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ABSTRACT 

DEVELOPMENT OF NON-INVASIVE DIAGNOSTIC SYSTEM USING 

INFRARED THERMAL IMAGING FOR DEEP VEIN THROMBOSIS AND 

RAYNAUD’S PHENOMENON 

KAÇMAZ, Seydi 

Ph. D. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Ergun ERÇELEBİ 

September 2018  

129 pages 

With the advent of the new generation of infrared detectors, infrared thermal imaging 

has become an alternative medical diagnostic tool by providing abnormal temperature 

pattern measurements. Studies have shown that many diseases are associated with 

heat. For this reason, examining observable abnormalities in thermograms and 

monitoring the heat exchange processes of the human body can provide information 

about the pathology of the underlying diseases. Accordingly, infrared thermal imaging 

may be useful for the early screening and detection of a wide variety of diseases. 

However, analysis of the infrared thermal images of the human body has become a 

difficult problem, due to the nature of the thermal images, the lack of expertise, and 

the lack of medical infrared thermal imaging databases. In addition, a fully automated 

system is needed to provide an objective assessment. In this study, automated 

computer aided softwares are developed for use in Deep Vein Thrombosis and Primary 

and Secondary Raynaud's diseases. In the first study, it is shown that infrared thermal 

imaging could be used as a pre-screening test to diagnose Deep Vein Thrombosis. The 

developed methodology can be used in other diseases that can occur in organs with 

symmetry in the body other than the disease concerned. In the second study, a method 

for diagnosis and follow-up of Primary and Secondary Raynaud's disease is proposed. 

These studies demonstrate the usability of infrared thermal imaging by providing 

support to medical specialists. 

 

Key Words: Infrared Thermal Imaging, Computer Aided Diagnosis, Deep Vein 

Thrombosis, Raynaud Phenomenon  



 

ÖZET 

DERİN VEN TROMBOZU VE RAYNAUD FENOMENİ İÇİN KIZILÖTESİ 

TERMAL GÖRÜNTÜLEME KULLANARAK İNVAZİV OLMAYAN TANI 

SİSTEMİNİN GELİŞTİRİLMESİ 

KAÇMAZ, Seydi 

Doktora Tezi, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ergun ERÇELEBİ 

Eylül 2018  

129 sayfa 

Yeni nesil kızılötesi dedektörlerin ortaya çıkmasıyla birlikte, kızılötesi termal 

görüntüleme, anormal sıcaklık deseni ölçümleri sağlayarak alternatif tıbbi bir tanı aracı 

haline gelmiştir. Yapılan araştırmalarda birçok hastalığın ısı ile ilişkili olduğu 

gösterilmiştir. Bu nedenle, termogramlarda gözlemlenebilir anormalliklerin 

incelenmesi ve insan vücudunun ısı değişim süreçlerinin takip edilmesi altta yatan 

hastalıkların patolojisi hakkında bilgi sağlayabilir. Buna göre kızılötesi termal 

görüntüleme, tıpta çok çeşitli hastalıkların erken taranması ve saptanması için yararlı 

olabilir. Ancak insan vücudunun kızılötesi termal görüntülerinin analizi; termal 

görüntülerin özellikleri, ilgili uzmanın azlığı ve tıbbi kızılötesi termal görüntü veri 

tabanlarının eksikliğinden dolayı zor bir problem haline gelmiştir. Ayrıca objektif bir 

değerlendirme sağlamak için tam otomatik bir sisteme gerek duyulmaktadır. Bu 

çalışmada, Derin Ven Trombozu ile Birincil ve İkincil Raynaud hastalıklarında 

kullanılmak üzere otomatik bilgisayar destekli yazılım geliştirilmiştir. İlk çalışmada, 

Derin Ven Trombozu tanısında kızılötesi termal görüntülemenin bir ön tarama testi 

olarak kullanılabileceği gösterilmiştir. Geliştirilen yöntem yapısı itibariyle ilgili 

hastalığın dışında vücutta simetrisi bulunan organlarda oluşabilecek diğer hastalıklar 

içinde kullanılabilecektir. İkinci çalışmada ise Birincil ve İkincil Raynaud hastalığının 

teşhisi ve takibine yönelik bir yöntem önerilmiştir. Yapılan çalışmalar, tıbbi uzmanlara 

destek sağlayarak kızılötesi termal görüntülemenin kullanılabilirliğini göstermiştir. 

 

Anahtar Kelimeler: Kızılötesi Termal Görüntüleme, Bilgisayar Destekli Tanı, Derin 

Ven Trombozu, Raynaud Fenomeni 



 

 
 
 
 
 
 
 
 
 

 

 

‘’To my family’’ 

 
 

 

 

 

 



viii 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to my supervisor Prof. Dr. Ergun 

ERÇELEBİ and Assoc. Prof. Ahmet BİNGÜL for their guidance, advice, criticism, 

encouragements and insight throughout this study. 

 

I would like to thank to colleagues, Önder POLAT, A. Ertuğrul BAY and Asst. Prof. 

Taner İNCE for supporting and encouraging me with their best wishes.   

 

Special thanks to my friends, Erhan ERSOY and Eda ADAL for their kind help, 

encouragement and patience during my study. 

 

I would also like to thank TÜBİTAK (by means of BİDEB 2211-A Genel Yurt İçi 

Doktora Burs Programı) for providing financial support throughout my graduate study.  

 

I also wish to thank to my father and mother, Abdülkadir KAÇMAZ and Sevgi 

KAÇMAZ, for believing in me.   

 

Finally, I would like express my love and appreciation to my wife, Zeynep KAÇMAZ, 

to my son Muhammed Emre KAÇMAZ, and to my daughter Zeynep Sena KAÇMAZ 

who have created and maintained a wonderful life for me and contributed to my life 

with their lovely supports and encouragements. 

 

 

 

 

 



ix 

TABLE OF CONTENTS 

Page 

ABSTRACT ................................................................................................................ v 

ÖZET .......................................................................................................................... vi 

ACKNOWLEDGEMENTS .................................................................................... viii 

TABLE OF CONTENTS .......................................................................................... ix 

LIST OF FIGURES ................................................................................................. xii 

LIST OF TABLES .................................................................................................. xiv 

LIST OF SYMBOLS/ABBREVIATIONS ............................................................. xv 

CHAPTER I ................................................................................................................ 1 

1.1. INTRODUCTION ............................................................................................ 1 

1.2. THESIS AIMS AND OBJECTIVES ................................................................ 3 

1.3. THESIS OUTLINE ........................................................................................... 6 

CHAPTER II .............................................................................................................. 7 

2.1. INFRARED IMAGING .................................................................................... 7 

2.2. INFRARED THERMAL IMAGING IN MEDICINE .................................... 11 

2.2.1. Thermoregulation Studies ........................................................................ 11 

2.2.2. Breast cancer detection ............................................................................ 12 

2.2.3. Diagnosis of diabetic neuropathy and vascular disorders ........................ 14 

2.2.4. Fever Screening ....................................................................................... 15 

2.2.5. Dental diagnosis ....................................................................................... 16 

2.2.6. Dermatological applications .................................................................... 17 

2.2.7. Blood Pressure Monitoring ...................................................................... 18 

2.2.8. Diagnosis of Rheumatic Diseases ............................................................ 18 

2.2.9. Diagnosis of Dry Eye Syndrome and Ocular Diseases............................ 19 

2.2.10. Diagnosis of Liver Diseases .................................................................... 19 

2.2.11. Kidney Treatment .................................................................................... 20 

2.2.12. Heart Operations ...................................................................................... 20 

2.2.13. Gynecology .............................................................................................. 21 

2.2.14. Personality Tests and Brain Imaging ....................................................... 21



x 

2.2.15. Results ...................................................................................................... 21 

2.3. DATA PROCESSING METHODS FOR MEDICAL THERMOGRAMS .... 22 

2.3.1. Image Segmentation and ROI determination........................................... 22 

2.3.2. Asymmetry based approaches ................................................................. 29 

2.3.3. Other Features .......................................................................................... 32 

2.3.4. Results ...................................................................................................... 35 

2.4. THERMOGRAPHY STANDARD PROTOCOL .......................................... 36 

CHAPTER III .......................................................................................................... 38 

THERMAL IMAGE PROCESSING METHODOLOGY ...................................... 38 

3.1. Image Preprocessing ................................................................................ 38 

3.2. Image Enhancement ................................................................................. 38 

3.2.1. Noise Reduction Approaches ............................................................... 39 

3.2.2. Contrast Enhancement ......................................................................... 41 

3.2.3. Background Removal and Contralateral Body Segmentation ............. 42 

3.3. Finding Region of Interest (ROI) ............................................................ 46 

3.3.1. ROI determination in the Deep Vein Thrombosis Application ........... 46 

3.3.2. ROI determination in the Raynaud Phenomenon Application ............. 47 

3.4. Statistical Analysis ................................................................................... 49 

3.5. Decision-Making for Disease Diagnosis ................................................. 50 

3.6. Performance Evaluation ........................................................................... 51 

CHAPTER IV ........................................................................................................... 54 

THE USE OF INFRARED THERMAL IMAGING IN THE DIAGNOSIS OF      

DEEP VEIN THROMBOSIS .................................................................................. 54 

4.1. INTRODUCTION ................................................................................... 54 

4.2. MATERIAL AND METHOD ................................................................. 56 

4.2.1. Experimental Conditions in Medical Thermography ........................... 56 

4.2.2. Material ................................................................................................ 57 

4.3. THEORY AND CALCULATIONS ........................................................ 58 

4.3.1. Developed System ................................................................................ 58 

4.3.2. Determination of Region of Interest .................................................... 61 

4.3.3. Statistical Analysis ............................................................................... 65 

4.3.4. Decision-Making for Disease Diagnosis .............................................. 67 

4.4. RESULTS AND DISCUSSION .............................................................. 72 

4.5. CONCLUSIONS ..................................................................................... 76 



xi 

CHAPTER V ............................................................................................................ 78 

THE THERMAL IMAGING SYSTEM DESIGN IN THE DIAGNOSIS AND 

FOLLOW-UP OF PRIMARY AND SECONDARY RAYNAUD'S  

PHENOMENON ..................................................................................................... 78 

5.1. INTRODUCTION ................................................................................... 78 

5.2. MATERIAL AND METHOD ................................................................. 82 

5.3. DEVELOPED SYSTEM ......................................................................... 83 

Preprocessing of thermal images ........................................................................ 83 

Segmentation of hands from thermal images ..................................................... 84 

Extraction of fingertips and palm........................................................................ 84 

Computation of temperature variations in palm and fingertips .......................... 86 

5.4. CONCLUSION ........................................................................................ 86 

CHAPTER VI ........................................................................................................... 88 

CONCLUSION AND FUTURE WORKS .............................................................. 88 

REFERENCES ......................................................................................................... 90 

APPENDIX ............................................................................................................. 118 

RESULTANT IMAGES OF DEEP VEIN THROMBOSIS APPLICATION ...... 118 

CURRICULUM VITAE ........................................................................................ 129 



xii 

LIST OF FIGURES 

Page 

Figure 2. 1 Simplified block diagram of an IR camera system [19] ............................ 7 

Figure 2. 2 Blackbody Radiation Spectrum from Wien's Law and Planck's law....... 10 
 

Figure 3. 1 Example of a 3x3 kernel for mean filtering ............................................. 39 

Figure 3. 2 An example of dilation of set A by set B ................................................ 48 

Figure 3. 3 An example of erosion of set A by set B ................................................. 48 

Figure 3. 4 3-Sigma Rule for Normal Distributions .................................................. 50 

Figure 3. 5 A Receiver Operating Characteristic curve (a ROC curve) ..................... 53 
 

Figure 4. 1 Image acquisition with thermal camera ................................................... 57 

Figure 4. 2 Flow diagram of the developed system ................................................... 58 

Figure 4. 3 Flow diagram of the Marker Controlled Watershed Segmentation ......... 61 

Figure 4. 4 Resultant Images of the Developed Software (PATIENT 1) .................. 62 

Figure 4. 5 Resultant Images of the Developed Software (PATIENT 2) .................. 63 

Figure 4. 6 Resultant Images of the Developed Software (NORMAL) ..................... 64 

Figure 4. 7 Scatter plots of leg temperatures according to the all groups .................. 66 

Figure 4. 8 3-Sigma Rule for Normal Distributions .................................................. 68 

Figure 4. 9 Graphical Representation of Maximum Accuracy and Maximum 

Youden’s Index Value (PATIENT - NORMAL) .................................... 70 

Figure 4. 10 Graphical Representation of Accuracy and Maximum Youden’s      

Index Value (DVT or NOT) ................................................................. 71 

Figure 4. 11 Scatter and Box Plots according to sigma values for different             

subjects .................................................................................................. 73 

Figure 4. 12 ROC Curve for PATIENT-NORMAL Classification ........................... 75 

Figure 4. 13 ROC Curve for DVT-NOT Classification ............................................. 75 

Figure 4. 14 Combination of IR camera, Emergency bedside CDUSG (EB-USG)  

and D-dimer and control with Radiology CDUSG (R-USG) ............... 76 
 

Figure 5. 1 Temperature vs. time curves obtained from thermal imaging data     

during cold stress test in (a) HCS, (b) SSc, and (c) PRP......................... 81 

Figure 5. 2 Block diagram of the designed system .................................................... 83



xiii 

Figure 5. 3 (a) Original image and (b) Preprocessed image, respectively ................. 84 

Figure 5. 4 (a) Left side (LS) noisy image (b) LS Cleaned Image (c) Right side          

(RS) noisy image (d) RS Cleaned image, respectively .............................................. 85 

Figure 5. 5 (a) Left side palm image (b) Right side palm image, respectively .......... 85 

Figure 5. 6 (a) Left side (LS) endpoints (b) LS fingertips (c) Right side (RS) 

endpoints (d) RS fingertips, respectively ................................................ 86 
 

Figure A. 1 Resultant Images of the Developed Software (PATIENT) .................. 118 

Figure A. 2 Resultant Images of the Developed Software (PATIENT) .................. 119 

Figure A. 3 Resultant Images of the Developed Software (PATIENT) .................. 120 

Figure A. 4 Resultant Images of the Developed Software (PATIENT) .................. 121 

Figure A. 5 Resultant Images of the Developed Software (PATIENT) .................. 122 

Figure A. 6 Resultant Images of the Developed Software (PATIENT) .................. 123 

Figure A. 7 Resultant Images of the Developed Software (PATIENT) .................. 124 

Figure A. 8 Resultant Images of the Developed Software (PATIENT) .................. 125 

Figure A. 9 Resultant Images of the Developed Software (NORMAL) .................. 126 

Figure A. 10 Resultant Images of the Developed Software (NORMAL) ................ 127 

Figure A. 11 Resultant Images of the Developed Software (NORMAL) ................ 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

LIST OF TABLES 

Page 

Table 1. 1 Contralateral temperature differences in various body parts (left and     

right sides) in normal subjects ................................................................... 3 
 

Table 3. 1 Confusion Matrix ...................................................................................... 52 

Table 3. 2 Binary Classification Performance Measures ....................................... 53 
 

Table 4. 1 Tests of normality for all subjects ............................................................. 65 

Table 4. 2 Comparison of the average leg temperature values between control        

and study groups ........................................................................................ 66 

Table 4. 3 Comparisons of leg temperatures according to the study groups ............. 67 

Table 4. 4 Confusion Matrix ...................................................................................... 68 

Table 4. 5 Results obtained with Thermal camera in patients with DVT. ................. 72 

Table 4. 6 Comparisons of IR Camera-CDUSG ........................................................ 72 

Table 4. 7 Performances of different diagnostic tests of DVT in this study    

according to the gold standard ................................................................... 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

LIST OF SYMBOLS/ABBREVIATIONS 

 

ANS Autonomic Nervous System 

APMs Active Appearance Models 

ART Adaptive Resonance Theory 

AUC Area Under Curve 

BC Before Chris 

CAD Computer Aided Detection 

CAD Coronary Artery Disease 

CDF Cumulative Distribution Function 

CDUSG Color Doppler Ultrasonography 

CLAHE Contrast Limited Adaptive Histogram Equalization 

COM Co-occurrence Matrix 

CT Computer Tomography 

CTS Computerized Thermographic System 

CTS Carpal Tunnel Syndrome 

DVT Deep Vein Thrombosis 

DWT Discrete Wavelet Transform 

EB-USG Emergency Bedside Ultrasonography 

FPA Focal Plane Array 

FTFPs Facial Thermal Points 

GA Genetic Algorithm 

H1N1 Swine Flu 

HCS Healthy Controls  

HT Heart Plant 

IEC International Electrochemical Commission 

IR Infrared 

IRT Images Infrared Thermal Images 



xvi 

 

 

 

 

 

 

 

 

 

ISO International Organization for Standardization 

LoG Laplacian of Gaussian 

MFT Mean Foot Temperature 

MRI Magnetic Resonance Imaging 

MSE Mean Square Error 

NEC Necrotizing Enterocolitis 

OES Open End Snake 

PCA Principal Component Analysis 

PRP Primary Raynaud's Phenomenon 

PTV Perception Threshold Values 

RF Raynaud's Phenomenon 

ROC Receiver Operator Characteristics 

ROI Region of Interest 

R-USG Radiology Ultrasonography 

SAR Specific Absorption Ratio 

SARS Severe Acute Respiratory Syndrome 

SSc Systemic Sclerosis 

STREL Structuring Element 

TIVs Thermal Intensity Values 

TMT Temporomandibular joint 

USG Ultrasonography 



1 

CHAPTER I 

 

1.1. INTRODUCTION 

 

Throughout history, it has been proven that temperature is a very good indicator of 

health and disease discrimination [1], [2]. Since 400 BC, the temperature has been 

used for clinical diagnosis in different forms [3]. As a homotherm, a person can 

maintain his body at a constant temperature, regardless of environmental temperature 

[4]. The body of the homotherms is divided into two parts as the core temperature and 

the outer wall temperature [5]. The core temperature is constantly maintained in a 

narrow range of about 33–42 °C [5]. Regulation of the inner core temperature is one 

of the most basic features of the normal human body. A few degrees of change in the 

core temperature are considered a clear indicator of possible disease [4]. 

 

Clinical infrared thermography is defined as recording temperature distribution using 

infrared radiation emitted from the surface of the human body (the skin) [4]. Since the 

beginning of the first fifty years, many studies have been done on thermal imaging 

evaluation for various medical applications. The results of these studies are not always 

favorable to the clinical use of the thermography because of poor protocols, poor 

quality control, poor training, and often a lack of understanding of the proper role and 

scope of the thermography [6]. Despite growing skepticism, interest in this technique 

was high and the development of quantitative infrared thermal imaging techniques 

helped to overcome many of the initial challenges. Today, medical infrared thermal 

imaging has been extensively investigated among various applications of oncology 

and especially breast cancer detection, and many new studies are still being studied 

[7]. Advances in computerized infrared thermal imaging, dynamic thermography and 

infrared camera technology now provide adequate means to re-evaluate the value of 

medical thermography. 
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The thermoregulation of the human body is influenced by a variety of factors including 

pathological abnormalities. Thus, recording the temperature distribution of the human 

body can provide valuable information about the underlying physiological processes 

that cause these abnormalities. Human skin plays an important role in 

thermoregulation by dissipating or protecting heat. The skin heat dissipation is 

essentially radiant and occurs in the infrared portion of the spectrum, allowing the use 

of infrared detectors to record skin temperature distribution, especially when the whole 

body core temperature is spread out [1], [8]. 

