T.C. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANABİLİM DALI

GANODERMA TÜRLERİNDE BİYOAKTİF BİLEŞİKLERİN HPLC-DAD İLE BELİRLENMESİ VE KEMOMETRİK ANALİZLERİ

DOKTORA TEZİ

ÖZGE TOKUL ÖLMEZ

HAZİRAN 2018 MUĞLA

T.C. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİMYA ANABİLİM DALI

GANODERMA TÜRLERİNDE BİYOAKTİF BİLEŞİKLERİN HPLC-DAD İLE BELİRLENMESİ VE KEMOMETRİK ANALİZLERİ

DOKTORA TEZİ

ÖZGE TOKUL ÖLMEZ

HAZİRAN 2018 MUĞLA

MUGLA SITKI KOÇMAN ÜNİVERSİTESİ

Fen Bilimleri Enstitüsü

TEZ ONAYI

ÖZGE TOKUL ÖLMEZ tarafından hazırlanan *GANODERMA* TÜRLERİNDE BİYOAKTİF BİLEŞİKLERİN HPLC-DAD İLE BELİRLENMESİ VE KEMOMETRİK ANALİZLERİ başlıklı tezinin, 18/06/2018 tarihinde aşağıdaki jüri tarafından Kimya Anabilim Dalı'nda doktora derecesi için gerekli şartları sağladığı oybirliği/oyçokluğu ile kabul edilmiştir.

TEZ SINAV JÜRİSİ

Prof Dr. Kenan DOST (Jüri Başkanı)

Kimya Anabilim Dalı, Manisa Celal Bayar Üniversitesi, Manisa

Doç. Dr. Mehmet ÖZTÜRK (Danışman)

Kimya Anabilim Dalı, Muğla Sıtkı Koçman Üniversitesi, Muğla

Prof. Dr. Mehmet Emin DURU (Üye)

Kimya Anabilim Dalı, Muğla Sıtkı Koçman Üniversitesi, Muğla

Doç. Dr. Hasan ERTAŞ (Üye) Kimya Anabilim Dalı, Ege Üniversitesi, İzmir

Doç. Dr. Oğuz AKPOLAT (Üye) Kimya Anabilim Dalı, Muğla Sıtkı Koçman Üniversitesi, Muğla

ANA BİLİM DALI BAŞKANLIĞI ONAYI

Prof. Dr. Mehmet Emin DURU

Kimya Anabilim Dalı Başkanı, Muğla Sıtkı Koçman Üniversitesi, Muğla

Doç. Dr. Mehmet ÖZTÜRK

Danışman, Kimya Anabilim Dalı, Muğla Sıtkı Koçman Üniversitesi, Muğla

İmza:

İmza:

Savunma Tarihi: 18/14/2018

Tez çalışmalarım sırasında elde ettiğim ve sunduğum tüm sonuç, doküman, bilgi ve belgelerin tarafımdan bizzat ve bu tez çalışması kapsamında elde edildiğini; akademik ve bilimsel etik kurallarına uygun olduğunu beyan ederim. Ayrıca, akademik ve bilimsel etik kuralları gereği bu tez çalışması sırasında elde edilmemiş başkalarına ait tüm orijinal bilgi ve sonuçlara atıf yapıldığını da beyan ederim.

Özge Tokul Ölmez 18/06/2018

ÖZET

GANODERMA TÜRLERİNDE BİYOAKTİF BİLEŞİKLERİN HPLC-DAD İLE BELİRLENMESİ VE KEMOMETRİK ANALİZLERİ

ÖZGE TOKUL ÖLMEZ

Doktora Tezi

Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Danışman: Doç. Dr. Mehmet ÖZTÜRK Haziran 2018, 341 sayfa

Günümüzde, dünyada ekonomik değeri yüksek olan *Ganoderma* türleri yıllardır başta kanser olmak üzere çeşitli hastalıklarda kullanılagelmektedir. Ülkemizde de *Ganoderma* türleri doğal olarak yetişmektedir. Bu türler arasında *Ganoderma lucidum* yüksek ekonomik değeri olan bir ağaç mantarıdır. Ayrıca, *Ganoderma lucidum*'un ülkemizde kültürü de yapılmaktadır. Bu çalışmada, *Ganoderma lucidum* mantarına benzer yapı özellikleri gösteren *Ganoderma adspersum, Ganoderma applanatum* ve *Ganoderma resinaceum* türlerinin biyoaktif bileşiklerinin parmak izlerinin belirlenmesi amaçlandı. Buna ilaveten, üzerinde daha önceden çalışma yapılmamış *Ganoderma recinaceum*'dan biyoaktif bileşiklerin izolasyonlarının yapılması ve yapılarının spektroskopik yöntemlerle aydınlatılması hedeflendi.

Farklı bölgelerden ve farklı ağaç türlerinden toplanan 4 farklı türe ait 14 adet *Ganoderma* örnekleri üçe ayrılarak, maserasyon, soxhlet ve utrasonik teknikleri kullanılarak sırasıyla petrol eteri, aseton ve metanol ile ekstraksiyonları yapıldı. Toplamda 126 farklı ekstre elde edildi. Elde edilen ekstrelerin antioksidan aktivitesi β -karoten-linoleik asit, DPPH serbest radikal giderimi, ABTS katyon radikali giderimi ve CUPRAC yöntemleriyle kullanılarak test edildi. Tüm aseton ve metanol ekstrelerinin HPLC-DAD cihazıyla en iyi rezolusyonda parmak izi kromatogramları alındı. Tüm petrol eteri ekstreleri ise metillenerek GC-MS cihazında analiz edildi.

Ganoderma resinaceum mantarının antioksidan aktivite gösteren aseton ekstresi, silika jel adsorban üzerinden kolon kromatografisiyle fraksiyonlandırıldı. İnce tabaka kromatografisi kullanılarak benzer fraksiyonlar birleştirildi ve bu fraksiyonlardan, Sephadex LH-20, silika jel ve C₁₈ ters faz kolon takılı preparatif HPLC ile 8 bileşik saflaştırıldı. Saflaştırılan saf maddelerin yapıları, 1D- ve 2D-NMR ve diğer spektroskopik metotlar kullanılarak aydınlatıldı. *Ganoderma resinaceum*'dan saflaştırılan bileşiklerin yapıları ergosterol peroksit (1), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7) ve ganoderik asit D (8) olarak aydınlatıldı.

Ganoderma resinaceum'dan elde edilen bileşikler (1-8) ile grubumuzda Tricholoma anatolicum, Bjerkandera adusta, Inonutus dryadeus ve Sarcosphaera crassa mantarlarından izole edilen ergosterol (TA1), 5α , 6α -epoksi ergosta-7,22-dien-3 β -ol

(TA2), ergosta-7,9,22 trien-3-*O*- β -*D*-glukozit (BA1), ergosta-22-en 3 β -ol (BA2), betulinan A (BA3), betulinan B (BA4), ergosta-5,22-dien 3 β -ol (ID1) ve ergosta-5,22-dien-3-on (ID2), ergosta-5,22-dien 3-*O*- β -*D*-glukopiranosit (SC1), ergosta-5,22-dien 3-*O*- β -*D*-ksilofuranosil (SC2), ergosta-5,22-dienil 3-*O*- α -heptanoat (SC3), ergosta-5,22-dienil 3-*O*- α -12-*cis*-hegzadekenoat (SC4), ergosta-5,22-dienil 3-*O*- α -dekanoat (SC5) bileşikleri ve 27 adet standart bileşiğin (St1-St27) HPLC cihazında ekstrelerin kromatogramlarının alındığı şartlarda kromatogramda yerleri belirlendi. Bu *Ganoderma* türlerinde tespit edilen yukarıdaki standart bileşiklerin (St1-St27) ve *Ganoderma resinaceum*'dan elde edilen bileşiklerin (1-8) validasyonları yapılarak çalışılan mantarlardaki miktarları belirlendi. Böylece 42 aseton ve 42 metanol ekstrelerinde çok sayıda fenolik bileşen, steroit ve triterpen *Ganoderma* türü mantarlarda taranmış oldu.

Bunun yanı sıra HPLC-DAD kromatogramlarında antioksidan aktivite gösteren bileşiklere ait pikler DPPH radikali kullanılarak belirlendi. Çalışmamızda farklı ekstraksiyon tekniklerinin, bölgesel farklılıkların, mantarın yetiştiği ağaç türlerinin etkisinin değerlendirilmesi için kemometrik yaklaşımdan yararlanıldı.

Bu tez çalışması ile günümüzde Reishi mantarı olarak bilinen ve tıpta yaygın olarak kullanılan *Ganoderma lucidum* mantarının kimyasal içerikleri bakımından diğer *Ganoderma* türü mantarlarla benzerliği tespit edildi. Ege bölgesi civarından toplanan mantarların kimyasal içeriklerinde mantarın yerleştiği ağaç türünün etkisi ilk kez bu tez çalışması ile araştırıldı ve mantarın yetiştiği ağacın ve ekstraksiyon yönteminin özellikle triterpenlerin türü ve miktarlarında değişikliğe yol açtığı belirlendi.

Anahtar Kelimeler: *Ganoderma* Türleri, Antioksidan Aktivite, HPLC-DAD, GC-MS, Kemometri.

ABSTRACT

DETERMINATION OF BIOACTIVE COMPOUNDS IN GANODERMA SPECIES BY HPLC-DAD AND CHEMOMETRIC ANALYSIS

ÖZGE TOKUL ÖLMEZ

Doctor of Philosophy (Ph.D.) Graduate School of Natural and Applied Sciences Department of Chemistry Supervisor: Assoc. Prof. Dr. Mehmet ÖZTÜRK Haziran 2018, 341 pages

Ganoderma species, having high economic valued tree mushroom in the world, have been used for various diseases, especially against cancer for years. Ganoderma species are also naturally grown in our country. Among these species, Ganoderma lucidum has the highest economic value. In addition, Ganoderma lucidum is cultured in our country. In this study, it was aimed to determine the fingerprints of bioactive compounds of Ganoderma adspersum, Ganoderma applanatum and Ganoderma resinaceum species and to compare them with that of Ganoderma lucidum. In addition, the isolation and structure elucidation of bioactive compounds of Ganoderma resinaceum, previously unstudied, using spectroscopic methods were aimed.

Fourteen *Ganoderma* samples belonging to 4 different species collected from different regions and different host trees were separated into three parts and each part was extracted with petroleum ether, acetone and methanol, successively, using maceration, soxhlet and ultrasonic techniques. A total of 126 different extracts were obtained. Antioxidant activity of the extracts was tested by three complimentary assays; namely, β -carotene-linoleic acid, DPPH free radical scavenging, ABTS cation radical scavenging and CUPRAC. Fingerprint chromatograms of all acetone and methanol extracts were obtained with the best resolution using HPLC-DAD instrument. All petroleum ether extracts, however, were methylated and analyzed on a GC-MS instrument.

The acetone extract of *Ganoderma resinaceum* exhibiting antioxidant activity was fractionated by column chromatography over silica gel adsorbent. Similar fractions were combined using thin layer chromatography and 8 compounds were purified from these fractions by column chromatography over sephadex LH-20 and silica gel adsorbents, and by preparative recycling HPLC equipped with C_{18} reverse phase column. The structures of the purified compounds were elucidated using 1D-, and 2D-NMR and mass spectroscopic techniques. The structures of the compounds purified from *Ganoderma resinaceum* were ergosterol peroxide (1), ganoderic acid C 2 (2), ganoderic acid G (3), ganoderic acid B (4), ganoderic acid (5) acid C (7) and ganoderic acid D (8).

The compounds (1-8) isolated from *Ganoderma resinaceum*, and ergosterol (TA1), 5α , 6α -epoxy ergosta-7, 22-dien 3β -ol (TA2), ergosta-7, 9, 22 triene 3-O- β -D-glucose (BA1), ergosta-22-en 3*β*-ol (BA2), betulinan A (BA3), betulinan B (BA4), ergosta-5,22-diene 3β-ol (**ID1**), ergosta-5,22-dien-3-one (**ID2**), ergosta-5,22-diene 3-O-β-Dglucopyranoside (SC1), ergosta-5,22-diene 3-O-β-D-xylofuranosyl (SC2), ergosta-5,22-dienyl $3-O-\alpha$ -heptanoate (SC3), ergosta-5,22-dienyl 3-*O*-α-12-cishexadecenoate (SC4), ergosta-5,22-dienyl $3-O-\alpha$ -decanoate (SC5) isolated from Tricholoma anatolicum, Bjerkandera adusta, Inonutus dryadeus and Sarcosphaera crassa mushrooms by our other group members, and 27 purchased standards (St1-St27) were studied using developed two HPLC methods in HPLC-DAD to chromatographically located the compounds. Two validated HPLC methods were established for the standard compounds (St1-St27) and the compounds obtained from Ganoderma resinaceum (1-8) to search the amounts of these compounds in 84 Ganoderma extracts. Thus, a large number of phenolic compounds, steroids and triterpenes in acetone and methanol extracts of Ganoderma species were screened.

Besides, the peaks of the compounds having antioxidant activity were determined by HPLC-DAD chromatograms using the DPPH free radical. We used a chemometric approach to assess the effects of different extraction techniques, regional differences, and mushroom species to the compounds amounts.

In this thesis, a similarity was found between in terms of the chemical content of *Ganoderma lucidum*, which is commonly known as Reishi and used as for medicinal purposes, and other *Ganoderma* species studied herein. The effect of the host tree on the chemical content of the mushrooms collected from the Aegean region were investigated for the first time in this thesis. It has been determined that the host tree and the extraction method are leaded to differences of the amounts of triterpenes, especially.

Keywords: *Ganoderma* Species, Antioxidant Activity, HPLC-DAD, GC-MS, Chemometry.

Sevgili Eşim Bülent ve Oğlum Toprak'a

ÖNSÖZ

Bu çalışmanın gerçekleştirilmesinde büyük emeği bulunan, tez konusunun seçimi, hazırlanması ve araştırmaların yürütülmesinde her türlü bilgi ve deneyimleriyle bana yön veren, her türlü konuda yardım ve desteklerini esirgemeyen, bilgisi, disiplini akademik çalışmalardaki başarısı ve anlayışıyla her zaman örnek alacağım tez danışman hocam Doç. Dr. Mehmet ÖZTÜRK' e,

Tez çalışmam boyunca değerli bilgilerini benimle paylaşan, çalışmama katkılarda bulunan Prof. Dr. Mehmet Emin DURU'ya,

Tez izleme komitesinde yer alan değerli eleştiri ve önerileri ile tez çalışmama katkıda bulunan, bilgisinden ve tecrübesinden yararlandığım hocam Prof. Dr. Kenan DOST'a,

Tez çalışmamadaki mantar türlerinin teşhisini yapan Prof. Dr. Aziz TÜRKOĞLU'na,

Tez çalışmamın tüm aşamalarında ilgi ve yardımını esirgemeyen, ümitsizliğe düştüğüm anlarda bana daima elini uzatan sevgili eşim Bülent ÖLMEZ'e ve tüm eğitim öğretim hayatım boyunca bana maddi ve manevi her türlü destek sağlayan, yanımda olan sevgili annem ve babama,

Tez çalışmam sırasında her konuda yardımlarını esirgemeyen sevgili arkadaşlarım Dr. Erhan KAPLANER, Bihter ŞAHİN, Ebru EROL, Kübra ELİK, Mehmet Hüseyin SİNGEÇ, Dr. Selçuk KÜÇÜKAYDIN, Meltem TAŞ, Fatih ÇAYAN, Dr. Zain ULLAH'a ve Dr. Tuba BAYGAR'a

Ganoderma türlerinin yağ asitlerinin araştırılması ve kemometrik analizlerinin yapılmasında BAP-15-022 nolu projeye desteğini veren Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırma Projeleri Birimine,

Ve emeği geçen herkese çok teşekkür ederim.

Bu tez çalışması, TÜBİTAK 1001-Bilimsel Teknolojik Araştırma Projelerini Destekleme Programı - TBAG-114Z550 numaralı proje ile desteklenmiştir.

Özge TOKUL ÖLMEZ

İÇİNDEKİLER

ÖNSÖZ	ix
İÇİNDEKİLER	X
ÇİZELGELER DİZİNİ	xiv
ŞEKİLLER DİZİNİ xviii	viii
SEMBOLLER VE KISALTMALAR DİZİNİ	xxii
1. GİRİŞ	1
1.1. Amaç ve Kapsam	1
1.2. Kaynak Özetleri	3
1.2.1. Mantarlar	3
1.2.2. Ganoderma cinsi	3
1.2.3. Ganoderma lucidum (Curtis) P. Karst. 1881	. 43
1.2.3.1. G. lucidum mantarının özellikleri	. 43
1.2.3.2. G. lucidum mantarı ile ilgili literatür araştırmaları	. 46
1.2.4. Ganoderma adspersum (Schulzer) Donk 1969	. 49
1.2.4.1. G. adspersum mantarının özellikleri	. 49
1.2.4.2. G. adspersum mantarı ile ilgili literatür araştırmaları	. 51
1.2.5. Ganoderma applanatum (Pers.) Pat	. 52
1.2.5.1. G. applanatum mantarının özellikleri	. 52
1.2.5.2. G. applanatum mantarı ile ilgili literatür araştırmaları	. 54
1.2.6. Ganoderma resinaceum Boud	. 54
1.2.6.1. G. resinaceum mantarının özellikleri	. 54
1.2.6.2. G. resinaceum mantarı ile ilgili literatür araştırmaları	. 56
1.2.7. Sekonder metabolitler	. 57
1.2.8. Terpenoitler	. 58
1.2.8.1.Triterpenoitler	. 61
1.2.9. Steroitler	. 62
1.2.10. Yağ asitleri	. 64
1.2.11. Fenolik bileşikler	. 70
1.2.12. Antioksidan aktivite tayin yöntemleri	.75
1.2.12.1. DPPH serbest radikali giderim aktivitesi yöntemi	. 75
1.2.12.2. ABTS katyon radikali giderim aktivitesi yöntemi	. 76

1.2.12.3. CUPRAC aktivite yöntemi (Bakır (II) indirgeme aktivitesi)	76
1.2.12.4. FRAP yöntemi (Demir (III) iyonu indirgeme gücü)	
1.2.12.5. Toplam antioksidan kapasite (β-karoten-lineloik asit renk a aktivitesi) yöntemi	çılım 77
1.2.13. Kemometrik analiz	78
1.2.13.1. Korelasyon analizi	80
1.2.13.2. Temel bileşen analizi (PCA)	80
1.2.13.3. Hiyerarşik kümeleme analizi	82
MATERYAL VE YÖNTEM	
2.1. Materyal	
2.2. Kimyasal Maddeler ve Çözücüler	89
2.3. Alet ve Diğer Gereçler	89
2.4. Mantar Ekstrelerinin Hazırlanması	
2.4.1. Maserasyon yöntemi ile petrol eteri/kloroform, aseton ve metanol ekstrelerinin hazırlanması	
2.4.2. Soxhlet ekstraksiyon yöntemi ile petrol eteri/kloroform, aseton ve ekstrelerinin hazırlanması	metanol 92
2.4.3. Ultrasonik ekstraksiyon yöntemi ile petrol eteri/kloroform, aseton metanol ekstrelerinin hazırlanması	ve 93
2.5. Çözeltilerin Hazırlanması	94
2.5.1. DPPH serbest radikali giderim aktivitesi yönteminde kullanılan çö	zelti . 94
2.5.2. ABTS katyon radikali giderim aktivitesi yönteminde kullanılan çö	zelti . 94
2.5.3. CUPRAC aktivite yönteminde (Bakır (II) indirgeme gücü) kullanı çözeltiler	lan 95
2.5.4. β -karoten-lineloik asit renk açılımı yönteminde kullanılan çözelti.	95
2.5.5. HPLC-DAD analizinde kullanılan çözeltiler	95
2.6. Antioksidan Aktivite Testleri	95
2.6.1. DPPH serbest radikal giderim aktivite yöntemi	95
2.6.2. ABTS katyon radikal giderim aktivitesi yöntemi	96
2.6.3. CUPRAC aktivite yöntemi (Bakır (II) indirgeme aktivitesi)	97
2.6.4. β -karoten-lineloik asit renk açılım aktivitesi yöntemi	97
2.7. Kromatografik Yöntemler	
2.7.1. Kolon kromatografisi	
2.7.2. İnce tabaka kromatografisi	100
2.7.3. Yüksek performanslı sıvı kromatografisi (HPLC-DAD)	101

2.7.3.1. Aseton ekstrelerinin HPLC-DAD analizi	101
2.7.3.2. Aseton ekstrelerinin HPLC-DAD kromatogramlarındaki madd belirlenmesi	elerin 102
2.7.3.3. Metanol ekstrelerinin HPLC-DAD analizi	105
2.7.3.4. Metanol ekstrelerinin HPLC-DAD kromatogramlarındaki mad belirlenmesi	!delerin 106
2.7.3.5. Aseton ekstrelerinin HPLC-DAD kromatogramlarındaki antiol piklerin belirlenmesi	ksidan 109
2.7.3.6. Metanol ekstrelerinin HPLC-DAD kromatogramlarındaki antioksidan piklerin belirlenmesi	109
2.7.4. Preparatif HPLC	109
2.7.5. Mantarların yağ asidi bileşenlerinin gaz kromatografisi-kütle spektroskopisi (GC-MS) yöntemi ile belirlenmesi	110
2.8. NMR Spektroskopisi	111
2.9. Kütle Spektroskopisi	111
2.10. İstatistiksel Hesaplamalar	112
2.10.1. Kemometrik analiz	112
2.11. IC ₅₀ ve A _{0,5} Değerlerinin Hesaplanması	112
3. BULGULAR VE İRDELEME	113
3.1. Mantar Ekstrelerinin Antioksidan Aktivite Sonuçları	113
3.1.1. DPPH serbest radikali giderim aktivitesi yöntemi sonuçları	113
3.1.2. ABTS katyon radikali giderim aktivitesi yöntemi sonuçları	115
3.1.3. Bakır (II) indirgeme antioksidan kapasitesi yöntemi	116
3.1.4. β -karoten-lineloik asit renk açılım aktivitesi yöntemi sonuçları	118
3.2. <i>Ganoderma resinaceum</i> Mantarının Biyoaktif Bileşiklerinin Elde Edilm İlişkin Sonuçlar	tesine 119
3.2.1. <i>Ganoderma resinaceum</i> mantarının fraksiyonlandırma çalışmaları sonuçları	119
3.2.2. Ganoderma resinaceum mantarından izole edilen bileşikler	120
3.2.2.1. GRM-1 (1) kodlu maddenin yapı tayini	120
3.2.2.2. GRM-6 (2) kodlu maddenin yapı tayini	122
3.2.2.3. GRM-9 (3) kodlu maddenin yapı tayini	124
3.2.2.4. GRM-8 (4) kodlu maddenin yapı tayini	126
3.2.2.5. GRM-5 (5) kodlu maddenin yapı tayini	128
3.2.2.6. GRM-11 (6) kodlu maddenin yapı tayini	130
3.2.2.7. GRM-10 (7) kodlu maddenin yapı tayini	132

	3.2.2.8. GRM-7 (8) kodlu maddenin yapı tayini	134
	3.2.3. Mantar ekstrelerinin HPLC-DAD analizi sonuçları	136
	3.2.3.1. Aseton ekstrelerinin HPLC-DAD analizi sonuçları	136
	3.2.3.2. Aseton ekstrelerinin kromatogramlarındaki maddelerin belirlenmesine ilişkin sonuçlar	141
	3.2.3.3. Aseton ekstrelerinin HPLC-DAD kromatogramlarındaki antic piklerin belirlenmesi	oksidan 162
	3.2.3.4. Metanol ekstrelerinin HPLC-DAD analizi sonuçları	182
	3.2.3.5. Metanol ekstrelerinin kromatogramlarındaki maddelerin belirlenmesine ilişkin sonuçlar	187
	3.2.3.6. Metanol ekstrelerinin HPLC-DAD kromatogramlarındaki antioksidan piklerin belirlenmesi	216
	3.2.4. Mantarların yağ asidi bileşenlerinin GC-MS analizi sonuçları	236
	3.3. Kemometrik Analiz	245
	3.3.1. Aseton ekstrelerinin HPLC-DAD analizlerine ilişkin kemometrik a sonuçları	ınaliz 245
	3.3.1.1. Korelasyon analizi	245
	3.3.1.2. Temel bileşen analizi (PCA)	247
	3.3.1.3. Hiyerarşik kümeleme analizi (HCA)	252
	3.3.2. Metanol ekstrelerinin HPLC-DAD analizlerine ilişkin kemometrik sonuçları	analiz 254
	3.3.2.1. Korelasyon analizi	254
	3.3.2.2. Temel bileşen analizi (PCA)	256
	3.3.2.3. Hiyerarşik kümeleme analizi (HCA)	260
	3.3.3. Yağ asitlerinin GC-MS ile analizlerine ilişkin kemometrik analiz s	onuçları 262
	3.3.3.1. Korelasyon analizi	262
	3.3.3.2. Temel bileşen analizi (PCA)	266
	3.3.3.3. Hiyerarşik kümeleme analizi (HCA)	270
4.	SONUÇLAR VE ÖNERİLER	272
Eŀ	SLER	307
l	Ek A. Ganoderma Türlerine Ait Resimler ve Özellikleri	307
]	Ek B. NMR ve MS Spektrumları	309
]	Ek C. UV Spektrumları	330
]	Ek D. Turnitin Tez İntihal Raporu	335
ÖZ	ZGEÇMIŞ	337

ÇİZELGELER DİZİNİ

Çizelge 1.1. Litaratürde Ganoderma türlerinden izole edilen bileşikler	6
Çizelge 1.2. Terpenlerin sınıflandırılması5	9
Çizelge 1.3. Doğada yagın olarak görülen doymuş yağ asitleri6	5
Çizelge 1.4. Doğada yagın olarak görülen doymamış yağ asitleri6	57
Çizelge 2.1. Mantar türlerine ait özellikler	8
Çizelge 2.2. Maserasyon yöntemiyle elde edilen ekstrelerin miktarları ve verimleri	1
Çizelge 2.3. Soxhlet ekstraksiyon yöntemiyle elde edilen ekstrelerin miktarları ve verimleri	2
Çizelge 2.4. Ultrasonik ekstraksiyon yöntemiyle elde edilen ekstrelerin miktarları ve verimleri	; 93
Çizelge 2.5. <i>G. resinaceum</i> aseton ekstresinden elde edilen fraksiyonların miktarları ve verimleri	9
Çizelge 2.6. Aseton ekstreleri HPLC-DAD cihaz analiz şartları 10)1
Çizelge 2.7. Aseton ekstrelerinin HPLC-DAD analiz şartlarında triterpen ve steroitlere ilişkin analitik parametreler)4
Çizelge 2.8. Aseton ekstrelerinin HPLC-DAD analiz şartlarında fenolik maddelere ilişkin analitik parametreler)4
Çizelge 2.9. Metanol ekstreleri HPLC-DAD cihaz analiz şartları 10	15
Çizelge 2.10. Metanol ekstrelerinin HPLC-DAD analiz şartlarında triterpen ve steroitlere ilişkin analitik parametreler)7
Çizelge 2.11. Metanol ekstrelerinin HPLC-DAD analiz şartlarında fenolik bileşikler ve organik asitlere ilişkin analitik parametreler10)8
Çizelge 2.12. Preparatif HPLC'ye ilişkin analitik parametreler 11	0
Çizelge 2.13. Mantarların yağ asidi bileşenlerinin GC-MS analiz şartları11	1
Çizelge 2.14. Yağ asitleri analizine ilişkin analitik parametreler11	1
Çizelge 3.1. <i>Ganoderma</i> türü mantarların aseton ve metanol ekstrelerinin DPPH serbest radikal giderim ve ABTS katyon radikal giderim aktivitesi ^a 11	4
Çizelge 3.2. <i>Ganoderma</i> türü mantarların aseton ve metanol ekstrelerinin CUPRAC ve lipid peroksidasyon inhibisyonu ^a	7
Çizelge 3.3. Ergosterol peroksit (1) NMR spektral değerleri	1
Çizelge 3.4. Ganoderik asit C2 (2) bileşiğinin NMR spektral verileri 12	3
Çizelge 3.5. Ganoderik asit G (3) bileşiğinin NMR spektral verileri 12	5
Çizelge 3.6. Ganoderik asit B (4) bileşiğinin NMR spektral verileri 12	7

Çizelge 3.7. Ganoderik asit A (5)'nın NMR spektral verileri 129
Çizelge 3.8. Ganoderenik asit D (6) bileşiğinin NMR spektral verileri131
Çizelge 3.9. Ganoderenik asit C (7) bileşiğinin NMR spektral verileri
Çizelge 3.10. Ganoderik asit D (8) bileşiğinin NMR spektral verileri
Çizelge 3.11. Aseton ektrelerinin HPLC-DAD kromatogramlarında yer alan maddelerin miktarları (µg/g)157
Çizelge 3.12. 1.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 162
Çizelge 3.13. 2.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 163
Çizelge 3.14. 3.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 165
Çizelge 3.15. 4.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 167
Çizelge 3.16. 5.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 168
Çizelge 3.17. 6.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 169
Çizelge 3.18. 7.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim. 171
Çizelge 3.19. 8.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim. 172
Çizelge 3.20. 9.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim. 173
Çizelge 3.21. 10.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 174
Çizelge 3.22. 11.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 176
Çizelge 3.23. 12.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 177
Çizelge 3.24. 13.GAp.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim
Çizelge 3.25. 14.GR.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 179
Çizelge 3.26. Metanol ektrelerinin HPLC-DAD kromatogramlarında belirlenen maddelerin miktarları (μg/g) (1-5)
Çizelge 3.27. Metanol ektrelerinin HPLC-DAD kromatogramlarında belirlenen maddelerin miktarları (μg/g) (6-10)
Çizelge 3.28. Metanol ektrelerinin HPLC-DAD kromatogramlarında belirlenen maddelerin miktarları (μg/g) (11-14)
Çizelge 3.29. 1.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 216
Çizelge 3.30. 2.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim 218
Çizelge 3.31. 3.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim değişim
Çizelge 3.32. <i>G. lucidum</i> (4) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.33. <i>G. lucidum</i> (5) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

Çizelge 3.34. <i>G.</i> adspersum (6) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.35. <i>G. adspersum</i> (7) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.36. <i>G. adspersum</i> (8) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.37. <i>G. adspersum</i> (9) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.38. <i>G. adspersum</i> (10) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.39. <i>G. adspersum</i> (11) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.40. <i>G. adspersum</i> (12) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.41. <i>G. applanatum</i> (13) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.42. <i>G. resinaceum</i> (14) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge 3.43. <i>Ganoderma</i> örneklerinin maserasyon yöntemiyle hazırlanan ekstrelerindeki yağ asidi bileşimi (µg/g)
Çizelge 3.44. <i>Ganoderma</i> örneklerinin soxhlet ekstraksiyon yöntemiyle hazırlanan ekstrelerindeki yağ asidi bileşimi (µg/g)
Çizelge 3.45. <i>Ganoderma</i> örneklerinin soxhlet ekstraksiyon yöntemiyle hazırlanan ekstrelerindeki yağ asidi bileşimi (µg/g)
Çizelge 3.46. Aseton ekstrelerinin kemometrik analiz veri seti $(\mu g/g)$
Çizelge 3.47. <i>Ganoderma</i> örneklerinin aseton ekstrelerinde tespit edilen maddelerin korelasyon matrisleri
Çizelge 3.48. <i>Ganoderma</i> örneklerinin aseton ekstrelerinin PCA analizi loading, eigenvalue, varyans ve kümülatif varyans değerleri
Çizelge 3.49. Aseton ekstrelerinin temel bileşen skor değerleri
Çizelge 3.50. Metanol ekstrelerinin kemometrik analiz veri seti (µg/g)
Çizelge 3.51. <i>Ganoderma</i> örneklerinin metanol ekstrelerinde tespit edilen maddelerin korelasyon matrisleri
Çizelge 3.52. <i>Ganoderma</i> örneklerinin metanol ekstrelerinin PCA analizi loading, eigenvalue, varyans ve kümülatif varyans değerleri
Çizelge 3.53. Metanol ekstrelerinin temel bileşen skor değerleri
Çizelge 3.54. Kemometrik analiz için kullanılan yağ asidi veri seti (µg/g)
Çizelge 3.55. Ganoderma örneklerinin yağ asidi bileşenlerinin korelasyon matrisleri

Çizelge 3.56. Ganoderma örneklerinin PCA analizi loading, eigenvalue, v	aryans ve
kümülatif varyans değerleri	
Çizelge 3.57. <i>Ganoderma</i> örneklerinin yağ asidi bileşimlerine ait temel bi değerleri	leşen skor 267
Çizelge 4.1. HPLC-DAD cihazında analiz edilen maddeler	

