
A
U
G
U
S
T

2
0
1
9

M
.S
c.

in
O
p
tica

l
E
n
g
in
e
e
rin

g
H
A
B
İL

Z
O
R
L
U

REPUBLIC OF TURKEY

GAZİANTEP UNIVERSITY

GRADUATE SCHOOL OF NATURAL & APPLIED SCIENCES

A MERIDIONAL RAY TRACING SOFTWARE DEVELOPMENT

FOR LENS DESIGN

M.Sc. THESIS

IN

OPTICAL ENGINEERING

BY

HABİL ZORLU

AUGUST 2019

A MERIDIONAL RAY TRACING SOFTWARE

DEVELOPMENT FOR LENS DESIGN

M.Sc. Thesis

in

Optical Engineering

Gaziantep University

Supervisor

Prof. Dr. Metin BEDİR

Co-Supervisor

Assoc. Prof. Dr. Ahmet BİNGÜL

by

Habil ZORLU

August 2019

c© 2019 [Habil ZORLU]

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Habil ZORLU

ABSTRACT

A MERIDIONAL RAY TRACING SOFTWARE DEVELOPMENT
FOR LENS DESIGN

ZORLU, Habil

M.Sc. in Optical Engineering

Supervisor: Prof. Dr. Metin BEDİR

Co-Supervisor: Assoc. Prof. Dr. Ahmet BİNGÜL

August 2019

70 pages

In this thesis a simple meridional ray tracing software which can be used in
the optical lens design is developed. The first version of this software is called
Heysem 1.0 which has both paraxial and exact ray tracing capability. Heysem
has a simple Graphical User Interface (GUI) to input the lens radii, thicknesses,
number of rays and etc required in the design. It gives some outputs the system
layout, a summary table and some basic lens aberration calculations and plots to
the user. The outcomes and plots obtained in Heysem are compared with Zemax
OpticStudio program. It is found that the ray tracing computations and plots in
both softwares are the same.

Key Words: Lens Design, Ray Tracing, Heysem, Paraxial, Exact

ÖZET

MERCEK TASARIMI İÇİN MERİDYONEL IŞIN İZLEME
YAZILIMI GELİŞTİRME

ZORLU, Habil

Yüksek Lisans Tezi, Optik Mühendisliği Bölümü

Danışman: Prof. Dr. Metin BEDİR

İkinci Danışman: Assoc. Prof. Dr. Ahmet BİNGÜL

Ağustos 2019

70 sayfa

Bu tezde mercek tasarımı için basit bir yazılım geliştirildi. Yazılımın ilk versiyon
olarak adı Heysem 1.0 belirlendi. Bu proğram hem paraksiyal hemde gerçek ışın
çizimi yapabilme yeteneğine sahiptir. Heysem basit kullanıcı arayüzüne sahiptir.
Mercek tasarımı için giriş değerleri mercek yarı çapı, kalınlık, ışın sayısı vb gerek-
lidir. Proğram çıktı olarak mercek çizimi, özet tablo bazı temel mercek kusurları
hesaplamalarını ve çizimlerini kullanıcıya verir. Heysem proğramında elde edilen
grafik ve sonuçlar Zemax proğramı ile karşılştırıldı. Işın çizim hesaplamaları ve
grafikler her iki proğramdada aynı bulundu.

Anahtar Kelimeler: Mercek Tasarımı, Işın İzleme, Heysem, Paraksiyal, Gerçek

I dedicate this work to my family

ACKNOWLEDGEMENTS

I would like to express deeply grateful to my supervisor Prof. Dr. Metin BEDİR

and co-supervisor Assoc. Prof. Dr. Ahmet BİNGÜL for their guidance, patience

and support. I want to thank Uygar ŞAŞMAZ to support. I am deeply grateful

to my family. I have felt their support behind me all the time of my life.

viii

TABLE OF CONTENTS

Page

ABSTRACT . v

ÖZET . vi

ACKNOWLEDGEMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF SYMBOLS . xvii

LIST OF ABBREVIATIONS . xviii

CHAPTER 1 . 1

INTRODUCTION . 1

CHAPTER 2 . 2

BASIC GEOMETRIC OPTICS . 2

2.1 Introduction . 2

2.1.1 Light Propagation and Index of Refraction 2

2.1.2 The Law of Refraction . 3

2.1.3 Sign Conventions . 4

2.1.4 Sag of Spherical Surfaces 4

2.2 Paraxial Optics and Calculations 5

2.2.1 Lenses and Lens Types . 6

2.2.2 Cardinal Points of the Lenses 7

2.3 Stops, Pupils and Windows . 8

2.3.1 F-Number and Numerical Aperture 12

2.4 Aberrations . 13

ix

2.4.1 Spherical Aberration . 13

2.4.2 Coma . 16

2.4.3 Optical Path Difference (Wavefront Aberration) 17

2.4.4 Astigmatism and Field Curvature 19

2.4.5 Distortion . 21

2.4.6 Chromatic Aberration . 22

2.5 Optical Materials . 23

2.5.1 Abbe Number . 23

2.5.2 Optical Glasses . 24

2.5.3 Optical Plastics . 24

2.6 Doublet Achromatic Design . 25

CHAPTER 3 . 28

RAY TRACING . 28

3.1 Introduction . 28

3.1.1 y-u Trace for Thin Lenses 28

3.1.2 y-nu Trace for Thick Lenses 31

3.1.3 Derivation of Refraction Equation 31

3.1.4 Meridional Exact Ray Tracing 33

3.1.5 Intersection of a Line and a Circle 33

CHAPTER 4 . 36

USE OF HEYSEM 1.0 . 36

4.1 Introduction . 36

4.2 Basic User Guide of Heysem Program 36

4.3 Example Applications . 38

CHAPTER 5 . 47

CONCLUSION . 47

REFERENCES . 48

APPENDIX . 50

APPENDIX A LINE AND CIRCLE INTERSECTION 50

x

APPENDIX B RAY TRCING MATLAB CODES 52

xi

LIST OF TABLES

Page

Table 2.1 Properties of frequently used optical materials [10] 24

Table 2.2 Sample of optical glasses . 27

xii

LIST OF FIGURES

Page

Figure 2.1 Refraction of the light ray at an interface between two dif-

ferent optical media. 3

Figure 2.2 Plot of the spherical surface with the sag Z. 5

Figure 2.3 Paraxial region of the optical system is the thin region about

the optical axis. Red light rays are defined paraxial rays that

intersect the optical axis paraxial focus and blue light rays

are defined as exact rays that intersect the optical axis at

different points. But exact rays intersect the optical axis at

the paraxial focus as rays close the optical axis. 6

Figure 2.4 Light propagation and cardinal points of the lens. 8

Figure 2.5 As bundle of rays propagates lens system from object plane

to image plane, the aperture stop truncates the bundle of

the rays at the upper and lower rim. 9

Figure 2.6 Aperture stop, entrance pupil and exit pupil for a two-lens

system. 10

Figure 2.7 Location and width of entrance pupil and exit pupil in the

optical system. 10

Figure 2.8 The location of the pupils of the optical system to trace a

chief rays from middle of the aperture stop throught the its

left and right sides optical system can be determined. 11

Figure 2.9 Angular field of view of the system 12

xiii

Figure 2.10 A simple converging lens with spherical aberration. The dis-

tance between the points where paraxial marginal rays (red

rays) and exact rays (blue rays) cross the axis is defined

as longitudinal spherical aberration (abbreviated LSA). The

distance between paraxial focus point and exact ray in the

paraxial focus plane is transverse spherical aberration (ab-

breviated TSA). Note that as the exact rays approach to the

optical axis to intersect the optical axis near the paraxial fo-

cus. However, these rays away from the optical axis intersect

the axis near the lens. 14

Figure 2.11 Graphical representation of the longitutinal spherical aber-

ration (LSA) that is plotted against ray height of the last

surface of lens, Y(Ray), at the lens. 15

Figure 2.12 Plot of transverse aberration (TSA) versus final ray slope

Tan(U). 15

Figure 2.13 If parallel rays with an angle to the optical axis are focuses,

coma appears. The distance head of arrows shows tangential

coma. 16

Figure 2.14 When the light rays away from the both side of the chief ray

causes image blur. 17

Figure 2.15 Optical path differnce OPD is the difference between exact

wavefront and paraxial wavefront at various distance from

the optical axis. 18

Figure 2.16 Graphical representation of the optical path difference aber-

ration (OPD) that is plotted against ray height of the last

surface of lens, Y(Ray), at the lens. 19

Figure 2.17 If the tangential line and sagittal line do not coincide, astig-

matism occurs. Magnitude of the astigmatism changes with

respect to the distance between the this lines [5, 16]. 20

xiv

Figure 2.18 The incident rays have five different angles. Tangential image

plane is curved more than sagittal image plane [16]. 21

Figure 2.19 Pincushion distortion aberration 22

Figure 2.20 Barrel distortion aberrration 22

Figure 2.21 Light rays with different colors will not intersect the opti-

cal axis t the same point since they have different refractive

indices. 22

Figure 2.22 The distance along the axis between the blue rays focus and

red rays focus is known as axial longitudinal chromatic aber-

ration. 23

Figure 2.23 Achromatic doublet consist of positive crown glass equicon-

vex lens and negative flint glass lens. The radii of curvature

of lenses are demonstrated. 25

Figure 3.1 Ray propagation between two planes seperated by distance

tk [7]. 29

Figure 3.2 Ray propagation through a thin lens with focal length fk+1

[7]. 30

Figure 3.3 Refraction of a ray paraxial surface. 32

Figure 3.4 Exacat ray tracing with coordinates. 34

Figure 4.1 Graphical user interfaces of the Heysem program. 36

Figure 4.2 Layout related to example 1 38

Figure 4.3 Prescription data related to example 1. 39

Figure 4.4 Lens design graphical user interfaces. All values related to

given example. 40

Figure 4.5 Layout related to example 2 in zemax program. 40

Figure 4.6 The prescription data related to example 2 in zemax program. 41

Figure 4.7 Layout related to example 2 in heysem program. 41

Figure 4.8 The prescription data related to example 2 in heysem program. 42

Figure 4.9 Layout related to cooke triplet camera lens. 43

xv

Figure 4.10 Layout related to tessar design. 44

Figure 4.11 Layout related to example 5 in zemax program. 45

Figure 4.12 The prescription data related to example 5 in zemax program. 45

Figure 4.13 Layout related to example 5 in heysem program. 46

Figure 4.14 The prescription data related to example 5 in heysem program. 46

xvi

LIST OF SYMBOLS

y Height of the ray

u Ray slope

f Focal length

t Thickness

d Edge thickness of the lens

R Radius of curvature

n Refractive index

V Vertex of the lens

N Nodal point of the lens

H Principal point of lens

h Distance vertex to principal point

D Clear aperture

xvii

LIST OF ABBREVIATIONS

LSA Longitudinal spherical aberration

TSA Transverse aberration

EnP Entrance pupil

ExP Exit pupil

EFFL Effective focal length

BFL Back focal length

FFL Front focal length

OBJ Object

IMG Image

A.S Aperture stop

NA Numerical Aperture

F/# F number

OPD Optical path difference

GUI Graphical user interface

xviii

CHAPTER 1

INTRODUCTION

Before a lens can be produced it must be designed by a designer. Radius of

curvature of surfaces, the thickness, index of lens element, the diameter of the

various lens elements and optical lens material properties must be determined.

Ray tracing is a primary method used by optical engineers to determine opti-

cal system analysis and performance. It provides the calculating the angle of

refraction and the height of light ray at the each surface in the optical system.

Location, size, and orientation of the image formed by the lens can be defined

with a ray tracing from the object plane to image plane sequentially. To imple-

ment ray tracing and physical optics in computer, there are many lens design

programs such as Zemax OpticStudio [1] or Code V [2].

