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ABSTRACT

DEVELOPMENT OF HYPERSPECTRAL IMAGE
CLASSIFICATION ALGORITHMS FOR UNMANNED

AERIAL VEHICLES

DÜNDAR, Tuğcan

M.Sc. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Taner İNCE

May 2019

63 pages

Hyperspectral imaging is the measurement of light spectrum reflected from ob-
jects in many narrow wavelengths. High spectral resolution in hyperspectral
images (HSIs) allows identification and discrimination of the land-cover materi-
als. Therefore, hyperspectral imaging is used in various fields such as military,
surveillance, mineralogy and agriculture. In these fields, classification of the pix-
els of an HSI is studied extensively. Sparse representation based classifiers have
been a powerful tool for the classification purposes. These classifiers use the idea
that the spectral pixels can be represented by only a few samples with same class
label in a training dictionary. Recent studies have shown that use of spatial in-
formation in HSI in addition to spectral information increases the classification
performance. In the scope of this thesis, two new sparse representation based
classification methods which use both spectral and spatial information have been
developed in order to increase the success of classification process. In the first
study, multiscale superpixels (MSSs) are utilized to acquire spatial information
in a local area using different region scales. Pixels in these areas are jointly clas-
sified by sparse representation classifier and then classification maps are formed.
Guided filter (GF) is applied on these classification maps to improve the mis-
classifications near the edges. In the second study, the neighbor pixels having
similar spectral characteristics with the test pixel are selected by spectral match-
ing methods and others are ignored. To verify the feasibility of the proposed
methods, the performance are evaluated over two widely used hyperspectral data
sets. Experimental results demonstrate that the proposed algorithms exhibits
good performance compared with other related methods in the literature.

Key words: Hyperspectral image, Sparse representation, Spatial–spectral, Clas-
sification.



ÖZET

İNSANSIZ HAVA ARAÇLARI İÇİN HİPERSPEKTRAL
GÖRÜNTÜ SINIFLANDIRMA ALGORİTMALARININ

GELİŞTİRİLMESİ

DÜNDAR, Tuğcan

Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi Taner İNCE

Mayıs 2019

63 sayfa

Hiperspektral görüntüleme birçok dar dalgaboyunda nesnelerden yansıyan ışık
spektrumunun ölçümüdür. Hiperspektral görüntülerdeki (HSI) yüksek spektral
çözünürlük, arazi örtüsü maddelerinin tanımlanmasını ve ayırt edilmesini sağlar.
Bu nedenle de hiperspektral görüntüleme askeri, gözetleme, mineraloji ve tarım
gibi çeşitli alanlarda kullanılmaktadır. Bu alanlarda, bir HSI’nin piksellerinin
sınıflandırılması yoğun olarak çalışılmaktadır. Seyrek gösterim tabanlı sınıflandı-
rıcılar, sınıflandırma amaçları için güçlü bir araç olmuştur. Bu sınıflandırıcılar,
spektral piksellerin bir eğitim sözlüğünde aynı sınıf etiketine sahip birkaç örnekle
gösterilebileceği fikrini kullanır. Son çalışmalar, HSI’de uzamsal bilginin spek-
tral bilgiye ek olarak kullanılmasının sınıflandırma performansını arttırdığını gös-
termiştir. Bu tez kapsamında, sınıflandırma işleminin başarısını arttırmak için,
hem spektral hem de uzamsal bilgiyi kullanan iki yeni seyrek gösterim tabanlı
sınıflandırma yöntemi geliştirilmiştir. İlk çalışmada, farklı bölge ölçeklerini kul-
lanarak yerel bir alanda uzamsal bilgi elde etmek için çok ölçekli süperpikseller
(MSS’ler) kullanılmıştır. Bu alanlardaki pikseller, seyrek gösterim sınıflandırıcısı
ile ortaklaşa sınıflandırılır ve daha sonra sınıflandırma haritaları oluşturulur. Ke-
narlardaki yanlış sınıflandırmaları düzeltmek için bu sınıflandırma haritalarına
rehberli filtre (RF) uygulanır. İkinci çalışmada, test pikseli ile benzer spektral
özelliklere sahip olan komşu pikseller, spektral eşleştirme yöntemleri ile seçilmekte
ve diğerleri gözardı edilmektedir. Önerilen yöntemlerin uygulanabilirliğini doğru-
lamak için, performans yaygın olarak kullanılan iki hiperspektral veri setinde de-
ğerlendirilmiştir. Deneysel sonuçlar, önerilen algoritmaların literatürdeki diğer il-
gili yöntemlerle karşılaştırıldığında iyi bir performans sergilediğini göstermektedir.

Anahtar kelimeler: Hiperspektral görüntü, Seyrek gösterim, Uzamsal–spektral,
Sınıflandırma.
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CHAPTER 1

INTRODUCTION

In this chapter, we first give a brief information about hyperspectral imaging and

its applications. Then, related works about HSI classification in the literature

are discussed. After that, we explain how this thesis contributes to the literature

in terms of HSI classification. At the end, we present the outline of the thesis.

1.1 Hyperspectral Imaging

All substances in the nature absorb, emit and reflect electromagnetic energy at

certain wavelengths due to the characteristics of the molecular structures [1]. Hy-

perspectral imaging uses this basic principle. Unlike the classical red–green–blue

(RGB) imaging technique, which covers only the visible portion of the electro-

magnetic spectrum, hyperspectral imaging covers a broad range of this spectrum.

It starts from the visible region (0.4–0.7 µm) and goes up to near-infrared (∼2.4

µm) [2]. In addition to the wide spectrum range, HSIs contain lots of narrow-

placed spectral bands which is usually more than 100. To cover these spectrums,

expensive hyperspectral sensors are used. They are generally mounted on an air-

craft or an unmanned aerial vehicle (UAV) to collect hyperspectral data [3]. The

sensor measures the light reflected from the objects on the ground over a wide

spectral bands. These measured values by the sensor are called radiance and these

radiance characteristics against the wavelengths are called spectral signatures of

the objects. This property can be used to classify or identify land-cover materials

on the ground. Figure 1.1 shows a visual about the hyperspectral imaging.

A pixel of an HSI can be thought as a vector whose length is equal to the number

of spectral bands [4]. Since HSI contains lots of pixels, it can be visualized as

a data cube which is shown in Figure 1.2. The front face represents spatial

dimension and the depth represent spectral dimension. Due to the high spectral

resolution, different materials can be seperated from each other. So, hyperspectral

1



Figure 1.1 Hyperspectral remote sensing [2].

Figure 1.2 Hyperspectral data cube [2].
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imaging is used in many applications such as military, agriculture, environmental

monitoring, mineral exploration, security and defense [5, 6]. In these applications,

topics such as classification [7–9], target detection [10–12], anomaly detection [13–

15] and unmixing [16–18] are studied extensively by researchers. These topics can

be briefly summarized as follows:

Classification: An HSI is composed of different land-cover regions. It means that

image has different classes and so each pixel should belong to a specific class. The

aim of the classification is to give a unique label to each pixel using an appropriate

classification algorithm [19].

Target detection: The aim is to detect man-made substances in natural envi-

ronments for the purposes such as illegal planting, defense and rescue activities

[1].

Anomaly detection: Determination of changes after natural disasters. These type

of pixels have different spectral characteristic than their local background pixels

[2].

Unmixing: Due to the atmospheric effects and sensor with low spatial resolution,

some pixels consist of spectral signatures of different materials. These pixels are

called mixed pixels. If a mixed pixel occur in the image, it is not possible to

identify the materials inside directly from the measured spectral signatures. So,

unmixing is applied on the image to identify these materials [20].

Development of HSI classification algorithms has been the most popular one

among these topics in recent years [21]. Classification can be divided into three

categories [19]. The first one is called unsupervised classification which pre-

dicts the labels of pixels using a software without any pre-defined samples (also

called training samples). The software clusters the pixels using their spectral

behaviours. The second one is called semi-supervised classification which utilizes

both a few labeled training samples and unlabeled samples to determine the la-

bels. The third one is called supervised classification which predicts the label of

the pixels using pre-defined training samples with their class labels.

According to the usage of information in HSI, classifiers can be divided into two

categories called spectral classifiers (or pixel–wise classifiers) and spatial–spectral

classifiers [22]. Spectral classifiers only use the information of a single pixel and

ignores the spatial information in HSI. On the other hand, spatial–spectral classi-

fiers incorporate the spatial and spectral information in HSI. Spatial information

means that spectral characteristics of the neighbor pixels are similar and so they

3



most likely belong to the same class. Spatial information of an HSI can be in-

corporated into a classification problem by pre–processing (such as mathematical

morphology [23]) or post–processing operations (such as morphological watershed

transformation [23]) [20].

1.2 Related Works

HSI classification has become very popular among researchers in recent years. In

the first studies, only spectral information was used in the classification process.

For example, a machine learning algorithm called support vector machine (SVM)

was used in [24–26] to classify test pixels. SVM was first studied for binary

classification problem [27]. Given a set of training samples, SVM finds an opti-

mal hyperplane that maximizes the margin between classes. If the data are not

linearly separable, SVM uses some kernel trickcs to project the data to a higher-

dimensional space where the data is linearly separable here. When it comes to

separate a data with multiclass, SVM uses two procedures called one versus one

and one versus all strategies [27]. In the one versus one method, SVM trains

a binary classifier for each distinct pair of labels. If the data have C different

classes in total, then C(C−1)
2

classifiers will be used in the one versus one method.

On the other hand, SVM trains a binary classifier for each class in the one ver-

sus all method. So, C binary classifiers are used to separate C distinct classes.

