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ABSTRACT 

GENETIC ALGORITHM BASED OPTIMIZATION OF A RENEWABLE 

POWER PRODUCTION PROCESS 

KURT, Ömer Faruk 

M.Sc. in Mechanical Engineering 

Supervisor:  Assist. Prof. Dr. Ayşegül ABUŞOĞLU 

February 2019, 70 pages 

In this thesis, a genetic algorithm based thermodynamic optimization of biogas-

powered cogeneration system which is active in GASKİ WWTP is presented. In this 

aim, our self-adaptive codes will be developed by using Matlab software. 

Cogeneration system produces 1000 kW electricity and supplies heat for anaerobic 

digestion. The objective of optimization is selected as exergy efficiency of the 

overall system and also exergy efficiencies of other components are optimized. 

Optimization variables are selected as air-fuel mixture ratio, the pressure of air-fuel 

mixture at the inlet of the gas engine and temperature of jacket cooling water at the 

outlet of the gas engine. Optimization is applied by using elitism and roulette wheel, 

separately. Gas engine exergy efficiency is determined by taking into account only 

the fuel input and power generation for the first approach, and by taking into account 

the addition of thermal effects to the first approach for the second approach. Exergy 

efficiency of the gas engine for 1
st
 and 2

nd
 approaches are found as 23.5% and 45.1% 

in elitism method and 26.7% and 46.7% in the roulette wheel method. Exergy 

efficiency of exhaust gas heat exchanger is determined 46.5% in elitism and 43% in 

roulette wheel. Exergy efficiencies of heat exchanger-1 and heat exchanger-2 are 

found to be 59% and 56% in elitism and 58.2% and 56.5% in roulette wheel, 

respectively. Overall exergy efficiency of the system is determined 33.2% in elitism 

and 33.5% in roulette wheel. 

Key words: Thermodynamic optimization, Biogas Engine Powered Cogeneration 

System, Genetic Algorithm. 



 

 

ÖZET 

BİR YENİLENEBİLİR GÜÇ ÜRETİM SİSTEMİNİN GENETİK 

ALGORİTMA YÖNTEMİ İLE OPTİMİZASYONU 

KURT, Ömer Faruk 

Yüksek Lisans Tezi, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Ayşegül ABUŞOĞLU 

Şubat 2019, 70 sayfa 

Bu tezde Gaziantep Atık Su Arıtma Tesisinde çalışmakta olan biyogaz motorlu bir 

kojenerasyon sisteminin genetik algoritma temelli termodinamik optimizasyonu 

sunulmaktadır. Bu amaçla, Matlab programı kullanılarak kendi sistem kodlarımız 

geliştirilecektir. Kojenerasyon sistemi 1000 kW elektrik üretmekte ve havasız 

çürütme tankına ısı sağlamaktadır. Optimizasyon amacı olarak sistemin ekserji 

verimliliği seçilmiş ve sistem bileşenlerinin ekserji verimi optimize edilmiştir. 

Optimizasyon değişkenleri hava-yakıt karışım oranı, motor girişindeki hava-yakıt 

karışım basıncı ve motor soğutma suyunun motor çıkış sıcaklığı olarak seçilmiştir. 

Optimizasyonda elitlik ve rulet çarkı seçilim yöntemleri ayrı ayrı uygulanmıştır. Gaz 

motoru ekserji verimi, birinci yaklaşım için sadece yakıt girişi ve güç üretimi göz 

önüne alınarak, ikinci yaklaşım için ise birinci yaklaşıma ısıl etkilerin eklenmesi göz 

önüne alınarak belirlenmiştir. Gaz motorunun 1. ve 2. yaklaşıma göre ekserji 

verimleri elitlik yöntemiyle sırasıyla %23.5 ve %45.1 ve rulet çarkı yöntemiyle 

%26.7 ve %46.7 olarak bulunmuştur. Egzoz gazı ısı değiştiricisi ekserji verimi elitlik 

yöntemiyle %46.5 ve rulet çarkı yöntemiyle %43 olarak belirlenmiştir. Elitlik 

yöntemi ile 1 ve 2 numaralı ısı değiştiricilerinin ekserji verimleri sırasıyla %59 ve 

%56, rulet çarkı yönteminde %58.2 ve %56.5 olarak belirlenmiştir. Sistemin toplam 

ekserji verimi ise elitlik yöntemi ile %33.2 ve rulet çarkı yöntemiyle %33.5 olarak 

bulunmuştur. 

Anahtar kelimeler: Termodinamik optimizasyon, Biyogaz Motorlu Kojenerasyon 

Sistemi, Genetik algoritma. 



 

 

 

 

 

 

 

 

 

 

 

The selection between the man who observed the water level and predicted that it 

would be drought when he was thrown into the pit, and people who throw off him 

into the pit, is an important story of human change. 

Ömer Faruk Kurt  
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CHAPTER 1 

 

INTRODUCTION 

  

Human history is full of desire to be perfect in all behaviors. This fact is always 

controlled and determined by conscious. There is the same phenomenon in 

engineering which is important in engineering applications and named optimization. 

Increasing in the population of people in the early 19 century, inflation of 

requirement of people and investments of states to the war technology created a huge 

problem, energy.  New energy production methodologies are developed and 

especially there are huge improvements in renewable energy. Solar energy, hydro 

energy and also biogas energy is used for production. However, the efficiency of 

these systems was small and producing of energy is required a huge amount of 

money and a huge amount of fuel. Because there was an entropy and scientist started 

to fight with this problem. Also development in physics and thermodynamic created 

an extra requirement of energy. Eliminating these problems was studied as 

optimization, and several optimization methods were used such calculus-based 

optimizations, numerical optimizations, and line optimizations. These developed 

optimization methodologies were deficient and they had a high probability of finding 

local optimum point. 

Lack of old optimization method caused the discovery of a new optimization method 

which named Genetic Algorithm, in 1970. John Holand discovered the analogy 

between numbers and biological elements. This new method changed the 

development of optimization phenomena and the face of optimization studies 

focused on genetic algorithm, due to its usefulness for complex systems such, 

energy, transformation, computer science, physics etc. 
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Purpose of this study is that develop self-adaptive codes in Matlab software for 

optimization of biogas engine powered cogeneration system which operated in 

GASKİ WWTP in Gaziantep city. The reliability of the genetic algorithm is analyzed 

in this study and also requirements of optimization for energy systems are analyzed. 

We developed all codes in Matlab by using matrix properties of Matlab. 

This study starts with a literature survey about the optimization of energy systems 

and the development of optimization in genetic algorithm searches in Chapter 2. 

Description of the genetic algorithm and steps of the algorithm are explained in 

Chapter 3. Thermodynamic equations and parameters of the system are written in 

Chapter 4. The conclusion of this thesis is in Chapter 5. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1 Introduction 

Cost and efficiency of engineering applications, especially energy applications, lead 

to developing systems according to cost-effective cases or optimum production cases 

[1]. Because of that, optimization of systems and components, scheduling of systems 

or distribution of production became a significant point of development. 

Instead of classical optimization methods such analytical and numerical 

optimization, genetic algorithm (GA) optimization method is developed and its 

ability of usefulness and its property of easy in solving the optimization problems 

GA is shining at the top of optimization methods. The first idea about GA was 

mentioned by Holland in 1970. New approaches and different views are produced 

after decade such ant colony optimization ACO and particle swarm optimization [2]. 

Recently, non-dominate sorting genetic algorithm (NSGA-I and NSGA-II), tabu 

search (TS), multi-objective genetic algorithm (MOGA-I and MOGA-II), the multi-

objective evolutionary algorithm based on decomposition (MOEA/D) are 

implemented for most of systems optimization. 

Literature survey of this study consists that, optimization of biogas plants and 

cogeneration systems, or integrate both of them, which based on genetic algorithm 

and also a different type of GA methods. This chapter occurs from three sub-titles; 

the genetic algorithm for biogas generation and optimization of biogas power plants, 

genetic algorithm for cogeneration and other integrated systems’ optimization, and 

self- adaptive software and using MATLAB. 
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2.2 Genetic Algorithm for Biogas Generation and Optimization of Biogas Power 

Plants 

Life always needs energy for mankind and after nineteenth century this demand 

inflated significantly. After the energy crisis, saving energy and CO2 emission had 

been important [3]. Mankind progressed to use environment materials for eliminating 

this problem such as wood, water etc. which are able to produce motion for making 

life easier. Also, biogas production has more reliability to produce electricity [4]. 

Due to the importance of biogas production, several methods of optimization were 

implemented and more of them found useful. 

Computational solutions have a lot of constraints, for instance, the probability of 

finding a local optimum point and consuming much more time are two important 

constraints [2]. However, there is a different approach to optimize systems by using a 

genetic algorithm, and this section describes the optimization of biogas production 

systems with/without combined other systems’ by using a genetic algorithm 

approach. 

Qdais et al., [5] presented simulation of a biogas plant in Jordan, with Artificial 

Neural Networks (ANN), that used the connection between information which 

consist variables of optimization for genetic algorithm (GA). Requirements of ANN 

utilized from 177 days collected data of plant which included temperature, total 

solid, total volatile solid and pH of the system. Production of ANN used for 

implementation of GA due to variables of an objective function. Biogas production 

increased 6,9% and indicated that using ANN and GA together was useful for 

optimization of biogas power plants. 

Martinez et al., [6] aimed to design a laboratory-scale plant for bio-digestion by 

using genetic algorithm methodology as a first step and gradient descend algorithm 

as the second step. Error values and percentages of differences between 

computational analyzes were discussed. 

Kim and Yoo [7] proposed a multi-loops multi-objectives controller (ML-MOC) to 

decrease the operational cost of the WWTPs, increase the biogas production and 

improve nitrogen removal efficiency. Single-loop controllers were employed in 

benchmark model no.2 (BSM2) simulation, then single-loop controllers 
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integratedinto one by MOGA, due to solved multi-objective optimization problems 

such biogas production and nitrogen removal efficiency. The result showed that 

using (ML-MOC) increased the nitrogen removal efficiency and biogas production 

by 3,6% and 3,9%, respectively. 

Barik and Murrugan [8] aimed to determine the biogas production from Kajarna or 

mixed with cattle dung under different anaerobic conditions. Finding the biogas 

production under different conditions also searched and compared with experimental 

results. For optimization of the system used integrated ANN and GA method by 

using MATLAB toolbox and SIMULING 8.0. ANN results mapped the system for 

optimization selection for GA because of solving multi-objective optimization. 

Lee et al., [9] analyzed the combustion of biogas/syngas mixtures with using GA and 

compared old methods which predicted species and reactions of biogas combustion 

such Aramco1.3 and 290Rxn mechanisms, versus GA. Simulation of the system 

implemented with CANTERA that used numerical simulation. Optimal extraction of 

biogas mixture searched with different methods that used a computational solution of 

a problem, however, any solutions of them wasn’t able to use parallel search except 

GA. Comparison of these different approaches showed that GA found the optimal 

mechanism at the 1349th generation and contains 277 reactions and 71 species 

instead of 2067 reactions and 325 species which found by Aramco1.3. 

Kana et al., [10] proposed to design and optimization of biogas plant by using an 

artificial neural network (ANN) and genetic algorithm (GA) methods. Twenty-five 

biogas fermentations’ data was used to train of ANN that produced an objective 

function for applying of GA. An ANN adapted by using Neuro-solution software 

with a topology of 5-2-1 and for adaptation of GA, Pro-optimizer software was used. 

The technique of that study was that author used twenty-five data for learning of 

ANN and produced an objective function then used it with GA for a solution the 

optimization problem. 

Huang et al., [11] aimed to design and optimize anaerobic digestion which, produce 

biogas. He used hybrid algorithm approach ANN-GA and also NSGA-II for 

comparing these two algorithm methods. Objective functions of the optimization 

were chemical oxygen demand (COD) and biogas flow rate. ANN-GA procedure 

was applied in MATLAB 7.0. The learning rate of the neural network was selected 
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as 0,01 and the error goal was 0,05 and for GA probabilities of cross-over was 0,3 

and mutation rate was 0,09. The results of the comparison between ANN-GA and 

NSGA-II showed that ANN-GA was more useful and forced method. 

Li et al., [12] analyzed the optimization of landfill gas production by using ensemble-

based optimization (EnOpt), however, EnOpt cannot solve non-linear constraint 

optimization problems. A genetic algorithm was used to solve the problem due to do 

not include any constraints. Results showed that the conjugate gradient method 

(CGEnOpt) and GA approach for simulation and optimization were more powerful 

and useful for landfill systems. 