The main purpose of this thesis is to develop a ray tracing program, named

Heysem1 , for using in both academic and education purposes. Heysem uses two

main ray tracing algorithms, which are paraxial and exact ray tracing. In Paraxial

ray tracing, two different methods are used. They are known as y-u and y-nu

trace for thin lenses and thick lenses, respectively. Heysem has a user friendly

Graphical User Interface built in MATLAB [3]. The program is also capable

of ploting spherical aberrations and optical path differences. It also provides a

summary report called prescription data of the lens system to the user. For a

comparison, Zemax is used in order to verify the outputs of Heysem.

The chapter organization of the thesis is as follows. In Chapter 2, general geo-

metrical optics are given. The rays tracing algorithms are presented in Chapter

3. A user guide of Heysem is introduced in Chapter 4. Finally, a summary and a

conclusion of the thesis is given in Chapter 5. The MATLAB codes of developed

program can be found in Appendix.

1 Ibn al-Haytham (born in Basra) mathematician and astronomer who made significant con-
tributions to the principles of optics and the use of scientific experiments. The most important
work is Kitab al-manazir (Optics) [4].

1

CHAPTER 2

BASIC GEOMETRIC OPTICS

2.1 Introduction

Design and analysis of lens systems uses numerical calculations based upon ge-

ometrical optics. Geometrical optics is based upon the fundamental assumption

that light propagates along rays. Rays in a homogeneous medium follow straight

lines. It does not account for certain optical effects such as diffraction and in-

terference. The geometrical optical model is appropriate to define the properties

of image formation by a lens. Ray tracing is the basic tool used in optical de-

sign. The geometrical ray-based model provides determination of image location

and aberrations, and enables calculation of the pupil location and size. The last

section of this chapter provides basic information about optical materials [14].

2.1.1 Light Propagation and Index of Refraction

Light is defined as electromagnetic radiation within a certain region of electro-

magnetic spectrum with wavelengths between 400 nm and 700 nm which is visible

to human eye. The laws of optics and methods of optical design usually deal with

visible region. While light waves emanate from a point source in all directions

take a spherical wavefront form in the isotropic medium, radius of spherical shape

is equal to distance from the source. If we trace a path of a hypothetical point

on the wavefront surface as it moves through the space, we see that the point

progresses as a straight line. The path of a point on the wavefront is called light

ray [5].

As light rays traveling in a vacuum that has a velocity approximately c = 3×108

m/s. But in the material medium, velocity and is less than the value in a vacuum

[7]. The ratio of the vacuum velocity divided by the velocity of medium is called

2

index of refraction material medium that is denoted by the letter n [5]:

n =
c

v
=

velocity in vacuum

velocity in medium
=

wavelength in vacuum

wavelength in medium
(2.1)

2.1.2 The Law of Refraction

When the light ray traveling through the homogeneous medium, it encounters

an another medium boundary, as some of light rays is reflected, remaining rays

is transmitted into second medium. When the transmitted rays cross into the

second medium, it changes both its direction and it refracts. The law of refraction,

also known as Snell’s law that relates the relationship between the sines of the

incidence angle I and refraction angle I ′ measured from with respect to the normal

to the surface and the indices of refraction of the two mediums [5]. As it is seen

from Figure 2.1. This general relationship has the following mathematical form:

n1 sin I1 = n2 sin I2 (2.2)

where I1 and I2 are, respectively, the incident angle and the refracted angle of the

ray with respect to the normal to the surface, while n1 and n2 are the refractive

indices of the two different material medium.

)

)

I

I'

n
1

n
2

NORMAL

REFRACTED RAY

INCIDENT RAY

Figure 2.1 Refraction of the light ray at an interface between two different op-

tical media.

3

2.1.3 Sign Conventions

Sign convention is very important to facilitate the ray tracing throughout in the

optical system and it must be clearly defined for distances and angles. A single

arrowhead is used to demonstrate whether distances and angles direction are

positive or negative in the optical system.

• Light rays travel left to right and all refractive indices are positive [6].

• Distances measured to left of reference point are negative, to the right are

positive.

• While focal length of the converging lens is positive, it is negative for the

negative lens [7].

• While heights above the axis are positive, heights below the optical axis are

negative [7].

• Surface radius is positive means that the center of curvature lies to right of

the surface and radius is negative if the center of the curvature lies to left of

the surface [6].

• Angles that are measured counterclockwise from a reference are positive; mea-

sured clockwise from a reference are negative [6].

2.1.4 Sag of Spherical Surfaces

In the paraxial approximation light rays refracts on the plane surface. Actually,

light rays refracts on the spherical surface. Therefore, there is some separation

vertex plane and spherical surface. The phenomenon known as sag of surface. The

amount of separation increases if the light height move away from the paraxial

region. Also the relation between the ray height on the spherical surface with

radius and sag is important. The separation between the plane surface and lens

surface can be derived from geometry of Figure 2.2 [6, 10].

4

Z R-Z

R

C

Y

Sag

Figure 2.2 Plot of the spherical surface with the sag Z.

R2 = Y 2 + (R− Z)2

Z = R−
√
R2 − Y 2

(2.3)

where R is the radius of curvature, Y is the height of ray Z is the sag of the

surface increases with the height of the light on the surface.

2.2 Paraxial Optics and Calculations

Paraxial optics is used to determine the location and size of images and pupils

in the optical system [14]. It sometimes referred to first-order or Gaussian optic

is known as the optics of perfect optical systems. Thus, there are not any aber-

rations. we will consider the properties of optical systems in the region close to

the optical axis, usually known as the paraxial region that is a infinitesimal thin

region [5]. As it is seen in the Figure 2.8.

5

Figure 2.3 Paraxial region of the optical system is the thin region about the

optical axis. Red light rays are defined paraxial rays that intersect

the optical axis paraxial focus and blue light rays are defined as exact

rays that intersect the optical axis at different points. But exact rays

intersect the optical axis at the paraxial focus as rays close the optical

axis.

Incident and refraction angles of light rays may be set equal their sine and tangent

[5]. Paraxial equations are linear with respect to ray angles and heights. The sag

of the surface is ignored in the this region.

2.2.1 Lenses and Lens Types

Lenses can be divided into two categories. One of them is positive lens that

refracts rays convergently coming through on it and has positive focal length. An

other type of lens is negative lens that refract rays divergently and has negative

focal length. The optical axis of a lens is its rotational symmetric axis. When light

rays parallel to the optical axis pass through a positive lens, they are refracted

and intersect the optical axis at certain point. This point is known as focal points

of this positive lens. For the negative lens, refracted light rays will not intersect

the optical axis since this rays are diverted. But back extension of refracted

rays will intersect the optical axis at a certain point that point is focal point for

negative lens. There are two types of lenses that are thin lens and thick Lens. If

6

the center thickness of a lens is so small compared to the radii of curvature of the

lens surfaces, the lens can be considered as thin lens. The focal length of a thin

lens can be write f [16]. The focal length of the thin lens is defined as the image

distance for an object at infinity, giving

1

f
= (n− 1)

(
1

R1

− 1

R2

)
(2.4)

where n is the refractive index of the lens material and R1 and R2 are the radii

of the two surface curvatures of the lens and thin lens equation can be write in

terms of focal length, object distance s and image distance s′ [8].

1

f
=

1

s
+

1

s′
(2.5)

The lateral magnification (m) of an optical system is either given by ratio of

image size to object size or image distance to object distance.

m =
s′

s
(2.6)

When the center thickness of a lens is not so smaller than the two surface radii

of the lens, the lens is called thick lens whose focal length f can be written

1

f
= (n− 1)

(
1

R1

− 1

R2

+
(n− 1)d

nR1R2

)
(2.7)

2.2.2 Cardinal Points of the Lenses

For the lens, there are tree types of cardinal points which are focal points, prin-

cipal points and nodal points. If the light rays come from left to right or right to

left from infinitely distant and parallel to optical axis, this rays undergo refraction

on the lens and focuses a points on the optical axis. This points are called as

second focal point, F2, at the right side of the lens and first focal point, F1, at the

left side of the lens, respectively. If a bundle of rays entering the lens and after

emerging from the lens are extended until they come across each other a point,

this points on the lens look likes a planes according to paraxial approximation

that known as principal planes. The intersection of this planes with the axis are

the principal points (H1 and H2). Any ray directed the toward to first nodal

point, N1, emerge from the lens system parallel to incident ray and appears to

come from the second nodal point N2. For the thin lenses, the principal points

and nodal points together with its planes are cojugate, unlike for the focal points.

7

The position of the all six cardinal points are showed in Figure 2.4. When the

both side of the lens or optical system ia bounded by air, the nodal points are

coincide with principal planes.

d

n
n

L n'

R
1

R
2

V
1

H
1

N
1

V
2

N
2

H
2

h
1

F
1

Light rays from left

f.f.l
F

2

Light rays from right

b.f.l

e.f.f.l

h
2

Figure 2.4 Light propagation and cardinal points of the lens.

where R1 and R2 radius of curvature, d center thickness of the lens, h1 distance

between V1 to H1, h2 distance between H2 to V2, nL refractive index of the lens.

The effective focal length (effl) of the optical system is the distance between

principal point to focal point thus (distance H2 to F2 or H1 to F1). The back

focal length (bfl) is distance between last surface of the lens vertex (V2) to second

principal point. The front focal length (ffl) is the distance between first principal

point to first surface vertex (V1).

We can calculate this terms by using ray tracing that will be showed in the next

chapter [5, 8].

2.3 Stops, Pupils and Windows

Optical systems have an aperture stop, field stop, entrance pupil, and exit pupil

[16]. Light rays emerge from the object plane will not reach the image plane since

some optical structure constrict to pass through the optical system. Thus, the

only some usable light at the appropriate angles enters the system to reach the

image location. These optical structure known as stops. There are two types of

stops that are aperture stop that limits amount of light entering the system. It

8

may be located in front or at intermediate the optical system as seen from the

Figure 2.5 [6]. It constrict the some light rays. Another type of stop is field stop

which determines the field of view or how much of the object can be seen through

the optical system. It can be located at the object plane, image plane or in the

middle of the optical system [6].

OBJ IMA

A.S

Figure 2.5 As bundle of rays propagates lens system from object plane to image

plane, the aperture stop truncates the bundle of the rays at the upper

and lower rim.

The image of the aperture stop as seen from the object space that is the left

of the first surface of a system is known as entrance pupil (EnP) of the system.

Similarly, image of the aperture stop as seen from the image space that is right

of the last optical element is known as exit pupil (ExP) of the system as seen

from the figure 2.6. If there are no lenses between object and aperture stop, in

this case aperture stop is the entrance pupil. An other condition, if there are no

lenses between aperture stop and image plane, then aperture stop serve as exit

pupil [7, 16]. Aperture stop may be in the middle of the two or more lenses. We

can find easily location of the entrance pupil and exit pupil. We assumed that

an object is located at the edge of the aperture stop and by tracing some rays

forward and rearward from periphery of the object can be found its images that

are the entrance pupil and exit pupil of the system as it is seen from the object

space and image space respectively [16]. It is seen from the Figure 2.6.

9

EnP

ExP

A.S

Figure 2.6 Aperture stop, entrance pupil and exit pupil for a two-lens system.

There are two important rays in the meridional plane which are marginal ray and

chief ray are also known as meridional rays. Marginal ray or axial ray starts at

the axial object point and proceeds to edge of the entrance pupil and determine

the image location and image size. It also propagates the edge of the aperture

stop and edge of the exit pupil [11]. As it is seen from the Figure 2.7

OBJ IMA
EnPExP

A.S

Marginal Ray

 Chief Ray

Figure 2.7 Location and width of entrance pupil and exit pupil in the optical

system.

Another ray is chief ray or oblique ray that emanate from the edge of the object

and goes the center of te entrance pupil and also define image height and pupil

location. It propagates the center of the aperture stop and center of the exit pupil.