Another machine learning algorithm to be used to classify HSI is the k–nearest

neighbor (KNN) [28]. This algorithm seeks k–nearest training samples of the test

sample because it assumes that similar pixels are found in nearby locations. After

finding k–nearest training samples, label of the test pixel is assigned as the most

repetitive class among the labels of those k–nearest training samples. Decision

trees (DT) was proposed in [29] to classify HSI into different classes and have

investigated in researches such as [30, 31]. DT classifier divides the classification

problem into sub–stages and then performs decision process. DT classify samples

by sorting their feature values. Each node represents a feature of a sample and

each branch symbolizes a value that the node can support. A sample can be

classified by beginning at the root node and then sorted based on their feature

values. Random forests (RF) was also introduced for the classification of HSI in

[32, 33]. It can be thought as a special case of DT. However, RF is formed by

many classifiers so it is an ensemble classifier. Ensemble classifiers means that

the result of the classification process is determined by majority voting. Since

outputs of the many classifiers are combined, RF provides better classification

performance than DT.

4



In recent years, sparse representation based approaches have begun to be applied

to HSI processing in the research areas such as denoising [34, 35], unmixing

[36, 37], target detection [38, 39] due to the performance in the areas such as

signal and image processing [40, 41]. In addition, sparse representation has been

also used for the classification purposes of HSIs [42–45]. Chen et. al investigated

sparse representation classifier (SRC) in [42] to assign a unique label to each test

pixel. SRC assumes that a test pixel can be linearly represented by a few training

samples in a structured dictionary which consists of training samples from each

class.

All the methods mentioned so far have used only the spectral information in

HSI. Recent studies have shown that use of spatial information in addition to

spectral information improve the performance of the classifiers in terms of clas-

sification accuracy [42, 46–52]. Sparse representation based HSI classification

methods using spatial information have been studied quite a lot in recent years.

For example, [42] proposed joint sparse representation classifier (JSRC) which

constructs a fixed–size square window around the test pixel to obtain spatial in-

formation. JSRC assumes that neighbor pixels share a set of common atoms from

the structured dictionary and so they can be represented simultaneously. How-

ever, the optimal window size may change from pixel to pixel because some of

the pixels may have large neighbor areas and the others may have small neighbor

areas. Also, pixels from other classes can also be found in the window, which will

reduce the classification results. To overcome these problems, different methods

have been proposed [53–59]. In [53] (multiscale adaptive sparse representation,

MASR), different region scales were constructed around the test pixel to adap-

tively utilize the spatial information because different regions complements the

shortcomings of each others. In [54] (shape–adaptive joint sparse representation

classifier, SAJSRC), similar neighbor pixels around the test pixel were selected

using shape–adaptive algorithm [60] and shape–adaptive regions were constructed

for each test pixel. Then, pixels in these regions were represented simultaneously.

Although the proposed MASR and SAJSRC methods provide better classification

accuracies than the JSRC method, their computation time is longer compared

to JSRC. This is expected result since they classify only the center pixel (or test

pixel). In order to overcome this problem, superpixel–based methods have been

proposed [55, 56]. A superpixel is a group of pixels that have similar spectral char-

acteristics. Its shape and size vary for distinct spatial structure in HSI. In [55]

(superpixel based discriminative sparse model, SBDSM), HSI was divided into

many superpixels and each superpixel was represented simultaneously and then

labeled at the same time instead of a single pixel. In [56] (superpixel multitask
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joint sparse representation classifier, SMTJSRC), authors exploited superpixel

segmentation and multiple feature fusion and then labeled each superpixel. In

[57] (non–local weighted joint sparse representation classifier, NLW–JSRC), dif-

ferent weights were assigned to each pixel located around the test pixel using a

non–local weighting mechanism studied in [61–63]. This method compares the

similarities between the test pixel and its neighbors. Also, it compares the geo-

metrical shape of the neighborhood area. In this way, neighbor pixels similar to

the test pixel have larger weight than dissimilar ones and so will contribute more

during classification. In [58] (correlation coefficient joint sparse representation

classifier, CC–JSRC), authors calculated the similarities between the training

samples and test sample using correlation coefficient and assigned these weights

to the representation residual. In this way, training samples belonging to the same

class with the test sample will have more weight and this process will improve

the accuracy results of the JSRC method. In [59] (non–local similarity–based

sparse coding classifier, NLS–SCC), like the NLW–JSRC algorithm, a non–local

weighting was used to assign different weights to each neigbor pixel around the

test pixel. The non–local weights were calculated by the use of spectral angle

mapper measurement which calculates the angle between two observations.

1.3 Contribution of the Thesis

In the scope of this thesis, two sparse representation based supervised HSI clas-

sification algorithms, which use both spatial and spectral information, have been

proposed. The first algorithm uses multiscale superpixels to utilize spatial infor-

mation effectively and then the created classification map is enhanced using an

edge filtering process. In this way, instead of labeling one pixel at a time, pixels in

a superpixels are labeled together. Also, spatial information is fully considered by

the use of multiscale superpixels and guided filter. The second algorithm selects

the neighbors of the test sample in a fixed–size square window using some spec-

tral matching methods. In this way, pixels with different spectral characteristics

from the test pixel are discarded and the remaining ones are jointly represented

with the test pixel. The proposed methods have improved the results of the some

existing classifiers and have brought a new perspective to the literature.
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1.4 Outline of the Thesis

This chapter presents the basics of hyperspectral imaging and literature survey

about HSI classification. In Chapter 2, theoretical backgrounds and details of

the SRC and JSRC algorithms are presented. In addition, some methods used

in the proposed algorithms such as principal component analysis (PCA) and

entropy rate superpixel (ERS) are also described in this section. Chapter 3 gives

information about data sets used in the experiments. Chapter 4 and 5 explains

the proposed algorithms in detail, respectively. Their mathematical backgrounds

are first described and then results of the experiments are given. Chapter 6

concludes the thesis and we give some suggestions for the future works in this

chapter.
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CHAPTER 2

THEORETICAL BACKGROUNDS OF METHODS USED IN THE

PROPOSED ALGORITHMS

2.1 Sparse Representation Classifier

In the SRC method, a test pixel p ∈ RB×1 can be sparsely and linearly represented

by some of the dictionary atoms from the same class in a B dimensional space.

The training dictionary is represented as X = [X1,X2, · · · ,XM ] ∈ RB×N , where

each subdictionary {Xm}m=1,2,··· ,M contains train samples from class m, M is the

number of classes and N is the number of training samples. Since the aim is

to find the sparse vector α which satisfies p = Xα, it is required to solve the

following optimization problem

α̂ = arg min ‖α‖0 s.t. p = Xα (2.1)

where α = [α1, α2, · · · , αN ]T ∈ RN×1 is the sparse coefficient vector and ‖α‖0
counts the number of nonzero elements in α. If we consider some approximation

errors n in the empirical data (i.e., p = Xα + n) and insert it into the opti-

mization problem in (2.1), then the equality constraint becomes an inequality

constraint as follow

α̂ = arg min ‖α‖0 s.t. ‖p−Xα‖2 ≤ ε (2.2)

ε refers to error tolerance term and ‖·‖2 is the Euclidean norm defined as the

square root of the sum of the squares of the entries in a vector. The aforemen-

tioned optimization problem in (2.2) can also be thought as minimizing the error

under a specified sparsity level, so the problem can be written as

α̂ = arg min ‖p−Xα‖2 s.t. ‖α‖0 ≤ L (2.3)

the parameter L is the upper limit of the sparsity level. The orthogonal matching

pursuit (OMP) algorithm can be used to solve the problem in (2.3). The OMP

is a greedy optimization algorithm whose steps are described in Algorithm 1.
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After the sparse coefficient vector α̂ is calculated, the residual which is difference

between the original signal and the approximated signal should be calculated for

each class as;

Em(p) = ‖p−Xmα̂m‖2 where m = 1, 2, · · · ,M (2.4)

Finally, the class label of the test pixel p is determined by the class with minimum

residual value as follow:

Class(p) = arg min(Em) (2.5)

Algorithm 1: OMP

Input: Test pixel p ∈ RB×1

Sparsity level L

Training dictionary X ∈ RB×N = [x1, x2, · · · , xN ]

{Normalize columns of p and X to unit norm}

Initialize: Residual r0 = p

Index set Φ0 = ∅

Iteration counter k = 1

for k ≤ L

1. Find the index λk of the atom that matches best with the residual

λk = arg max |〈rk−1, xi〉|
i=1,2,··· ,N

2. Update the index set Φk = Φk−1 ∪ {λk}

3. Compute a new estimated signal using least squares

ŝΦk
= arg min

sΦk

‖p−XΦk
sΦk
‖2

=
(
XT

Φk
XΦk

)−1
XT

Φk
p

4. Determine the new residual rk = p−XΦk
ŝΦk

5. k ← k + 1

end

Output: Sparse coefficient vector α that has nonzero rows indexed by Φ

and value of
(
XT

ΦXΦ

)−1
XT

Φp
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2.2 Joint Sparse Representation Classifier

In the SRC model, the classification process is performed on a single test pixel

and thus the spatial information in HSI is neglected. In the JSRC model, a fixed

size square window is formed around a test pixel. In this way, the test pixel and

its neighborhoods are used in the classification stage to improve the accuracy of

classification results. Let p1 denotes a test pixel and {p2,p3, · · · ,pQ} denotes

the neighbors of p1, respectively. Let P = [p1,p2, · · · ,pQ] ∈ RB×Q denotes a

concatenated matrix including the test pixel and its neighbors. In the JSRC

method, it is assumed that the test pixel and its neighbors share a joint sparsity

pattern and they can be represented by sparse linear combination of several joint

atoms from a dictionary X as in the case of SRC model. Thus, it is required to

find the sparse coefficient matrix A that satisfies P = XA by solving the following

optimization problem

Â = arg min ‖A‖0 s.t. P = XA (2.6)

where A = [α1,α2, · · · ,αQ] ∈ RN×Q is the sparse coefficient matrix and ‖A‖0
counts the number of nonzero elements in A. If we consider some approximation

errors N in the empirical data (i.e., P = XA + N) as in the case of SRC, the

optimization problem in (2.6) becomes as

Â = arg min ‖A‖0 s.t. ‖P−XA‖F ≤ ε (2.7)

ε refers to error tolerance term and ‖·‖F is the frobenius norm defined as the

square root of the sum of the squares of the each entry in a matrix. The afore-

mentioned optimization problem in (2.7) can also be thought as minimizing the

error under a specified sparsity level, so the problem can be written as

Â = arg min ‖P−XA‖F s.t. ‖A‖0 ≤ L (2.8)

the parameter L is the upper limit of the sparsity level. The simultaneous or-

thogonal matching pursuit (SOMP) algorithm can be used to solve the problem

in (2.8). The SOMP is a commonly used greedy optimization algorithm whose

steps are described in Algorithm 2.