Vertaguer et al., [13] presented a new methodology for optimizing AnD co-digestion 

system by using Ant Colony Optimization that developed from an idea of ants 

behavior. He aimed to optimize the system with the objective of maximizing biogas 

generation and ACO algorithm was programmed on Java software and the initial 

input and constant were given in the article. Two scenarios were tried and scenario 1 

found better to implement for biogas production. 

Dumont et al., [14] investigated the effects of using waste heat from the biogas 

power plant by using Organic Rankine Cycle (ORC). Improving different cycles and 

different type of expanders are the main aim of this work. Thermo-economic 

optimization of ORC is applied by using GA with respecting technical and 

thermodynamic constraints. 

Yağlı et al., [15] presented to optimize and compare subcritical and supercritical 

ORC that use exhaust gases of two biogas fueled CHP engines. Influence of turbine 

inlet temperature and turbine inlet pressure on performance parameters as net power 

production, mass flow rate, pumps total power consumption, total exergy inlet rate of 

the evaporator, thermal efficiency, and exergy efficiency are analyzed and 

performance comparison of the subcritical and supercritical ORC is evaluated. 

Differences of turbine inlet temperature and pressure in subcritical and supercritical 

cases are analyzed and compared. 

Park et al., [16] analyzed the performance of biogas-fueled spark ignition engine and 

emission characteristics by using different methods. Analysis of system continued 

according to optimization of maximum brake torque (MBT) and variables are 
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selected boost pressures, relative air-fuel ratio, spark timing, and biogas composition. 

After several experiments, under low boost pressure, extra H2 is transferred into the 

system for analyzing the emission effect with performance optimization. 

2.3 Genetic Algorithm for Cogeneration and Other Integrated Systems’ 

Optimization 

Energy generation systems contain more complex components, because of having a 

lot of variable for optimization systems. Computational analysis of these systems 

comes more difficult for engineers. 

Analysis of more component and also multi-objective optimization function have 

been easy and useful thank to a genetic algorithm which applied by Holand in 1960 

[2]. Efficiency, effectiveness, economic and reduced emission optimization of 

cogeneration systems could be made by using parallel search technique, also 

scheduling of systems is possible with using GA.  

Lira-Barragan et al., [17] presented to design cogeneration system which contains 

steam power plant and production of biodiesel with reducing CO2 emission, in 

Mexico. Heat and electricity demand of microalgae utilized from a steam power 

plant. Multi-objective optimization method used to increase the efficiency of a 

cogeneration system with decreasing of CO2 emission. Genetic algorithm (GA) 

optimization used for this system because of the non-linear cogeneration model. 

MATLAB code was developed for GA optimization. The formulation of the system 

included IAPWS-IF97 formulation and objective function applied for optimal value. 

A Pareto front was generated for the entire system. This approach indicated a 

significantly decreasing of CO2 emission for two scenarios. 

Lee at al., [18] aimed to analyze combined wastewater treatment plant (WWTP) and 

CHP system based on a thermos-economic and thermos-environmental view with 

used a type of multi-objective genetic algorithm, named NSGA-II. GA optimization 

compared with initial optimization method which used the analytical solution, the 

result showed that economical cost rate improved by 16,9% and environmental cost 

rate reduced 5,3%. 

Mariajayaprakash et al., [19] analyzed a cogeneration system which was integrated to 

sugar mills, in India, Tamil Nadu. Sugar production systems occurred failures which 
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increase the cost of a component such screw conveyor and drum feeder, so for a 

solution of these failures, Fuzzy Failure Mode and Effect Analysis (Fuzzy FMEA) 

applied with genetic algorithm approach, because of constraints of other methods 

such as FMEA and Taguchi method. Integrated three methods of optimization step 

for that problem applied; firstly selected parameter by Fuzzy FMEA secondly, for 

optimization of parameters Taguchi method implemented and finally, genetic 

algorithm optimization technique applied. A result of optimization showed that 

difficult and many component systems’ optimization required a combined method 

for the approach to the ideal case. 

Alhamad et al., [20] presented to develop a new approach for optimal preventive 

maintenance of a cogeneration system by using genetic algorithm optimization 

methodology in terms of maximizing available units of the system. The system 

contained two stage desalination and generation so optimization implemented for 

both two stages separately. Steps of GA explained and different mutation rates used, 

so maintenance of the two systems found as more as the available number of units. 

Results showed that the genetic algorithm was a powerful method for using complex 

systems or problems. 

Zidan et al., [21] proposed to find optimal design and micro-grid distributed 

generation of combined heat and power (CHP) system by using GA methodology. 

The objective functions of the problem were that minimize the total cost and total gas 

emission. 

Borji et al., [22] aimed firstly to apply thermodynamic simulation of CHP plant 

which contains a downdraft bed gasifier, solid oxide fuel cell, a micro gas turbine, 

and a heat recovery steam generator. Then implemented optimization of the plant by 

using Pareto based multi-objective optimization, with applying of NSGA-II method 

to increase the cooled gas and CHP efficiencies, and total electrical power. By that 

method, optimal combinations of the plant found and most applicable of ones 

selected. 

Chang et al., [23] presented a new approach to solving the economization problem of 

cogeneration system by using hybrid particle swarm optimization (HPSO). Three 

disturbance mechanism, generating capacity adjustment mechanism and economic 

dispatch of the system were analyzed. 
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Amirante and Tamburrano [24] proposed the applicability of small combined cycle 

for combined heat and power generation and optimization of applying gas to gas heat 

exchanger. The optimization methodology included following approximations by 

using modeFRONTIER software and the type of multi-objective genetic algorithms 

which named MOGA-II. 

Shang et al., [25] proposed to design and implement multi-objective optimization, 

named NSGA-II for improving scheduling of store-integrated combined heat and 

power system. Electrical energy storage and thermal energy storage were analyzed. 

Gimelli et al., [26] aimed to develop the potential of cogeneration system which 

contained gas engines and the case study was determined Italian hospitals. Classical 

algorithm and genetic algorithm, MOGA-II, was applied and compared according to 

total primary saving and simple payback period. Pareto optimal solutions were 

implemented and results shared in graphs. 

Gutierez-Arriaga et al., [27] proposed to use waste heat recovery system through 

Organic Rankine Cycle (ORC) and  This study was occurred from two stages first, 

heating and cooling application developed by using waste heat recovery and second, 

optimization of the system implemented by using a genetic algorithm which 

developed for multi-objective optimization. Sequential modular simulation of ORC 

is applied by MATLAB for determined values and optimization objective function of 

a multi-combined system. Then genetic algorithm implemented according to 

simulation. The result of the study showed that the integration of a waste heat 

recovery system decreased the total amount of cost, and using genetic algorithm 

approached the edge of an ideal solution. 

Khaljani et al., [28] proposed a new combined generation cycle which integrated gas 

turbine and ORC through a heat recovery steam generator (HRSG). In that 

cogeneration system exhaust gases fed the HRSG, that applied at 35 bar, and ORC 

cycles. Cogeneration system was optimized by considering the environmental and 

economic impact of the significant parameters such integrated gas turbine and ORC, 

also type of multi-objective optimization approach which named NSGA-II was used. 

Exergy efficiency and total cost rate of the process were analyzed as objective 

functions of NSGA-II. Exergy efficiency increased by 4,8%, total cost decreased 

from 5460$/h to 4751$/h. 



10 

 

Abdelhady et al., [29] presented to develop an optimization for a cogeneration 

system that contained solar energy, fossil fuel, and heat, in Jeddah, Saudi Arabia. 

The main idea of mentioned cogeneration system was that using the energy 

efficiency and satisfy electricity and heat demand of cities. The first step of 

optimization problem solution was hierarchical design approach for implementation 

of steady-state and dynamic calculations, then multi-objective genetic algorithm 

approach was applied to optimize heating load and was generated power of the plant, 

at the same time another objective function optimized input variables such 

temperature, pressure, and flow rate. GA application was provided in MATLAB and 

design parameters were found from thermodynamic analysis of the system. 

Mahmoodabadi et al., [30] proposed a new modification of the CGAM system which 

provides 30MW electricity, by using a combination of genetic algorithm (GA) and 

Particle Swarm Optimization (PSO) approaches. Optimization problem based on two 

objective functions which increasing exergy efficiency and decreasing total cost rate. 

Pareto optimal fronts of optimization were analyzed and discussed. 

Ferreira et al., [31] presented an optimization of micro-gas for cogeneration system 

by using a genetic algorithm which was coded in Java language. GA optimization 

based on six variables, objective function that maximization of annual profit from the 

system and several constraints. Comparison between GA and other types of an 

algorithm such a free-derivative optimization, SQP, and PS, indicated that GA 

optimization was a more useful and available method. 

Hajabdollahi et al., [32] proposed to design a cogeneration system with air pre-heater 

and inlet air cooling system and to optimize the system by using a type of multi-

objective genetic algorithm that named NSGA-II. Thirteen design parameters for 

cogeneration were selected and also include recuperated parameters. Optimization 

method implemented for four plants by using two objective functions, exergy 

efficiency, and total cost rate. Pareto optimal fronts also analyzed and discussed 

according to all results which showed that exergy efficiency was improved by 33% 

and cost rate was improved 36% for a system which just contain air pre-heater, and 

optimum fin parameters discussed. 

Braun et al., [33] aimed to design and optimize combined heat and power (CHP) 

system with using combining of neural network (NN) and evolutionary computation 
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(EC) based on genetic algorithm approach. Several NNs were used to design the 

system and compared with real data for implementation of simulation of an objective 

function. Optimization contained all component of the system such as engines, 

intercoolers, steam condenser, boiler, turbine and slurry drying. A multi-objective 

genetic algorithm optimization methodology was used and the aim of it was that 

improve fuel demand, produced electricity and useful thermal energy. For NN 

implementation multilayer perception model was chosen. Different multi-objective 

methods were analyzed and the result showed that ESPEA algorithm which is a type 

of genetic algorithm, found useful and the most suitable for optimization of complex 

systems. 

Gonzalez et al., [34] presented to optimize a grid-connected system that contains 

CHP and hybrid renewable energy system which consisted of photovoltaic, wind and 

biomass power systems. Multi-objective optimization system based on genetic 

algorithm was used and aimed to improve life-cycle cost and environmental impact 

of the system and developed approach tested at the sample location. Two different 

strategies developed that in winter and in summer days. MATLAB toolbox was used 

for implementation of genetic algorithm coded. The result indicated that the genetic 

algorithm approach improved the life-cycle cost significantly and reduced payback 

time at 9 years. 

Khani et al., [35] proposed to optimize the best-combined conditions for 

cogeneration system which was integrated from a gas turbine (GT) and solid oxide 

fuel cell (SOFC) without direct interaction. Multi-objective genetic algorithm 

methodology was used to develop exergy efficiency and economical design of the 

SOFC-GT system. All component of the system was analyzed and these components 

combined into two objective functions to improve different combining operation 

cases. Two objective functions were produced with using EES software because of 

difficulties of producing an iterative function for the actual case, also MATLAB 

toolbox was used for multi-objective genetic algorithm approach. Final optimal 

design indicated that exergy efficiency raised to 55,11% and unit cost of product 

reduced 170,5$/Gj. 

Ghaebi et al., [36] proposed to optimize combined cooling and power (CCP) cycle 

which integrated from Kalina cycle and ejector refrigeration cycle. He analyzed 
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energy, exergy and exergoeconomic analysis of the system by using EES software 

then solved single and multi-objective optimization of the system with genetic 

algorithm methodology. Results showed that the thermal efficiency of the system 

increased by 4,6% when exergy efficiency was nearly doubled. 

Hajabdollahi and Fu [37] aimed to design a cogeneration system which was 

integrated from SOFC, air pre-heater and inlet air cooling system by using multi-

objective optimization system, NSGA-II. Design parameters were special future of 

all component of the system which was necessary to use in objective functions. Two 

objective functions were selected, exergy efficiency and total cost rate. Finally, they 

applied LINMAP method to normalized objective functions according to the Pareto 

optimal front and shared final optimal values of exergy efficiency and total cost rate 

47,12% and 748,1 $/h consequently. 

Eveloy et al., [38] presented optimization of multi-component cogeneration system 

which contained solid oxide fuel cell-gas turbine (SOFC-GT), organic Rankine cycle 

and seawater reversed osmosis desalination. He used to a multi-objective genetic 

approach which developed in MATLAB toolbox and based on optimization of 

exergy efficiency and minimum cost rate. He shared final result that, the net power 

output of the system developed 2,4 MW, overall exergy efficiency  71,3% and total 

cost rate 0,0256 USD/s. 