Pupil location also can be determine tracing a chief ray center of the aperture

stop through left and right side of the optical system [5, 11]. The ray intersection

with the axis gives pupil location as shown in Figure 2.8.

10

OBJ IMA

EnP ExP

A.S

Figure 2.8 The location of the pupils of the optical system to trace a chief rays

from middle of the aperture stop throught the its left and right sides

optical system can be determined.

A chief ray is traced both direction from the aperture stop center. The ray

appears to comes from center of the entrance pupil through the object space. It

appears to emanate from center of the exit pupil through the image space. If

the slope of the chief ray increase the edge of the first lens, the first lens is the

field stop. Because the field stop is in the object space, it also known as entrance

window. Extension of the chief ray from the first lens intersect the optical axis at

the center of the entrance pupil. The angle between extension of two chief rays is

called angular field of view of the system. The field of view is also defined as the

maximum angular size of the object as seen from the entrance pupil. As it is seen

from the Figure 2.9. The field stop image must be occurred through second lens.

The image of the field stop is called as exit window of the system. Briefly, images

of the field stop as seen from object and image space gives entrance window and

exit window, respectively [7, 11].

11

OBJ IMA

(

EnPExP

A.S

Angular field of view

Figure 2.9 Angular field of view of the system

Figure 2.9 shows that first lens serve as both field stop and entrance window

and its images gives exit window. The entrance and exit pupil, the aperture stop

have important role both collecting light and decreasing the certain aberrations.

2.3.1 F-Number and Numerical Aperture

F/# is defined as the ratio of the effective focal length to clear aperture or

diameter of the entrance pupil [5].

F/# =
effective focal length

clear aperture
=
f

D
(2.8)

where F/# is a single symbol. The f- number is also known as relative aperture.

For example, a lens with 30 mm aperture and 60 mm focal length has a f-number 2,

which is usually denoted by f/2 [15]. The numerical aperture (usually abbreviated

as NA) is defined as index of refraction of the medium times by the sine of the

largest entrance ray angle with respect to the optical axis.

NA = n sin u (2.9)

Numerical aperture and f-number are two methods of describing same character-

istic of a system. While numerical aperture is used for systems which work at

finite conjugate such as microscope objective, f-number is conveniently applied

to systems for use distant object such as camera lens [5].

12

2.4 Aberrations

Any exact optical system includes various aberrations. The main purpose of

optical design is to minimize these aberrations. There are five important aberra-

tions such as spherical aberration, coma, astigmatism, field curvature, and image

distortion. These five aberrations are monochromatic. We will also describe

chromatic aberrations and optical path difference [15].

2.4.1 Spherical Aberration

Spherical aberration is a optical defect in the optical systems. It occurs that when

all incoming light rays on the spherical surface of a lens, these rays intersect the

optical axis different points. Because of this, spherical aberration affect quality

of the images. We suppose that an exact ray coming from an object at infinity,

while some of these rays intersect the optical axis near the lens, some of another

rays intersect the optical axis very near the paraxial focus position. Once the

rays height increases from the optical axis, rays intersection points with the axis

move away the paraxial focus. Figure 2.10 shows that paraxial marginal rays

which defined as red color intersect the axis paraxial focus. Exact rays which

shown as blue rays intersect the axis different points [15].

13

LSA

TSA

Paraxial focal plane

Figure 2.10 A simple converging lens with spherical aberration. The distance

between the points where paraxial marginal rays (red rays) and ex-

act rays (blue rays) cross the axis is defined as longitudinal spher-

ical aberration (abbreviated LSA). The distance between paraxial

focus point and exact ray in the paraxial focus plane is transverse

spherical aberration (abbreviated TSA). Note that as the exact

rays approach to the optical axis to intersect the optical axis near

the paraxial focus. However, these rays away from the optical axis

intersect the axis near the lens.

The distances between points where the paraxial rays and exact rays intersect

the axis is called longitutinal spherical aberration is abbreviated LSA.

LSA = T − t (2.10)

where T and t is the distance between last surface of the lens and their cor-

responding intersection point. Another type of spherical aberration transverse

aberration can be defined as distance between the points where the rays cross

the paraxial plane. Spherical aberrations are generally represented graphically.

Longitudinal spherical aberration (LSA) is plotted against ray height at the lens.

As shown in Figure 2.11.

14

LSA

Y(Ray)

Figure 2.11 Graphical representation of the longitutinal spherical aberration

(LSA) that is plotted against ray height of the last surface of lens,

Y(Ray), at the lens.

Transverse spherical aberration can be calculated as to trace both exact rays and

paraxial rays which emerge from at the same points and paraxial image plane is

shifted toward left side from its initial point that may defined as shifted reference

plane. These rays intersect the reference plane difference points. The differ-

ences between relative paraxial ray height and exact ray height gives transverse

aberration [5, 7]. Spherical aberrations are affected by object position, width of

aperture and lens shape but it can be eliminate by decreasing the aperture size

and changing lens shape.

TSA

Tan(U)

Figure 2.12 Plot of transverse aberration (TSA) versus final ray slope Tan(U).

15

2.4.2 Coma

When the light rays that parallel the optical axis and incident on the spherical

lenses focuses different points on the optical axis, spherical aberration occurs. A

bundle of ray about the chief ray with an angle will focus paraxial image point.

But marginal rays passing through the edge portions of the lens do not focus on

the chief ray. This kind of phenomenon is called coma aberration [7]. The upper

and lower rim rays intersect the plane above the chief ray at same plane. The

difference between intersection two rays point and chief ray is called tangential

coma [15]. As it is seen from the Figure 2.14.

Figure 2.13 If parallel rays with an angle to the optical axis are focuses, coma

appears. The distance head of arrows shows tangential coma.

The magnitude of coma aberration depends on the shape of the lens element,

an aperture position and size and incident angle with axis. If incident angle of

the rays and the lens aperture size increase, coma aberration increases. As the

number of the light rays increases, the coma aberration looks like comet-shaped

flare in the image plane. It can be seen spot diagram. Coma aberration affects

sharpness of the image [16].

16

Figure 2.14 When the light rays away from the both side of the chief ray causes

image blur.

2.4.3 Optical Path Difference (Wavefront Aberration)

Light waves radiating from the point source take a spherical form. After refraction

in the optical system, light waves converging to form perfect image. In the Figure

2.15 represents spherical wavefront from the object point and aberrated wavefront

emerging from the optical system. Spherical paraxial wavefront is denoted by

dashed line that produces an image at the paraxial image. Exact wavefronts are

denoted by solid line that represent actual solution of the optical system. Ray is

the path of a point on the paraxial wavefront is defined as paraxial ray (red line)

and path of a point on the exact wavefront is defined as exact ray (blue line).

That the rays are also normal to the relative wavefront. As it seen in the Figure

2.15, paraxial ray and exact ray do not intersect the optical axis at the same

point. Difference between paraxial and exact rays on the optical axis defined

as longitudinal aberration and difference between these rays in the image plane

defined as transverse aberration. These are ray aberrations. Alternatively, OPD

aberration can be described in terms of the deviation of the exact wavefront from

the paraxial wavefront at various distance from the optical axis known as optical

path difference. Notice that if the rays from both wavefront near the optical axis,

the rays reaches the same image point [5, 8].

17

.

Spherical wavefronts from object point Aberrated wavefronts emerging from system

Paraxial Ray

Exact Ray

Paraxial image plane

OPD

Paraxial wavefront

Exact wavefront

Figure 2.15 Optical path differnce OPD is the difference between exact wave-

front and paraxial wavefront at various distance from the optical

axis.

Optical path difference can be calculated according to fermat principles states

that path is between two given points taken by light rays in the least amount

of time. OPD can be calculated as either difference between the marginal ray

optical path length and axial optical path length through the optical system or

difference optical path lengths between paraxial ray path length and exact ray

that emerges from same object point [6, 8].

OPD = (Path along the reference ray)− (Path along the ray) (2.11)

where path along the reference ray is path along the paraxial ray, path along the

ray is path along the exact ray [14].

18

OPD

Y(Ray)

Figure 2.16 Graphical representation of the optical path difference aberration

(OPD) that is plotted against ray height of the last surface of lens,

Y(Ray), at the lens.

2.4.4 Astigmatism and Field Curvature

Figure 2.17 illustrate the astigmatic images of an off-axis object point. The image

of an point source is formed by tangential fan of rays in the tangential plane will

be a line image that is known as tangential focal line. This line perpendicular the

tangential plane and lies sagittal plane. On the other hand, image is formed by

sagittal fan of rays in the sagittal plane will be a line that is called sagittal focal

line. This line lies on the tangential plane and perpendicular to sagittal plane.

Astigmatism occurs when the tangential line and sagittal line do not coincide [5].

19

Figure 2.17 If the tangential line and sagittal line do not coincide, astigmatism

occurs. Magnitude of the astigmatism changes with respect to the

distance between the this lines [5, 16].

Every lens has a basic curved image surface known as Petzval surface (as shown

in Figure 2.18), which is a function of the refraction index of the lens element and

surface curvature. If the lens has no astigmatism, sagittal and tangential images

surfaces coincide with each other and lie on petzval surface. For a simple thin

lens, the longitudinal distance between the Petzval surface and the ideal planar

image surface is given by h2/(2nf), where h is the image height, n is the index

of refraction of the lens and f is focal length of the lens. If we assumed that light

rays comes from an object have five different angles to the optical axis, the light

rays with different angles will focuses different points from the ideal image plane.

As it is seen in the Figure 2.18, longitudinal position of the focused points moves

toward the lens while the field angle increases. This phenomenon is known as

field curvature [16].

20

Figure 2.18 The incident rays have five different angles. Tangential image plane

is curved more than sagittal image plane [16].

2.4.5 Distortion

Distortion aberration is the easiest to visualize. There are two types of distortion

barrel distortion and pincushion distortion. Although object points are imaged

as points, distortion occurs as variation in the lateral magnification. If the magni-

fication increases with the from axis, the image appears as pincushion distortion.

The image is stretched by its corners. If the magnification decreases with dis-

tance from the axis, the images appears as barrel distortion. The image with

barrel distortion is compressed at its corners. While the Figure 2.19 shows the

pincushion distortion, the Figure 2.20 shows barrel distortion [6, 8].

21

Figure 2.19 Pincushion distor-

tion aberration

Figure 2.20 Barrel distortion

aberrration

2.4.6 Chromatic Aberration

A lens will not focus different colors at the same place on the optical axis since

focal length depends on refractive index of the material. Because the index of

refraction varies as a function of a wavelength of the light, various colors in the

light have different velocities within media. The index of refraction for blue light

higher than that of red light since wavelength of the blue ray shorter than red

light wavelength. In such a way that the blue light rays focus on the axis nearer

the lens than the red light rays as seen from the Figure 2.22 [6, 5].

Figure 2.21 Light rays with different colors will not intersect the optical axis t

the same point since they have different refractive indices.

22

Figure 2.22 The distance along the axis between the blue rays focus and red

rays focus is known as axial longitudinal chromatic aberration.

2.5 Optical Materials

The most common lens materials is optical glasses. However, crystals and plastics

are can be used. The optical materials must have some properties. It should be

able to accept a smoot polish, have homogeneous index of refraction, be chemi-

cally and mechanically stable, be free of undesirable artifacts [5].

2.5.1 Abbe Number

The Abbe number is a quantitative measure of the average slope of the dispersion

curve. The Abbe number, sometimes called the glass factor [6]. Abbe number,

V-number is defined as

V =
nd − 1

nF − nC

(2.12)

where nd, nF , nC are the indices of the refraction for the helium d line 0.5876 µm,

the hydrogen F line 0.4861 µm, and the hydrogen C line 0.6563 µm, respectively

[5]. If the difference between refractive index at the F wavelength and the C

wavelength is a small value, Abbe number is large and small dispersion. On the

other hand, large dispersion glass has a low Abbe number. V-value or V number

is greater than 55 glasses are classified as crown glass, V-value is less than 50 are

called flint glass 1.55 µm [6].