 

Abnormal thermal patterns, which can be easily recognized by infrared imaging, can 

allow early diagnosis. Thermographic findings are generally correlated with other 

clinical findings. Although it is often not specific and largely due to environmental 

factors, there is a range of reasons why this technique has been widely accepted in the 

medical world. Above all, infrared imaging is a remote, non-contact, non-invasive 

technique. It is possible to monitor a large area simultaneously and quickly. Also, it is 

easy and fast to interpret colored thermograms. In addition, this technique only records 

the natural radiation from skin surfaces and so does not have any harmful radiation 

effects. Therefore, it is suitable for long-term and continuous use. Finally, infrared 

imaging is a real- time imaging technique that can monitor dynamic changes in 

temperature. Because of these advantages, thermography is used as an effective 

alternative diagnostic tool. Table 1.1 shows contralateral temperature differences in 

various body parts (left and right sides) in normal individuals [4], [9]. 

 

Medical diagnosis is usually a challenging process. As disease symptoms are usually 

not specific, doctors tend to use a systematic diagnostic method to determine the cause 

of the disease. This is usually achieved through estimation, screening and testing based 

on the likelihood of a situation based on medical history or conditions. Many of today's 

applications involve invasive methods that can take time to obtain a diagnosis, cause 

discomfort to the patient, and cause complications. As a result, it is preferable to use 

non-invasive methods to get rid of the undesirable effects of the investigations.  
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Table 1. 1 Contralateral temperature differences in various body parts (left and right 

sides) in normal subjects 

Body Parts Average Temperature Difference (℃) 

Forehead 0.12 

Cheek 0.18 

Chest 0.14 

Abdomen 0.18 

Neck (Posterior) 0.15 

Lumber (Back) 0.25 

Body Average 0.17 

Arm (Biceps) 0.13 

Palm 0.23 

Thigh (Front) 0.11 

Thigh (Rear) 0.15 

Foot (Dorsal) 0.30 

Average Fingertips 0.38 

Average Foot Toe-Fingertips 0.50 

 

1.2. THESIS AIMS AND OBJECTIVES 

 

Infrared (IR) thermal imaging is widely used in a broad applications ranging from 

military applications to noninvasive diagnosis. As clinical imaging method, some 

clinical applications were first used between 1960 and 1980. Among the various 

clinical applications, early literature has reported promising results in pain assessment, 

breast cancer and rheumatoid arthritis cases [10]–[12]. Other studies point to some 

limitations of the technique for clinical purposes [13], [14]. Indeed, until recently, a 

number of topics have been identified that prevent the widespread use of IR imaging 

for medical applications: limitations of modalities, technological constraints of 

previous systems (size and weight, cooling requirements), subjective interpretation of 

thermograms, lack of precision and cost of IR systems. However, thanks to the 

technological developments and standardized protocols in IR imaging technology, it 

has led to a new trend in technology for medical applications. 
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On the other hand, the problem of interpreting IR images is still ongoing. Analysis of 

thermograms is still made visually by a clinical expert trained in thermography. The 

interpretation of the thermograms is based on the ability to distinguish subtle 

temperature changes and to identify typical patterns associated with a particular 

pathology or physiological problem. The ability to detect these changes in a gray level 

image, where each gray level corresponds to a temperature or a temperature range, is 

not very good. The ability to detect these changes in a gray level image, where each 

gray level corresponds to a temperature or a temperature range, is not very good. The 

use of Pseudocolours is not a good alternative because of the psychological effects of 

hot and cold colors [15]. A quantitative assessment of thermograms is the only way to 

achieve the most accurate assessment, exceeding the nature of the current evaluation 

method. At present, quantitative assessment consists of manual identification of 

potential areas of interest, identification of hot and cold spots, simple asymmetry 

analysis with statistics from the first order, and subtraction of images in a series [16].  

 

Several attempts have been proposed in the literature to quantify the analysis of 

thermal images. However, no general strategy has been proposed to address the clinical 

infrared imaging features. In addition, some of the important building blocks of the 

automatic abnormality detection architecture for clinical IR imaging are still missing.  

 

IR thermal imaging indirectly aggregates the surface temperature distribution of an 

object. For this reason, it depends not only on the object temperature, but also on the 

surface properties, the surface direction, the wavelength used, and the environmental 

conditions that can affect the collection of IR radiation in general. This typically results 

in a narrow density range and sometimes a strong overlap of the temperature 

distribution between the object and the background. In addition, IR thermal imaging 

tends to produce uniform image regions and no color information is available; this 

limits or prevents the use of tissue or color based segmentation techniques. Even 

segmentation of simple regions in an IR image can be difficult, for example, in the 

case of segmentation of cold extremities (hands and feet). Segmentation techniques 

developed for other imaging modalities or other IR applications typically do not work 

well when applied to IR images of the human body. Several automatic segmentation 

approaches have been proposed that work well with this modality. Proper evaluation 

of anomalies in IR images of the human body requires a robust segmentation approach. 
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The identification of potentially abnormal regions of the IR image of the human body 

may be attempted blindly if no information is available in advance about the problem 

at hand. However, if a specific clinical context is known, more focused research can 

be done by looking for specific anatomical structures or physiologically active regions. 

IR thermal images tend to be smooth and lack general texture and color information. 

Temperature changes in an object or body region are usually not indicative of 

structural regions such as bones in the X-rays or white matter for brain in the Magnetic 

Resonance Imaging (MRI). As a result, anatomical information is difficult to remove. 

This thesis suggests a new approach to the extraction of anatomical regions based on 

the detection of anatomical regions. 

 

In this thesis, the two main aspects of digital processing of thermographic images are 

discussed, and the general purpose perspective such as automation and 

computerization of thermal images as much as possible in order to facilitate the 

physician's task is taken into consideration.  

 

A general framework is proposed for the automatic detection of anomalies in clinical 

infrared images. Basically, two main problems are addressed: the separation of the 

main object from the background and the acquisition of the potentially abnormal 

region. The first step will involve preprocessing the thermal images to reduce the noise 

that occurs during the initial acquisition and storage of the images. In addition, for an 

optimal selection of regions of interest (ROI), removal of the unrelated background for 

subsequent analysis will be performed. And the second goal will be to identify areas 

of interest for thermal analysis of images. 

 

In conclusion, examining the anomalies in the thermograms and monitoring the heat 

exchange processes of the human body provide important information about the 

pathology of the underlying diseases [17], [18]. Therefore, it is necessary to develop 

computer-aided diagnostic systems that automatically interpret thermograms for early 

detection of abnormalities by removing the subjectivity of human interpretation. 
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1.3. THESIS OUTLINE 

 

This study is covered in seven chapters. The first chapter is evaluated as the 

introductory part, started with a preliminary presentation and continued with the aim 

and objectives of the thesis. In the second chapter, the basis of the infrared imaging is 

explained, then in the field of medicine infrared thermal imaging examples are given, 

followed by the data processing methods in the literature for the medical thermograms 

and finally the standard protocol used in the thermography is discussed. 

 

An overview of the remaining chapters is as follows. In the third chapter, thermal 

image processing methodology is explained in detail. In this section, the methods used 

in this thesis are handled one by one. Then, in the fourth chapter, how infrared thermal 

imaging can be used to diagnose Deep Vein Thrombosis is explained and experimental 

results are shown. In the fifth chapter, thermal imaging system design for diagnosis 

and follow-up of the primary and secondary Raynaud Phenomenon is presented, but 

only the method and an example are given because the system was not tested on the 

patients. At the sixth chapter, a general summary of the thesis is explained and the way 

for future studies is discussed. In the seventh chapter, references to all publications 

mentioned in the thesis are shown. 
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CHAPTER II 

 

2.1. INFRARED IMAGING 

 

Thermography allows the non-contact measurement of the temperature of an object to 

be viewed and recorded. Thermal imaging was originally designed for military 

purposes in the 1950's, especially for night vision [19]. It was then used not only for 

night vision but also for military vehicle drivers to acquire targets, surveillance, target 

search and monitoring by increasing their visibility under smoke, dust, light fog and 

rain. However, thanks to technological developments and improvements in thermal 

imaging systems, over the last 60 years thermal imaging applications have been 

extended to engineering applications in a wide range of industries including building 

inspection, electrical and mechanical automation, petrochemical industries, veterinary 

medicine and medicine. In general, thermal imaging applications can be divided into 

four main categories: predictive maintenance, condition monitoring, problem 

diagnosis, research and development. 

 

In IR thermal imaging, a thermal camera system converts IR radiation (approximately 

0.9 μm to 14 μm in wavelength) into a visual image of thermal variation [19]. All 

objects at the temperature above the absolute zero emit IR radiation, and the amount 

of radiation emitted increases with temperature. 

 

An IR camera system is designed very similar to a digital video camera system (Figure 

2.1). It consists of a lens that focuses on focal plane array (FPA) camera detector, and 

electronics and software for processing and displaying signals and images. The FPA's 

resolution can range from about 160 × 120 pixels to 1024 × 1024 pixels. 

Detector 
Cooling 

Digitization

Video 
Processing 
Electronics

User Interface 
User Control 
Video Output 

Synchronization 
In/Out System 

Status

Optics

IR In

Near IR (NIR)
Mid-wavelength 

IR (MWIR)
Long-

wavelength IR 
(LWIR)  

Figure 2. 1 Simplified block diagram of an IR camera system [19] 
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All objects on the absolute zero temperature (-273.15 oC) emit energy into their 

surroundings in the form of electromagnetic waves [20]. This natural process is known 

as thermal radiation. The amount of energy emitted by an object depends on the 

temperature of the object, the distribution of the radiation wave length, the surface 

area, and the type of surface [19], [21]. An ideal object called a perfect black body 

does not reflect or transmit radiation from the surface or from the body. It absorbs 

100% of incoming radiation, which makes it a perfect absorbent. 

 

The radial properties of a material are expressed by emissivity, ε. The global emissivity 

of a body is the ratio of the energy emitted by an isothermally emissive body over the 

energy emitted by a black body at the same temperature. It is a measure of the ability 

of the body to radiate the energy it absorbs. The perfect black body is the perfect 

radiator, so the value of the emissive is 1 [22]. The emission at frequency ν, εν, is 

defined at similar intervals by considering radiation with frequencies in the range [ν, 

ν + dν]. In the thermal balance, the emitted energy must be balanced by the energy 

absorbed by the body periphery [4]. Kirchhoff’s law states that for any uniform 

environment in the thermal equilibrium, the emissivity and absorption coefficient for 

any spectral range is equal to the ratio of the body's surface emissive power over 

emissive power a black body. This relationship helps to define the emissivity (εν) of a 

body [4] as 

v
v

bv

E

E
 

 

(2.1) 

where Eν is the body’s surface emissive power at frequency ν, Ebν is the emissive power 

of a black body at frequency ν, and εν measures the fraction of the incident radiation 

absorbed per unit time by a thin layer of unit thickness at the same frequency. 

Therefore, the emissivity, εν, is a number between 0 and 1. The higher the emissivity 

of the object means the better the radiation properties. 

 

Planck's black body law defines the properties of an object's radiation, in terms of 

spectral radiant emission. The spectral radiant emitter is also known as the emission 

power. As a function of the wavelength, Planck's law is written as [23]–[25]. 

12

5

2
exp 1

hc hc
E

kT
 




 



  
   

    

(2.2) 
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or in terms of the number of emitted photons as 

1

4

2
exp 1

c hc
P

kT
 




 



  
   

  
 (2.3) 

where 

h (Planck’s constant) = 6.6261 × 10−34 J s, c (speed of light) = 2.9979 × 108 ms−1, 

k (Boltzmann’s constant) = 1.3807 × 10−23 WsK−1, λ = wavelength in µm,                  

T = temperature in degrees Kelvin (K), ελ = the emissivity of the surface at a given 

wavelength, Eλ = spectral radiant emittance/emissive power per unit wavelength and 

unit area [W cm−2µm−1]. 

 

Planck's equation describes the spectral properties of the source as a function of 

wavelength. The wavelength at which Eλ is maximized shifts to shorter wavelengths 

as the temperature of the object of interest increases. This peak wavelength is 

explained by Wien's displacement law [24]. 

 

max 0.002898T   (2.4) 

where λmax is the wavelength of maximum emissive power (in meters) at temperature 

T (in degrees Kelvin). In accordance with Wien's displacement law, the emission 

power of a black body is exponentially reduced with temperature, and the wavelength 

at maximum emission power passes to longer wavelengths at lower temperatures [4] 

as shown in Figure 2.2. Since the black body is a perfect absorber and emitter, it shows 

that a black body absorbs and emits the maximum theoretically possible energy at a 

given temperature. The amount of radiation emitted by a black body, Eb, is 

proportional to the fourth power of the thermodynamic temperature (also called the 

absolute temperature, T, in Kelvin), as described by Stefan-Boltzmann's law [4], [20] 

 

4

bE T  (2.5) 

where σ (the Stefan-Boltzmann constant) is 5.669 × 10-8 Wm-2 K-4. The total emissive 

power from a black body, Eb (in Wm−2) can also be obtained by integrating Planck’s 

function over all wavelengths (from 0 to ∞) [26]. A grey body is an object that has a 

constant value for its emissivity for all wavelengths [19]. For a grey body, the total 

emissive power, Eg, defined by the Stefan-Boltzmann law, takes the form 
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4

gE T  (2.6) 

which indicates that the total emissive power of a grey body, Eg, is the same as that of 

a black body, Eb, of the same temperature, reduced in proportion to the value of ε of 

the object [19]. However, most bodies are not black bodies or gray bodies, but more 

selectively radiators. A selective radiator is an object with strongly varying emissivity 

with wavelength. However, it is generally possible to treat objects as gray bodies as 

long as the thermography works only within limited spectral ranges. 

 

Figure 2. 2 Blackbody Radiation Spectrum from Wien's Law and Planck's law 

The IR radiation emitted by human skin is mainly in the 2 - 20 μm wavelength and has 

an average peak at 9 - 10 μm. With Planck's equation and the implementation of Wien's 

Law, it was found that approximately 90% of the radiation emitted by humans is at 

longer wavelengths (6-14 μm) [18]. Also, there is no difference in emissivity of black, 

white and burnt skin. For this reason, the temperature distribution or measurements of 

the heat setting recorded on an IR thermograms come from the outer surface layer of 

the skin and are independent of the race [27]. 

 

For this reason, it is useful to use thermal imaging to investigate the underlying 

physiological changes associated with many diseases, such as inflammatory diseases, 

complex regional pain syndrome, and Raynaud's phenomenon. Thermal imaging 

allows objective measurement of temperature changes that are clinically important in 

some medical applications. With the critical use of technology and an accurate 

understanding of thermal physiology, thermal imaging can be a reliable and accepted 

diagnostic tool in medicine [28]. 

https://www.mathworks.com/matlabcentral/fileexchange/48253-blackbody-radiation-spectrum-from-wien-s-law-and-planck-s-law
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2.2. INFRARED THERMAL IMAGING IN MEDICINE 

 

Abnormal thermal patterns, which can be easily recognized by infrared imaging, allow 

early diagnosis. Thermographic findings are generally correlated with other clinical 

findings. There is a range of reasons why this technique is widely accepted in the 

medical world, although it is often not specific and largely due to environmental 

factors. Above all, infrared imaging is a remote, non-contact, and non-invasive 

technique. It is possible to monitor a large area simultaneously and quickly. It is often 

easy and fast to interpret colored thermograms. In addition, this technique only records 

the natural radiation from skin surfaces and does not have any harmful effects. 

Therefore, it is suitable for long-term and continuous use. Finally, infrared imaging is 

a real-time imaging technique that can monitor dynamic changes in temperature. 

Because of these advantages, thermography is an effective alternative diagnostic tool.  

 

2.2.1. Thermoregulation Studies 

 

Muscle functioning during metabolism or exercise is a major source of body heat [4]. 

The resulting heat is transferred internally through the blood flow from the veins 

towards the outer surfaces. Blood picks up heat from the body and loses from the 

peripheral regions, especially the skin. This process is called thermoregulation. 

Surface temperature distribution is governed by a number of factors such as blood flow 

near the surface, heat conduction of deep blood vessels, and evaporation through the 

skin [29]. Thermography is an effective tool for monitoring thermoregulation 

processes. Gulyaev and colleagues found that in the majority of healthy individuals; 

observed an increase in temperature in hands, feet and face areas at rest [29]. 

Immobility is often accompanied by relaxation and redistribution of blood, thus 

increasing the temperature of the skin surface. It is also observed that the changes in 

the sympathetic system and the blood flow lead to temperature fluctuations in the 

hands and feet. Short-term fluctuations are associated with the capillaries, while long-

term changes are due to the arteriovenous anastomosis. In the Vainer study, infrared 

imaging in short wavelength (about 3 μm) is used to study the skin sweating procedure 

[30]. In this study, it was found that the low temperature regions surrounded by the 

secretory channels of each sweat gland are asymmetric. In addition, studies have been 

carried out on the effect of central nervous system and the local superficial localization 

of hypertension resulting from metabolic or environmental overheating. On top of that, 
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it has started an important debate on the connection of sweating and thermoregulation 

system. Bouzida et al. has proposed two approaches as thermoregulation mechanism, 

blood flow modulation and cold stress [5]. In the first approach, blood pressure 

(systolic and diastolic values) are modulated with a suitable mechanical design, 

revealing a periodic change in temperature due to changes in blood volume in blood 

vessels. In the second approach, the left hand was placed on a cold metal surface and 

observed with infrared imaging of the temperature changes of the two hands after 

exposure to cold stress. When waited for a long time, it was seen that the temperature 

of the stimulated hand decreased while the temperature of the other hand increased. 

This is attributed to the response of the thermoregulation mechanism to the body heat 

to remain unchanged. Kargel observed warming of ear regions of subjects using 

different mobile phones [31]. Accordingly, it has been determined that mobile phones 

having a high specific absorption ratio (SAR) cause more temperature increase. It has 

been reported that the maximum temperature increase is towards the end of the talk 

and the warm-up time is increased by the speech duration [32].  

