanReprojectionError : 0,3548
ReprojectedPoints : 42x2x18 double
RotationMatrices : 3x3x18 double

B.2 Image Files, Sound Files are all stored in the CD.