23

2.5.2 Optical Glasses

Optical glasses are very useful material in the visual and near-infrared spectral

region. They are easily fabricated, stable homogeneous and clear [5]. Optical

glasses are classified as crown glasses and flint glasses. Crown glasses have low

index of refraction that is below 1.6 and low dispersion, (high Abbe number,

V-value of 55 or more). A common Schott glass, N-BK7, is a crown glass used

in precision lenses (nd = 1.517, V-value=64.7). Flint glasses have high index of

refraction (nd = 1.6) and high dispersion(low Abbe number), V-value less than

50 [6].

2.5.3 Optical Plastics

Plastic lens have become very popular in recent years, especially used for eye

glasses. The advantages of plastic lenses are its low cost of raw material, easy

and economic for the manufacture, high impact resistance and aspherical surfaces

can be molded easily. Disadvantages of the plastic lenses are low heat resistance,

high thermal expansion, high temperature coefficient of expansion, surfaces are

less durable than glass [6, 5, 10]. The properties of the some used frequently

optical materials are given in the Table 2.1.

Table 2.1 Properties of frequently used optical materials [10]

Properties Acrylic Polycarbonate polystyrene

(PMMA) (PC) (PS)

Refractive index

NF (486.1 nm) 1.497 1.599 1.604

ND(587.6 nm) 1.491 1.585 1.590

NC(656.3 nm) 1.489 1.579 1.584

Abbe value 57.2 34.0 30.8

Transmission(%) 92 85-91 87-92

Key advantages Scratch resistance Impact strength Lowest cost

Chemical resistance Temperature resistance Clarity

High abbe

Low dispersion

24

2.6 Doublet Achromatic Design

The doublet achromatic is design to eliminate chromatic aberrations for the sin-

glet lenses. The achromatic doublet consist of convex lens element with high

dispersion and concave lens element with low dispersion. Focal length and power

of the lenses are the different in the doublet design. But compound lens has

a net focal length Which provide reduction of the dispersion significantly. The

general shape of the achromatic doublet is given in the Figure 2.23. The power

of the convex and concave lenses for the yellow center of the visible spectrum

demonstrated by the Fraunhofer wavelength λD = 586.7 nm [6].

r
11

r
12

r
21

r
22

Figure 2.23 Achromatic doublet consist of positive crown glass equiconvex lens

and negative flint glass lens. The radii of curvature of lenses are

demonstrated.

P1D = (n1D − 1) +

(
1

r11
− 1

r12

)
= (n1D − 1)K1

P2D = (n2D − 1) +

(
1

r21
− 1

r22

)
= (n2D − 1)K2

(2.13)

where the radius of curvatures showed in Figure 2.23. P1D and P2D are the power

of the lenses. nD refers to index of refraction each glass for the D fraunhofer line.

K1 and K2 are abbreviation for the curvatures.[8].

1

f
=

1

f1
+

1

f2
− L

f1f2
(2.14)

25

f is the thin-lens doublet with lens separation L = 0. The power of the doublet

is P = 1/f and also defined as additive of two lens powers [8].

P = P1 + P2 (2.15)

Dispersive constant V is defined as reciprocal of the dispersive power and given

by

V =
nD − 1

nF − nC

(2.16)

where V is the abbe number and nD, nF , nC are the indices of the refraction

for the helium d line, the hydrogen F line, and the hydrogen C line, respectively.

The power of the each elements can be expressed in terms of the desired power

PD of the combination:

P1D = PD
−V1

V2 − V1

P2D = PD
V2

V2 − V1

(2.17)

The K curvature factors can be calculated as

K1 =
P1D

n1D − 1

K2 =
P2D

n2D − 1

(2.18)

Finally, using as the values of K1 and K2, four radii of curvature of lens can be

determined. The radii of curvature of two lenses satisfy

r12 = −r11 r21 = r12 and r22 =
r12

1−K2r12
(2.19)

Radius of achromatic lens is demonstrated in Figure 2.23. In the design of an

achromatic doublet, there are three indices of refraction for each of glasses and

abbe number [8]. These values are taken from manufacturer’s specification as

shown in the Table 2.2.

26

Table 2.2 Sample of optical glasses

Type Catalog code V nC nD nF

Abbe value 656.3 nm 587.6 nm 486.1

Borosilicate crown 517/645 64.55 1.51461 1.51707 1.52262

Borosilicate crown 520/636 63.59 1.51764 1.52015 1.52582

Light barium crown 573/574 57.43 1.56956 1.57259 1.57953

Dense barium crown 638/555 55.49 1.63461 1.63810 1.64611

Dense flint 617/366 36.60 1.61218 1.61715 1.62904

Flint 620/380 37.97 1.61564 1.62045 1.63198

Dense flint 689/312 31.15 1.68250 1.68893 1.70462

Dense flint 805/255 25.46 1.79608 1.80518 1.82771

Fused silica 458/678 67.83 1.45637 1.45846 1.46313

27

CHAPTER 3

RAY TRACING

3.1 Introduction

Ray tracing is a important technique for optical design and primary method

used by optical engineers to determine optical system analysis. It is based on

geometric optics that assumes light propagates like a straight ray and neglecting

wave property of light. An other definition of ray tracing is a tracing a ray of light

through a system by calculating the angle of refraction and height of ray on the

optical axis at each surface. We can determine the location, size, and orientation

of the image formed by the lens with tracing a few rays from the object through

the lens [16].

3.1.1 y-u Trace for Thin Lenses

y-u trace is a great technique that use for evaluating complex optical system that

consists of many thin lenses. we will use two different equation with derivation

in this section; transfer equation and slope angle equation,respectively.

yk+1 = yk + uktk (3.1)

uk+1 = uk − yk+1φk+1 (3.2)

where yk is the ray height, uk is the ray angle, tk is the distances, φk+1 = 1/fk+1

is the powers. We know that light propagates rectilinear form in a vacuum with

constant refractive index. We assume that the ray propagates right-handed coor-

dinate system (in the y–z plane) as shown in figure 3.1 and choose the z-axis as

the optical axis of the system [17]. We will proceed plane by plane from object

plane to image plane that are perpendicular to the optical axis.

28

Firstly, we will look at ray between an object and lens surface. Ray is described

by its distance from the optical axis, yk, and by the angle uk that is a angle with

optical axis before refraction, and distance, tk, is between two relative planes. As

the ray propagates along the optical axis, it strikes each surfaces of the system

and has different coordinates such as new angles, heights, distances that may

change and take different values in different planes.

Derivation of a transfer equation: we select two reference planes separated by a

distance tk in homogeneous medium as seen from the Figure 3.1). There is a

relationship between input values and output values. So, we can specify initial

values because of ray starts with its initial coordinates (y1, u1). The angle re-

mains constant but height will be change. In the paraxial region, each surfaces

approaches a flat plane surface and all angles approach their sines and tangents

[5]. Thus we can replace tanuk by uk.

yk+1 = yk + uktk (3.3)

where tk is the distance between the k and the k + 1 surface and uk is the ray

angle defined earlier. This equation known as the transfer equation [7].

t
k

u
k

u
k)

)

y
k

y
k+1

z

Figure 3.1 Ray propagation between two planes seperated by distance tk [7].

When the light rays with an angle uk with respect to the axis incident on a surface

of thin lens at a height yk+1 from the axis it will be refracted to new angle uk+1

and intersect the axis distance tk and tk + 1 before and after refraction, as shown

in Figure 3.2

we can apply thin lens equation

1

tk+1

=
1

fk+1

+
1

tk
(3.4)

29

The slope angles of the rays are

tanuk =
−yk+1

tk
and tanuk+1 =

−yk+1

tk+1

We see minus sign in the two equation is because of the fact that the tanuk and

yk+1 are positive, but tk is negative.On the other hand, yk+1 and tk+1 are positive,

but uk+1 is negative [7].

- t
k
 t

k+1

y
k+1

(u
k+1) u

k

Figure 3.2 Ray propagation through a thin lens with focal length fk+1 [7].

tk =
−yk+1

uk
and tk+1 =

−yk+1

uk+1

where the paraxial approximation tanuk = uk and tanuk+1 = uk+1 substituting

into in Equation 3.4

uk+1

yk+1

=
1

fk+1

− uk
yk+1

(3.5)

If we multiply Equation 3.5 by −yk+1 we have an equation that provide the new

angle by using ray height at the lens yk+1 and incident ray angle uk

uk+1 = uk −
yk+1

fk+1

(3.6)

If we rearrange the equation to replace by 1/fk+1 and φk+1

uk+1 = uk − yk+1φk+1 (3.7)

while fk+1 is the focal length of the lens, φk+1 is known as power. Equation 3.7

may be called the slope angle equation [7].

30

3.1.2 y-nu Trace for Thick Lenses

y-nu trace method is similar to y-u trace that is used to thin lenses. But y-nu ray

trace will be use thick lens. So we take into account radius of curvature, thickness

of thick lens and other optical elements. y-nu tracing is more convenient to

calculation rays of light as they interact with sequentially many optical surfaces.

Therefore, we must define radius of curvature, refraction index and center of

thickness of the lens. We will use two equation that are transfer equation and

refraction equation. Transfer equation is the same as used in thin lens formula.

We will proceed surface by surface such as from surface k to surface k + 1. The

transfer equation is written as

yk+1 = yk + uktk (3.8)

where y is the ray height at the surface, u is the slope angle, and t is the separation

between the two surfaces.

3.1.3 Derivation of Refraction Equation

This equation must be derived to calculate the change height of the ray from axis

and slope angle due to refraction at each plane [7]. According to paraxial approx-

imation, light rays propagates very close the optical axis. In this approximation

the sine and tangent angles are equal to its angle (sinuk = uk and tanuk = uk)

and every lens surface approaches a flat plane surface [5]. In order to derive of

refraction equation, we need to know refraction indices of two spaces, radius of

curvature of the surface R and at the point where ray enters the second medium

with slope angle uk is changed to uk+1 and height of the ray yk+1 from the axis.

Also at that point the ray incident on the surface at the angle I and refracted

angle I ′ and local normal to the surface makes an angle α with the optic axis [7].

From the geometry shown in Figure 3.3. In the small angle approximation :

α = tanα, uk = tanuk, uk+1 = tanuk+1

uk =
uk+1

−tk
, −uk+1 =

yk+1

tk+1

, −α =
yk+1

Rk+1

(3.9)

It can be observed from Figure 3.3 that

I = uk − α, α = uk+1 − I ′ or I ′ = uk+1 − α. (3.10)

31

- t
k
 t

k+1

y
k+1

(u
k+1) u

k

(u
k

n
k

n
k+1

R
k+1

C(

I (

I'
)

Figure 3.3 Refraction of a ray paraxial surface.

Snell’s law (nk+1 sin I ′ = nk sin I) in the paraxial region decreases via the small

angle approximation to

nk+1 I
′ = nk I (3.11)

substituting Equation 3.10 into Equation 3.12 one gets

nk+1uk+1 = nkuk + (nk+1 − nk)α (3.12)

and substituting for α, from Equation 3.9

nk+1uk+1 = nkuk − (nk+1 − nk)
yk+1

Rk+1

(3.13)

Equation 3.13 is known as refraction equation in paraxial optic [6]. There are

some calculations that are very important in the paraxial optics [5]. One of them

is effective focal length of the lens can be calculated as

effl = f =
initial ray height

final ray angle
=
−y1
uend

(3.14)

Another one is back focal length

bfl =
final lens surface ray height

final ray angle
=
−yend
uend

(3.15)

Reverse y-nu trace formula for the thick lens gives as follows

uknk = uk+1nk+1 + yk+1Pk+1 (3.16)

yk = yk+1 − uktk (3.17)

P is the power of a single refracting surface.