ŞEKİLLER DİZİNİ

Şekil 1.1. Ganoderma türü mantarlardan izole edilen bazı bileşiklerin yapıları	30
Şekil 1.2. G. lucidum (2 numaralı örnek) örneğinin Miselyum tüpleri	44
Şekil 1.3. Muğla ilçelerinden toplanan G. lucidum örnekleri	44
Şekil 1.4. G. lucidum (2 numaralı örnek) örneğinin bazidyosporları	45
Şekil 1.5. G. adspersum (7 numaralı örnek) örneği	50
Şekil 1.6. G. adspersum (6 numaralı örnek) örneğinin bazidyosporları	50
Şekil 1.7. G. applanatum (13 numaralı örnek) örneği	53
Şekil 1.8. G. applanatum mantarına ait bazidyospor (Singh vd., 2014)	53
Şekil 1.9. G. resinaceum (14 numaralı örnek) örneği	55
Şekil 1.10. G. resinaceum mantarına ait bazidyospor (Chen vd., 2017a)	55
Şekil 1.11. İkincil metabolitlerin oluşumu	58
Şekil 1.12. İzopren birimlerinin baş-kuyruk şeklinde kondenzasyonu	59
Şekil 1.13. Terpen bileşiklerinin oluşumu	60
Şekil 1.14. Steran halkası	63
Şekil 1.15. a) Ergosterol b) Ergosterol peroksit yapısı	64
Şekil 1.16. Fenolik bileşiklerin sınıflandırılması	71
Şekil 1.17. DPPH molekülünün antioksidan madde ile reaksiyonu	76
Şekil 2.1. Mantarların toplanma bölgeleri	87
Şekil 2.2. G. resinaceum mantarının aseton ekstresinin fraksiyonlandırılması	100
Şekil 3.1. Ergosterol peroksit (1)' in yapısı	120
Şekil 3.2. Ganoderik asit C2 (2)'nin yapısı	122
Şekil 3.3. Ganoderik asit G (3)'nin yapısı	124
Şekil 3.4. Ganoderik asit B (4)'ün yapısı	126
Şekil 3.5. Ganoderik asit A (5)'nın yapısı	128
Şekil 3.6. Ganoderenik asit D (6)'nın yapısı	130
Şekil 3.7. Ganoderenik asit C (7)'nin yapısı	132
Şekil 3.8. Ganoderik asit D (8)'nin yapısı	134
Şekil 3.9. G. lucidum (1) örneği aseton ekstresi HPLC-DAD kromatogramı	136
Şekil 3.10. G. adspersum (10) örneği aseton ekstresi HPLC-DAD kromatogram	1.136
Şekil 3.11. G. applanatum (13) örneği aseton ekstresi HPLC-DAD kromatogran	mı
	137

Şekil 3.12. G. resinaceum (14) örneği aseton ekstresi HPLC-DAD kromatogramı 137
Şekil 3.13. Maserasyon yöntemi ile hazırlanan aseton ekstrelerinin parmak izi kromatogramları
Şekil 3.14. Soxhlet ekstraksiyon yöntemi ile hazırlanan aseton ekstrelerinin parmak izi kromatogramları
Şekil 3.15. Ultrasonik ekstraksiyon yöntemi ile hazırlanan aseton ekstrelerinin parmak izi kromatogramları
Şekil 3.16. Etanole ait HPLC-DAD kromatogramı142
Şekil 3.17. Fenolik madde standartlarının 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.18. <i>Ganoderma resinaceum</i> mantarından saflaştırılan triterpenlerin kromatogramı
Şekil 3.19. Ergosterol peroksit (1)'in 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.20. Betulinan A (BA3)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.21. Betulinan B (BA4)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.22. Ergosta-5,22-dien 3- <i>O</i> -β- <i>D</i> -ksilofuranosil (SC2)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.23. <i>G. lucidum</i> (1.GL.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.24. <i>G. lucidum</i> (1.GL.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.25. <i>G. lucidum</i> (1.GL.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.26. <i>G. adspersum</i> (8.GA.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.27. <i>G. adspersum</i> (8.GA.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.28. <i>G. adspersum</i> (8.GA.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.29. <i>G. applanatum</i> (13.GAp.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.30. <i>G. applanatum</i> (13.GAp.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.31. <i>G. applanatum</i> (13.GAp.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.32. <i>G. resinaceum</i> (14.GR.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.33. <i>G. resinaceum</i> (14.GR.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.34. <i>G. resinaceum</i> (14.GR.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.35. G. lucidum (1) örneği metanol ekstresi HPLC-DAD kromatogramı 182
Şekil 3.36. <i>G. adspersum</i> (7) örneği metanol ekstresi HPLC-DAD kromatogramı
Şekil 3.37. <i>G. applanatum</i> (13) örneği metanol ekstresi HPLC-DAD kromatogramı 183
Şekil 3.38. <i>G. resinaceum</i> (14) örneği metanol ekstresi HPLC-DAD kromatogramı
Şekil 3.39. Maserasyon yöntemi ile hazırlanan metanol ekstrelerinin parmak izi kromatogramları
Şekil 3.40. Soxhlet ekstraksiyon yöntemi ile hazırlanan metanol ekstrelerinin parmak izi kromatogramları
Şekil 3.41. Ultrasonik ekstraksiyon yöntemi ile hazırlanan metanol ekstrelerinin parmak izi kromatogramları
Şekil 3.42. Metanole ait HPLC-DAD kromatogramı 189
Şekil 3.43. Fenolik madde standartlarının 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.44. <i>Ganoderma resinaceum</i> mantarından saflaştırılan triterpenlerin kromatogramı
Şekil 3.45. Ergosterol (TA1)'ün 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.46. Betulinan A (BA3)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı
Şekil 3.47. Ergosta-5,22-dien 3β-ol (ID1) standardının 254 nm dalga boyundaki HPLC-DAD kromatogram
Şekil 3.48. 5α-6α epoksi ergosta-7,22-dien- 3β-ol (TA2)' ün 254 nm dalga boyundaki HPLC-DAD kromatogram
Şekil 3.49. <i>G. lucidum</i> (1.GL.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.50. <i>G. lucidum</i> (1.GL.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı
Şekil 3.51. <i>G. lucidum</i> (1.GL.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.52. <i>G. adspersum</i> (8.GA.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 197
Şekil 3.53. G. <i>adspersum</i> (8.GA.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 198
Şekil 3.54. <i>G. adspersum</i> (8.GA.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 199
Şekil 3.55. <i>G. applanatum</i> (13.GAp.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 200
Şekil 3.56. <i>G. applanatum</i> (13.GAp.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 201
Şekil 3.57. <i>G. applanatum</i> (13.GAp.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 202
Şekil 3.58. <i>G. resinaceum</i> (14.GR.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 203
Şekil 3.59. <i>G. resinaceum</i> (14.GR.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 204
Şekil 3.60. <i>G. resinaceum</i> (14.GR.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı	. 205
Şekil 3.61. <i>Ganoderma</i> türlerinin yağ asidi metil esterlerinin GC-MS kromatogramları	. 238
Şekil 3.62. <i>Ganoderma</i> türlerinin yağ asidi metil esterlerinin GC-MS kromatogramları	. 239
Şekil 3.63. Ganoderma örneklerinin oleik asit/linoleik asit oranları	. 244
Şekil 3.64. Aseton ekstrelerinin PC1 ve PC2 skor grafiği	. 250
Şekil 3.65. Aseton ekstrelerinin PC1 ve PC2 loading grafiği	. 251
Şekil 3.66. Aseton ekstrelerinin Öklid uzaklığı ve Ward Linkage metodu ile elde edilen dendogramı	. 253
Şekil 3.67. Metanol ekstrelerinin PC1 ve PC2 skor grafiği.	. 258
Şekil 3.68. Metanol ekstrelerinin PC1 ve PC2 loading grafiği	. 259
Şekil 3.69. Metanol ekstrelerinin Öklid uzaklığı ve Ward Linkage metodu ile elde edilen dendogramı	e . 261
Şekil 3.70. Ganoderma örneklerinin PC1 ve PC2 skor grafiği	. 268
Şekil 3.71. Ganoderma örneklerinin PC1 ve PC2 loading grafiği	. 269
Şekil 3.72. Öklid uzaklığı ve Ward Linkage metodu ile elde edilen dendogram	. 271

SEMBOLLER VE KISALTMALAR DİZİNİ

3T3	3 günlük transfer, inokulum 3×10^{5} hücreleri
A549	İnsan akciğer adenokarsinom epitelyum hücre hattı
AA	Antioksidan aktivite
AAPH	2,2'-azobis (2-amidopropan) dihidroklorürden
ABTS	2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonicasitdiammonium salt)
ACE	Anjiyotensin dönüştürücü enzim
AChE	Asetilkolinesteraz
AFA/AA	Antifungal / Antagonistik aktivite
AFA	Antifungal aktivite
APT	Attach proton test
BChE	Bütirilkolinestreaz aktivitesi
BHA	Bütillenmiş hidroksi anisol
Caco-2	Kolorektal adenokarsinoma
CCC	Ters akım kromatografisi
CDCl ₃	Döterokloroform
CoA	Koenzim A
Coco-2	İnsan kolon kanser hücresi
COSY	Correlation Spectroscopy
CUPRAC	Bakır (II) indirgeme gücü aktivitesi
DEPT	Distortionless Enhancement by Polarization Transfer
DMCA	Dimetilaminosinnamaldehit
DMSO	Dimetilsülfoksit
DNA	Deoksiribonükleik asit
DPPH	2,2-difenil-1-pikrilhidrazil
EBV	Epstein-Barr virüsü
EI	Elektron impact
EI-MS	Elektron impact-Kütle spektrometresi
ESI-MS	Elektrosprey iyonizasyon kütle dedektörü
ESS	Hata kareleri toplamı

ET	Elektron transfer
FAB [⊕] MS	Hızlı atom bombardımanı-kütle spektroskopisi
FRAP	Demir (III) iyonu indirgeme gücü
<i>G</i> .	Ganoderma
GC	Gaz Kromatografi
GC-MS	Gaz kromatografi - Kütle spektrometresi
GLC	Kapiller gaz kromotografi
¹ H-NMR	Proton NMR
¹³ C-NMR	Karbon NMR
H460	İnsan-büyük akciğer kanser hücresi
HAT	Hidrojen atomu transfer
HCA	Hiyerarşik Kümelenme Analizi
HDL	Yüksek yoğunluklu lipoprotein
Hep-2	İnsan Epitel Hücreleri Tip 2
HepG2	Hepatoselüler
HeLa	Servikal adenokarsinoma
HL-60	İnsan lösemi hücre hattı
HMBC	Heteronükleer çoklu bağ korelasyon spektroskopisi
HMG-CoA	3-Hidroksi-3-metilglutans koenzim A
HPLC	Yüksek performaslı sıvı kromatografi
HPLC-DAD	Yüksek performanslı sıvı kromatografi – Diode array dedektör
HSQC	Heteronükleer tek kuantum korelasyon spektroskopisi
IR	İnfrared spektroskopi
İTK	İnce tabaka kromatografisi
K562	İnsan miyolojenli lösemi
L.	Literatür
LC-ESI-MS	Sıvı kromatografi - Elektrosprey iyonizasyon - Kütle spektrometri
LC-MS/MS	Sıvı kromatografi – tandem kütle spektrometresi
LDL	Düşük Yoğunluklu Lipoprotein
LLC	Akciğer Kanseri
LOD	Tespit sınırı
MCF-7	Meme kanseri

xxiii

Meth-A	Metamfetamin
MPLC	Orta basınçlı sıvı kromatografi
MS	Kütle spektroskopisi
MUFA	Tekli doymamış yağ asitleri
NMR	Nükleer manyetik rezonans
ORAC	Oksijen radikal absorbans kapasitesi
PAF	Trombosit aktive edici faktör
PC	Temel bileşen
PCA	Temel bileşen analizi
PDA	Fotodiyot array dedektör
PLS-LDA	Kısmi en küçük kareler yöntemi
PMP	1-fenil-3-metil-5-pirazolon
PSK	Protein bağlı polisakkarit
PTP1B	Proteintirozinfosfat 1B
PUFA	Çoklu doymamış yağ asitleri
RP-HPLC	Ters faz yüksek performanslı sıvı kromatografi
RRLC-ESI-M	S Hızlı çözünen sıvı kromatografisi - elektrosprey iyonizasyon tandem
kütle spektron	netresi
SCLC	Küçük hücreli akciğer kanseri
TMS	Tetrametilsilan
TRAP	Radikal-tutuklama antioksidan parametresi
TOC	α-tokoferol
UPLC	Ultra performanslı sıvı kromotografi
UV	Ultraviyole
VLC	Vakum sıvı kromatografi

1. GİRİŞ

1.1. Amaç ve Kapsam

Doğada organik maddelerin ayrıştırılması gibi önemli bir görevi üstlenen funguslar yaklaşık 125.000 tanımlanmış tür ile ayrı bir alemde toplanmış olup bu türlerden yaklaşık 10.000 tanesi makrofungustur (Allı vd., 2007; Allı vd., 2008). Ülkemiz fitocoğrafik konumundan dolayı oldukça zengin bir mantar florasına sahiptir. Her mevsim görülen türlerin haricinde genellikle ilkbahar ve sonbahar aylarında ortaya çıkan bu mantarların zenginliği, şüphesiz ki ekolojik şartların uygunluğundan kaynaklanmaktadır (Işıloğlu ve Öder, 1995). Günümüzde mantarlardan tıp, eczacılık, gıda ve fermentasyon alanlarında yaygın şekilde faydalanılmaktadır. Mantarlar immunomodulatör ve antitumor ajanı olduğu kadar antiviral, antimikrobial, antimutajenik, antihipertansiyon, antiinflamatuar, antiallerjik vb. gibi özellikleriyle arastırmacıların dikkatini son vıllarda çekmekte olup, ekstraksiyonları, saflaştırılmaları ve yapı tayinlerinin uygun olarak yapılması büyük önem taşımaktadır. Bu yüzden çeşitli mantar türlerinden biyoaktif bileşenlerin ekstraksiyonu ve saflaştırılmasını sağlamak amacıyla uygun bir ektraksiyon yönteminin ve analizleri için de uygun bir analitik tekniğin geliştirilmesi önemlidir.

Yüksek Basidiomycota üyesi mantarlardan birisi olan *G. lucidum*, önemli tibbi kullanıma sahip mantarlardan bir tanesidir. "Ölümsüzlük Mantarı" olarak ta bilinen bu mantar türü Japonca'da Reishi, Çince'de LingZhi olarak adlandırılmıştır. Yüzyıllardır, bu mantar Çin ve diğer Asya ülkelerinde kronik bronşit, hepatit, hipertansiyon, yüksek kolesterol, tümörojenik hastalıklar ve immünolojik bozukluklar gibi çeşitli hastalıkların tedavisinde ve bu hastalıklardan korunmada geleneksel Uzak Doğu ilacı veya halk ilacı olarak kullanılmaktadır. *Ganoderma lucidum*'un Japonya'da 2005 yılından itibaren kanser ve diğer bazı hastalıklarının tedavisinde kullanımına resmi olarak izin verilmiştir. Tadının acı ve sindiriminin zor olmasından dolayı yenilebilir bir mantar değildir, ancak infüzyon ekstresi, tabletler, çaylar, kahveler gibi çeşitli tüketim ürünlerine katılmaktadır (Balın, 2007; Atanur,

2008). Bu mantarın tıbbi amaçlı kullanımı içerdiği triterpenoitler, aminoasitler ve peptitler, germenyum gibi inorganik elementler, steroitler ve organik asitler gibi farklı kimyasal grupları içermesinden kaynaklanmaktadır. Bu farklı kimyasal gruplar içinde en önemlileri, farmakolojik aktiviteleri ile lanostan tipi triterpenoitler, steroitler ve polisakkaritlerdir (Karataş, 2009). Ülkemizde *Ganoderma* türü mantarların doğal olarak yayılış göstermesi ve biyoaktivite gösteren bileşiklerinin belirlenmesi üzerine çok az çalışma bulunmasından dolayı çalışmamızda *Ganoderma* türlerinde bulunan biyoaktif bileşenlerin HPLC ile tespiti, izolasyonu ve miktarlarının belirlenmesi hedeflendi.

Doktora tez çalışması kapsamında farklı bölgelerden ve farklı ağaç türlerinden toplanan ticari öneme sahip olan Ganoderma lucidum, G. adspersum, G. applanatum ve G. resinaceum türlerine ait örnekler üç farklı ekstraksiyon tekniğiyle elde edilen petrol eteri/kloroform, aseton ve metanol ekstrelerinin antioksidan aktivitelerinin belirlenmesi, parmak izi kromatogramlarının çıkartılması, Ganoderma türlerinin biyoaktif bileşenlerini HPLC ile belirlenmesi ve Ganoderma resinaceum türünün biyoaktif bileşiklerinin izolasyonu ve yapılarının aydınlatılması amaçlanmıştır. Bu tez çalışmasında, farklı bölgeler ve farklı ağaçlardan elde edilen mantarların benzerliği, yetiştiği ağaç türlerinin etkisi ve bölgesel farklılıkların etkilerinin değerlendirilmesi için kemometrik yaklaşımdan yararlanılması en önemli noktalardan birisi oldu. Böylelikle günümüzde Reishi mantarı olarak bilinen ve tıpta yaygın olarak kullanılan Ganoderma lucidum mantarının biyoaktif bileşikler açısından diğer Ganoderma türleriyle benzerliğinin ortaya konması ve biyoaktif bileşiklerin elde edilmesinde ekstraksiyon tekniğinin etkilerinin araştırılması hedeflenmiş oldu.

1.2. Kaynak Özetleri

1.2.1. Mantarlar

Mantarlar eski zamanlardan beri Çin, Japonya, Kore gibi Asya ülkelerinin yanı sıra Afrika'nın bazı bölgelerinde de yiyecek ve ilaç olarak kullanılırdı. Günümüzde de mantarlar tıp, eczacılık, gıda ve fermantasyon alanlarında kullanılmaktadır. Bu nedenle, mantarlar birçok araştırmacının ilgisini çekmiş ve özellikle biyolojik açıdan aktif bileşiklerin izole edilmesi ve yapılarının aydınlatılması üzerine çalışmalara yoğunlaşılmıştır. Mantar türlerinden izole edilen lektinler, polisakaritler (β -glukan), polisakarit-protein kompleksleri, polisakarit-peptidler, lanostanoitler, diğer terpenoidler, alkaloidler, steroitler ve fenolik yapılı bileşikler anti-kanser, antioksidan, anti-tümör, anti-enflamatuar, anti-fungal, anti-bakteriyel, antiviral ve anti-immünomodülatör aktiviteler göstermektedir. (Cao vd., 2012; Dai vd., 2009; Ajith ve Janardhanan, 2007; Moradali vd., 2007; Tong vd., 2009). Mantarlar vitamin, protein ve mineral açısından zengin olması nedeniyle de oldukça faydalı besinlerdir. Yenilebilir mantar üzerine yapılan çalışmalar, kalori ve yağ oranlarının düşük olduğunu göstermektedir ve doymamış yağ asitleri bakımından da zengindirler. Besleyici özelliklerine ek olarak mantarlar çoğu ülkede özellikle tatları ve lezzetlerinden dolayı tercih edilirler. Ayrıca gösterdikleri antifungal, antibakteriyel, anti-immünomodülatör, antioksidan, antiviral. anti-tümör, anti-inflamatuar. antikolesterol, sitotoksik ve anti-hipoglisemik aktiviteler nedeniyle birçok araştırmanın konusu olmaktadır (Öztürk vd., 2015).

1.2.2. Ganoderma cinsi

Ganoderma cinsi, Fin mikolog Peter Adolf Karsten tarafından 1881 yılında tanımlanmıştır (Mohanty vd., 2011; Thawthong vd., 2017). *Ganoderma*, meyve kısımlarının sert, kabuk benzeri üst yüzeyleri ile bilinen, verniklenmiş görünüme sahip olan bir ağaç mantarıdır. *Ganoderma* cinsi Basidiomycetes içinde yer alan Ganodermataceae ailesine aittir (Baby vd., 2015; Schwarze ve Ferner, 2003). Literatürde Fungorum indeksinde 437 tür epiteti bulunmakta olup, bunların 418 tanesi kabul edilmiştir. Taksonomik çalışmalarda ise 300'den fazla *Ganoderma* cinsi rapor edilmiş olup, bu cins mantarların büyük çoğunluğunun tropikal bölgelerde,

nemli koşullarda geliştiği görülmektedir (Baby vd., 2015; Thawthong vd., 2017). Ganoderma türlerinin genellikle sert bir meyve dokusuna sahip olmaları, kalın ve odunsu yapıları nedeniyle yenilebilir mantarlar sınıfında yer almazlar (Baby vd., 2015). Ganoderma türü mantarlar tibbi mantarların en önemli kaynaklarından bir tanesidir. Özellikle Çin, Japonya ve Kore gibi ülkelerde eski zamanlardan bu yana tibbi amaçlarla, gıda katkıları olarak, fermentasyon ve eczacılık alanlarında kullanım alanı bulmuştur. Günümüzde ise Ganoderma türü mantarlardan üretilen çeşitli preparatların, çayların ve kahvelerin tüketimi ile birçok hastalığa karşı koruyucu ve tedavi edici olarak kullanılmaktadır. Dünya çapında bir gıda takviyesi ve bitkisel ilaç olarak kullanılan ve "Linghzi" olarak adlandırılan preparatlar büyük bir ekonomik değere sahiptir. Ayrıca, G.lucidum mantarından elde edilen ve kanseri önlediği bilinen Krestin (protein bağlı polisakkarit, PSK), Japonya'da üretilip ticari olarak piyasaya sürülmüştür. Krestin mantar kaynaklı en önemli ilaç hammaddelerinden birisi olup kanserde kullanılan ilaç pazarının 1999 yılında % 25'ini oluşturmuştur (Mizuno, 1999). Bu nedenle bircok arastırıcı bu tür mantarların biyolojik aktivitelerini araştırma yönelmiş ve pek çok biyoaktif bileşen izole edilmiştir. Ganoderma türü mantarların töropatik etkileri içeriğinde yer alan lektin, polisakkarit $(\beta$ -glukan), polisakkarit-peptit, polisakkarit-protein kompleksleri, lanosten tipi triterpenler, diğer terpenler, alkoloidler, fenolik yapılı bileşenler ve steroller gibi biyoaktif bilesenlerden kaynaklanmaktadır. (Öztürk vd., 2015). Bu biyoaktif bileşenler anti-kanser, antioksidan, anti-enflamatuar, antibakteriyal, antifungal, antiaging, antiviral, antihipertansif, antidiyabet, anti-androjenik, aktivitelerinin yanı sıra kan lipid düşürücü etkisi, kardiyovasküler hastalıkları önleyici, kolestrol sentezi inhibisyonu, hipoglisemi önleme, lipit peroksidasyon/oksidatif DNA hasarının inhibisyonu, bağırsak sağlığının korunması, obezitenin önlenmesi ve immün-yanıtı uyarıcı etkileri gibi tıbbi özelliklere sahiptirler (Grienke vd., 2015; Thawthong vd., 2017; Paterson 2006, Bishop et al. 2015).

Bu güne kadar yapılan çalışmalarda *Ganoderma* türü mantarların meyve özlerinde, sporlarında ve kültür örneklerinde biyolojik olarak aktif olan maddeler araştırılmış ve binlerce makale yazılmıştır. *Ganoderma* türlerinde bulunan en önemli bileşenler triterpenler, steroitler ve polisakkaritlerdir. Aynı zamanda proteinler, peptitler, aminoasitler, nükleotitler, yağ asitleri, alkoloitler ve inorganik elementlerde G*anoderma* türlerinde bulunan biyolojik açıdan önemli bileşenlerdir. İkincil

metabolitler bitki, mantar, bakteri ve algler tarafından biyosentezlenebilen çeşitli organik molekül gruplarıdır. Bunlar arasında triterpenler ikincil metabolitlerin en önemli gruplarıdır. Ganoderma türlerinden bu güne kadar 600'e yakın (Çizelge 1.1.) madde izole edilmiş (Amen vd., 2016; Baby vd., 2015) ve bunların 300'e yakını G. lucidum mantarından saflaştırılmıştır. Ayrıca G. applanatum/G. lipsiene 63 adet, G. sinense 49 adet, G. amboinense 22 adet, G. colossum 19 adet, G. pfeifferi 18 adet, G. resinaceum 16 adet, G. cochlear 16 adet, G. concinna 15 adet, G. australe 14 adet, G. orbiforme 13 adet, G. fornicatum 10 adet ve G. capense 2 adet madde izole edildiği rapor edilmiştir (Baby vd., 2015). Ayrıca G. amboinense, G.applanatum, G. theaecolum, G. sinense, G. sinensin, G. orbiforme, G. australe, G. adspersum, G. annulare, G. tropicum, G. leucocontextum, G. cochlear, G. carnosum, G. fornicatum, G. hainanense, G. pfeifferi, G. colossum, Ganoderma spp., G. tsugae, G. concinna, G. lingzhi, Ganoderma sp KM01, G. capense, G. petchii, G. mastoporum, G. neojaponicum G. calidophilum, G. philippii, G. duripora ve G. boninense gibi Ganoderma türü mantarlardan birçok saf madde izole edilmiştir.

Majör *Ganoderma* bileşenleri olan triterpenlere ilişkin yapılan izolasyon çalışmalarında en fazla rapor edilen maddeler ganoderik asit AM1, ganoderik asit B, ganoderik asit C1, Ganoderik asit C2 (2), ganoderik asit D, ganoderik asit DM, ganoderik asit F, ganoderik asit G, ganoderik asit H, ganoderik asit K, ganoderik asit Me, ganoderik asit Mk, ganoderik asit S, ganoderik asit T, ganoderik asit TR, ganoderik asit Y, ganoderenik asit A, ganoderenik asit B, ganoderenik asit D, ganoderol A, ganoderol B, ganoderiol F, ganodermatriol, ganoderal A, ganoderal Me, ganoderat D, ganoderat G ve lucidenik asit A gibi lanosten tipi triterpenlerdir. Ayrıca literatürde lucialdehit E, ganoderiol C, lucidenik asit J ve ganodermasit A gibi minör triterpenlere ilişkin çalışmalarda mevcuttur. *Ganoderma* türü mantarlarından biyoaktif steroitler de elde edilmiştir. Ergosterol, ergosterol peroksit, c-ergostenol, a-dihidroergosterol, ergosta-4,6,8(14),22-tetraen 3-on, (3b,5a,8a,22E)-5,8-epidioksi-ergosta-6,9(11),22- trien 3-ol lanosten tipi steroitlere örneklerdir (Grienke vd., 2015). *Ganoderma* türlerinden izole edilen bileşiklerin listesi ve gösterdikleri aktiviteler Çizelge 1.1.'de verilmiştir.

Bileşik	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
C30 Lan	ostanlar Canodarik	asitlar		
CJ0 Lun	osianiar, Ganoaerik	usilier	Farnesil protein transferazi	
L1	Ganoderik asit A	G. lucidum	inhibisvonu	Sliva D., 2003
			Kulak ödemi inflamasyonu	
			baskılayıcı, Epstein-Barr	Dudhgaonkar vd
L1	Ganoderik asit A	G. lucidum	virüsü(EBV) aktivasyonuna	2009
			inhibisyon etkisi, anti-	
T 1	Ganadarik asit A	C lucidum	Anti kansor aktivito	Jinna vd 2008
LI L1	Ganoderik asit A	G. lucidum G. lucidum	Antioksidan aktivite	Shi vd 2010
L2	Ganoderik asit R	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L2	Ganoderik asit B	G. lucidum	Sitotoksik aktivite	Yue vd., 2010
1.2	Considerily easit D	Chusidum	Hepatokoruyucu etki, Anti-HIV	Hapuarachchi
L2	Ganoderik asit D	G.Iuciaum	aktivite	vd., 2016
L2	Ganoderik asit B	G. lucidum	Antioksidan aktivite	Shi vd., 2010
L3	Ganoderik asit C1	G. lucidum	EBV aktivasyonuna inhibisyon	Dudhgaonkar vd.,
13	Ganadarik asit C1	C lucidum	etkisi Antioksidan aktivita	2009 Shive 2010
LS		0. <i>iuciuum</i>	Aldoz reduktaz inhibisyon	Sili vu., 2010
L4	Ganoderik asit C2	G. lucidum	aktivitesi	Ma vd., 2015
			FBV aktivesvonung inhibisvon	Dudhgaonkar vd.,
L4	Ganoderik asit C2	G. lucidum	etkisi	2009; Akihisa
				vd., 2007
L5	Ganoderik asit D	G. lucidum	Sitotoksik aktivite	Yue vd., 2010
L5	Ganoderik asit D	G. lucidum	Alstamin saimimini engelieyici	Hapuaracheni vd. 2016
1.5	Ganoderik asit D	G lucidum	Antioksidan aktivite	Shi vd 2010
L6	Ganoderik asit E	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
			EDV altiveaverung inhibitor	Dudhgaonkar vd.,
L6	Ganoderik asit E	G. lucidum	etkisi	2009; Akihisa
				vd., 2007
L7	Ganoderik asit F	G. lucidum	Meme kanseri, Anti-kanser	Jiang vd., 2008
			Kulak ödemi inflamasyonu	
	~	~	baskılayıcı. EBV aktivasyonuna	Dudhgaonkar vd
L7	Ganoderik asit F	G. lucidum	inhibisyon etkisi,	2009
			antienflamatuvar akt.	
L8	Ganoderik asit G	G. lucidum	Caco-2 hücreleri inhibisyonu	Ruan ve
10				Popovich, 2012
	Ganoderik asit G	G. lucidum	Anti kansar aktivita	Min Vd., 2000
L9		0. <i>iuciaum</i>	Anu-Kanser ekuvite	Ruan ve
L10	Ganoderik asit I	G. lucidum	Caco-2 hücreleri inhibisyonu	Popovich, 2012
				Nishitoba vd.,
L11	Ganoderik asit J	G. lucidum	Sitotoksik aktivite	1985a, Guan vd.,
				2008
L12	Ganoderik asit K	G. lucidum	Caco-2 hücreleri inhibisyonu	Ruan ve
			-	Morigiwa vd
L13	Ganoderik asit K	G. lucidum	ACE-inhibitör aktivitesi	1986
T 14	Ganodorilz agit I	G huaidum		Nishitoba vd.,
L14	Ganoderik asit L	G. Iuciaum		1986

Çizelge 1.1. Litaratürde Ganoderma türlerinden izole edilen bileşikler

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L15	Ganoderik asit M	G. lucidum		Nishitoba vd., 1987a
L16	Ganoderik asit N	G. amboinense		Yang vd., 2012
L17	Ganoderik asit O	G. lucidum		Nishitoba vd., 1987a
L18	Ganoderik asit AM ₁	G. lucidum	Sitotoksik aktivite	Guan vd., 2008
L19	Ganoderik asit AP	G. applanatum		Baby vd., 2015
L20	Ganoderik asit AP3	G. applanatum		Wang ve Liu, 2008
L21	Ganoderik asit B8	G. lucidum		Gao vd., 2002
L22	Ganoderik asit C6	G. lucidum	Caco-2 hücreleri inhibisyonu	Ruan ve Popovich, 2012
L23	Ganoderik asit Df	G. lucidum	Aldoz reduktaz inhibisyon aktivitesi	Ma vd., 2015
L24	Ganoderik asit α	G. lucidum	Anti-HIV-1 Proteaz aktivitesi	Xia vd., 2014
L25	12-hidroksi ganoderik asit C2	G. lucidum		Yang vd., 2007
L26	20-hidroksi ganoderik asit G	G. lucidum		Ma vd., 2002
L27	20-hidroksi ganoderik asit AM ₁	G. theaecolum		Liu vd., 2014
L28	3- <i>O-Asetil</i> ganoderik asit B	G. lucidum		Li vd., 2009
L29	3-O-Asetil ganoderik asit H	G. lucidum		Yang vd., 2007
L30	3-O-Asetil ganoderik asit K	G. lucidum		Li vd., 2009
L31	12- <i>O-Asetoksi</i> ganoderik asit D	G. lucidum		Yang vd., 2007
L32	Ganolusidik asit A	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L32	Ganolusidik asit A	G. lucidum	Anti-HIV-1 Proteaz aktivitesi	Min vd., 1998
L33	Ganolusidik asit B	G. lucidum	Anti-HIV-1	Shi vd., 2010
L34	Bileşik B9	G. lucidum		Baby vd., 2015
L35	12 β -Hidroksi- 3,7,11,15,23- pentaokso-5 α - lanosta-8-en-26-oik asit	G. lucidum		Chen vd., 2017c
L36	12,15- Bis(asetiloksi)-3- hidroksi-7,11,23- triokso-lanost-8-en- 26-oik asit	G. lucidum		Baby vd., 2015
L37	Ganoderik asit O	G. lucidum		Hirotani vd., 1987
L38	Ganoderik asit U	G. lucidum	Anti-kanser	Yuen ve Gohel, 2005
L39	Ganoderik asit V	G. lucidum	Anti-kanser	Yuen ve Gohel, 2005
L40	Ganoderik asit W	G. lucidum	Anti-kanser	Yuen ve Gohel, 2005
L41	Ganoderik asit Z	G. lucidum	Anti-kanser	Yuen ve Gohel, 2005