After the sparse coefficient matrix Â is calculated, the residual which is difference

between the original signal and the approximated signal should be calculated for

each class as

Em =
∥∥∥P−XmÂm

∥∥∥
F

; m = 1, 2, · · · ,M (2.9)
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Finally, the class label of the test pixel p1 is determined by the class with mini-

mum residual value as follow:

Class (p1) = arg min (Em) (2.10)

Algorithm 2: SOMP

Input: Pixel groups P ∈ RB×Q

Sparsity level L

Training dictionary X ∈ RB×N = [x1, x2, · · · , xN ]

{Normalize columns of P and X to unit norm}

Initialize: Residual R0 = P

Index set Φ0 = ∅

Iteration counter k = 1

for k ≤ L

1. Find the index λk of the atom that matches best with the residual

λk = arg max
∣∣〈Rt

k−1, xi〉
∣∣

i=1,2,··· ,N

2. Update the index set Φk = Φk−1 ∪ {λk}

3. Compute a new estimated signal using least squares

ŜΦk
= arg min

SΦk

‖P−XΦk
SΦk
‖F

=
(
XT

Φk
XΦk

)−1
XT

Φk
P

4. Determine the new residual Rk = P−XΦk
ŜΦk

5. k ← k + 1

end

Output: Sparse coefficient matrix A that has nonzero rows indexed by Φ

and value of
(
XT

ΦXΦ

)−1
XT

ΦP

2.3 Principal Component Analysis

PCA is a dimension reduction method which transforms the original higher di-

mensional space to a lower dimensional space. Since the dimension of HSI is very

large, PCA can be used to reduce the number of these bands. The contiguous

bands of hyperspectral images have similar spectral characteristics, so they carry
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similar information about an object. The PCA utilizes some mathematical and

statistical properties to analyze these correlations of the bands and then to reduce

the dimension. The PCA is mainly based on the eigenvalue decomposition of the

covariance matrix of the bands. The steps of the PCA can be written as;

a) Three dimensional HSI H is first converted to two dimensional matrix form

H.

H ∈ RM×N×B → H ∈ RB×W (2.11)

where W stands for the number of total pixels (MN) in the HSI. After the

conversion process, a pixel vector can be written in the form of

pi = [p1, p2, · · · , pB]T where i = 1, 2, · · · ,W (2.12)

the operator [·]T refers to transpose of the vector.

b) The mean, m, of the all pixels is calculated and then the mean–centered data

matrix U is calculated as follows

m =
1

W

W∑
i=1

pi (2.13)

U = [p1 −m p2 −m · · · pi −m] ∈ RB×W (2.14)

Mean centering is an essential process before the calculation of covariance matrix

to produce a data matrix whose mean is equal to 0.

c) To analyze the correlations between spectral bands, the covariance matrix Cov

is computed as

Cov = UUT (2.15)

Cov is a B ×B dimensional matrix whose diagonal entries show the variance of

each band and off-diagonal entries show covariance between bands.

d) After the covariance matrix is found, the eigenvalue decomposition of the

covariance matrix is found and takes the form of

Cov = VDVT (2.16)

V refers to eigenvectors of the Cov, VT refers to transpose of V and diagonal

matrix D is the eigenvalues of the Cov.

e) After all the eigenvalues and their corresponding eigenvectors are found, eigen-

values and their eigenvectors are sorted in an descending order. Then, first K

(K ≤ B) eigenvectors can be used to approximate H. It is mentioned in [64] that
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first few principal components can be used to approximate the original image be-

cause these components have highest variance and contains lots of the information

about HSI. The pixels of the approximated image can be shown as

zi = [z1, z2, · · · , zB]T = VTpi where i = 1, 2, · · · ,W (2.17)

To select only first K principal components, the following equation should be

calculated.

zi =


z1

z2
...

zK


i

=


V11 V12 . . . V1K . . . V1B

V21 V22 . . . V2K . . . V2B

...
...

...
...

...
...

VK1 VK2 . . . VKK . . . VKB





p1

p2
...

pK
...

pB


(2.18)

This step is done for the all pixels in the image, then the new image is formed

by selecting only first K principal components. If the approximated image is

denoted as Hnew, then it is needed to convert it from two dimension to three

dimension as follow:

Hnew ∈ RK×W → Hnew ∈ RM×N×K (2.19)

All steps of the PCA method can be seen in Figure 2.1.

2.4 Entropy Rate Superpixels Segmentation

Superpixel segmentation is a significant process to extract local homogeneous

regions from an image. ERS is a superpixel segmentation method that uses

entropy rate on a graph and a balancing term. Local homogeneous regions are

extracted with the help of entropy rate. Thanks to the balancing term, it is

ensured that these regions have similar sizes. So, ERS uses the following objective

function

max
A

H(A) + λB(A) s.t. A ⊆ E (2.20)

where H(A) is the entropy rate function, B(A) is the balancing term, λ controls

the tradeoff between the entropy rate function and the balancing term. E refers

to edge set that indicates similarities between neighbor pixels and A is the subset

of edge set.
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Figure 2.1 Steps of the principal component analysis [65].

ERS method needs a base image to generate superpixels. A graph G = (V,E) is

constructed using the base image. V refers to vertex set composed of pixels of

the base image. To segment the graph into S superpixels, ERS chooses a subset

of edges A ⊆ E. Firstly, the algorithm starts with an empty set of edges. Then,

it chooses the edge from E to maximize the objective function. In this way, new

edges are added to subset A in each iteration and the algorithm is terminated

when the predefined number of superpixels is reached to the number of bounded

subgraphs.
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CHAPTER 3

DATA SETS AND PERFORMANCE EVALUATION METRICS

In this chapter, we give first the descriptions of the data sets used in the experi-

ments. Then, formulation of the performance evaluation metrics used to measure

the success of the classification methods are given.

3.1 Data Sets

In order to test the performance of the proposed methods, experiments are con-

ducted on two hyperspectral datasets namely called Indian Pines and University

of Pavia. These data sets can be downloaded online from the website in [66].

3.1.1 Indian Pines

This dataset was obtained by AVIRIS (Airborne/Visible Infrared Imaging Spec-

trometer) sensor during a flight over the Indian Pines test area in North-western

Indiana [67]. It contains 145×145 pixels in the spatial dimension and 220 spec-

tral bands in the spectral dimension. However, 20 spectral bands (104–108, 150–

163, 220) are removed due to the water absorption [68]. So, final data size is

145×145×200. The wavelength ranges of the bands are between 0.4–2.5 µm.

The spatial resolution of this dataset is 20 m per pixel. It has 16 ground-truth

classes, which includes mostly agricultural products, are given in Table 3.1. The

term ground truth means that how the data set looks in reality. It is used to

check the accuracy results of classifiers. A three band (50, 27, 17) false color

image of the dataset, its corresponding ground-truth map and the names of the

classes are given in Figure 3.1.
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Table 3.1 The class names and the number of samples of the Indian Pines.

Class Name Samples

1 Alfalfa 54

2 Corn-notill 1434

3 Corn-mintill 834

4 Corn 234

5 Grass-pasture 497

6 Grass-trees 747

7 Grass-pasture-mowed 26

8 Hay-windrowed 489

9 Oats 20

10 Soybean-notill 968

11 Soybean-mintill 2468

12 Soybean-clean 614

13 Wheat 212

14 Woods 1294

15 Buildings-Grass-Trees-Drives 380

16 Stone-Steel-Towers 95

Total 10366

(a) (b)

1.Alfalfa
2.Corn-notill
3.Corn-mintill
4.Corn
5.Grass-pasture
6.Grass-trees
7.Grass-pasture-mowed
8.Hay-windrowed
9.Oats
10.Soybean-notill
11.Soybean-mintill
12.Soybean-clean
13.Wheats
14.Woods
15.Buildings-Grass-Trees-Drives
16.Stone-Steel-Towers

(c)

Figure 3.1 Indian Pines; (a) False color image, (b) Ground-truth map and (c)
Class names.

3.1.2 University of Pavia

This dataset was obtained by ROSIS (Reflective Optics System Imaging Spec-

trometer) sensor during a flight over the University of Pavia test area in nothern

Italy [67]. It contains 610×610 pixels in the spatial dimension and 115 spectral
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bands in the spectral dimension. However, 12 spectral bands are removed due

to noise. In addition, some of the samples in the image have no information

and have to be removed. After these preprocessing steps, final data size becomes

610×340×103. The wavelength ranges of the bands are between 0.43 - 0.86 µm.

The spatial resolution of this dataset is 1.3 m per pixel. It has 9 ground-truth

classes, which includes urban, soil and vegetation features, are given in Table

3.2. A three band (45, 27, 11) false color image of the dataset, its corresponding

ground-truth map and the names of the classes are given in Figure 3.2.

Table 3.2 The class names and the number of samples of the University of Pavia.