2.4 Self Adaptive Software and Using MATLAB 

Genetic algorithm (GA), which based on Darwin’s evolution theory, was found 

reliability for engineering systems. After a decade from discovered of GA, 

computational methodology changed faster and researches look for a new approach 

to the genetic algorithm. Several studies focused on natural behavior and found new 

methodology about GA optimization and the other part of researches aimed to 

develop the efficiency of optimizer with progress on the subsystem of methodology. 

Applying of genetic algorithm by using simulation software or Matrix Laboratory 

(MATLAB) and software for prepared algorithm were mentioned. 

Deb et al., [39] proposed a new method that non-dominated sorting genetic algorithm 

II (NSGA-II) for solving of multi-objective genetic algorithm optimization problems. 

Nine different problems tested and NSGA-II was found better solver except one. 
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Comparisons between other MOEA algorithm methodologies and NSGA-II were 

applied and results showed that the proposed method was a better optimizer for 

multi-objective problems. 

Wichern et al., [40] presented experimental and simulation data from anaerobic 

digestion which contain grass silage analysis. The system calibrated by manually and 

genetic algorithm separately. The genetic algorithm was implemented with self-

adaptive determination by using MATLAB software and compared with manual 

calibrated. Results of comparison showed that objective function improved from 

34,94% to 28,30% with a genetic algorithm. 

Olszewski [41] presented optimization of partially loaded steam multi-turbines by 

using a genetic algorithm for numerical optimization of a constrained problem 

(GENOCOP) which is able to optimize the system with inequality constraints and 

own-developed code used based on C++ for applying GA. Different strategies were 

formulated that four thermodynamics and one economic. The best strategy selected 

case C; energy efficiency maximization, however, the difference between these five 

strategies give other ways to solve problems by multi-objective optimization. 

Kazi et al., [42] presented optimization of cogeneration system for reducing the 

effects of flaring, which used for cancel industrial warning and reduce heat loss from 

flaring by using it as an energy source. Ethylene plant selected for analyzing. 

Optimization problem solved by combining Linear Programming, LP, and genetic 

algorithm, NSGA-II, and MATLAB toolbox was used for the formulation of 

optimization. The Pareto solution of the system presented as power utility and heat 

utility graphs. 

Rajanna and Saini [43] presented to optimize sizing of the integrated renewable 

energy system with combining different renewable energy sources such micro-hydro, 

solar, wind, biomass, and biogas with battery system in Karnataka, India. They used 

GA methodology for optimization and simulation with using self-adaptive coded in 

MATLAB toolbox. They focused on three objective functions that optimal size, net 

present cost, and cost of energy. 

Hammache et al., [44] presented a new approach that for solving multi-objective 

optimization problems, named MOSAHIC which was a self-adaptive mechanism. All 
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steps for this methodology presented and tested it by implemented in CGAM system 

with three objective functions. Results showed that MOSAHIC could implement for 

multi-objective and complex systems. 

Atia et al., [45] proposed optimization of the solar heating system and biogas plant 

by using genetic algorithm methodology. GA applied in MATLAB toolbox and input 

variables were solar irradiance, air temperature, wind speed load demand, solar 

thermal energy, and auxiliary energy. Two m-file functions written and combined 

with MATLAB genetic algorithm toolbox. The objective function of that algorithm 

was the optimal area, so after several generations found 63 m
2
 and solar fraction 

raised 98%. 

Katsigiannis et al., [46] presented using of MATLAB toolbox for simulation and 

optimization of the hybrid power system which was analyzed on a real system which 

located in Chania, Greece, and focused on minimization of cost of production by 

using of genetic algorithm and tabu research (TS). Optimization inputs were selected 

as available components of the system and other parameters such mutation rate, 

chromosome number etc. was given in the paper. The performance of toolbox was 

compared with seven scenarios and sensitivity analyses were implemented.  

Shariatzadeh et al., [47] aimed to design solar chimney which combined with solid 

oxide fuel cell and to optimize the cost of electricity by using genetic algorithm 

approach, in El Paso City in Texas, USA. GA was implemented and coded with 

MATLAB software by using self-adaptive construction of an algorithm. The 

optimization program compared with the real case study and results were given as 

graphs. 

Pirkandi et al., [48] improved self-adaptive codes in MATLAB software for 

optimization of micro-gas turbines which adapted in combined heat and power 

system with using GA methodology. He selected three inputs for optimization such 

compressor pressure ratio, turbine inlet temperature, and air mass flow rate and 

focused on two optimization problems that maximizing exergetic efficiency and net 

power output. Sensitivity analysis for this system according to genetic algorithm 

approximation was determined and results showed that exergetic efficiency increased 

by 3% with GA methodology. 
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Arora et al., [49] implemented MATLAB to simulate thermodynamic analysis of 

Brayton cycle with finite time analysis, then multi-objective genetic algorithm 

optimization approach applied by using NSGA-II and MOEA/D. Design and 

optimization input parameters such isothermal-side effectiveness, sink-side 

effectiveness, regenerator-side effectiveness and working medium temperature were 

selected and for objective functions, power output and thermal efficiency were 

selected. The final optimal case was selected via TOPSIS, LINMAP, and fuzzy 

Bellman-Zadeh, Shannon’s entropy methodologies and Pareto optimal frontiers were 

formed. Results of that study were shared by graphs, according to them 15% rate of 

thermal efficiency was improved. 

Manesh and Ameryan [50] presented to design a solar-hybrid cogeneration system 

that includes the solar tower. They proposed to solve the optimization problem by 

using a genetic algorithm and cuckoo search (CS) which was occurred from the idea 

of cuckoo bird behaviors. Objective functions of optimization were selected as 

exergy efficiency and product cost. Results of GA and CS were compared by using 

MATLAB toolbox and showed that exergy efficiency decreased by 48% and the 

reduction of CO2 was observed. 

Meng and Pan [51] aimed to develop a new genetic algorithm method which named 

Monkey King Evolutionary algorithm, which based on the idea of Monkey King 

Legend of Chinese culture. Several benchmark functions applied and MKE tested 

and application for gasoline consumption of vehicle was given. Results of that 

solution were given in tables and graphs. 

Jafari-Marandi and Smith [52] developed a new approach fluid genetic algorithm 

(FGA) for a genetic algorithm with several differences and approaches. They 

changed FGA based on the chromosome and population diversity. Results showed 

that FGA was better for analyzing of wide range problems. 

Pedroso et al., [53] presented to develop a multi-objective evolutionary algorithm 

with differential evolution approximation and that method develops final population 

by using the migration of some individuals. Steps of the new approach were shared 

and several experiments and comparisons were applied. 
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CHAPTER 3 

 

GENETIC ALGORITHM 

 

3.1 Introduction 

Development in engineering applications caused several problems for engineers 

through the previous century, and the optimization problem was the important one. 

Direct calculus-based optimization methods such as Newton, Fibonacci and Greedy 

methods, are operated as differential and derivation of function which is the objective 

of the system. These methods deal with maximum and minimum points of objective, 

but there were disadvantages of this type of optimization, such calculation of 

complex systems was consumed huge time and it was easy to stop in the local 

optimum point for optimization. Numerical methods of optimization, such as 

dynamic programming, branch-bound and back-tracking, are also weak in finding 

global optimization [60]. 

Deficiencies of these methods, which mentioned above, are lead to discover another 

methodology for search technique. Holand and his colleagues discovered a new way 

to solve optimization problems, in 1970. This technique is a combination of two 

fundamental branches of science, mathematics, and biology, and it named Genetic 

Algorithm [61]. GA is stochastic search technique and it does not deal with a type of 

problem. So the problem could be natural, physical, psychological etc. because in 

this method a user only needs fitness function and variables. Objective function 

could be linear, exponential, trigonometric etc. Due to the parallel search of GA, all 

possible combinations of objective function could be found and tried [62]. Type of 

objective function is not important for a genetic algorithm, so it can be discrete, 

continuous, multimodal etc. because of GA searches in all area of solutions. The 

difference between GA and other methods is shown in Figure 3.1.  
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In this chapter we will describe genetic algorithm principle, natural selection, and 

crossover and mutation steps of algorithm. 

3.2 Fundamental Elements of Genetic Algorithms 

Falling of the rock from hill may be caused the first idea of moving easily when it 

had seen by mankind. By the way, improving the shape of the rock as a circular is 

optimization of a wheel, even all vehicles use wheel according to that idea. Transfer 

of information from one generation to another caused the new development of wheel 

technology. On the other hand, populations which did not see the moving of rock, 

may not move fast and they may not reach the water or comfortable places. So, it 

could be caused disadvantages even being destroyed all population. Similarly, a 

human cell contains chromosomes and genes which determine the physical and 

sentimental properties of a person, so unused gene will disappear or it will be passive 

in a body.  

Fundamental of GA comes from the evolution theory of Charles Darwin (1859), 

which presents the natural selection phenomenon of nature. GA methodology is 

similar to the evolution theory of nature, so GA used population, mutation and 

crossover steps of evaluation [60]. Basic flow diagram of GA is shown in Figure 3.2. 

 

Figure 3.1 Difference between old optimization methods and GA. 

Random Selected values 

Local optimum 

(a) (b) 
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GA designs objective’s results and tries to improve results according to maximum or 

minimum. According to Figure 3.1, the creation of a new population is a random 

process and this step is applied for a variation of each chromosome. There are two 

types of the algorithm in GA, the first one is binary coded and second one is 

continuous coded GA. Fundamental elements of GA will be explained below in 

continuous one. 

3.2.1 Genes 

The smallest unit of GA is the gene, and each gene represents the variables in an 

objective function similar to the human body. Changing in genes caused all changing 

in results, so all variations in optimization are operated on genes. Schematic view of 

the gene is shown in Figure 3.3. 

 

 

Yes 

Create initial population 

Find objective values of 

each chromosome 

Selection (elitism, roulette 

or tournament) 

Mating 

Mutation  

Check 

Done   

No 

g N T X 

Figure 3.2 Flow diagram of the genetic algorithm. 

Figure 3.3 Schematic explanation of genes. 
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Genes could be any variable in the objective function, such as temperature, pressure, 

distance, and mass etc. and each individual gene is created as randomly according to 

constraints [2]. 

3.2.2 Chromosome 

Combination of genes in the objective function creates a chromosome, that each 

result is produced by chromosome as shown in Figure 3.4. By the way, in the first 

generation, all chromosomes are created randomly. Evaluation of objective functions 

is applied by using chromosomes. In GA, chromosomes are commonly named 

parents of new generations [2]. 

Using a chromosome as a component of GA is the result of the idea of using 

programming easily. Because user could move some part of a chromosome or part of 

the population in another step, it is a useful effect for an algorithm, due to the 

decreasing number of indices.  

 

 

 

3.2.3 Population 

Population phenomenon of the GA determines the variety of objective function 

according to randomly created genes, as shown in Figure 3.5. Chromosomes produce 

the population or chromosome pool for selecting operation and also mutation step.  

Chromosome(1) g11 g12 g1n g14 

 

g13 

g21 g22 g2n g24 

 

g23 

g31 g32 g3n g34 

 

g33 

gm1 gm2 gmn gm4 

 

gm3 

Chromosome(1) 

Chromosome(1) 

Chromosome(1) 

Figure 3.4 Schematic view of chromosomes in population. 
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Control of population size lead the idea of natural selection, and at the end of all 

iterations, the size of the population must be conserved [2].  

 

 

 

3.3 Selection 

Next step after the creation of population is finding objective values of each 

chromosome according to Figure 3.1, but it is common in all optimization systems 

that inserting numerical values into the objective function, so it is not required to 

mention in a new section. In addition, explanation of finding objective values of each 

chromosome is shown in Figure 3.5. 

Selection step is followed the finding objective values of each chromosome and in 

this step separation of objective values is operated to the chromosomes. We know 

that the age of population or age of any living changes with the adaptation of nature. 

For instance, when a ship is sinking the people which do not know to swim or fly 

will die, due to selection law of nature. Natural events always set parameters 

according to selection's law, such birds had changed their altitude according to 

finding the probability of food in the surface of the earth, and some birds changed 

their speed for escaping from other hunter birds [62]. 