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L42	Ganoderik asit GS-1	G. sinense		Sato vd., 2009a
L43	Ganoderik asit GS-2	G. sinense	Anti-HIV-1 Proteaz aktivitesi	Sato vd., 2009a
L44	Ganoderik asit Ma	G. lucidum		Nishitoba vd., 1987b
L45	Ganoderik asit Mc	G. lucidum	Sitotoksik aktivite	Li vd., 2013a
L46	Ganoderik asit Md	G. lucidum		Nishitoba vd., 1987b
L47	Ganoderik asit Mg	G. lucidum		Nishitoba vd., 1987c
L48	Ganoderik asit Mh	G. lucidum		Nishitoba vd., 1987c
L49	Ganoderik asit Mi	G. lucidum		Nishitoba vd., 1987c
L50	Ganoderik asit Mj	G. lucidum		Nishitoba vd., 1987c
L51	Ganoderik asit β	G. lucidum	Anti-HIV-1 Proteaz aktivitesi	Min vd., 1998
L52	7- <i>O</i> -Metil ganoderik asit O	G. lucidum		Hirotani vd., 1987
L53	7- <i>0</i> -Etilganoderik asit O	G. lucidum	Sitotoksik aktivite	Wang vd., 2010b
L54	7- <i>O</i> -Oksoganoderik asit Z	G. lucidum	HMG-CoA redüktaz,CoA- asetiltransferaz inhibitör aktivitesi	Li vd., 2006
L55	7- <i>O</i> -Oksoganoderik asit Z2	G. resinaceum		Peng vd., 2013
L56	7- <i>O</i> -Oksoganoderik asit Z3	G. resinaceum		Peng vd., 2013
L57	Ganorbiformin B	G. orbiforme	Antitüberküler aktivite (düşük)	Isaka vd., 2017a
L58	Ganorbiformin C	G. orbiforme	Antitüberküler aktivite	Isaka vd., 2017a
L59	Ganorbiformin D	G. orbiforme	Antitüberküler, antimalarial sitotoksik aktivite	Duru ve Çayan, 2015
L60	Ganorbiformin E	G. orbiforme	Antitüberküler, antimalarial sitotoksik aktivite	Duru ve Çayan, 2015
L61	Ganorbiformin F	G. orbiforme	Antitüberküler, antimalarial sitotoksik aktivite	Duru ve Çayan, 2015
L62	3α , 22 β -Diasetoksi- 7α -hidroksil- 5α - lanost-8,24E-dien-26- oik asit	G. lucidum	Sitotoksik aktivite	Li vd., 2013b
L63	3β , 15 α -Diasetoksi- lanosta-8, 24-dien-26- oik asit	G. lucidum		Baby vd., 2015
L64	11 α -hidroksi-3,7- diokso-5 α -lanosta- 8,24(E)-dien-26-oik asit	G. lucidum		Cheng vd., 2010
L65	11 β -Hidroksi-3,7- diokso-5 α -lanosta- 8,24(E)-dien-26-oik asit	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L66	Ganoderik asit P	G. amboinense		Yang vd., 2012
L67	Ganoderik asit Q	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L67	Ganoderik asit Q	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L68	Ganoderik asit R	G. lucidum	Anti-kanser aktivite	Yuen ve Gohel, 2005 Uinstani ud
L68	Ganoderik asit R	G. lucidum	Anti-hepatotoksik aktivite	1986
L69	Ganoderik asit S	G. lucidum	ACE-inhibitör aktivitesi	Morigiwa vd., 1986
L69	Ganoderik asit S	G. lucidum	Antiplazmodial aktivite	Adams vd., 2010
L69	Ganoderik asit S	G. lucidum	Anti-hepatotoksik	Hirotani vd., 1986
L69	Ganoderik asit S	G. lucidum	Sitotoksik aktivite	Li vd., 2013a
L70	Ganoderik asit S	G. lucidum		Seo vd., 2009
L71	Ganoderik asit T	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı, EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009
L71	Ganoderik asit T	G. lucidum	Anti-kanser	Yuen ve Gohel, 2005
L71	Ganoderik asit T	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L71	Ganoderik asit T	G. lucidum	Sitotoksik ve pro-apoptotik aktivite	Liu vd., 2012b
L72	Ganoderik asit X	G. lucidum	Anti-kanser aktivite	Yuen ve Gohel, 2005
L73	Ganoderik asit Y	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L73	Ganoderik asit Y	G. lucidum	Anti-kanser aktivite	Yuen ve Gohel, 2005
L74	Ganoderik asit Me	G. lucidum	Anti-tümör, Anti-kanser aktivite	Wang vd., 2007b
L75	Ganoderik asit Mf	G. lucidum	Sitotoksik aktivite	Li vd., 2013a
L76	Ganoderik asit Mk	G. lucidum	Sitotoksik aktivite	Li vd., 2013a
L77	15-Hidroksi ganoderik asit S	G. lucidum	HMG-CoA redüktaz,CoA- asetiltransferaz inhibitör aktivitesi	Li vd., 2006
L78	Ganodermik asit S	G. lucidum	Antitüberküler aktivite	Isaka vd., 2017a
L79	Ganodermik asit Ja	G. lucidum		Xia vd., 2014
L80	Ganodermik asit Jb	G. lucidum		Xia vd., 2014
L81	Ganodermik asit P2	G. lucidum		Xia vd., 2014
L82	Ganodermik asit T-N	G. lucidum		X1a vd., 2014
L83	Ganodermik asit I-O	G. lucidum	IIIIC Co A radültar	X1a vd., 2014
L84	Ganodermik asit T-Q	G. lucidum	CoA-asetiltransferaz inhibitör aktivitesi	Li vd., 2006
L84	Ganodermik asit T-Q	G. lucidum	Nörotrofik aktivite	Xia vd., 2014
L85	Ganodermik R	G. australe		Shiao ve Lin, 1987
L86	Ganorbiformin G	G. orbiforme	Antitüberküler, antimalariyal ve sitotoksik aktivite	Duru ve Çayan, 2015

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L87	Lanosta-7,9(11),24-trien-3 α - asetoksi-15 α ,22 β -dihidroksi- 26-oik asit	G. lucidum		Baby vd., 2015
L88	Lanosta-7,9(11),24-trien- 3β ,15 α ,22 β -triasetoksi-26-oik asit	G. amboinense		Yang vd., 2012
L89	3α,15α,22α- Trihidroksilanosta-7,9(11),24- trien-26-oik asit	G. lucidum		Baby vd., 2015
L90	3β , 15α , 22β - Trihidroksilanosta-7,9(11), 24- trien-26-oik asit	G. lucidum		Baby vd., 2015
L91	3α,15α-Diasetoksi-22α- hidroksilanosta-7,9(11),24- trien-26-oik asit	G. lucidum		Baby vd., 2015
L92	3β ,15 α -Diasetoksi- 22 α -hidroksilanosta- 7,9(11),24-trien-26-oik asit	G. lucidum		Baby vd., 2015
L93	22β -Asetoksi- 3α , 15α - hidroksilanosta-7,9(11), 24- trien-26-oik asit	G. lucidum		Baby vd., 2015
L94	22β -Asetoksi- 3β , 15α - dihyidroksilanosta-7,9(11), 24- trien-26-oik asit	G. lucidum		Baby vd., 2015
L95	Ganoderik asit AP2	G. applanatum		Wang ve Liu, 2008
L.96	Ganoderik asit LM2	G. lucidum	Sitotoksik aktivite	Guan vd., 2008
L97	Ganoderik asit γ	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L98	Ganoderik asit δ	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L99	Ganoderik asit ε	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L100	Ganoderik asit ζ	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L101	Ganoderik asit η	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L102	Ganoderik asit θ	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L103	Ganolusidik asit D	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L104	Ganolusidik asit E	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010
L105	Ganolusidik asit γa	G. lucidum		Liu vd., 2012a
L106	Ganolusidat F	G. sinense	hPXR aracılı CYP3A4 ekspresyonunu indükleme kabiliyeti	Xia vd., 2014
L107	Ganoderik asit DM	G. lucidum	Anti-kanser aktivite	Wu vd., 2012
L107	Ganoderik asit DM	G. lucidum	Anti-androjenik inhibitor Kulak ödemi	Liu vd., 2009
L107	Ganoderik asit DM	G. lucidum	inflamasyonu baskılayıcı, EBV aktivasyonuna inhibisyon etkişi	Dudhgaonkar vd., 2009
L108	Metil Ganolusidat B	G. lucidum		Xia vd., 2014
L109	Metil Ganolusidat A	G. lucidum		Xia vd., 2014
L110	Ganoderik asit GS-3	G. sinense		Sato vd., 2009a
L111	Ganoderik asit V1	G. lucidum		Baby vd., 2015

NoticeHepatoprotektif aktiviteLiu vd., 2014L112Ganoderik asit XL1G. theaecolumLiu vd., 2014L113Ganoderik asit XL3G. theaecolumLiu vd., 2017L114Ganoderik asit XL4G. theaecolumLiu vd., 2017L115Ganoderik asit XL5G. theaecolumLiu vd., 2017L116Ganoderik asit XL5G. theaecolumLiu vd., 2017L117Ganoderik asit XL5G. theaecolumLiu vd., 2017L118Ganoderik asit JcG. sinenseHL-60 hücrelerine karşı inhibitör aktivitesiL1183a-asetoksi-15a-hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L11915 α -asetoksi-3a-hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L1203a,15 α -diasetoksi-23- okso-26-oik asitG. lucidumPaliya vd., 20L121Ganoderik asit SzG. lucidumAntikomplement aktiviteSeo vd., 2009L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L1248 $\beta,9\alpha$ -Dihidroganoderik asit JG. lucidumHepatoprotektif aktiviteHapuaracheh 2016L125Ganosporerik asit AG. lucidumHepatoprotektif aktiviteHapuaracheh 2016L126Ganosporerik asit AG. lucidumAntiüberküler, antimalariyal ve sitotoksik aktiviteDuru ve Çaya 2015L126Ganorbiformin AG. orbiforme<	114 114 114 114 114 114 114 114
L113Ganoderik asit XL2G. theaecolumLiu vd., 2014L114Ganoderik asit XL3G. theaecolumLiu vd., 2017L115Ganoderik asit XL4G. theaecolumLiu vd., 2017L116Ganoderik asit XL5G. theaecolumLiu vd., 2017L117Ganoderik asit XL5G. theaecolumLiu vd., 2017L118Ganoderik asit XL5G. theaecolumLiu vd., 2017L119Ganoderik asit XL5G. theaecolumXia vd., 2017L1183a-asetoksi-15a-thidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L11915a-asetoksi-3a-thidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L1203a/5a-disetoksi-23- okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2009L121Ganoderik asit SzG. lucidumAntiplazmodial aktiviteAdams vd., 2L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L1248 β ,9 α -Dihidroganoderik asit JG. lucidumAntiplazmodial aktiviteAdams vd., 2L1258 β ,9 α -Dihidroganoderik asit JG. lucidumHepatoprotektif aktiviteHapuarachch Nishitoba vd 1985a; Shi vd. 2010L125Ganorbiformin AG. orbiformeAntiitüberküler, attimalariyal ve sitotoksik aktiviteDuru ve Caya 2015	014 014 014 ; Li 010
L114Ganoderik asit XL3G. theaecolumLiu vd., 2017L115Ganoderik asit XL4G. theaecolumLiu vd., 2017L116Ganoderik asit XL5G. theaecolumLiu vd., 2017L117Ganoderik asit XL5G. theaecolumHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L117Ganoderik asit JcG. sinenseHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L1183 α -asetoksi-15 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L11915 α -asetoksi-3 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L1203 α /5 α -disetoksi-23- okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2009L121Ganoderik asit SzG. lucidumAntiplazmodial aktiviteAdams vd., 2L121Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit SG. lucidumAntiplazmodial 	014 014 014 ; Li 010
L115Ganoderik asit XL4G. theaecolumLiu vd., 2017L116Ganoderik asit XL5G. theaecolumHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L117Ganoderik asit JcG. sinenseHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L118Ganoderik asit JcG. sinenseHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L118Ganoderik asit JcG. lucidumPaliya vd., 20L11915 α -asetoksi-15 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L120Ganoderik asit 3 α -hidroksi- 23-okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2009L121Ganoderik asit SzG. lucidumAntikomplement aktiviteSeo vd., 2005L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L123 $2,3$ -Hidroksi ganoderik asit SG. lucidumAntiplazmodial 	
L116Ganoderik asit XL5G. theaecolumLiu vd., 2017L117Ganoderik asit JcG. sinenseHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L118Jac-asetoksi-15 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L11915 α -asetoksi-3 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L11915 α -asetoksi-3 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L1203 $\alpha_15\alpha$ -diasetoksi-23- okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2009L121Ganoderik asit SzG. lucidumAntiplazmodial aktiviteAdams vd., 2L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L124 8β ,9 α -Dihidroganoderik asit JG. lucidumHepatoprotektif aktiviteHapuarachch 2016L125Ganolusidik asit CG. lucidumAnti-HIV-1Ma vd., 2009L126Ganolusidik asit CG. lucidumHepatoprotektif aktiviteHapuarachch 2016L126Ganolusidik asit CG. lucidumHepatoprotektif aktiviteDuru ve Çaya 2015	- 114 114 ; Li 010
L117Ganoderik asit JcG. sinenseHL-60 hücrelerine karşı inhibitör aktivitesiXia vd., 2014L118 3α -asetoksi-15 α -hidroksi- 23-okso-26-oik asit Lanosta-7,9(11),24-trien- L119G. lucidumPaliya vd., 20L119 15α -asetoksi- 3α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20L110 3α ,15 α -diasetoksi-23- okso-26-oik asitG. lucidumPaliya vd., 20L120 3α ,15 α -diasetoksi-23- okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2009L121Ganoderik asit SzG. lucidumAntiplazmodial aktiviteAdams vd., 2L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L123 $2,3$ -Hidroksi ganoderik asit SG. lucidumAntiplazmodial 	- 114 114 ; Li 010
Lanosta-7,9(11),24-trien- 23-okso-26-oik asitPaliya vd., 20Lanosta-7,9(11),24-trien- 23-okso-26-oik asitG. lucidumPaliya vd., 20L11915 α -asetoksi-3 α -hidroksi- 23-okso-26-oik asitG. lucidumPaliya vd., 20Lanosta-7,9(11),24-trien- 23-okso-26-oik asitLanosta-7,9(11),24-trien- (kso-26-oik asitPaliya vd., 20L120 3α ,15 α -diasetoksi-23- okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2005L121Ganoderik asit SzG. lucidumAntiplazmodial aktiviteAdams vd., 2L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L124 8β ,9 α -Dihidroganoderik asit JG. lucidumMa vd., 2002Li vd., 2009L125 8β ,9 α -Dihidroganoderik 	014 014 014 0; Li 010
Lanosta-7,9(11),24-trien- 15 α -asetoksi-3 α -hidroksi- 23-okso-26-oik asitG. lucidum Paliya vd., 20L120 $3\alpha,15\alpha$ -diasetoksi-23- okso-26-oik asitG. lucidumAntikomplement aktiviteSeo vd., 2009 vd., 2005L121Ganoderik asit SzG. lucidumAntikomplement aktiviteSeo vd., 2009 vd., 2005L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L124 $8\beta,9\alpha$ -Dihidroganoderik asit CG. lucidumAntiplazmodial 	014 014 0; Li 010
Lanosta-7,9(11),24-trien- okso-26-oik asit <i>G. lucidum</i> Paliya vd., 20L121Ganoderik asit Sz <i>G. lucidum</i> Antikomplement aktiviteSeo vd., 2009 vd., 2005L122Ganoderik asit TR <i>G. lucidum</i> Antiplazmodial aktiviteAdams vd., 2L1232,3-Hidroksi ganoderik asit S <i>G. lucidum</i> Antiplazmodial aktiviteAdams vd., 2L124 $8\beta,9\alpha$ -Dihidroganoderik asit C <i>G. lucidum</i> Antiplazmodial aktiviteAdams vd., 2L125 $8\beta,9\alpha$ -Dihidroganoderik asit J <i>G. lucidum</i> Ma vd., 2002L126Ganosporerik asit A <i>G. lucidum</i> Hepatoprotektif 	014 ¹ ; Li 010
L121Ganoderik asit SzG. lucidumAntikomplement aktiviteSeo vd., 2009 vd., 2005L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L123 $2,3$ -Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L124 $8\beta,9\alpha$ -Dihidroganoderik asit CG. lucidumAntiplazmodial 	9; Li 010
L122Ganoderik asit TRG. lucidumAntiplazmodial aktiviteAdams vd., 2L123 $2,3$ -Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L124 $8\beta,9\alpha$ -Dihidroganoderik 	010
L123 $2,3$ -Hidroksi ganoderik asit SG. lucidumAntiplazmodial aktiviteAdams vd., 2L124 $8\beta,9\alpha$ -Dihidroganoderik asit CG. lucidumLi vd., 2009L125 $8\beta,9\alpha$ -Dihidroganoderik asit JG. lucidumMa vd., 2002L126Ganosporerik asit AG. lucidumHepatoprotektif aktiviteHapuarachch 2016L127Ganolusidik asit CG. lucidumAnti-HIV-11985a; Shi va 2010L128Ganorbiformin AG. orbiformeAntitüberküler, antimalariyal ve sitotoksik aktiviteDuru ve Çaya 2015	
L124 $8\beta,9\alpha$ -Dihidroganoderik asit CG. lucidumLi vd., 2009L125 $8\beta,9\alpha$ -Dihidroganoderik asit JG. lucidumMa vd., 2002L126Ganosporerik asit AG. lucidumHepatoprotektif aktiviteHapuarachch 2016L127Ganolusidik asit CG. lucidumAnti-HIV-11985a; Shi va 2010L128Ganorbiformin AG. orbiformeAntitüberküler, antimalariyal ve sitotoksik aktiviteDuru ve Çaya 2015	010
L125 $8\beta, 9\alpha$ -Dihidroganoderik asit JG. lucidumMa vd., 2002L126Ganosporerik asit AG. lucidumHepatoprotektif aktiviteHapuarachch 2016L127Ganolusidik asit CG. lucidumAnti-HIV-1Nishitoba vd 1985a; Shi va 2010L128Ganorbiformin AG. orbiformeAntitüberküler, antimalariyal ve sitotoksik aktiviteDuru ve Çaya 2015	
L126Ganosporerik asit AG. lucidumHepatoprotektif aktiviteHapuarachch 2016L127Ganolusidik asit CG. lucidumAnti-HIV-1Nishitoba vd 1985a; Shi va 2010L128Ganorbiformin AG. orbiformeAntitüberküler, antimalariyal ve sitotoksik aktiviteDuru ve Çaya 2015	
L127Ganolusidik asit CG. lucidumAnti-HIV-1Nishitoba vd 1985a; Shi va 2010L128Ganorbiformin AG. orbiformeAntitüberküler, antimalariyal ve sitotoksik aktiviteDuru ve Çaya 2015	vd.,
L128 Ganorbiformin A G. orbiforme Antitüberküler, Duru ve Çaya antimalariyal ve sitotoksik aktivite 2015	, l.,
	ın,
L129 $\begin{array}{c} 3\beta,7\beta,20,23\xi-\\ \text{Tetrahidroksi-11,15-}\\ \text{dioksolanosta-8-en-26-oik}\\ \text{asit} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $)4
L130 7β ,20,23 ξ -Trihidroksi- L130 3 ,11,15-trioksolanosta-8- <i>G. applanatum</i> Shim vd., 200 en-26-oik asit)4
L131 Ganoderenik asit A G. lucidum Aldoz reduktaz aktivitesi Aldoz reduktaz	
L131 Ganoderenik asit A G. lucidum Sitotoksik aktivite Guan vd., 20)8
L132 Ganoderenik asit B G. lucidum Sitotoksik aktivite Guan vd., 20)8
L133 Ganoderenik asit C G. lucidum Chen vd., 20	7 b
L134Ganoderenik asit DG. lucidumCaco-2 hücreleri inhibisyonuRuan ve Pope 2012	ovich,
L135 Ganoderenik asit E G. lucidum Baby vd., 20	5
L136 Ganoderenik asit F G. lucidum Cheng vd., 2)10

Çizelge 1.1. (Devam)
Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L138	Ganoderenik asit H	G. lucidum	Sitotoksik aktivite	Guan vd., 2008
L139	Ganoderenik asit I	G. lucidum		Baby vd., 2015
L140	Ganoderenik asit K	G. lucidum	Caco-2 hücreleri inhibisyonu HMG-CoA	Ruan ve Popovich, 2012
L140	Ganoderenik asit K	G. lucidum	redüktaz inhibitör aktivitesi	Chen vd., 2017b
L141	Elfvingik asit A	G. lucidum		Yang vd., 2007
L142	12 β -Asetoksi-7 β -hidroksi- 3,11,15,23-tetraokso-5 α - lanosta-8,20-dien-26-oik asit	G. lucidum		Cheng vd., 2010
L143	Ganoderenik asit AM1	G. theaecolum	Hepatoprotektif aktivite	Liu vd., 2014
L144	7β ,23 ξ Dihidroksi-3,11,15- trioksolanosta-8,20E(22)- dien-26-oik asit	G. applanatum		Shim vd., 2004
L145	Aplanoksidik asit A	G. applanatum G. annulare	Anti-tümör aktivite Anti-fungal aktivite	Xia vd., 2014 Smania vd., 2003
L146	Aplanoksidik asit B	G. applanatum	Anti-tümör aktivite	Xia vd., 2014
L147	Aplanoksidik asit E	G. adspersum		Tel-Çayan vd., 2015b,
L148	Aplanoksidik asit F	G. annulare	Anti-fungal aktivite	Smania vd., 2003
L149	Aplanoksidik asit C	<i>G. applanatum</i> <i>G. annulare</i>	Anti-tümör aktivite Anti-fungal	Xia vd., 2014 Smania vd., 2003
L150	Aplanoksidik asit D	G. applanatum	Anti-tümör aktivite	Xia vd., 2014
L151	Aplanoksidik asit G	G. pfeifferi	Anti-viral aktivite BChE enzimine	Mothana vd., 2003 Tel-Cayan vd
L151	Aplanoksidik asit G	G. adspersum	karşı inhibitör aktivite	2015b
L152	Aplanoksidik asit H	G. annulare		Smania vd., 2003
L153	3β , 7β -Dihidroksi- 11, 15, 23-triokso-lanost- 8, 16-dien-26-oik asit	G. lucidum		Guan vd., 2007
L154	3β , 7β , 15β -Trihidroksi- 11, 23-diokso-lanost-8, 16- dien-26-oik asit	G. tropicum		Baby vd., 2015
L155	12β-Asetoksi-3β,7β- dihidroksi-11,15,23- triokso-lanost-8,16-dien- 26-oik asit	G. lucidum		Guan vd., 2007
L156	Ganoderesin C	G. theaecolum	Hepatoprotektif aktivite	Liu vd., 2014
L157	Ganodermasetal	G. amboinenese	Salamura karides larvalarına karşı toksik aktivite	Duru ve Çayan, 2015
L158	Ganosinensik asit B	G. sinense		Wang vd., 2010a
L159	Kolossolakton V	G. colossum	Anti-HIV aktivitesi	El-Dine vd., 2008; Weng vd., 2010
L160	Kolossolakton VI	G. colossum	Anti-HIV aktivitesi	El-Dine vd., 2008; Weng vd., 2010
L161	Furanoganoderik asit	G. applanatum		Xia vd., 2014
L162	3α-Karboksiasetoksi-24- metil-23-oksolanost-8-en- 26-oik asit	Ganoderma spp., G. applanatum		Baby vd., 2015

Çizelge	1.1.	(Dvam)
---------	------	--------

D'1 '1				
Bileşik Türü	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L163	3 <i>α</i> -Karboksiasetoksi-24- metilen-23-oksolanost-8- en-26-oik asit	Ganoderma spp., G. applanatum		Baby vd., 2015
L164	Karboksiasetilkuersinik asit türevi 02	Ganoderma spp.		Baby vd., 2015
L165	8α,9α-Epoksi- 3,7,11,15,23-pentaokso- 5α-lanosta-26-oik asit	G. lucidum		Baby vd., 2015
L166	Tsugarik asit A	G. lucidum	Anti-enflamatuvar aktivite	Dudhgaonkar vd., 2009
L167	Tsugarik asit D	G. tsugae	Sitotoksik Aktivite	Lin vd., 2013
L168	3β -Hidroksi- 5α -lanosta- 8,24-dien-21-oik asit	G. tsugae	Sitotoksik aktivite	Xia vd., 2014
L169	3-Okso-5 α -lanosta-8,24- dien-21-oik asit	G. tsugae,		Dudhgaonkar vd., 2009
L170	Tsugarik asit B	G. tsugae	Sitotoksik aktivite	Duru ve Çayan, 2015
L171	Tsugarik asit C	G. tsugae		Duru ve Çayan, 2015
L172	Tsugarik asit E	G. tsugae	Sitotoksik aktivite	Lin vd., 2013
L173	3α -Asetoksi- 16α - hidroksi-24-metilen- 5α - lanost-8-en-21-oik asit	G. resinaceum		Niu vd., 2007
L174	3α -(3-Hidroksi-5- metoksi-3-metil-1,5- diooksopentiloksi)-24- metilen- 5α -lanost-8-en- 21-oik asit	G. resinaceum	Sitotoksik aktivite	Niu vd., 2007
L175	$3\alpha,16\alpha$ - Dihidroksilanosta- 7,9(11),24-trien-21-oik asit	G. applanatum		Baby vd., 2015
L176	3α , 16α , 26 - Trihidroksilanosta- 7,9(11), 24-trien-21-oik asit	G. applanatum		Baby vd., 2015
L177	16α-hidroksi-3- oksolanosta-7,9(11),24- trien-21-oik asit	G. applanatum		Baby vd., 2015
L178	Ganoleucoin A	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite	Wang vd., 2015
L179	Ganoleucoin B	G. leucocontextum	Sitotoksik aktivite	Wang vd., 2015
L180	Ganoleucoin C	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite	Wang vd., 2015
L181	Ganoleucoin D	G. leucocontextum		Wang vd., 2015
L182	Ganoleucoin E	G. leucocontextum		Wang vd., 2015
L183	Ganoleucoin F	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite Sitotoksik aktivite	Wang vd., 2015
L184	Ganoleucoin G	G. leucocontextum	Sitotoksik aktivite	Wang vd., 2015
L185	Ganoleucoin H	G. leucocontextum		Wang vd., 2015

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L186	Ganoleucoin I	G. leucocontextum		Wang vd., 2015
L187	Ganoleucoin J	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite Sitotoksik aktivite	Wang vd., 2015
L188	Ganoleucoin K	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite	Wang vd., 2015
L189	Ganoleucoin L	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite Sitotoksik aktivite	Wang vd., 2015
L190	Ganoleucoin M	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite ve alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017b
L191	Ganoleucoin N	G. leucocontextum	HMG-CoA redüktaza karşı inhibitör aktivite ve alfa glikozidaza karşı inhibitör aktivite	Wang vd., 2015
L192	Ganoleucoin O	G. leucocontextum		Chen vd., 2017 b
L193	Ganoleucoin P	G. leucocontextum	Alfa glikozidaza karşı inhibitör aktivite ve Sitotoksik aktivite	Wang vd., 2015
L194	Ganoderense A	G. hainanense		Li vd., 2016b
L195	Ganoderense B	G. hainanense		Li vd., 2016b
L196	Ganoderense C	G. hainanense		Li vd., 2016b
L197	Ganoderense D	G. hainanense		Li vd., 2016b
L198	Ganoderense E	G. hainanense		Li vd., 2016b
L199	Ganoderense F	G. hainanense		Li vd., 2016b
L200	Ganoderense G	G. hainanense		Li vd., 2016b
L201	Lusiderik asit A	G. lucidum		Cheng vd., 2010
C30 land glikozitle	ostanlar (aldehitler, alk er, laktonlar, ketonlar)	oller, esterler,		
L202	Ganoderal A	G. lucidum	Anti-enflamatuvar aktivite	Dudhgaonkar vd., 2009
L203	Lusialdehit A	G. concinna	Promiyelositik lösemi HL-60 hücrelerinde apoptozu indükler	Gonzalez vd., 2002
L204	Ganoderik aldehit TR	G. lucidum	Antiplazmodial aktivite	Adams vd., 2010
L205	Ganoderol A (ganodermenonol)	G. lucidum	ACE-inhibitör aktivitesi	Morigiwa vd., 1986
L206	Ganoderol B	G. lucidum	Alfa glikozidaz inhibitör aktivitesi	Ma vd., 2015
L206	Ganoderol B	G. lucidum	ACE-inhibitör aktivitesi	Morigiwa vd., 1986
L207	Ganodermatriol	G. lucidum		Fujita vd., 1986

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L208	Ganodermatetraol	G. sinense	hPXR aracılı CYP3A4 ekspresyonunu indükleme kabiliyeti	Xia vd., 2014
L209	5α -Lanosta-7,9(11),24- trien-15 α -26-dihidroksi- 3-on	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L209	5α -Lanosta-7,9(11),24- trien-15 α -26-dihidroksi- 3-on	G. lucidum	5α-redüktaz enzimi inhibisyon etkisi	Paliya vd., 2014
L209	5α -Lanosta-7,9(11),24- trien-15 α -26-dihidroksi- 3-on	G. concinna	Sitotoksik aktivite	Duru ve Çayan, 2015
L210	Polikarpol	G. fornicatum		Qiao vd., 2006
L211	Agnosterol	G. hainanense		Baby vd., 2015
L212	Ganoderal B	G. lucidum		Nishitoba vd., 1998b
L213	Lusidal	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L214	Lusialdehit B	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L214	Lusialdehit B	G. pfeifferi	Herpes virüsüne karşı	Niedermeyer
T 01 4		G L : L	antiviral aktivite	vd., 2005
L214	Lusialdenit B	G. lucidum	Sitotoksik aktivite	Gao vd., 2002
L213	Lusialdenit C	G. luciaum	Sitotoksik aktivite	Gao Vd., 2002
L210 I 217		G. pfeijjen G. pfeifferi	Sitotoksik aktivite	Ma vd., 2012
L/417		0. pjeijjeri	SILULOKSIK AKLIVILE	Dudhgaonkar
L218	Ganoderik aldehit A	G. lucidum		vd., 2009
L219	Ganoderon A	G. pfeifferi	Herpes virüsüne karşı antiviral aktivite	Niedermeyer vd., 2005
L220	16 <i>α</i> ,26–Dihidroksi lanosta-8,24-dien-3-on	G. hainanense		Baby vd., 2015
L221	Lusidumol B	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L221	Lusidumol B	G. lucidum	Anti-HIV-1 Proteaz aktivitesi	Min vd., 1998
L221	Lusidumol B	G. lucidum	Anti-kanser aktivite	Yuen ve Gohel, 2005
L222	Ganoderitriol M	G. lucidum		Chen vd., 2009; Nguyen vd., 2015
L223	Lusidumol A	G. lucidum	Anti-kanser aktivite	Yuen ve Gohel, 2005
L223	Lusidumol A	G. lucidum	Aldoz reduktaz inhibisyon aktivitesi	Chen vd., 2017c
L224	Lusidumol C	G. lingzhi	Sitotoksik aktivite	Amen vd., 2016
L225	Ganodermanontriol	G. lucidum	Anti-HIV-1 ajanı	El-Mekkawy vd., 1998
L225	Ganodermanontriol	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L225	Ganodermanontriol	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007)
L225	Ganodermanontriol	G. lucidum	Anti-kanser	Yuen ve Gohel, 2005