Class Name Samples

1 Asphalt 6631

2 Meadows 18649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare Soil 5029

7 Bitumen 1330

8 Self-Blocking Bricks 3682

9 Shadows 947

Total 42776

(a) (b)

1.Asphalt

2.Meadows

3.Gravel

4.Trees

5.Painted metal sheets

6.Bare soil

7.Bitumen

8.Self-blocking bricks

9.Shadows

(c)

Figure 3.2 University of Pavia; (a) False color image, (b) Ground-truth map
and (c) Class names.
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3.2 Performance Evaluation Metrics

There are four metrics to evaluate performance of the HSI classifiers. They are

overall accuracy (OA), class accuracy (CA), average accuracy (AA) and kappa

statistic (K) [69]. These metrics are calculated using a confusion matrix which is

a table used to express the performance of a classifier on a set of test data.

In a confusion matrix, actual and predicted values are checked. In other words,

actual and predicted class labels of test samples are compared. Actual labels are

obtained from ground truth of the data set and predicted labels are determined

by classifier. The size of confusion matrix is C×C where C is the total number

of classes. Diagonal entries show number of correctly classified test samples and

off diagonal entries show number of misclassifications in the related class.

An example of confusion matrix for a two classes data is shown in Table 3.3. In

this matrix:

a number of correctly classified test samples in Class 1

b total number of test samples where their actual labels are Class 2 but

classified as Class 1

c total number of test samples where their actual labels are Class 1 but

classified as Class 2

d number of correctly classified test samples in Class 2

a+ b total number of test samples classified as Class 1 by the classifier

c+ d total number of test samples classified as Class 2 by the classifier

a+ c total number of test samples in Class 1 obtained from ground truh of the

data

b+ d total number of test samples in Class 2 obtained from ground truh of the

data

N number of test samples should be classified

Accuracy results are evaluated using the definitions above and their explanations

and formulations are given through Eqns. (3.1–3.4) for OA, CA, AA and K,

respectively.

Table 3.3 An example of two class confusion matrix table.

Actual
Class 1 Class 2 Total

Predicted
Class 1 a b a+ b
Class 2 c d c+ d
Total a+ c b+ d N
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OA =
Number of the test samples classified correctly

Total number of the test samples
(3.1)

=
a+ d

N

CA =
Number of the test samples classified correctly in the related class

Total number of the test samples in the related class

(3.2)

=
a

a+ c
for the class accuracy of Class 1 (CA1)

=
d

b+ d
for the class accuracy of Class 2 (CA2)

AA =
Sum of the classification accuracies

Total number of the classes
(3.3)

=
CA1 + CA2

2

K =
Observed accuracy− Expected accuracy

1− Expected accuracy
(3.4)

=

OA−

[
(a+ c)(a+ b)

N
+

(b+ d)(c+ d)

N

]

1−

[
(a+ c)(a+ b)

N
+

(b+ d)(c+ d)

N

]
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CHAPTER 4

SPARSE REPRESENTATION-BASED HYPERSPECTRAL IMAGE

CLASSIFICATION USING MULTISCALE SUPERPIXELS AND

GUIDED FILTER

In the JSRC method, a fixed-size window is constructed around a centered test

pixel and its neighbors are incorporated to use spatial information in this way.

However, this method has two major drawbacks. The first one is that the fixed-

size window can cause classification errors if the location of the test pixel is closer

to edges. The second one is that optimal size of the window can vary for different

local regions. For example, to get spatial information from a small region, size of

the window should be small. Otherwise, to get spatial information from a large

region, size of the window should be large.

To avoid the first problem, superpixel segmentations are used. In a superpixel,

pixels that have similar spectral characteristics are included. But, the optimal

number of superpixels in an image is hard to determine if we want superpixels to

connect edge boundaries well.

To solve the second problem and the problem of optimal number of superpixels,

multiscale superpixels are generated. However, multiscale approach may result

in misclassifications near the edges. To overcome this problem, guided filter is

added to the classification maps to preserve edge boundaries.

In multiscale superpixels approach, segmentation maps with different superpixel

numbers are utilized to get local information effectively. However, there is not

an optimal way of choosing correct number of superpixels that connect edges

well in HSI. So, lots of the edge information will be discarded. In this study,

multiscale superpixels and guided filter (MSS–GF) are incorporated together to

fully consider the spatial and edge information. The different scale segmentation

maps are obtained using multiscale superpixel approach and edge information

that is not fully considered in multiscale segmentation are incorporated using

guided filter.
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4.1 Methodology and Formulation of the Proposed Method

In this section, backgrounds of superpixel, multiscale superpixels and guided filter

are presented. In addition, problem formulation of the proposed MSS–GF method

is theoretically described.

A superpixel is a group of pixels that have similar spectral characteristics. Its

shape and size vary for distinct spatial structure in HSI. To obtain a superpixel

segmentation map, a base image should be formed. Principal component analysis

(PCA) [64] can be used to extract first or first three principal components as the

base image. In this study, first three principal components are used as the base

image. Then, ERS [70] is applied on the base image to generate superpixel

segmentation maps. Each superpixel in segmentation maps is jointly classified

by sparse representation classifier. Then, each classification map is represented

as binary probability maps and these maps are filtered using guided filter. For

the guided filter, first three principal components are used as the color guidance

image because it provides better performance than gray-level guidance image as

proposed in [71] and [72].

4.1.1 Forming Different-scaled Superpixel Segmentations

A 2-dimensional superpixel segmentation map generated on the base image con-

tains Mtotal pixels in total. To determine total superpixel number Sj in the jth

scale

Sj =
Mtotal

RSn

, j = 1, 2, · · · , N (4.1)

is calculated. In (4.1), RSn= Q×Q stands for region scale and N stands for

total scale number. Normally, each superpixel has different shape and size. By

performing equation (4.1), each superpixel nearly has Q×Q pixels inside due to

the specified region scale.

4.1.2 Sparse Representation Based Multiscale Superpixels

A pixel in HSI is represented as p ∈ RC where C is the number of spectral

bands. The structured dictionary formed by all classes is denoted by X =

[X1,X2, . . . ,XK ] ∈ RC×D where K is the total number of classes and D is the

number of training samples. So, a test pixel p can be denoted as

p = Xα + n (4.2)
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where α = [α1, α2, . . . , αK ]t is the sparse coefficient vector and n is the possible

approximation errors in the empirical data. Orthogonal Matching Pursuit (OMP)

[73] can be used to solve the following optimization problem for sparse coefficient

vector

α̂ = arg min ‖p−Xα‖2 s.t. ‖α‖0 ≤ L (4.3)

the parameter L is the sparsity-level which points out the number of atoms to be

selected in the dictionary at each iteration and ‖ · ‖0 is the l0 norm which counts

the number of nonzero elements.

A superpixel contains a group of pixels that have similar spectral characteristics.

Using (4.2) and (4.3) for a single pixel, a superpixel can be represented as

Pj
s = XAj

s + Nj
s (4.4)

Aj
s is the sparse coefficient matrix and s denotes the sth superpixel in the jth scaled

segmentation map in (4.4). The sparse coefficient matrix Aj
s can be calculated

by

Âj
s = arg min

∥∥Pj
s −XAj

s

∥∥
F

s.t.
∥∥Aj

s

∥∥
0
≤ L (4.5)

We can use Simultaneous Orthogonal Matching Pursuit (SOMP) [42] to solve the

optimization problem in (4.5). After Âj
s is found, reconstruction residual error

which is the difference between original pixel and reconstructed pixel is calculated

using Frobenius norm as in (4.6)

Ek(Pj
s) =

∥∥∥Pj
s −XkÂ

j
sk

∥∥∥
F

, k = 1, 2, · · · , K (4.6)

where Âj
sk

is the suitable atoms of the sub-dictionary Xk in Âj
s. Finally, the class

label of Pj
s is obtained by the minimal reconstruction residual error as in (4.7)

Class
(
Pj

s

)
= arg min

(
Ek

(
Pj

s

))
(4.7)

4.1.3 Guided Filter

Guided filter aims to obtain an output image O using a guidance image G in a

local window ωv constructed around pixel u, with size (2r+1) × (2r+1) where r

is the radius. By applying filtering process, edge information of G is transferred

to O. The linear relationship between O and G can be written as

Ou = avGu + bv , ∀u ∈ ωv (4.8)
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where av and bv are linear coefficient and bias, respectively. To find the values of

av and bv, energy function E(av, bv) is carried out on the local window ωv as in

(4.9)

E (av, bv ) =
∑
u∈ωv

(
(avGu + bv − Iu )2 + εa2v ) (4.9)

I is the input image and ε is the regularization parameter which adjusts the

blurring degree. Guidance image G can be gray-level or RGB image as mentioned

in [71] and [72].

4.1.4 Problem Formulation

After all the different scaled superpixel segmentations are calculated and class

labels of the pixels are determined in each scale, classification maps are trans-

formed to binary probability maps. For the jth scaled classification map Mj, the

corresponding binary probability map is shown as

PMj =
[
PMj

1,PMj
2, . . . ,PMj

K

]
(4.10)

PMj refers to probability map in (4.10). If the class label of a pixel u is k in the

jth scaled classification map, then

PMj
u,k =

{
1 if Mj

u = k

0 otherwise.
(4.11)

After (4.11) is applied for all pixels in each scale, all probability maps must be

filtered by the guided filter using a weight function. This operation for the pixel

u in the jth scale kth class can be denoted in (4.12) as

PM
j

u,k =
∑
h

Wu,h (G)PMj
h,k (4.12)

PM
j

u,k refers to filtered output of PMj
u,k. Index h means the neighboring pixels

of pixel u inside a window. The weight function W uses and protects the edge

information of the guidance image G. For the guided filter, weight function

Wu,h (G) is written as

Wu,h (G) =
1

|ω|2
∑

v:(u,h)∈ωv

(
1 +

(Gu − µv ) (Gh − µv )

σ2
v + ε

)
(4.13)

where µv and σv are the mean and variance of G in the window ωv, and |ω| is the

total number of pixels in ωv.
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4.1.5 Determination of Class Label

After all the filtered probabilities are evaluated for each scale, the class label of

a pixel u is determined by majority voting (MV) rule. First, the maximum value

of filtered probabilities and its class index for the pixel u at each scale are found.