 

 

Obj(1)= f(chromosome(1))=(      ) 

Obj(1)= f(chromosome(1))=(      ) 

Obj(1)= f(chromosome(1))=(      ) 

Obj(1)= f(chromosome(1))=(      ) g11 g12 g1n g13 

g21 g22 g2n g23 

g31 g32 g3n g33 

gm1 gm2 gmn gm3 

Figure 3.5 Representation of population in GA. 
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Selection is the main step in GA and the most important variation is produced in 

here. In GA, there are several selection methods, but in this section, we will explain 

four types of selection. 

3.3.1 Elitism Selection 

Elitism is the simplest method of selection that the best chromosomes selects and 

transfers to the new population before crossover. In this step, finding the best 

objectives is applied by using the suitability factor of each chromosome, as:  

𝑆𝑖 =
𝑂𝑖

∑ 𝑂𝑖
𝑛
1

  (3.1) 

Objective value of the i
th

 chromosome is notated 𝑂𝑖 and 𝑆𝑖 is the suitability factor of 

the i
th

 chromosome. Suitability factor is also the density of chromosome in objective 

pool and probability of selection of chromosome. In elitism method, half of 

population is selected according to suitability factor and remains chromosomes are 

destroyed [2]. 

 

Table 3.1 Basic elitism selection method for GA. 

Chromosomes Objective results, Oi Suitability/Probability, Si 

Chromosome-1 2,5 0.125 

Chromosome-2 7 0.35 

Chromosome-3 4 0.2 

Chromosome-4 6.5 0.325 

∑ 𝑂𝑖
𝑛
1   20 1 

 

Objective function sometimes could be as finding the minimum point of the state, for 

instance, cost, pollution etc. In the case of this kind of objective functions probability 

values must be reversed, because the probability of selection of small chromosomes 

must be bigger, however in Table 3.1 maximum point is searched. Last column of 

Table 3.1 we can observe that chromosome-2 and chromosome-4 must be selected 

because in this population these two chromosomes are more suitable according to an 

objective function. The number of members in population is decreased as half of the 



22 

 

initial population, due to the law of conservation of population density, in crossover 

step, the number of members is raised as the original population’s density. 

3.3.2 Roulette Wheel Selection 

Natural selection also uses the information of missing members of the population, 

because experiences are commonly transferred to the new generation and it improves 

the different ways of being in life. Similarly, in GA poor chromosomes could be 

selected for using experiences of it.  The roulette wheel is a selection type which 

using the method of random selection [2]. Explanation of the roulette wheel is shown 

in Table 3.2. 

 

Table 3.2 Basic roulette wheel selection method. 

Chromosomes Objective results, Oi Suitability/Probability, Si 
Cumulative 

Probability 

Chromosome-1 2,5 0.125 0.125 

Chromosome-2 7 0.35 0.475 

Chromosome-3 4 0.2 0.675 

Chromosome-4 6.5 0.325 1 

∑ 𝑂𝑖
𝑛
1   20 1  

 

Cumulative probability indicates the portion of cake and cake is simulated as a 

population. Value of randomly selected number is located on the cake, and by 

following from start to finish at the angular path, the first number which is bigger 

than random number is selected as a new population member. A random number is 

selected between 0 and 1, due to probability values are in the same range. 

According to Table 3.2, when a random number is between 0-0,125 chromosome-1 

will be selected or between 0.675-1 chromosome-4 will be selected. Easily we can 

say that the bigger range is selected as a new population member. 

3.3.3 Random Selection 

Random selection is a selection by using a random process. The algorithm creates 

random integer numbers and these created numbers explain the number of 

chromosome in population. This method provides diversity but this method is not 
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correct in GA due to finding a global optimum point. Because randomly selected 

numbers could be caused selection of low probable chromosomes [60]. 

3.3.4 Rank Selection 

Rank selection is a different method of random selection. It is a tournament of two 

randomly selected chromosomes. In this selection method, there is a selection of 

constant P. According to Table 3.1, consider randomly selected chromosomes are 

chromosome-2 and chromosome-4, and randomly selected number, W, is selected as 

0.4 [60]. 

 If W< P, the first chromosome is selected. 

 If W>P, the second individual chromosome is selected. 

There are many ways for rank selection and the most useful one is explained above. 

This type of selection is the mixing of elitism and roulette wheel and in a big 

difference of objective results rank selection could be used. 

3.4 Crossover 

Reproduction is a critical activity for every living because a transfer of physical and 

sentimental properties of parents is transferred to the next generation by using 

crossover chromosomes. First reproduction experiment is applied by Mendel in 

1866. He crossed two different peas and produced a new different member. Using 

this basic reproduction mechanism in algorithm increases the variety of population 

[60]. Crossover is a big advantage for GA because a user could preview the 

important parameters and direct the changes by using crossover points.  

Selection step is weak in diversity, but the most important objective of GA is 

producing results in more variety. Crossover is basically the production of new 

members of the population by using changing genes between two selected 

chromosomes, which named parent, and each parent produces two new 

chromosomes [60]. The basic idea of crossover is shown in Figure 3.6. Two types of 

crossover are used commonly, single point and double point crossover. In single 

point crossover, a random integer number is selected and genes of the chromosome 

after that point are cut off and transferred to a new chromosome [11]. In the double 

point chromosome, two random numbers are selected and genes between these points 

are transferred to the new chromosome as shown in Figure 3.6 and Figure 3.7. 
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Crossover rate is used in this process, that shows the rate of crossover of a 

population, and it is selected between 0.85 and 0.95 [2]. 

 

Parent-1 and Parent-2 are two chromosomes from the population after natural 

selection. When random numerator selects crossover point as 2, first two genes of 

parent-1 ( g11 and g12) are selected as first two genes of offspring-1 and last two 

genes of parent-2 (g23 and g24) are selected as last two genes of offspring-1. Also, 

the same method is applied for offspring-2 that first two genes of parent-2 (g21 and 

g22) are selected as first two genes of offspring-2 and last two genes of parent-1 (g13 

and g14) are selected as last two genes of offspring-2 [62].  

 

 

Crossover Points 

g11 g12 g14 g13 g21 g22 g24 g23 

Parent-1 Parent-2 

g11 g12 g21 g22 

Offspring-1 Offspring-2 

g24 g13 g14 g23 

Crossover Point 

g11 g12 g14 g13 g21 g22 g24 g23 

Parent-1 Parent-2 

g11 g12 g21 g22 

Offspring-1 Offspring-2 

g14 g13 g24 g23 

Figure 3.6 Single point crossover in GA. 

Figure 3.7 Crossover in double point method in GA. 
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Double point crossover contains two crossover points, and genes between these two 

points are exchanged for the creation of new members. This method is good for 

focusing on determined variables in an algorithm. One can control these points and 

create diversities for important variables. 

3.5 Mutation 

The final step in providing diversity in genetic algorithms is the process of mutation. 

The sudden and big change of environmental conditions in nature can lead to 

mutation and even destruction of species. However, this destruction and mutation 

could create a new species with different life in nature. Mutation can affect much of 

a chromosome or it can only affect a shy gene [63]. 

Mutation process is applied by using random generator in GA, that random matrix, 

with the size of population matrix, is produced between the range of 0 and 1, and 

each element of mutation matrix compared with the mutation rate, the element, 

which smaller than mutation rate, is selected as changeable gene in the population 

matrix, as shown in Figure 3.8. 

 

 

 

According to Figure 3.8, red circle in mutation matrix shows the value of an element 

which small than mutation rate, as selected 0.4, and red circle in the chromosome 

matrix indicates the element which will be changed. 

0.55 0.62 0.35 0.77 0.42 

10 1.2 7 0.2 0.9 

10 1.2 7.2 0.2 0.9 

Mutation matrix 

Chromosome-n (before) 

Chromosome-n (before) 

Figure 3.8 Mutation process in the chromosome. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

Optimization of BEPC requires equations that connect each part of system and 

learning behavior of a system for making true approximations and defining 

constraints, so by using thermodynamic analysis connection between all parts of the 

system is achieved. By the way, exergy basis analysis is a more effective 

methodology to measure useful energy, and efficiencies of all parts of the system 

could be meaning by using it.  

In this section, the analysis which required for optimization will apply and equations 

will be determined for transfer into the Matlab software. As we know, the most 

important part of optimization is the selection of variables. By the way, exergy 

analysis often used in engineering applications due to the simplicity in the selection 

of variables and clear view in available part of energy [54]. In this part description of 

the system will be mentioned and exergy relations of all component of BEPC will be 

explained separately for understanding the importance of each variable. Genetic 

algorithm of BEPC system, which is the fundamental aim of this study, will be 

applied by using our self-adaptive codes in Matlab Software and methodology of 

using genetic algorithm and content of it will be explained. Results of optimization 

will be shared by using diagrams and for each diagram there will be an analysis of 

component and variable.  

This part contains the description of biogas engine powered cogeneration system and 

its schematic diagram, thermodynamic analysis of biogas engine and other 

components, exergy relations of all components, optimization of BEPC, results and 

discussions.
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4.2 Description of Biogas Engine Powered Cogeneration System 

Biogas consumption of the system obtains from anaerobic digestion which operating 

in the GASKİ WWTP and methane rate of biogas is 61% for that system. Electricity 

production of biogas engine is 1000 kWh and annual energy production is 8.76 

GWh. The system contains five heat exchangers, air-fuel mixing tank, lubricating 

tank, turbocharger, desulphurization unit, generator, and biogas engine. The system 

includes five fluids such, lubricating oil, water in digestion loop, water in engine 

cooling loop, water in the air-fuel cooling loop, and air-fuel in engine and 

turbocharger loops. Schematic view of the system is shown in Figure 4.1. 

Biogas composition’s sulfur level must be at the legal rate and also it causes 

corrosion in the cylinder wall [55], because of these reasons biogas pass through 

desulphurization unit before mixing with air. Air-fuel mixing is transferred to the 

turbocharger for pressurized before intake in the engine. Turbocharger contains a 

compressor which powered by a turbine and also turbine obtains energy from engine 

exhaust gases. Pressurized air-fuel mixing is transferred to the engine but 

pressurization also raises the temperature of the fluid and high temperature in the 

entrance of the engine is a disadvantage because high-temperature fluid flames up 

before time and that problem reduces the engine efficiency. To eliminate that effect 

intercooler is established as cools the mixing temperature between a turbocharger 

and engine intake. Air-fuel mixing passes trough intercooler unit and gets into the 

engine as reduced temperature fuel. Exhaust gases after leaving the turbine to get 

into the exhaust gas heat exchanger (EGHE) to transfer heat to the water that 

circulates through the digestion loop. 

Engine temperature must be reduced because of flaming beforetime and strength of 

engine’s equipment. Due to that, water circulates in the closed loop through engine 

jacket and transfers heat to the water which circulates in the digestion cycle 

according to heat exchanger (HE1) and after that, engine cooling water passes 

through lubrication oil heat exchanger (LOHE) to reduce the temperature of oil 

which circulates in closed loop for cooling the engine and lubricate components. 

Before engine cooling water enters the engine again it enters heat exchanger (HE2) 

which transfers heat from intercooler fluid to the engine cooling water. 
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Figure 4.1 Biogas Engine Powered Cogeneration System. 
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4.3 Gas Engine Operating and Thermodynamic Analysis 

4.3.1 Gas Engine Operating and Performance Characteristic 

Biogas engine that used in BEPC system is a DEUTZ TCG2020 V12K that is a dual 

cycle, four stroke and 12 cylinders with V configuration. Dimensions of a gas engine 

are known as a design data for analysis such the cylinder bore is 170 mm, stroke is 

195 mm and the engine speed is 1500 rpm. These given data could help to calculate 

other performance, characteristic and thermodynamic parameters. 

The crank offset value is calculated as: 

𝑎 = 𝑆/2  (4.1) 

Here S is stroke dimension. Average piston speed is also defined as: 

𝑈𝑝 = 2𝑆𝑁  (4.2) 

Piston speed is notated as N and generally given in RPM (revolutions per minute), Up 

in m/sec. The maximum average piston speed for all engines will normally be in the 

range of 5 to 20 m/sec [56]. 