32

3.1.4 Meridional Exact Ray Tracing

Paraxial theory demonstrates perfect imagery by optical systems since all of rays

each point on the object combine same image point. In fact, the paraxial image is

no true representation of the object. And, as for real rays that will not intersect

the image point at same point. Real ray tracing reveal aberration in an image.

Accordingly, image will be blurred or distorted [9]. There are two ways to a apply

exact ray tracing in the meridional plane(y-z) either use the equation developed

for skew rays but x component approaches zero or the Q-U method developed

by O’Shea, [7]. We will use different technique to determine exact ray tracing

equations that contains line-circle intersection to find exact angle and height.

There are some assumptions for exact ray tracing:

• The ray starts with the initial coordinates [y(k), u(k), z(k)] that are known.

• Apply transfer the ray equation between a tangent plane to the next actual

surface. You should find actual surface coordinates such as [y(k + 1), u(k +

1), z(k + 1)] as using line-circle intersection equation.

• you should find actual surface coordinates such as [y(k+ 1), u(k+ 1), z(k+ 1)]

as using line-circle intersection equation.

• Apply transfer equation to the next surface and repeat the sequence.

3.1.5 Intersection of a Line and a Circle

We will use two equation line equation and circle equation, respectively.

Line equation with respect to k + 1 surface as shown in Equation 3.18

yk+1 = yk + tanuk(zk+1 − zk) (3.18)

where Rk + 1 is of the curvature, (zk+1 − zk) is separation between object plane

and a point where ray intercept the surface, yk+1 is a height at the actual surface,

and tanuk is the slope angle. If the center of the circle is at the origin, equation

can be write r2 = y2+z2 where r is the radius. When the center of circle is the out

of the origin at the point C(a,b), the equation becomes (z − a)2 + (y − b)2 = r2.

Figure 3.4 shows exact ray tracing and its calculation parameters.

33

OBJ IMA

u
k)

u
k (

.
C

(
y

k

y
k+1

u
k+1

)

I (

I'
)

R
k+1

R
k+2

n
k

n
k+1

n
k+2

t
k

t
k+1

t
k+2

(z(k),y(k),u(k))

(z(k+1),y(k+1),u(k+1))

Figure 3.4 Exacat ray tracing with coordinates.

The geometry for the refraction of a ray at the actual surface is shown in Figure

3.4. We will look at the k + 1 st surface where slope angle of the incident ray

uk is turn into uk + 1 after refraction and it has height yk+1 from the axis. The

surface has radius Rk+1 with the center of curvature at C. Incident angle I and

refracted angle I ′ is measured from with respect to the normal to surface that

makes an angle α with the optic axis and nk, nk+1 are indices of refraction two

different media.

It can be also observed from Figure 3.4 that

sinα = yk+1

Rk+1
, I = uk + α, α = I ′ − uk+1 or uk+1 = I ′ − α

The circle equation :

(zk+1 − (Rk+1 + tk))2 + (yk+1)
2 = (Rk+1)

2 (3.19)

One can substitute Equation 3.18 into Equation 3.19 to obtain for zk+1, yk+1 as

follows:

(zk+1 − (Rk+1 + tk))2 + (yk + tanuk(zk+1 − zk))2 = (Rk+1)
2 (3.20)

See Appendix A for the derivation of Equation 3.20. We have the values of I, uk,

α. To find I ′, we can apply Snell’s law:

34

nk+1 sin I ′ = nk sin(uk + α) (3.21)

Finally, slope angle of refracted ray uk+1 is equal to difference (I ′−α). Thereby, we

have new coordinates, (zk+1, yk+1, uk+1). The procedure can be repated iteratively

until we reach image plane to find the intersection coordinates at the next surface.

35

CHAPTER 4

USE OF HEYSEM 1.0

4.1 Introduction

Heysem is the ray tracing program software developed in MATLAB 2016. MAT-

LAB is a high-performance language for technical computing and known as ma-

trix laboratory since its basic data element is matrix. It uses computations and

algorithms to analyze large amounts of data and also include plotting of func-

tions, application development, Graphical User Interface building (GUI). In this

chapter the usage of the Heysem briefly is given.

4.2 Basic User Guide of Heysem Program

This program has different types of buttons, each of which serves a different

purposes. A screenshot of the program is shown in Figure 4.1.

Figure 4.1 Graphical user interfaces of the Heysem program.

36

Basic manual is as follows:

• Selected ray type button provide the user three different ray layout. For ex-

ample, user can choice both paraxial ray and exact ray at the same time or

individually.

• Thick lens data button include values related to thick lens design that are

radius of curvature, index of refraction, thickness between surfaces, diameter

of each surfaces. The data is taken from a default file called lens.txt stored in

the same folder as the program executable file.

• Thick lens layout button draws the figure related to thick lenses

• Prescription data generates some data as shown in Figure 4.8

• Thin lens data button include values related to thin lens which are focal length

of the lens, thickness and diameter.

• Thin layout button draws the figures related to thin lenses

• User can enter any object height, number of rays and field angle. Default

values related to object height, number of rays and field angle are defined as

5, 7, 0 respectively.

• Insert row button adds new surfaces anywhere in the table but firstly user

should select the relevant surface.

• Delete row button removes selected surface.

• Aberration parts include tree buttons that are LSA button, TSA button and

OPD button. LSA button draws a figure longitudinal spherical aberration

versus ray height at he last surface of the system. TSA button draws a figure

transverse aberration (TSA) versus final ray slope Tan(u). OPD button draws

a figure optical path difference (OPD) versus ray height Y(Ray) at the last

surface of the system.

• Gui table includes different parameters which are surface radius, index, thick-

ness, diameter. Surface type consist of object plane(OBJ), image plane(IMG),

aperture stop surface(STO) and standard surface(STD). Radius is define as

radius of all lens surface. Object, aperture stop, image that are taken infin-

ity(inf). Index is define as index of refraction of the lens and space index,

image plan, object plane, aperture stop are taken as one. Thickness is defined

as distance between surfaceses. User should take object distance as inf, if

object at infinity. Otherwise, any value can be used object at finite distance.

37

• Save as button saves output into the file.

4.3 Example Applications

Example 1: A small biconvex lens has a center thickness 5 mm and an index of

1.5, and it is surrounded by by air. Assume that its first surface has a radius of

20 mm and its second surface a radius of 10 mm. We can determine some values

about the optical system as using heysem program [15].

Figure 4.2 Layout related to example 1

Solution of the optical system as shown Figure 4.2 is given in general lens data

as shown below Figure 4.3.

38

Figure 4.3 Prescription data related to example 1.

Example 2: Figure 4.5 and Figure 4.7 shows a typical problem that is designed

both in zemax and heysem program. The optical system consist of three surfaces

and have radii, thicknesses and indices. The object is located at infinity distance

left of the first surface 10 mm above the axis. The lens is immersed in air [5]. We

have the values related to optical seystem as follows:

39

R1 = 50 t1 = inf n1 = 1

R2 = −50 t2 = 10 n2 = 1.5

R3 = −50 t3 = 2 n3 = 1.6

R4 = plano t4 = 60 n4 = 1

All calculations are calculated both in zemax and heysem program. Results are

given in the prescription data for two programs as shown in Figures 4.6 and 4.8,

respectively.

Figure 4.4 Lens design graphical user interfaces. All values related to given

example.

Figure 4.5 Layout related to example 2 in zemax program.

40

Figure 4.6 The prescription data related to example 2 in zemax program.

Figure 4.7 Layout related to example 2 in heysem program.

41

Figure 4.8 The prescription data related to example 2 in heysem program.

42

Figure 4.9 Layout related to cooke triplet camera lens.

Example 3: This example is related to Cooke triplet camera lens layout as

shown Figure and determine some values [5]. Required values about the system

are given as follows:

R1 = 26.160 t1 = 4.916 n1 = 1.678

R2 = 1201.700 t2 = 3.988 n2 = 1

R3 = −83.460 t3 = 1.033 n3 = 1.648

R4 = 25.670 t4 = 4.00 n4 = 1

R5 = STOP t5 = 6.925 n5 = 1

R6 = 302.610 t6 = 2.567 n6 = 1.651

R7 = −54.790 t7 = 81.433 n7 = 1

Results of optical system calculations are as indicated below :

Effective focal length (EFFL) = 98.657496

Back focal length (BFL) = 81.518244

43

Figure 4.10 Layout related to tessar design.

Example 4: This example is related to layout and compute some values Tessar

lens design as shown Figure 4.10 [5]. Required values about the system are given

as follows:

R1 = 30.322 t1 = 5.054 n1 = 1.620

R2 = 390.086 t2 = 5.579 n2 = 1

R3 = −78.533 t3 = 3.760 n3 = 1.575

R4 = 26.128 t4 = 4.320 n4 = 1

R5 = STOP t5 = 2.634 n5 = 1

R6 = 82.072 t6 = 8.076 n6 = 1.1.639

R7 = −21.128 t7 = 2.021 n7 = 1

R8 = −21.128 t8 = 0 n8 = 1.523

R9 = −114.906 t9 = 81.484 n9 = 1

Effective focal length (EFFL) = 99.755850

Back focal length (BFL) = 81.307107

Example 5: We assumed that an optical system (as seen from Figure)is made

up of a positive thin lens that has diameter 6 cm and focal length 6 cm. Another

lens is negative lens that has 6 cm diameter and its focal length -10 cm. The

aperture is located 3 cm in front of first lens. The distance between two lenses is

4 cm [8].

44

Figure 4.11 Layout related to example 5 in zemax program.

Calculations due to the example 5 as shown Figure 4.11 are given in general lens

data as shown below Figure 4.12.

Figure 4.12 The prescription data related to example 5 in zemax program.

45

Figure 4.13 Layout related to example 5 in heysem program.

Calculations with the example 5 are given in the heysem program lens data as

shown in the Figure 4.14

Figure 4.14 The prescription data related to example 5 in heysem program.

46

CHAPTER 5

CONCLUSION

A basic paraxial and exact ray tracing program called Heysem 1.0 for the optical

lens design has been developed by using MATLAB 2016. The program may

especially be used for educational purpose for undergraduate students. Optical

and geometrical system data (such as lens surfaces and indices of refraction of

lenses) are input to Heysem having a simple lens data editor similar to Zemax.

The outcomes (layout, prescription data) of Heysem and Zemax are found to be

the same.

Heysem is only performing meridional ray tracing and related calculations. How-

ever, traditional ray tracing software programs (Zemax, Code V, TracePro and

etc) are good at calculations of skew rays, tolerancing, thermal analysis and phys-

ical optics.

In the next version of Heysem, first, it is suggested to include skew ray tracing

and suitable spot diagram at image surface.

47

REFERENCES

[1] Zemax, Version June 9 2009. https://www.zemax.com.

[2] Optical design software.
https://www.synopsys.com/optical-solutions/codev.html,
20.07.2019.

[3] MathWorks, User’s Guide(R2016a). https://www.mathworks.com/
help/pdf_doc/matlab/index.html, 20.03.2019.

[4] Ibn al-Haytham, Arab astronomer and mathematician. https://www.
britannica.com/biography/Ibn-al-Haytham,18.07.2019

[5] Smith, W. J. (2008). Modern optical engineering. Tata McGraw-Hill Educa-
tion.

[6] Dereniak, E. L., Dereniak, T. D. (2008). Geometrical and trigonometric op-
tics. Cambridge University Press.

[7] O’shea, D. C., C’Shea, D. C. (1985). Elements of modern optical design (Vol.
51). Wiley: New York.

[8] Pedrotti, F. L., Pedrotti, L. M., Pedrotti, L. S. (2006). Introduction to optics,
3rd Edition.