 

2.2.2. Breast cancer detection 

 

Breast cancer constitutes about 30% of all cancer cases, with cancer being the most 

common cancer in women [33]. Between 2003 and 2007, the mean age of death for 

breast cancer was 68 years. The mortality rates for 20 age groups below 20, 20-34, 35-

44, 45-54, 55-64, 65-74, 75-84 and 85 in various age groups were approximately 0.0%, 

0.9%, 6.0%, 15.0% 20.8%, 19.7%, 22.6% and 15.1%, respectively [34]. Diagnosis was 

not possible in the age group below 20 years, while it was 1.9%, 10.2%, 22.6%, 24.4%, 

19.7%, 5.5% and 5.6%, respectively, in the other age groups [34]. Studies show that 

early diagnosis increases survival rate by 85%, while late diagnosis provides only a 

10% survival [35]. For this reason, early diagnosis is an important factor for successful 

breast cancer treatment. In 1982, the US Food and Drug Administration (FDA) 

approved thermography as an aid to breast cancer diagnosis. Kennedy et al., in their 

study of thermography and other imaging techniques used in breast cancer, concluded 

that thermography could provide additional functional information about the thermal 

and vascular status of tissues [36]. Ng has provided an excellent review detailing the 

basic methodology, standard applications, image acquisition and analysis of 

thermography as a non-invasive breast tumor detection method [18]. He described the 



13 

abnormal breast thermogram as indicating a significant biological risk. Tumors have 

generally been shown to increase blood flow, resulting in increased metabolic rate and 

localized high temperature points that can be seen with infrared imaging. Apart from 

passive breast imaging, cold stimulus based imaging methods are practically applied 

[37]. Blood vessels produced by cancerous tumors are composed of simple endothelial 

tubes lacking a muscle layer. Such blood vessels fail to constrict in response to 

sympathetic impulses, such as sudden cold stress, and exhibit a hyperthermic pattern 

due to vasodilation. Deng and Liu have shown that tumors under the skin enhance 

thermographic contrast with induced sweating [38]. They sprayed the skin surface with 

water and 75% medical ethanol solution, then took the thermal images of the 

evaporating area and performed their work. This study has increased the accuracy of 

early diagnosis of tumors, especially those located farther from the surface. Spitalier 

et al. received thermographic images of 61,000 women and showed that 60% of breast 

cancer cases can be detected using early-stage thermography in their 10-year-long 

study [39]. In addition, they confirmed that abnormal temperature patterns in infrared 

images are the highest predictors of breast cancer risk in the future [40]. Gamagami 

studies on angiogenesis with thermography have shown that 15% of the cases, which 

can not be detected by mammography, can be detected by thermography [41]. Again, 

hypervascularity and hyperthermia have shown that apparent breast cancer can be seen 

in 86% of cases. Head et al. reported that prognostic markers of growth rate strongly 

correlated with thermograms [42]. He reports that thermovascular changes in the 

breasts are directly related to prognosis and aggression of the tumor. And hot cancer 

sites (the most active cancer cells) showed a low prognosis with a survival rate of 24% 

within 3 years, whereas cold cancer sites had a relatively better prognosis with a 

survival rate of 80% within 3 years [37]. Aweda et al. found that the average oxygen 

consumption and average metabolic heat output of the control group were higher than 

those of the breast, head, neck, cervical and other cancer groups [43]. 

 

There are many other techniques such as Mammography, MRI, CT, and Ultrasound in 

the detection of breast cancer separately from thermography. Among them, 

mammography is the most popular technique, but it contains some inherent problems 

such as exposure to X-ray radiation, relatively higher cost, difficulty in detecting small 

sized tumors in early stages, and low sensitivity due to chest structure in young ladies. 

Thermography has become a relatively new imaging tool in breast cancer research, 
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where such problems have not been experienced. According to Arora et al., Infrared 

imaging appears to be an effective alternative diagnosis in patients with particularly 

dense breast parenchyma [44]. 

 

In another typical study demonstrating the efficacy of thermography in early breast 

cancer detection, a lump was detected in the right chest of a female patient with a 

negative mammography report [45]. However, it is found that the lump region is at a 

higher temperature than normal tissues by using thermography. After the tests, the 

results of the biopsy confirmed that the skin was cancerous. 

 

2.2.3. Diagnosis of diabetic neuropathy and vascular disorders 

 

Almost half of diabetic patients are hospitalized because of the most common foot 

complications [46]. The main causes of such foot complications are reduced blood 

volume (vascular malfunction) and loss of sensation (neuropathy). A review of the role 

of infrared imaging in diabetic foot complications was performed by Bharara et al. 

[47]. Vascular disorders and diabetic neuropathy cause changes in skin surface 

temperature, making thermography an appropriate tool for diagnosis. Jiang et al. 

analyzed metabolic parameters of diabetic patients using thermography [48]. 

Branemark et al. working with a number of patients on diabetes subjects, they 

determined that all of them had abnormal heat patterns on their hands and feet (such 

as reduced heat in the hands, toes, and footbath areas) [49]. Sun et al. examined the 

relationship between foot floor skin temperature and sympathetic dysfunction in 

diabetic risky feet [50]. They found that mean foot temperatures were significantly 

higher in subjects with diabetic risk (30.2 ± 1.3 oC) than subjects with normal subjects 

(26.8 ± 1.8 oC). Their studies have indicated that the sweating disorder that occurs in 

the first stages of sympathetic disturbances in diabetic feet can be detected by 

thermography. Bagavathiappan et al. studied randomly selected type 2 diabetes 

patients and persons with no foot problems [51]. Those patients whose vibration 

perception threshold values (PTV) were over 20 were found to have a higher mean 

foot temperature (MFT). Neuropathic patients have higher MFT values than non-

neuropathic patients, whereas PTV values correlate positively with right and left toes. 

Armstrong and colleagues have compared skin temperature in asymptomatic 

peripheral sensor neuropathy, neuropathic ulcers, and Charcots’ arthropathies by 
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taking the opposite limb as control [52]. In subjects with asymptomatic peripheral 

sensor neuropathy, Charcots reported that there was a significant difference in people 

with arthropathy and neuropathic ulcer at these temperatures, although the 

contralateral parts of the feet did not have a significant temperature difference in skin 

temperatures. 

 

One of the complications of diabetes in the early stages of arteriosclerosis obliterans 

is peripheral circulation. Hosaki et al. have investigated peripheral circulation in 

diabetic patients with infrared imaging [53]. In accordance with clinical findings, they 

observed that heat distributions were shaped according to abnormal blood flow in the 

affected areas. 

 

Bagavathiappan et al. found that diabetic patients with vascular disease were more 

affected by affected area temperatures than unaffected areas [7], [54], [55].This 

abnormal temperature increase is based on slow blood circulation in the affected areas 

[54].  

 

2.2.4. Fever Screening 

 

Nguyen et al. have performed general fever screening over face and neck region 

thermograms using infrared thermal imaging [56]. The sensitivity of the thermal 

imaging method is similar to that of previously reported cases of fever. In this respect, 

it was concluded that the thermography was an effective tool for rapid, contactless and 

mass scanning of fever screening. Chamberlain et al. used thermometer-based infrared 

emission at various age groups for normal ear temperature determination [57]. Infrared 

imaging-based techniques, which can be used in epidemics such as severe acute 

respiratory syndrome (SARS) and avian influenza, have opened the way for mass use 

in fever screening [58]–[62]. In a recent study, for example, thermography was 

successfully used in mass screening in SARS patients, where highly contagious corona 

viruses were caused [63]. Chiang et al. reported similarly that the monitoring of 

potential patients was essential to prevent the spread of SARS [64]. Ng has studied the 

effectiveness of infrared imaging in fever mass screening [65]. In this work, he 

concluded that high body temperature is one of the most common syndromes common 

in many infectious diseases. Therefore, he argued that thermography is a powerful tool 
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for public health crises. Nishiura and Kamiya used infrared imaging to scan passengers 

entering Narita international airport in Japan during the swine flu (H1N1) outbreak in 

2009 [66]. Bitar et al. has provided a detailed literature review on the potential use and 

effectiveness of the thermography during epidemics [67]. 

 

Ring et al. conducted studies on infrared imaging in detecting fever in children with 

the highest risk group [68]. They found that the underarm temperature (measured by a 

conventional thermometer) and the inner edge temperatures of the eyes (measured by 

infrared) are interrelated. In other studies, the temperature above 37.5 oC ± 0.5 oC was 

considered to be a possible indicator of fever. Diseases such as SARS, influenza, swine 

flu and tuberculosis are considered global threats and are thought to be the most 

effective way to screen fever to control the spread of these diseases. For this reason, a 

joint working group has been established by the International Organization for 

Standardization (ISO). In addition, the International Electrochemical Commission 

(IEC) has been established for the installation of thermography systems, the selection 

of thermal imaging systems, human temperature measurement and the development of 

procedural recommendations in international standards [58], [69]–[71]. Standards ISO 

(ISO / TR 13154: 2009) and SPRING (TR 15-1: Requirements and test methods and 

TR 15-2: Users' application guidelines) are recommended for reliable and repeatable 

infrared imaging in mass fever monitoring [72]–[74] 

 

2.2.5. Dental diagnosis 

 

Infrared imaging is widely used in dentistry [75]. In 1996, Gratt et al. developed a new 

classification system using chronic orofacial pain patient thermograms [76]. The 

thermograms are classified as normal (0-0.25 oC), hot (0.35 over) and cold (0.35 

below) according to the temperature difference values in the right and left anatomical 

regions. Cold thermograms have been reported to have a clinical diagnosis of 

peripheral nerve-induced pain or sympathetic nervous system-related pain, while hot 

thermograms have a clinical diagnosis of sympathetic nervous system pain, peripheral 

nerve-induced pain, temporomandibular joint (TMJ) arthropathy or sinusitis. Normal 

thermograms can be used to diagnose fracture dental syndrome, trigeminal neuralgia, 

pretrigeminal neuralgia, or psychogenic facial pain. This new method has been 

confirmed in 92% of cases. While asymptomatic TMJ patients exhibit thermal 
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symmetry with a mean of 0.1 oC, patients with TMJ pain have an average of 0.4 oC 

asymmetric thermal patterns [77], [78]. Canavan et al. reported that the mild to 

moderate temporomandibular joint disorder (TMJ) patients were associated with pain 

levels of right and left thermal differences [79]. Gratt et al. reported that infrared 

imaging of the chin is an effective method for diagnosing inferior alveolar nerve 

impairment [80]. 

 

2.2.6. Dermatological applications 

 

Skin diseases generally begin with abnormal temperatures on the skin surface and then 

turn red. For this reason, infrared imaging can be considered a suitable technique for 

the investigation of skin diseases. Thermography has been used in the diagnosis of 

leprosy cases, and it has been reported that cold areas such as ear and nose edges are 

heavily affected [81], [82]. Vargas et al. developed a normalized thermography 

methodology (ratio of the measured mean temperature to the reference temperature) 

to diagnose the leprosy in a 50-year-old male patient with a 20-year hepatitis-C history 

[83]. Patients who were followed for 587 days could see the efficacy of the leprosy 

treatment only after 182 days, but could be detected after 87 days by thermal images. 

Benko et al. investigated the thermal effects of exposure to beta radiation using 

infrared images [84]. It has been observed that the average temperature of the area 

exposed to beta radiation is immediately increased. 

 

Thomas et al. have demonstrated the use of thermography in laser-based skin 

treatments such as vascular lesions and epilation [85]. Mason et al. concluded that 

thermographic findings would be more accurate than clinical findings in evaluating 

the depth of burn injuries [86]. Cole et al. reported that infrared imaging would be 

helpful in selecting patients with early surgical need [87]. Schnell and Zaspel used 

thermography for cooling management of large burns [88]. Mercer et al. have used 

infrared imaging to monitor wound healing of patients with chronic venous stasis 

ulcers [89]. Weerd et al. indirectly monitored the skin blood perfusion thermography 

in preoperative planning and post-operative monitoring of autologous breast 

reconstruction [90]. Recently Flores-Sahagun et al. used thermography in the analysis 

and identification of basal cell carcinoma, the most common skin cancer malignancy 
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[91]. Costello et al. used infrared imaging to assess patients' skin temperature reduction 

following cryotherapy [92]. 

 

2.2.7. Blood Pressure Monitoring 

 

Arterial blood pressure and related thermograms in hypertensive patients separated in 

two groups were obtained from Cesaris et al. [93]. The first group was treated with a 

combination of atenolol and chlorthalidone and the other group was treated with a 

combination of labetalol and chlorthalidone. Before the treatment, the hands of the 

subjects were monitored using thermography in both groups. There was no change in 

peripheral vascular flow in the first group after 1 month of treatment, but significant 

improvement in vascular flow in the second group. 

 

2.2.8. Diagnosis of Rheumatic Diseases 

 

Thermography has been successfully used to assess Raynaud's phenomenon [94]–[97], 

gout [98], and arthritis [10], [99] and post-treatment healing. Arnold et al. reported that 

infrared imaging is an excellent technique for measuring skin temperature in different 

joints [100]. Ring has shown that joints exhibit anomalous temperature distribution in 

patients with rheumatoid arthritis, juvenile arthritis, osteoarthritis, gout [101]. Collins 

et al. developed a thermography-based index to measure the degree of joint 

inflammation [10]. Ring et al. have demonstrated the use of thermography to measure 

the effects of non-steroidal anti-inflammatory drugs (aspirin, indomethacin and 

benorilate) on rheumatoid arthritis and gout. Based on their own work, they concluded 

that infrared imaging is a suitable tool for assessing the response of anti-inflammatory 

treatment. Paterson et al. used thermography to evaluate rheumatoid inflammation of 

the knee joint during anti-inflammatory steroid therapy. Frize et al. used thermography 

for the diagnosis of rheumatoid arthritis and found that metacarpal phalangeal joints, 

middle fingers, and knee joints were the most suitable locations [102]. Wu et al. 

reported that local skin temperature around the coccygeal region of coccidiosis patients 

significantly decreased after conservative treatment [103]. Their work has resulted in 

the use of thermography as an effective tool for assessing pain severity after 

coxsychiatric treatment. Park et al. reported the efficacy of infrared thermal imaging 

in patients with shoulder impingement syndrome [104]. The thermographic results 
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were compared with other clinical findings and it was found that decreasing movement 

limitation and hypothermic temperature distribution were related to each other. 

Inactivity in the shoulders causes localized muscle atrophy resulting in reduced blood 

flow to the capillaries. This results in hypothermic patterns [105]. Vecchio et al. 

observed abnormal temperature distribution in most patients with unilateral motionless 

shoulder complaints [106]. Jeracitano et al. have shown that cases with frozen shoulder 

syndrome show abnormal temperature [107]. Thomas et al. examined the unilateral 

and bilateral tennis elbow cases using thermography and found hot spots in unilateral 

with 94% and bilateral cases with 100% [108]. 

 

2.2.9. Diagnosis of Dry Eye Syndrome and Ocular Diseases 

 

Morgan et al. recorded thermograms of normal subjects with dry eye syndrome using 

infrared thermography [109]. According to the results of the thermograms, ocular 

surface temperatures were found to be 32.38 ± 0.69 oC in patients with dry eye 

syndrome and 31.94 ± 0.54 oC in healthy volunteers. Tan et al. examined manual, 

semi-automated, and fully automated methods using thermography to determine eye 

surface temperatures [3], [110]. Chang et al. used infrared imaging for the diagnosis 

of inflammatory status of Graves’ ophthalmopathic patients [111]. For people with 

Graves’ ophthalmopathy, the temperature differences between the reference point and 

other regions are significantly higher than the control group. It has also been found 

that thermography is very useful for investigating the effects of methylprednisolone 

pulse therapy. Brunsmann et al. laser cornea used infrared imaging to evaluate the 

thermal load during refractive surgery [112]. Ng et al. suggest that increased eye 

temperatures may be a possible sign of fever [113].  

 

2.2.10. Diagnosis of Liver Diseases 

 

Mansfield et al. have used thermography to detect liver metastases that cause abnormal 

temperature patterns on the skin surface [114]. Knobel et al. have used infrared 

imaging to examine the relationship between body temperature and necrotizing 

enterocolitis (NEC) in premature newborn infants in the incubator [115]. The mean 

abdomen-breast temperature difference was more prevalent in premature infants with 

NEC disease. Milonov et al. have used thermography with electrothermometry in 
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persons with parasitic liver disease [116]. In this study, (unilocular echinococcosis 

caused by Echinococcus granulosus) unilocular hydatid disease and multilocular cyst 

hydatic (multilocular echinococcosis caused by Echinococcus multilocularis) were 

detected. Their work shows that thermography is a tool for detecting pus cysts. Bhatia 

et al. found an abnormality in abdominal thermograms of 96% in a study of 

thermograms of infants and children with acute and chronic liver disease [117]. 

 

2.2.11. Kidney Treatment 

 

In various studies it has been shown that infrared imaging allows real-time imaging of 

flow distribution of hemofiltration [118]. Kopsa et al. have concluded that 

thermographic evaluation may be complementary in the diagnosis of pathologic 

intrarenal or perirenal disorders in patients with renal transplantation and in assessing 

graft function [119]. Oosterlinck and De have reported that the thermography can be 

used to detect different arterial sites in the kidney, which may help at least remove 

avascular nephrotic fields without damaging bleeding and kidney tissue [120]. 

 

2.2.12. Heart Operations 

 

Manginas et al. have studied the applicability of thermography in patients with 

coronary artery disease (CAD) or with heart transplant (HT) [121]. Sixteen patients 

with CAD in the study were evaluated with thermography with 19 patients with heart 

transplantation and 6 patients without structural heart disease (control). When the right 

and left ventricular temperatures were compared, there was a significantly higher 

temperature difference between subjects with CAD (0.19 ± 0.11 oC), those with HT 

(0.10 ± 0.06 oC) and those with control group (0.07 ± 0.04 oC). In addition, 

thermography is able to detect early signs of atherosclerosis and it is possible to use 

heart attack as an early indicator [122]. Infrared imaging is used as an additional 

imaging technique in a number of heart operations [123]. Madjid et al. have used 

intracoronary thermography to detect high-risk sensitive plaques [124]. 
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2.2.13. Gynecology 

 

Thermography is also used extensively in the field of gynecology [125], [126]. 

Birnbaum and Kliot found that the increase in the number and size of blood vessels 

during pregnancy and the increase in uterine volume can be detected by thermography 

[127]. Menczer and Eskin performed thermography experiments involving monitoring 

breast nipples, nipple and upper parts of pregnants for four weeks before and after birth 

[128]. Women with postpartum aches were reported to have higher breast temperatures 

than those without pain. 

 

2.2.14. Personality Tests and Brain Imaging 

 

Gulyaev et al. observed that the personality and psychological state of the subjects 

affected thermographic patterns [29]. According to them, temperature distributions 

vary depending on the level of stress, concentration and psychological activities. 

Shevelev has developed a new method called thermoencephaloscopy for thermal 

imaging of the brain cortex [129]. Neural activity is considered as the primary 

mechanism by which local metabolism and local cerebral blood flow lead to 

temperature changes. This technique reveals the active (hot) and inactive (cold) 

regions of the cerebral cortex. It has also been observed that this technique can detect 

the activation sequences of certain cortical regions. Studies show that 0.5-2.0 oC is 

higher than normal tissues around glial brain tumors [130]. 

 

2.2.15. Results 

 

With the development of new generation infrared detectors, infrared thermal imaging 

becomes a better alternative diagnostic tool due to the extraction of abnormal 

temperature thermograms. In addition to better temperature accuracy, high-resolution 

two-dimensional image acquisition and contactless measurement, thermography is 

absolutely innocuous imaging. Thermal images can be stored digitally and 

thermograms can be interpreted in more detail using various software packages. 

Interpretation of thermograms that can be converted into colors is relatively easy and 

fast. When working up to today, thermography has been successfully used in diseases 

such as breast cancer, diabetes, dentistry, diabetic neuropathy, and so on. Over the 

years the use in medical literature is likely to increase even more. 
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2.3. DATA PROCESSING METHODS FOR MEDICAL THERMOGRAMS 

 

In medical thermal data analysis, two main approaches have been used in various 

studies; one is physical model based approach and the other is image processing based 

approach. The physical model based approach includes the anatomy and geometry of 

the skin tissue structure, the blood vessels, the heat exchange processes in the body. 

This method is used to determine the location and depth of the heat source, to find the 

thermal parameters for skin identification, and so on. It has also been used in some 

studies to calculate physiological information such as localized blood flow, heart rate 

and breath velocity [54], [131]–[141]. At the core of this approach are the bioheat 

transfer model, a geometric model and various assumptions. However, in this thesis 

study, the approach based on the bioheat transfer model has not been given in detail 

because an image processing based approach is proposed. 