Then, MV rule is applied on the class indexes and the label of the pixel u is

selected as most repeated class. Maximum value and its class index can be found

as

Class
(
uj
)

= I
(

arg max
(
PM

j

u,k

))
(4.14)

In (4.14), I indicates the class index of maximum value of filtered probabilities

and uj refers to a pixel u in the jth scale. The label of u can be found by applying

(4.15)

Class (u) = MV
(
Class

(
uj
))

(4.15)

4.2 Simulation Setup and Experimental Results

In this section, the proposed MSS–GF method is tested on two hyperspectral data

sets called Indian Pines and University of Pavia. The methods in the literature

called SVM [24], JSRC [42] and EPF [71] are used for comparison. In addition,

classification is performed by directly applying joint sparse representation based

classification using only multiscale superpixels by applying majority voting rule

but not guided filter process. We call this method as MSS–MV. All experiments

are repeated 10 times with different training samples and then the results are

averaged.

The proposed MSS–GF method has parameters to be adjusted such as region

scales RSn in each segmentation map and sparsity-level L for each data set.

In addition to these parameters, radius r and regularization parameter ε must

be adjusted for the guided filter. Before performing guided filter, classification

results of the different scaled superpixel segmentations must provide satisfactory

accuracies. If the values of RSn and L are chosen properly, then the classification

accuracies will be high. So, firstly, different region scales and different sparsity

levels are applied on two data sets to determine proper values. To determine RSn,

different region scales which starts from 3×3 and goes to 19×19 are selected. For

the L, the values 1, 3 and 5 are selected. The value of r should be set properly to

capture edge information of the original image effectively. So, different r values

between 1 and 9 are chosen to obtain best performance for the two data sets.
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Table 4.1 Number of superpixels in each region scale for the Indian Pines.

Scale 3×3 5×5 7×7 9×9 11×11

Number of superpixel 2336 841 429 260 174

The value of ε is set as 0.01 for the both data sets as recommended in the work

[71]. The experiments applied on the data sets are described in the following

subsections.

4.2.1 Simulation Results on Indian Pines

In all studies conducted on the Indian Pines data set, 10% of total samples of

each class are used for training and the remaining 90% are used for testing.

Gaussian RBF kernel is used in the SVM method and 5-fold cross validation is

performed to select the best parameters. For the JSRC method, L is set to 1

and window size is set as 5×5 to achieve best classification results. For the EPF

method, original parameters (r=4 and ε=0.01) are used in the experiment for the

two data sets. First three principal components are utilized as guidance image for

the guided filter process in both EPF and proposed MSS–GF methods. Figure

4.1 shows the result of the experiment to determine the parameters for the RSn

and L. For this data set, region scales RSn are selected as 3×3, 5×5, 7×7, 9×9

and 11×11, because OA and AA values are higher. Also, L=1 mostly gives higher

results than L=3 and L=5 in terms of both OA and AA. So, L=1 is chosen as

the sparsity level.

The number of superpixels in each segmentation map are presented in Table 4.1

and the superpixel segmentation maps for the selected region scales can be seen

in Figure 4.2.

After the values of L and RSn are determined, radius r must be set for the

guided filter. Figure 4.3 shows the effect of different r values on the classification

accuracy results in terms of OA. As it is seen, radius r=4 provides higher OA

than other radius values. So, r=4 is set as the radius of the guided filter.

After the parameter adjustments are completed, the proposed MSS-GF is com-

pared with SVM, JSRC, EPF and MSS–MV as mentioned before. The compar-

ison results and the number samples used in the experiments are given in Table
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Figure 4.1 Effect of region scales and sparsity-level on the Indian Pines; (a) OA
and (b) AA.

4.2. As it is seen, SVM has the lowest accuracy results in terms of OA, AA and

K. This is because the spatial information is not used in SVM. Since EPF is

the improved version of SVM by adding additional guided filter process to the

classification map of SVM, it has higher accuracy results (approximately 15%)

than SVM in terms of OA, AA and K. MSS–MV has improved accuracy results

than the results of JSRC, because MSS–MV uses multiscale superpixels instead

of a fixed–size region scale and effectively capture the spatial information. The

proposed MSS–GF improves the result of MSS–MV by applying guided filter and

so it has the highest classification accuracy results. Thanks to the additional
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(a) (b) (c)

(d) (e)

Figure 4.2 Superpixel segmentation maps of the Indian Pines for the region
scales (a) 3×3, (b) 5×5, (c) 7×7, (d) 9×9 and (e) 11×11.
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Figure 4.3 Effect of guided filter radius r for the Indian Pines.

guided filter, edge information of the original image is transferred to the classi-

fication map of the MSS–MV and eventually the accuracy results are improved.

Since the aim is to improve the results of JSRC, the proposed MSS–GF fulfills

this task well. It improves the OA result of JSRC nearly by 2.5%, AA result
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Table 4.2 Classification accuracies (%) of Indian Pines dataset obtained by SVM,
EPF, JSRC, MSS–MV and the proposed MSS–GF method.

Class Train Test SVM JSRC EPF MSS–MV MSS–GF

1 6 48 60.30 93.32 10.00 96.46 96.44

2 144 1290 71.98 93.22 93.86 95.37 95.24

3 84 750 74.47 92.83 95.94 96.99 98.38

4 24 210 60.33 93.03 95.73 93.90 92.86

5 50 447 88.71 96.55 97.48 96.78 99.71

6 75 672 86.63 96.59 96.10 99.30 99.04

7 3 23 80.92 84.47 100 100 100

8 49 440 90.87 99.54 91.34 99.77 100

9 2 18 77.35 69.92 0.00 78.33 71.74

10 97 871 76.00 92.96 94.21 93.48 97.31

11 247 2221 78.62 96.34 93.23 98.16 97.46

12 62 552 70.31 94.78 91.75 94.06 95.18

13 22 190 94.07 93.84 100 99.47 99.13

14 130 1164 91.49 97.25 94.76 99.66 99.52

15 38 342 69.00 96.19 96.52 97.11 98.94

16 10 85 96.48 91.29 93.77 98.00 97.89

OA – – 79.79 95.19 94.26 97.13 97.58

AA – – 79.22 92.63 84.04 96.05 96.18

K – – 76.88 94.51 93.44 96.73 97.24

nearly by 3.5% and K result nearly by 3%.

In addition, a comparison is performed between MSS–GF and other methods

under different training percents such as 1%, 4%, 7% and 10%. As it is seen from

Figure 4.4, the proposed MSS–GF method outperforms the other methods for all

training percents in terms of both OA and AA.

To observe the effect of the methods visually, classification maps of the methods

are presented in Figure 4.5. Since SVM is a spectral based classification method,

its classification map seems very noisy. The classification maps of the other

methods seem better because the spatial information is incorporated. Effect of

the guided filter can be seen from the Figures 4.5(f) and 4.5(g). Most of the

misclassifications in Figure 4.5(f) near the edges in the classes ”soybean mintill,

buildings–grass–trees and grass/pasture” are corrected by MSS–GF as it is seen

from Figure 4.5(g).
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Figure 4.4 Effect of different training percents on (a) OA and (b) AA using SVM,
JSRC, EPF, MSS–MV and proposed MSS–GF method for the Indian Pines.

Finally, Figure 4.6 shows the superiority of using multiscale superpixels when

compared to single scale superpixels in terms of OA. As it is seen, OA result of

multiscale superpixels is nearly 1% higher compared to the single–scale (7×7)

providing maximum OA. Eventually, the advantage of multiscale superpixels has

been proven by this experiment.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.5 Indian Pines; (a) Guidance image, (b) Ground truth. The classi-
fication maps obtained by (c) SVM, (d) JSRC, (e) EPF, (f) MSS–MV and (g)
MSS–GF.

4.2.2 Simulation Results on University of Pavia

For the University of Pavia data set, 300 train samples per class are used as

training and remaining samples are utilized as test samples.

Gaussian RBF kernel is used in the SVM method and 5-fold cross validation is

performed to select the best parameters. For the JSRC method, L is set to 11

and window size is set as 13×13 for to achieve best results. For the EPF method,

original parameters (r = 4 and ε = 0.01) are used in the experiment for the two
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Figure 4.6 Single-scale and multiscale superpixels comparison for the Indian
Pines.

data sets. First three principal components are utilized as guidance image for

the guided filter process in both EPF and proposed MSS–GF methods. Figure

4.7 shows the result of the experiment to determine the parameters for the RSn

and L. For this data set, region scales RSn are selected as 7×7, 9×9, 11×11,

13×13, 15×15 and 17×17, because OA and AA values are higher. Also, L=1

mostly gives higher results than L=3 and L=5 in terms of both OA and AA. So,

L=1 is chosen as the sparsity level.

The number of superpixels in each segmentation map are presented in Table 4.3

and the superpixel segmentation maps for the selected region scales can be seen

in Figure 4.8.

Table 4.3 Number of superpixels in each region scale for the University of Pavia.

Scale 7×7 9×9 11×11 13×13 15×15 17×17

Number of superpixel 4233 2560 1714 1227 922 718

After the values of L and RSn are determined, radius r must be set for the

guided filter. Figure 4.9 shows the effect of different r values on the classification

accuracy results in terms of OA. As it is seen, radius r=9 provides higher OA

than other radius values. So, r=9 is set as the radius of the guided filter.

After the parameter adjustments are completed, the proposed MSS-GF is com-
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Figure 4.7 Effect of region scales and sparsity-level on the University of Pavia;
(a) OA and (b) AA.

pared with SVM, JSRC, EPF and MSS–MV as mentioned before. The compar-

ison results and the number samples used in the experiments are given in Table

4.4. As it is seen, the accuracy results of SVM stay behind the results of other

methods because SVM only uses spectral information. Since EPF is the improved

version of SVM by adding additional guided filter process to the classification map

of SVM, it has higher accuracy results than SVM in terms of OA, AA and K.