[9] Katz, M. (2002). Introduction to geometrical optics. World Scientific Pub-
lishing Company.

[10] Kingslake, R., Johnson, R. B. (2009). Lens design fundamentals. Academic
Press.

[11] Greivenkamp, J. E. (2003). Field Guide to Geometrical Optics (SPIE Vol.
FG01).

[12] Kidger, M. J. (2002). Fundamental optical design (Vol. 92). Bellingham,
SPIE Press: WA.

[13] DiMarzio, C. A. (2011). Optics for engineers. Crc Press.

[14] Shannon, R. R. (1997). The art and science of optical design. Cambridge
University Press.

[15] Hecht, E. (2017). Optics. 5nd edition. Pearson Education.

48

[16] Sun, H. (2016). Lens Design: A Practical Guide. Crc Press.

[17] Kloos, G. (2007). Matrix methods for optical layout (Vol. 77). Bellingham,
SPIE Press: Washington.

49

APPENDIX A

LINE AND CIRCLE INTERSECTION

Equation of a line

y = mz + n (A.1)

The basic equation for a straight line is shown in Equation A.1, where n is the

height of the line at z = 0 and m is the gradient.

If the center of the circle is at he origin of the coordinate system, the equation of

the circle is

(z)2 + (y)2 = R2 (A.2)

where R is the radius of the circle.

If the center of the circle is at the point (a,b), the equation of circle becomes

(z − a)2 + (y − b)2 = R2 (A.3)

firstly, we substitute Equation A.1 into Equation A.3

(z − a)2 + (mz + n− b)2 = R2 (A.4)

Next, if we expand all brackets and bring the R over to the left

(z2 + a2 − 2az +m2z2 + (n− b)2 + 2m(n− b)z −R2 = 0 (A.5)

Rearranging the equation, we get the following quadratic equation:

(1 +m2)z2 + 2(m(n− b)− a)z + a2 + (n− b)2 −R2 = 0 (A.6)

This equation look like mess, so if we replace (1+m2) by capital A , 2(m(n−b)−a)

by capital B,a2 + (n− b)2 −R2 by capital C

The new equation is

Az2 +Bz + C = 0 (A.7)

50

Then we can apply the quadratic formula to find the roots of this equation. Recall

that a quadratic equation

z1,2 =
−B ±

√
B2 − 4AC

2A
(A.8)

If B2 − 4AC < 0 then the line misses the circle. There are no roots.

If B2 − 4AC = 0 then the line is tangent to the circle. There is single root for

the equation.

If B2 − 4AC > 0 then the line meets the circle in two distinct points. There are

two real roots to the equation.

since y = mz + n. If we put z values in the line equation, we have two different

y values. However, we must select just one value of z and y.

51

APPENDIX B

RAY TRCING MATLAB CODES

% yu ray trace function for thin lens

function [z y u] = yuthin(z,y,u,t,P,ASindex)

if nargin == 6

i = ASindex;

z(i) = z(ASindex);

else

i = 1;

z = zeros(1,length(y));

end

for k = i:length(t)

z(k+1) = z(k) + t(k);

y(k+1) = y(k) + u(k)*t(k);

u(k+1) = u(k) - y(k+1)*P(k+1);

end

end

% ryu ray trace function for thin lens

function [z y u] = ryuthin(z,y,u,t,P,ASindex)

for k = ASindex-1:-1:1

z(k) = z(k+1) - t(k);

u(k) = u(k+1) + y(k+1)*P(k+1);

y(k) = y(k+1) - u(k)*t(k);

end

end

% plotting thin lens function

function plottingthin(z,y,D,t,P,ASindex)

N = length(t);

xmax = sum(t);

ymax = max(D)/2;

yf = abs(D(end)/2);

yi = D(1)/2;

if yf > ymax

ymax = yf;

end

drawGeometry(xmax,ymax,yi,yf);

52

% draw lenses and aperture stop

for j=2:N

if j==ASindex

drawAperture(z(j),D(j));

else

drawLens(z(j), D(j), P(j));

end

end

for k = 1:N

if abs(y(k)) > D(k)/2

break;

end

line([z(k) z(k+1)], [y(k) y(k+1)]);

end

end

%%%

function drawGeometry(xmax, ymax, yi, yf)

axis([-xmax*0.1 xmax*1.1 -ymax*1.5 ymax*1.5]);

line([0 xmax], [0 0], ’Color’,’b’); % optical axis

line([0 xmax], [0 0], ’Color’,’b’); % optical axis

line([0 0],[-yi yi],’Color’,’r’); % OBJ plane

line([xmax xmax],[-yf yf],’Color’,’r’); % IMA plane

end

%%%

function drawLens(z, diameter, power)

r = diameter/2;

line([z z], [-r r], ’LineWidth’,1, ’color’,’k’);

hold on

if power > 0

plot(z, r,’kˆ’,’MarkerFaceColor’,’k’,’MarkerSize’,7);

plot(z,-r,’kV’,’MarkerFaceColor’,’k’,’MarkerSize’,7);

else

plot(z, r,’kV’,’MarkerFaceColor’,’k’,’MarkerSize’,7);

plot(z,-r,’kˆ’,’MarkerFaceColor’,’k’,’MarkerSize’,7);

end

hold off

end

%%%

function drawAperture(z, y)

line([z z], [-y/2 -y], ’LineWidth’,1, ’color’,’k’);

line([z z], [+y/2 +y], ’LineWidth’,1, ’color’,’k’);

end

% this function returns intersection of two lines for thin lens

function [z y] = lineintersectthin(x1,y1,x2,y2, X1,Y1,X2,Y2)

m1 = (y2-y1)/(x2-x1);

m2 = (Y2-Y1)/(X2-X1);

n1 = -m1*x1+y1;

n2 = -m2*X1+Y1;

z = (n1-n2)/(m2-m1);

y = m1*z + n1;

end

% this function returns Exit pupil position and height for thin lens

53

function [ExPx ExPy] = getExPupilthin(z,D,t,P,ASi)

Y(ASi) = D(ASi)/2;

U(ASi) = 0;

X(ASi) = z(ASi);

[X Y U] = yuthin(X,Y,U,t,P,ASi);

x1=X(end-1); x2=X(end);

y1=Y(end-1); y2=Y(end);

Y(ASi) = D(ASi)/2;

U(ASi) = 0.05;

X(ASi) = z(ASi);

[X Y U]= yuthin(X,Y,U,t,P,ASi);

X1=X(end-1); X2=X(end);

Y1=Y(end-1); Y2=Y(end);

[ExPx ExPy] = lineintersectthin(x1,y1,x2,y2, X1,Y1,X2,Y2);

end

% This function returns Entrance pupil position and height

function [EnPx EnPy] = getEnPupilthin(z,D,t,P,ASi)

if(ASi<=2)

EnPx = z(ASi);

EnPy = D(ASi);

return

end

Y = zeros(1,ASi);

U = zeros(1,ASi);

X = zeros(1,ASi);

Y(ASi) = D(ASi)/2;

U(ASi) = 0;

X(ASi) = z(ASi);

[X Y U] = ryuthin(X,Y,U,t,P,ASi);

x1=X(1); y1=Y(1);

x2=X(2); y2=Y(2);

Y(ASi) = D(ASi)/2;

U(ASi) = 0.05;

X(ASi) = z(ASi);

[X Y U] = ryuthin(X,Y,U,t,P,ASi);

X1=X(1); Y1=Y(1);

X2=X(2); Y2=Y(2);

[EnPx EnPy] = lineintersectthin(x1,y1,x2,y2, X1,Y1,X2,Y2);

end

reverse ynu trace function

function [z,y,u]= rynu(z,y,u,R,t,n,ASi)

for k = ASi:-1:1

54

p(k+1) = (n(k+1)-n(k))/R(k+1);

end

for k = ASi-1:-1:1

z(k) = z(k+1) - t(k);

u(k) = (u(k+1)*n(k+1) + y(k+1)*p(k+1))/n(k);

y(k) = y(k+1) - u(k)*t(k);

end

end

% this fuction returns plotting thick lens

function plotting(D,R,t,n,z,Z,y,Y,ASi,handles)

N= length(t);

zmax = sum(t);

drawGeometry(zmax,D);

for j=1:N

if j==ASi

drawAperture(z(j),D(j));

else

drawLens(D,R,t,n,ASi);

end

end

light = get(handles.btn_lightselection,’value’);

if light==1

paraxialray(z,y,D);

exactray(Z,Y,D);

elseif light==2

exactray(Z,Y,D);

elseif light==3

paraxialray(z,y,D);

end

end

function paraxialray(z,y,D)

N=length(z)-1;

for k=1:N

if abs(y(k))>abs(D(k)/2)

break;

else

line([z(k) z(k+1)], [y(k) y(k+1)],’color’,’r’);%paraxial ;

end

end

end

function exactray(Z,Y,D)

N=length(Z)-1;

for k=1:N

if abs(Y(k))>abs(D(k)/2)

break;

55

else

line([Z(k) Z(k+1)], [Y(k) Y(k+1)],’color’,’b’);%exact

end

end

end

function drawLens(D,R,t,n,ASi)

N= length(t);

for j=2:length(D)-1

if R(j)==inf

R(j)=1.e3;

R(ASi)=inf;

end

[a b] = arc(R(j),sum(t(1:j-1)),D(j));

v(j-1,:)=a;

d(j-1,:)=b;

end

w= length(v);

for j=1:w

if n(j+1)>1

line([v(j) v(j+1)],[d(j,1) d(j,1)],’Color’,’k’,’LineWidth’,1);

line([v(j) v(j+1)],[-d(j,1) -d(j,1)],’Color’,’k’,’LineWidth’,1);

end

end

end %function drawLens end

function drawAperture(z, D)

line([z z], [-D/2 -D], ’LineWidth’,1, ’color’,’k’);

line([z z], [+D/2 D], ’LineWidth’,1, ’color’,’k’);

end

function drawGeometry(zmax,D)

% optical axis

line([0 zmax], [0 0], ’Color’,’k’);

% OBJ plane

line([0 0],[-D(1)/2 D(1)/2],’Color’,’k’);

% IMA plane

line([zmax zmax],[-D(end)/2 D(end)/2],’Color’,’k’);

% determine axis size

xlim([-zmax/10 zmax*1.1])

axis equal

end

%%

%paraxial ray trace function for thick lens

function [z,y,u] = paraxial(z,y,u, R, t, n,ASi)

% Number of surfaces

N = length(t);

p = zeros(1,N+1);

56

for k = 1:N

p(k+1) = (n(k+1)-n(k))/R(k+1);

end

if nargin == 7

i=ASi;

z(i)=z(ASi);

else

i=1;

z = zeros(1,length(y));

end

for k = i:N

z(k+1) = z(k) + t(k);

y(k+1) = y(k) + u(k)*t(k);

u(k+1) = (n(k)*u(k)-p(k+1)*y(k+1))/n(k+1);

end

end

% optical path length function for a ray

function [opd,b] = OPL(z,y,Z,Y,n,ASi)

N = length(Z);

for i=1:N-1

S(i) = n(i).*sqrt((Z(i+1)-Z(i))ˆ2+(Y(i+1)-Y(i))ˆ2);

s(i) = n(i).*sqrt((z(i+1)-z(i))ˆ2+(y(i+1)-y(i))ˆ2);

end

opd = sum(s)-sum(S);

if ASi==N-1

b=(Y(end-2));

else

b=(Y(end-1));

end

end

% LSA function for a ray

function [lsa,tsa,a,uu] = LSA(z,y,u,Y,U,ASi)

N=length(z);

l=y(end)/tan(u(end));