Çizele 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L226	Ganodermanondiol	G. lucidum	Sitotoksik aktivite	Gao vd., 2002
L227	Ganoderiol F	G. lucidum	Anti-HIV-1 ajanı	El-Mekkawy vd., 1998; Sato vd., 2009a
L227	Ganoderiol F	G. lucidum	Anti-kanser aktivite	Yuen ve Gohel, 2005
L228	Ganoderiol B	G. lucidum		Chen vd., 2017c
L229	Ganoderiol A	G. lucidum	Anti-HIV aktivitesi	Xia vd., 2014
L230	Ganoderiol C	G. lucidum		Nishitoba vd., 1988a
L231	Ganoderiol D	G. lucidum		Nishitoba vd., 1988a
L232	Ganoderiol G	G. lucidum		Nishitoba vd., 1988a
L233	Ganoderiol H	G. lucidum		Nishitoba vd., 1988a
L234	Ganoderiol E	G. lucidum	Sitotoksik aktivite	Xia vd., 2014
L235	Ganoderiol I	G. lucidum		Nishitoba vd., 1988a
L236	Ganoderiol J	G. leucocontexum	HMG-CoA redüktaza karşı inhibitör aktivite	Wang vd., 2015
L237	Ganoderiol A triasetat	G. sinense		Qiao vd., 2007
L238	26-Nor-11,23-diokso-5 α - lanost-8-en-3 β ,7 β ,15 α ,25- tetrol	G. tropicum		Baby vd., 2015
L239	Lanosta-7,9(11),24-trien- 3β ,21-diol	G. australe		Baby vd., 2015
L240	3β,22 <i>S</i> -Dihdiroksilanosta- 7,9(11),24-trien	G. cochlear		Peng vd., 2014a
L241	26-Hidroksi-5 <i>α</i> -lanosta- 7,9(11),24-trien-3,22-dion	G. lucidum		Baby vd., 2015
L242	26,27-Dihidroksi-5 α - lanosta-7,9(11),24-trien- 3,22-dion	G. lucidum		Baby vd., 2015
L243	26,27-Dihidroksilanosta- 7,9(11),24-trien-3,16-dion	G. carnosum		Keller vd., 1997
L244	Kolossolakton A	G. colossum	Anti-HIV-1 proteaz aktivitesi	Duru ve Çayan, 2015
L245	Lusidadiol	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
T 246	Ecomication C	G. lucidum	Sitotoksik aktivite	Chen vd., 2017c
L240	ronnisatin C	6. jornicalum		Nishitoba vd
L247	Epoksiganoderiol A	G. lucidum		1988b
L248	Ganoderon C	G. pfeifferi	Anti-viral aktivite	2005
L249	Epoksiganoderiol B	G. lucidum		Nishitoba vd., 1988b
L250	Epoksiganoderiol C	G. lucidum		Nishitoba vd., 1988b
L251	Ganodercochlearin A	G. cochlear		Peng vd., 2014a
L252	Ganodercochlearin B	G. cochlear		Peng vd., 2014a
L253	Ganodercochlearin C	G. cochlear		Peng vd., 2014a

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L254	Ganosinensin A	G. sinense		Sato vd., 2009b
L255	Ganosinensin B	G. sinense		Sato vd., 2009b
L256	Ganosinensin C	G. sinense		Sato vd., 2009b
L257	Metil ganoderat A	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L257	Metil ganoderat A	G. lucidum	Nörotrofik aktivite	Xia vd., 2014
L258	Metil ganoderat B	G. lucidum	Nörotrofik aktivite	Xia vd., 2014
L259	Metil ganoderat C	G. amboinenese	Salamura karides larvalarına karşı toksik aktivite	Duru ve Çayan, 2015
L260	Metil ganoderat D	G. lucidum	3T3-L1 hücrelerindeki adipogenesiz üzerine inhibisyon etkisi	Duru ve Çayan, 215
L261	Metil ganoderat E	G. amboinense		Yang vd., 2012
L261	Metil ganoderat E	G. lucidum	3T3-L1 hücrelerindeki adipogenesiz üzerine inhibisyon etkisi	Duru ve Çayan, 215
L262	Metil ganoderat F	G. lucidum	Epstein-Barr virüsü aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L263	Metil ganoderat H	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010
L264	Metil ganoderat J	G. lucidum		Tung vd., 2014
L265	Metil-O-asetil ganoderat C	G. lucidum		Li vd., 2009
L266	3β , 7β -Dihidroksi-12 β - asetoksi-11,15,23-triokso- 5α -lanosta-8-en-26-oik asit metil ester	G. lucidum		Cheng vd., 2010
L267	Etil ganoderat J	G. lucidum		Li vd., 2009
L268	Etil 3-O-asetil ganoderat B	G. lucidum		Li vd., 2009
L269	12β -Asetoksi-3,7,11,15,23- pentaokso-5 α -lanosta-8-en- 26-oik asit etil ester	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010
L270	Butil ganoderat A	G. lucidum	3T3-L1 hücrelerindeki adipogenesiz üzerine inhibisyon etkisi	Lee vd., 2010a
L271	Butil ganoderat B	G. lucidum	3T3-L1 hücrelerindeki adipogenesiz üzerine inhibisyon etkisi	Lee vd., 2010a
L272	Butil ganoderat H	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L273	12 β -Asetoksi-3 β ,7 β - dihidroksi-11,15,23- trioksolanosta-8-en-26-oik asit butil ester	G. lucidum		Baby vd., 2015
L274	12β -Asetoksi-3,7,11,15,23- pentaoksolanosta-8-en-26- oik asit butil ester	G. lucidum		Baby vd., 2015
L275	Metil 8 β ,9 α - dihidroganoderat J	G. lucidum		Ma vd., 2002

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L276	Ganoderesin B	G. resinaceum	Hepatoprotektif aktivite	Peng vd., 2013
L277	Metil ganoderat A asetonit	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L278	Metil ganoderat P	G. lucidum		Chen vd., 2017b
L279	Ganoderesin A	G. resinaceum		Peng vd., 2013
L280	3β , 7β , 15β -Trihidroksi- 11, 23-diokso-lanost-8, 16- dien-26-oik asit metil ester	G. tropicum		Baby vd., 2015
L281	3β , 15β -dihidroksi- 7, 11, 23-triokso-lanost- 8, 16-dien-26oik asit metil ester	G. tropicum		Baby vd., 2015
L282	3β , 7β -Dihidroksi- 11,15,23-triokso-lanost- 8,16-dien-26oik asit metil ester	G. lucidum		Guan vd., 2007
L283	7β -Hidroksi-3,11,15,23- tetraoksolanosta- 8,20E(22)-dien-26-oik asit metil ester	G. applanatum		Shim vd., 2004
L284	Ganosinosit A	G. sinense		Liu vd., 2012b
L285	Tsugariosit A	G. lucidum		Dudhgaonkar vd., 2009
L286	Tsugariosit B	G. tsugae		Duru ve Çayan, 2015
L287	Tsugariosit C	G. tsugae	Sitotoksik aktivite	Duru ve Çayan, 2015
L288	Ganosporelakton A	G. lucidum		Baby vd., 2015
L289	Ganosporelakton B	G. lucidum		Baby vd., 2015
L290	Kolossolakton I	Ganoderma sp. KM01	Anti-HIV aktivitesi	Lakornwong vd., 2014; Weng vd., 2010
L291	Kolossolakton II	G.colossum	Anti-HIV aktivitesi	Weng vd., 2010
L292	Kolossolakton B	Ganoderma sp. KM01		Lakornwong vd., 2014
L293	Ganoderma lakton E	Ganoderma sp. KM01		Lakornwong vd., 2014
L294	Kolossolakton III	G. colossum	Anti-HIV aktivitesi	Weng vd., 2010
L295	Kolossolakton IV	Ganoderma sp. KM01	Anti-HIV aktivitesi	Lakornwong vd., 2014; Weng vd., 2010
L296	Ganoderma lakton C	Ganoderma sp. KM01		Lakornwong vd., 2014
L297	Kolossolakton VII	G. colossum	Anti-HIV aktivitesi	El-Dine vd., 2008; Weng vd., 2010
L298	Kolossolakton VIII	G. colossum	Anti-HIV aktivite	El-Dine vd., 2008; Weng vd., 2010
L299	Kolossolakton D	G. colossum	Anti-kanser aktivite	Ishmuratov vd., 2015

Çizelge 1.1. (Devam)

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L300	Kolossolakton E	G. colossum	Anti-HIV aktivite	El-Dine vd., 2008
L300	Kolossolakton E	Ganoderma sp. KM01	Antimalaryal aktivite	Lakornwong vd., 2014
L300	Kolossolakton E	G. colossum	Anti-kanser aktivite	Ishmuratov vd., 2015
L301	Kolossolakton F	G. colossum	Anti-kanser aktivite	Ishmuratov vd., 2015
L302	Schisanlakton A	G. colossum	Anti-HIV-1 Proteaz aktivitesi	Duru ve Çayan, 2015
L303	Kolossolakton G	G. colossum G. colossum	Anti-HIV aktivitesi Anti-kanser aktivite	El-Dine vd., 2008 Ishmuratov vd., 2015
L304	Kolossolakton C (Ganoderma lakton B)	G. colossum	Anti-kanser aktivite	Ishmuratov vd., 2015
L305	Kolossolakton H	G. colossum	Sitotoksik aktivite	Chen vd., 2016
L306	Ganoderma lakton A	Ganoderma sp. KM01	*******	Lakornwong vd., 2014
L307	Ganoderma lakton D	Ganoderma sp. KM01		Lakornwong vd., 2014
L308	Ganoderma lakton F	Ganoderma sp. KM01	Antimalaryal aktivite aktivite	Lakornwong vd., 2014
L309	Ganoderma lakton G	Ganoderma sp. KM01		Lakornwong vd., 2014
L310	Ganoboninketal A	G. boninense	Antiplazmodial aktivite, NO inhibisyonu, sitotoksik aktivite	Duru ve Çayan, 2015
L311	Ganoboninketal B	G. boninense	Antiplazmodial aktivite, NO inhibisyonu, sitotoksik aktivite	Duru ve Çayan, 2016
L312	Ganoboninketal C	G. boninense	Antiplazmodial aktivite, NO inhibisyonu, sitotoksik aktivite	Duru ve Çayan, 2017
L313	Ganoboninketal D	G. orbiforme		Isaka vd., 2017b
L314	Inonotsuoksit B	G. cochlear		Baby vd., 2015
L315	Australik asit	G. australe	Sitotoksik aktivite	Xia vd., 2014
L316	Metil australat	G. australe	Antimikrobiyal aktivite	Smania vd., 2007
L317	Austrolakton	G. australe	Sitotoksik aktivite	Xia vd., 2014
L318	Schisanlakton B	Ganoderma sp. KM01	Antimalaryal aktivite	Lakornwong vd., 2014
L319	24ξ -Metil-5 α -lanosta-25- on	G. applanatum		Baby vd., 2015
L320	Ganohainanik asit A	G. hainanense		Peng vd., 2015a
L321	Ganohainanik asit B	G. hainanense		Peng vd., 2015a
L322	Ganohainanik asit C	G. hainanense		Peng vd., 2015a
L323	Ganohainanik asit D	G. hainanense		Peng vd., 2015a
L324	Asetil ganohainanik asit A	G. hainanense		Peng vd., 2015a
L325	Asetil ganohainanik asit C	G. hainanense		Peng vd., 2015a
L326	Ganohainanik asit E	G. hainanense		Peng vd., 2015a
L327	Hainanik asit A	G. hainanense		Peng vd., 2015a
L328	Hainanik asit B	G. hainanense		Peng vd., 2015a

Çizelge 1.1. (Devam)

Çizelge	1.1.	(Devam)
---------	------	---------

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
1 320	Hainanaldahit A	<u> </u>		Peng vd 2015a
L329	$\frac{1}{(225, 245)} = \frac{15}{2} = \frac{15}{2} = \frac{22}{2}$	G. nainanense		Peng vu., 2015a
L330	(223, 24E)- $5a, 13a, 22$ - triasetoksi- $5a$ -lanosta- 7,9(11), 24-trien- 26 -oik asit metil ester	G. lucidum	Sitotoksik ve pro- apoptotik etki	Liu vd., 2012b
L331	$(22S, 24E)$ - 3α , 15α , 22 - triasetoksi- 5α -lanosta- 7,9(11), 24-trien-26-oik asit etil ester	G. lucidum	Sitotoksik ve pro- apoptotik etki	Liu vd., 2012b
L332	$(22S, 24E)$ - 3α , 15α , 22 - triasetoksi- 5α -lanosta- 7,9(11), 24-trien-26-oik asit propil ester	G. lucidum	Sitotoksik ve pro- apoptotik etki	Liu vd., 2012b
L333	$(22S, 24E)$ - 3α , 15α , 22 - triasetoksi- 5α -lanosta- 7,9(11), 24-trien-26-oik asit amid	G. lucidum	Sitotoksik ve pro- apoptotik etki	Liu vd., 2012b
C27 land	ostanlar, lusidenik asitler			
L334	Lusidenik asit A (lusidenat A)	G. lucidum	AChE inhibitör aktivitesi	Lee vd., 2011
L334	Lusidenik asit A (lusidenat A)	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı, EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009
L335	Lusidenik asit B	G. lucidum	EBV aktivasyonuna inhibisyon etkisi, anti enflamatuvar aktivite	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L336	Lusidenik asit C	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L337	Lusidenik asit D1	G. lucidum	Antienflamatuvar aktivite	Dudhgaonkar vd., 2009
L338	Lusidenik asit D2	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L338	Lusidenik asit D2	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L339	Lusidenik asit E1	G. lucidum	Antienflamatuvar aktivite	Dudhgaonkar vd., 2009
L340	Lusidenik asit E2	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L340	Lusidenik asit E2	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L341	Lusidenik asit F	G. lucidum	EBVsü aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L342	Lusidenik asit N	G. lucidum	Sitotoksik aktivite	Wu vd., 2001
L342 L342	Lusidenik asit N Lusidenik asit N	G. lucidum G. lucidum	AChE inhibitör aktivitesi EBV aktivasyonuna inhibisyon etkisi	Lee vd., 2011 Dudhgaonkar vd., 2009; Akihisa

Çizelge	1.1.	(Devam)
Çizelge	1.1.	(Devam)

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L343	Lusidenik asit P	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L343	Lusidenik asit P	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L344	20-Hidroksi lusidenik asit A	G. lucidum		Akihisa vd., 2007
L345	20-Hidroksi lusidenik asit D2	G. lucidum		Akihisa vd., 2007
L346	20-Hidroksi lusidenik asit E2	G. lucidum		Akihisa vd., 2007
L347	20-Hidroksi lusidenik asit F	G. lucidum		Akihisa vd., 2007
L348	20-Hidroksi lusidenik asit N	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L348	20-Hidroksi lusidenik asit N	G. sinense	Anti-HIV-1 Proteaz aktivitesi TPA va karsı	Sato vd., 2009a
L348	20-Hidroksi lusidenik asit N	G. lucidum	antienflamatuvar etkisi	Akihisa vd., 2007
L349	20-Hidroksi lusidenik asit P	G. lucidum		Akihisa vd., 2007
L350	3β -Hidroksi-4,4,14-trimetil- 7,11,15-trioksochol-8-en-24- oik asit	G. lucidum		Baby vd., 2015
L351	Lusidenik asit G	G. lucidum		Nishitoba vd., 1986
L352	Lusidenik asit H	G. lucidum	PTP1B e karşı inhibitör aktivitesi	Chen vd., 2017b
L353	Lusidenik asit I	G. lucidum		Baby vd., 2015
L354	Lusidenik asit J	G. lucidum		Baby vd., 2015
L355	Lusidenik asit K	G. lucidum		Baby vd., 2015
L356	Lusidenik asit L	G. lucidum		Baby vd., 2015
L357	Lusidenik asit M	G. lucidum		Baby vd., 2015
L358	Lusidenik asit O	G. lucidum	DNA polimeraz alfanın, beta ve HIV-1 reverse transkriptaz aktivitesine karşı inhibisyon	Mizushina vd., 1999
L359	20(21)- Dehidrolusidenik asit A	G. lucidum	Epstein-Barr virüsü aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L360	20(21)-Dehidrolusidenik asit N	G. sinense	Anti-HIV-1 Proteaz aktivitesi	Sato vd., 2009a
L361	Ganoderik asit Jd	G. sinense		Liu vd., 2012b
L362	4,4,14 α -Trimetil-5 α -chol- 7,9(11)-dien-3-okso-24-oik asit	G. lucidum	Nörotrofik aktivite	Xia vd., 2014
L363	4,4,14 α -Trimetil-3,7-diokso- 5 α -chol-8-en-24-oik asit	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010
L364	Fornisatin A	G. fornicatum	PAF'ın indükleği trombosit agregasyonuna inhibitör aktivite	Niu vd., 2004

Bileşik Kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L365	Fornisatin B	G. fornicatum	PAF'ın indükleği trombosit agregasyonuna inhibitör aktivite	Niu vd., 2004
L366	Fornisatin D	G. cochlear	Hepatoprotektif aktivite	Peng vd., 2014a
L367	Cochlate B	G. cochlear		Peng vd., 2014a
L368	Ganosinensik asit A	G. sinense		Wang vd., 2010a
L369	Lusidenik asit Q	G. lucidum		Chen vd., 2017b
L370	Lusidenik asit R	G. lucidum		Chen vd., 2017b
L371	Lusidenik asit S	G. lucidum		Chen vd., 2017b
C27 lan	ostanlar (alkoller, lakto	nlar, esterler)		
L372	Lusidenik lakton	G. lucidum	DNA polimeraz alfanın, beta ve HIV-1 reverse transkriptaz aktivitesine karşı inhibisyon	Mizushina vd., 1999
L373	Lusidenolakton	G. lucidum	Sitotoksik aktivite	Wu vd., 2001
L373	Lusidenolakton (ganolakton)	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L374	Ganolakton B	G. sinense		Qiao vd., 2007
L375	Fornisatin E	G. cochlear	Hepatoprotektif etki	Peng vd., 2014a
L376	Fornisatin F	G. cochlear	Hepatoprotektif etki	Peng vd., 2014a
L377	Cochlate A	G. cochlear	Hepatoprotektif etki	Peng vd., 2014a
L378	Metil lusidenat A	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L378	Metil lusidenat A	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L379	Metil lusidenat C	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L380	Metil lusidenat F	G. lucidum	Sitotoksik aktivite	Wu vd., 2001
L381	Metil lusidenat N	G. lucidum		Tung vd., 2014
L382	Metil lusidenat P	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L383	Metil lusidenat Q	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L383	Metil lusidenat Q	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L383	Metil lusidenat Q	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009
L384	Metil lusidenat D2	G. lucidum	Kulak ödemi inflamasyonu baskılayıcı	Dudhgaonkar vd., 2009
L384	Metil lusidenat D2	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L385	Metil lusidenat E2	G. lucidum	Antikolinesteraz aktivite	Duru ve Çayan, 2015 Duru ve Cever
L385	Metil lusidenat E2	G. pfeifferi	Antiviral aktivite	2015
L386	Etil lusidenat A	G. lucidum	Sitotoksik aktivite	Li vd., 2013b

Çizelge 1.1. (Devam)

Çizelge	1.1.	(Devam)
---------	------	---------

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L387	Butil lusidenat A	G. lucidum	<i>G. lucidum</i> AChE inhibitör aktivitesi	
L387	Butil lusidenat A	G. lucidum	3T3-L1 hücrelerindeki adipogenesiz üzerine inhibisyon etkisi	Lee vd., 2010a
L388	Butil lusidenat N	G. lucidum	AChE inhibitör aktivitesi 3T3-I 1 hücrelerindeki	Lee vd., 2011
L388	Butil lusidenat N	G. lucidum	adipogenesiz üzerine inhibisyon etkisi	Lee vd., 2010a
L389	t-Butil lusidenat B	G. lucidum	3T3-L1 hücrelerindeki adiposit farklılaşmaya inhibitör etkisi	Lee vd., 2010b
L390	Butil lusidenat P	G. lucidum		Tung vd., 2014
L391	Butil lusidenat Q	G. lucidum	Sitotoksik aktivite	Tung vd., 2014
L392	Butil lusidenat D2	G. lucidum		Tung vd., 2014
L393	Butil lusidenat E2	G. lucidum		Tung vd., 2014
L394	Metil lusidenat Ha	G. sinense		Liu vd., 2012b
L395	Metil 20(21)- dehidrolusidenat A	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009
L396	Metil ganosinensate A	G. sinense		Wang vd., 2010a
<i>C24, C2</i> .	5 lanostanlar			
L397	Lusidon A	G. resinaceum	Hepatoprotektif aktivite	Peng vd., 2013
L397	Lusidon A	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L398	Lusidon B	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L399	Lusidon C	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L400	Lusidon D	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L401	Lusidon E	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L402	Lusidon F	G. resinaceum	Alfa glıkozıdaza karşı inhibitör aktivite	Chen vd., 2017e
L403	Lusidon G	G. resinaceum		Peng vd., 2013
L404	Lusidon H	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L405	8α , 9α -Epoksi-4, 4, 14 α - trimetil-3, 7, 11, 15, 20- pentaokso-5 α -pregnane	G. concinna	Promiyelositik lösemi HL-60 hücrelerinde apoptozu indükler	Gonzalez vd., 2002
L406	Ganosineniol A	G. resinaceum		Chen vd., 2017e
C30 pen	tasiklik triterpenler			
L407	Friedelin	G. applanatum		Baby vd. 2015
L408	Alnusenon	G. applanatum		Baby vd. 2015
L409	β-Amirenon	G. applanatum		Baby vd. 2015
L410	β-Amirin acetat	G. applanatum		Baby vd. 2015
Meroter	penoidler			
L411	Fornisin A	G. fornicatum		Niu vd., 2006
L412	Fornisin B	G. capense	Antioksidan aktivite	Peng vd., 2016
L413	Fornisin C	G. capense	Antioksidan aktivite	Peng vd., 2016

Bileşik kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L414	Ganosin A	G. cochlear		Peng vd., 2014b
L415	Ganosin B	G. cochlear		Peng vd., 2014b
L416	Ganosin C	G. cochlear		Peng vd., 2014b
L417	Ganosin D	G. cochlear	Zayıf anti-AChE aktvitesi	Peng vd., 2014b
L418	Lingzhiol	G. lucidum		Baby vd. 2015
L419	Fornisin E	G. capense	Antioksidan aktivite	Peng vd., 2016
L420	Ganocapensin A	G.capense	Antioksidan aktivite	Peng vd., 2016
L421	Ganocapensin B	G. capense	Antioksidan aktivite	Peng vd., 2016
L422	Ganomisin E	G. capense	Antioksidan aktivite	Peng vd., 2016
L423	Ganomisin F	G. capense	Antioksidan aktivite	Peng vd., 2016
L424	Ganoleusin A	G. leucocontextum	Alfa glikozidaza karşı inhibitör aktivite	Wang vd., 2017a
L425	Ganoleusin B	G. leucocontextum		Wang vd., 2017a
L426	Ganoleusin C	G. leucocontextum	Alfa glikozidaza karşı inhibitör aktivite	Wang vd., 2017a
L427	Zizhine A	G. sinensis		Cao vd., 2016
L428	Zizhine B	G. sinensis		Cao vd., 2016
L429	Zizhine C	G. sinensis		Cao vd., 2016
L430	Zizhine D	G. sinensis		Cao vd., 2016
L431	Zizhine E	G. sinensis		Cao vd., 2016
L432	Zizhine F	G. sinensis		Cao vd., 2016
L433	Petchiether A	G. petchii		Li vd., 2016a
L434	Petchiether B	G. petchii		Li vd., 2016a
Farnesil	l hidrokinonlar (mer	oterpenoidler)		
L435	Farnesil hidrokinon	G. lucidum	Antiplazmodial aktivite	Paliya vd., 2014
L436	Ganomisin A	G. pfeifferi	Antibakteriyel aktivite	Alves vd., 2012
L437	Ganomisin B	G. lucidum	Antiplazmodial aktivite HMG-CoA redüktaz ve	Paliya vd., 2014
L437	Ganomisin B	G. lucidum	α-glukozidaz inhibitör aktivitesi	Chen vd., 2017b
L437	Ganomisin B	G. pfeifferi	Antibakterial aktivite	Alves vd., 2012
L438	Ganomisin I	G. lucidum	α-glukozidaz a karşı inhibitör aktivitesi	Chen vd., 2017b
L438	Ganomisin I	G. capense	Antioksidan aktivite	Peng vd., 2016
L439	Ganomisin J	G. lucidum	HMG-CoA redüktaz ve alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017b
L440	Ganomisin K	G. pfeifferi		Niedermeyer vd., 2013
L441	Ganolusinin A	G. lucidum		Chen vd., 2017b
L442	Ganolusinin B	G. lucidum		Chen vd., 2017b
L443	Ganolusinin C	G. lucidum		Chen vd., 2017b
C15 sesk	kuiterpenoidler			
L444	Ganosinensin	G. sinense		Liu vd., 2012b
L445	Ganomastenol A	G. mastoporum		Hirotani vd., 1995
L446	Ganomastenol B	G. mastoporum		Hirotani vd., 1995
L447	Ganomastenol C	G. mastoporum		Hirotani vd., 1995

Çizelge 1.1. (Devam)

Bileşik kodu	Bileşik Adı	Ganoderma Türü	Aktivite Türü	Referans
L448	Ganomastenol D	G. mastoporum		Hirotani vd., 1995
L449	Ekinolakton D	G. applanatum		Fushimi vd., 2010
L450	Ganodermisin	G. applanatum	CXCL10 Expresyonu, inhibitörü	Jung vd., 2011
L451	Kriptoporik asit H	G. neo-japonicum		Baby vd. 2015
L452	Kriptoporik asit I	G. neo-japonicum		Baby vd. 2015
Steroitle	r			
L453	Ergosterol	G. lucidum	Antikomplement aktivite	Seo vd., 2009
L453	Ergosterol	G. lucidum	Epstein-Barr virüsü aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009
L454	Ergosta-7,22-dien-3 β -ol (stellasterol; 5,6- dihidroergosterol)	G. pfeifferi	Herpes virüsüne karşı antiviral aktivite	Niedermeyer vd., 2005
L455	22,23-Dihidroergosterol	G. lucidum		Baby vd. 2015
L456	Ergosterol peroksit (5,8- epidioksi-5 α -8 α -ergosta- 6,22 <i>E</i> -dien-3 β -ol)	G. lucidum	pro-apoptotik aktivite	Russo vd., 2010
L456	Ergosterol peroksit (5,8- epidioksi-5 α -8 α -ergosta- 6,22 <i>E</i> -dien-3 β -ol)	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009
L457	$5\alpha, 8\alpha$ -Epidioksiergosta- 6,9(11),22-trien-3 β -ol (9,11-Dehidroergosterol peroksit)	G. lucidum,		Ko vd., 2008
L458	3β , 5α -Dihidroksi- 6β - metoksi ergosta-7, 22-dien	G. lucidum	Antiviral aktivite	Paliya vd., 2014
L459	$3\beta,5\alpha$ -Dihidroksi- (22E,24R)-ergosta-7,22- dien-6-on (6-dehidrocerevisterol)	G. lucidum		Baby vd., 2015
L460	3β , 5α , 9α -Trihidroksi- (22E, 24R)-ergosta-7, 22- dien-6-on	G. lucidum		Baby vd., 2015
L461	Ergosta-7,22-diene- 2β , 3α , 9α -triol	G. lucidum		
L462	$3\beta,5\alpha,6\beta,8\beta,14\alpha$ - Pentahidroksi-(22E,24R)- ergost-22-en-7-on	G. applanatum		Baby vd., 2015
L463	22 <i>E</i> ,24 <i>R</i> -Ergosta-7,22- dien-3 β ,5 α ,6 β -triol (cerevisterol)	G. lucidum	DNA polimeraz alfanın aktivitesine karşı inhibisyon	Mizushina vd., 1999
L464	22 <i>E</i> ,24 <i>R</i> -Ergosta-7,22- dien-3 β ,5 α ,6 β ,9 α -tetraol	G. lucidum		Baby vd., 2015
L465	22 <i>E</i> ,24 <i>R</i> -Ergosta-7,22- dien-3 β ,5 α ,6 β ,9 α -tetraol	G. lucidum		Baby vd., 2015

Çizelge 1.1. (Devam)

Çizelge 1.1. (Devam)

Bileşik kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L466	2β -Metoksil- 3α , 9α - dihidroksiergosta-7, 22-dien	G. amboinense		Baby vd., 2015
L467	6α -Hidroksi-ergosta-4,7,22-trien- 3-on	G. lucidum		Nishitoba vd., 1988b
L468	6β -Hidroksi-ergosta-4,7,22-trien- 3-on	G. lucidum		Nishitoba vd., 1988b
L469	Ergosta-4,7,22-trien-3,6-dion	G. lucidum		Baby vd., 2015
L470	Ganodermasit A	G. lucidum	Anti-aging etkisi	Weng vd., 2011
L471	Ganodermasit B	G. lucidum	Anti-aging etkisi	Weng vd., 2011
L472	Ganodermasit C	G. lucidum	Anti-aging etkisi	Weng vd., 2011
L473	Ganodermasit D	G. lucidum	Anti-aging etkisi	Weng vd., 2011
L474	Ergosta-4,6,8(14),22-tetraen-3-on	G. lucidum	Anti-aging etkisi	Weng vd., 2011
L475	Ergosta-7,22-dien 3-on	G. lucidum		Dudhgaonkar vd., 2009
L476	Ergosta-7,22-dien 3β -yl pentadekanoat	G. lucidum		Baby vd., 2015
L477	Ergosta-7,22-dien 3 β -yl palmitat	G. lucidum		Dudhgaonkar vd., 2009
L478	Ergosta-7,22-dien 3β -yl linoleat	G. lucidum		Baby vd., 2015
L479	3β-Linoleyloksiergosta-7,24(28)- dien	G. lipsiense		Baby vd., 2015
L480	5α , 8α -Epidioksi ergosta-6, 22- dien- 3β -yl linoleat	G. lucidum		Baby vd., 2015
L481	Ergosta-7-en-3 β -yl linoleat	G. lipsiense		Baby vd., 2015
L482	Fungisterol (5 α -ergosta-7-en-3 β -ol)	G. lucidum	EBV aktivasyonuna inhibisyon etkisi	Dudhgaonkar vd., 2009; Akihisa vd., 2007
L483	Ergost-7,22-dien- 3β ,4 α -diol.	G. resinaceum		Chen vd., 2017f
L484	8, 9 epoksiergosta-5, 22- dien 3,- 15-diol	G. lucidum	Kolesterol sentezine inhibisyon etkisi	Paliya vd., 2014
L485	(24 <i>S</i>)-24-Metil-5 <i>α</i> -cholest-7-en- 3 <i>β</i> -ol	G. lucidum		Baby vd., 2015
L486	(24 <i>S</i>)-24-Metil-5 α -cholest-7,16- dien-3 β -ol	G. lucidum		Baby vd., 2015
L487	β -Sitosterol	G. lucidum		Baby vd., 2015
L488	Daukosterol	G. lucidum		Lee vd., 2005
Alkoloid	ler			
L489	Ganoderma alkaloid A	G. capense		Baby vd., 2015
L490	Ganoderma alkaloid B	G. capense		Baby vd., 2015
L491	Sinensin	G. sinense		Liu vd., 2010
L492	Sinensin B	G. sinense		Liu vd., 2011a
L493	Sinensin C	G. sinense		Liu vd., 2011a
L494	Sinensin D	G. sinense		Liu vd., 2011a
L495	Sinensin E	G. sinense		Liu vd., 2011a
L496	Lusidimin A	G. lucidum		Znao vd., 2015
L497	Lusidimin B	G. lucidum		Znao vd., 2015
L498		G. Iucidum		Znao vu., 2015
L499		G. IUCIAUM		Wang vd
L500	Ganocochlearine C	G. cochlear		2017b

Cizelge	1.1. (Devam)
----------------	--------------

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L501	Ganocochlearine D	G. cochlear		Wang vd., 2017b
L502	Ganocochlearine E	G. cochlear		Wang vd., 2017b
L503	Ganocochlearine F	G. cochlear		Wang vd., 2017b
L504	Ganocochlearine G	G. cochlear		Wang vd., 2017b
L505	Ganocochlearine H	G. cochlear		Wang vd., 2017b
L506	Ganocochlearine I	G. cochlear		Wang vd., 2017b
Prenil h	idrokinon			
L507	Ganocalidin A	G. calidophilum	Antialerjik aktivite	Huang vd., 2016
L508	Ganocalidin B	G. calidophilum		Huang vd., 2016
L509	Ganocalidin C	G. calidophilum		Huang vd., 2016
L510	Ganocalidin D	G. calidophilum		Huang vd., 2016
L511	Ganocalidin E	G calidophilum		Huang vd 2016
L512	Ganocalidin E	G calidophilum		Huang vd. 2016
L512	Ganocalicine A	G. calidophilum	Antialeriik aktivite	Huang vd., 2016
L515	Ganocalicine R	G. calidophilum		Huang vd. 2016
L314 I 515	Ganodarma aldahit	G. cuitaophitan		Wang vd. 2007a
Dangofu		0. <i>appianaium</i>		walig vu., 2007a
T E1C	Canadan	C taugas	Sitotolaile altivita	Diabtan vd 2015
L510 L517	Ganofuran B	G. lucidum	Antiplazmodial	Adams vd., 2010
			aktivite	,
Benzopi	ran-4-on turevleri			
L518	Applanatin A	G. applanatum		Wang vd., 2007a
L519	Applanatin B	G. applanatum		Wang vd., 2007a
L520	Applanatin C	G. applanatum		Fushimi vd., 2010
L521	Applanatin D	G. applanatum		Fushimi vd., 2010
L522	Applanatin E	G. applanatum		Fushimi vd., 2010
Benzoid	türevleri			
L523	2,5-Didroksi benzoik asit	G. applanatum	Aldoz reduktaz inhibisyon aktivitesi	Lee vd., 2005
L524	2,5- Dihidroksiasetofenon	G. applanatum		Lee vd., 2005
L525	Protokatekaldehit	G. applanatum	Aldoz reduktaz inhibisyon aktivitesi	Lee vd., 2005
L526	Ganoderin A	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L527	Ganocochlearin C	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L528	Ganocochlearin D	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L529	Ganocochlearin A	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L530	Ganocochlearin B	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L531	Fornisin D	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L532	Ganomisin C	G. cochlear	Antioksidan aktivite	Peng vd., 2015b
L532	Ganomisin C	G.leucocontextum	Alfa glikozidaza karşı inhibitör aktivite	Wang vd., 2017a
L533	Ganodermatropin A	G. tropicum		Hu vd., 2013
L534	Ganodermatropin B	G. tropicum		Hu vd., 2013
Diğerler	- i			
L535	(-) Petchioik A	G. petchii		Dai vd., 2015
L536	(-) Petchioik B	G. petchii		Dai vd., 2015
L537	Petchiate A	G. petchii		Dai vd., 2015
L538	Petchiate B	G. petchii		Dai vd., 2015
L539	Petchine	G. petchii		Dai vd., 2015