 

The second approach usually involves processing and analysis of images obtained 

from thermal data. Unlike the first approach, in such studies, there is no need to know 

the underlying physical mechanism of human physiology. Only the thermogram 

images and the correlations between the diseases are detected and the related markers 

are obtained. In many studies using this approach, early diagnostic techniques to detect 

various diseases have been discussed [17], [28], [142]–[147]. 

 

Identification of correlations between disease and image features is assessed using 

image processing in two main categories as segmentation of thermal images and 

removal of related regions (ROI). Techniques used in the extraction of indicators in 

medical thermograms is given in the following. 

 

2.3.1. Image Segmentation and ROI determination 

 

ROI detection is done manually in some studies or automatically in others. Due to 

undefined and indefinite boundary lines in thermal images, segmenting ROIs in a fully 

automatic manner is not always possible. The most common approaches to 

segmentation are edge based techniques, threshold based techniques, and region 

growing techniques [148], [149]. In this section, we first give examples from the 
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manual studies in the literature and then describe fully automated ROI segmentation 

applications. 

 

Herry and Frize [150] performed ROI segmentation both manually and automatically, 

using the results from the hot spot and cold spot analysis for pain detection. The 

analysis of high and low regions at abnormal grade was made based on the indices of 

isothermal regions and density profile lines. The noise in the thermograms was 

removed using a wavelet technique as it could maintain sharpness. Then, the 

thermograms were separated into body parts (such as face, fore leg, upper back, etc.) 

by edge detection, simple morphological operations and contour extraction based on 

template matching. In addition, ROIs were segmented by right and left symmetry for 

the detection of contralateral parts. 

 

Zhu et al. [151] presented another method for manual ROI detection. They performed 

extraction of supraorbital veins in the thermal forehead images using the Open End 

Snake (OES) segmentation method. In this method, vessels were first automatically 

identified using the top hat and Hough Transforms [152] method. Then an automatic 

localization of the central lines of the vessels was performed using an active contour 

model. Finally, a special operator was used to quickly determine vessel boundaries to 

investigate the maximum temperature gradient along the radial direction of a vessel at 

each point of the active contour. It has been reported that the method can segment 

vessels with high noise levels and perform better than other vessel segmentation 

methods according to two performance criteria (Accuracy and Hausdorff distance). 

However, the method was both dependent on the manual selection of the number of 

vessels in the ROI as well as the selection of the right ROI by the expert operator. 

Additionally, the performance of the method has been found to decrease with 

decreasing image quality. 

 

Koay et al. [153] developed semi-automatic image segmentation and ROI 

identification methods for breast thermograms. First, they performed image 

enhancement using a disk with a five-pixel radius as the configuration element and top 

and bottom hat morphological operators. In this view, the contours and edges in the 

image were highlighted. ROI was defined using the ellipse fitting algorithm. The 

nipples were determined to be closest to the eccentricity value of the region 1. The 
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segmented breasts were divided into four quadrants and statistical parameters were 

calculated for each breast and quadrant. 

 

Many researchers have encountered the problem of fully automatic segmentation of 

ROIs. The solution of this problem is very important in order for an algorithm to be 

reproducible and stable. In clinical trials, the mass scanning of a disease can only be 

made possible by removing the user subjectivity. 

 

Qi et al. [146] obtained four property curves with the Hough transform [152] to 

automatically separate the left and right breast segments in the thermograms for breast 

cancer detection. These curves consisted of left and right body boundary curves and 

two parabolic curves showing the lower limits of the breasts. Unlike the left and right 

borders of the breasts, it was difficult to determine the lower bounds of the breasts with 

the edge operator. The adapted Hough transformation was used to detect parabolic 

curves to find the lower bounds of the breasts. Breast borders were found in this study, 

but some parts of the breast, especially in the border regions, have disappeared. This, 

of course, would jeopardize the validity of any automated diagnostic method based on 

left-right comparisons due to lack of symmetry [154]. Also, the possibility of 

containing lesions in the discarded areas would leave doubt [154]. 

 

In a face recognition study, facial segment thermograms were divided into sections by 

using a series of approaches such as horizontal and vertical profile analysis, Sobel edge 

detection and ellipse fitting method [155]. Initially, the portrait was subtracted from 

the gray scale image due to the high contrast between the front and the background. 

Then, using the thermal property of the skin, the head was segmented. From the 

segmented image, the neck region was also removed by using horizontal and vertical 

profile analysis. The vertical profile was obtained by summing the densities at each 

row, while the horizontal profile was obtained using the sum of the densities at each 

column. Analysis of both profiles was done to define the ROI on the head. Within this 

ROI, Sobel edge detection was used to obtain edge data for use in adapting an ellipse 

around the face. The adapted ellipse was then used as a mask to remove the face region. 
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Palfy and Papez identified the main outlines of the hand for thermal analysis of Carpal 

tunnel syndrome (CTS) using a simple edge detection algorithm [156]. They put a cold 

towel under the hand during the taking of the thermogram to increase the hand's 

contrast and make it easy to distinguish it from the backplane. After the baseline 

segmentation, the hand was divided into 12 ROIs by the calculation of the center of 

mass and the determination of the characteristic points between the fingers and tips. 

The local maxima and minima were subtracted to determine the fingertips and points 

between the fingers by calculating the distances between each edge and the center of 

mass. Finally, these points were combined to define different hand parts, including 

carpal and wrist parts. 

 

In another study involving hand and arm segmentation, a combination of techniques 

such as Otsu global threshold, Canny edge detector and morphological operations were 

used [157]. Initially, the noise in the IR thermal images was subtracted using a fixed 

wavelet transform [158], which preserved fine detail in the image. Then, by using 

Canny edge detector, hand boundaries were determined. The binary image obtained 

by the Otsu thresholding method was combined with the edge-detected image. The 

resulting image was subjected to a series of morphological operations such as opening 

and closing [158]. Finally, the important points in the segment image (fingers, wrist, 

thumb and elbow intersection points) were defined using profile lines. The success rate 

of the tested segmentation technique was found to be 78.8% in the thermal hand 

images with 658 frontal and 1216 left and right, back and palm views. However, the 

method had some weaknesses. When two fingers were close to each other and there 

was a cold finger on the fingertip, the algorithm was not found sufficient. 

 

Alternatively, Zhang et al. [159] developed a method that includes Genetic Algorithm 

(GA) and Otsu thresholding to segment the thermograms. In this study, the genetic 

algorithm was started with randomly selected probable solutions as much as possible, 

and with the help of the logistic mapping equation, an initial population with the 

maximum population was allowed to be produced. The fitness function was calculated 

by taking the distance between the background class and the object class as the 

measurement function of the dispersion matrix. The dispersion matrix was formulated 

on the basis of the threshold calculated by the Otsu thresholding method. An adaptive 

mutation rate based on the maximum value of the fitness function in the current 
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population was also used to improve the performance of the GA method. This 

approach yielded better segmentation than the Otsu method alone, providing rapid 

application and good stability. 

 

Chang et al. [160] incorporated wavelet transform into multi-level automatic 

thresholding algorithms due to its multiresolution nature. In this transformation, a 

series of extended wavelets at different scales were convolved with the histogram of 

the thermogram. This was followed by the definition of zero crossings and the 

identification of the local extremities in the modified histogram set, respectively, to 

define the thresholds and the gray levels. The best threshold value for multi-level 

image segmentation was determined by lowering a cost function to the lowest value. 

The obtained results were compared with those obtained with the plane curve approach 

and found to be superior. The planar curve approach has been used to locate potential 

thresholds using the cumulative distribution function (CDF) curve of the histogram for 

multilevel segmentation [160], [161]. 

 

Edge detection and global thresholding methods can cause some information or fine 

detail to be lost, especially in areas with low contrast. Motta et al. [154] recovered 

undetected low-contrast regions in a segmented image. In this method, Otsu 

thresholding, which detects a contour on the segmented image, was used to search the 

region with the smallest gray level variance. The reason for this was that the region 

with the largest contour was the region with the lowest contrast pixels at the same time. 

The average gray level value in this area was then used as the new threshold value for 

an input image. Left and right segmentation of a mammal was then performed in 

thermograms using automatic boundary detection, mathematical morphology and 

curve subtraction and interpolation. Good results were obtained in the images obtained 

in this study. However, in breast thermogram analysis, this method could only be used 

with frontal imaging. The validity of the method was confirmed only by medical 

experts. 

 

Selvarasu et al. [162], [163] compared region growing based approaches with 

combinations of edge detection and morphological based approaches in arthritis and 

stress fracture segmentation. In the previous approach, the first pixels in the region, 

having sharp transitions (above the threshold value), was identified using Sobel masks 
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and marked as edge pixels. Morphological operations such as dilation, area filling, and 

erosion were performed on images where edges were detected to identify abnormal 

areas. In the region growing approach, thermogram was divided into subimages 

consisting of pixels with values within a certain range tolerance. The pixel with the 

median density was selected as the seed pixel and the tolerance value of 0.04 was 

selected as the similarity criterion to identify the abnormal regions. The regional 

growth approach has identified the anomalies effectively and standardized for all 

disease types that show themselves as hot spots on thermograms. It was also claimed 

that this approach was independent of parameters and fast. 

 

Then Selvarasu et al. [163] compared the region growing approach with a wavelet-

based approach to performing thermogram segmentation of arthritis and stress 

fractures. In the wavelet-based approach, the thermograms were converted from color 

to gray to reduce processing time and computational complexity. Subsequently, 

discrete wavelet transform (DWT) using Haar wavelets was applied to gray scale 

thermograms to obtain vertical, horizontal, and diagonal detail images as well as the 

approximation image. As the researchers observed that the anomaly always appeared 

as a low-resolution region, the detailed coefficients adjusted to zero while the 

approximation image was preserved. The thermograms were then reconstructed and 

hot spots were isolated using thresholds. Each hot spot was then quantitatively 

characterized. Both techniques could successfully identify and measure the 

abnormality. Because of its multiresolution nature, the wavelet transform was very 

useful if the anomaly was in a different resolution than the normal tissue. However, 

only one level of resolution was used. If all the detail coefficients were not equal to 0, 

as mentioned in the study, this wavelet-based method could be used for low-pass 

filtering the image. 

 

Herry and Frize [164] identified potential ROIs using dermatomal subdivisions of the 

body, isothermal analysis, and segmentation techniques. Firstly, in the ROI 

segmentation, the background was subtracted from the thermogram by a combination 

of Tsai's optimal thresholding method [165] and additional morphological operations. 

After these steps, specific reference points in the body were identified by analyzing 

the profiles and contours on the image. Landmarks known as dermatomes of the body, 

were the areas around shoulders and hips for the chest and back, hip splits for the back, 
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and the knee for the legs. More specific regions from dermatomes were identified 

based on isothermal analysis (hot and cold regions). In order to obtain the most 

important regions, they performed operations such as merging the regions, throwing 

small regions at 10 pixels, thresholding, and removing artifacts from the boundaries of 

the segmented ROIs. 

 

Tang and Ding [147] detected ROIs in breast thermograms using mathematical 

morphology. In this work, the thermal pattern in a thermogram was defined as a cluster 

of peaks and ridges on a topographic surface. Based on this, the authors performed a 

series of morphological operations to perform the breast segmentation. During rough 

segmentation, opening and closing with different lengths and oriented structural 

elements have been carried out. The so-called positive power of the pixel was 

calculated by the difference between the maximum and minimum values of the pixels 

from the images obtained after the opening. They did the same after closing to 

calculate the so-called negative power of the pixel. When the positive power of the 

pixel was larger than the negative power, it was determined that this pixel had a 

positive direction. The positive direction of a pixel was used to determine the pattern 

of heat in the rough segmentation stage. In order to narrow the result of coarse 

segmentation, a marker image was obtained by first calculating the difference between 

the image and the image after opening. A refined heat pattern was then obtained by 

performing a logical "AND" operation between the marker image and the roughly 

segmented image to remove unwanted heat patterns (along the outer borders of the 

breasts). Then, using the extended maxima transformation, another marker image was 

formed which consisted of a series of pixels representing the desired heat arrangements 

in the breast area. This marker image was then used to determine the locations of the 

remainder of the desired heat settings in the refined image. 

 

Herry et al. [166] performed segmentation of abnormal regions with a simple 

translation to calculate the absolute difference between the two contralateral knees. 

Then, thresholding was performed using the 90% point of the total scatter function on 

the absolute difference image to obtain the set of interest showing asymmetry 

anomalies. Then the clusters were mirrored and turned back to their equivalent in the 

contralateral knee. 
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Most of the improved methods in the thermogram analysis discussed in this section 

require a preliminary knowledge of the ROIs developed and investigated for a 

particular type of disease. Herry et al. [166] developed an alternative approach to 

derive abnormal regions from a wide variety of clinical thermogram images. 

Accordingly, no specific information was required on the underlying thermal 

dysfunctions. This approach consisted of feature images and adaptive resonance theory 

(ART) applied to thresholded linear composites clustered neural network. Feature 

images were obtained by combining normalized global contrast, entropy filter and 

Laplacian Gaussian (LoG) and Sobel operators. When ART was applied directly to the 

body region, it allocated clusters to the region with a matching-based learning method. 

The ART network consisted of a layer of cluster nodes and two layers of input data 

from each layer. Based on unsupervised learning, the existing cluster-matching nodes 

in the ART network were searched to match the input data to the network. If no 

matching node was found, a new node was added. To do this, the signals and inputs 

from the feedback links were compared and then bridged by a parameter that 

determines whether the input will assign a new one to the existing cluster. The results 

from ART and feature detectors were combined with a logical "AND" operation. 

Experimental results have shown that the approach could detect abnormalities in the 

thermograms. However, only two images with known anomalies were tested. 

 

2.3.2. Asymmetry based approaches 

 

In medical field, thermograms are known to exhibit symmetry in temperature patterns 

[17], [142], [144], [167]. Based on this information, it is assumed that small 

asymmetries in temperature patterns show abnormal conditions. This is the basic 

principle in detecting lesions in breast cancer studies and in detecting abnormalities in 

other parts of the human body [144]. In the case of an asymmetric thermogram, this 

asymmetry may be indicative of a physiological abnormality such as pathological 

(cancer, infection, vascular disease, fibrotic disease) or an anatomic variant [17], [28], 

[144], [167]. Since it is difficult to be detected by the human eye for these small 

asymmetries, it is extremely important to automate detection. Another important 

aspect of such an approach is the elimination of the individual and environmental 

factors of temperature changes [17], [142] because they can disrupt the structure of the 

thermogram in the image. 
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Most asymmetry studies in thermogram analysis use the differences in the first and 

second order statistical parameters in the contralateral images. The first order statistical 

parameters are obtained using the image histogram and the second order statistical 

parameters are calculated from the gray-level co-occurrence matrices [28]. Second-

order parameters have been successful in distinguishing almost all malignant tumors. 

Fujimasa [17] and Mabuchi et al. [142] presented a computerized thermographic 

system (CTS) that performs thermogram analyzes based on asymmetry and 

thermographic index. In these studies, the body region was divided into two 

symmetrical parts, the affected side and the healthy side on the opposite side of the 

body. Since there was no standard skin surface temperature, the distribution of 

temperature differences between the affected side and the healthy side was obtained. 

Subsequently, the mean temperatures of both the affected area and the contralateral 

healthy area were calculated and the difference between the averages was found. 

However, various problems have been reported in this method. One of the problems 

was the identification of an abnormal area larger or smaller than the actual abnormal 

area. This could change the difference in average temperature between the two sides 

and thus prevented significant differences from being detected. 

 

Zavisek [168], [169] claimed that the differences in vascular patterns and the hot and 

cold spot appearances in the left and right breasts were the most important 

thermopathological features. In these studies, various methods such as histogram 

analysis, temperature co-occurrence matrix (COM), Fourier spectrum analysis, 

moment and cluster analysis have been used for feature extraction. Statistics such as 

commonly used energy, entropy, contrast, and homogeneity could also be generated 

based on COM for the classification of vessels of breasts [168], [169]. Using the points 

in the contralateral images, COM could be modified to evaluate the symmetry and to 

evaluate the roughness and direction of the sought features to be cross-COM (X-

COM). Thanks to some of the parameters used, they have achieved more than 80% 

sensitivity and specificity in the classification of thermograms. 

 

Koay et al. [153] used first-order parameters derived from histograms for the 

determination of thermal properties in asymmetry analysis. Asymmetry-based features 

were obtained by evaluating the difference between statistical parameters including 

mean, variance, standard deviation, median, maximum, minimum, skewness, kurtosis, 
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entropy, area, and temperature content between contralateral breasts. In the analysis of 

asymmetry, the difference statistic was examined for the entire breast image and each 

quadrant of the breast. 

 

Herry and Frize [150] compared symmetric density distributions using low, high, and 

Kolmogorov-Smirnov statistics. Using a statistical analysis and comparisons made, 

they used a decision support scheme to summarize the results for each thermal image. 

In asymmetry analyzes of Tarnawski et al. [170], a number of statistical calculations 

such as absolute temperature difference averages, absolute difference of standard 

deviation, median temperature and 90 percentile temperature, image moments, 

histogram properties, COM-based properties (homogeneity, energy, contrast and 

symmetry) were used as features. Each breast thermogram was then categorized using 

a combination of all asymmetry-based features (a total of 38 features per breast 

thermogram, defining the asymmetry between the two sides). Each property was 

normalized to a range of 0 to 1 so that it could be compared within the descriptors. 

 

Qi et al. [146] performed asymmetry analysis using the ratio of extracted properties. 

As the ratio approaches 1, more correlation features and less asymmetry between the 

segments were observed. Asymmetry based features were obtained by evaluating the 

low and high order statistics (mean, variance, skewness and kurtosis), the peak pixel 

density, entropy and joint entropy. 

 

Merla and Romani [143] performed a quantitative evaluation of symmetric / 

asymmetric temperature distributions using a first-order statistical algorithm based on 

two parameters: symmetric asymmetry factor and spatial correlation factor. First, they 

identified the asymmetry factor between temperature distributions on the left and right 

sides of contralateral regions. Then, the homologous contralateral regions were 

compared with homologous contralateral regions. This approach allowed the 

quantitative evaluation of regional variations of temperature distributions, thus 

allowing the identification of functional asymmetries related to the human posture. It 

has been reported that advanced quantitative diagnostic applications are now routinely 

used in clinical settings. 

 

 



32 

Most of the asymmetry based properties are used in quantitative asymmetry analysis. 

Tang and Ding [147] also performed qualitative analysis on the asymmetry of breast 

thermograms. Quantitatively, the authors performed asymmetry analysis of breast 

thermograms based on extraction properties (such as skewness, variation, kurtosis, 

temperature difference, and maximum rate between temperature difference and area). 

They then calculated the two-sided ratio of these properties. If the ratio was more than 

1, asymmetry increased. In a qualitative analysis, the left and right heat patterns were 

performed using the curve of the cumulative histogram describing the field 

temperature change. When the curve of the cumulative histogram was vertical, it was 

understood that the temperature distribution was more abnormal. 

 

Herry and Frize [164] proposed a method based on distance measurements (Manhattan 

or absolute distance, Euclidean distance, maximum distance, chi-square distance, 

Jeffrey divergence distance, and Mallows distance) to assess the degree of asymmetry 

between contralateral ROIs. This approach has been used to derive from the limitations 

of the asymmetry analysis, which is based on the difference in statistics that ignores 

the importance of temperature distribution. Quantitative assessment using contralateral 

ROI thermograms of normal and painful patients has shown that the method based on 

the Euclidean distance has left behind other methods considered, including comparison 

of statistical parameters such as mean, variance, skewness, kurtosis, and maximum 

values. 