L=Y(end)/tan(U(end));

lsa=l-L;

if ASi==N-1

a=abs(Y(end-2));

else

a=abs(Y(end-1));

end

tsa=y(end)-Y(end);

uu=tan((U(end)));

end

% line-circle intersection fuction

function [Z,Y]= intercept(z0,y0,u0,R,t,b)

if nargin==5

b=0;

end

57

m=tan(u0);

n=-tan(u0)*z0+y0;

a=R+t;

A=1+mˆ2;

B=2*(m*(n-b)-a);

C=aˆ2+(n-b)ˆ2-Rˆ2;

Z1=(-B-sqrt(Bˆ2-4*A*C))/(2*A);

Z2=(-B+sqrt(Bˆ2-4*A*C))/(2*A);

Y1=m*Z1+n;

Y2=m*Z2+n;

D1=sqrt((Z1-t)ˆ2+Y1ˆ2);

D2=sqrt((Z2-t)ˆ2+Y2ˆ2);

if D1<D2

Z=Z1;

Y=Y1;

else

Z=Z2;

Y=Y2;

end %end of if

if abs(R)>1e10

Z = t;

Y=m*Z+n;

end

end %end of function

%Returns Exit pupil position and height for thick lens

function [ExPx ExPy] = getExPupil(z,D,t,R,n,ASi)

yy = zeros(1,ASi);

uu = zeros(1,ASi);

zz = zeros(1,ASi);

yy(ASi) = D(ASi)/2;

uu(ASi) = 0;

zz(ASi) = z(ASi);

[zz yy uu] = paraxial(zz,yy,uu,R,t,n,ASi);

[zz’ yy’ uu’];

x1=zz(end-1); x2=zz(end);

y1=yy(end-1); y2=yy(end);

yy(ASi) = D(ASi)/2;

uu(ASi) = -0.1;

zz(ASi) = z(ASi);

[zz yy uu]=paraxial(zz,yy,uu,R,t,n,ASi);

[zz’ yy’ uu’];

X1=zz(end-1); X2=zz(end);

Y1=yy(end-1); Y2=yy(end);

[ExPx ExPy] = lineintersect(x1,y1,x2,y2, X1,Y1,X2,Y2);

end

%Returns Entereance pupil position and height for thick lens

function [EnPx EnPy] = getEnPupil(z,D,t,R,n,ASi)

58

if(ASi<=2)

EnPx = z(ASi);

EnPy = D(ASi);

return

end

yy = zeros(1,ASi);

uu = zeros(1,ASi);

zz = zeros(1,ASi);

yy(ASi) = D(ASi)/2;

uu(ASi) = 0;

zz(ASi) = z(ASi);

[zz yy uu] = rynu(zz,yy,uu,R,t,n,ASi);%rynu(z,y,u,R,t,n,ASi)

[zz’ yy’ uu’];

x1=zz(1); y1=yy(1);

x2=zz(2); y2=yy(2);

yy(ASi) = D(ASi)/2;

uu(ASi) = 0.1;

zz(ASi) = z(ASi);

[zz yy uu] = rynu(zz,yy,uu,R,t,n,ASi);

[zz’ yy’ uu’];

X1=zz(1); Y1=yy(1);

X2=zz(2); Y2=yy(2);

[EnPx EnPy] = lineintersect(x1,y1,x2,y2, X1,Y1,X2,Y2);

end

%exact ray tracing function

function [Z,Y,U] = exact(z0,y0, u0, R, t, n)

% Number of surfaces

N = length(t);

% Initial values (height and angle)

Z(1) = z0;

Y(1) = y0;

U(1) = u0;

b=0;

%exact ray tracing

for k=1:N

[Z(k+1),Y(k+1)]= intercept(Z(k),Y(k),U(k),R(k+1),sum(t(1:k)),b);

q = asin(Y(k+1)/R(k+1));%q is a center angle

Ip = asin((n(k)/n(k+1))*sin(U(k)+q));

U(k+1) = Ip-q;

end

end

%this functions draws arcs

function [a,b] = arc(Radius,t,D)

n = 500;

theta1 = pi-asin(0.5*abs(D/Radius));

theta2 = pi+asin(0.5*abs(D/Radius));

theta = theta1:1/n:theta2;

x = Radius*cos(theta) + Radius + t;

59

y = Radius*sin(theta);

a = x(1);

b = y(1);

plot(x,y,’k-’,’LineWidth’,1);

hold on

end

%Matlab gui program

function varargout = lensdesign(varargin)

% UNTITLED MATLAB code for untitled.fig

% UNTITLED, by itself, creates a new UNTITLED or raises the existing

% singleton*.

%

% H = UNTI TLED returns the handle to a new UNTITLED or the handle to

% the existing singleton*.

%

% UNTITLED(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in UNTITLED.M with the given input arguments.

%

% UNTITLED(’Property’,’Value’,...) creates a new UNTITLED or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before untitled_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to untitled_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help untitled

% Last Modified by GUIDE v2.5 12-Jul-2019 16:32:28

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @untitled_OpeningFcn, ...

’gui_OutputFcn’, @untitled_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% clc;

% clear;

60

% --- Executes just before untitled is made visible.

function untitled_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to untitled (see VARARGIN)

% Choose default command line output for untitled

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes untitled wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = untitled_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on selection change in btn_lightselection.

function btn_lightselection_Callback(hObject, eventdata, handles)

% hObject handle to btn_lightselection (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,’String’)) returns btn_lightselection contents as cell array

% contents{get(hObject,’Value’)} returns selected item from btn_lightselection

% --- Executes during object creation, after setting all properties.

function btn_lightselection_CreateFcn(hObject, eventdata, handles)

% hObject handle to btn_lightselection (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes when entered data in editable cell(s) in uitable1.

function uitable1_CellEditCallback(hObject, eventdata, handles)

% hObject handle to uitable1 (see GCBO)

61

% eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE)

% Indices: row and column indices of the cell(s) edited

% PreviousData: previous data for the cell(s) edited

% EditData: string(s) entered by the user

% NewData: EditData or its converted form set on the Data property. Empty if Data was not changed

% Error: error string when failed to convert EditData to appropriate value for Data

% handles structure with handles and user data (see GUIDATA)

function btn_rays_Callback(hObject, eventdata, handles)

% hObject handle to btn_rays (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of btn_rays as text

% str2double(get(hObject,’String’)) returns contents of btn_rays as a double

% --- Executes during object creation, after setting all properties.

function btn_rays_CreateFcn(hObject, eventdata, handles)

% hObject handle to btn_rays (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function btn_height_Callback(hObject, eventdata, handles)

% hObject handle to btn_height (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of btn_height as text

% str2double(get(hObject,’String’)) returns contents of btn_height as a double

% --- Executes during object creation, after setting all properties.

function btn_height_CreateFcn(hObject, eventdata, handles)

% hObject handle to btn_height (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function btn_angle_Callback(hObject, eventdata, handles)

% hObject handle to btn_angle (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

62

% Hints: get(hObject,’String’) returns contents of btn_angle as text

% str2double(get(hObject,’String’)) returns contents of btn_angle as a double

% --- Executes during object creation, after setting all properties.

function btn_angle_CreateFcn(hObject, eventdata, handles)

% hObject handle to btn_angle (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in btn_main.

function [lsa, YY,tsa,UU,opd,yy,D,R,t,n,z,Z,y,Y,ASi,y0,Nray,z0,u0]=btn_main_Callback(hObject, eventdata, handles)

% hObject handle to btn_main (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

figure

d=(get(handles.uitable1,’data’));

Name= d(:,1);

R = cell2mat(d(:,2));

n = cell2mat(d(:,3));

t = cell2mat(d(:,4));

D = cell2mat(d(:,5));

for i = 1:length(R)

fprintf(’%2d: %6s %8.3f %8.3f %8.3f %8.3f\n’,i,Name{i},R(i),n(i),t(i),D(i));

end

t= [t(1:end-1)];

ASi = 0;

for i=1:length(R)

if strcmp(Name(i),’STO’)==1

ASi = uint32(i);

end

end

if ASi==0

disp(’Program stoped since Asi = 0’);

return

end

Nray = str2double(get(handles.btn_rays,’String’));

y0= str2double(get(handles.btn_height,’String’));

uo = str2double(get(handles.btn_angle,’String’));

u0=uo*pi/180;

N=length(t);

z0=0;

k=1;

if t(1)==inf

t(1)=0;

end

63

for i=linspace(-y0,y0,Nray)

y0=i;

[z,y,u] = paraxial(z0,y0,u0,R,t,n);

[Z Y U] = exact(z0,y0,u0,R,t,n);

if abs(y(1))<=D(ASi)/2

[opd(k) yy(k)] = OPL(z,y,Z,Y,n,ASi);

[lsa(k) tsa(k) YY(k) UU(k)]=LSA(z,y,u,Y,U,ASi);

[lsa’ tsa’ YY’ UU’];

k=k+1;

end

end

ry(N+1) = y0;

ru(N+1) = 0;

rz(N+1) =z(end);

[rz,ry,ru]= reverseynu(rz,ry,ru,R,t,n);

[rz’ ry’ ru’];

[EnPx EnPy] = getEnPupil(z,D,t,R,n,ASi);

[ExPx ExPy] = getExPupil(z,D,t,R,n,ASi);

effl = -y(1)/u(end); %Effective focal length

efl=-ry(end)/ru(1);

if ASi==N

bfl=-y(end-2)/u(end); % back focal length

else

bfl=-y(end-1)/u(end); % back focal length

end

if ASi==2

ffl=ry(3)/ru(1); % front focal length

else

ffl=ry(2)/ru(1); % front focal length

end

h1=ffl-efl; % distance front vertex to front plane of thick lens

h2=bfl-effl; % distance back vertex to seconday plane of thick lens

F=effl/D(ASi); %f/number

TR=z(end); %total track

STR=D(ASi)/2; % STR is stop radius

expx=ExPx-TR; %exit pupil position

if t(1)==0

NAo=1e-9;

else

NAo=(D(1)/2)/sqrt(t(1)ˆ2+(D(1)/2)ˆ2);

end

NAi=u(end)/4;

z(ASi+1);

predata = fopen(’prescriptiondata.txt’,’w’);

if u0==0

fprintf(predata,’\t \tGENERAL LENS DATA \r\n’);

fprintf(predata,’Effective Focal Length = %4.6f \n’,effl);

fprintf(predata,’Back Focal Length = %4.6f \n’,bfl);

fprintf(predata,’Front Focal Length = %4.6f \n’,ffl);

fprintf(predata,’Total Track = %6.6f \n’,TR);

fprintf(predata,’Image Space F/# = %4.6f \n’,F);

fprintf(predata,’Object Space NA = %4.2e\n’,NAo);

fprintf(predata,’Stop Radius = %4.2f \n’,STR);

fprintf(predata,’Entrance Pupil Diameter = %4.6f \n’,abs(EnPy));

fprintf(predata,’Entrance Pupil Position = %4.6f \n’,EnPx);

fprintf(predata,’Exit Pupil Diameter = %4.6f \n’,2*abs(ExPy));

64

fprintf(predata,’Exit Pupil Position = %4.6f \n’,expx);

fprintf(predata,’Lens Units = milimeters \n’);

fprintf(predata,’Field Types = Angle in degrees \n’);

fprintf(predata,’Principal Plane OBJ = %6.6f \n’,h1);

fprintf(predata,’Principal Plane IMJ = %4.6f \n’,h2);

fprintf(predata,’Exact Ray Trace Data \n---\n’);

fprintf(predata,’Z-values\t Y-values\t U-values\t \n---\n’);

fprintf(predata,’%2.6e \t %2.6e \t %2.6f \n’,[Z;Y;U]);

fprintf(predata,’Paraxial ray Trace Data \n---\n’);

fprintf(predata,’z-values\t y-values\t u-values\t \n---\n’);

fprintf(predata,’%2.6e \t %2.6e \t %2.6f \n’,[z;y;u]);

else

fprintf(predata,’If you see true values, you should take field angle as zero \n’);

end

fclose(predata);