MSS–MV has improved accuracy results of the JSRC, because MSS–MV uses

multiscale superpixels instead of a fixed–size region scale and effectively capture

the spatial information. The proposed MSS–GF improves the result of MSS–MV
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(a) (b) (c)

(d) (e) (f)

Figure 4.8 Superpixel segmentation maps of the University of Pavia for the
region scales (a) 7×7, (b) 9×9, (c) 11×11, (d) 13×13, (e) 15×15 and (f) 17×17.

by applying guided filter and so it has the highest classification accuracy results.

Thanks to the additional guided filter, edge information of the original image is

transferred to the classification map of the MSS–MV and eventually the accuracy

results are improved. Since the aim is to improve the results of JSRC, the pro-

posed MSS–GF fulfills this task well. It improves the OA result of JSRC nearly

by 3%, AA result nearly by 7% and K result nearly by 4%.

In addition, a comparison is performed between MSS–GF and other methods

under different training percents such as 1%, 4%, 7% and 10%. For this dataset,

SVM performs better results compared to Indian Pines due to the less number of

classes. It may be because SVM is basically a binary-classifier and not convenient

for multiclass datasets as in the Indian Pines. So, SVM-based EPF method

outperforms the other methods up to nearly 5% training percent for the Pavia
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Figure 4.9 Effect of guided filter radius r for the University of Pavia.

Table 4.4 Classification accuracies (%) of University of Pavia dataset obtained
by SVM, EPF, JSRC, MSS–MV and the proposed MSS–GF method.

Class Train Test SVM JSRC EPF MSS–MV MSS–GF

1 300 6331 97.01 95.68 99.01 97.58 99.85

2 300 18349 98.01 99.56 99.77 99.18 99.63

3 300 1799 78.44 91.68 99.36 99.96 99.47

4 300 2764 87.73 91.67 98.88 95.30 96.60

5 300 1045 97.75 88.71 99.39 99.45 99.64

6 300 4729 80.59 96.90 96.27 99.98 99.79

7 300 1030 67.70 89.95 99.49 100 99.10

8 300 3382 87.29 92.79 95.98 99.28 96.54

9 300 647 99.85 82.04 99.78 96.51 99.84

OA – – 91.75 96.24 98.79 98.78 99.17

AA – – 88.26 92.11 98.66 98.58 98.94

K – – 88.96 94.91 98.36 98.35 98.88

dataset. And after this percent, the proposed MSS–GF method outperforms the

other methods in terms of both OA and AA as can be seen in Fig. 4.10.

To observe the effect of the methods visually, classification maps of the methods

are presented in Figure 4.11. Since SVM is a spectral based classification method,

its classification map seems very noisy. The classification maps of the other

methods seem better because the spatial information is incorporated. Effect of

the guided filter can be seen from the Figures 4.11(f) and 4.11(g). Most of the
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Figure 4.10 Effect of different training percents on (a) OA and (b) AA using
SVM, JSRC, EPF, MSS–MV and proposed MSS–GF method for the University
of Pavia.

misclassifications in Figure 4.11(f) near the edges in the classes ”asphalt, meadows

and brick” are classified correctly in the proposed MSS–GF as it is seen from

Figure 4.11(g).

Finally, Figure 4.12 shows the superiority of using multiscale superpixels when

compared to single scale superpixels in terms of OA. As it is seen, OA result of

multiscale superpixels is nearly 0.5% higher compared to the single–scale (11×11)

providing maximum OA. Eventually, the advantage of multiscale superpixels has
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.11 University of Pavia; (a) Guidance image, (b) Ground truth. The
classification maps obtained by (c) SVM, (d) JSRC, (e) EPF, (f) MSS–MV and
(g) MSS–GF.
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Figure 4.12 Single-scale and multiscale superpixels comparison for the Univer-
sity of Pavia.

been proven by this experiment.
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CHAPTER 5

SPARSE REPRESENTATION-BASED CLASSIFICATION OF

HYPERSPECTRAL IMAGES USING SPECTRAL MATCHING

METHODS

In the JSRC method, it is assumed that the weights of all neighboring pixels in a

fixed size window around the test pixel are equal. Particularly, as the window size

increases, the error rate will increase if it is considered that the pixels belonging

to different classes will be included in the classification process. In order to

solve this problem, 3SM–JSRC (3 Spectral Matching Joint Sparse Representation

Classifier) method which applies 3 spectral matching methods to central test pixel

and each neighbor pixel in the window and combines with JSRC is proposed.

Three spectral matching methods called euclidean distance (ED), spectral angle

mappper (SAM) and pearson correlation coefficient (PCC) are used in common

to decide which neighboring pixels to be selected or not to be selected in the

classification process. These matching methods are used in the problems such

as band selection and classification of HSI [74–76]. The matching methods are

applied to all adjacent pixels respectively so that the corresponding neighboring

pixel will be selected or not be selected according to the specified threshold value.

5.1 Spectral Matching Methods

In this section, ED, SAM and PCC methods are explained and their related

formulas are given.

5.1.1 Euclidean Distance

The ED is used to determine the distance between the X and Y vectors in a

B dimensional space. If the distance between two vectors is small, then their
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spectral charachteristics can be thought as similar. The formula of ED is given

in Eqn. (5.1) as follow:

ED(X, Y ) =

√√√√ B∑
i=1

(Xi − Yi)2 (5.1)

5.1.2 Spectral Angle Mapper

Thanks to the SAM method, the angle between the X and Y vectors in a B

dimensional space can be calculated. The small angle value shows that their

spectral characteristics are similar. The value of SAM can be calculated with the

help of the following Eqn. (5.2) as:

SAM(X, Y ) = cos−1


B∑
i=1

XiYi√
B∑
i=1

X2
i

√
B∑
i=1

Y 2
i

 (5.2)

5.1.3 Pearson Correlation Coefficient

The PCC also shows the similarity of two vectors, like other methods, and is

a value between -1 and 1. A value close to -1 indicates that the two vectors

are similar but they lie in the opposite direction. Conversely, a value close to 1

indicates that the two vectors are similar and lie in the same direction. Therefore,

if the X and Y vectors are similar in B dimensional space, the absolute value of

PCC should be close to 1. On the contrary, it should be close to 0. The PCC

can be calculated as:

PCC(X, Y ) =

B∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√

B∑
i=1

(
Xi − X̄

)2√ B∑
i=1

(
Yi − Ȳ

)2 (5.3)

where X̄ =

(
1
B

B∑
i=1

Xi

)
and Ȳ =

(
1
B

B∑
i=1

Yi

)
in Eqn. (5.3) stand for the mean of

the vectors X and Y , respectively.
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5.2 Formulation of the Proposed 3SM–JRC Method

The pixels in the window are indicated by P = [p1,p2, . . . ,pQ×Q], provided that

p1 is the test pixel and the others are the neighbors. ED, SAM and PCC matching

methods are applied on p1 and its neighbors, respectively. This process can be

modeled as the following Eqns. (5.4), (5.5) and (5.6):

EDj = ED(p1,pj) where j = 2, 3, · · · , Q×Q (5.4)

SAMj = SAM(p1,pj) where j = 2, 3, · · · , Q×Q (5.5)

PCCj = PCC(p1,pj) where j = 2, 3, · · · , Q×Q (5.6)

After these values are found for the all neighbor pixels, the mean values of the

vectors EDj, SAMj and PCCj should be calculated using the Eqns. (5.7), (5.8)

and (5.9), respectively, as:

ED =
1

(Q×Q)− 1

Q×Q∑
j=2

EDj (5.7)

SAM =
1

(Q×Q)− 1

Q×Q∑
j=2

SAMj (5.8)

PCC =
1

(Q×Q)− 1

Q×Q∑
j=2

PCCj (5.9)

The calculated mean values will be used as a threshold for each matching method.

The next step is to check if the calculated EDj, SAMj and PCCj values are

greater or smaller than the threshold values. Then, according to the results,

ED1,0, SAM1,0 and PCC1,0 vectors which consist of only 0 and 1 are constructed.

The value 0 means that related neighbor pixel has different spectral characteristics

than the test pixel and so it should be discarded. The value 1 means that related

neighbor pixel has similar spectral characteristics with the test pixel and so it

should be selected. All these process can be formulated as the following Eqns.

(5.10), (5.11) and (5.12):

ED1,0 =

{
1 ; EDj ≤ ED

0 ; EDj > ED
(5.10)

SAM1,0 =

{
1 ; SAMj ≤ SAM

0 ; SAMj > SAM
(5.11)

PCC1,0 =

{
1 ; PCCj ≥ PCC

0 ; PCCj < PCC
(5.12)
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After ED1,0, SAM1,0 and PCC1,0 vectors are constructed, majority voting (MV)

is applied to these three vectors and the V vector is formed as follow:

V = MV [ED1,0 ; SAM1,0 ; PCC1,0]

= [V2 V3 · · · VQ×Q] where Vj=2,3,··· ,Q×Q ∈ [0, 1]
(5.13)

In Eqn. (5.13), the selection is done for the neighbor pixels around the center

test pixel p1. Since the aim of the proposed algorithm is to classifiy the pixel p1,

a weight vector W which includes the weights for p1 and V is formed as follow:

W = [1 V2 V3 · · · VQ×Q] (5.14)

where the weight of p1 is determined as 1. Finally, P̃ matrix containing the

selected test pixel p1 and its neighbor pixels is formed by the following Eqn.

(5.15) as:

P̃ = WP (5.15)

A visual representation of the steps described so far can be seen in Figure 5.1.
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Figure 5.1 Selection of the neighbor pixels within the window created around
the test pixel by the methods ED, SAM and PCC.