Displacement volume is calculated classical volume formulation for one cylinder: 

𝑉𝑑 =
𝜋

4
𝐵2𝑆  (4.3) 

Where B is bore of the cylinder. Engine volume is calculated as multiplying Vd by a 

number of cylinders Nc is: 

𝑉𝑑 =
𝜋

4
𝐵2𝑆𝑁𝑐 (4.4) 

Displacement volume means the volume of piston travels from bottom dead center 

(BDC) to the top dead center (TDC): 

𝑉𝑑 = 𝑉𝐵𝐷𝐶 − 𝑉𝑇𝐷𝐶  (4.5) 

Minimum cylinder volume that notated by Vc is important for thermodynamic 

analysis and it is related to distance volume as: 

𝑉𝑐 = 𝑉𝑇𝐷𝐶 = 𝑉𝐵𝐷𝐶 − 𝑉𝑑  (4.6) 

Compression ratio is expressed as: 
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𝑟𝑐 =
𝑉𝐵𝐷𝐶

𝑉𝑇𝐷𝐶
=

𝑉𝑐+𝑉𝑑

𝑉𝑐
  (4.7) 

Compression ratio leads to the improvement of engine technology because of its 

effect on efficiency, so bigger compression ratio causes bigger efficiency [56]. 

Some relation between work, pressure, and efficiencies will be given and 

thermodynamic analysis will be written state by state. Firstly, we have a general form 

of work: 

𝑊 = ∫ 𝐹 𝑑𝑥 = ∫ 𝑃 𝐴𝑝𝑑𝑥  (4.8) 

Force (F) is converted to work when applied through a distance (dx) or pressure (P) 

in the piston with piston area (Ap) will also give work.  

𝐴𝑝𝑑𝑥 = 𝑑𝑉  (4.9) 

So work done can be written: 

𝑊 = ∫ 𝑃 𝑑𝑉  (4.10) 

Notation of specific work and w specific volume v by using volume and work per 

unit mass are given: 

𝑤 =
𝑊

𝑚
 ,        𝑣 =

𝑉

𝑚
 

So specific work done relation is: 

𝑤 = ∫ 𝑃 𝑑𝑣 (4.11) 

This representation is called indicated work wi, but we know that there is 

irreversibility in all systems and it reduces indicated work. Work which converted as 

a shaft work is called break work wb [56]. The relation between indicated and break 

work is: 

𝑤𝑏 = 𝑤𝑖 − 𝑤𝑡  (4.12) 

Mechanical efficiency is represented as: 

ƞ𝑚 =
𝑤𝑏

𝑤𝑖
  (4.13) 
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The pressure in the cylinder is changing during a cycle and we need average pressure 

or mean effective pressure (mep) that represented as: 

𝑚𝑒𝑝 = 𝑤/∆𝑣  (4.14) 

∆𝑣 = 𝑣𝐵𝐷𝐶 − 𝑣𝑇𝐷𝐶   (4.15) 

Mean effective pressure is an important parameter to compare engine for design. 

Different type of mean effective pressure can be used by using different work terms 

[56]. Break mean effective pressure (bmep) is defined by using break work and 

indicated mean effective pressure (imep) is defined by using indicated work. 

𝑏𝑚𝑒𝑝 = 𝑤𝑏/∆𝑣  (4.16) 

𝑖𝑚𝑒𝑝 = 𝑤𝑖/∆𝑣  (4.17) 

Maximum values of bmep for naturally aspired spark ignition engines (SI) are 

between 850 to 1050 kPa, for naturally aspired compression ignition (CI) engines are 

between 700 to 900 kPa and for turbocharger CI engines are between 1000 to 1200 

kPa [56]. 

There is another parameter of work that represents the ability to do work is called 

Torque τ and its relation with work for a four-stroke engine is represented as [56]: 

𝜏 =
𝑊𝑏

2𝜋
=

(𝑏𝑚𝑒𝑝)𝑉𝑑

4𝜋
  (4.18) 

CI engines generally have greater torque than SI engines and large engines have very 

large torque values. 

Power is also used for comparison and analysis of engine efficiency and both power 

and work are functions of engine speed. 

𝑊̇ =
𝑊𝑁

𝑛
  (4.19) 

𝑊̇ = 2𝜋𝑁𝜏  (4.20) 

Where n is a number of revolution per cycle and N is the speed of the engine. Engine 

speed is a characteristic parameter that, increasing engine speed increases the power 

and also increases the torque or vice versa. However, engine speed must be in the 

specific range because of friction loses [56].  
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Hydrocarbon fuel required oxygen for a chemical reaction in the engine and 

consumption of oxygen must be determined and used in the analysis because of the 

importance of it. Air-fuel ratio relation (AF) describes as: 

𝐴𝐹 =
𝑚𝑎

𝑚𝑓
=

𝑚̇𝑎

𝑚̇𝑓
  (4.21) 

Engine speed is related with time and engines combustion time is greatly shortened, 

because of that reason all of the fuel in the combustion chamber doesn’t burn and 

some little of fuel exist with the exhaust flow. The parameter which describes that 

effect of fuel combustion is called combustion efficiency and notated as ƞc. 

Typically, engines have combustion efficiency in the range of 0.95 to 0.98 [56]. 

According to the first law of thermodynamics all thermal conversion devices have 

thermal efficiency as: 

ƞ𝑡 = 𝑊̇𝑛𝑒𝑡/𝑄̇𝑖𝑛  (4.22) 

Heat addition in the system is given as: 

𝑄̇𝑖𝑛 = 𝑚̇𝑓𝑄𝐻𝑉ƞ𝑐  (4.23) 

Another performance parameter of the engine is volumetric efficiency ƞc. Amount of 

air intake the system means the amount of fuel addition. More oxygen means more 

fuel. This parameter affects the power output from the system and input energy to the 

system. Volumetric efficiency expressed as: 

ƞ𝑣 = 𝑛𝑚̇𝑎/𝜌𝑎𝑉𝑑𝑁  (4.24) 

Where ρa is air density evaluated at atmospheric conditions outside the engine. 

4.3.2 Thermodynamic Analysis of Gas Engine 

Biogas engine that operated in GASKİ WWTP is dual cycle engine. Although the 

working principle of compression ignition (CI) engine is assumed as at constant 

pressure, there are several advantages to use this type of engine. Because ignition 

starts at the late of the compression stroke and big amount of energy is expended 

without production of pressure. Elimination of this effect in engineering systems is 

operated as using dual cycle engine. In a dual cycle, combustion occurs in two-step 

firstly, in a constant volume and secondly in constant pressure. In a dual cycle, 
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combustion starts in the early compression stroke and intake energy is used 

effectively [56,59]. Typical indicator diagram for the dual cycle is shown in Figure 

4.2.  

 

                 

 

 

 

All systems before start to be analyzed requires some assumptions and assumptions 

of this study are: 

 All system operates as steady-state case. 

 Fuel-air mixing is assumed as air and ideal gas. 

 Combustion in gas engine assumed as the whole combustion. 

 Kinetic and potential energy in all subsystems are negligible. 

The thermodynamic analysis of dual cycle is the same as the diesel cycle except for 

heat input process. The dual cycle occurs from five processes because process 6-1 

and process 5-6 are equal and cancel each othe 

Process 1-2: isentropic compression stroke. 

All valves closed: 

𝑇2 = 𝑇1(𝑟𝑐)𝑘−1 = (𝑉1/𝑉2)𝑘−1  (4.25) 
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Figure 4.2 Pressure and specific volume diagram of four-stroke dual cycle engine. 
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𝑃2 = 𝑃1(𝑟𝑐)𝑘 = (𝑉1/𝑉2)𝑘   (4.26) 

𝑞1−2 = 0  (4.27) 

𝑉2 = 𝑉𝑇𝐷𝐶 = 𝑉𝑐  (4.28) 

𝑤1−2 = 𝑅(𝑇2 − 𝑇1)(1 − 𝑘) = (𝑢1 − 𝑢2)  (4.29) 

Process 2-x constant-volume heat input (first part of combustion). 

All valves closed: 

𝑉𝑥 = 𝑉2 = 𝑉𝑇𝐷𝐶  (4.30) 

𝑤2−𝑥 = 0  (4.31) 

𝑞2−𝑥 = 𝑐𝑣(𝑇𝑥 − 𝑇2) = (𝑢𝑥 − 𝑢2)  (4.32) 

𝑃𝑥 = 𝑃𝑚𝑎𝑥 = 𝑃2(
𝑇𝑥

𝑇2
)  (4.33) 

Pressure ratio is a useful parameter for optimization and efficiency of the engine 

could change by this parameter. We can find the pressure ratio as: 

𝛼 =
𝑃𝑥

𝑃2
=

𝑇𝑥

𝑇2
  (4.34) 

Process x-3 constant pressure heat input (second part of combustion). 

𝑃3 = 𝑃𝑥 = 𝑃𝑚𝑎𝑥  (4.35) 

𝑞𝑥−3 = 𝑐𝑝(𝑇3 − 𝑇𝑥) = (ℎ3 − ℎ𝑥)  (4.36) 

𝑤𝑥−3 = 𝑞𝑥−3 − (𝑢3 − 𝑢𝑥) = 𝑃3(𝑣3 − 𝑣𝑥)  (4.37) 

𝑇3 = 𝑇𝑚𝑎𝑥  (4.38) 

We can define the cutoff ratio for using specific volumes in an analysis: 

𝛽 =
𝑣3

𝑣𝑥
=

𝑇3

𝑇𝑥
  (4.39) 

Process 3-4 isentropic expansion stroke 

All valves closed: 
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𝑞3−4 = 0  (4.40) 

𝑇4 = 𝑇3(𝑉3/𝑉4)𝑘−1 = 𝑇3(𝑣3/𝑣4)𝑘−1  (4.41) 

𝑃4 = 𝑃3(𝑉3/𝑉4)𝑘 = 𝑃3(𝑣3/𝑣4)𝑘−1  (4.42) 

𝑤3−4 = 𝑅(𝑇4 − 𝑇3)(1 − 𝑘) = (𝑢3 − 𝑢4)  (4.43) 

Process 4-5 constant volume heat rejection (exhaust blowdown) 

𝑣1 = 𝑣4 = 𝑣5 = 𝑣𝐵𝐷𝐶  (4.44) 

𝑤4−5 = 0  (4.45) 

𝑞4−5 = 𝑞𝑜𝑢𝑡 = 𝑐𝑣(𝑇5 − 𝑇4)  (4.46) 

Heat input of dual cycle engine occurs in two step and generally, it is assumed equal 

part of the energy. 

𝑄𝑖𝑛 = 𝑄2−𝑥 + 𝑄𝑥−3 = 𝑚𝑓𝑄𝐻𝑉ƞ𝑐  (4.47) 

Thermal efficiency of dual cycle: 

(ƞ
𝑡
)𝑑𝑢𝑎𝑙 = |𝑤𝑛𝑒𝑡 |/|𝑞𝑖𝑛|  = 1 − (|𝑞𝑜𝑢𝑡|/|𝑞𝑖𝑛|)  

                = 1 − 𝑐𝑣(𝑇4 − 𝑇1)/[𝑐𝑣(𝑇𝑥 − 𝑇2) + 𝑐𝑝(𝑇3 − 𝑇𝑥)] 

                = 1 − (𝑇4 − 𝑇1)/[(𝑇𝑥 − 𝑇2) + 𝑘(𝑇3 − 𝑇𝑥)] (4.48) 

This term of efficiency can be rearranged according to compression ratio, pressure 

ratio and cutoff ratio as: 

(ƞ
𝑡
)𝑑𝑢𝑎𝑙 = 1 − (1/𝑟𝑐)𝑘−1[(𝛼𝛽𝑘 − 1)/(𝑘𝛼(𝛽 − 1) + 𝛼 − 1)]  (4.49) 

Where k is the rate of specific heats: 

𝑘 = 𝑐𝑝/𝑐𝑣  (4.50) 

Exergetic efficiency of biogas engine can be represented in two different approaches. 

The first approach deals with the rate of net work production, 𝑊̇𝑛𝑒𝑡, and exergy of 

fuel. The general form of exergetic efficiency of the engine is given below: 
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ԑ𝑔𝑒
1 =

𝐸̇𝑥𝑃,𝑔𝑒

𝐸̇𝑥𝐹,𝑔𝑒
=

𝑊̇𝑛𝑒𝑡

𝐸̇𝑥5
𝑝ℎ+𝑐ℎ  (4.51) 

Where 𝐸̇𝑥5
𝑝ℎ+𝑐ℎ

 is the total exergy of the fuel and it is combining of physical and 

chemical exergy of fuel. However, that representation is not enough and it doesn’t 

indicate all of the input and output of the engine. Due to that, the second approach 

can be developed as the inlet and outlet of sources to the engine. Second approach 

exergetic efficiency of the engine is: 

ԑ𝑔𝑒
2 =

𝐸̇𝑥𝑃,𝐺𝐸

𝐸̇𝑥𝐹,𝐺𝐸
=

𝑊̇𝑛𝑒𝑡+𝐸𝑥̇𝑝𝑟𝑜𝑑𝑢𝑐𝑡,𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦

𝐸̇𝑥5
𝑝ℎ+𝑐ℎ

+𝐸𝑥̇𝑓𝑢𝑒𝑙,𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦

  (4.52) 

In that representation of efficiency 𝐸𝑥̇𝑝𝑟𝑜𝑑𝑢𝑐𝑡,𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 is all the sources which inlet to 

the engine and 𝐸𝑥̇𝑓𝑢𝑒𝑙,𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 is all sources that outlet from the engine. This 

efficiency explanation is more meaningful from the first one, because the effect of all 

sources, such mechanical, heat, and chemical, are included in eq.(4.52). 