 

2.3.3. Other Features 

 

Other features used as indicators for abnormalities in thermograms include vascular 

pattern (hyperthermia, hypothermic or atypical complexity), abnormal physical 

contour, localized heat along the abnormal physical contour (edge signal), and 

response to the autonomic control procedure (dynamic imaging) [36], [160], [167]. 

Acharya et al. [171], [172] used texture features such as homogeneity, energy, entropy, 

moments of various mechanisms, angular second moment, contrast, mean, short time 

emphasis, long time emphasis, percentage of work, gray level uneven uniformity and 

length irregularity in their work with thermograms for breast cancer detection. 

However, only four features were identified that were clinically significant when 
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compared to other features. These were moments at first and third degrees, percentage 

of work, and irregularities at gray level. 

 

Thermal properties such as the maximum temperature in the eye area and the 

maximum temperature in the forehead zone have been found to be promising for the 

diagnosis of SARS, headache, migraine, vascular disorders, sleep apnea and similar 

diseases [173]–[177]. Quek et al. [177] used the fuzzy neural network to extract the 

maximum temperature in the eye region. In migraine patients, hot spots were more 

frequent in the orbital intima [178], [179]. In arthritis and stress fracture analysis, 

thermal properties such as major axis length, side-axis length, and area were extracted 

from the hotspot regions for further analysis [163].  

 

In the Carpal Tunnel Syndrome (CTS) analysis, the mean temperature and the ambient 

temperature of each section of a hand thermogram without cold stress testing were 

categorized as healthy and CTS by an artificial neural network [180]. For massive 

screening, Ng and Kee [181] extracted the temperature data from the front and side 

profiles of a hundred thermograms. The temperature data were then normalized and 

statistical analysis was performed to obtain the minimum, maximum, mean, median 

and standard deviation over the temperature data. Varga and Khanka [182] selected 

the mean temperature and variance of the different diseases as the most important 

features for the classification of diseases based on the Kittler and Young [183] attribute 

method. 

 

Selvarasu et al. [163] used the major and minor axis length, area, and variance in the 

pixels of the extracted hot spots to characterize the severity and severity of the 

abnormality in arthritis and stress fracture thermograms. Nurhayati et al. [184] have 

reported that distinction could be made especially early and advanced cases in 

abnormal breast thermograms by using skewness curves, standard deviation, and 

entropy values. Moreover, they have found that normal breast thermograms had the 

smallest standard deviation and skewness values, unlike especially the abnormal ones 

from advances cases. Also, in contrast to these findings, normal breast thermograms 

had the highest mean value, which was different from the advanced and early breast 

cancer thermograms. 
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Wiecek et al. [28] obtained thermal properties using image histograms, COMs, and 

wavelet transforms for image classification. Using raw data analysis, three of the seven 

original features were selected based on the first two from COM (first squares and 

differential difference moments) and the third wavelet transform. Wavelet transform 

was performed with low pass and high pass filtering, followed by decimation at all 

scales until the size of the image was reduced to a single pixel. From the wavelet 

transformed image, the gradient of the temperature (obtained from high pass filtering), 

the global temperature distribution (obtained from low pass filtering) and the level of 

temperature (estimated from the energy of the signal) were obtained. The classification 

based on these properties was then performed using a neural network and compared 

with the nearest neighbors classification. 

 

In a study of facial expressions, transitional facial features were used in classification 

[185], [186]. In this study, with CMView Plus software, each thermogram was divided 

into a grid of squares and the thermal intensity values (TIVs) of the faces were 

measured to obtain sample data. The highest temperature value in each grid was 

recorded as the TIV value of square. Later, variation in TIVs was measured by 

multivariate analysis and exploratory reordering. These methods were used to identify 

TIVs with significant thermal changes and to generate 75 squares (using a 128-frame 

grid) known as facial thermal points (FTFPs). FTFPs provided information about the 

hundred facial thermal variations. Prior to thermal property extraction, TIV datas were 

normalized using the average thermal value. Then, a thermal feature vector consisting 

of projection coefficients on eigenvalues for classification was found using PCA. 

 

For thermogram analysis, Underwood [187] used active appearance models (APMs), 

including not only the shape but also the tissue data of the hands, independent of the 

palm position. In the model of APMs, a set of parameters defining shape and gray level 

changes, shape modification, affine transformation methods were used. The 

parameters of the image and gray level variations were then combined and then used 

in a PCA. In order to achieve this model, two parallel educational approaches have 

been used. These were total approach (using all images) and serial approach (only 

using corresponding points from various images). 
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2.3.4. Results 

 

Thanks to IR thermal imaging technology, image processing techniques and advances 

in the pathophysiological understanding of thermograms, infrared imaging is very 

useful for health monitoring and clinical diagnosis as a primary aid complement. IR 

thermal imaging can be more effective in medical field since it has been found to be 

useful for early screening and detection of a wide range of diseases (neurology, 

vascular disorders, rheumatic diseases, tissue viability, oncology (breast cancer in 

particular), dermatological disorders, neonatal, ophthalmology and pain, stress, 

anxiety, sleep disorders, surgery and monitoring efficiency of drugs and therapies [18], 

[28], [42], [131], [134], [145], [153], [188]–[192]). Changes in blood perfusion caused 

by inflammation, infection, injuries, angiogenesis and tumor growth appear as hot or 

cold spots in the thermograms. Thus, examining the abnormalities observed in 

thermograms and examining the heat exchange processes of the human body can 

provide information about the pathology of the underlying diseases [17], [18], [138], 

[140]. 

 

In medical practice, thermograms are known to be substantially symmetrical in 

temperature patterns. Asymmetries formed by the formation of these hot and cold spots 

in the thermograms are often indicative of physiological abnormalities. For this reason, 

an asymmetry analysis approach based on image processing methods seems to be very 

popular for the diagnosis of hemilateral diseases such as breast cancer and hemilateral 

radiculopathy. The asymmetry approach removes both internal and external variables 

and allows small changes in the body surface in the affected regions to be detected and 

evaluated even for smaller and deeper tumors. In addition to asymmetry-based 

features, the average temperature of abnormal regions, variations, contours, and other 

properties obtained by wavelet transform can also help in thermogram analysis. 

 

As a result, a rapid, effective, and robust system based on thermal imaging can be very 

useful in the analysis of medical thermograms and therefore allows mass scanning for 

a disease. It is supported by non-invasive, non-radiation based, fast and cost-effective 

compared to other imaging modalities. For this reason, image processing and analysis 

methods need to be developed to evaluate changes in body surface temperature 

distribution for disease diagnosis. However, it should be kept in mind that changes in 
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blood perfusion may occur for a variety of reasons other than previous inflammation 

and angiogenesis, such as trauma. For this reason, in some cases it may be useful to 

support thermography with different imaging modalities such as ultrasound, MRI, 

tomography. Thus, the information obtained from the thermal image can be evaluated 

with better accuracy. 

 

2.4. THERMOGRAPHY STANDARD PROTOCOL 

 

Since human skin is severely affected by environmental factors, it is very important to 

use a standard protocol while taking IRT images. The environment for imaging needs 

to be ideal, the patient should not be sweating or shivering because of too hot or cold 

[37]. In the literature, room temperatures have been set between 20 and 24 ° C [193]–

[199]. Although the skin has high emissivity (ε ≈ 0.98 [4], [27]), there should be no 

radiation source near the skin [200]. In addition, subjects should not be exposed to IR 

sources or airflow [37]. To remove effects from ambient temperature, the clothes must 

be removed for a sufficient period of time before the image is taken [201]. In various 

studies, this time was ranged from 5 minutes [55], [202], [203], 10 minutes [194], 

[204], [205], 15 minutes [104], [197], [206]–[211], 20 minutes [212]–[214]. Besides, 

topical cosmetic or ointment application [215], inhalation of cigarette smoke [216]–

[219] or drinking alcohol should not be allowed prior to imaging [220]. Despite the 

fact that there is no definite information about skin temperature effect, heavy meals, 

coffee and tea consumption are not recommended [221]–[224]. Again, intensive 

exercise, massage, and other physiotherapy methods should be avoided prior to 

thermography as it can change skin temperature [225]. Finally, if there are diseases 

that affect the skin, such as sunburn [226], it should be taken into account when 

interpreting the results of IRT. 

 

In this study, when the patients came to the hospital for the first time, they first had 

routine examinations and were subjected to appropriate tests if they have any 

preliminary diagnosis. After these tests, they were directed to the imaging room where 

the ideal conditions have been established. To limit external factors, the ideal room 

was formed where the temperature was set between 22-24 degrees Celsius with climate 

control, with a humidity of about 60 percent with a tolerance of 5 percent, no daylight, 

illuminated with fluorescent lamps, no ventilation directly affecting the patient, no 
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external heat source. To limit internal factors, within the last 2 hours, those who 

consume meals, coffee, tea, cigarettes, caffeinated beverages, alcohol, drugs that alter 

blood flow, use cosmetics and do physical activity were not included in the study. 

 

After all these conditions were met, patients were allowed to rest for 15 minutes to 

balance the basal metabolism in such a way that their imaging body area were naked. 

After this process, the images were taken with the Testo 875i model thermal cameras 

by experienced physicians. When the image was taken, the patient was seated 

comfortably in a vertical or horizontal position, the camera was focused vertically on 

the area to be imaged, and only the body region and underlying cover were included. 

The numbers of the received images were saved in the patient file.  
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CHAPTER III 

 

THERMAL IMAGE PROCESSING METHODOLOGY 

 

This section discusses in detail the methods used to develop the image processing 

approach for the analysis of infrared thermal images to diagnose diseases. The 

proposed system consists of six stages: image preprocessing, image enhancement, ROI 

segmentation, statistical analysis, decision-making and performance evaluation.  

 

3.1.  Image Preprocessing 

 

The images obtained by the thermal camera are actually 2D real temperature values in 

terms of centigrade. This data should be converted to 8-bit grayscale images with 

normalization [224], [227]. With the aid of the current temperature information and a 

linear mapping function, this matrix is transformed into an 8-bit grayscale image 

according to Eqn 3.1. 

 

 n

NewMaximum NewMinimum
I I Minimum x NewMinimum

Maximum Minimum

 
   

 
 (3.1) 

 

Here, I represents the unprocessed thermal data where the minimum and maximum 

values are extracted. The NewMaximum and NewMinimum are defined as 255 and 0 

to normalize the image to an 8-bit grayscale.  

3.2.  Image Enhancement 

 

A three-part process is proposed for enhancing the images: noise reduction, contrast 

enhancement and background removal. Each step is discussed in detail in order to 

understand methods and the logic behind their use. 
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3.2.1. Noise Reduction Approaches 

 

Noise is a natural feature of all electronic devices [228]. Even though noise is 

minimized by methods such as calibration, it is seen during image acquisition. Noise 

has the potential to create an unusual texture in the image, causing metrics to 

deteriorate [229]. For this reason noise reduction methods must be used. 

 

The main purposes of noise reduction methods are to determine whether differences 

in pixel values within an image are real values and, to average these values to reduce 

the overall effect, if noise is detected. Since the amount of noise content can not be 

determined precisely, there is a balance between noise reduction and the preserving 

fine details such as edges. Different methods are discussed in the following.  

 

In this study, spatial filters, which are defined as kernels, are used to represent 

neighborhood shape and size. It is common practice to use odd numbered spatial filters 

as a dimension to ensure that each pixel is located in the neighborhood center [230]. 

At the same time, the larger the neighborhood size, the more noise is reduced, but the 

degree of blur increases. Normally, 3x3, 5x5, and 7x7 dimensions are selected for 

analysis, because sizes larger than them can cause more blur and remove significant 

content. In addition, to preserve the brightness of the original image, the sum of all the 

items of the filter must equal one. 

  

Mean (or average) filtering is one of the simplest ways to reduce noise and remove 

noise [228]. In this filtering, each pixel in the image is replaced by the average density 

value of its neighbors. In other words, the differences in values between neighbors are 

softened and the noises are removed by significantly smoothing. A 3x3 average kernel 

is as below. 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 

 

Figure 3. 1 Example of a 3x3 kernel for mean filtering 
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The median filter is a known nonlinear filter that preserves the edges and fine details 

of the image in terms of noise reduction [228]. In this method, when an MxN 

neighborhood is given, the pixel values are sorted and the median value is assigned as 

output pixel [230]. The complexity of the method is increased when using even-size 

dimensions. 

 

It is known that the Weiner filter is one of the best ways to remove the noise in the 

signal. This adaptive technique has achieved superior results over linear methods due 

to the high frequency content protection in the image. A Weiner filter is generated for 

each pixel in the image using the mean (μ, Eqn 3.2) and variance (σ2, Eqn 3.3) values 

of a local area. Here, ɳ is the neighborhood of MxN according to the pixel a. These 

calculations are used to create a pixel-based Weiner filter (Eqn 3.4). In this equation, 

v2 is the noise variance determined by averaging all estimated variances. Edges are 

preserved with this method, because when the variance is low, smoothness is high and 

variance is high, smoothness is minimized. For this reason, this method is suitable for 

noise reduction in thermal images. 

 

 

 

In this study, a simulation was performed to determine which noise reduction 

technique is most appropriate. As suggested in the literature, white Gaussian noise 

with a mean [231], [232] of 0 and a variance of 0.001 was added to the images. A 

comparison was made between the original image and the filtered image to evaluate 

the performance of an image restoration technique. The comparisons were based on 

the mean square error (MSE) defined in Eqn 3.5. Where M and N represent the 

dimensions of the image, while m and n represent the pixel coordinates. 
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Among the three noise removal techniques, the selection criterion was based on the 

minimum MSE value. The average filter performance was the worst in all kernel 

values. The best Wiener filter (5 x 5) performed slightly better than the best median 

filter (5 x 5) MSE. When 7 × 7 kernel size was used, all three filters show visible 

blurring. As a result, a Wiener (5 x 5) filter was selected to perform the noise reduction 

process. 

3.2.2. Contrast Enhancement 

 

Contrast enhancement methods are designed to enhance certain features by improving 

image contrast without altering the structural information of the view [233]. An 

increase in the current contrast level of the image makes it easier to reveal hidden 

details. Histogram equalization is a way of adjusting the image intensities by 

increasing global contrast. This concept is based on the spread of frequencies stuck on 

a narrow histogram over a wider range. The transformation of these intensities is 

described in Eqn 3.6 [230]. However, this transformation method may cause noise 

amplification, depending on the fact that a number of pixels are in a certain intensity 

range [234]. 

 

where  Ik = intensity value of the enhanced image 

 rk = intensity value of the original image 

 L = number of intensity levels 

 pr(rj) = probability density function of a particular intensity 

 nj = number of pixels at the intensity j 

 n = total number of pixels 

 

Contrast-Limited Adaptive Histogram Equalization (CLAHE) is a commonly used 

contrast enhancement method that has proven to be effective for medical imaging 

[233], [234]. Unlike other histogram equalization methods, this technique performs 

contrast enhancement on divided small regions of the image. The pixel intensity is 

converted to a value within the display range that is proportional to the order of the 

pixel density for the local region. The difference between CLAHE and adaptive 
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        (3.6) 
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histogram equalization (AHE) is that the local histogram height is a user-determined 

maximum (clip level or clip limit). In other words, the histogram values are cropped 

to a certain extent and the remainder is redistributed to other bins. This results in a low 

contrast enhancement in the homogeneous areas of the image, thereby reducing the 

extreme increase in noise due to the increase in pixel variations and reducing the loss 

of edges to a minimum [233]. The size of the neighborhood and the clip level are the 

user-defined input parameters required for CLAHE. 

 

The CLAHE method is used to increase contrast in this study. Similar to noise 

reduction, a simulation was performed to determine the appropriate clip limits of the 

CLAHE method [235] used in a previous study for contrast enhancement. Increasing 

the clip limits has been seen to increase the MSE value. So, clip-limit values of 0.005 

and 0.01 were selected as appropriate for asymmetry analysis [235]. This clip limit 

increased the contrast to a level that would not disturb the accuracy of the image, and 

only slight changes were recorded. 

 

3.2.3. Background Removal and Contralateral Body Segmentation 

 

The purpose of removing the background in the image is to eliminate the unwanted 

parts of the image while preserving essential information. In this study, objects such 

as clothes, cables, rooms, etc., which are located outside the area of interest of the 

body, are defined as the background. Particularly when thermal imaging is considered, 

the background separation is relatively easy, as the intensity values of the infrared 

radiation emitted by the skin are greater than those of the background. For this reason, 

it is preferable to use intensity based segmentation algorithms that can distinguish the 

body area and the background by identifying the gray level threshold automatically. 

 

After background removal, the foreground image of the corresponding body region is 

divided into two region for the detection of the contralateral body segments by using 

Roberts edge detection method [236]. The image is divided by vertically controlling 

the vertical edge to start from the center of the picture. Then, using the following 

algorithms, the two images are evaluated independently of each other and the region 

of interest is made without any interaction.  
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Otsu Algorithm 

 

In this study, the Otsu algorithm as one of the background removal algorithm was 

chosen to automatically remove the background from the thermal image [237]. This 

method has been chosen because of its simple, stable and widespread use in medical 

image processing. Segmentation is based on calculating the optimal gray level 

threshold. The use of the algorithm is as follows.  

 

In the Otsu thresholding algorithm, the goal is to find the threshold that minimizes the 

within cluster variances, or maximizes the variance between classes to allow the data 

to be divided into two groups. So, grayscale images can be converted into binary 

images and separated into a foreground and a background. 

 

The weighted sum of within cluster variance is defined as: 

 

     2 2 2

1 1 2 2w t t t       (3.7) 

 

where, 𝜔𝑖 is the probability of occurrence for class i that is separated by threshold t. 

 

       1 2

1 1

   ,
t l

i i t

t P i t P i 
  

    (3.8) 

 

Therefore, mean of each cluster is calculated by 

 

 
 

 
 

 

 1 2

1 11 2

   ,
t l

i i t

iP i iP i
t t

t t
 

   

    (3.9) 

 

Moreover, individual class variances are defined as 
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When all possible threshold values (t) are attempted, the threshold value that 

minimizes 𝜎w
2 (𝑡) could be found. 

 

To reduce the cost of calculation, a faster method can be created using recursive 

operations. This calculation uses the definition of the total variance for any threshold 

to be the weighted sum of within the cluster variances and between the cluster variance 

(the sum of the weighted squared distances between the class averages and the overall 

average). The total variance can be written as, 

 

       
22 2

1 1 1 2(2) 1w t t t t                (3.12) 

 

Since the total variance is constant, it can be used to maximize the cluster variances 

rather than to minimize within the cluster variances. This provides recursive 

computation between cluster variances. The algorithm is as follows: calculate the 

normalized histogram of the input image, calculate the global average, calculate the 

between cluster variances for each possible threshold value, and select the threshold 

value that maximizes the variance between the cluster variances. 

 

The Watershed Algorithm 

 

In this study, the Watershed algorithm as another background removal algorithm was 

chosen to automatically remove the background from the thermal image. Mathematical 

morphology provides theoretical background and techniques for processing and 

analysis of geometric structures in images based on set theory, lattice theory, topology 

and random processes [238]–[241]. The main method of image segmentation in 

mathematical morphology is the watershed algorithm [242]. In the Watershed 

algorithm, an image appears as a topographic surface: the higher the value of a pixel, 

the higher the height at the corresponding point in the topographic surface. The 

algorithm is like as follows. 