Çizelge	1.1.	(Devam)

Bileşik Kodu	Bileşik Adı	<i>Ganoderma</i> Türü	Aktivite Türü	Referans
L540	2-metoksi yağ asitleri	G. applanatum		Lee vd., 2005
L541	Serebrosidler	G. applanatum	Aldoz reduktaz inhibisyon aktivitesi	Lee vd., 2005
L542	Philippin	G. philippii		Yang vd., 2018
L543	3β ,9 α ,14 α -trihidroksi- (22E,24R)-ergost-22-en-7-on	G. philippii	Zayıf anti-AChE aktvitesi	Yang vd., 2018
L544	Ganodermanonol	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L544	Ganodermanonol	G. pfeifferi	Antiviral aktivite	2003
L545	Ganodermadiol	G. lucidum	Sitotoksik aktivite	Paliya vd., 2014
L546	Ganodermanontetrol	G. lucidum	Sitotoksik aktivite	Chen vd., 2017c
L547	12α-metoksi- ganodermanondiol	G. lucidum	Sitotoksik aktivite	Chen vd., 2017c
L548	15α-hidroksi- ganodermanontriol	G. lucidum		Chen vd., 2017c
L549	Ganoderitriol M	G. lucidum		Chen vd., 2017c
L550	3, 7, 11-trion-24(S), 25- dihidroksi-lanosta-8-en	G. lucidum		Chen vd., 2017c
L551	Lusidon I	G. resinaceum		Chen vd., 2017e
L552	Lusidon J	G. resinaceum		Chen vd., 2017e
L553	Lusidon K	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L554	Lusidon L	G. resinaceum	Alfa glikozidaza karşı inhibitör aktivite	Chen vd., 2017e
L555	Ganosineniol B	G. resinaceum		Chen vd., 2017e
L556	Ganosineniol C	G. resinaceum		Chen vd., 2017e
L557	12β-asetoksi-3β-hidroksi- 7,11,15,23-tetraokso-lanost- 8,20E-dien-26- oik asit	G. lucidum	Sitotoksik aktivite	Guan vd., 2008
L558	23S-hidroksi-3,7,11,15- tetraokso-lanost-8,24E-dien- 26-oik asit	G. lucidum	Sitotoksik aktivite	Guan vd., 2008
L559	15α -hidroksi-3- <i>oks</i> o-5 α - lanosta-7,9,24(<i>E</i>)-trien-26- oik asit	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010
L560	15α ,26-dihidroksi- 5α - lanosta-7,9,24(<i>E</i>)-trien-3-on	G. lucidum		Cheng vd., 2010
L561	3β -hidroksi- 5α -lanosta- 7,9,24(<i>E</i>)-trien-26-oik asit	G. lucidum	Sitotoksik aktivite	Cheng vd., 2010
L562	3β-hidroksi-7- <i>oks</i> o-5α- lanosta-8,24(<i>E</i>)-dien-26-oik asit	G. lucidum		Cheng vd., 2010
L563	7β ,12 β -dihidroksi- 3,11,15,23-tetraokso-5 α - lanosta-8-en-26-oik asit	G. lucidum		Cheng vd., 2010
L564	3β , 24, 25, 26-tetrahidroksi- 7α - metoksi-8-en-lanost-ol	G. lucidum	Sitotoksik aktivite	Chen vd., 2017c
L565	15β -hidroksi-lusidumol A	G. lucidum	Sitotoksik aktivite	Chen vd., 2017c
L566	7β, 8-epoksi-3β-hidroksi-4, 4, 14α-trimetil-12, 15, 20- triokso-5α-pregn-9(11)-en	G. resinaceum		Chen vd., 2017f

Çizelge	1.1.	(Devam)
---------	------	---------

Bileşik	Bileşik Adı	Ganoderma Türü	Aktivite	Referans
<u>Kouu</u>	Ganaduritrials A	<u> </u>	1 uru	Lion vd 2017
L30/ T 549	Ganoduritriols A	G. duripora		Lian vd. 2017
L300	2A(R) tirucalla 7 9(11) 25	<i>6. ийпроги</i>		
L569	trien-3,24,27-triol	G. tropicum		Ma vd., 2016
L570	24(<i>S</i>)-tirucalla- 7,9(11),25- trien-3,24,27-triol	G. tropicum		Ma vd., 2016
L571	Ganotheaekolin A	G. theaecolum	Nörotrofik aktivite	Luo vd., 2017
L572	(24S)-3-oxo-7α,24,25- trihidroksilanosta-8-en	G. orbiforme		Isaka vd., 2017b
L573	7-Okso-12β-O-acetyl ganoderlakton D	G. lucidum		Wei vd., 2017
L574	21-Hidroksiganoderlakton D	G. lucidum		Wei vd., 2017
L575	Ganoderlakton F	G. lucidum		Wei vd., 2017
L576	7-Okso-ganoderlakton D	G. lucidum		Wei vd., 2017
L577	Applanatumol C	G. applanatum		Luo vd., 2016
L578	Applanatumol D	G. applanatum		Luo vd., 2016
L579	Applanatumol E	G. applanatum		Luo vd., 2016
L580	Applanatumol F	G. applanatum		Luo vd., 2016
L581	Applanatumol G	G. applanatum		Luo vd., 2016
L582	Applanatumol H	G. applanatum		Luo vd., 2016
L583	Applanatumol I	G. applanatum		Luo vd., 2016
L584	Applanatumol J	G. applanatum		Luo vd., 2016
L585	Applanatumol K	G. applanatum		Luo vd., 2016
L586	Applanatumol L	G. applanatum		Luo vd., 2016
L587	Applanatumol M	G. applanatum		Luo vd., 2016
L588	Applanatumol N	G. applanatum		Luo vd., 2016
L589	Applanatumol O	G. applanatum		Luo vd., 2016
L590	Applanatumol P	G. applanatum		Luo vd., 2016
L591	Applanatumol Q	G. applanatum		Luo vd., 2016
L592	Applanatumol R	G. applanatum		Luo vd., 2016
L593	Applanatumol S	G. applanatum		Luo vd., 2016
L594	Applanatumol T	G. applanatum		Luo vd., 2016
L595	Applanatumol U	G. applanatum		Luo vd., 2016
L596	Applanatumol V	G. applanatum		Luo vd., 2016
L597	Applanatumol W	G. applanatum		Luo vd., 2016
L598	Applanatumol X	G. applanatum		Luo vd., 2016
L599	Applanatumol Y	G. applanatum		Luo vd., 2016
L600	Applanatumol Z	G. applanatum		Luo vd., 2016
L601	Applanatumol Z1	G. applanatum		Luo vd., 2016
L602	Ganoapplanatumin A	G. applanatum		Luo vd., 2016
L603	Ganoappianatumin B	G. applanatum		Luo vd., 2016
L004	Canorasinging A	G. applanatum		Chan vd. 2017d
T 002	Ganoresinging P	G. resinaceum		Chen vd. 2017d
L000	Ganoresinains C	G. resinaceum		Chen vd. 2017d
T 608	Ganoresinains D	G resinaceum		Chen vd. 2017d
L.600	Ganoresinains F	G resinaceum		Chen vd. 2017d
L610	Lingzhine C	G resinaceum		Chen vd 2017d
L611	Sitgmastenol	G. adspersum		Tel-Cavan vd., 2015b

L1 $R_1 = O, R_2 = \beta - OH, R_3 = O, R_4 = H,$ $R_5 = \alpha$ -OH, $R_6 = H$ **L2** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O, R_4$ = H, R₅ = O, R₆ = H **L3** $R_1 = O$, $R_2 = \beta$ -OH, $R_3 = O$, $R_4 = H$, $R_5 = O, R_6 = H$ **L4** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, R_4 = H, R₅ = α -OH, R₆ = H **L5** $R_1 = O, R_2 = \beta - OH, R_3 = O, R_4 =$ H, $R_5 = O$, $R_6 = H$ **L6** $R_1 = O, R_2 = O, R_3 = O, R_4 = H, R_5$ = O, R₆ = H **L7** $R_1 = O, R_2 = O, R_3 = O, R_4 = \beta$ -OAc, $R_5 = O$, $R_6 = H$ **L8** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, R_4 $=\beta$ -OH, $R_5 = O$, $R_6 = H$ **L9** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ β -OAc, $R_5 = O$, $R_6 = H$ **L10** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, R_4 = H,R₅ = O, R₆ = ξ -OH **L11** $R_1 = O, R_2 = O, R_3 = O, R_4 = H,$ $R_5 = \alpha - OH, R_6 = H$ **L12** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, $R_4 = \beta \text{-OAc}, R_5 = O, R_6 = H$ **L13** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ H, $R_5 = \alpha$ -OH, $R_6 = H$ **L14** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, $R_4 = H, R_5 = \alpha$ -OH, $R_6 = \xi$ -OH **L15** $R_1 = O, R_2 = \beta - OH, R_3 = O, R_4 =$ $\alpha\text{-OH}, R_5 = O, R_6 = H$ **L16** $R_1 = O, R_2 = \beta - OH, R_3 = O, R_4 =$ H, $R_5 = O$, $R_6 = \xi$ -OH **L17** $R_1 = O, R_2 = O, R_3 = O, R_4 = H,$ $R_5 = O, R_6 = \xi - OH$ **L18** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ H, $R_5 = O$, $R_6 = H$ **L19** $R_1 = O, R_2 = O, R_3 = O, R_4 = \beta$ -OH, $R_5 = \alpha$ -OH, $R_6 = \xi$ -OH **L20** $R_1 = O, R_2 = O, R_3 = O, R_4 = H,$ $R_5 = \alpha$ -OH, $R_6 = \xi$ -OH **L21** $R_1 = O, R_2 = \alpha - OH, R_3 = O, R_4 =$ H, $R_5 = \alpha$ -OH, $R_6 = H$ **L22** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ β -OH, R₅ = O, R₆ = H **L23** $R_1 = O, R_2 = \beta - OH, R_3 = \beta - OH, R_4$ = H, R₅ = O, R₆ = H **L24** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ β -OAc, $R_5 = \beta$ -OH, $R_6 = H$ **L25** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, R_4 = OH, R₅ $= \alpha$ -OH, R₆ = H **L26** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, $R_4 = \beta \text{-OH}, R_5 = O, R_6 = OH$ **L27** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ H, $R_5 = O$, $R_6 = \xi - OH$ **L28** $R_1 = \beta$ -OAc, $R_2 = \beta$ -OH, $R_3 = O$, $R_4 = H, R_5 = O, R_6 = H$ **L29** $R_1 = \beta$ -OAc, $R_2 = O$, $R_3 = O$, $R_4 =$ β -OAc, $R_5 = O$, $R_6 = H$ **L30** $R_1 = \beta$ -OAc, $R_2 = O$, $R_3 = O$, $R_4 =$ H, $R_5 = \alpha$ -OH, $R_6 = H$

L32 $R_1 = O, R_2 = H, R_3 = O, R_4 = H,$ **L62** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = H$, $R5 = \alpha$ -OH, $R_6 = H$ $R_4 = H, R_5 = \beta - OAc$ COOH **L33** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = O$, $R_4 =$ H, $R_5 = \alpha$ -OH, $R_6 = H$ OAc, $R_5 = H$ **L34** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 = O$, **L64** $R_1 = O, R_2 = O, R_3 = \alpha - OH, R_4 =$ $R4 = H, R_5 = \alpha - OH, R_6 = H$ $H, R_{5} = H$ **L35** $R_1 = O, R_2 = O, R_3 = O, R_4 = \beta$ -**L65** $R_1 = O, R_2 = O, R_3 = \beta - OH, R_4 =$ $OH, R_5 = O, R_6 = H$ H. $R_{5} = H$ **L36** $R_1 = OH, R_2 = O, R_3 = O, R_4 =$ OAc, $R_5 = OAc$, $R_6 = H$ соон СООН R₄ Ri R_2

L37 $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = H$, $R_4 = \alpha$ -OAc, $R_5 = \beta$ -OAc **L38** $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OH, $R_3 = H$, $R_4 = H, R_5 = H$ **L39** $R_1 = O, R_2 = \alpha - OH, R_3 = H, R_4 =$ α -OAc, $R_5 = H$ **L40** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = H$, $R_4 = \alpha$ -OAc, $R_5 = H$ **L41** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = H$, $R_4 =$ H. $R_5 = H$ **L42** $R_1 = O, R_2 = \beta - OH, R_3 = O, R_4 =$ $O, R_5 = H$ **L43** $R_1 = O, R_2 = \beta - OH, R_3 = O, R_4$ $=\alpha$ -OH, R₅ = H **L44** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OAc, $R_3 =$ H, $R_4 = \alpha$ -OH, $R_5 = H$ **L45** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OAc, $R_3 =$ H, $R_4 = \alpha$ -OH, $R_5 = \xi$ -OAc **L46** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ - OMe, $R_3 =$ $H, R_4 = H, R_5 = \xi - OAc$ **L47** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ - OMe, $R_3 =$ H, $R_4 = \alpha$ -OH, $R_5 = \xi$ -OAc **L48** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = H$, $R_4 = \alpha$ -OH, $R_5 = \xi$ -OAc **L49** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OMe, $R_3 =$ H, $R_4 = \alpha$ -OH, $R_5 = H$ **L50** $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OMe, $R_3 = H$, $R_4 = H, R_5 = \xi - OAc$ **L51** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = O$, $R4 = O, R_5 = H$ **L52** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OMe, $R_3 =$ H, $R_4 = \alpha$ -OAc, $R_5 = \beta$ -OAc **L53** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OEt, $R_3 = H$, $R_4 = \alpha$ -OAc, $R_5 = \xi$ -OAc **L54** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, $R_4 =$ H. $R_5 = H$ **L55** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$, $R_4 =$ $H, R_5 = H$ **L56** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, $R_4 =$ α -OH, R₅ = H **L57** $R_1 = \beta$ -OAc, $R_2 = O$, $R_3 = H$, R_4 = H, R₅ = β -OAc **L58** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, $R_4 =$ H, $R_5 = \beta - \dot{O}Ac$ **L59** $R_1 = O, R_2 = \alpha - OH, R_3 = H, R_4 =$ α -OAc, R₅ = β -OAc **L60** $R_1 = O, R_2 = \alpha - OH, R_3 = H, R_4 =$ H, $R_5 = \beta$ -OAc **L61** $R_1 = O, R_2 = \alpha$ -OMe, $R_3 = H, R_4$ = H, $R_5 = \beta$ -OAc

L63 $R_1 = \beta$ -OAc, $R_2 = H$, $R_3 = H$, $R_4 = \alpha$ -

L66 $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OAc, $R_3 = \beta$ -OAc **L67** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = \beta$ -OAc **L68** $R_1 = \alpha$ -OAc, $R_2 = H$, $R_3 = \beta$ -OAc **L69** $R_1 = \alpha$ -OH, $R_2 = H$, $R_3 = \beta$ -OAc **L70** $R_1 = O, R_2 = H, R_3 = H$ L71 $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OAc, $R_3 = \beta$ -OAc **L72** $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OAc, $R_3 = H$ **L73** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = H$ **L74** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OAc, $R_3 =$ Η **L75** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = H$ **L76** $R_1 = O, R_2 = \beta - OH, R_3 = H$ **L77** $R_1 = O$, $R_2 = \alpha$ -OH, $R_3 = H$ **L78** $R_1 = \beta$ -OAc, $R_2 = \alpha$ -OAc, $R_3 = H$ **L79** $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OH, $R_3 = H$ **L80** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 = H$ **L81** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OAc, $R_3 = \beta$ -OAc **L82** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OAc, $R_3 = H$ **L83** $R_1 = \beta$ -OAc, $R_2 = \alpha$ -OH, $R_3 = H$ **L84** $R_1 = O, R2 = \alpha - OAc, R3 = H$ **L85** $R_1 = O, R_2 = \alpha - OAc, R_3 = H$ **L86** $R_1 = \alpha$ -O-Ac α , $R_2 = \alpha$ -O-Ac, R_3 = H**L87** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OH, $R_3 = \beta$ -OH **L88** $R_1 = \beta$ -OAc, $R_2 = \alpha$ -OAc, $R_3 = \beta$ -OAc **L89** $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OH, $R_3 = \alpha$ -OH **L90** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 = \beta$ -OH **L91** $R_1 = \alpha$ -OAc, $R_2 = \alpha$ -OAc, $R_3 = \alpha$ -OH **L92** $R_1 = \beta$ -OAc, $R_2 = \alpha$ -OAc, $R_3 = \alpha$ -OH L93 $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OH, $R_3 = \beta$ -OAc L94 $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 = \beta$ -OAc -СООН Ŕ5

 R_4

Şekil 1.1. Ganoderma türü mantarlardan izole edilen bazı bileşiklerin yapıları

L95 $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = \beta$ -OAc, $R_4 = \alpha$ -OAc, $R_5 = H$ **L96** $R_1 = O, R_2 = \beta - OH, R_3 = H, R_4 =$ $O, R_5 = OH$ **L97** $R_1 = O, R_2 = \beta - OH, R_3 = H, R_4 =$ α -OH, R₅ = β -OH **L98** $R_1 = O, R_2 = \alpha - OH, R_3 = H, R_4 =$ α -OH, R₅ = β -OH **L99** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = H$, $R_4 = O, R_5 = \beta - OH$ **L100** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, R_4 = O, R₅ = β -OH **L101** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = \beta$ -OH, $R_4 = O$, $R_5 = \beta$ -OH **L102** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = \beta$ -OH, $R_4 = O, R_5 = \beta - OH$ **L103** $R_1 = O, R_2 = H, R_3 = H, R_4 = \alpha$ -OH, $R_5 = \beta$ -OH **L104** $R_1 = O, R_2 = H, R_3 = H, R_4 = \alpha$ -OH, $R_5 = H$ **L105** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = H$, $R_4 = \alpha$ -OH, $R_5 = OH$ **L106** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = H$, $R_4 =$ α -OH, R₅ = OH

L121 $R_1 = O, R_2 = H, R_3 = H$ **L122** $R_1 = O, R_2 = \alpha - OH, R_3 = H$ **L123** $R_1 = OH, R_2 = H, R_3 = OH$ 0 **L124** $R_1 = H, R_2 = O$ **L125** $R_1 = H, R_2 = \alpha$ -OH **L126** $R_1 = O, R_2 = O$ -СООН OH HÓ ОН L127

HO

L129 $R = \beta$ -OH

L130 R = O

= α-OH

 $R_4 = O$

= O

OH

= O

 $= \alpha - OH$

 $\mathbf{R}_{4} = \mathbf{O}$

 $R_4 = \alpha - OH$

O

L128

R₁

 R_3

R₂

Ő

OAC

ОН

OH

óн

он

он

R₄ R_2

L107 **L108** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = H$, $R_4 =$ α -OH, R₅ = COOCH₃ **L109** $R_1 = =0, R_2 = H, R_3 = H, R_4 = \alpha$ -OH, $R_5 = COOCH$

L110 $R_1 = \beta$ -OH, $R_2 = \beta$ -OAc, $R_3 =$ $O, R_4 = H$ **L111** $R_1 = O, R_2 = H, R_3 = O, R4 =$ OH **L112** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = \alpha$ -OH, $R_4 = OH$ **L113** $R_1 = \alpha$ -OH, $R_2 = H$, $R_3 = \alpha$ -OH, $R_4 = OH$

 $L114 \quad R_1 = OH R_2 = OH$ $L115 \quad R = OH$

L116 R = OH**L117** $R_1 = O, R_2 = OH, R_3 = OH$ **L118** $R_1 = \alpha$ -OAc, $R_2 = OH$, $R_3 = O$ **L119** $R_1 = \alpha$ -OH, $R_2 = OAc$, $R_3 = O$ **L120** $R_1 = \alpha$ -OAc, $R_2 = OAc$, $R_3 = O$ **L140** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = \beta$ -OAc, $R_4 = O$ **L141** $R_1 = O, R_2 = O, R_3 = \alpha$ -OH, $R_4 =$ β-ΟΗ **L142** $R_1 = O, R_2 = \beta - OH, R_3 = \beta$ с́оон OAc, $R_4 = O$ СООН L143 - COOH COOH óн ОН L144 0 COOH СООН R₂ R₁ **L145** $R_1 = O, R_2 = \alpha - OH$ **L146** $R_1 = \beta$ -OH, $R_2 = O$ **L147** $R_1 = O, R_2 = \beta - OH$ **L148** $R_1 = O, R_2 = O$ R_2 OH - COOH COOH R R **L149** $R_1 = O, R_2 = O, R_3 = O$ **L150** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = O$ **L151** $R_1 = O, R_2 = O, R_3 = \beta - OH$ СООН **L152** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 = O$ R1 СООН Ó ЮΗ R_2 но L153 R1 = H, R2 = O СООН **L154** R1 = H, R2 = β -OH **L155** R1 = β -OAc, R2 = O соон **L131** $R_1 = O, R_2 = \beta - OH, R_3 = H, R_4$ **L132** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = H$, **L133** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = H$, L156 **L134** $R_1 = O, R_2 = \beta - OH, R_3 = H, R_4$

L157

L135 $R_1 = O, R_2 = \beta$ -OH, $R_3 = \beta$ -OH,

L136 $R_1 = O, R_2 = O, R_3 = H, R_4 = O$ **L137** $R_1 = O, R_2 = O, R_3 = H, R_4 = \alpha$ -

L138 $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, R_4

L139 $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, R_4

Şekil 1.1. ^(Devam)

C30 lanostalar, aldehitler, alkoller, esterler, glikozitler, laktonlar, ketonlar

L194

HC

L193

соон

L195 $R_1 + R_2 = O, R_3 = OH, R_4 = O$

L196 $R_1 = H, R_2 = OH, R_3 = Me$

L198 $R_1 = Me$

L202 $R_1 = O, R_2 = H, R_3 = Me, R_4 =$ CHO **L203** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = Me$, R_4 = CHO **L204** $R_1 = O, R_2 = \alpha$ -OH, $R_3 = CHO$, $R_4 = Me$ **L205** $R_1 = O, R_2 = H, R_3 = Me, R4 =$ CH₂OH **L206** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = Me$, R_4 $= CH_2OH$ $R_1 = \beta$ -OH, $R_2 = H$, $R_3 =$ L207 CH2OH, $R_4 = CH_2OH$ **L208** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 =$ $CH_2OH, R_4 = CH2OH$ **L209** $R_1 = O, R_2 = \alpha - OH, R_3 = Me, R_4$ $= CH_2OH$ **L210** $R_1 = \beta$ -OH, $R_2 = \alpha$ -OH, $R_3 =$ Me, $R_4 = Me$ **L211** $R_1 = \beta$ -OH, $R_2 = H$, $R_3 = Me$, R_4 = Me **L227** $R_1 = O, R_2 = H, R_3 = CH_2OH,$ $R_4 = CH_2OH$ **L228** $R_1 = O, R_2 = \alpha - OH, R_3 =$ \mathbf{R}_4 CH₂OH, CH₂OH = -CHO R

 $L212 \ R_1 = O, \ R_2 = \alpha \text{-OH}, \ R_3 = H, \ R_4 = H \\ L213 \ R_1 = \beta \text{-OH}, \ R_2 = O, \ R_3 = H, \ R_4 = H \\ L214 \ R_1 = O, \ R_2 = O, \ R_3 = H, \ R_4 = H \\ L216 \ R_1 = O, \ R_2 = O, \ R_3 = O, \ R_4 = H \\ L217 \ R_1 = O, \ R_2 = \beta \text{-OH}, \ R_3 = O, \ R_4 = \alpha \text{-OH}$

 $L215 \ R_1 = OH, \ R_2 = O, \ R_3 = H, \ R_4 = H \\ L218 \ R_1 = OH, \ R_2 = H, \ R_3 = O, \ R_4 = H$

 $R = \beta - OH$ L221 R = β -OH L226 R = O

L222 R = β -OH **L223** R = O

L225 $R_1 = O, R_2 = \alpha$ -OH **L229** $R_1 = \beta$ -OH, $R_2 = OH$

Şekil 1.1. (Devam)

 R_2

Şekil 1.1. (Devam)

Şekil 1. 1. (Devam)

Şekil 1. 1. (Devam)

L333

C27 lanostanlar, lusidenik asitler

L334 $R_1 = O, R_2 = \beta - OH, R_3 = H, R_4$ = H**L335** $R_1 = O, R_2 = \beta$ -OH, $R_3 = \beta$ -OH, $R_4 = H$ **L336** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = \beta$ -OH, $R_4 = H$ **L337** $R_1 = O, R_2 = O, R_3 = O, R_4 = H$ **L338** $R_1 = O, R_2 = O, R_3 = \beta$ -OAc, R_4 = H**L339** $R_1 = O, R_2 = \beta - OH, R_3 = \alpha - OH,$ $R_4 = H$ **L340** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = \beta$ -OAc, $R_4 = H$ **L341** $R_1 = O, R_2 = O, R_3 = H, R_4 = H$ **L342** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = H$, $R_4 = H$ **L343** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = \beta$ -OAc, $R_4 = H$ **L344** $R_1 = O, R_2 = \beta - OH, R_3 = H, R_4$ = ξ-OH **L345** $R_1 = O, R_2 = O, R_3 = \beta - OAc, R_4$ = ξ-OH **L346** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = \beta$ -OAc, $R_4 = \xi$ -OH **L347** $R_1 = O, R_2 = O, R_3 = H, R4 = \xi$ -OH **L348** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = H$, $R_4 = \xi - OH$ **L349** $R_1 = \beta$ -OH, $R_2 = \beta$ -OH, $R_3 = \beta$ -OAc, $R_4 = \xi$ -OH **L350** $R_1 = \beta$ -OH, $R_2 = O$, $R_3 = H$, $R_4 =$ Н

 R'_2

L358 $R_1 = \beta$ -OH, $R_2 = OH$, $R_3 = \alpha$ -OH

L361 $R = \alpha$ -OH **L362** R = H

L371

C27 lanostanlar (alkoller, laktonlar, esterler)

ЮН

ΌΗ

Şekil 1.1. (Devam)

L420

Ļ

Farnesil hidrokinonlar (meroterpenoidler)

Şekil 1. 1. ^(Devam)

C15 seskuiterpenoidler

OH

мOH

ОН

мОН

ОН

"OH

ОН

ŌН

Н

Ħ

Ħ

Ĥ

Ħ

H

HO

L444

L447

HOH₂C

L448

0

Ó

L445 $R = \alpha$ -OH

L446 $R = \beta$ -OH

HQ

 $L451 R_1 = H, R_2 = COOH L452 R_1 = \beta - OH, R_2 = COOH$

L463 $R_1 = H, R_2 = H$ **L464** $R_1 = \alpha$ -OH, $R_2 = H$ **L465** $R_1 = \alpha$ -OH, $R_2 = \alpha$ -OH

L466

Şekil 1.1. (Devam)

Şekil 1.1 ^(Devam)

1.2.3. Ganoderma lucidum (Curtis) P. Karst. 1881

1.2.3.1. G. lucidum mantarının özellikleri

G. lucidum tıbbi mantarların en önemlisidir. Çin'de Ling Zhi (Ölümsüzlük Mantarı), Japonca'da Reishi ve Mannetake ve Korece' de Yeongji olarak adlandırılır (Baby vd., 2015). Çin geleneğine göre Ling Zhi mucizevi ya da uğurlu mantar olarak bilinir ve mutluluğun, şansın, sağlığın, uzun ömrün hatta ölümsüzlüğün sembolü olduğu düsünülür. Yüzyıllarca Asya ülkelerinde sağlık ve enerjiyi arttırmak, ömrü uzatmak, sindirimi kolaylaştırmak ve daha iyi uyumak için kullanılmıştır (Kao vd., 2013; Cao vd., 2012). Günümüzde *G. lucidum* mantarı üzerine birçok çalışma yapılmış olup, immün sistemi güçlendirici, anti-inflamatuar, anti-kanser, anti-diyabetik, antioksidatif ve radikal temizleyici ve anti-aging etkileri de dahil olmak üzere çok sayıda farmakolojik etkiye sahip olduğu belirlenmiştir (Kao vd., 2013).

Ganoderma türleri mantarlar aleminde yer alan, Basidiomycota bölümünden Homobasidiomycetes sınıfından. Ganodermataceae familyasına mensup mantarlardır. Ganodermataceae familyasına ait mantar grupları bazidyokarplarının alt yüzlerinde sporlar içeren küçük delikli yapılar içerirler. Bu cinsin bazidyokarpları hücre dışı bir melanin matriksi içine gömülü kalın duvarlı pilokistidinin varlığı ile ilişkili olan lakatlı (parlayan) bir yüzeye sahiptir (Wachtel-Galor vd., 2011). Ağaçsı, kalın deriyi andıran vücut yapıları ve porlarıyla polipor mantarların diğer gruplarından kesin şekilde ayrılmışlardır. Miselyum (Şekil 1.2.) aracılığıyla gelişerek ağaçları çürütür ve yüzeyde bazidyokarp adı verilen meyvaları oluştururlar (Güzeldağ, 2007). Ganoderma cinsi morfolojik özelliklerine dayanılarak iki bazidyokarp üretir. Bunlardan biri lakkatlı bir meyve gövdesi (G. lucidum) ile parlak bir yüzeye sahiptir. Bir diğeri ise lakkatsız meyve gövdesi ile donuk bir yüzeye sahiptir (G. applanatum) (Hapuarachchi vd., 2015). Bazidyokarplar küresel, tabak veya böbrek şeklinde, saplı ve yüzeyi parlaktır. Kalın, kuru ve gelişirken kenarları sarı, olgunlaşma evresinde kenarları ön yüzde parlak, lakkat ile birlikte kahverengiye döner (Şekil 1.3.). Bazidyokarpların kenarları genelde ince ya da kesilmiş yapıdadır ve belirsizdir. Sapı kalın, siyahtır ve sonradan morumsu kahverengiye döner.

Gözenekleri önce siyahtır, daha sonraki fazda açık kahverengiye döner. Alt yüzeyleri beyaz, krem renkli ve yumuşaktır.

Şekil 1.2. G. lucidum (2 numaralı örnek) örneğinin Miselyum tüpleri

Şekil 1.3. Muğla ilçelerinden toplanan G. lucidum örnekleri

G. lucidum türünün tanımlanmasında önemli rolü olan çift tabakalı bazidyosporlara sahiptir. Bazidyosporların şekli ve büyüklüğü, baş kısmının yüzey yapısı Ganodermataceae üyelerinin belirlenmesi açısından önemlidir. Bazidyosporlar; kahverengi-beyaz, oval ve kesilmiş bir tepe noktasına sahiptir. Yüzeyleri çukurlanmıştır. Birkaç tabakadan oluşan duvarları karmaşıktır (Adaskaveg ve Gilbertson, 1988). Sporların genişlilkleri $7 - 12 \times 6 - 8 \mu m'$ dir (Hapuarachchi vd., 2015) (Şekil 1.4.). *Ganoderma* türlerinin meyve gövdesinin şekli, rengi (kırmızı, siyah, mavi/yeşil, beyaz, sarı ve mor), üzerinde bulunduğu ağaç gibi özelliklerinin

yanısıra coğrafik konumu da türlerin tanımlanmasında kullanılır. Coğrafik konum, iklim, yetiştirilme türündeki farklılıklar, doğal mutasyon veya rekombinasyon *Ganoderm*a türünün morfolojik karakterlerinin farklılaşmasına neden olur (Wachtel-Galor vd., 2011). *Ganoderma* türleri canlı ya da ölü ağaç dalları, gövdeleri ile kökleri üzerinde fakültatif bir parazit olarak büyüyen yıllık mantarlardır (Hapuarachchi vd., 2015). Genellikle tropikal veya subtropikal iklimin etkili olduğu bölgelerde ve meşe ağacı gibi sert ağaçlar üzerinde görülsede; akçaağaç, karaağaç, söğüt, manolya, akasya, erik, sığla ve dut ağaçları üzerinde de yetişmektedir. *Ganoderma* türleri, lignin, selüloz ve polisakkaritleri ayrıştırarak sert odunların çürümesine neden olur. *Ganoderma* türlerinin ve diğer çürükçüllerin meydana getirdiği gövde ve kök kayıpları ormancılıkta birçok önemli ağaç türününün yok olma nedenidir. Bunun aksine ekolojik açıdan ise ölen ağaçların parçalanmasını sağlayarak besinsel döngüde rol almaktadırlar.