All these equations set in a program and there are some constants and standards. List 

of constants and values of working fluid at zero states are given in Table 4.1. 
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Table 4.1 Gas engine characteristic and thermodynamic data. 

Parameter Notation Value Unit 

Cylinder Bore B 170 mm 

Stroke S 195 mm 

Number of Cylinders Nc 12 - 

Engine Speed N 1500 rpm 

Compression Ratio rc 13.5 - 

Mass Flow Rate of Air ṁa 1.387 kg/s 

Mass Flow Rate of Fuel ṁf 0.129 kg/s 

Initial Temperature of Air-Fuel Mixing T0 25 C° 

Initial Pressure of Air-Fuel Mixing P0 1.00 bar 

Constant Pressure Specific Heat cp,air 1.108 kj/kg.K 

Constant Temperature Specific Heat cv,air 0.821 kj/kg.K 

Gas Constant of Air R 0.287 kj/kg.K 

Heating Value QHV 17892 kj/kg 

Combustion Efficiency Ƞc 1 - 

Mechanical Efficiency Ƞm 0.74 - 

 

4.4 Energy and Exergy Analysis of Other Component of BEPC 

Analysis of all system requires all of energy equations of a component of the system. 

After thermodynamic analysis of gas engine, analysis of turbocharger and heat 

exchangers will be inserted. Analysis and optimization of the system will be 

developed according to exergetic efficiency unit by unit. All of component’s kinetic 

and potential energy changing are negligible. 
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Table 4.2 Energy and exergy relations of each component of BEPC. 

Component Energy and Exergy Relation 

 𝑚̇3 = 𝑚̇4 = 𝑚̇𝑎𝑖𝑟−𝑓𝑢𝑒𝑙  ,  ƞ𝑖𝑠,𝑐𝑜𝑚𝑝. =
𝑤̇𝑠

𝑤̇𝑎
=

ℎ4,𝑠−ℎ3

ℎ4−ℎ3
 

𝐸̇𝑥𝐹,𝐶 = 𝑊̇𝑖𝑛 = 𝑊̇𝑜𝑢𝑡,𝑡 ,   𝐸̇𝑥𝑃,𝐶 = 𝐸̇𝑥4 − 𝐸̇𝑥3 

Ԑ𝐶 =
𝐸̇𝑥𝑃,𝐶

𝐸̇𝑥𝐹,𝐶
=

𝑚̇𝑎((ℎ4−ℎ3)−𝑇0(𝑠4−𝑠3))

𝑊̇𝑖𝑛
  

 𝑚̇5 = 𝑚̇4 = 𝑚̇𝑎𝑖𝑟−𝑓𝑢𝑒𝑙  ,  𝑚̇24 = 𝑚̇25 = 𝑚̇𝐼𝐶− 𝑤𝑎𝑡𝑒𝑟  

𝑚̇4(ℎ4 − ℎ5) = 𝑚̇25(ℎ25 − ℎ24) 

𝐸̇𝑥𝐹,𝐼 = 𝐸̇𝑥4 − 𝐸̇𝑥5,  𝐸̇𝑥𝑃,𝐼 = 𝐸̇𝑥25 − 𝐸̇𝑥24 

Ԑ𝐼 =
𝐸̇𝑥𝑃,𝐼

𝐸̇𝑥𝐹,𝐼
=

𝑚̇𝑤3((ℎ25−ℎ24)−𝑇0(𝑠25−𝑠24))

𝑚̇𝑎((ℎ4−ℎ5)−𝑇0(𝑠4−𝑠5))
  

 
𝐸̇𝑥1

𝐹,𝐵𝐸 = 𝐸𝑥̇5
𝑝ℎ+𝑐ℎ

 , 𝐸̇𝑥1
𝑃,𝐵𝐸 = 𝑊̇𝐵𝐸 

Ԑ1
𝐵𝐸 =

𝐸̇𝑥𝑃,𝐵𝐸

𝐸̇𝑥𝐹,𝐵𝐸

=
𝑊̇𝐵𝐸

𝐸𝑥̇5
𝑝ℎ+𝑐ℎ 

 
𝐸̇𝑥2

𝐹,𝐵𝐸 = 𝐸𝑥̇5
𝑝ℎ+𝑐ℎ

+ 𝐸̇𝑥12 + 𝐸̇𝑥22 

𝐸̇𝑥2
𝑃,𝐵𝐸 = 𝑊̇𝐵𝐸 + 𝐸̇𝑥6 + 𝐸̇𝑥9 + 𝐸̇𝑥18 

Ԑ2
𝐵𝐸 =

𝐸̇𝑥𝑃,𝐵𝐸

𝐸̇𝑥𝐹,𝐵𝐸

=
𝑊̇𝐵𝐸 + 𝐸̇𝑥6 + 𝐸̇𝑥9 + 𝐸̇𝑥18

𝐸𝑥̇5
𝑝ℎ+𝑐ℎ

+  𝐸̇𝑥12 + 𝐸̇𝑥22

 

 

𝑚̇19 = 𝑚̇20 = 𝑚̇𝐽𝐶𝐶−𝑤𝑎𝑡𝑒𝑟  ,  𝑚̇15 = 𝑚̇16 = 𝑚̇𝐷𝐶−𝑤𝑎𝑡𝑒𝑟  

𝑚̇20(ℎ20 − ℎ19) = 𝑚̇16(ℎ16 − ℎ15) 

𝐸̇𝑥𝐹,𝐻𝐸−1 = 𝐸̇𝑥19 − 𝐸̇𝑥20 ,  𝐸̇𝑥𝑃,𝐻𝐸−1 = 𝐸̇𝑥16 − 𝐸̇𝑥15 

Ԑ ℎ𝑒𝑎𝑡
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟−1

=
𝑚̇𝑤1((ℎ16 − ℎ15) − 𝑇0(𝑠16 − 𝑠15))

𝑚̇𝑤2((ℎ19 − ℎ20) − 𝑇0(𝑠19 − 𝑠20))
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𝑚̇9 = 𝑚̇10 = 𝑚̇𝑙𝑢𝑏𝑒−𝑜𝑖𝑙 ,  𝑚̇20 = 𝑚̇21 = 𝑚̇𝐽𝐶𝐶−𝑤𝑎𝑡𝑒𝑟  

𝑚̇9(ℎ9 − ℎ10) = 𝑚̇21(ℎ21 − ℎ20) 

𝐸̇𝑥𝐹,𝐿𝑂𝐻𝐸 = 𝐸̇𝑥9 − 𝐸̇𝑥10, 𝐸̇𝑥𝑃,𝐿𝑂𝐻𝐸 = 𝐸̇𝑥21 − 𝐸̇𝑥20 

Ԑ𝐿𝑂𝐻𝐸 =
𝐸̇𝑥𝑃,𝐿𝑂𝐻𝐸

𝐸̇𝑥𝐹,𝐿𝑂𝐻𝐸
=

𝑚̇𝑤2((ℎ21−ℎ20)−𝑇0(𝑠21−𝑠20))

𝑚̇𝑙((ℎ9−ℎ10)−𝑇0(𝑠9−𝑠10))
  

 
𝑚̇21 = 𝑚̇22 = 𝑚̇𝐽𝐶𝐶−𝑤𝑎𝑡𝑒𝑟  ,  𝑚̇23 = 𝑚̇25 = 𝑚̇𝐼𝐶−𝑤𝑎𝑡𝑒𝑟  

𝑚̇22(ℎ22 − ℎ21) = 𝑚̇25(ℎ25 − ℎ23) 

𝐸̇𝑥𝐹,𝐻𝐸−2 = 𝐸̇𝑥25 − 𝐸̇𝑥23 , 𝐸̇𝑥𝑃,𝐻𝐸−2 = 𝐸̇𝑥22 − 𝐸̇𝑥21 

Ԑ ℎ𝑒𝑎𝑡
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟−2

=
𝑚̇𝑤2((ℎ22−ℎ21)−𝑇0(𝑠22−𝑠21))

𝑚̇𝑤3((ℎ25−ℎ23)−𝑇0(𝑠25−𝑠23))
  

 
𝑚̇7 = 𝑚̇6 = 𝑚̇𝑎𝑖𝑟−𝑓𝑢𝑒𝑙  ,  ƞ𝑖𝑠,𝑡𝑢𝑟. =

𝑤̇𝑎

𝑤̇𝑠
=

ℎ6−ℎ7

ℎ6−ℎ7,𝑠
 

𝐸̇𝑥𝐹,𝑇 = 𝐸̇𝑥6 − 𝐸̇𝑥7 , 𝐸̇𝑥𝑃,𝑇 = 𝐸̇6 − 𝐸̇7 

Ԑ𝑇 =
𝐸̇𝑥𝑃,𝑇

𝐸̇𝑥𝐹,𝑇

=
𝑚̇𝑎(ℎ6 − ℎ7)

𝑚̇𝑎((ℎ6 − ℎ7) − 𝑇0(𝑠6 − 𝑠7))
 

 

𝑚̇7 = 𝑚̇8 = 𝑚̇𝑎𝑖𝑟−𝑓𝑢𝑒𝑙  ,  𝑚̇17 = 𝑚̇18 = 𝑚̇𝐷𝐶−𝑤𝑎𝑡𝑒𝑟  

𝑚̇7(ℎ7 − ℎ8) = 𝑚̇17(ℎ17 − ℎ18) 

𝐸̇𝑥𝐹,𝐸𝐺𝐻𝐸 = 𝐸̇𝑥7 − 𝐸̇𝑥8 , 𝐸̇𝑥𝑃,𝐸𝐺𝐻𝐸 = 𝐸̇𝑥17 − 𝐸̇𝑥16 

Ԑ𝐸𝐺𝐻𝐸 =
𝑚̇𝑤1((ℎ17 − ℎ16) − 𝑇0(𝑠17 − 𝑠16))

𝑚̇𝑎((ℎ7 − ℎ8) − 𝑇0(𝑠7 − 𝑠8))
 

 

𝑚̇𝑖 = 𝑚̇𝑗 = 𝑚̇𝑤𝑎𝑡𝑒𝑟  ,  

𝐸̇𝑥𝐹,𝑃 = 𝑊̇𝑃 , 𝐸̇𝑥𝑃,𝑃 = 𝐸̇𝑥𝑗 − 𝐸̇𝑥𝑖  

Ԑ𝑃 =
𝐸̇𝑥𝑃,𝑃

𝐸̇𝑥𝐹,𝑃

=
𝑚̇𝑤2 ((ℎ𝑗 − ℎ𝑖) − 𝑇0(𝑠𝑗 − 𝑠𝑖))

𝑊͘𝑃

 

 

𝐸̇𝑥𝐹,𝐵𝐸𝑃𝐶 = 𝐸̇𝑥2 + 𝐸̇𝑥15 

𝐸̇𝑃,𝐵𝐸𝑃𝐶 = 𝑊̇𝐵𝐸 + 𝐸̇𝑥17 + 𝐸̇𝑥8 

ԑ𝐵𝐸𝑃𝐶 =
𝐸̇𝑥𝑃,𝐵𝐸𝑃𝐶

𝐸̇𝑥𝐹,𝐵𝐸𝑃𝐶

=
𝑊̇𝐵𝐸 + 𝐸̇𝑥17 + 𝐸̇𝑥8

𝐸̇𝑥2 + 𝐸̇𝑥15
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4.5 Designing a Genetic Algorithm and Results 

In this study single objective genetic algorithm is used and all component of BEPC is 

analyzed according to the maximum point of exergetic efficiency of BEPC. The 

actual case of a system is used to determine of constraints. These constraints include 

considering maximum and minimum combustion temperature of biogas to determine 

the range of pressure ratio of the compressor, air-fuel ratio and pinch point analysis 

of heat exchangers. 