 

Let f be the grayscale image under consideration,  represented  as a function R2 → R 

defined on the domain Df ; let p = (x, y) ∈ Df be a particular location in the image. Let 
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hmax and hmin be the largest and smallest values taken by f on its domain. Let Th(f ) be 

the threshold at level  h, defined as 

 

    ;h fT f p D f p h    (3.13) 

 

The catchment basins will be constructed step by step corresponding to stepwise 

flooding. Let Ch(Mi) be the part of the catchment basin associated with the minimum 

Mi, which is flooded at level h. In other words, 

 

     h i i hC M C M T f   (3.14) 

 

Let M = {M1, M2, . . . , Mk} be the set containing all of the minima at level h. The union 

of all catchment basins is denoted by C(M), and its flooded part at the level or time h 

is denoted by Ch(M ). Let the geodesic influence zone izh[Ch(Mi)] of a connected 

component Ch(Mi) within Th be defined as 

 

          | 1, / : , ,h h i h j h i h h jh
iz C M p T k i d p C M d p C M             

 (3.15) 

 

where dh[p, Ch(Mi)] is the geodesic distance between p and Ch(Mi) in Th, defined as 

the infimum of the lengths of all of the paths going from p to Ch(Mi) in Th. In the same 

way, we denote by IZh(M) or the influence zone of M in Th the union 
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  (3.16) 

 

with K being the number of regional minima in Th. 

 

According to the definitions given above, in the first stage of flooding, Thmin(f) is 

identified with the deepest minimum and Chmin(Mi) = Thmin(f). Let the time h be 

increasing, so that the flood reaches the level h − 1. The threshold Th(f) is made of k 

connected particles, Bi for i = 1, 2, . . . , k, so that ∪iBi = Th(f) and ∩iBi = ∅. Each 

connected particle Ch−1(Mi) is contained in one and only one connected particle of 

Th(f). However, there can be connected particles of Th(f) with zero, one, or several 

connected particles of Ch−1(M). If a connected particle Bi of Th(f) contains only one 
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connected particle Ch−1(Mj), then Bi belongs completely to the catchment basin 

associated with the minimum Mj. In other words, Bi is the geodesic influence zone of 

Ch−1(Mj) within Th(f), that is, Bi = izh[Ch−1(Mj)].  If a connected particle Bi does not 

contain any connected particle Ch−1(Mj), then a new minimum has just been flooded. 

A minimum that appears at the level of flooding h is called Minh. Finally, if a particle 

Bi contains several connected particles Ch−1(Mj), a dam must be constructed within Bi 

to separate the converging floods; at the end of the procedure, all dams correspond to 

the complement of the set Chmax(M). 

 

In summary, the following recursive algorithm may be defined: 

1. Chmin (Mj) = Thmin (f). 

2. For h ∈ [hmin + 1, hmax] : Ch(M) = IZh ∪ Minh. 

3. DL = Df \ Chmax (M), where DL is the dividing line or the position of the dam. 

 

3.3.  Finding Region of Interest (ROI) 

 

3.3.1.  ROI determination in the Deep Vein Thrombosis Application 

 

After the background is removed and contralateral body regions are detected, heat 

maps are created using the contours of the two separate regions and classified using 

heat averages to have high and low temperatures. As a result of the classification, the 

body area with high temperature is considered suspicious and the ROI is determined 

by the threshold value shown in Eqn 3.17. In this examination, if the heat distribution 

is not homogeneous and there is an abnormality, the potential disease area (ROI) is 

determined by the threshold value, and a new heat map is created according to the ROI, 

otherwise a homogeneous distribution (non-complaining body area) will yield itself as 

ROI. Accordingly, there is also no need to find an ROI when the same threshold value 

is applied to the leg with low heat, as it usually gives shape of the leg itself. 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑉𝑎𝑙𝑢𝑒 =
max(𝐶𝑜𝑚𝑝. 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝) + min (𝐶𝑜𝑚𝑝. 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝)

2
 (3.17) 
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So, individual heat maps are created for the complaining and non-complaining body 

areas by using ROI analysis. These maps contains thermal data corresponding to each 

pixels. For statistical analysis, these vectors are used to determine first order statistics 

of patient and normal subjects. 

 

3.3.2.  ROI determination in the Raynaud Phenomenon Application 

 

In this study, the ROI areas are identified for patients with Raynaud phenomena using 

morphological operations in image processing. 

 

One way of extracting image components to express the details, such as the shape, 

boundaries, area, and so on for a region in digital image processing is morphological 

processing [236]. To understand the methods used in this thesis, two primitive and 

commonly used morphological operations, dilation and erosion are discussed in the 

following sections. 

Dilation 

 

Dilation is the method used to smooth the boundaries of regions or to cover very small 

gaps between adjacent regions. According to Gonzalez and Woods [236], the formal 

definition of the dilation of cluster A and B is A ⊕ B and is defined by: 

 

where 
^

B  is the reflection of B. 

 

This definition means that dilation of A by B is done by reflecting B and then shifting 

B over A by z. Then all the displacements of B are set such that B and A overlap by at 

least one element, which gives the dilation. Set B is also referred to as the dilation 

mask or structuring element (STREL). In Figure 3.2, an example of set A and a set B 

are shown to illustrate the effect of dilation.  The center of the mask B is marked by a 

small black square. In this case, the reflection 
^

B  is equivalent to B.  Now, if  B  is  

moved  within  and  outside  A,  then dilation is given by the set of all points traversed 

 
^

| ( ) 0zA B z B A    (3.18) 
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by the center of B, until A and B are overlapped by at least one element. The resultant 

is shown as the shaded square that is bigger in size than A as indicated by dashed lines. 

 

 

Figure 3. 2 An example of dilation of set A by set B 

 

Erosion 

 

Erosion produces an opposite effect of dilation. Following the same notation for 

dilation in Eqn. 3.18, a formal definition of erosion is given by [236]: 

 

In other words, erosion of A by B is set of all points traversed by center of B such that 

B is totally contained within A at all times. Figure 3.3 shows an example of set A and 

a set B to illustrate the effect of erosion. Erosion can be used for removing small 

unwanted components, such as thread like structures, from an image by using a 

structuring element (STREL) with an area that is bigger than the unwanted regions. 

 

 

Figure 3. 3 An example of erosion of set A by set B 

 

 | ( )zA B z B A    (3.19) 
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Morphological Opening and Closing 

 

In digital image processing, morphological dilation and erosion processes can come 

together with different combinations to make interesting changes in the images. 

Morphological opening and closing also occurs with specific variations of dilation and 

erosion. While morphological opening is often used to smooth contours of the region 

and to remove fine specks in the images, the morphological closing combines the two 

large regions separated or add smoothness to the image contours [236]. 

 

In mathematical morphology, opening is the dilation of the erosion of a set A by a 

structuring element B:  

 

In mathematical morphology, the closing of a set (binary image) A by a structuring 

element B is the erosion of the dilation of that set, 

 

where  and denote the dilation and erosion, respectively. 

 

3.4.  Statistical Analysis 

 

The Shapiro-Wilk test is based on the null hypothesis that the data is sampled from a 

Gaussian distribution. If the p-value in the test is less than the threshold α, the null 

hypothesis is rejected [243]. The α-value can be considered as a level of significance 

and is normally set to a value of 0.05, which in principle represents 95% confidence 

interval and thus the equivalent level of 2σ values in the normal distribution. 

 

Student t-test is used to determine whether two separate samples were normally 

distributed in the same population [244]. The null hypothesis assumes that the samples 

are from the same population, thus if the value of p is statistically significant at a 

certain level of significance, i.e., if the value of p is less than α, the null hypothesis is 

rejected. Two samples are dependent on a paired test while an unpaired test assumes 

independence between each measurement. 

 A B A B B    (3.20) 

 A B A B B     (3.21) 
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The analysis of the data obtained in this study is performed by using the Shapiro-Wilk 

test since the Shapiro-Wilk test gives more reliable results for data sets smaller than 

2000. Independent-sample t test is used for paired comparisons of independent and 

normal distribution data. On the other hand, Mann-Whitney U test is used for paired 

comparisons of independent and non-normal distribution data. Since the p value 

indicates the amount of possible error and shows a statistically significant difference 

in a comparison, p<0.05 is considered statistically significant in all comparisons. 

 

3.5.  Decision-Making for Disease Diagnosis 

 

In the empirical sciences, the three sigma rule means a heuristic method in which 

"almost all" values are taken to lie in the three standard deviations of the mean, i.e., 

99.7% probability that "close to certainty" is useful [245]. A sample normal 

distribution plot is shown in Fig. 3.4 with a 3 sigma rule. The benefit of this intuition 

is largely dependent on the problem that is being considered. For example, in social 

sciences two sigma effects (95%) can be considered "important" for a result whereas 

in particle physics five sigma effects (99.99994%) are described as a "discovery". In 

this study, infrared imaging is considered to be only a preliminary test and the best 

possible sigma value is determined according to objective evaluations and explained 

in the following sections. First, sigma values (σ) were calculated separately (Eqns. 

3.22-3.23) for each subject by using heat maps.  

 

 

Figure 3. 4 3-Sigma Rule for Normal Distributions 
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 𝜎 =
𝜇

𝜉
 (3.22) 

   

 
𝜇 = 𝜇𝑃 − 𝜇𝑁 and 𝜉 = √𝜉𝑃

2 + 𝜉𝑁
2
 (3.23) 

 

where 𝜎 = 𝑆𝑖𝑔𝑚𝑎 𝑉𝑎𝑙𝑢𝑒, 𝜇 = 𝑀𝑒𝑎𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝜇𝑃 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝, 

𝜇𝑁 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑁𝑜𝑛 − 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

 𝜉 = 𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝜉𝑃 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

𝜉𝑁 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑜𝑛 − 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

 

3.6.  Performance Evaluation 

 

In clinical trials, the performance of a diagnostic test is commonly assessed by some 

statistical measurements such as sensitivity, specificity, positive predictive value, 

negative predictive value, accuracy and Youden’s Index [246]. Sensitivity is defined 

as the probability of obtaining a positive test result because the individual being tested 

actually has the disease. On the contrary, specificity is defined as the probability that 

the test result is negative for an individual who does not have the disease [247].  

 

The confusion matrix shows the relationship between different performance indices 

for binary classification in Table 3.1. The four performance indicators (TP, TN, FP 

and FN) in Table 3.2 for the computerized classification of the patient and the normal 

person are calculated by comparing the expected output from the developed system 

with the actual labels determined by a gold standard.  

 

By using these four performance measures, some statistical measurements for binary 

classification can be calculated (Eqns. 3.24-29).  
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Table 3. 1 Confusion Matrix 

    PREDICTED CONDITION 

    Prediction Positive Prediction Negative 

TRUE  

CONDITION 

Condition Positive True Positive (TP) False Negative (FN) 

Condition Negative False Positive (FP) True Negative (TN) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.24) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦    =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.25) 

  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.26) 

  

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (3.27) 

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (3.28) 

  

 𝑌𝑜𝑢𝑑𝑒𝑛′𝑠 𝐼𝑛𝑑𝑒𝑥, 𝐽 =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 − 1 (3.29) 

 

where TP, FN, TN, and FP represent true positive, false negative, true negative, and 

false positive values, respectively. 

 

In a Receiver Operator Characteristics (ROC) curve, the sensitivity representing 

patients correctly classified in the study is plotted against 1-specificity corresponding 

to misclassified normal persons for different cut-offs values as shown in Fig. 3.5. ROC 

analysis is usually used to determine an optimal cut-off value in medical diagnostic 

tests. Thus, it is possible to obtain an optimal balance between sensitivity and 

specificity for a particular purpose. This can be achieved by changing the system's 

cutoff value. Furthermore, if the cost of detecting a particular disease is high, the cut-

off value can be changed to achieve a very high sensitivity but only to a lower 

specificity [248]. 
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Table 3. 2 Binary Classification Performance Measures 

Performance 

Measure 
Definition 

 

True Positive (TP) 

Patient is also classified as Patient by the 

diagnostic method. 

 

False Positive (FP) 

Patient is classified as Normal by the diagnostic 

method. 

 

True Negative (TN) 

Normal is also classified as Normal by the 

diagnostic method. 

 

False Negative (FN) 

Normal is also classified as Patient by the 

diagnostic method. 

 

 

 

Figure 3. 5 A Receiver Operating Characteristic curve (a ROC curve) 

 

The total area under the curve (AUC) of the ROC curve is a quantitative measure of 

the binary classification performance, as it reflects the test performance of the 

diagnostic method at all possible cutoff levels. The larger the AUC is in the 0.5-1 range 

of the vertical axis, the better the classification performance [248]. In most medical 

diagnostic trials, there is usually a limited number of points in the ROC curve. If there 

are more points, the prediction of the curve and the correctness of the binary classifier 

will be better. 
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CHAPTER IV 

 

THE USE OF INFRARED THERMAL IMAGING IN THE DIAGNOSIS OF 

DEEP VEIN THROMBOSIS 

 

4.1.  INTRODUCTION 

 

Venous thrombosis is the name given to the formation of blood clots (thrombosis) in 

the veins. This clot prevents blood flow in the vein, leading to regional swelling and 

pain. Venous thrombosis is often referred to as deep vein thrombosis because it most 

commonly occurs in veins found in the legs, calves and hips. 

 

Deep venous thrombosis (DVT) is often painless, but the most important aspect is that 

it dislodges from the site of the clot, causing death by clogging the lung vessels through 

blood circulation. It is an emergency situation and can lead to death if not treated 

immediately. In DVT, the clot is often not completely dissolved, or even if dissolved 

over time, it causes obstruction, narrowing, and deterioration of the lids inside the vein. 

In this case, after years of clotting, the flow of venous blood, which should return from 

the legs gradually, is blocked and the blood starts to accumulate in the veins and the 

pressure starts to increase. Then, high blood pressure in the veins can damage the 

tissues, resulting in swelling of the legs, pain, color change, and venous insufficiency 

with wrist wounds (venous ulcer). Also, as a result of blood pooling in the leg due to 

blocked veins, the leg swells gradually and eventually the circulation of the artery is 

disturbed and gangrene develops in the leg and may cause loss of the leg. DVT is a 

pathology with high complications of mortality and morbidity in both acute and 

chronic stages. Immediate initiation of treatment with deep vein thrombosis diagnosis 

will significantly prevent these possible complications. 

 

Venography is accepted as the most reliable test. Although venography is a reliable 

imaging method for DVT, it can only be performed by the related branch physician, 

which restricts the accessibility of this examination. However, due to concerns such as 

an invasive procedure, exposure to radiation and developments in alternative methods, 

it is much less frequent nowadays.  
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The method used for the laboratory test is the D-dimer measurement. If the D-dimer is 

normal, it most likely indicates that there is no DVT. On the other hand, the steady 

increase of D-dimer does not always point to DVT. The most widely used and reliable 

method currently available for DVT is Color Doppler Ultrasonography (CDUSG). 

With CDUSG, DVT diagnosis can be painless, easy, cheap and accurate. Although 

there are not many of these risks in this method, reaching a radiologist at any time in 

emergency situations and waiting for the reporting process can lead to a clinical 

concern such as delayed treatment and the patient to wait for a long time in the 

emergency service. In the study carried out by Caronia et al., 19 medical assistants 

performed CDUSG in 75 patients and patients were then directed to radiology for 

confirmation. The radiologist reported an average of 14.7 hours of CDUSG [249]. In 

a similar study, the required CDUSG reporting from radiology caused an average delay 

of 13.8 hours [250]. 

 

The use of a thermography to diagnose a DVT disease has been suggested to alleviate 

these problems. Previously, many equipment that had already been worked on but had 

not gained practical use due to the disadvantages such as the high cost of the devices, 

the size and the cumbersome, has come back again with the reduction in cost and the 

development of more compact designs. Especially with the development of computer 

software and the progress of artificial intelligence work, the devices become suitable 

for use. 

 

In patients with DVT, it is seen in the literature that the complaining leg was found to 

be warmer than the normal leg [251]–[254]. Harding et al. in 1997 found that that 

thermal imaging has many advantages when compared with Ultrasonography (USG) 

and Venography. According to study, when thermography is used as the first test, the 

USG and Venography requirements are reduced by a factor of 33 percent. In this study, 

it is seen that none of the patients who excluded DVT by thermal imaging developed 

pulmonary emboli later. As a result of this, both unnecessary diagnostic tests and 

unnecessary anticoagulation therapy are not performed. This study is the pioneering 

work of thermography in this field [251]. 
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In a study conducted by Deng et al. on New Zealand rabbits in 2012, it was found that 

subjects with experimental thrombosis generated in femoral vein had significant 

asymmetric heat distribution when comparing the heat differences between the legs 

before and after the study, and significant temperature increase on the side where 

thrombus was formed [252]. Another study by Kalodiki and colleagues has been 

performed with liquid crystal thermography, duplex USG and venography on 100 

patients with clinical suspicion of DVT. A negative predictive value of 97% was found 

for the thermography performed within one week from the onset of symptoms. Based 

on these results, unnecessary USG and venography in 39 of 100 patients were 

prevented. USG alone was sufficient in 56 of the remaining 61 patients, but USG was 

not performed due to strained and sensitive legs in 6 patients and venography was 

required. When this method is used, 1 thrombus is bypassed and 3 patients are given 

unnecessary treatment. The algorithm in this study alone reduced costs even though it 

was not fully effective [253]. In a study conducted by Holmgren et al. in 1990 with 

102 patients; thermography, thermal profile and impedance plethysmography, 

venography are compared, the sensitivity of the thermal imager measurements was 

83% and the specificity was 55% [254]. In recent years, according to the study by 

Deng et al. sensitivity was found to be 88.33%, specificity was 65.00%, false-positive 

diagnosis 11.67, and false-negative diagnosis 35.00% [255]. However, the region of 

interest is determined by the user and personal experience can affect the result. 

 

In this study; a computer-aided pre-diagnostic system has been developed using 

infrared thermal imaging for the diagnosis of DVT disease and the integration of the 

currently available tests has been proposed. 

 

4.2.  MATERIAL AND METHOD 

 

4.2.1.  Experimental Conditions in Medical Thermography 

 

Infrared radiation emitted from a surface is correlated with the experimental conditions 

since it is dependent on the humidity, air flow and ambient temperature. For this 

reason, in medical applications where only a few degrees of difference are observed, 

controlled environmental environments for thermography experiments are an absolute 

necessity. Therefore, a standard protocol should be followed for comparison of 

thermographic images. 
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To minimize the effects of external factors, an ideal imaging room was created, with 

temperatures between 20 and 22 degrees Celsius, humidity levels of around 60 percent 

with a tolerance of 5 percent, no daylight and fluorescent lamps illuminated, no 

ventilation directly affecting patients and no external heat source. Under these 

conditions, patients were allowed to rest for 15 minutes to balance the basal 

metabolism in such a way that their legs were exposed. The data was taken from the 

front or back of the leg (Fig. 4.1), from the wrist alignment to the knee joint with the 

Testo 875i model thermal cameras, followed by a standard protocol by experienced 

physicians.  

 

 

Figure 4. 1 Image acquisition with thermal camera 

 

4.2.2. Material 

 

In this study, the use of the information and materials of the volunteers and the patients 

was carried out with the approval of Gaziantep University Ethics Committee no. 

2015/33 (09.02.2015). 