Şekil 1.4. G. lucidum (2 numaralı örnek) örneğinin bazidyosporları

G. lucidum, tıbbi özellikleri ve patojenitesi nedeniyle önemli ekonomik değere sahip olan bir mantardır ve meyve kısmı Çin'de "Lingzhi" ve Japonya'da "Reishi" olarak adlandırılmaktadır. Yüzyıllardır, bu mantar Çin ve diğer Asya ülkelerinde kronik bronşit, hepatit, hipertansiyon, yüksek kolesterol, tümörojenik hastalıklar ve immünolojik bozukluklar gibi çeşitli hastalıkların tedavisinde ve bu hastalıklardan korunmada geleneksel Çin ilacı veya halk ilacı olarak kabul edilmiştir. Acı tadı ve sindirilemeyen yapısından dolayı yenilebilir bir mantar olmamasına karşın, bir gıda takviyesi ve bitkisel ilaç olarak kullanılan ve "Linghzi" olarak adlandırılan preparatları (Paterson, 2006), tozları, çayları, kapsülleri, kahveleri mevcuttur. Ayrıca, *G.lucidum* mantarından elde edilen ve kanseri önlediği bilinen Krestin (protein bağlı polisakkarit, PSK), mantar kaynaklı en önemli ilaç hammaddelerinden birisi olup kanserde kullanılan ilaç pazarının % 25'ini oluşturmuştur (Mizuno, 1999). Her mantarda olduğu gibi *G. lucidum* mantarının da ağırlıkça % 90'ı sudan oluşur. Geriye kalan % 10'luk kısmın % 26-28'i karbonhidrat, % 3-5'i ham yağ, % 59'u ham lif ve % 7-8'i ham proteindir (Kao vd., 2013). *G. lucidum'un* tıbbi etkileri içeriğinde bulunan lektin, polisakkarit (β -glukan), polisakkarit-peptit, polisakkarit-protein kompleksleri, lanostan tipi triterpenler, diğer terpenler, alkoloidler, fenolik yapılı bileşenler ve steroitler gibi biyoaktif bileşenlerden kaynaklanmaktadır. (Öztürk vd., 2015). Bu biyoaktif bileşenler antitümör, antioksidan, antienflamatuar, antibakteriyal, antifungal, anti-aging, antiviral, antidiyabet, aktivitelerinin yanı sıra kan lipid düşürücü etkisi, immün-yanıtı uyarıcı etkileri gibi tıbbi özelliklere sahiptirler (Grienke vd., 2015).

1.2.3.2. G. lucidum mantarı ile ilgili literatür araştırmaları

Ganoderma lucidum meyve gövdesi Reishi mantarı olarak bilinir ve Japonya, Çin ve Kore'de kronik hepatit, nefrit, hepatopati, nörasteni, artrit, bronsit, astım, mide ülseri ve uykusuzluk gibi hastalıkların tedavisinde değerli bir ham madde olarak kullanılır. G.lucidum kimyasal bileşimi polisakkaritleri, yağ asitlerini, alkaloitleri, nükleotidleri, proteinleri ve peptitleri, iz elementleri, sterolleri ve triterpenleri içerir. G. lucidum'dan izole edilen birçok triterpen mevcuttur ve bu bileşenlerin çeşitli aktiviteler gösterir. Çizelge 1.1.'de verilen (L1)'in fersenil protein tranferaz inhibisyonu (Sliva, 2003); (L121), (L453) antikomplement aktivitesi (Seo vd., 2009); (L1), (L7), (L71), (L107), (L334), (L338), (L340), (L343), (L348), (L378), (L383), (L384) kulak ödemi inflamasyonunu baskılayıcı aktivite (Dudhgaonkar vd., 2009); (L1), (L2), (L7), (L9), (L38-L41), (L68), (L71-L74), (L221), (L223), (L225), (L227) anti-kanser aktivitesi (Jiang vd., 2008; Yuen ve Gohel, 2005; Wang vd., 2007b; Liu vd., 2002); (L2), (L6), (L13), (L69), (L32), (L205), (L206), (L221), (L225), (L245), (L257), (L272), (L277), (L334), (L342), (L385) antikolinesteraz aktivitesi (Lee vd., 2011, Morigiwa vd., 1986); (L4), (L23), (L131), (L223) aldoz reduktaz inhibisyon aktivitesi (Ma vd., 2015; Chen vd., 2017c) ve (L4), (L6), (L67), (L71), (L225), (L262), (L335), (L338), (L340), (L342), (L343), (L359), (L378), (L379), (L382-L384), (L395), (L456), (L482) Epstein-Bar Virüsü (EBV) aktivasyonuna inhibisyon etkisi (Akihisa vd., 2007; Dudhgaonkar vd., 2009); (L11), (L18), (L45), (L53), (L69), (L71), (L75), (L76), (L96-L102), (L62), (L65), (L104), (L103), (L131), (L132), (L138), (L213-L215), (L226), (L234), (L245), (L263), (L269), (L330-L333), (L342), (L363), (L373), (L380), (L544-L547), (L557-L561), (L564), (L565) bileşikleri sitotoksik aktivite gösteren bileşiklerdir (Guan vd., 2008; Li vd., 2013a; Wang vd., 2010b, Paliya vd. 2014; Gao vd., 2002; Chen vd., 2017c; Cheng vd., 2010). Bu bileşiklerin yanısıra (L24),(L32), (L51), (L127), (L221), (L225), (L227), (L229), (L358), (L372), (L458) bileşikleri antiviral aktivite (Xia vd., 2014; Min vd., 1998; El-Mekkawy vd., 1998; Mizushina vd., 1999, Shi vd., 2010), (L54), (L77), (L84), (L439) bileşikleri ise HMG-CoA (5-hydroksi-3-metilgluteril-koenzim A) redüktaz ve asetil CoA-asetiltransferaz inhibitör aktivitesi gösterdiği literatürde yer almaktadır (Li vd., 2006; Chen vd., 2017b).

Yapılan araştırmalar Ganoderma türlerinin çeşitliğinin ve bölgesel değişimlerin mantarların kimyasal içeriğinde önemli değişimlere yol açtığını gösterir. Chen vd. (2008b), G. lucidum'un kalitesini belirlemek amacıyla yüksek performanslı sıvı kromatografi (HPLC) yöntemi ile mantarların parmak izi kromatogramı oluşturmuştur. Çin'nin farklı bölgelerinden toplanan 29 mantar örneğinin analizi sonucunda 19 ortak pik seçilerek bu piklerden 11 tanesinin sıvı kromatografielektrosprey iyonizasyon-kütle spektrometri (LC-ESI-MS) ve ultraviyole (UV) verileri ile yapısı belirlenmiştir. Kromatogramlardaki piklerin konsantrasyonunun farklı bölgeden alınan örnekler ile değişiklik gösterdiği rapor edilmiştir (Chen vd., 2008b). Bir başka çalışmada G. lucidum'un ana triterpenleri (ganoderik asit C6, ganoderik asit E ve ganoderik asit F) ters akım kromatografisi tekniği kullanılarak (CCC) ekstreden ayrılmıştır. Ayrıca CCC tekniği "pH-zone refining" metodu ile birleştirilerek ganoderik asit G, ganoderik asit A, ganoderik asit D ve ganoderenik asit D, 2 gün içinde % 90'nın üstünde HPLC saflığı ile ayrılmıştır (Cheng vd., 2012a). Diğer bir çalışmada G. lucidum mantarının triterpenlerce zenginleştirilmiş ekstrelerinden ganoderik asit T ve ganoderik asit Me'nin saflaştırılması ve geri kazanımı için hızlı ve verimli bir ters faz-HPLC (RP-HPLC) metodu geliştirilmiştir. Bu metotta C18 kolon ve asidik metanol-su mobil faz sisitemi, UV ve elektrosprey iyonizasyon kütle dedektörlü (ESI-MS) sistem kullanılmaktadır. Elde edilen maddeler UV ve MS verileri ile doğrulanmıştır. Ayrıca çalışmada saflaştırılan
maddelerin NMR spektrumları ile kontrolleri yapılmıştır. Bu yöntemin doğal ürünlerdeki ganoderik asitlerin hızlı, yarı kantitatif saflaştırılması için değerli bir metot olduğu rapor edilmiştir (Tang vd., 2006). *Ganoderma* türlerindeki ganoderik asit A, B, C2, D ve H'nin analizi için yeni duyarlı ve seçimli bir sıvı kromatografi tandem kütle spektroskopi (LC-MS/MS) metodu da Liu vd. (2011b) tarafından rapor edilmiştir. *G. lucidum* mantarının yanı sıra *G. applanatum* ve *G. sinense* mantarlarında beş triterpenin analizi aynı anda büyük bir seçimlilik ve duyarlıkla yapılmıştır (Liu, vd., 2011b). Wang vd. (2006), *Ganoderma* türü mantarlardaki ganoderik asit C2, B, AM1, K, H ve D'nin analizi için RP-HPLC metodu geliştirmiştir. C18 kolon, asit çözeltisi ve asetonitrilden hazırlanan bir mobil faz ile doğrusal bir gradient programı uygulanarak, 252 nm dalga boyunda analiz yapılmıştır. Metodun bağıl standart sapmasının % 5'nin altında, geri kazanımının % 93-103 aralığında ve bağıl hatanın ise % 2'nin altında olduğu rapor edilmiştir. Bu çalışma ile *G. lucidum, G. sinense, G. amboinense, G. sessile, G. tropicum* mantarlarında altı ganoderik asidin analizi gerçekleştirilmiştir (Wang vd., 2006).

G. lucidum mantarının saflaştırma ve aktivite çalışmalarının yanısıra kemometrik çalışmalarıda literatürde yer almaktadır. Kültüre edilerek yetiştirilen G.lucidum mantarlarının kimyasal içeriğinin ve morfolojisinin, orijinal bitki, toprak ve iklim gibi çevre koşullarındaki farklılıklardan etkilenip etkilenmediği Chen vd. (2008a) tarafından araştırılmıştır. Altı farklı bölgeden toplanan 60 örnek HPLC ile analizlenmiştir. Elde edilen veriler hiyerarşik kümeleme analzi (HCA), temel bileşen analizi (PCA) ve kısmi en küçük kareler yöntemi (PLS-LDA) gibi kemometrik yöntemlerle değerlendirilmiştir. Mantarların bileşenlerinin bölgeler arasında farklılık gösterdiği ortaya konmuştur (Chen vd., 2008a). Da vd. (2012), G. lucidum ve G. sinense mantarları arasındaki kimyasal farklılığı ortaya koymak için 12 tanesi G. sinense ve 20 tanesi G. lucidum olmak üzere farklı bölgelerde yetişen 32 Ganoderma örneğinde polisakkarit ve triterpen içerikleri araştırılmıştır. Polisakkaritler HPLC cihazı ile triterpenler ise UPLC-elektrosprey iyonizasyon tandem kütle spektrometresi (UPLC-ESI-MS/MS) ile analiz edilmiştir. G. lucidum ve G. sinense arasında triterpenler bakımından anlamlı bir fark olduğu belirlenmiştir. G. lucidum mantarına ait 20 örnekte 12 ana bileşen saptanmıştır. 8 tanesi ganoderik asit ve 4 tanesi ganoderenik asittir. Bunlardan 10 tanesi kantitatif olarak belirlenmiştir. Buna karşın G.sinense'de bu triterpenlerin hiçbirine rastlanmamıştır. Polisakkarit içerikleri

yönünden incelendiğinde, 7 monosakkarit tanımlanmış ve bunlardan dört ana bileşik kantitatif olarak belirlenmiştir. *Ganoderma* türlerinin polisakkaritler bakımından farklılık göstermediği PCA ile ortaya konmuştur (Da vd., 2012). Bu da göstermektedir ki, parmak izi analizi, doğal ürünlerin özgünlüğünü ve kalitesini değerlendirmek için ölçülebilir, kapsamlı ve efektif bir analiz tekniğidir. Sun vd. (2014), çalışmalarında *Ganoderma* türlerinde mevcut olan polisakkaritlerin analizi için hidrolizin ardından 1-fenil-3-metil-5-pirazolon (PMP) ile pre kolon türevlendirmeyi içeren bir RP-HPLC yöntemi önermektedir ve PCA ve HCA gibi kemometrik yöntemlerle çalışma sonuçlarını değerlendirmiştir. Çalışmada 22 tane *G. lucidum* ve 15 tane *G. sinense* mantarı kullanılmıştır. Farklı türler, farklı suşlar ve farklı bölgelerden toplanan örneklerde *Ganoderma* polisakkaritlerinin kromatografik parmak izi özellikleri taşıdıkları, yani bazı polisakkaritlerin tüm türlerde baskın birer bileşen olduğunu ve bunun yanı sıra coğrafik bölgelerdeki ve ekim yollarındaki farklılıkların parmak izlerini etkilediğini ortaya koymuştur (Sun vd.,2014).

1.2.4. Ganoderma adspersum (Schulzer) Donk 1969

1.2.4.1. G. adspersum mantarının özellikleri

Bu tür ilk olarak 1878 yılında Schulzer tarafından *Polporus adspersus* olarak tanımlamıştır. 1969 yılında Donk doğru ismi belirleyerek *Ganoderma adspersum* (S. Schulz) adını bildirmiştir (Tortic, 1971). Uzun ömürlü, sertleşmiş ve lakkatsız bazidyokarplara sahiptir. Bazidyokarpları 10-30 cm çapında 10-25 x 4-10 cm kalınlığında, küre ve tabak şeklindedir (Şekil 1.5). Homojen, kırmızımsı kahverengi renkli, sert yapılı lifli, kalın yapıya sahiptir. Alt kısmı krem sarıdır. Sporları geniş eliptik, siğilli, kahverengi ve 8-12 × 5,5-8,5 µm'dur (Şekil 1.6.). Kütikül kalınlığı ise 0,5 -0,75 mm'dir (Papp ve Szabo, 2013).

G. adspersum, genellikle parklarda, kentsel yaşam alanlarında, nadiren ormanlık alanlarda büyük yapraklı ağaçların yanısıra kozalaklı ağaçların gövdelerinde de bir çürükçül olarak yaşar. Özellikle kayın, ıhlamur, kavak, kestane, huş, akçaağaç, meşe, ladin, köknar, sığla, ceviz, dut, erik, şeftali gibi ağaçlarda görülür (Papp ve Szabo, 2013; Fraaye ve Fraaye, 1995).

Şekil 1.5. G. adspersum (7 numaralı örnek) örneği

Şekil 1.6. *G. adspersum* (6 numaralı örnek) örneğinin bazidyosporları

Ganoderma bazidyokarpları beş ile on yıl boyunca yaşamlarını sürdürebilir. Dakikaka yirmi milyon bazidyospor açığa çıkarır ve tüm sonbahar boyunca basidyospor oluşturmaya devam eder. Diğer mantarların aksine yaşadığı ağacın selülozunu ayrıştırarak metabolik su ihtiyacını karşılar ve en kuru mevsim şartlarında bile spor üretmeye devam eder. Bu tür mantarlar odunların ana bileşeni olan lignini ayrıştırabilen en önemli organizmalardır. Bitkilerde var olan minerallerin ve karbonun geri dönüşümünü sağlayarak doğada hayati bir öneme sahiptirler. Birçok araştırmacı *G. adspersum* mantarını biyoteknolojik potansiyeli ile ilgilenmektedir (Fraaye ve Fraaye, 1995).

Donk 1969 yılında, bir kökünün olmaması, yıllık halkalarının belirginliği, yoğun gözenekliliği gibi özelliklere sahip olan türü Ganoderma adspersum (S. Schulz.) olarak adlandırmıştır. Günümüzde G. adspersum batı Avrupa'da en yaygın olan türdür. Genellikle G. adspersum, G. applanatum veya G. australe ile karıştırılır (Fraaye ve Fraaye, 1995). Tel-Çayan vd. (2015b) G. adspersum türünden applanoksidik asit G (L151), applanoksidik asit E (L147), applanoksidik asit A (L145), Δ^{22} -stigmastenol (L612) maddelerini izole ederek nükleer manyetik rezonans (1D, 2D NMR) ve kütle (MS) analizleri ile yapısını belirlemiştir (Tel-Çayan, 2015a; Tel-Çayan vd., 2015b). G. adspersum'dan elde edilen tüm ekstreler ve izole edilen bu dört madde asetilkolinesteraz ve antioksidan aktivitesi yönünden değerlendirilmiştir. Çalışma etil asetat ekstrelerinin yüksek antioksidan ve bütirilkolinestreaz (BChE) inhibisyon aktiviteleri gösterdiği ortaya konmuştur. Ayrıca çalışmada Δ^{22} -stigmastenol bileşiğinin yüksek lipid peroksidasyon inhibisyon aktivitesi, applanoksidik asit G ve Δ^{22} -stigmastenol bileşiklerinin ise BChE enzim inhibisyon aktivitesi gösterdikleri rapor edilmiştir (Tel-Çayan, 2015a; Tel-Çayan vd., 2015b). Farklı orijinlerden toplanan 4 Ganoderma türüne (G. adspersum, G. lucidum, G. resinaceum ve Ganoderma sp.) ait 20 suşun insan ve hayvanlara karşı potansiyel bir patojen olan keratinofilik filamentli fungilere karşı antifungal/antagonistik aktivitesi (AFA/AA) değerlendirilmiştir. Badalyan vd. (2012), Ganoderma türlerinin/suşlarının keratinofilik filamentli fungilere karşı yüksek AFA gösterdiğini, özellikle de G. adspersum ve G. resinaceum türlerinde en yüksek antifungal aktivite elde edildiği bildirmiştir (Badalyan vd., 2012).

Bir başka çalışmada, farklı orijinlerden dört *Ganoderma* (*G. adspersum, G. applanatum, G. lucidum, G. resinaceum*) türüne ait 22 örnekte AFA/AA araştırılmıştır. Dokuz fitopatojenik fungus türü (*Bipolaris sorokiniana, Fusarium culmorum, Fusarium oxysporum, Pestalotiopsis funerea, Rhizoctonia cerealis*) ve onların antagonistleri (*Trichoderma asperellum, T. harzianum, T. pseudokoningii, T. viride*) çalışmada kullanılmıştır. Tüm *Ganoderma* türleri arasında, özellikle *G. resinaceum, G. adspersum* ve *G. applanatum* fitopatojenik mantarlara karşı belirgin antifungal/antagonistik aktivite (AFA/AA) gösterdiği tespit edilmiştir. *G. resinaceum*

haricinde diğer *Ganoderma* türlerinde fitopatojen *F. culmorum* ve *Trichoderma* türleri tarafından yüksek antagonistik aktivite tespit edilmiştir (Badalyan vd., 2014).

Çin'de ve Polonya'da kültüre edilen ve doğal olarak yetişen 10 türde (*G. applanatum, G. resinaceum, G. pfeifferi, G. lucidum, G. adspersum, G. capense, G. atrum, G. carnosum, G. hainanense, G. sinense*) 62 elementin varlığı araştırılmıştır. 25 mikroelement ve 5 makroelement tüm türlerde tespit edilmiştir. Bunun aksine 32 iz element çok sınırlı sayıda örnekte tespit edilmiştir. Major elementlerin en yüksek olduğu türler Polonya ve Çin kökenli *G. pfeifferi* ve *G. sinense* kültür örnekleridir. Mg, P en yüksek *G. applanatum* türünde, Te, *G. pfeifferi* ve K, *G. pfeifferi ve G. sinense* türlerinde tespit edilmiştir. Ga yalnızca *G. adspersum* türünde, en yüksek miktarda Ge ise 1 mg/kg ın üstünde miktarlarda kültüre alınan *G. adspersum, G. atrum* ve *G. pfeifferi*' de tespit edilmiştir (Marek vd., 2017).

1.2.5. Ganoderma applanatum (Pers.) Pat.

1.2.5.1. G. applanatum mantarının özellikleri

1799 yılında Christiaan Hendrik Persoon tarafından Boletus applanatus olarak adlandırılmış, 1887 yılında ünlü Fransız mikolog Narcisse Theophile Patouillard bu türü Ganoderma cinsine transfer ederek günümüzde kabul gören Ganoderma applanatum adını rapor etmiştir (Papp ve Szabo, 2013; Richter vd., 2015). Bu mantarın önemli morfolik özellikleri çok yıllık, lakkatsız kabuklu oluşu (< 5mm), ince, traması tabakalı ve beyazımsı damarlı bir mantar olmasıdır. Alt kısmı kremsi beyazdır. Karakteristik özelliği taze beyaz gözenek yüzeyine (alt yüzey) çizim yapıldığında ya da dokunulduğunda çizilen kısmın kahverengileşerek yıllar boyunca saklanabilmesidir. Bu özelliğinden dolayı mantara "Artist fungus, Artist's Conk" adları verilmiştir (Papp ve Szabo, 2013). Ganoderma applanatum, hem ılıman, hem de tropik bölgelerde ölü ağaçlarda yaygın olarak bulunan bir mantardır. Sapı olmayan, çok sert meyve yaprakları olan, uzun ömürlü bu mantar, her yıl yeni bir gözenek katmanı ekleyerek meyvemsi vücuda genç halkalar kazandırır (Ede vd., 2012). G. applanatum, ölü kütükler üzerinde raf benzeri şekilde büyüyen büyük conklar oluşturur. Conklar, braket mantarları veya raf mantarları olarak da bilinir. G. applanatum tarafından üretilen conklar 75 cm'ye kadar çıkabilir, ancak ortalama

örnekler daha küçüktür. Yeni gözenek yüzeyi, conkların alt kısmında oluşur; bu nedenle, gözenek katlarını sayarak mantarın yaşının tahmini yapılabilir. *G. applanatum* mantarı düz, mat, kahverengi, topaklı bir mantar olduğundan dolayı çok etkileyici bir mantar değildir. Mantarın altı pürüzsüz, parlak beyazımsı ve 4-6 mm'lik küçük gözeneklere sahiptir. *G. applanatum'un* orta kısmı genellikle kalın, yan yüzeyleri daha incedir ve alt yüzeyi kavislidir (Bhosle vd., 2010; Anonim, 2018). Sapsız bazidyokarplar odundan mantara doğru tabana yayılı, 40 cm çapında ve 1,5-5 cm kalınlığında ve tabakalıdır (Şekil 1.7.). Tüpleri çok tabakalı, 4-13 mm uzunluğunda, kahverengi, her kat ince bir doku tabakasıyla ayrılır. Bazidyosporları 6-9,5 x 4,5-6 µm, geniş eliptik, küt, kalın duvarlı, küçük dikenlerle bezelidir (Şekil 1.8). Tabakalarındaki sporlar kahverengidir. Genellikle kuzey yarım kürede daha yaygın görülen bu tür mantarlar, yaprak döken ağaçlarda, kozalaklı ağaçlarda görülür. Bu mantar çam, dişbudak, akçağaç, kayın, ıhlamur, kavak, söğüt, meşe, huş, köknar ve dut ağaçları üzerinde, köklerinde veya kurumuş kütüklerinde yıl boyunca bir parazit olarak yetişebilmektedir (Bhosle vd., 2010; Schwarze ve Ferner, 2003).

Şekil 1.7. G. applanatum (13 numaralı örnek) örneği

Şekil 1.8. G. applanatum mantarına ait bazidyospor (Singh vd., 2014)

1.2.5.2. G. applanatum mantarı ile ilgili literatür araştırmaları

Ganoderma applanatum mantarı da tıbbi önemi olan bir mantar türüdür. Çok sert oluşundan dolayı doğrudan yenmesi mümkün olmayan bu mantarın odunsu meyve kısmı çay olarak kullanılmakta ve antienflamatuvar, antitümör, antibakteriyal özelliklere sahip olduğu bilinmektedir. Ayrıca solunum sistemi hastalıklarının tedavisinde de kullanıldığı rapor edilmiştir (Anonim, 2014). Ede vd. (2012) G. applanatum mantarının potansiyel analjezik ve antienflamatuvar olduğu ortaya koymuştur (Ede vd., 2012). Aynı zamanda bu mantarın antitümör (Jung vd., 2011), aldolaz redüktaz inhibitörü (Lee vd., 2005) ve EBV (Gao vd., 2005) aktivasyonuna sahip olduğu birçok çalışmada yer almaktadır. G. applanatum mantarından triterpenler ve steroitler izole edilmiştir. Bu maddeler arasında (L19), (L95), (L20), (L21), (L131), (L135), (L137-L139), (L145-L148), (L150), (L151), (L397), (L407), (L408), (L453), (L454), (L456), (L482), (L475) (L488), (L518), (L519), (L520), (L521), (L522) yer almaktadır (Baby vd., 2015). Aplanoksidik asit A (L145), B (L146), C (L149) ve D (L150) antitümör aktivitesi (Xia vd., 2014), ganoderenik asit A (L131) ve H (L138) sitotoksik aktivite (Guan vd., 2008) göstermektedir. Luo vd. (2016) G. applanatum mantarından meroterpenoid olan 26 adet applanatumols C-Z, Z1 ve Z2 (L577-L602) ile alkoloid olan 3 adet ganoapplanatumin A (L603), B (L604) ve epi-ganoapplanatumin B (L605) maddelerini izole edilmiştir (Luo vd., 2016).

1.2.6. Ganoderma resinaceum Boud.

1.2.6.1. G. resinaceum mantarının özellikleri

1889 yılında Fransız mikolog Jean Louis Emile Boudier tarafından tanımlanmış ve bugün de kabul edilen *Ganoderma resinaceum* adını almıştır. *G. applanatum* ve *G. adspersum*'un aksine daha sıcak iklime sahip bölgelerde görülür. Meyve gövdeleri yıllık, açık kahverengi renkli, traması mantar renklidir. Diğer birçok *Ganoderma* türünden farklı olarak reçineli bir kabuğa sahiptir ve bu reçine ısıtıldığı zaman erir. Yine *G. applanatum* ve *G. adspersum*'dan farklı olarak saf kültürlerinde ayırt edici özelliği klamidosporları üretmeleridir. Klamidosporlar elverişsiz koşullarda bile mantarların hayatta kalmalarını sağlar (Schwarze ve Ferner, 2003). Bazidyokarpları 15-35 cm çapında ve 4-8 cm kalınlığındadır. Meyve gövdesi kırmızımsı-kahverengi spor tozu ile kaplıdır. Kenarları açık sarımsı, orta kısımları güzel bir turuncu-pas rengi-kahverengi renklerdedir. Bazidyokarplar odunsu, iki eşit parçaya ayrılmış gibi görünen, lakkatlı, tazeyken pürüzsüz ve genellikle bazidyosporların birikiminden kaynaklanan tarçın renkli toz ile kaplıdır (Şekil 1.9.). Kenarları 1-1,5 mm, kremimsi beyaz renkte ve ince ve dardır. Gözenek yüzeyi kremimsi kahverengi 3-4 mm'dir. Tüpler 3 mm, 8-20 mm derinlikli, kahverengidir. Bazidyosporları (Şekil 1.10), 9-11 x 5-7 μm dikdörtgen şeklinde, elipsoid, ucu kesilmiş gibi ve soluk sarı renklidir (Bhosle vd., 2010).

Şekil 1.9. G. resinaceum (14 numaralı örnek) örneği

Çok geniş bir dağılıma sahip olan bu mantar Kuzey Afrika, Asya, Avustralya ve Güney ve Kuzey Amerika'da görülmektedir. Özellikle başta meşe ağacı olmak üzere yaprak döken tüm ağaçlarda görülebilmektedir. Çınargiller, söğüt, akçaağaç, armut ağacı, keçi boynuzu ağacı, dut ağacı gibi ağaçların gövdelerinde ve köklerinde yaşarlar (Papp ve Szabo, 2013).

Şekil 1.10. G. resinaceum mantarına ait bazidyospor (Chen vd., 2017a)

1.2.6.2. G. resinaceum mantarı ile ilgili literatür araştırmaları

G. resinaceum, Ganodermataceae ailesinden yüksek bir mantardır. Kan şekerini düşürücü, hepatokoruyucu ve immunomodülatör özelliklerinden dolayı tıbbi bir mantar olarak kullanılmaktadır (Chen vd., 2017d). G. resinaceun mantar ekstreleri antibakteriyal, antifungal, antioksidan ve kolinesteraz, α -amilaz, α -glukozidaz ve trozinaz enzimlerine karşı inhibitör aktivitesi gösterir (Chen vd., 2017d). Ayrıca G. resinaceum'un birkaç oksijenlenmiş triterpeni de içerdiği rapor edilmiştir. Bu doğal bileşenler karciğer hepatoselüler (HepG2) hücrelerine karşı hepatokoruyucu ve sitotoksik aktivite gösterir. G. resinaceum mantarından izole edilen bileşenler arasında meroterpenoidler de bulunmakta olup bunlar; ganoresinains A-E (L606-L610), zizhine A (L427), petchien A (L539), lingzhine C (L611)'dir (Chen vd., 2017d). Ayrıca C24, C25 lanostan olan lusidon A- H (L397-L404), I-K (L551-L553) bileşenleri de bu mantardan izole edilmiştir. Lusidon A – H (397-404), K α glukozide karşı inhibitör aktivite göstermektedir. Ganoderense F (L199) ve ganosineniol A (L406) maddeleri de G. resinaceum' dan izole edilden bileşenlerdir (Chen vd., 2017e). G. resinaceum ile ilgili yapılan bir başka çalışmada bu mantardan (L453), ergost-7, 22-dien-3 β , 4 α -diol (L483), 3 β , 5 α - dihyidroksi-6 β - metoksiergosta- 7, 22E- dien (L458), 3β, 5α, 9α-trihidroksi-(22E, 24R)-ergosta-7, 22-dien-6on (L460), (22*E*, 24*R*)-ergosta-7, 22-dien-3 β , 5 α , 6 β -triol (L463) ve 7 β , 8-epoksi- 3β -hidroksi- 4, 4, 14 α -trimetil-12, 15, 20-triokso- 5α -pregn-9(11)-en (L566) izole edilmiştir (Chen vd., 2017f). Lusidon D-G (L400-L403), 7-okso-ganoderik asit Z2 (L55), 7- okso-ganoderik asit Z3 (L56), ganoderesin A (L279), and ganoderesin B (L276), ganoderik asit Y (L73), ganoderol B (L206), lusidon A (L397), lusidon B (L398), lusidon H (L404) ve 7-okso-ganoderik asit Z (L54)'vi içeren 14 bileseni Peng vd. (2013) G. resinaceum mantarından izole etmiştir ve bu maddelerden ganoderesin B (L276), ganoderol B (L206) ve lusidon A (L397) maddelerinin hepatoprotektif aktiviteye sahip olduğunu bildirmiştir. Zengin vd., (2015) tarafından Ganoderma resinaceum üzerine yapılan çalışmada mantardan elde edilen ekstrelerin antimikrobiyal, antioksidan, antitirozinaz, glukosidaz ve amilaz enzim inhibisyon aktiviteleri belirlenmiştir. Bir başka çalışmada Ganoderma resinaceum türü ekstresi zeytinyağına ilave edilerek farelerin diyet inkorparosyonunda kullanılmış ve önemli sonuçlar alınmıştır (Ribeiro vd., 2012). Amaral vd. (2008) yaptıkları bir çalışmada ilginç bir β -glukan izole ederek yapısı aydınlatılmıştır (Amaral vd., 2008). Bu türden elde edilen bileşikler *Ganoderma lucidum* mantarından da izole edilmiştir. Son yıllarda *Ganoderma resinaceum* türü üzerine yapılan kanser çalışmaları dikkat çekmektedir. Bunlardan bir tanesinde *Ganoderma resinaceum* türünden üç yeni lanostanoit türevi izole edilip yapısı aydınlatılmıştır. Aynı çalışmada bu maddelerin gırtlak kanser hücrelerine (Hep-2) etkisi test edilmiş ve bu bileşiklerden sadece 3α -(3-hidroksi-5-metoksi-3- metil-1,5-dioksopentiloksi)-24-metilen- 5α -lanost-8-en-21-oik asit bileşiğinin önemli derecede aktivite gösterdiği bulunmuştur (Niu vd., 2007). Diğer bir çalışmada ise; *Ganoderma resinaceum* türü dirençli küçük hücreli akciğer kanser hücrelerine (SCLC) karşı test edilmiş ve anlamlı sonuçlar bulunmuştur (Sadava vd., 2009).