4.5.1 Constraints of Objective and Input Parameters 

Cogeneration systems are complex systems to understand a mechanism of variables 

and observe efficiency changing through optimization. The system is continuously 

but for understanding the behavior of a system, analysis of each component with 

objective and variable is shown in Table 4.3.  

Table 4.3 Objectives and variables for the component of BEPC. State number and 

component names refer to schematized in Figure 4.1. 

Component Objective Variable 

Compressor 
Increasing pressure of air-fuel mixture used by 

biogas engine. 
Pressure, P4 

Intercooler 
Decreasing the temperature of pressurized air-

fuel mixture used by biogas engine. 
Temperature, T5 

Biogas Engine Power Production Air-fuel ratio 

HE-1 
Increasing the temperature of water which used 

by digestion cycle. 
Temperature, T16 

LOHE 

Decreasing the temperature of oil that lubricates 

engine’s components and operates for cooling 

the engine. 

Temperature, T10 

HE-2 

Decreasing the temperature of water which 

absorbs heat from air-fuel mixture before 

entering the engine. 

Temperature, T23 

Turbine Producing shaft work required by compressor. Temperature, T7 

EGHE 
Increasing the temperature of water that 

satisfies heat to the anaerobic digestion. 
Temperature, T17 

Pumps 
Increasing the pressure of water which entering 

heat exchanger. 
Pressure, P j 

BEPC 
Power production and supply heat demand of 

digestion. 
AF, P4, T19 
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Design parameters and catalog values of biogas engine are given and combustion 

range of biogas in air according to literature is between 900 K and 1080 K [55,58], 

so the pressurization range could be determined as in Table 4.3. Also, the air-fuel 

ratio is an important parameter for optimization of biogas engine, so according to 

literature air-fuel ratio is between 5 and 15 [55, 56]. The temperature of jacket 

cooling water leads optimization of heat exchangers. Steady case values are used and 

pinch point analysis of system applied, so results indicated that 9kW heating and 

460kW cooling could be added to that system and pinch point of the system found 

86.5 C°. According to that values, a selected range of cooling water is shown in 

Table 4.4 and input parameters in Table 4.5. 

Table 4.4 Constraints of optimization parameters for BEPC.  

Parameters Range 

Air-fuel ratio, AF 5-15[55,56] 

Air fuel mixture inlet Pressure, P5 (bar)  1.85-2.2 

Jacket cooling water temperature, T19 (C°) 86.5-90 

 

Table 4.5 Fixed parameters of BEPC.  

Parameters Value 

Temperature of water inlet to the system from digestion loop  (C°) 75.8 

Temperature of water outlet from the system to digestion loop  (C°) 88.0 

Temperature of water enters to the intercooler (C°) 50.0 

Temperature of air enters to engine (C°) 52.0 

Mass flow rate of water through digestion loop (kg/s) 20.88 

Mass flow rate of water through intercooler loop (kg/s) 15.61 

Mass flow rate of water through jacket cooling loop (kg/s) 11.28 

Mass flow rate of lubricating oil (kg/s) 20.0 

Temperature of water enters to the engine in jacket cooling loop (C°) 78.5 

Isentropic efficiency of compressor 0.6 

Temperature of lube-oil enters to the LOHE (C°) 100.6 

Pressure of air at inlet to turbine (kPa) 240 

Temperature of air at inlet to turbine (C°) 460 
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These fixed parameters, in Table 4.5, are the input parameters of a genetic algorithm. 

In the idea of production of a useful algorithm and convert it to ready-made software, 

it is important to design a genetic algorithm as a changeable for a user. Conditions 

could be a change for each system and parameters of each system are different, due 

to that program must be occurred only from contact equations without any constant 

value. Thermodynamic properties tables of working fluids are inserted into the 

algorithm and selection of each value such entropy, enthalpy and temperature will be 

automatically applied by an algorithm. 

4.5.2 Setup Genetic Algorithm in Matlab 

Flow chart of the genetic algorithm could be revised as understandable to creating 

self-adaptive codes. The first step, input fixed parameters as expressed in the 

previous section. 

 

 

 

 

 

4.5.2.1 Creation of a First Population 

The fundamental of Matlab is based on matrix-based procedures. Due to that in 

Matlab we produced all of the genetic algorithm codes according to a matrix-based 

idea. The first population is the matrix that is produced from 3 columns and 50 rows 

Yes 

Create initial population 

Find objective values of 
each chromosome 

Selection (elitism, roulette 

or tournament) 

Mating 

Mutation  

Check 

Done   

No 

 Cycle 

 

 input(fixed parameters) 

 create(NpxVariables) 

 % Np is number of individual 

chromosome. 

 determine(variables in 

chromosome) 

 calculations(equations) 

 sort(chromosomes) 

 natural selection(population) 
 mating(chromosomes) 

 mutation(genes) 

 

 cycle+1 

 

Figure 4.3 Flow chart of the self-adaptive coded genetic algorithm. 
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because each column represents a variable. Chromosome number of population, 

psize, is selected 50. 

 

 

Figure 4.4 Production of the first population in Matlab. 

 

Population size is the number of a row as shown in Figure 4.4, and according to 

constraints, the population is created randomly. 

After the creation of population we must represent the name of variables to the 

algorithm in the correct order. By using equations that inserted in the algorithm from 

the thermodynamic analysis, the first objective result will be calculated. Objective 

results are also a matrix that occurs from one column and 50 rows. The first result 

will show the optimum first point of the system. However, genetic algorithm deals 

with enhancement of these results. 

4.5.2.2 Applying of Natural Selection 

Separation of the first result is the main idea of this step. In this study, we used 

elitism and roulette wheel methods for selection. Natural selection is the first step in 

starts to improve a variety of population. Figure 4.5 shows the self-adaptive codes of 

elitism and roulette wheel selections respectively. 
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(a) 

 

(b) 

Figure 4.5 (a) A basic idea of elitism and (b) roulette wheel by using self-adaptive 

codes. 

 

4.5.2.3 Applying of Crossover 

We design algorithm as crossing chromosomes by using random mating method for 

creating an improved population, called intermediate population. This new 

population includes variety in the objective result. We select single point crossover 

and crossover rate is selected 0.85, so minimum 85 percent of the population is 

crossed. 

 

 

Figure 4.6 Design of single point crossover in Matlab. 

 

According to Figure 4.6, the piece of chromosome that has been cut off must be kept 

in an empty matrix, called station. Because of exchange in matrix columns could lose 

the part of this piece of chromosome. 
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4.5.2.4 Applying of Mutation 

Mutation is the last part of the algorithm and improves the variety of population by 

using randomly selected mutation matrix. The mutation rate of this study is selected 

0.4, so the maximum 40 percent of the population will be mutated. Mutation is also 

applied by using increasing and decreasing the value of genes, as shown in Figure 

4.7. 

 

 

Figure 4.7 Design of mutation operation in Matlab. 

 

Delta is number that gives negative and positive values for subtracting and the 

addition of a value to the mutated genes. 

4.5.3 Results 

The thermodynamic analysis represents the change of efficiency by variables and 

efficiency of all components is determined, but the optimum range of variables or the 

optimum range of efficiency problem is needed to define correctly. The genetic 

algorithm creates a range for variable and also a measurement of variables’ 

importance is an advantage of a genetic algorithm. In figures that results of genetic 

algorithm optimization if the range of the variable is tiny the importance of a variable 

is huge. 
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4.5.3.1 Optimization Results by Using Elitism 

Results of changing of variables according to iteration are shown in Figure 4.8. for 

air-fuel ratio, in Figure 4.9 for P5 and in Figure 4.10 for T15. Observation of diversity 

in variables could determine the effectiveness of the method because all results 

change with the changing of variables. 

 

 

Figure 4.8 Changing of air-fuel ratio according to iteration. 
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Figure 4.9 Variation of P5 according to iteration. 

 

Figure 4.10 Variation of T19 according to iteration. 

 

According to elitism selection method, in Figure 4.8 optimum distribution of air-fuel 

ratio is shown and its optimum point is found to be 11.3, in Figure 4.9 changing of 

inlet pressure of engine is shown and its optimum point is found 189.2 kPa and in 



48 

 

Figure 4.10 optimum variation of jacket cooling water temperature that inlet to the 

HE-1 is drawn and its optimum value is found 86.5 C°.  

Small changing in AF, affects the amount of fuel and also this effect lead to the 

efficiency of BEPC. Pressure of inlet to engine changes between 189 and 213 kPa, 

but algorithm tried to search the optimum case of these three variables. Figure 4.8 

and Figure 4.9 indicated that different varieties of AF and P5 are tried, for instance at 

iteration 5, 10 and 20, it can be seen high and low values of all variables are tried, but 

the optimum point of the system shown that increasing of AF is more effective than 

increasing of P5. Exergetic efficiency of BEPC is found to be in the range of 33% 

and 34%.  

Elitism method could be considered as one direction diversity method, so diversity 

could be developed by using crossover and mutation steps effectively. 

 

 

Figure 4.11 Diagram of changing 1
st
 approaching gas engine exergetic efficiency 

with iteration. 
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Figure 4.12 Diagram of changing 2
nd

 approaching gas engine exergetic efficiency 

with iteration. 

 

Figure 4.13 Exergetic efficiency of EGHE with iteration in elitism selection method. 
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Figure 4.14 Exergetic efficiency of HE-1 according to elitism selection. 

 

 

Figure 4.15 Exergetic efficiency of HE-2 in elitism selection. 

 

According to elitism selection, exergetic efficiencies of components of BEPC are 

given above in figures. Exergetic efficiency of the gas engine for the 1
st
 approach, 

according to eq.(4.51), is found to be 25.35% and for 2
nd

 approach, according to 

eq.(4.52) is found at 45.1%. Results for EGHE indicated that optimum range is 
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between 43% and 47%. Exergetic efficiencies for HE-1 and HE-2 are found to be 

59% and 56% respectively. 

Gas engine 1
st
 approach efficiency changes between 24.5% and 25.6% and this range 

are produced due to the variation of AF and P5 because of eq.(4.51) doesn’t contain 

effects of other components of BEPC. Decreasing of AF is lead to increase in heat 

input and also increase the temperature of first combustion stroke, however, the 

second combustion occurs in constant pressure case and the effect of pressure is most 

important in that state. We designed the algorithm according to all these parameters 

and algorithm showed that the optimum balance between variables is close to the 

optimum point of the gas engine. Second approach efficiency of the engine indicated 

that the effect of lubricating and jacket cooling is significant, due to the difference 

between the two efficiency results. 

Heat exchangers’ efficiencies are changed according to pinch point that shown in the 

above figures. The efficiency of HE-1 affects efficiencies of EGHE and HE-2, 

because of increases in efficiency of HE-1 decreases the temperature of water which 

inlet to the HE-2. Also increasing in temperature of T16 is increase the efficiency of 

EGHE, due to consuming less energy for reaching expected temperature. 

 

 

Figure 4.16 Exergetic efficiency of BEPC according to (a) air-fuel ratio (b) P5 and 

(c) T19 
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Distribution of variables in the algorithm and their effects on the BEPC are indicated 

in Figure 4.14. The results show that the density of points through 33.2 is the global 

optimum point and other densities could be local optimum points. Each of these 

points is the result of 50 objective values. That means the magnitude of the result 

matrix is 50x50. Optimum efficiencies by using elitism selection are given in Table 

4.6. 

 

Table 4.6 Energy and exergy results of components of BEPC by using elitism 

method. State number and component names refer to schematized in Figure 4.1. 

 

The efficiency of a gas engine is found at 25.4%, but the efficiency of BEPC is found 

at 33.4%. This difference is because of using heat exchangers. The second approach 

of biogas engine exergetic efficiency is also about using heat recovery without HE-2 

and EGHE. Addition of heat recovery into the second approach efficiency of the 

engine is meaning because heat distribution of the engine affects the efficiency. 