% --- Executes on button press in btn_layoutthin.

function btn_layoutthin_Callback(hObject, eventdata, handles)

% hObject handle to btn_layoutthin (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

figure

d=(get(handles.uitable1,’data’));

S= d(:,1);

P = 1./cell2mat(d(:,2));

t = cell2mat(d(:,3));

D = cell2mat(d(:,4));

for i = 1:length(P)

fprintf(’%2d: %6s %8.3f %8.3f %8.3f\n’,i,S{i},P(i),t(i),D(i));

end

t= [t(1:end-1)];

Asi = 0;

for i=1:length(P)

if strcmp(S(i),’STO’)==1 | strcmp(S(i),’*’)==1 | strcmp(S(i),’AS’)==1

ASi = uint32(i);

end

end

if ASi==0

disp(’Program stoped since Asi = 0’);

return

end

if t(1)==inf

t(1)=0;

end

Nray = str2double(get(handles.btn_rays,’String’));

y0= str2double(get(handles.btn_height,’String’));

uo = str2double(get(handles.btn_angle,’String’));

u0=uo*pi/180;

z0 =0;

N=length(t);

if t(1)>0

if ASi==2

y0=0;

u1=atan((D(3)/2)/(t(1)+t(2)))-0.009 ;

else

u1=atan((D(2)/2)/t(1))-0.009;

y0=0;

65

end

for i=linspace(-u1,u1,Nray)

u1=i;

[z y u] = yuthin(z0,y0,u1,t,P);

[z’ y’ u’]

plottingthin(z,y,D,t,P,ASi);

end

else

for i=linspace(-y0,y0,Nray)

y0=i;

[z y u] = yuthin(z0,y0,u0,t,P);

[z’ y’ u’];

plottingthin(z,y,D,t,P,ASi);

end

end

[EnPx EnPy] = getEnPupilthin(z,D,t,P,ASi);

[ExPx ExPy] = getExPupilthin(z,D,t,P,ASi);

effl = -y(1)/u(end);

if ASi==N

bfl=-y(end-2)/u(end); % back focal length

else

bfl=-y(end-1)/u(end); % back focal length

end

F=effl/D(ASi); %f/number

TR=z(end); %total track

STR=D(ASi)/2; % STR is stop radius

expx=ExPx-TR; %exit pupil position

if t(1)==0

NAo=1e-9;

else

NAo=(D(1)/2)/sqrt(t(1)ˆ2+(D(1)/2)ˆ2);

end

predatathin = fopen(’prescriptiondata.txt’,’w’);

if u0==0

fprintf(predatathin,’\t \tGENERAL LENS DATA \r\n’);

fprintf(predatathin,’Effective Focal Length = %4.6f \n’,effl);

fprintf(predatathin,’Back Focal Length = %4.6f \n’,bfl);

fprintf(predatathin,’Total Track = %6.6f \n’,TR);

fprintf(predatathin,’Image Space F/# = %4.6f \n’,F);

fprintf(predatathin,’Object Space NA = %4.2e\n’,NAo);

fprintf(predatathin,’Stop Radius = %4.2f \n’,STR);

fprintf(predatathin,’Entrance Pupil Diameter = %4.6f \n’,abs(EnPy));

fprintf(predatathin,’Entrance Pupil Position = %4.6f \n’,EnPx);

fprintf(predatathin,’Exit Pupil Diameter = %4.6f \n’,2*abs(ExPy));

fprintf(predatathin,’Exit Pupil Position = %4.6f \n’,expx);

fprintf(predatathin,’Lens Units = milimeters \n’);

fprintf(predatathin,’Field Types = Angle in degrees \n’);

fprintf(predatathin,’Exact Ray Trace Data \n---\n’);

fprintf(predatathin,’z-values\t y-values\t u-values\t \n---\n’);

fprintf(predatathin,’%2.6e \t %2.6e \t %2.6f \n’,[z;y;u]);

fprintf(predatathin,’Paraxial Ray Trace Data \n---\n’);

fprintf(predatathin,’z-values\t y-values\t u-values\t \n---\n’);

fprintf(predatathin,’%2.6e \t %2.6e \t %2.6f \n’,[z;y;u]);

else

66

fprintf(predatathin,’If you see true values, you should take field angle as zero \n’);

end

fclose(predatathin);

% --- Executes on button press in btn_prescriptiondata.

function btn_prescriptiondata_Callback(hObject, eventdata, handles)

% hObject handle to btn_prescriptiondata (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

system(’notepad.exe prescriptiondata.txt’);

guidata(hObject, handles);

% --- Executes on button press in btn_layoutthick.

function btn_layoutthick_Callback(hObject, eventdata, handles)

% hObject handle to btn_layoutthick (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[lsa ,YY,tsa,UU,opd,yy,D,R,t,n,z,Z,y,Y,ASi,y0,Nray,z0,u0]=btn_main_Callback(hObject, eventdata, handles);

light = get(handles.btn_lightselection,’value’);

if t(1)>0

if ASi==2

y0=0;

u1=atan((D(3)/2)/(t(1)+t(2)))-0.009 ;

else

u1=atan((D(2)/2)/t(1))-0.009;

y0=0;

end

for i=linspace(-u1,u1,Nray)

u1=i;

if light==1

[Z Y U] = exact(z0,y0,u1,R,t,n);

[z,y,u] = paraxial(z0,y0,u1,R,t,n);

elseif light==2

[Z Y U] = exact(z0,y0,u1,R,t,n);

elseif light==3

[z,y,u] = paraxial(z0,y0,u1,R,t,n);

end

plotting(D,R,t,n,z,Z,y,Y,ASi,handles);

end

else

k=1;

for i=linspace(-y0,y0,Nray)

y0=i;

if light==1

[Z Y U] = exact(z0,y0,u0,R,t,n);

[z,y,u] = paraxial(z0,y0,u0,R,t,n);

elseif light==2

[Z Y U] = exact(z0,y0,u0,R,t,n);

elseif light==3

[z,y,u] = paraxial(z0,y0,u0,R,t,n);

end

plotting(D,R,t,n,z,Z,y,Y,ASi,handles);

67

end

end

% --- Executes on button press in btn_lsa.

function btn_lsa_Callback(hObject, eventdata, handles)

% hObject handle to btn_lsa (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[lsa,YY,tsa,UU,opd,yy]=btn_main_Callback(hObject, eventdata, handles);

plot(lsa,YY);

title(’Longitudinal Spherical Aberration’)

xlabel(’LSA’);

ylabel(’Y(Ray)’);

% --- Executes on button press in btn_tsa.

function btn_tsa_Callback(hObject, eventdata, handles)

% hObject handle to btn_tsa (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[lsa, YY,tsa,UU,opd,yy]=btn_main_Callback(hObject, eventdata, handles);

plot(UU,tsa);

title(’Transverse Spherical Aberration’)

xlabel(’TAN(U)’);

ylabel(’TSA’);

% --- Executes on button press in btn_opd.

function btn_opd_Callback(hObject, eventdata, handles)

% hObject handle to btn_opd (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[lsa, YY,tsa,UU,opd,yy]=btn_main_Callback(hObject, eventdata, handles);

plot(yy,opd);

title(’Optical Path Difference’)

xlabel(’Y(RAY)’);

ylabel(’OPD’);

% --- Executes on button press in btn_addvaluethick.

function btn_addvaluethick_Callback(hObject, eventdata, handles)

% hObject handle to btn_addvaluethick (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[FileName,pathname] = uigetfile(’*.txt’) ;

if ˜ischar(FileName)

disp(’User aborted the dialog’);

return;

end

filepath=fullfile(pathname,FileName) ;

set(handles.btn_filename,’String’,filepath)

file = fopen(FileName);

txt = textscan(file,’%s %f %f %f %f’);

Name= txt{1};

R = num2cell(txt{2});

n = num2cell(txt{3});

t = num2cell(txt{4});

D = num2cell(txt{5});

68

fclose(file);

A=[Name,R,n,t,D];

str2double(set(handles.uitable1,’data’,A));

set(handles.uitable1,’ColumnName’,{’SURFACETYPE’ ’RADIUS’ ’INDEX’ ’THICKNESS’ ’DIAMETER’ })

set(handles.uitable1,’CellSelectionCallBack’,@(h,e) set(h,’UserData’,e));

% --- Executes on button press in btn_addvaluethin.

function btn_addvaluethin_Callback(hObject, eventdata, handles)

% hObject handle to btn_addvaluethin (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Read datga from file

[FileName,pathname] = uigetfile(’*.txt’) ;

if ˜ischar(FileName)

disp(’User aborted the dialog’);

return;

end

filepath=fullfile(pathname,FileName);

set(handles.btn_filename,’String’,filepath);

fid = fopen(FileName);

txtt = textscan(fid,’%s %f %f %f’);

S = txtt{1}; % surfaceType

P = num2cell(txtt{2}); % Power = 1/f, for OBJ and IMA planes P=0

t = num2cell(txtt{3}); % Thickness

D = num2cell(txtt{4}); % Diameter

fclose(fid);

B=[S,P,t,D];

set(handles.uitable1,’ColumnName’,{’SURFACETYPE’ ’FOCAL LENGTH’ ’THICKNES’ ’DIAMETER’ })

str2double(set(handles.uitable1,’data’,B));

set(handles.uitable1,’CellSelectionCallBack’,@(h,e) set(h,’UserData’,e));

%--- Executes on button press in btn_insert.

function btn_insert_Callback(hObject, eventdata, handles)

set(handles.uitable1,’CellSelectionCallBack’,@(h,e) set(h,’UserData’,e));

Data = handles.uitable1.Data

ncol=length(Data(1,:));

newrow1=[{’STD’} {[inf]} {[0]} {[20]}];

newrow2=[{’STD’} {[inf]} {[1]} {[0]} {[20]}];

Index = handles.uitable1.UserData;

selected = Index.Indices(1);

if ncol==4

Data = [Data(1:selected-1,:); newrow1; Data(selected:end,:)];

else

Data = [Data(1:selected-1,:); newrow2; Data(selected:end,:)];

end

set(handles.uitable1,’Data’,Data);

% --- Executes on button press in btn_delete.

function btn_delete_Callback(hObject, eventdata, handles)

% hObject handle to btn_delete (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(handles.uitable1,’CellSelectionCallBack’,@(h,e) set(h,’UserData’,e));

Data = handles.uitable1.Data;

Index = handles.uitable1.UserData;

Data(Index.Indices(:,1), :) = [];

set(handles.uitable1,’Data’,Data);

69

guidata(hObject, handles);

% % --- Executes during object deletion, before destroying properties.

function uitable1_DeleteFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function uitable1_CreateFcn(hObject, eventdata, handles)

function btn_filename_Callback(hObject, eventdata, handles)

% hObject handle to btn_filename (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of btn_filename as text

% str2double(get(hObject,’String’)) returns contents of btn_filename as a double

% --- Executes during object creation, after setting all properties.

function btn_filename_CreateFcn(hObject, eventdata, handles)

% hObject handle to btn_filename (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in button_save.

function button_save_Callback(hObject, eventdata, handles)

% hObject handle to button_save (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[filename, pathname] = uiputfile(’*.txt’);

if ˜ischar(filename)

disp(’User aborted the dialog’);

return;

end

file=fullfile(pathname,filename);

d=(get(handles.uitable1,’data’));

fileID=fopen(file,’wt’);

[nrows,ncols] = size(d);

if ncols==5

formatSpec = ’%4s %4.f %6.1f %6.1f %6d\n’;

else

formatSpec = ’%4s %4.f %6.1f %6d\n’;

end

for row = 1:nrows

fprintf(fileID,formatSpec,d{row,:});

end

set(handles.btn_filename,’String’,file)

fclose(fileID);

70