 

Seventy patients who were suspected of DVT by complaints such as leg pain, swelling, 

color change to their emergency clinic were selected for the study. Two patients who 

had previously undergone subtotal limb amputation due to trauma and circulatory 

disturbance in the lower extremity were excluded from the study. Two patients who 

were not able to position because of orthopedic problems were not included in the 

study. A patient also was not included in the study because he was opposed to taking 

images from his leg. In addition, 26 people who were not complainants and who were 

healthy due to the evaluation were determined as the control group. Firstly infrared 
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thermal images were taken from the subjects under ideal conditions. The CDUSG 

reviews made both in the Emergency Medicine and the Radiology departments were 

then reported for comparison. 

 

4.3.  THEORY AND CALCULATIONS 

 

4.3.1. Developed System 

 

Non-invasive imaging is an application that is easy to apply without any harm to the 

patient but requires interpretive knowledge and experience. With subjective 

interpretations of limited trained operators, full reliability of diagnosis is sometimes 

not possible. A software system developed for clinical use will increase reliability by 

contributing to objective evaluation. When thermal imaging methods used in the 

literature are examined; it has been seen that clinicians focus on only certain points of 

the images in the direction of their experience, and a result is obtained with the 

statistical calculations of the data obtained from them. Because the software that comes 

with the thermal camera does not allow detailed examination and causes the problems 

mentioned. As a matter of fact, the first images taken from the patients before the study 

were evaluated in this way and it was concluded that these patients should be evaluated 

independently of the person who receives or interprets leg images. Thus, a completely 

software-based computer-aided diagnostic system has been developed for this 

purpose. The flow diagram of the proposed system is shown in Figure 4.2. 
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Figure 4. 2 Flow diagram of the developed system 
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i. Converting Data to Image 

 

Since the camera software does not allow detailed examination, the received data are 

recorded as real temperature values in ℃ of 160x120 matrix size. This data patient-

specific minimum and maximum temperature values are referenced and scaled into 8-

bit grayscale images. 

 

ii. Noise Reduction and Sharpening 

 

The obtained images are passed through 5 x 5 Wiener filter for noise reduction and in 

order to make the segmentation more comfortable, the contrast of low and high valued 

pixels has been increased by CLAHE method. 

 

iii. Background Extraction and Object Segmentation 

 

By using Roberts edge detection method [236], all the edges are found in the image. 

The picture is divided into two by vertically controlling the vertical edge to start from 

the center of the picture. Then, using the following algorithms, the two leg images 

were evaluated independently of each other and the segmentation was made without 

any interaction. Three separate algorithms have been used to operate the partition in 

each condition, but the final algorithm has been left to the operator according to the 

results. 

 

Otsu Thresholding Algorithm 

 

In the developed system, Otsu method [237], which is widely used in the literature, 

was used as a first method. In this method, it is assumed that the image consists of two 

color classes, the background and the foreground. After the grey level histogram is 

computed, the in-class variance value (Eqn. 4.1) of these two color classes for all 

threshold values is calculated. The threshold value that allows this value to be the 

smallest is the optimum threshold value. 

 

The weighted in-class variance is:  

 

𝜎𝑤
2 (𝑡) = 𝑞1(𝑡)𝜎1

2(𝑡) + 𝑞2(𝑡)𝜎2
2(𝑡) (4.1) 
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where  

 

𝑞1(𝑡) = ∑ 𝑃(𝑖)𝑡
𝑖=1  , 𝑞2(𝑡) = ∑ 𝑃(𝑖)𝐼

𝑖=𝑡+1   

 

𝜎1
2(𝑡) = ∑ [𝑖 − 𝜇1(𝑡)]2𝑡

𝑖=1
𝑃(𝑖)

𝑞1(𝑡)
 , 𝜎2

2(𝑡) = ∑ [𝑖 − 𝜇2(𝑡)]2𝐼
𝑖=𝑡+1

𝑃(𝑖)

𝑞2(𝑡)
 

Using the threshold, the image is converted to a dual color system in black and white. 

Subsequently, the fields formed by the connected pixels are found independently of 

each other and the largest object with the maximum number of pixels is determined. 

The leg is removed from the background owing to the obtained position. 

 

Correcting Non-uniform Illumination Algorithm 

 

When the images taken from the patients are examined, it is seen that the central region 

where the legs are located generally has a brighter illumination compared to the edge 

regions because it is aligned to the center of the picture. In some patients, it has been 

seen that the Otsu algorithm caused the error. 

 

In the correcting non-uniform illumination algorithm, an artificial image estimation is 

performed in which the center is bright and the edge regions are dark for the 

background. For this reason, a disk-shaped structuring element is used. The artificial 

image is removed from the original image to ensure that the illumination is correct 

(Eqn. 4.2). Thereafter, the sharpening process was again performed like the pre-

processing section. After this process, Otsu algorithm is repeated and the leg is 

separated from the background. 

 

Corrected Image = Image – Artificial Image (4.2) 

 

Marker controlled Watershed Segmentation Algorithm 

In the Watershed Transform algorithm, image segmentation is performed using image 

topology [242]. The image is considered to be a geographical shape as a low valued 

pixels like pit and a high valued pixel like peak. Segmentation is done by drawing 

junction points. Over-segmentation is the biggest disadvantage of watershed 

transformation. Pointer controlled segmentation is done to remove the problem of 

over-segmentation. 
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In this algorithm, a segmentation function is firstly established for the detection of 

objects in dark areas. Subsequently, each object associated pixels in the foreground of 

the picture and its non-object pixels in the background are determined. The 

segmentation function is changed by using the mark pixels obtained from the 

foreground and background. Finally, the leg is separated from the background by 

finding the watershed transformation of the segmentation function. The block diagram 

of the algorithm is given in Figure 4.3. 
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Compute
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Figure 4. 3 Flow diagram of the Marker Controlled Watershed Segmentation 

 

4.3.2.  Determination of Region of Interest 

 

After background removal, heat maps of two legs are generated. Legs with high and 

low heat are classified using heat averages of individual legs. As a result of 

classification, the leg with high temperature is considered as suspicious and the region 

of interest (ROI) is determined according to the threshold value (Eqn. 4.3). In this 

examination, if the heat distribution is not homogeneous and there is an abnormality, 

the potential disease area (ROI) is determined by the threshold value, and a new heat 

map is created according to the ROI, otherwise a homogeneous distribution (non-

complaining leg) will yield itself as ROI. Accordingly, there is also no need to find an 

ROI when the same threshold value is applied to the leg with low heat, as it usually 

gives shape of the leg itself. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑉𝑎𝑙𝑢𝑒 =
max(𝐶𝑜𝑚𝑝. 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝) + min (𝐶𝑜𝑚𝑝. 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝)

2
 (4.3) 

So, individual heat maps are created for the complaining and non-complaining legs by 

using ROI analysis. These maps contain thermal data corresponding to each pixels 

obtained from the leg. For statistical analysis, these vectors are used to determine the 

mean and standard deviation of patient and normal subjects. The use of the developed 

software on images taken from patients and normal person is shown in Fig. 4.4, 4.5 

and 4.6 (See Appendix for more images). 
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Figure 4. 4 Resultant Images of the Developed Software (PATIENT 1) 
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Figure 4. 5 Resultant Images of the Developed Software (PATIENT 2) 
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Figure 4. 6 Resultant Images of the Developed Software (NORMAL) 
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4.3.3.  Statistical Analysis 

 

The analysis of the data obtained in this study was performed by using the Shapiro-

Wilk test since the Shapiro-Wilk test gives more reliable results for data sets smaller 

than 2000. As it is in Table 4.1, the significant values are above 0.05 for Acute, 

Subacute and Chronic DVT, we can reject the alternative hypothesis and say that the 

data come from a normal distribution. Independent-sample t test was used for paired 

comparisons of independent and normal distribution data. On the other hand, Mann-

Whitney U test was used for paired comparisons of independent and non-normal 

distribution data. The results of the nominal value groups were analyzed by Chi-Square 

test. The results were expressed as mean ± standard deviation. Since the p value 

indicates the amount of possible error and shows a statistically significant difference 

in a comparison, p<0.05 was considered statistically significant in all comparisons. 

 

Table 4. 1 Tests of normality for all subjects 

    Kolmogorov-Smirnov Shapiro-Wilk 

  DIAGNOSIS Statistic df Sig. Statistic df Sig. 

TEMPERATURE  

MEAN 

DIFFERENCE 

ACUTE DVT 0.125 15 0.2 0.942 15 0.412 

SUBACUTE DVT 0.209 7 0.2 0.919 7 0.465 

CELLULITE 0.19 13 0.2 0.93 13 0.337 

OTHER 0.182 30 0.012 0.878 30 0.003 

CHRONIC DVT 0.164 4 . 0.994 4 0.975 

NORMAL 0.185 27 0.019 0.908 27 0.02 

 

In all study groups, regardless of diagnosis, the mean temperature of the complaining 

and non-complaining legs was 33.62 ± 1.22 and 31.93 ± 1.44 ℃, respectively, and a 

mean difference of 1.69 ℃ between the two legs was determined and this was 

statistically significant (p<0.0001). The statistical analysis of the average leg 

temperature values between control and study groups is summarized in Table 4.2. In 

the control group formed with twenty-seven participants, the aim was to find the 

natural temperature difference between the two legs of healthy individuals. In this 

group, the average temperatures of the legs of the individuals were 32.74 ± 0.86 ℃ and 

32.61 ± 0.87 ℃. The mean temperature difference for both legs was measured as 0.13 

℃ and statistically insignificant (p=0.5903). 
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Table 4. 2 Comparison of the average leg temperature values between control and 

study groups 

 

Group 

Leg temperature 

with high 

temperature (℃) 

Leg temperature 

with low 

temperature (℃) 

 

P* 

Control Group 32.74±0.86 32.61±0.87 0.5903 

Study Group 33.62±1.22 31.93±1.44 <0.0001 

        *Independent sample test 

 

The participants were classified according to the diagnosis and the comparison of 

temperatures of the complaining and non-complaining legs according to the diagnosis 

of them is shown in Table 4.3 and in Figure 4.7. As can be seen from the Fig. 4.7, 

while normal patients are located near y = x axis, patients in the study group are getting 

away from the axis. 

 

 

Figure 4. 7 Scatter plots of leg temperatures according to the all groups 
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Table 4. 3 Comparisons of leg temperatures according to the study groups 

 

Diagnosis 

 

# of 

Cases 

Mean 

Temperature 

of 

Complaining 

Leg (℃) 

Mean 

Temperature 

of 

Non-Complaining 

Leg (℃) 

 

P* 

Acute DVT 15 33.49±0.90 31.91±1.51 0.0017 

Subacute DVT 7 32.89±1.45 31.18±1.62 0.0595 

Chronic DVT 4 33.33±2.24 32.63±1.76 0.6406 

Cellulite 13 34.79±1.17 31.79±1.46 <0.0001 

Other 30 33.43±0.88 32.08±1.36 <0.0001 

  *Mann-Whitney U test 

 

4.3.4.  Decision-Making for Disease Diagnosis 

 

In the empirical sciences, the three sigma rule means a heuristic method in which 

"almost all" values are taken to lie in the three standard deviations of the mean, i.e., 

99.7% probability that "close to certainty" is useful [245]. A sample normal 

distribution plot is shown in Fig. 4.8 with a 3 sigma rule. The benefit of this intuition 

is largely dependent on the problem that is being considered. For example, in social 

sciences two sigma effects (95%) can be considered "important" for a result whereas 

in particle physics five sigma effects (99.99994%) are described as a "discovery". In 

this study, infrared imaging is considered to be only a preliminary test and the best 

possible sigma value is determined according to objective evaluations and explained 

in the following sections. First, sigma values (σ) are calculated separately (Eqns. 4.4-

4.5) for each subject by using heat maps.  

 

 𝜎 =
𝜇

𝜉
 (4.4) 

 
𝜇 = 𝜇𝑃 − 𝜇𝑁 and 𝜉 = √𝜉𝑃

2 + 𝜉𝑁
2
 

(4.5) 

 

 

 



68 

where 𝜎 = 𝑆𝑖𝑔𝑚𝑎 𝑉𝑎𝑙𝑢𝑒, 𝜇 = 𝑀𝑒𝑎𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝜇𝑃 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

𝜇𝑁 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑁𝑜𝑛 − 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

𝜉 = 𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝜉𝑃 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

𝜉𝑁 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑜𝑛 − 𝐶𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑒𝑔 𝐻𝑒𝑎𝑡 𝑀𝑎𝑝 

 

 

Figure 4. 8 3-Sigma Rule for Normal Distributions 

 

Some statistical measurements such as sensitivity, specificity, positive predictive 

value, negative predictive value, accuracy and Youden’s Index [246] are important test 

instruments used to evaluate the performance of the diagnostic test. The confusion 

matrix (Table 4.4) is used to calculate these statistical values (Eqns. 4.6-4.11).  

 

Table 4. 4 Confusion Matrix 

    PREDICTED CONDITION 

    Prediction Positive Prediction Negative 

TRUE  

CONDITION 

Condition Positive True Positive (TP) False Negative (FN) 

Condition Negative False Positive (FP) True Negative (TN) 

 



69 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦    =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.7) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4.8) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(4.9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

(4.10) 

  𝑌𝑜𝑢𝑑𝑒𝑛′𝑠 𝐼𝑛𝑑𝑒𝑥, 𝐽 =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 − 1 (4.11) 

 

where TP, FN, TN, and FP represent true positive, false negative, true negative, and 

false positive values, respectively. 

 

Using the calculated sigma values from Eqn. 4.4 for all subjects, a general sigma value 

is set to provide the maximum diagnostic accuracy and the Youden’s index for 

diagnosis as seen from Fig. 4.9 and 4.10. That is; a specific sigma value, which is 0.33, 

is chosen as the corresponding peak value of accuracy and Youden's index. As a result 

of objective evaluations, subjects are classified as ‘PATIENT’ when the sigma is 

above 0.33 and classified as ‘NORMAL’ when it is below. The same sigma value is 

also consistent with ‘DVT or NOT’ discrimination. Graphical representations of the 

performance of the diagnostic test based on different sigma values are shown in Fig. 

4.9 and 4.10. 
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Figure 4. 9 Graphical Representation of Maximum Accuracy and Maximum Youden’s 

Index Value (PATIENT - NORMAL) 
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Figure 4. 10 Graphical Representation of Accuracy and Maximum Youden’s Index 

Value (DVT or NOT) 
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4.4.  RESULTS AND DISCUSSION 

 

In this study; acute DVT was diagnosed in 21.74% of patients (n = 15), subacute DVT 

in 10.14% (n = 7), chronic DVT in 5.79% (n = 4) and cellulitis in 18.84% of patients 

(n = 13). Significant sigma differences were detected in all 15 patients with acute DVT 

and in all 7 patients with subacute DVT by using infrared camera. No significant 

difference in sigma was found in 1 of 4 patients with chronic DVT. Sigma significance 

in patients with DVT diagnosis is presented in Table 4.5. For different subjects, overall 

scatter and box plots according to sigma values are also shown in Figure 4.11. As can 

be seen from Fig. 4.11, any disease increases sigma value.  

 

Table 4. 5 Results obtained with Thermal camera in patients with DVT. 

 

 

 

 

 

 

With the infrared imaging, 98.55% (n = 68) of the patients had significant sigma 

differences and 36.76% (n = 25) of the patients had DVT diagnosis. DVT was 

determined by radiological evaluation in only 1 patient with no significant temperature 

difference with the developed system. Comparisons of CDUSG according to infrared 

thermal imaging with ‘PATIENT or NORMAL’ and ‘DVT or NOT’ at a given sigma 

value is reported in Table 4.6. 

 

Table 4. 6 Comparisons of IR Camera-CDUSG 

PATIENT - NORMAL (Sigma>0.33)   DVT or NOT (Sigma>0.33) 

              

   IR Camera      IR Camera   

   PATIENT NORMAL Total    DVT+ DVT- Total 

CDUSG 
PATIENT 68 (TP) 1 (FN) 69 

CDUSG 
DVT+ 25 (TP) 1 (FN) 26 

NORMAL 2 (FP) 25 (TN) 27 DVT- 45 (FP) 25 (TN) 70 

  Total= 70 26 96   Total= 70 26 96 

              

Sensitivity = 0,985507246   Sensitivity = 0,961538462   

Specifity = 0,925925925   Specifity = 0,357142857   

Accuracy = 0,96875   Accuracy = 0,520833333   

 

 

 

Diagnosis 

Significant Sigma 

Difference 

Meaningless 

Sigma Difference 

 

Total 

Acute DVT 15 0 15 

Subacute DVT 7 0 7 

Chronic DVT 3 1 4 
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Figure 4. 11 Scatter and Box Plots according to sigma values for different subjects 
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Using the data in Table 4.6, the performance of the diagnostic test according to Eqns. 

4.6 – 4.10 can be calculated separately as ‘Patient-Normal’ and ‘DVT or Not’. The 

sensitivity of the diagnostic test in performing ‘Patient-Normal’ discrimination is 

98.55%, specifity is 92.59%, positive predictive value is 97.14% and negative 

predictive value is 96.15%, while the sensitivity of the diagnostic test in making ‘DVT 

or Not’ discrimination is 96.15%, specifity is 35.71%, positive predictive value is 

35.71% and negative predictive value is 96.15%. According to these results, thermal 

imaging has such good results in ‘Patient-Normal’ division, but it is not successful 

enough to distinguish ‘DVT or Not’ with the addition of other diseases. However, due 

to the fact that almost all DVT patients and Healthy people were diagnosed accurately 

in this study, infrared thermal imaging can be safely used as a preliminary test. 

 

The data obtained from the clinical evaluation, laboratory results and imaging methods 

used in this study are compared with the CDUSG performed by radiology and are 

summarized in Table 4.7. The quantitative measure of the binary classification 

performance (ROC curve) of the system is also shown in Figure 4.12 and 4.13. Figure 

4.14 shows combination of usage of IR camera, emergency bedside CDUSG (EB-

USG) and D-dimer and control with radiology CDUSG (R-USG).  

 

Table 4. 7 Performances of different diagnostic tests of DVT in this study according 

to the gold standard 

 

 

 

 

 

 

 Emergency Physician Bedside 

CDUSG 

Infrared 

Camera 

 

Wells Score 

 

D-dimer 

Sensitivity %100 %96.15 %96.15 %96.15 

Specificity %95.55 %35.71 %6.66 %24.44 

Positive 

Predictive Value 

%92.85 %35.71 %37.31 %42.37 

Negative 

Predictive Value 

%100 %96.15 %75 %91.66 
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Figure 4. 12 ROC Curve for PATIENT-NORMAL Classification 

 

 

Figure 4. 13 ROC Curve for DVT-NOT Classification 
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Suspected 
Patient 

Sigma 
Difference

>=0.33

Infrared 
Thermal 
Imaging

EB-USG
+ or -

YES NO

+ -

R-USGR-USG

+ -

DVT + DVT -

D-Dimer
+ or -

R-USGR-USG

+ -

DVT + DVT -

D-Dimer
+ or -

D-Dimer
+ or -

+

EB-USG
+ or -

R-USGR-USG

-

DVT + DVT -

+EB-USG
+ or -

R-USGR-USG

-

DVT + DVT -

+

 

Figure 4. 14 Combination of IR camera, Emergency bedside CDUSG (EB-USG) and 

D-dimer and control with Radiology CDUSG (R-USG) 

 

4.5.  CONCLUSIONS 

 

Complaints such as pain, swelling, and redness in the legs are one of the common 

reasons among emergency patients, and there are many different diagnostic tools and 

algorithms that are accepted in determining the cause of these complaints like other 

diseases. However; these tools, algorithms and combinations should be continuously 

improved and upgraded for a better diagnosis. Therefore, patients can be treated 

quickly and correctly because the time lost is minimized and unnecessary treatments 

are avoided. As the cost of thermal imaging devices continues to fall and become 

mobile, the use of these devices will reduce both costs and delays due to physician 

shortages. Accordingly, the developed system can help such problems and be used as 

a pre-screening test for DVT. 
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In this study, except for healthy individuals, it is determined that the given sigma 

difference between two legs is significant in each of the subjects with any discomfort 

in the leg. Also, the temperature measurement with infrared camera is a successful first 

test for DVT in the acute phase while the diagnostic value is decreased due to the 

deterioration of arterial circulation of the leg in the subacute and chronic period of the 

disease. So, thermography can safely be used in patients with symptoms lasting from 

the onset of symptoms to 1 week.  