Component States 
Q̇opt,elitism 

(kW) 

Ẇopt,elitism 

(kW) 

ĖxFopt,elitism 

(kW) 

ĖxPopt,elitism 

(kW) 

ĖxDopt,elitism 

(kW) 

Ԑopt,elitism 

(%) 

Compressor 3-4 - 137.2 137.2 101.4 35.8 74.00 

Intercooler 4-5 96.3 - 15.5 8.0 7.5 51.6 

Turbine 6-7 - 166.5 189.74 166.5 23.24 87.75 

EGHE 7-8 472.2 - 166.4 77.4 89.0 46.5 

P1 14-15 - 2.1 2.1 2.08 0.02 99.04 

P2 18-19 - 12.4 12.4 7.83 4.57 63.14 

P3 23-24 - 3.4 3.4 2.3 1.1 67.64 

P4 11-12  98.88 98.88 27.25 71.55 27.58 

LOHE 9-10 512 - 94.8 53.42 41.38 56.35 

HE-1 19-20 605.2 - 156.0 92.0 64.0 59.0 

HE-2 23-25 97.0 - 14.4 8.0 6.4 55.5 

Gas Engine 
- - 

998.1
 

3936.5
1 

998.1
1 

2938.4
1 

25.4
1 

- - 4470.4
2 

2017.7
2 

2452.7
2 

45.1
2 

BEPP - 1782.7 998.1 4204.3 1412.8 2756.8 33.2 
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4.5.3.2 Optimization Results by Using Roulette Wheel 

Roulette wheel selection is used the second method in the optimization of BEPC. 

Optimization result for this method according to 1000 kW produced energy is shown 

below as diagrams. 

 

Figure 4.17 Changing of AF according to iteration in roulette wheel selection 

method. 
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Figure 4.18 Variations of P5 according to iteration in roulette wheel selection 

method. 

 

Figure 4.19 Changing of T19 according to iteration in roulette wheel selection 

method. 

 

Results of roulette wheel selected optimization, which is shared above, indicated that 

this type of selection gives more variety. In Figure 4.17 air-fuel ratio range is bigger 
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than a range in elitism because in a roulette wheel chromosomes are selected 

randomly and the selection of small valued chromosome is probable although it has 

small probability. Roulette wheel selection method affects on P5 as a wider range of 

changing. 

Air-fuel ratio is found to be between 11 and 11.5, a pressure of air-fuel mixture 

entering to the engine, P5,  is found as 214 kPa and T19, cooling jacket that outlet 

from the engine is found to be 88.5 C°. Exergetic efficiency of BEPC is found 33.5. 

Each component is analyzed and the results of them are given below. 

Results showed that increases in AF lead the small amount of fuel and because of 

that pressure is selected high for production of 1000 kW energy. However, 

increasing of pressure is led the increasing of irreversibilities. 

 

Figure 4.20 Results of roulette wheel selection used optimization for exergetic 

efficiency of gas engine in first approach with respect to (a) air-fuel ratio (b) P5 and    

(c) T19. 
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Figure 4.21 Results of roulette wheel selection used optimization for exergetic 

efficiency of gas engine in second approach with respect to (a) air-fuel ratio (b) P5 

and (c) T19. 

 

Figure 4.22 Results of roulette wheel selection used optimization for exergetic 

efficiency of EGHE with respect to (a) air-fuel ratio (b) P5 and (c) T19. 
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Figure 4.23 Results of roulette wheel selection used optimization for exergetic 

efficiency of HE-1 with respect to (a) air-fuel ratio (b) P5 and (c) T19. 

 

 

Figure 4.24 Results of roulette wheel selection used optimization for exergetic 

efficiency of HE-2 with respect to (a) air-fuel ratio (b) P5 and (c) T19. 
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Figure 4.25 Results of roulette wheel selection used optimization for exergetic 

efficiency of BEPC with respect to (a) air-fuel ratio (b) P5 and (c) T19. 

 

In Figure 4.20 efficiency of biogas engine for a 1
st
 approach is found to be in the 

range of 26% and 26.5% according to the range of variables. It is due to increasing 

the pressure of entering the engine and also increasing air-fuel ratio. In Figure 4.21 

2
nd

 approach of gas engine efficiency is found to be in the range of 46% and 48%. 

Distribution of results indicated the effectiveness of the selection method as shown in 

Figure 4.20-25, there is a narrow range for variables in elitism method due to the 

behavior of elitism in nature. However, the roulette wheel gives a wide range of 

variables and results. In Figure 4.22 exergetic efficiency of EGHE is found in the 

range of 41% and 44%, exergetic efficiency of HE-1 is found to be 58.6% as shown 

in Fig. 4.23. Results for HE-2 are found as in the range of 55.6% and 56.5%, given in 

Fig. 4.24. All results of BEPC are given in Table 4.7. 
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Table 4.7 Energy and exergy results of components of BEPC by using elitism 

method. State number and component names refer to schematized in Figure 4.1. 

 

The efficiency of BEPC is found as 33.5% and results show that the crossover rate of 

the algorithm is enough to change the variables values. Due to having three variables, 

crossover point has just two probability, point 1 and point 2. In both two cases first 

variable don’t change in the step of crossover, and if it is dominant in an objective, 

variety of objective function will be decreased. 

 

 

 

 

 

Component States 
Q̇opt,rl.whl 

(kW) 

Ẇopt,rl.whl. 

(kW) 

ĖxFopt,rl.whl. 

(kW) 

ĖxPopt,rl.whl. 

(kW) 

ĖxDopt,rl.whl. 

(kW) 

Ԑopt,rl.whl. 

(%) 

Compressor 3-4 - 150 150 111.4 38.6 74.3 

Intercooler 4-5 108.9 - 18.5 9.1 9.4 49.2 

Turbine 6-7 - 159.9 181.7 159.9 21.8 88.0 

EGHE 7-8 390.9 - 149.6 64.3 85.3 43.0 

P1 14-15 - 2.1 2.1 2.08 0.02 99.04 

P2 18-19 - 12.4 12.4 7.83 4.57 63.14 

P3 23-24 - 3.4 3.4 2.3 1.1 67.64 

P4 11-12  98.88 98.88 27.25 71.55 27.58 

LOHE 9-10 512 - 94.8 53.42 41.38 56.35 

HE-1 19-20 686.6 - 179.2 105.1 74.1 58.6 

HE-2 23-25 109.7 - 16.3 9.1 7.2 55.8 

Gas Engine 
- - 

999.6
 

3745.2
 1 

999.6
1 

2745.6
1 

26.7
1 

- - 4372.0
2 

2040.8
2 

2331.2
2 

46.7
2 

BEPP - 1808.1 999.6 4092.8 1371.08 2648.6 33.5 
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CHAPTER 5 

 

CONCLUSION 

 

Optimization of biogas engine powered cogeneration (BEPC) system that operates in 

GASKİ WWTP in the city of Gaziantep, is operated by using a genetic algorithm. 

Biogas consumption of the system is supplied from anaerobic digestion which 

produces biogas from waste. Methane composition of biogas is 61% and electricity 

production is 1000 kW, so annual production is 8.76 kWh.  Self-adaptive codes in 

Matlab software are used for genetic algorithm process and two different natural 

selection methods are compared.  

Description of BEPC is shown in Figure 4.1 and all working fluids are explained. All 

equipment of BEPC and their work principles are expressed. Performance 

characteristic and thermodynamic analysis of gas engine, DEUTZ TCG2020 V12K, 

is operated and all parameters are given in Table 4.1. Obtained equations from 

operating and thermodynamic analysis are used in the genetic algorithm.  

1. Energy and exergy relations of all subsystem of BEPC are analyzed in Table 4.2. 

Two different approximations for exergy efficiency of a gas engine are determined in 

eq. (4.51) and eq. (4.52). The objective of all equipment of BEPC with variables are 

given in Table 4.3, and variables of the objective function are selected as air-fuel 

mixture ratio, a temperature of jacket cooling water that outlet from the engine (T19) 

and pressure of at the entrance of gas engine (P5). 

2. Constraints of variables of objective functions are given in Table 4.4, as 5-15 for 

air-fuel mixture ratio, 1.85-2.2 kPa for P5 and 86.5-90 C° for T19. Pinch point 

analysis of the system is applied and results are used in determining of constraints. 
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Also from technical data of gas engine are used for determining constraints of P5. 

Fixed parameters of the objective function are given in Table 4.5. 

3. Self-adaptive coded flow chart for a genetic algorithm is given in Figure 4.3 and 

fundamental codes are created according to the information that given in Chapter 3 

by using continuous numbers. Basic codes of a self-adaptive algorithm are given in 

Figure 4.4, 4.5, 4.6, 4.7 and crossover rate and mutation rate are selected 0.95 and 

0.40 respectively. The density of population is selected 50 members and each 

member created from 3 columns. 

4. Results of optimization by using elitism selection method for 3 variables are given 

in Figure 4.8, 4.9, 4.10. According to elitism selection method results for air-fuel 

ratio, T19 and P5 are determines as 11.3, 189.2 and 86.5 respectively. Importance of 

focusing on a selected gap of variables is presented, especially in air-fuel mixture, as 

shown in Figure 4.8. Effects of variables on the objective function are discussed for 

each variable and changing of variables in result area is also discussed. 

5. Changing of exergy efficiency of biogas engine according to 1st and 2nd approach 

is determined 25.35% and 45.1% respectively, as shown in Figure 4.11, 4.12, and 

these figures show the changing of efficiencies according to iteration. Exergetic 

efficiency of exhaust gas heat exchanger (EGHE) is found to be in the range of 43-

47% as shown in Figure 4.13. Effect of changing of T19 on EGHE is discussed and 

also the effect of efficiency of EGHE on the overall efficiency of BEPC is discussed. 

6. Exergetic efficiencies of the heat exchanger 1 (HE-1) and the heat exchanger 2 

(HE-2) are determined to be 59% and 56% respectively and results are shown in 

Figure 4.14, 4.15. The range of diversity of HE-1 and HE-2 are discussed according 

to the variation of variables. The overall efficiency of BEPC is determined as 33.2% 

and shown in Figure 4.16 according to changing of variables. Effects of all variables 

on the overall efficiency of BEPC are discussed and methodological effects on 

overall efficiency are mentioned.  

7. Optimum results of all equipment are given in Table 4.6. Heat, exergy product, 

exergy fuel and exergy destruction of all components are given with their state 

numbers which are given in Figure 4.1. 
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8. Second selection method, roulette wheel, is applied to the BEPC according to 

fundamentals of selection that expressed in Chapter 3. Changing of variables are 

shown in Figure 4.17, 4.18, 4.19 and result for the air-fuel mixture, T19 and P5 are 

determined as 11.5, 88.5 C° and 214 kPa respectively. The diversity of all variables 

is discussed and range of air-fuel mixture, in Figure 4.17 is compared with the results 

of the air-fuel mixture in elitism selection as shown in Figure 4.8. Advantages and 

disadvantages of the two methods are mentioned.  

9. The optimum range of gas engine according to 1
st
 and 2

nd
 approaches is 

determined by using Eq. (4.51) and Eq. (4.52) and they found to be in the range of 

26% and 26.5%. Results for a gas engine are shown in Figure 4.20, 4.21. Changing 

of efficiency according to all variables is shown and the effects of each variable are 

discussed. The density of variables, which collect in result points or in the range of 

result, is discussed with roulette wheel selection idea. 

10. Diversity effect of T19 in roulette wheel is discussed and effects of T19 on the 

efficiency of exhaust gas heat exchanger (EGHE) are discussed. Exergetic efficiency 

range of EGHE is found to be 41% and 44%, as shown in Figure 4.22. Difference 

between efficiencies of EGHE according to roulette wheel and elitism is mentioned 

and methodological effects are discussed. Exergetic efficiencies of HE-1 and HE-2 

are determined according to a roulette wheel in Figure 4.23, 4.24 and optimum points 

of HE-1 and HE-2 are found to be 58.6% and 56.5% respectively. Heat distribution 

of T19 for HE-1 and HE-2 is discussed and diversity of HE-1 is mentioned according 

to overall BEPC efficiency. 

11. The overall efficiency of BEPC is determined as 33.5% according to the roulette 

wheel in Figure 4.25 and results analyzed on each variable. The density of variables 

on optimum point and their effects on overall efficiency is discussed. Advantages 

and disadvantages of selection methods are discussed according to energy systems 

optimizations. Efficiencies, exergy product, exergy fuel and exergy destruction of all 

components are determined in Table 4.7. 

12. In this study, we see that genetic algorithm optimization is useful for energy 

systems, and the genetic algorithm could reach close to the actual values. The genetic 

algorithm is able to predict the efficiency of the system before designing. Due to this 
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property of genetic algorithm self-adaptive coded genetic algorithm is more useful, 

because one can adapt the algorithm to the systems conditions easily. Two different 

methods in genetic algorithm could use for energy systems and they could be 

developed by inserting another software or solver programs. Optimization of a 

complex system could be easily analyzed in the genetic algorithm. Second law 

efficiency of the system could more effective to obtain an optimum point of the 

objective.  
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