1.2.7. Sekonder metabolitler

Bitki kimyasalları genellikle primer ve sekonder metabolitlerden oluşur. Primer metabolitler (Karbonhidratlar, yağlar, proteinler vb) doğada oldukça yaygın olup, yüksek bitkilerin tohum ile vejetatif dokularında oldukça fazladır ve hücre metabolizmasındaki temel görevlerinden dolayı, bitkinin fizyolojik gelişimi için gereklidir. Pekçok yüksek bitki, ekonomik açıdan önem taşıyan, organik kimyasallar olan ikincil metabolitleri (alkoloid, terpen, fenolik bileşikler) bünyesinde biriktirerek çeşitli bilimsel, teknolojik ve ticari uygulamalara hammadde oluşturur. Sekonder metabolitler, primer metabolitlerden biyosentetik yolla üretilmiş olup bitkiler alemindeki dağılışı özel olan bir taksonomik grup (tür, cins, familya) ile sınırlandırılmıştır. Sekonder metabolitlerin, bitkinin primer metabolizmasındaki fonksiyonları tartışmalı olup, genelde tozlaşmada, çevresel koşullara uyum, mikroorganizma, böcek ve diğer predatörlere (avcılara) karşı kimyasal savunma, diğer bitkilerle yarışma gibi rollere sahip oldukları düşünülmektedir. Bitki bünyesinde oldukça az miktarlarda biriktirilirler. Özelleşmiş hücre tiplerinde ve bitkinin farklı büyüme evrelerinde sentezlendiklerinden dolayı ekstraksiyonları ile saflaştırılmaları zordur (Oskay ve Oskay, 2009). Şekil 1.11.'da İkincil metabolitlerin oluşumu görülmektedir.

Şekil 1.11. İkincil metabolitlerin oluşumu

1.2.8. Terpenoitler

Terpenler, doğal ürünlerin en yaygın gruplarından biridir. Bitkilerde ve hayvanlarda birçok farklı işlevleri bulunurken gıdalarda da aroma bileşenleri olarak önemlidirler. Terpenler, izopren birimlerinin (C_5H_8 , 2-metil-1,3-bütadien) bir araya gelmesiyle oluşur ve içerdikleri izopren birimlerine göre sınıflandırılırlar (Çizelge1.2.). Terpenlerin yapılarında oksijen içermesiyle oluşan terpen türevi esterler, alkoller ve

aldehitler ise terpenoitler olarak adlandırılır (Yaylı, 2013). İzopren birimleri halkalı ya da polihalkalı olabilir. Bitkilerin farklı kısımlarında farklı izopren birimleri yer alabilir. Bitki ham maddelerindeki uçucu yağlarda genellikle basit terpenler (mono ve seskiterpenler), reçine, mumda ise daha karmaşık yapılı terpenler (triterpenler) bulunur (Chairez-Ramirez vd., 2016).

İzopren Birimi	Sınıfı	Karbon sayısı (C)
1	Hemiterpenler	5
2	Monoterpenler	10
3	Seskiterpenler	15
4	Diterpenler	20
5	Sesterterpenler	25
6	Triterpenler	30
8	Tetraterpenler (Karotenoitler)	40
n	Politerpenler	(5 C) _n

Çizelge 1.2. Terpenlerin sınıflandırılması

Mono-, sesqui-, di-, ve sesterpenler baş-kuyruk şeklinde bağlanmış izoprenlerden meydana gelmiştir. Triterpenler iki C15 ve karotenoidler (tetraterpenler) iki C20 biriminin kafa-kafaya bağlandıkları yapılardır.

Şekil 1.12. İzopren birimlerinin baş-kuyruk şeklinde kondenzasyonu

Terpenoitlerin biyosentezinde önemli yeri bulunan mevalonik asit (3-metil-3,5dihidroksi pentanoik asit) 3 mol asetil koenzim A (CoA)' nın kondenzasyonu ile oluşur. Mevalonik asidin su ve karbondioksit kaybetmesi ile terpenleri oluşturan izopren (2- metil-1,3-butadien) birimleri meydana gelir (Karabacak, 2007). Mevalonik asit eldesinde başlangıç maddesi olan asetil CoA (CH₃COSCoA) pek çok doğal bileşiğin biyosentezinde rastlanan bir madde olup şekerlerin oksidatif degredasyonundan oluşur ve sonunda karbondiokside okside olur. Asetil CoA'nın doğal bileşiklerin oluşumunda önemli rolü vardır. Asetil CoA birçok doğal bileşiğin yapı taşıdır. Mevalonik asit ise yalnız terpenlerin oluşumunda rol oynar. Mevalonik asit terpen biyozentezini diğer metabolik yollardan ayıran bir bileşiktir. Şekil 1.11.'da asetil CoA'nın ikincil metabolitlerin oluşumundaki rolü ve Şekil 1.13.'de ise asetil CoA'dan başlayarak biyosentez yoluyla terpenlerin oluşumunu görülmektedir (Işık, 2005).

Şekil 1.13. Terpen bileşiklerinin oluşumu

Monoterpenler ve seskiterpenler gibi küçük moleküllü terpenoitlerin yaygın kaynakları uçucu yağlardır. Terpenoitlerin izolasyonları bitkiden uçucu yağların izolasyonu ve uçucu yağlardan terpenoitlerin izolasyonu olmak üzere iki basamakta yapılır. Bitkilerden uçucu yağların izolasyonu ekspresyon metodu, buhar distilasyonu, uçucu solventler ile ekstraksiyon ve saflaştırılmış yağlarda adsorpsiyon gibi yöntemlerle gerçekleştirilir. En çok kullanılan yöntem, buhar distilasyonu

yöntemidir. Ekstraksiyon ile elde edilen uçucu yağlardaki terpenoitlerin ayrılması fraksiyonlu distilasyon ile yapılır. Son zamanlarda farklı kromatografik teknikler izolasyon ve ayırma için kullanılmıştır. Saflaştırmada genellikle kolon ve preparatif ince tabaka kromatografisi yöntemleri kullanılabildiği gibi orta, yüksek basınlı sıvı kromatografi ve vakum sıvı kromatografi (MPLC, HPLC ve VLC), gaz kromatografisi (GC) ve pek çok kromatografik yöntem kullanılabilir. Karotenoit bileşikler ve bazı lakton yapısındaki terpenler kolay bozundukları için, ekstraksiyon ve saflaştırma çalışmaları özel şartlarda (soğukta, inert atmosferde, ışıktan korunarak) dikkatlice yapılmalıdır.

Terpenoitlerin çoğu renksiz ve hoş kokulu uçucu bileşiklerdir. Organik çözücülerde çözünürler, çoğunlukla suda çözünmezler. Birçoğu optikçe aktiftir. Açık zincirli veya bir veya birkaç çift bağa sahip halkalı doymamış bileşiklerdir. Hidrojen, halojen ve asitler ile katılma tepkimeleri veriler. Neredeyse tüm oksitleyicilerle kolayca okside olurlar. Terpenoitlerin birçoğu termal ayrışma ile izopren birimlerine ayrılırlar.

1.2.8.1.Triterpenoitler

Triterpenler çoğunlukla bitkiler tarafından serbest asitler ve aglikonlar olarak sentezlenirler. Triterpenler yaklaşık 40 değişik iskelete sahip 4000 kadar bileşikle temsil edilen altı izopren biriminden oluşmuş 30 karbonlu halkalı yapılardır (Fitosteroller, saponinler, kardiyoaktif glikozitler, steroital alkaloitler aynı ana iskelete sahip bilesiklerdir). Serbest triterpenler, asit, alkol, aldehit, keton, epoksi ve lakton gruplarından bir ya da birkaçını bir arada taşıyabilirler. Taşıdıkları halka sayısı ve fonksiyonel gruplar da isimlendirmede etkendir. Triterpenler taşıdıkları halka sayılarına göre trisiklik, tetrasiklik ve pentasiklik olarak üç grupta toplanmaktadırlar. Hiç sübstitüent taşımazlarsa triterpen hidrokarbonlar olarak adlandırılırlar. Bu gruplar arasında en yaygın görülen triterpenler pentasiklik triterpenlerdir. Triterpenler Ganoderma türü mantarlarda bulunan ikincil bileşenlerin en önemlilerinden biridir. Ganoderma türü mantarlada bulunan triterpen yapıları ortada yer alan lanosterol iskeletinden gelişmiştir. Lanostan triterpenlerin çoğu 30 veya 27 C atomu içerir. 24 C atomu içerenleri de mevcuttur. Lanostan tipi triterpenoidler A/B, B/C, C/D halkalarının bir trans konfigürasyonu ve 10β , 13β , 14α , 17β subsutientlerinde karakteristiktir. *Ganoderma* türlerinden izole edilen çoğu lanostan tipi triterpende yüksek oranda oksidasyon görülmektedir (Baby vd., 2015; Xia vd., 2014). *Ganoderma* türü mantarlardan izole edilen triterpenler C30 lanostanlar (ganoderik asitler, aldehitler, alkolleri esterler, glikozitler, laktonlar, ketonlar), C27 lanostanlar (lusidenik asitler, alkoller, laktonlar, esterler), C24, C25 laktonlar, C30 pentasiklik triterpenlerdir.

Triterpenler üzerine yapılan araştırmalar onların birçok farmakolojik etkiye sahip olduğunu da ortaya koymuştur. Triterpenler (ganoderik asitler ve lusidenik asitler) antibakteriyel, antiviral, antitümör, antiosteoklastik farklılaşma, anti-HIV-1, hepatokoruyucu, antioksidasyon, antihipertansiyon ve kolestrol azaltıcı etkilere sahiptir. *Ganoderma lucidum, Ganoderma colossum, Ganoderma applanatum, Ganoderma resinaceum ve Ganoderma orbiforme* gibi birçok *Ganoderma* türünden bu tür triterpenler izole edilmiştir. Bu etkilerinden dolayı Çin ve diğer Asya ülkelerinde yıllardır tedavi edici amaçlarla kullanılmıştır.

1.2.9. Steroitler

Steroitler, 1,2-siklopentanopenantren (steran halkasındaki, Şekil 1.14.) yapısına sahip hidroksillenmiş polisiklik izopentenoidlerden türeyen doğal olarak meydana gelen maddeler grubudur. Bu bileşikler toplam 27-30 karbon atomu içerir. 17. pozisyondaki karbon atomuna (C-17) bağlı olan yan zincirlerdeki karbon sayısı 7 veya daha fazladır. Halka yapısı ve yan zincirlerdeki modifikasyonlar steroitlerin çeşitlenmesine neden olmuştur. Böylece polisiklik yapıdaki ve yan zincirlerdeki (R) çift bağların sayısı ve pozisyonu steroitleri farklılaştırmıştır (Abidi, 2001). Steroitler kimyasal yapı olarak polisiklik alkoller grubundandır ve sekonder alkol olmaları nedeniyle, doğada hem serbest, hem de yağ asitleri ile esterleşmiş olarak bağlı formda bulunurlar. Kolayca kristalize olurlar ve yalnız yağlar ve yağ çözücülerde çözünürler. Doğada bulunan steroitler sentezlendiği kaynağa bağlı olarak, hayvansal organizmada sentezlenenler (zoosteroller), bitkisel organizmada sentezlenenler (fitosteroller) ve küf kaynaklı olanlar (mikosteroller) olmak üzere üç sınıfta gruplandırılırlar. Fitosteroitler bitki hücre membranlarının esensiyel bileşenleridir. Birçok meyvede, sebzede, tohumda, tahılda, bitkisel yağda ve bitkisel gıdalarda düşük miktarlarda yer alırlar. Bütün steroitlerde steran halkası ortak, fakat yan zincirler farklıdır. Sırasıyla tipik temsilcileri ise kolesterol, sitosterol ve ergosteroldür.

Şekil 1.14. Steran halkası

Bitkisel kökenli fitosteroller kolesterolün bağırsaktan emilimini azalttıkları için bioaktif özelliktedirler. Son zamanlarda fındık yağında bol miktarda bulunan β sitosterolün kolesterol seviyesinin düşürülmesinde, birçok hastalığın ve kolon, prostat, göğüs kanseri gibi bazı kanser çeşitlerinin önlenmesi gibi sağlığa faydalı yönlerinden bahsedilmektedir. Ayrıca fitosterollerin toplam ve kötü kolesterolün (LDL) bağırsaktan emilimini azaltarak serum seviyelerini düşürmekte olduğu bilinmektedir β -Sitosterol, kampesterol ve stigmasterol en yaygın fitosterollerdir ve insan diyetindeki toplam fitosterollerin % 95'ini oluşturmaktadırlar. Fitosterol tüketiminin kandaki kötü kolesterol (LDL) ve toplam kolesterol seviyesini azaltamada etkili olduğu, bu sırada da iyi kolesterol (HDL) ve trigliserit oranında çok az değişime sebep olduğu tespit edilmiştir (Gümüş, 2012).

Mantarlar da kolesterol ve firosterollere yapısal olarak benzeyen steroitler içerirler. Ergosterol ve türevleri mantarlarda bulunan en önemli steroitlerdir. Onların varlığı ve miktarları birçok çevresel faktörden, mantarların yapısı, yaşı, sporlanması, hifası ve olgunluk durumu gibi büyüme özelliklerinden etkilenmektedir. Ergosterol serbest ve esterlenmiş olarak iki ana formda bulunur. Serbest ergosterol hücre zarının akışkanlığı, geçirgenliği ve bütünlüğünde önemli bir rol oynar. Ayrıca, bu molekül besin transferi ve kitin sentezi ile ilişkili membran-bağlı proteinlerin etkilerine karıştığı görülür. Farklı olarak ergosteril esterler sitosolik lipid parçacıklarının hidrofobik çekirdeğinde depolanır ve steroit homeostazisinde rol oynarlar. Hücredeki serbest ergosterol ve ergosteril esterlerinin bağıl yüzdesi birçok faktör ile düzenlenir. Bunlar biyosentez, egzogen alımı, taşıma ve depolamadır. Belirli koşullar altında ergosteril esterleri serbest ergosterole hidrolize edilebilirler ve bu nedenle serbest ergosterol kaynağıdırlar. Ergosterol UV (280-320 nm) ışığına mağruz kaldığı zaman fotoliz olarak previtamin D2'ye, bu molekülde kendiliğinden vitamin D2'ye dönüştüğü için büyük bir öneme sahiptir. Bununla birlikte ergosterol ve türevleri antioksidan, antienflamatuvar, antihiperlipidemik aktivitelere sahiptir ve bitkinin,

mantarın patojenlere karşı direncini arttırır. Ergosterol peroksit ise potansiyel bir anti-kanser ajanı olarak bilinmektedir (Villares vd., 2012; Villares vd., 2014). *Ganoderma* türü mantarlardan elde edilen en önemli steroitler ergosterol ve ergosterol peroksittir (Şekil 1.15).

Şekil 1.15. a) Ergosterol b) Ergosterol peroksit yapısı

Doğal olarak meydana gelen ve birçok yönden önemli olan bu metabolitin çeşitli bitki veya mantarlardan izolasyonu, ayrılması, saflaştırılması, kantitatif ve kalitatif tayinlerinin yapılması önemli hale gelmiştir. Çeşitli materyallerden steroitlerin ekstraksiyonu solvent ekstraksiyonu, süperkritik sıvı ekstraksiyonu, süperkritik sıvı fraksiyonu gibi yöntemler kullanılarak gerçekleştirilebilir. Steroit bileşiklerin saflaştırılması, ayrılması ve karakterizasyonu için kolon kromatografisi, ince tabaka kromatografisi, gaz kromatografisi, normal faz sıvı kromatografisi, ters faz sıvı kromatografisi ve kapiler eleketrokromatografi gibi yöntemler kullanılır. Steroitlerin belirlenmesinde ise alev iyonlaşma ve ultraviyole (UV) dedektörler, infrered, nükleer manyetik rezonans ve kütle spektroskopisi yöntemleri uygulanmaktadır. Kolon tekniklerinin avantajları (HPLC, GC gibi) steroitlerin kompleks karışımlarının hızlı ve kolayca ayrılabilmesine olanak tanımasıdır (Abidi, 2001; Villares vd., 2014).

1.2.10. Yağ asitleri

Yağlar yaşayan organizmanın varlığını sürdürebilmesi için en önemli yapı taşı ve enerji kaynaklarıdır. Yağlar, insan ve hayvan diyetlerinde önemli yer tutan temel bileşenlerdir. Yağı meydana getiren en önemli öğelerden biri yağ asitleri olup, organizmada hücresel yapı elemanı olarak kompleks lipitler halinde, az bir kısmı da hücre ve dokularda serbest yağ asidi halinde bulunmaktadır. Yağ asitleri, uzun hidrokarbon zincirleri (4–36 C'lu) içeren organik asitlerdir. Doğal olarak bulunan yağ asitlerinin çoğu, düz zincirli ve çift sayıda karbon atomu içerirler. Bütün yağ asitleri, bir ucunda metil grubu bulunduran uzun bir hidrokarbon zinciri, diğer uçta ise karboksil grubu bulundururlar. Karboksil karbonuna komşu ilk karbon atomuna α -karbon, ikinciye β -karbon, üçüncüye γ -karbon denir; en sonda diğer uçta yer alan metil grubunun karbonu ise ω -karbon olarak adlandırılır (Rustan ve Drevon, 2005).

Yağ asitleri birbirinden farklı zincir uzunluğu, taşıdıkları tek veya çift bağ sayısı ve doymamışlık derecesine göre sınıflandırılırlar. Hidrokarbon zincirindeki karbon atomları arasında çift bağ bulunmayan yağ asitleri doymuş yağ asitleri, çift bağ bulunanlar ise doymamış yağ asitleri olarak adlandırılır.

Karbon-karbon atomları arasında tek bir kovalent bağdan (-C-C-) oluşan ve oda sıcaklığında genelde katı olan yağ asitleri doymuş yağ asitleri olarak adlandırılır. Bu yağ asitlerince zengin olan yağlara da doymuş yağlar denir (Karaca ve Aytaç, 2006). Doymuş yağ asitleri düz zincirler oluşturdukları için sıkışık bir şekilde istiflenebilirler ve canlıların kimyasal enerjiyi yoğun bir şekilde depolamalarını sağlarlar. Hayvanların yağ dokuları büyük miktarda uzun zincirli doymuş yağ asitleri içerir. Doymus yağ asitlerindeki hidrokarbon zinciri, tamamen kıvrılabilir bir yapıya sahiptir. En basit doymuş yağ asitle 2 karbona sahip asetik asittir. 2,3 ve 4 karbonlu yağ asitleri olan, asetik asit (C2:0), propiyonik asit (C3:0) ve bütirik asite (C4:0) uçucu yağ asitleri denir. Doymuş yağ asitlerinden karbon sayısı az olanlar oda sıcaklığında sıvıdırlar, karbon sayısı arttıkça akışkanlıkları azalır ve katı faza geçerler (Karakaş, 2015). Çizelge 1.3.'de doğada yaygın olarak görülen yağ asitleri verilmiştir.

Doymuş yağ asitleri				
Yağ asidinin adı	Karbon iskeleti	Kaynakları		
Butirik asit	4:0	Tereyağı		
Kaproik asit	6: 0	Tereyağı		
Kaprilik asit	8: 0	Hindistan cevizi yağı		
Kaprik asit	10: 0	Hindistan cevizi yağı		
Laurik asit	12:0	Defne çekirdeği yağı, hurma çekirdeği yağı		
Miristik asit	14:0	Küçük hindistan cevizi yağı, koko yağı		
Palmitik asit	16: 0	Hurma yağı		
Stearik asit	18:0	İç yağı		
Araşidik asit	20: 0	Araşit yağı		
Behinik asit	22: 0	Susam yağı, kolza yağı, araşit yağı		
Lignoserik asit	24: 0	Araşit yağı		
Serotik asit	26: 0	Bal mumu, afyon mumu		
Montanik asit	28:0	Bal mumu ve diğer mumlar		
Melisik asit	30:0	Bal mumu ve diğer mumlar		
Lakseronik asit	32:0	Mumlar		

Çizelge 1.3. Doğada yagın olarak görülen doymuş yağ asitleri

Hayvanlar, bitkiler ve mikroorganizmalardaki en yaygın doymuş yağ asitleri palmitik asittir (C16:0). Stearik asit (C18:0) bazı mantarlarda ve hayvanlarda bulunan en önemli yağ asitlerinden olup bitkilerde ise ikincil öneme sahiptir (Rustan ve Drevon, 2005).

Karbon zinciri üzerinde çeşitli konumlarda, korbon-karbon arasında bir veya daha fazla kovalent çift bağ içeren yağ asitleri doymamış yağ asitleri olarak isimlendirilir Bu yağ asitlerince zengin olan yağlara da doymamış yağlar denir. Doymamış yağlar vücudun gereksinim duyduğu zorunlu yağ asitlerindendir. Oda sıcaklığında sıvı haldedirler ve büyük çoğunluğu bitkisel kaynaklıdır (Karaca ve Aytaç, 2006). Doymamış yağ asitleri de yapısında bir tane çift bağ ihtiva edenler tekli doymamış yağ asitleri (MUFA), en az iki tane çift bağ içerenler ise çoklu doymamış yağ asitleri (PUFA) olmak üzere ikiye ayrılır. Hidrokarbon zinciri kısaldıkça ve çift bağ sayısı (doymamışlık derecesi) arttıkça yağ asitlerinin erime noktası düşer. Doğada bulunan doymamış yağ asitleri, doymuş yağ asitlerinin yaklaşık iki katı kadardır.

Yapılarında bir çift bağ içeren yağ asitleri tekli doymamış yağ asitleri veya monoenoik yağ asitleri olarak adlandırılırlar. Bu grubun en önemli iki üyesi, palmitoleik asit (C16:1) ile oleik asittir (C18:1). Bunlardan palmitoleik asit daha cok deniz hayvanları yağları için karakteristik bir bileşen olduğu halde, oleik asit bitki, hayvanlardaki ve mikroorganizmalarda da bulunur. Zeytin ve kolza yağları, kabuklu yemişler (fındık, fıstık, ceviz) kabuklu yemiş yağları (Yerfistiği ve badem yağları), avokado tekli doymamış yağ asitlerini yüksek oranda içermektedirler. Birden fazla çift bağ içeren yağ asitleri ise çoklu doymamış yağ asitleri veya polyenoik yağ asitleri olarak adlandırılır. Linoleik (C18:2), linolenik (C18:3), araşhidonik (C20:4), eikosapentaenoik (C22:5) ve dokosahexaenoik (C22:6) asitler çoklu doymamış yağ asitlerinin en önemlileridir. Çoklu doymamış yağ asitleri beslenmede önemli esansiyel yağ asitleridir ve F vitamini olarak da adlandırılmaktadır. Bunların yağlar ve çeşitli yağ ürünlerinde belli düzeylerde bulunmaları arzu edilmektedir (Karaca ve Aytaç, 2006). Linoleik asit bitkisel kaynaklı yağlardır. Linolenik asit ise yüksek bitkilerde (soya fasülyesi yağı ve kolza çekirdeği yağı) ve alglerde bulunur (Rustan ve Drevon, 2005).

Doymuş yağ asitleri ve tekli doymamış yağ asitleri, memeli organizmalarda sentezlenebilirken, çoklu doymamış yağ asitlerinden linoleik asit ve linolenik asit sentezlenemez. Bu yüzden bu yağ asitleri, memeliler için esansiyeldir ve dışarıdan

besinlerle alınması şarttır (Karaca ve Aytaç, 2006). Çizelge 1.4.'de doğada yaygın olarak bulunan doymamış yağ asitleri verilmiştir.

Doymamış yağ asitleri			
Yağ asidinin adı	Karbon iskeleti	Kaynakları	
Kaproleik asit	C10:1	Süt yağı, tereyağı	
Lauroleik asit	C12:1	Süt yağı, tereyağı	
Miristoleik asit	C 14:1	Tereyağı, balina yağı	
Palmitoleik asit	C 16:1	Hayvan ve bitki yağları , balık yağı	
Petroselinik asit	C18:1	Maydanoz tohumu yağı	
Oleik asit	C18:1	Zeytin yağı	
Elaidik asit	C 18:1	Bitki tohumu	
Vaksenik asit	C18:1	Hayvan depo ve süt yağları	
Linoleik asit	C18:2	Soya yağı	
Linolenik asit	C18:3	Balık yağı	
Gadoleik asit	C20:1	Deniz hayvanları yağları	
Araşidonik asit	C20:4	Hayvan yağları	
Erusik asit	C 22:1	Kolza tohumu yağı	

Çizelge 1.4. Doğada yagın olarak görülen doymamış yağ asitleri

Yağ bitkilerinin yağ asitleri kompozisyonu sürekli sabit olmayıp; yağ asitleri sentezi genetik, ekolojik, morfolojik, fizyolojik ve kültürel uygulamalara bağlı olarak değiştiği yapılan çalışmalarla belirlenmiştir.

Yağ asitleri zararlı bakteriler ve böcekleri öldürücü etkisinin yanında, insan beslenmesinde de önemli role sahiptir. Yüksek enerji kaynağı olmalarının yanında, yağda çözünen vitaminleri içermeleri, kan lipit düzeyindeki rollerinden dolayı oldukça önemlidirler. Doymuş yağ asitlerinin kanın yağ oranını ve LDL kolesterol düzeyini yükselttiği, diyabete eğilimi artırdığı, bu nedenle doymuş yağların alımının azaltılması gerektiği belirtilmektedir. Tekli doymamış yağ asitlerinin, LDL kolesterol üzerinde etkisi önemsizken, yüksek yoğunluklu lipoproteni yani HDL kolesterolü artırıcı etkisi vardır. Ancak, yine de yağ asitlerinin alımının alınan toplam enerjinin % 20'sini geçmemesi gerekir. Serbest yağ asitleri, memeliler, bitkiler, yumuşakçalar, su yosunları ve amfibiler dahil birçok çok hücreli organizmanın antimikrobiyal savunmasında görev alır. Yağ asidi ekstreleri hedef organizmanın hücre zarı bileşenleriyle etkileşir ve zarın bütünlüğünü bozarak ölüme yol açar. Bazı yağ asitleri böcek, mantar, bitki ya da yosun öldürücü olarak etki eder (Karakaş, 2015).

Omega-3 yağ asidi olarak sınıflandırılan alfa-linolenik asit keten tohumu, ceviz yağı gibi bitkisel yağlar, deniz planktonları, tohumlar, yeşil yapraklı sebzeler, fasülye kabuklu yemişler ve yağlı balıklarda bulunur. Omega-6 yağ asidi olarak sınıflandırılan linoleik asit mısır ve soya yağı gibi bitkisel yağlarda, tahıl, et ve

birçok bitkinin tohumunda görülür (Turan vd., 2013). Omega-3 ve omega-6 yağ asitleri insan vücudunda sentezlenmedikleri için dışardan alınmalıdırlar. Omega-3 yağ asitlerinin vücutta biyokimyasal ve fizyolojik aktivitelerde önemli görevler üstlendiği; bunların insan vücudunda göz, beyin, testis ve plasentada toplandığı, göz ve beyin fonksiyonlarının eksiksiz olarak yerine getirilmesine yardımcı olduğu ve kandaki yağ konsantrasyonunu düzenlediği, ayrıca trigliserit başta olmak üzere toplam kolesterol ve LDL-kolesterol düzeylerini azalttığı, HDL düzeylerini de artırdığı saptanmıştır. Yapılan çalışmalar bu yağ asitleri ile kalp-damar rahatsızlıkları ve kalp krizi riskinin azaltılması arasında ilişki olduğunu göstermiştir. Omega-6 yağ asitlerinin cilt sağlığını koruduğu, esnek ve pürüzsüz cilt oluşumu sağladığı ve böylece derinin yaralanmalardan ve enfeksiyonlardan korunduğu, vücut sıcaklığı ve su kaybının düzenlendiği esansiyel yağ asitlerinin bebek pişiklerinde yangıya karşı etki gösterdikleri yapılan araştırmlarla ortaya konmuştur (Karakaş, 2015; Turan vd., 2013). Vücuttaki omega-6 ve omega-3 yağ asitlerinin birbirine oranı (ω -6/ ω -3) çok önemlidir. İdeal beslenmede gıdalarda bulunması istenilen ω -6/ ω -3 oranı 5:1 ile 10:1 arasında olması gerektiği bildirilmiştir. Yağlar insanların temel gıdalarından biridir. Yağların kalitesini, fiziksel ve kimyasal özelliklerini yağın büyük bir kısmını oluşturan yağ asitlerinin bileşimi ve miktarı etkiler. Bu nedenle yağların kalitesinin belirlenmesinde oleik asit, linoleik asit ve linolenik asit miktarları önemlidir. Oleik asit/linoleik asit oranı yüksek olan yağlarda, yağlar oksitlenmeye dirençli, raf ömrü daha uzun ve tat gelişimi daha olumlu hale geldiği de rapor edilmiştir (Duru ve Konuskan, 2014; Duman vd., 2015).

Yağ asitleri, bitki ve hayvanlarda olduğu gibi, mantarlarında önemli bileşenlerindendir. Mantarların kuru ağırlığının % 6-8'sini yağ asitleri oluşturur (Marekov vd., 2012). Mantarda bulunan yağ asitleri hücre organel membranının bir bileşeni ve depo kaynağı olarak görev alır. Mantarlarda yağ asidi profilleri çok çeşitlidir. Basidiomycetes türü mantarlarda görülen başlıca doymuş yağ asitleri, palmitik asit ve stearik asit, doymamış yağ asitleri ise palmitoleik, oleik, linoleik ve linolenik asitlerdir (Doğan, 2013). Özellikle polidoymamış yağ asitleri olan esansiyel yağlar, insan bazal metabolizması için gereklidir ve insan metabolizması tarafından oluşturalamadığı için dışarıdan alınmalıdır. Esansiyel yağların eksikliği ve yokluğu kardiyovasküler hastalıklara neden olur. Mantarların insan sağlığına olumlu etkileri olan uzun zincirli polidoymamış yağ asitleri içermesi nedeniyle birçok araştırmacı mantarlarda bulunan yağ asitlerini araştırmaya yönelmiştir. Marekov vd, (2012)

tarafından Bulgaristan'da yetişen 15 mantar türünün yağ asidi bileşimi gaz kromatografi-kütle spektroskopi (GC-MS) yönteminden yararlanarak ve yağ asitlerini 4,4-dimetilokzazolin ile türevlendirerek analiz edilmiştir. Herbir türde görülmese de toplam 31 yağ asidi türü tespit edilmiş ve bu mantarlarda görülen en önemli yağ asitlerinin linoleik asit ve palmitik asit olduğunu belirlenmiştir. R. Luteolus türü mantarlardaki yağ asitleri Tel-Çayan vd. (2016)'nın çalışmasında GC-MS ile analiz edilmiştir. C15:0-C24:0 arasında toplam 8 yağ asidi tespit edilmiştir. Mantardaki ana yağ asitlerinin linoleik asit (% 45,8), stearik asit (% 23,7) ve oleik asit (% 16,2) olduğunu rapor edilmiştir. Çalışmada doyamamış yağ asitleri oranının % 68,2 olduğu ve bu nedenle de önemli bir besin olduğu belirtilmiştir. Mantarlarda genel olarak oranı yüksek olan yağ asitleri sırasıyla linoleik, oleik, stearik ve palmitik asitlerdir. Doymamış yağ asidi oranı % 56,83 - 90,43 ile total doymuş yağ asidi % 9,57 – 43,07 aralığında değişmektedir. Yapılan çalışmalarda, Agaricus silvicola (% 76,50), Tricholoma portentosum (% 58,36), Craterellus cornucopioides (% 59,85), Agaricus bisporus (% 28,12) ve Lactarius deliciosus (% 17,59) oranlarında doymamış yağ asidi içerdikleri rapor edilmiştir. Lactarius türlerinin ana yağ asitleri steraik asit (% 6.7-39,4), oleik asit (% 29,6-47,1), linoleik asit (% 9,8-23,9) ve palmitik asittir (% 9,7-14,4) (Altuntaş vd., 2016). Yenilebilir mantar türlerinden Chroogomphus rutilus mantarının yağ asidi bileşimi GC-MS ile analiz edilerek belirlenmiştir. Metilenmiş ekstrelerde 13 yağ asidi saptanmış olup, linoleik asit (% 41,6) ve oleik asit (% 35,9) ana yağ asitleri olarak belirlenmiştir (Çayan vd., 2014).

Yağ asidi bileşimlerinin belirlenmesi için kullanılan en önemli uygulamalardan biri gaz-sıvı kromatografi (GC) tekniğidir. GC cihazında alev iyonlaşmalı dedektör (FID) en çok kullanılan dedektördür. Bitkilerdeki yağ asitlerinin hızlı ve kolayca analizlenmesi için tercih edilen bu yöntemde yağ asitleri metil esterlerine dönüştürülür. Asidik ya da bazik bir katalizör içeren susuz metanol 30-120 dak. reflüx edilir. Eterdeki diazometan, yağ asitlerini hızlı bir şekilde metile eder, ancak kullanılacağı zaman taze olarak hazırlanması gerekir ve zehirli ve patlayıcı olduğundan dikkatli olunmalıdır. Karl Fischer reaktifi kullanan bir başka analitik yöntemde karboksilik asitleri esterleştirmek için bor triflorür-metanol reaktifinin kullanılmaktadır. Bu reaktif ile yağ asitlerinin kaynatılması sonucu 2 dak. içinde yağ asitleri tamamen esterlenir. Esterlerin toplanması kolaydır ve GC ile analiz edilir (Metcalfe ve Schmitz, 1961). Günümüzde bitkilerdeki yağların analizi için kullanılan birçok enstrümental yöntem mevcuttur. Bunlar arasında yakın ve orta-infrared (IR) spektroskopisi, floresans, kemilüminesans, nükleer manyetik rezonans (NMR) spektroskopisi, kütle spektroskopisi (MS) ve kromatografik vöntemler ver almaktadır. Bazı kompleks ve uzun zinlirli yağ asitlerinin belirlenmesi için kromatografik sonuçlar yeterli olmayabilir. Bu durumlarda kromatografik yöntemler ile spektroskopik teknikler birleştirilerek yağ asidi bileşimlerinin belirlenmesi mümkündür. Bu amaçlarla en çok kullanılan yöntem genellikle GC-MS'dir. Yağ asitleri metil esterlerine dönüstürülerek GC-MS ile analiz edilir (Hajimahmoodi vd, 2005; Li vd., 2016c). Ultraviyole spektrumu yağ asidinin nicel tespiti için ya da konjuge sistemlerin oluştuğu yağ asit çift bağlarının enzimatik yada kimyasal izomerleşmesini incelemek için kullanılır. Bu gibi asitlerle çift bağ sayısı giderek artan geniş banda sahip konjuge sistemler için ultraviyole bölgesinde daha yüksek dalga boylarında yer aldığı görülür.