After the neighbor selection process is completed, the steps of JSRC method

should be applied. The pixel matrix P̃ is linearly and sparsely represented using
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a few training samples in a structured dictionary X. Also, some representation

error N is added to problem in Eqn. (5.16) as:

P̃ = XA + N s.t. ‖A‖0 ≤ L (5.16)

A denotes the sparse coefficient matrix and L represents the sparsity level. In

sparse representation based approaches, the goal is to find the reconstructed test

pixel using sparse coefficient matrix. So, the problem in Eqn. (5.17) must be

solved for A using SOMP [42] algorithm as:

Â = arg min
∥∥∥P̃−XA

∥∥∥
F

s.t. ‖A‖0 ≤ L (5.17)

After Â is calculated, the representation residual error Em should be computed

for each class using the Eqn. (5.18) and then class label of the test pixel p1 is

determined as the class with minimum Em using the Eqn. (5.19) :

Em =
∥∥∥P̃−XmÂm

∥∥∥
F

where m = 1, 2, · · · ,M (5.18)

Class(p1) = arg min(Em) (5.19)

5.3 Simulation Setup and Experimental Results

In this section, the proposed 3SM–JSRC method is tested on two hyperspec-

tral data sets called Indian Pines and University of Pavia. The methods in the

literature called SVM [24], SRC [42], JSRC [42] and NLW–JSRC [57] are used

for comparison. All experiments are repeated 10 times with different training

samples and then the results are averaged.

5.3.1 Simulation Results on Indian Pines

In all studies conducted on the Indian Pines data set, 10% of total samples of each

class are used for training and the remaining 90% are used for testing. Detailed

information about classes and samples is given in Table 5.1.

Before comparison, the parameter setting should be made to ensure that the clas-

sification results of the other methods and the proposed method are the highest.

Gaussian radial basis function (RBF) kernel are used for SVM and 5–fold cross

validation is performed to select the best parameters. In the SRC method, the

sparsity level of L=5 is used. For the JSRC, region scale is selected as 9×9 and

sparsity level is chosen as 30. In the NLW–JSRC, the region scale is set as 9×9,
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Table 5.1 The number of train and test samples for each class used in the
experiments for the Indian Pines data set.

Class Name Train Test

1 Alfalfa 6 48

2 Corn-notill 144 1290

3 Corn-mintill 84 750

4 Corn 24 210

5 Grass-pasture 50 447

6 Grass-trees 75 672

7 Grass-pasture-mowed 3 23

8 Hay-windrowed 49 440

9 Oats 2 18

10 Soybean-notill 97 871

11 Soybean-mintill 247 2221

12 Soybean-clean 62 552

13 Wheat 22 190

14 Woods 130 1164

15 Buildings-Grass-Trees-Drives 38 342

16 Stone-Steel-Towers 10 85

Total 1043 9323

sparsity level is chosen as 30 and the region scale is set as 7×7 for the non–local

weight calculation. The proposed 3SM–JSRC method are tested with different

region scales and sparsity levels in order to determine the optimum values. The

region scales are selected as 3×3, 5×5, 7×7, 9×9 and 11×11. The sparsity levels

are chosen as 5, 10, 15, 20, 25 and 30.

Figure 5.2 shows the OA and AA results for the different region scales and sparsity

levels specified. As can be seen, there is a decrease in AA results for all sparsity

levels between 9×9 and 11×11 region scales. An increase in both OA and AA

results is observed between 3×3 and 5×5 region scales. Therefore, region scales

of 5×5, 7×7 or 9×9 must be selected. Although the OA result at 9×9 scale and

sparsity level of 25 is close to the results of 5×5 and 7×7 scales, the AA result

at 9×9 scale is lower than the results of 5×5 and 7×7 scales. Hence, only 5×5

and 7×7 region scales remain for selection. For both region scales, the results

of OA and AA are higher at the sparsity level of L=5. Since 7×7 region scale

gives higher OA than 5×5 region scale, the optimal parameters are selected as

7×7 region scale and sparsity level L=5. The higher OA result indicates that the

number of correctly classified test samples is higher.
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Figure 5.2 The results obtained using different region scales and sparsity levels
for the Indian Pines data set; (a) OA, (b) AA.

After the parameter adjustments are done, a fair comparison is made between the

proposed 3SM–JSRC and SVM, SRC, JSRC and NLW–JSRC methods. Classifi-

cation accuracy results are presented in Table 5.2. As can be seen, the proposed
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Table 5.2 Classification accuracies (in %) obtained by the SVM, SRC, JSRC,
NLW–JSRC and the proposed 3SM–JSRC methods for the Indian Pines.

Class SVM SRC JSRC NLW–JSRC 3SM–JSRC

1 76.67 68.33 86.67 85.83 96.88

2 81.01 65.15 93.74 94.53 93.90

3 76.65 61.55 89.91 89.29 93.68

4 71.00 43.33 93.81 91.52 89.67

5 94.97 89.08 93.42 97.23 96.00

6 95.67 94.94 99.14 99.88 98.44

7 79.57 82.17 51.74 33.04 86.96

8 97.48 97.25 99.80 100 100

9 71.11 41.67 4.44 23.89 51.67

10 70.54 72.45 89.07 86.99 92.92

11 85.41 76.47 97.25 98.04 97.35

12 86.68 59.22 89.00 94.49 91.47

13 99.16 97.74 99.21 99.74 98.79

14 95.40 93.77 99.24 99.24 99.66

15 61.87 44.71 98.45 93.71 94.74

16 89.06 87.53 92.24 98.24 90.94

OA 84.83 75.91 94.86 95.31 95.83

AA 83.26 73.46 86.07 86.60 92.06

K 82.69 72.49 94.13 94.64 95.24

3SM–JSRC overcomes other methods in terms of OA, AA and K values. The

classification accuracy results in SVM and SRC, which do not use spatial infor-

mation, are lower than JSRC, NLW–JSRC and 3SM–JSRC methods, which use

spatial information. Therefore, it can be easily observed that use of spatial in-

formation increases the results of classification accuracy. When it comes to the

JSRC, which does not have any selection process, 3SM–JSRC has better accuracy

results than JSRC in terms of OA, AA and K. The OA, AA and K results of

the method 3SM–JSRC are nearly 1% , 6% and 1% higher than the results of

the JSRC, respectively. According to NLW–JSRC, where weight is assigned to

neighboring pixels, there is no significant differences in OA and K values between

NLW–JSRC and 3SM–JSRC methods. However, AA result of the 3SM–JSRC is

nearly 6% higher than the result of the NLW–JSRC.

For a better visualization of the classification results, the ground truth map of the

Indian Pines data, the classification maps obtained by SVM, SRC, JSRC, NLW–
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Figure 5.3 Indian Pines data set: (a) Ground truth; Classification maps and
OA results obtained by the (b) SVM, (c) SRC, (d) JSRC, (e) NLW–JSRC, (f)
3SM–JSRC methods.

JSRC and 3SM–JSRC are given in Figure 5.3. As can be seen, the classification

map of the 3SM–JSRC better coincides with the ground truth map. The maps

of the SVM and SRC looks so noisy because the spatial information in HSI is

not incorporated. However, most of the noise are removed by the use of spatial

information as can be seen in the maps of the JSRC, NLW–JSRC and 3SM–JSRC,

respectively. In addition, most of the misclassifications seen in JSRC and NLW–

JSRC are improved by the proposed 3SM–JSRC. This is because the neighbor

pixels belonging to different classes in a window are eliminated in 3SM–JSRC by

the use of spectral matching methods.

5.3.2 Simulation Results on University of Pavia

Like the Indian Pines data set, 10% of total samples of each class are used for

training and the remaining 90% are used for testing for the experiments conducted

on the University of Pavia data set. Detailed information about classes and

samples is given in Table 5.3.
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Table 5.3 The number of train and test samples for each class used in the
experiments for the University of Pavia data set.

Class Name Train Test

1 Asphalt 664 5967

2 Meadows 1865 16784

3 Gravel 210 1889

4 Trees 307 2757

5 Painted metal sheets 135 1210

6 Bare Soil 503 4526

7 Bitumen 133 1197

8 Self-Blocking Bricks 369 3313

9 Shadows 95 852

Total 4281 38495

Before comparison, the parameter adjustments of the methods should be made

to ensure that the classification results of the other methods and the proposed

method are the highest. Gaussian radial basis function (RBF) kernel are used

for SVM and 5–fold cross validation is performed to select the best parameters.

In the SRC method, the sparsity level of L=5 is used. For the JSRC method,

region scale is selected as 3×3 and sparsity level is chosen as 10. In the NLW–

JSRC method, the region scale is set as 5×5, sparsity level is chosen as 15 and

the region scale is set as 7×7 for the non–local weight calculation. The proposed

3SM–JSRC method are tested with different region scales and sparsity levels in

order to determine the optimum values like done for the Indian Pines data set.

The region scales are selected as 3×3, 5×5, 7×7, 9×9 and 11×11. The sparsity

levels are chosen as 5, 10, 15, 20, 25 and 30.

Figure 5.4 shows the OA and AA results obtained with these parameters. As can

be seen, both OA and AA results are increasing for all sparsity levels as region

scales and sparsity levels increases. However, when the region scale goes from

9×9 to 11×11, accrual in AA results decreases compared to other region scales

and reaches to maximum values at 11×11. In Figure 5.4(a), the OA result reaches

the highest value for the L=15 sparsity level at 11×11 scale. On the other hand,

in the AA results, the values are almost same at 11×11 region scale for the all

sparsity levels except L=5. For this reason, 11×11 scale and L=15 are selected

as the optimum values for this data set to obtain highest classification accuracies.

After the parameter tunings are made, a fair comparison is performed between
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Figure 5.4 The results obtained using different region scales and sparsity levels
for the University of Pavia data set; (a) OA, (b) AA.

the proposed 3SM–JSRC and the other methods. Classification accuracy results

are presented in Table 5.4. As can be seen, OA, AA and K values are significantly

higher in 3SM–JSRC compared to other methods. The OA, AA and K results

of 3SM–JSRC are approximately 7%, 7% and 9.50% better than the results of

JSRC, respectively. In the same way, the OA, AA and K results of 3SM–JSRC
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Table 5.4 Classification accuracies (in %) obtained by the SVM, SRC, JSRC,
NLW–JSRC and the proposed 3SM–JSRC methods for the University of Pavia.