 

As a diagnostic method, infrared thermography has high potential in scientific and 

medical research. Although thermal imaging is not yet considered as a reliable method, 

many diseases can be diagnosed by advanced research and development. If enough 

patient data are collected, the success rate will be further increased by applying 

machine learning algorithms for the possibility of person-specific diagnosis. 

 

 



78 

CHAPTER V 

 

THE THERMAL IMAGING SYSTEM DESIGN IN THE DIAGNOSIS AND 

FOLLOW-UP OF PRIMARY AND SECONDARY RAYNAUD'S 

PHENOMENON 

 

5.1. INTRODUCTION 

 

Raynaud phenomenology is a triphasic color change that typically results in episodic 

ischemia at the fingertips caused by cold exposure and emotional stress. In this disease, 

pallor caused by vasospasm occurs first, followed by cyanosis and then hyperemia. In 

addition to these changes, pain, numbness, and burning sensation may be 

accompanied. Diagnosis of the disease without any connective tissue disease is called 

primary Raynaud phenomena or Raynaud disease. 

 

If there is an underlying disease or pathology, it is called the Secondary Raynaud 

Phenomena and the result is the vasospasm of structurally abnormal vessels. The 

prevalence of Secondary Raynaud Phenomenon depends on the underlying disease. 

Approximately 5% of Raynaud phenomenon cases, a connective tissue disease occurs 

on the progressive stages, especially Systemic Sclerosis (Scleroderma, SSc). It is 

thought that the Raynaud Phenomenon may be a secondary to collagen tissue disorder 

if there is loss and enlargement in the nail bed capillaries. Raynaud's phenomenon is 

usually one of the first findings of patients with Scleroderma and is found in 95% of 

cases. 

 

Scleroderma means skin hardening as a word. Although the most specific 

characteristic of the clinic is skin fibrosis (scleroderma), the disease is termed as 

"systemic sclerosis" because it can also be seen in internal organs such as the 

gastrointestinal tract, kidney, lung and heart. It is crucial to detect this disease at an 

early stage, where more aggressive treatment can be achieved in the early stages [256], 

[257]. Although the etiology of the disease cannot be fully elucidated, genetic 

susceptibility, environmental factors and infections are shown as possible agents 

triggering the pathogenic process. 
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Especially in those patients who have not been diagnosed or diagnosed correctly in the 

early period, finger and foot injuries caused by vascular disease can turn into gangrene 

over time and lead to finger, hand or foot loss. A similar disorder develops in our 

internal organs, and the vessel in the pulmonary artery, which carries the dirty blood 

from the heart to the lung, also begins to deteriorate. Especially in late-diagnosed 

patients, deterioration starts in the thin veins that go to the kidney. All these vascular 

disorders increase blood pressure in the described areas and can lead to severe heart 

and kidney diseases. Scleroderma does not only affect veins and skin. The basic logic 

of the disease is the deterioration of normal connective tissues. Because the connective 

tissue is all around the body, the amount of unaffected regions is very small. 

 

In these patients, pulmonary disease may develop due to impaired normal development 

in the lungs. Breathlessness and dry cough are the first complaints of the lung. An 

important problem that develops in patients due to the same cause is the destruction of 

the entire food intake, stomach and intestines starting from the mouth. In addition, 

reflux-related chest burns, bloating in the abdomen and stomach areas, rapid satiety, 

diarrhea and constipation episodes, and serious weight loss are seen in these patients. 

Common features of all inflammatory rheumatic diseases are joint pain and swelling. 

At the same time, arthritis occurs in the hands and wrists and in the fingers. However, 

although joint damage does not appear as it is in rheumatoid arthritis, the hand is 

gradually becoming neither fully opened nor fully closed in order for the skin and 

subcutaneous connective tissue to be affected and the skin to adhere well to the 

underlying bone tissue. 

 

Unlike all diseases in which the immune system is impaired, additional diseases are 

also seen in scleroderma. Thyroid diseases, other immune system disorders (systemic 

lupus, Sjögren, myosit, etc.) are the most typical examples. Pregnancy problems, early 

and stillbirths are common problems. 

 

The most important point of treatment in such a complicated, difficult and long-lasting 

disease process is that all these changes can be diagnosed before they begin. With the 

developing technology in recent years, there has been considerable improvement in 

non-invasive imaging methods. Nowadays, portable optical imaging systems 

performing microvascular measurements have become faster and easier to acquire 
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images. These developments help to reveal premature pathology by allowing them to 

monitor extreme formations and changes (such as microvascular structure, blood 

volume, oxygenation and blood flow in the tissue) in the body. 

 

The relationship between skin temperature and microvascular dermal perfusion is 

highly complex and depends on the body region. Unlike heat from environmental 

agents, skin temperature can be easily affected by many factors, such as subcutaneous 

and intramuscular blood flow, skin thickness and sweating. When such thermal 

changes occur, it is first necessary to investigate the environmental and later changes 

in the body. A number of thermographic studies have been conducted in the literature 

on what diseases are indicative of temperature changes in the body surface [9], [258], 

[259]. 

 

Human fingertips are very sensitive to external stimulation due to the presence of 

numerous blood vessels and neural structures in the finger. Investigation of 

thermoregulation and blood flow patterns in human hands is of great importance in the 

diagnosis of peripheral diseases. In various studies, the thermal and hemodynamic 

responses of the human extremities to different stimuli have been investigated. 

 

In a study conducted, it was shown that infrared imaging can be used to distinguish 

between healthy persons who have cold hands and those with impaired perfusion on 

the hand [260]. In another study, thermography was used as a common method to 

determine the rewarming rate of fingers during vasospastic diseases such as Raynaud's 

phenomenon (RF) after cold stress applied to the hands [261].  

 

Shitzer et al. [262] measured the temperature and blood perfusion of the fingers in cold 

air exposed environments. Bornmyr and Svensson [263] observed changes in skin 

blood flow and temperature in the finger after smoking. Zontak et al. [264] investigated 

the response to skin temperature using dynamic thermography and wanted to detect 

hemodynamic changes due to variations in thermal images. Ducharme et al. [265] 

observed blood flow and temperature in the fingers to identify the critical factor for 

sustaining finger motility during cold air exposure. Sakashita [266] also measured 

blood temperature and blood pressure in the hands to investigate the relationship 

between autonomic nervous system (ANS) regulation and human physiological 
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parameters after mental activity and exercise or before and after eating. Hara and 

Nagaya [267] measured the temperature changes of a hand and a glove filled with 

gelatin using an electric heater. They observed that the temperature of the human hand 

increased and gradually approached a constant temperature, but the temperature of the 

gelatin-containing glove was constantly increasing. 

 

Blank and Kargel [268] developed digital image processing techniques for dynamic 

thermal images and analyzed the temperature changes in the palm of different people 

who chew nicotine gum or smoke over time. It was observed that the temperature of 

the palms and fingers decreased significantly when smokers smoked, while that of the 

nicotine chewing gums increased and decreased in half. In the non-smoking group, 

temperature increases were seen during both smoking and chewing nicotine gum. 

Although the effects of nicotine on vasomotor control and temperature were difficult 

to assess, they had the conclusion that nicotine was a powerful and immediate effect 

on the human body. Image processing techniques developed by them are useful for 

most dynamic image processing applications. 

 

A number of IR imaging studies have been performed using the finger response to the 

controlled cold challenge to differentiate the primary RF from the secondary RF. In 

fact, SSc, healthy controls (HCS) and PRP show different thermal recovery as a result 

of functional stimulation to the same standard [219], [269]–[274]. Examples of 

temperature vs. time curves obtained from experimental recovery data in HCS, SSc, 

and PRP are reported in Fig. 5.1 [261]. 

 

 
 

Figure 5. 1 Temperature vs. time curves obtained from thermal imaging data during 

cold stress test in (a) HCS, (b) SSc, and (c) PRP [261] 
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When the applications of the various imaging modalities discussed in the literature are 

examined, the precision of most studies depends on the experience of the clinicians. In 

such studies, statistical calculations are made with the information obtained by the 

observations of the clinicians. Such studies have only established the link to disease, 

but have not made an objective contribution to the assessment of the severity of the 

disease. For a more accurate assessment of the results, it is seen that there is a need for 

studies in which the clinician's intervention had little or no intervention. In this study, 

image processing method is proposed to help objective assessment of the diagnosis of 

the primary and secondary Raynaud phenomenon. 

 

5.2. MATERIAL AND METHOD 

 

This study includes both primary (PR) and secondary Raynaud patients (Scleroderma, 

SSc) and healthy volunteers (HCS). These groups are routinely examined in their first 

application and take appropriate tests if they have any diagnosis. Raynaud's condition 

score, Modified Rodnan Criteria, Finger Palmar Flexion Distance, Valentini Disease 

Cycle Index, Visual Analogue Scale, Scleroderma Disease Severity Index, UK 

Functional Scoring Questionnaire are used to evaluate disease activity and functional 

capacity for Raynaud patients. In addition, ESR, CRP, whole blood count, routine 

biochemical tests and urinalysis are evaluated in all patients. In patients with 

scleroderma, ANA, Anti Scl-70, ACA. EKG, EKO, PAB and SVSF, PFT with DLCO, 

FEV1, FVC and HRCT are also evaluated. 

 

After initial examination and routine testing, patients are sent to the imaging room 

where the ideal conditions for taking images are established. After all conditions are 

met described before, the first images are taken with thermal cameras from hands to 

the wrist. The cold stress test is then applied to observe the response of the body to the 

cold and to increase the accuracy of the evaluation. Cold stress application is defined 

as drying the paper towel after being immersed for 1 minute in a container filled with 

water held at 15 degrees. After cold stress test, on the 5th, 10th, and 20th minutes, the 

thermal images of the hands that do not touch any place are taken again. Primary 

Raynaud patients are screened when they first arrive, secondary Raynaud patients 

diagnosed with scleroderma are screened at 0, 6, and 12 months to follow up the 

disease. All images must be taken by the same person between the hours of 13:00 and 

15:00 in the middle of the day. 
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5.3. DEVELOPED SYSTEM 

 

The developed software is designed to obtain statistical data from palm and fingertips 

automatically in the thermal hand images. These images are completely evaluated with 

image processing algorithms without any human intervention. Procedures are 

summarized for image processing is as follows: preprocessing of thermal images, 

segmentation of hands from images, extraction of fingertips and palm and computation 

of temperature variations in palm and fingertips. 

 

After that, pure left and right palm and all fingertip heat vectors are generated 

independently by using some morphological operations. The generated heat vectors is 

used to calculate average values. This provides a completely objective assessment, 

allowing the diagnosis of the disease according to the rewarming state. The block 

diagram of the designed system is shown in Fig 5.2.  

 
Take 

A Thermal Image
Patient Noise Removal

Background 
Removal

Separate two hands 
from each other

Thermoregulatory 
Model

Diagnosis

Statistical Features
Calculation

Extract Features

Form 
Right Palm 

and Fingertips
Thermal 
Vactor

Form 
Left Palm and 

Fingertips
Thermal 
Vactor

 

Figure 5. 2 Block diagram of the designed system 

 

Preprocessing of thermal images  

 

In the first stage, since the received data are recorded as real temperature values in ℃ 

of 160x120 matrix size, it is normalized to 8-bit grayscale images explained in Section 

2. After that, as similar to DVT application, the image are passed through 5 x 5 Wiener 

filter for noise reduction and the image contrast is increased by CLAHE method to 

make the segmentation more comfortable. In Fig 5.3, original image and preprocessed 

image are shown. 
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Figure 5. 3 (a) Original image and (b) Preprocessed image, respectively 

 

Segmentation of hands from thermal images  

 

First two hands are separated from each other by Roberts edge detection method. The 

image is divided into two by vertically controlling the vertical edge to start from the 

center. The Otsu algorithm expressed in detail in the section 3.2 is chosen to 

automatically eliminate the unwanted parts of the image from the thermal image as the 

segmentation method. After background removal, thermal images of two hands are 

generated independently. 

 

Extraction of fingertips and palm 

 

In this step, we perform mathematical morphological image processing assuming three 

characteristic values that we find in our experiments. 

 

Noise Length,  Ln   = 1 - 3 pixels 

Finger Width,   Wf = 15 - 20 pixels 

Palm Width,   Wp = 50 - 150 pixels 

 

By using a disk-shaped structural element larger than diameter Ln and less than Wf, 

morphological opening is performed on the binary image. Thus, background noises 

and many points on the edges can be deleted. Thereafter, a morphological closing is 

carried out using the same construction element to remove the noises in the concave 

points and palms at the edges again. Before and after noise removal, the binary images 

are shown in Fig. 5.4. 
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Figure 5. 4 (a) Left side (LS) noisy image (b) LS Cleaned Image (c) Right side (RS) 

noisy image (d) RS Cleaned image, respectively 

 

The palm image is obtained by a morphological opening operation using a disk-like 

construction element whose diameter is smaller than Wp and larger than Wf. Figure 5.5 

shows the extracted palm images. 

 

Figure 5. 5 (a) Left side palm image (b) Right side palm image, respectively 

 

The fingertips are extracted by a thinning process formed by morphological erosion 

operation and with additional conditions. After a few iterations of thinning process, an 

image with thin lines and end points of the pixels are obtained. The end points at the 

end of the line are seen as the positions of the fingertips (Fig. 5.6 a, c) and thus the 

fingertips are obtained by a dilation operation (Fig. 5.6 b, d) after the palm is removed. 

Finally, all of palms and fingertips are obtained from thermal image as shown in Fig. 

5.7.  
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Figure 5. 6 (a) Left side (LS) endpoints (b) LS fingertips (c) Right side (RS) endpoints 

(d) RS fingertips, respectively 

 

 

Fig. 5.7. (a) Segmented binary image of thermal image (b) Obtained binary image of 

palms and fingertips, respectively 

 

Computation of temperature variations in palm and fingertips 

 

Using the processed images, the correlation between gray level and temperature is 

established and the average temperature value in the palms and fingers is determined. 

 

5.4. CONCLUSION 

 

Many patients who have encountered a variable list of complaints, such as color 

change and cold in hands since young ages, skin thickening and sometimes dryness, 

small wounds on the fingertips, dry cough and shortness of breath, chest pain, 

palpitation, gastrointestinal problems, red rash on the body and especially in palms and 

palms, can not open mouth, lips infertility. And they can not be diagnosed for many 

years. Primer and Secondary Raynaud's phenomenology are also important among the 
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diseases that can not be diagnosed. Fully automated, objective, rapid, and non-invasive 

thermal imaging will provide useful information as a pre-screening test to diagnose 

this disease. 

 

Infrared imaging is a biomedical imaging technique based on the modeling of heat 

exchange and control processes in the skin layer. This technique aims to provide 

quantitative diagnostic parameters by functional examination of thermoregulatory 

processes. It also provides more information to doctors about the disease being treated, 

such as explaining the possible physical causes of certain thermal behaviors and their 

relationship to the physiology of the processes involved. The greatest advantages of 

thermal imaging are rapid and noninvasive imaging techniques. Thus, if sufficient 

research is done, it will be easily used as a pre-test for many diseases. 

 

In this study, a method based on image processing is proposed to examine the 

temperature change in a certain part of the hands in the diagnosis and follow-up of the 

primary and secondary Raynaud's disease. In literature, when the applications of the 

thermal imaging modalities studied are examined, it has been seen that clinicians focus 

on only certain points of the images in the direction of their experience and obtained a 

result with the statistical calculations of them. In this study, unlike the studies done, 

the entire image is evaluated by image processing algorithms and the temperature 

changes related to the disease are automatically determined without human 

intervention. 
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORKS 

 

As technology develops, various alternative diagnostic methods are emerging. Along 

with the development of currently available methods, alternative methods are 

increasing day by day. Among the potential methods, infrared thermal imaging has 

recently been supported by more clinical studies around the world due to its cheap, 

rapid and non-invasive nature. At this point, the potential of infrared thermal imaging 

is being investigated in every medical field. 

 

In this thesis study, two independent diseases were investigated specifically. These are 

deep vein thrombosis and primary and secondary Raynaud phenominic diseases. 

Automatic diagnostic methods have been developed to analyze and evaluate the 

infrared thermal images obtained from these patients. In developed systems, various 

image processing techniques have been used to extract the relevant properties of 

infrared thermal images. In addition, statistical analysis was performed on related 

features to facilitate objective evaluations of these images and to find clinical results. 

 

According to the results obtained, it has been shown that the developed system is an 

effective alternative method for the diagnosis of deep vein thrombosis and can be used 

as a pre-screening test. This system does not make a complete diagnosis, but it reduces 

the need for other imaging methods to a certain extent and speeds up the detection of 

vital situations. The method developed in this study is not only specific to deep vein 

thrombosis, it can be applied to all organs and limbs that are symmetrical in the body 

and can help to diagnose these diseases. 
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In the other part of the study, a system was developed for the diagnosis of primary and 

secondary Raynaud patients. In this system, relevant areas in the hands are 

automatically detected and prepared for statistical analysis. Although the method 

works well in a hand image, it has not been evaluated as a performance because it is 

not tested in the patient image. 

 

It is well known that early diagnosis leads to increased survival and a significant 

reduction in health care costs. As a result, the developed techniques will contribute to 

the current multi-imaging clinical environment and will help to identify these diseases 

more quickly. In addition to its usefulness, the second critical benefit may be used in 

the follow-up of patients by monitoring the effectiveness of treatments. 

 

Although thermal imaging is not yet considered to be a completely reliable method, 

many diseases will only become identifiable by infrared thermal imaging through 

advanced research and development. This requires continuous improvement in the 

areas of IR camera systems designed for medical diagnosis, advanced image 

processing and analysis techniques, physiological investigation of thermal signatures, 

quantitative evaluation of clinical data. It is also necessary to create a larger image 

database to increase the success of automated infrared thermal imaging systems. If 

enough patient data are collected, machine learning and deep learning algorithms can 

be applied for personalized diagnosis to increase the success rate. 

 

Infrared thermal imaging system to be developed as a whole body scan can be used as 

a screening tool and can help to reduce the number of patients referred to private 

healthcare. Such inexpensive and portable screening tools may be particularly useful 

in developing countries where specialized healthcare facilities and advanced 

equipment are not available. 
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APPENDIX 

RESULTANT IMAGES OF DEEP VEIN THROMBOSIS APPLICATION 

 

 

 

Figure A. 1 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 2 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 3 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 4 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 5 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 6 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 7 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 8 Resultant Images of the Developed Software (PATIENT) 
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Figure A. 9 Resultant Images of the Developed Software (NORMAL) 
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Figure A. 10 Resultant Images of the Developed Software (NORMAL) 
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Figure A. 11 Resultant Images of the Developed Software (NORMAL) 
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