Class SVM SRC JSRC NLW–JSRC 3SM–JSRC

1 91.53 77.18 82.14 93.30 98.73

2 97.19 94.97 98.79 99.60 99.94

3 70.70 61.90 83.34 84.66 99.33

4 93.80 84.54 91.58 94.60 95.50

5 99.51 99.49 100 100 99.98

6 75.92 56.36 79.54 73.29 99.51

7 83.13 78.59 94.06 92.44 99.56

8 87.60 76.88 91.34 83.39 99.62

9 99.07 94.92 94.99 97.51 82.58

OA 91.12 83.38 91.84 92.79 98.93

AA 88.72 80.54 90.64 90.98 97.19

K 88.13 77.64 89.09 90.30 98.58

are almost 6%, 6% and 8% better than the results of NLW–JSRC, respectively.

Since spatial information is not used in SVM and SRC methods, classification

accuracy results are low when compared to the other 3 methods. According to

JSRC and NLW–JSRC methods, 3SM–JSRC has very high classification results

because of the large region scale for this data set. In JSRC and NLW–JSRC,

spatial information could not be used sufficiently in small region scales and so

high classification accuracy values could not be obtained. In the 3SM–JSRC,

spatial information is efficiently used thanks to the large region scale. In addition,

the pixels of different classes in the window are eliminated by spectral matching

methods. In this way, the classification accuracy results have reached very high

values.

For a better visualization of the classification results, the ground truth map of

the University of Pavia data, the classification maps obtained by SVM, SRC,

JSRC, NLW–JSRC and 3SM–JSRC are given in Figure 5.5. As can be seen, the

classification map of the 3SM–JSRC method better coincides with the ground

truth map and most of the classes almost match with the ground truth map com-

pletely. Although the classification result of the class ”Bare soil” is quite noisy

for SVM, SRC, JSRC and NLW–JSRC, the result of this class in the 3SM–JSRC

method overlap well with the ground truth map. Similarly, if the classification

results of the ”Gravel” and ”Self-blocking bricks” classes are examined on classifi-

cation maps, there are noises in the comparison methods other than 3SM–JSRC.
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Figure 5.5 University of Pavia data set: (a) Ground truth; Classification maps
and OA results obtained by the (b) SVM, (c) SRC, (d) JSRC, (e) NLW–JSRC,
(f) 3SM–JSRC methods.

In 3SM–JSRC, the results of these classses are almost identical to those in the

ground truth map. This is because the neighbor pixels belonging to different

classes in a window are eliminated in 3SM–JSRC by the use of spectral matching

methods. In this way, classification accuracy results of the classes become so

high.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In the scope of this thesis, two new sparse representation based HSI classification

methods have been developed. They perform better classification performance

than the state–of–the–art HSI classification methods proposed in the literature.

The first method called MSS–GF utilizes spatial and edge information effectively

in HSI. Instead of using multiscale superpixels as certain numbers, different re-

gion scales have been used to construct multiscale superpixels. In this way, small

and large local regions are formed to acquire spatial information well. Each su-

perpixel in a segmentation map has been classified using SOMP algorithm and

this procees has been repeated for all segmentation maps. After all the classifi-

cation maps were constructed, guided filter has been applied on the classification

maps to improve the misclassifications near the edges. Then, the label of a pixel

was determined by applying majority voting rule on the final classification maps.

Experimental results show that the MSS–GF method has left behind some meth-

ods in the literature even in low train sample percentages. In addition, the OA

classification result obtained by multiscale segmentation were higher for all two

hyperspectral data sets compared to the OAs obtained by single-scale superpixel

segmentations.

The second method called 3SM–JSRC uses three spectral matching methods (Eu-

clidean distance, Pearson correlation coefficient and Spectral angle mapper) si-

multaneously to find the similarity between test pixel and its each neighbor pixel

in a window centered around the test pixel. Using these similarity measure-

ments and specified thresholds, the neighbor pixels belonging to different classes

were discarded. In this way, only the test pixel and its neighbors with the same

class were solved by the SOMP algorithm. Experimental results show that the

3SM–JSRC algorithm has increased the classification accuracy when compared
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to classical JSRC method.

6.2 Future Work

The training dictionary has been randomly picked from HSI and so its size may

be large and it adversely affect the results for the both data sets. Therefore, an

efficient training algorithm for structured dictionary matrix used in the training

stage may improve the results. In addition, when determining the class label of a

test pixel, the similarities between the pixel groups and the training samples may

be calculated with the help of a weight function. Then, these weights may be

inserted into the residual value calculation to improve the classification accuracy

results.

For the MSS–GF method, a feature extraction method that extracts local features

well compared to PCA may increase the classification accuracy. In addition, if

an efficient superpixel segmentation method compared to ERS is applied, then

classification results will increase more. So, efficient local feature extraction and

superpixel segmentation methods will be adopted to MSS–GF method for the

future work.

For the 3SM–JSRC method, classification accuracy results can be increased by

using matching methods that can better find out the similarity between pixels in

addition to the different weight assignment methods.
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APPENDIX A

SELECTION OF THE REGION SCALES FOR THE PROPOSED

MSS–GF ALGORITHM

A.1 University of Pavia

Table A.1 Classification accuracies (%) of different region scales for the Univer-
sity of Pavia.

C 3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17 19×19

1 66.02 72.30 80.62 85.71 90.34 92.96 94.85 95.59 96.80

2 88.57 92.60 93.96 94.80 95.60 95.58 95.39 95.29 95.33

3 89.76 95.92 98.66 99.71 99.75 99.94 100 99.02 98.87

4 95.26 96.49 96.49 94.67 92.98 90.97 89.97 88.41 85.23

5 99.61 99.48 99.38 99.34 99.40 98.43 99.27 99.65 97.03

6 81.85 91.94 98.38 99.35 99.87 100 99.83 99.98 99.54

7 97.37 99.65 98.93 99.49 99.84 98.81 96.15 100 94.40

8 83.79 90.85 94.08 95.90 97.39 96.36 96.99 98.00 97.37

9 91.00 91.99 95.45 97.03 98.85 89.15 86.58 87.57 79.04

OA 84.88 89.93 93.06 94.48 95.69 95.69 95.78 95.92 95.45

AA 88.14 92.35 95.10 96.22 97.11 95.80 95.45 95.94 93.74

K 79.89 86.55 90.72 92.60 94.21 94.20 94.33 94.52 93.88

In Table A.1, classification accuracies of different region scales are presented for

the University of Pavia. Both 3×3 and 5×5 region scales have low OA, AA and K
values (mosty lower than 90%) compared to other scales. So, they are discarded.

OA and K values are starting to increase from 3×3 region scale to 17×17 region

scale. But, after this scale, these values and AA are starting to decrease. So, we

discarded 19×19 region scale too. As a result, only 7×7, 9×9, 11×11, 13×13,

15×15 and 17×17 region scales were selected for the University of Pavia dataset.
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A.2 Indian Pines

Table A.2 Classification accuracies (%) of different region scales for the Indian

Pines.

C 3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17 19×19

1 62.50 82.29 96.25 90.00 96.25 90.00 38.54 67.29 39.17

2 82.57 91.80 92.43 91.59 91.54 86.10 88.15 90.49 67.21

3 83.61 93.63 96.36 99.33 94.43 92.29 91.60 87.25 73.92

4 67.71 86.14 93.52 92.33 81.62 77.00 81.48 69.10 79.38

5 90.94 94.50 97.14 95.77 93.65 93.87 93.60 93.40 92.95

6 97.10 99.02 98.72 97.89 98.32 97.75 97.75 97.63 97.75

7 90.87 98.26 100 100 10.00 10.00 10.00 10.00 10.00

8 97.55 98.30 99.77 99.77 99.34 99.73 99.77 99.77 99.77

9 56.67 93.33 90.00 70.00 70.00 20.00 20.00 20.00 20.00

10 89.78 92.56 94.98 89.80 88.23 84.64 88.58 82.33 67.70

11 89.45 95.38 95.66 95.25 94.73 91.01 88.03 89.08 87.20

12 75.76 92.14 92.93 94.09 91.76 89.96 87.92 66.25 69.75

13 99.58 99.58 99.58 100 100 100 100 100 100

14 96.25 98.26 99.09 99.22 98.64 100 98.84 98.73 100

15 65.44 86.26 97.43 97.19 89.91 87.19 78.57 78.57 78.63

16 83.76 95.06 98.82 97.88 98.00 98.00 97.88 97.88 97.88

OA 87.69 94.48 96.09 95.48 93.81 91.38 90.51 88.71 83.04

AA 83.10 93.53 96.42 94.38 87.28 82.35 78.79 77.99 73.83

K 85.95 93.71 95.55 94.86 92.95 90.19 89.20 87.15 80.70

If the results in the Table A.2 are examined, the accuracy results of the region

scales 5×5, 7×7 and 9×9 are considerably higher than the results of the other

scales. Therefore, these scales should be selected to achieve high classification

accuracy results. The results at 15×15, 17×17 and 19×19 scales are not very

satisfactory because in some classes (7, 9) accuracy results are quite low. There-

fore, these scales should be eliminated. There are only two remaining scales,

which are 3×3 and 11×11. In the Indian Pines data set, the number of samples
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in the classes 7 and 9 is low, so scales with satisfactory accuracy results should

be selected in these classes. A value of 90.87 is obtained for class 7 in the 3×3

region scale. Also, satisfactory results are mostly observed in the other classes.

Therefore, this scale should be included. For the 11×11 scale, very good accuracy

results are observed in the classes other than class 7. So, this scale should be

chosen. As a result, 3×3, 5×5, 7×7, 9×9 and 11×11 region scales are selected

for the Indian Pines data set.
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