1.2.11. Fenolik bileşikler

Fenolik bileşikler, bir aromatik halkaya bağlı fonksiyonel türevleri de dahil olmak üzere bir veya birden fazla hidroksil grubu içerebilirler ve basit bir fenolik yapıdan yüksek oranda polimerize bileşiklere kadar çok sayıda çeşitliliğe sahiptirler Yapılarından dolayı polifenoller olarak da adlandırılabilirler (Balasundram vd., 2006). Ancak genellikle polifenoller, aromatik halka üzerinde OH grupları bağlı olan, iki veya daha fazla fenol grubu içeren bileşiklerdir. Polifenoller fenol halkalarının sayısına ve bu halkaları birbirine bağlayan yapısal elemanlarına göre çeşitli gruplara ayrılmaktadır. Polifenoller bitkisel kaynaklı maddelerin en çok çalışılan grubunu oluşturmaktadır. Temel polifenol grupları; flavonoidler, fenolik asitler, fenolik alkoller, taninler, kumarinler, kurkuminoidler, gallokateşinler, antosiyanidinler, stilbenler ve lignanlar gibi çok geniş farmakolojik özelliklere sahip birçok alt grubu içermektedir (Taner, 2015). Fenolik bileşikler birçok farklı şekilde sınıflandırılabilmektedir. Basit fenoller ve polifenoller şeklinde genel bir sınıflamanın yanı sıra, molekülde bulunan karbon saysına göre de sınıflama yapılır. Şekil 1.16'da fenolik bileşiklerin sınıflandırılması gösterilmiştir. Fenolik asitler, hidroksisinnamik asit ve hidroksibenzoik asit olmak üzere iki alt gruba ayrılırlar. Hidroksibenzoik asitler C_6 - C_1 yapısında olup gallik asit, *p*hidroksibenzoik asit, protokateşik asit, vanilik asit ve şiringik asit bu gruba ait fenolik bileşiklerdir. Hidroksisinnmaik asitler C_6 - C_3 yapısında, 3 karbon yan zincire sahip aromatik bileşiklerdir. Kafeik asit, *p*-kumarik asit, ferulik asit ve sinapik asit en yaygınlarıdır.

Şekil 1.16. Fenolik bileşiklerin sınıflandırılması

Flavonoidler bitki fenoliklerinin en büyük grubudur. $C_6-C_3-C_6$ (difenilpropan) yapısında iki fenil halkasının propan zinciri ile birlesmesinden olusur, 15 karbon atomu içerirler ve düşük molekül ağırlıklı bileşiklerdir. Antosiyanidinler, flavonlar, flavonoller, isoflavonlar, flavanonlar, flavanoller, kalkonlar gibi çeşitli alt gruplara ayrılırlar. En yaygın yapıları flavon ve flavonollerdir. Flavonoidlerin her bir sınıfının aromatik halkalarındaki değişiklikler (oksijenlenme, alkillenme, açilleme, sülfasyon)

ile farklı yapıdaki bileşikler oluşur (Balasundram vd., 2006). Flavonoidler, renk, tat ve koku gibi özelliklerden sorumlu oldukları için, bu tür ürünlerin kalitesiyle yakından ilgilidirler ve analizleri büyük önem taşımaktadır. Flavonoidlerin en önemli biyolojik özelliği, antioksidant aktiviteye sahip olmalarıdır. Oksijen radikalleri ve lipid peroksidasyonu sonucunda oluştuğu düşünülen kalp damar hastalıkları, kanser ve kronik iltihaplanma gibi hastalıkların önlenmesinde etkili oldukları bilinmektedir

Tanninler fenolik bileşiklerin üçüncü önemli alt gruplarından olup, diğer gruplara oranla nispeten daha yüksek molekül ağırlıklıdırlar. Hidrolize edilebilir ve kondanse (proantosiyanidin) tanninler olarak iki alt grubu vardır (Balasundram vd., 2006). Kondanse tanninler, özellikle flavan-3-ol'ler gibi flavonoidlerin oligomer ve polimerleridir. Hidrolize edilebilir tanninler ise gallik asidin glikozilatlardır. Proantosiyanidinler'in başlıca kaynakları meyveler, özellikle çilek, kakao ve şarap, bira ve çay gibi bazı içecekler, hidrolize edilebilir tanınlerin kaynakları ise meyveler, baklagiller ve yapraklı sebzelerdir.

Fenolik bileşikler en aktif doğal antioksidanlardan olup çeşitli şekillerde antioksidan olarak etki yaparlar. Fenolik hidroksil grupları iyi birer hidrojen vericidir ve reaktif oksijen veye reaktif azot türleri ile reaksiyona girerek yeni radikallerin oluşma döngüsünü engellerler. Ayrıca metallerle şelatlar oluşturarak ve lipoksijenaz enzimini inhibe ederekte antioksidan etki gösterirler. Fenolik bileşikler, fenolik hidroksil gruplarının hidrojen bağlama potansiyeli ve hidrofobik benzenoid halkaları nedeniyle proteinlerle güçlü etkileşimlere sahiptirler. Böylece fenolikler, radikal üretimine karışan bazı enzimlerin inhibe etme kapasitelerinden dolayı antioksidan olarak etki gösterirler (Pereira vd., 2009).

Fenolik bileşikler besinsel ve antioksidan özelliklere sahip olmalarının yanısıra lezzet, burukluk, renk gibi birden fazla duyusal gıda özelliklerini etkilemekte olup, bitki kökenli birçok gıda ürününün tadına ve aromasına katkıda bulunurlar. Fenolik bileşiklerin aromaya olan katkısı başlıca uçucu fenollerin varlığına bağlıdır ve bunlar ya yüksek alkollerin hidrolizinden üretilebilirler ya da maya ve laktik asit bakterileri gibi mikroorganizmaların metabolizmaları sonucunda oluşabilirler. Yine fenolik bileşikler arasında yer alan flavanoidler ise doğal gıda pigmentleridir ve sebze ürünlerinin rengini büyük ölçüde etkilerler. Fenolik bileşikler üzerine yapılan birçok çalışmada bu bileşiklerin, anti-kanser, anti-ülser, anti-inflamatuvar, antimikrobiyal etkileri vurgulanmaktadır. Fenolik bileşiklerin kroner kalp hastalıklarına bağlı ölüm oranlarını azlattığı, yüksek tansiyona bağlı kalp-damar hastalıklarına karşı iyileştirici etki gösterdiği, yaşlılık dönemlerinde unutkanlığa sebep olan ve beyin sinapsları arasında meydana gelen plakların oluşumunu geciktirdiği, kılcal damarlarda kanama ve çatlamaları engellediği yönünde birçok makale literatürde yer almaktadır. Ayrıca fenolik maddelerin aşırı alınması durumunda da toksik etki gösterdiği ve gırtlak kanserine neden olduğu, ancak düzenli olarak alındığında vücudun koruma mekanizmasını geliştirerek kanser riskini azalttığı ve toksisiteyi de düşürdüğü ifade edilmektedir (Yıldız ve Baysal, 2003). Fenolik bileşiklerin insan sağlığı üzerine önemli etkileri nedeniyle doğal ürünlerde bulunan bu bileşenlerin izolasyonları ve analizleri önemli hale gelmiştir. Fenolik bileşiklerin izolasyonunda ayrılmak istenen gruplara bağlı olarak pek çok farklı yöntem uygulanmaktadır. Genellikle % 60-80 (v/v) oranında sulandırılmış aseton, etanol, etil asetat veya metanol çözelti karışımları kullanılır. Sulu metanol çözeltileri özellikle meyve ve sebzelerden fenolik asitler ve flavonoidlerin ekstraksiyonunda tercih edilir. Fenolik maddelerin bitkisel materyallerden ekstraksiyonunda ultrason destekli, mikrodalga destekli, süperkritik ve hızlandırılmış ekstraksiyon sistemleri gibi yeni teknikler oldukça hızlı ve etkilidir. Bu tekniklerde yüksek basınç ve/veya yüksek sıcaklıklarda çalışma imkanı olması ekstraksiyon süresini büyük oranda azaltmaktadır (Akyüz, 2011).

Basit fenollerin tanınmasında, % 1'lik sulu veya alkollü demir klorür çözeltisi ile yeşil, mavi veya siyah renk gözlenir. Bu prosedür, %1'lik demir klorür ve % 1'lik potasyum ferrisiyanür karışımı olarak modifiye edilmiştir ve hala fenolik bileşiklerin tanınması için yagın olarak kullanılır. Fenolik bileşiklerin aromatik yapısı nedeniyle UV bölgede şiddetli absorpsiyon yaparlar. Bu nedenle spektral yöntemler fenolik bileşiklerin tanınmasında ve kantitaif analizlerinde önemlidir. Spektrofotometrik yöntemler, fenolik bilesiklerin kantitatif tayinleri icin kullanılan yöntemlerdendir. Folin-Ciocalteu yöntemi örneklerdeki toplam fenolik içeriğin belirlenmesinde kullanılan bir yöntem olup, folin reaktifinin indirgenmesiyle renk değişiminin 660 nm de spektrofotometrik olarak ölçülmesi esasına dayanır. Bir başka yöntemde bitki fenoliklerinin metanol yada etanol ekstrelerinin AlCl₃ karştırılması sonucu 410-423 nm dalga boyu aralığında toplam flavonoidlerin ölçümü yapılabilir. Vanilin ve dimetilaminosinnamaldehit (DMCA) deneyi proantosiyanidinlerin belirlenmesi için kullanılan klorimetrik bir yöntemdir. Bu metot flavan-3-ol yapısının stereokimyası ve polimerizasyon derecesi ve hidroksillenme şekli hakkında bilgi verir. Bu tür klorofimetrik yöntemler fenolik bileşiklerin belirlenmesinde basit ve ekonomik yöntemler olmasına karşın, her bir fenolik maddenin ve miktarlarının belirlenmesine imkan vermezler.

Spektral yöntemlerin eksikliği kromatografik yöntemlerle aşılır. Gaz kromatografi (GC) yöntemi fenolik bileşiklerin ayrılması, tanımlanması ve kantitatif tayinleri için kullanılan yöntemlerden biridir. Gıdalardaki fenolik maddelerin GC ile belirlenmesi için, örnek ekstrelerinden lipid yapılarının uzaklaştırılması gibi bir temizleme adımı, daha uçucu türevlerine dönüştürülmesi gibi bazı adımları gerektirir. Bu amaçla ekstrelere sililleme ya da metilleme işlemleri uygulanabilir. GC'de fenolik bileşiklerin belirlenmesinde dedektör olarak genellikle alev iyonlaşma dedektörü kullanılsada, son zamanlarda daha duyarlı ve seçimli analiz yapmasından dolayı kütle dedektörü (MS) tercih edilmeye başlanmıştır. Yüksek performanslı sıvı kromatografisi (HPLC) tekniği fenolik bileşiklerin hem ayrılmasında hem de miktarlarının tayin edilmesinde kullanılır. Fenolik bileşiklerin HPLC ile analizini örnek saflaştırma, mobil faz, kolon ve dedektör gibi faktörler etkiler. Genelde fenolik bileşikler HPLC cihazında ters faz C18 kolonda, asitlendirilmiş polar bir organik fazda, fotodiyot array dedektör (PDA) ile belirlenirler (Khoddami vd. 2013).

Tel-Çayan (2015a) *G. adspersum* mantarındaki 16 fenolik bileşenin varlığını araştırmıştır ve fumarik asit, kafeik asit, 2,4-dihidroksibenzoik asit, ferulik asit, elajik asit ve rosmarinik asit gibi fenolik bileşenleri tespit etmiştir. Stojkovic vd. (2014) Sırbistan ve Çin'den elde ettiği *G. lucidum* örneklerindeki fenolik bileşenleri analiz etmiştir. Aynı tür örnekler olmasına karşın bölgesel farklılık nedeniyle fenolik içeriklerinin farklılaştığını orataya koymuştur. Sırbistan örneklerinde okzalik asit, kinik asit, malik asit, fumarik asit, protokateşik asit, sitrik asit, *p*-kumarik asit ve sinnamik asit, Çin örneklerinde ise okzalik asit, kinik asit, malik asit, protokateşik asit, gibi fenolik bileşenleri ve miktarlarını ultra hızlı sıvı kromatografi yöntemi ile belirlenmiştir. *G. lucidum* mantarındaki fenolik bileşenlerin belirlenmesi amacıyla yapılan bir başka çalışmada klorojenik asit, gallik asit, rutin, vanilin ve sinnamik asit HPLC-DAD cihazı ile tespit edilmiştir (Sheikh vd., 2014).

1.2.12. Antioksidan aktivite tayin yöntemleri

Antioksidan kapasitesini ölçmek için bu güne kadar çok sayıda yöntem geliştirilmiştir. Bu metotlar genellikle hidrojen atomu transfer (HAT) temelli ve elektron transferi (ET) temelli analiz yöntemleridir. Hidrojen atomu transfer temelli yöntemlerin birçoğu, azo bileşiklerin bozulması ile oluşan peroksil radikalleri için antioksidan ve substratın rekabetine dayanan yarışmacı reaksiyonlardır. Oksijen radikal absorbans kapasitesi (ORAC) ve radikal-tutuklama antioksidan parametresi (TRAP) yöntemleri HAT temelli yöntemlerdendir. Elektron transfer temelli yöntemler antioksidanın oksidanı indirgenme yeteneğini renk değişimi ile ölçen yöntemlerdir (Okan vd., 2013). DPPH serbest radikali giderim aktivitesi yöntemi, ABTS katyon radikali giderim aktivitesi yöntemi, CUPRAC aktivite yöntemi ve FRAP yöntemi ET temelli yöntemlerdir.

1.2.12.1. DPPH serbest radikali giderim aktivitesi yöntemi

DPPH serbest radikali giderim aktivitesi yöntemi, DPPH radikalinin mor renginin antioksidanlar tarafından bir redoks reaksiyonuna bağlı olarak süpürülmesi temeline dayanır. DPPH (2,2-difenil-1-pikrilhidrazil) hidrojen atomu verebilen bileşiklerle tepkimeye girebilen kararlı bir radikaldir ve 517 nm'de maksimum absorbans oluşturmaktadır (Öztürk, 2012). DPPH yöntemi basit ve hızlı bir yöntem olmasının yanında doğru ve tekrarlanabilir sonuçlar verir. Ancak DPPH yalnızca organik ortamda çözülebilir (özellikle alkol ortamında), sulu ortamda çözünmez. Sulu ortamda daha iyi çözünen maddelerin antioksidan kapasitesini tam ölçemez. Bazı örnek bileşenleri, örneğin karotenoitler, DPPH'ın 515 nm'deki absorbans spektrumuyla çakışabilirler. DPPH, canlı organizmalarda bulunan radikallerin tersine, kararlı, uzun ömürlü bir azot radikalidir ve yüksek reaktiflikte, kısa ömürlü, lipid peroksidasyonunda rol alan peroksil radikallerine benzemez. Peroksil radikalleriyle hızlı reaksiyon veren çoğu antioksidan DPPH ile yavaş reaksiyona girebilir veya sterik engel nedeniyle DPPH ile etkileşemez. Dahası bir örnek olarak, DPPH ile öjenol reaksiyonunun tersinir olduğu rapor edilmiştir. Bu durum öjenol ve benzer yapıya sahip polifenolleri içeren numunenin antioksidan kapasitesinde düşük okumalara neden olur. Küçük moleküller radikale daha kolay ulaşabildiklerinden antioksidan kapasiteleri ölçülebilir. Bazı bileşikler içerdikleri hidroksil grubu sayısına göre DPPH' ile çok çabuk etkileşirler. Işığa, oksijene ve kirliliğe olan hassasiyeti bu metodun antioksidanların aktivitelerinin belirlenmesinde tek başına yeterli olmayacağını göstermektedir (Tel vd., 2012; Büyüktuncel, 2013).

Şekil 1.17. DPPH molekülünün antioksidan madde ile reaksiyonu

1.2.12.2. ABTS katyon radikali giderim aktivitesi yöntemi

2,2'-azinobis (3-etil-bezotiazolin 6 sulfonat) (ABTS) radikal katyonunun antioksidanlar tarafından absorbansının azalması temeline dayanır. 660, 734 ve 820 nm'de maksimum absorbasyon yapar. ABTS katyon radikali giderim aktivitesi yönteminin uygulaması kolay bir yöntemdir. ABTS radikali geniş bir pH aralığında kararlıdır. ABTS radikali hem sulu hem de organik çözücülerde çözünebilir ve dolayısıyla lipofilik ve hidrofilik bileşiklerin antioksidan kapasitesini ölçmek için kullanılabilir (Öztürk, 2012; Tel vd., 2012). Buda yöntemin DPPH yönteminden üstünlüğüdür. Radikal düşük redoks potansiyeline sahiptir ve nispeten daha düşük redoks potansiyelleri nedeniyle fenoliklerin antioksidan kapasitesinin değerlendirilmesi için uygundur. Çoğu fenolik bileşik bu termodinamik özelliği nedeniyle, ABTS radikaliyle reaksiyona girebilir. Bunun aksine ABTS katyon radikalinin giderilmesi uzun bir zaman alabilir. Böylece, kısa süreli bir bitiş noktasının kullanılması (4-6 dakika), reaksiyon tamamlanmadan önce okuma yapılmasına ve daha düşük antioksidan aktivitesi sonuçlarına yol açabilir (Büyüktuncel, 2013).

1.2.12.3. CUPRAC aktivite yöntemi (Bakır (II) indirgeme aktivitesi)

Apak ve arkadaşlarının geliştirdiği bu yöntemde, 2,9-dimetil-1,10- fenantrolin (Neokuproin)'in Cu(II) ile oluşturduğu bakır(II)-neokuproin kompleksinin (Cu(II)- neokuproin), 450 nm'de maksimum absorbans veren bakır(I) neokuproin kelatına

indirgenme yeteneğinden yararlanarak antioksidan kapasite hesaplanmaktadır (Öztürk vd., 2007). CUPRAC reaktifi, ABTS ve DPPH gibi, kromojenik radikal reaktiflerden daha kararlıdır, kolay temin edilebilir ve hem hidrofilik hem de lipofilik sistemlere uygulanabilir, Ayrıca renkli Cu(I)-neokuproin şelatı veren redoks reaksiyonu, hava, güneş ışığı, nem ve pH gibi parametrelerden de etkilenmez. Ancak, dikkat edilmezse, 450 nm'de absorbsiyon yapan maddelerin antioksidan kapasitelerinin ölçülmesinde hatalar ortaya çıkarabilir. CUPRAC yönteminde kompleks moleküller için daha uzun inkübasyon süreleri gereklidir (Büyüktuncel, 2013).

1.2.12.4. FRAP yöntemi (Demir (III) iyonu indirgeme gücü)

FRAP yöntemi, demir (III)'ün indirgenmesi yoluyla antioksidanların aktivitelerinin belirlenmesine dayanır. Düşük pH'larda Fe (III), tripiridiltriazin (TPTZ) ile reaksiyona girerek [Fe(III)-TPTZ] kompleksini oluşturur. Fe (III)'ün antioksidan tarafından indirgenmesiyle [Fe(II)-TPTZ] kompleksi meydana gelir, 593 nm'de maksimum absorbans veren bu kompleksin rengi koyu mavidir (Öztürk, 2008). FRAP sonuçları analizin zaman ölçeğine bağlı olarak önemli ölçüde değişebilir. Örnekler gıda ekstraktındaki şelatlarla bağlanabilen diğer Fe(III) türlerini içeriyorsa, potansiyel problemler meydana gelir. Bu kompleksler antioksidanlarla reaksiyona girebilir. Sonuçlar FRAP değeri ve antioksidanın verdiği elektron sayıları arasında bir ilişki olmadığını göstermiştir

1.2.12.5. Toplam antioksidan kapasite (β-karoten-lineloik asit renk açılım aktivitesi) yöntemi

 β -karoten-linoleik asit yöntemi, linoleik asit oksidasyonundan ileri gelen konjuge dien hidroperoksitlerinin inhibisyonunun ölçülmesine dayanır (Öztürk vd., 2011). Hidrojen radikali transferine dayanan bir yöntemdir. Bu yöntemde, önceden oksijen ile doyurulmuş suya linoleik asit ve β -karoten koyulur. Linoleik asitin oksidasyonu ile oluşan radikaller, 470 nm'de maksimum absorbans veren β -karoteni parçalayarak renginin açılmasına neden olurlar. Antioksidanlar, oluşan radikalleri söndürerek β karotenin renginin açılmasını önlerler. Bu yöntem hidrofilik, hidrofobik ve emülsiyonların oksidasyonunu ölçmek için kullanılır (Öztürk, 2008).

1.2.13. Kemometrik analiz

Kemometri, Kowalski (1980) tarafından istatistiksel ve matematiksel yöntemlerin kimyasal verilere uygulanması şeklinde tanımlanmıştır. Kemometri, istatistik ve matematik ile birlikte bilgisayar kullanarak kimyasal verilerin işlenmesini kapsayan bir kimya disiplinidir.

- Optimal ölçüm prosedürleri ve deneyleri seçer ve tasarlar.
- Kimyasal sistemler hakkında bilgi sağlar.

• Kimyasal verileri analizleyerek maksimum miktarda kimyasal bilgiyi açığa çıkarır (Otto, 2016).

Kemometri; analitik kimya, adli tıp, biyoloji, gıda kimyası, çevre kimyası, arkeoloji gibi alanlarda kullanılmaktadır. Kemometri üzerine yapılan çalışmaların birçoğu yapı tanıma üzerinedir. Bunun dışında deneysel tasarım, modelleme, kalibrasyon, optimizasyon gibi konularda kemometrinin konuları arasına girer. Kemometride amaç, istatistiksel bilgilere dayanarak verileri sınıflandırmaktır. Literatürde kemometrik çalışmalara ilişkin birçok uygulama mevcuttur. Zeytin yağlarının yağ asidi ve triaçilgliserol bileşenlerinin kromatografik profilleri kullanılarak coğrafik orjinlerinin belirlenmesi (Dıraman vd., 2009), tıbbi mantar olarak kullanılan *G. lucidum* mantarının HPLC kromatogramlarındaki pikler yardımıyla kalite kontrolü ve tanımlanması (Chen vd., 2008a) ve su örneklerindeki ağır metal kirliliğinin izlenmesi (Bingöl vd., 2013) bunlardan birkaçıdır.

Kemometrik uygulamaların çoğu kompleks hesaplamalar içermektedir. Bu hesaplamaları elle veya basit hesap makineleriyle gerçekleştirmek mümkün olmadığı için bilgisayar programlarına ihtiyaç duyulur. Kemometrik hesaplamalarda genellikle Excel, Matlab, Panorama, Minitab, Xlstat, Spss gibi istatistiksel programlar kullanılmaktadır. Çoklu bileşen analizi yöntemlerini anlayabilmek için gerekli olan bazı temel matematiksel ifadeler aşağıda açıklanmıştır.

Standart Sapma: verilerin nasıl yayıldığına (saçıldığına) dair ölçümsel olarak bilgi verir. Veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Veri kümesinin standart sapmasının sıfıra eşit olması kümedeki tüm değerlerin aynı olduğunu gösterir. Standart sapma varyansın kareköküdür. \overline{X} , X dizisinin ortalamasını ifade etmektedir. Buna göre standart sapma

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{(n-1)}}$$
 1.1

Varyans: verinin yayılımı ile ilgili bir başka ölçüm bilgisi veren kavramdır. Genellikle değişimi ölçmek için kullanılır. Varyans, standart sapmanın karesidir.

$$S^{2} = \frac{\sum_{i=1}^{n} (x - \overline{x})^{2}}{(n-1)}$$
 1.2

Kovaryans: iki değişkenin birlikte ne kadar değiştiklerinin ölçüsüdür. Kovaryans, iki rastgele değişkenin beraber değişimlerini inceler. Standart sapma ve varyans tek boyutlu veriler için kullanılmaktadır. Ancak çoğu zaman veri setleri birden fazla boyuta sahiptir. Kovaryans her zaman iki boyut arasında ölçüm yapmak için kullanılmaktadır.

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$
(1.3)

Kovaryans değeri, pozitif ise her iki değişkenin birlikte arttığı; negatif ise biri artarken diğerinin azaldığı; sıfır ise bu iki değişkenin bağımsız olduğu yorumu yapılabilir.

Kovaryans Matris: İkiden fazla değişken ile çalışıldığında kovaryans matris kullanılır. Kovaryans matristeki diyagonal değerler değişkenlerin varyans değerlerine eşittir. Kovaryans matris cov(a,b) = cov(b,a) özelliğinden dolayı simetrik bir yapı sergilemektedir.

Eigenvektör ve Eigenvalue (Özvektörler ve Özdeğerler): Bir vektör üzerine uygulanan matris o vektörün hem büyüklüğünü hem de yönünü değiştirebilir. Buna rağmen, bir matris bazı belirli vektörler üzerinde etkidiğinde onun büyüklüğünü bir çarpan kadar katlar, yani sadece büyüklüğünü değiştirir, doğrultularını değiştirmez. Doğrultusu değişmeyen bu vektörler söz konusu matrisin özvektörleri olarak ifade edilir. Eigenvalue, eigenvektektörler, özuzaylar bir matrisin özellikleridir ve matris hakkında önemli bilgiler vermektedir. Eigenvektörler ancak kare matrislerden elde edilebilir. Bu nedenle bir eigenvalue ve eigenvektör elde etmek için kovaryans matrisler kullanılmaktadır (Anonim, 2015).

Eigenvalue, her bir faktörün faktör yüklerinin kareleri toplamı, her bir faktör tarafından açıklanan varyansın oranının hesaplanmasında ve önemli faktör sayısına karar vermede kullanılan bir katsayıdır. Özdeger yükseldikçe, faktörün açıkladığı varyans da artar (Büyüköztürk, 2002).

1.2.13.1. Korelasyon analizi

Korelasyon değişkenler arasındaki ilişkiyi değerlendirmenin bir yoludur. İki rastgele değişken arasındaki uygunluğun boyutunu ölçer. Bu yöntemde *r* simgesiyle gösterilen korelasyon katsayısı hesaplanmaktadır. Korelasyon katsayısı 1'e ne kadar yakın ise iki örnek arasındaki benzerlik o kadar fazladır. İki değişken arasındaki korelasyon güçlü, zayıf yada hiç olmayabilir. Korelasyonun güçlü olması, iki değişken arasındaki ilişkinin güçlü olduğu anlamına gelmektedir. Değişkenlerden biri ne kadar yüksekse diğer değişkeninde o oranda artacağını ifade eder. Pozitif korelasyonda diğer değişken artma eğiliminde iken, negatif korelasyonda azalma eğilimindedir. Korelasyon katsayısı olarak ifade edilir.

$$r = \frac{N \sum xy \cdot (\sum x) (\sum y)}{\sqrt{[N \sum x^2 - (\sum x)^2] [N \sum y^2 - (\sum y)^2]}}$$
(1.4)

N: skor çiftlerinin sayısı, Σxy çapraz ürünlerin toplamıdır.

1.2.13.2. Temel bileşen analizi (PCA)

Temel bileşen analizi (PCA), boyut küçülterek karmaşık verilerin görselleştirilmesi için geliştirilmiş bir yöntemdir. İlk olarak Pearson (1901) tarafından tanıtılmış olan PCA, Hotelling (1933)'ın çalışmaları ile geliştirilmiştir.

Çok değişkenli veri setlerinde yüksek değişken sayısından dolayı grafiksel gösterim mümkün değildir ve çoklu değişkenler için elde edilen bilginin yorumlanması da güçtür. Ayrıca değişkenler arasında yüksek korelasyonların olması birçok istatistiksel yöntemin uygulanabilmesini engeller. PCA, orijinal değişkenleri daha küçük boyutlara dönüştürerek bu sorunların tümünü önleyebilir. En yüksek bilgi yoğunluğuna sahip gizli değişkenler ile daha küçük boyutlu değişkenler oluşturularak grafiksel olarak görselleştirilir ve böylece önemli bilginin ayrılması mümkün olur (Garcia ve Filzmoser, 2017).

Temel bileşen analizi daha çok bileşenler arasında korelasyonun olmadığı durumlarda verilerin miktarını azaltmak için kullanılır. Temel bileşenler analizinin amacı p tane değişkenin değerlerinin n örnek üzerinde ölçülmesiyle elde edilen verilere dayanarak p'ye göre daha küçük bir sayı olan r kadar yeni değişken belirlemektir. Temel bileşenler olarak adlandırılan bu yeni r tane değişken, p kadar orijinal değişkendeki değişkenliğin büyük bir kısmını açıklayabilmektedir. Bileşenler orijinal değişkenlerin bir doğrusal transformasyonu olup, karşılıklı bağımsızdır. Bu çözümlemeyle orijinal değişkenler yerine, birbiri ile ilişkisiz (korelasyonsuz) ve daha az sayıda yeni bileşik değişkenler elde edilmektedir. X veri Xi, X2,...,Xp matrisinin p tane değişkeni temsil edecek olan r tane yeni PCj değişkenini belirlemek temel bileşen analizinin amacıdır. PCj temel bileşeni, p tane X değişkenini bir lineer kombinasyonu olarak

$$PC1 = v_{11} X_1 + v_{12} X_2 + \ldots + v_{1j} X_p$$
$$PC2 = v_{21} X_1 + v_{22} X_2 + \ldots + v_{2j} X_p$$

$$PC_{j} = v_{1j}X_{1} + v_{2j}X_{2} + \dots + v_{pj}X_{p}$$
(1.5)

şeklinde ifade edilir (Filiz, 2003). Burada PC1, PC2... PCj, n sayıdaki temel bileşen ve vij 'ler ise her bir temel bileşenin hangi değişkenle, hangi oranda ilişkilendirildiğini gösteren sabit sayılardır. vij sabit sayıları temel bileşen yükleridir. Temel bileşen yükleri, temel bileşenlerin değişkenlere varyans katkısını gösteren ağırlıklardır ve temel bileşenleri, değişkenlerin hangi ağırlıklarla tanımladıklarını göstermektedir. PC_j temel bileşenleri, orijinal değişkenlerin birbirinden bağımsız ve varyansları toplam sistem varyansını mümkün olabilecek en fazla bir biçimde açıklayan doğrusal birleşimleri olacak şekilde seçilecektir. Bunun için izlenecek yol; birinci temel bileşen (PC1), toplam varyansa katkısı maksimum olacak şekilde X₁, X₂, ... X_p 'lerin doğrusal birleşimleri olarak belirlenmektedir. İkinci temel bileşen (PC2), birinci temel bileşenden bağımsız olarak, birinci temel bileşenin açıkladığı varyanstan sonra geriye kalan toplam varyansa katkısı maksimum olacak şekilde, aynı biçimde üçüncü ve daha sonraki temel bileşenler her birinin toplam varyansa katkısı maksimum olacak şekilde ve birbirinden bağımsız olarak belirlenir. Kısacası birinci temel bileşen en çok, diğer bileşenler ise gittikçe azalan miktarlarda toplam varyansa katkıda bulunurlar. Temel bileşenler PCj birbirinden bağımsızdır ve varyansları, her birine karşılık gelen korelasyon matrisinin eigenvalue değerine (λ i) eşittir.

Temel bileşenler genellikle ortak varyans (kovaryans) matrisinden elde edilir. Ortak varyans, iki değişkenin birleşik varyansının bir ölçüsüdür. Matematiksel anlamda temel bileşenler (PC), ortak varyans matrisinin eigenvektör (özvektör)'leridir ve bu vektörlerin bulunmasında kullanılan tekniğe eigen analizi adı verilir. Her bir esas bileşene (yani, eigen vektörüne) karşılık gelen eigen değeri, o esas bileşenle tanımlanan veri takımının varyansının miktarını gösterir.

Temel bileşenler hesaplanırken eigenvalue'ların bulunmasından sonra önemli eigenvalue sayısına karar vermek çok önemlidir. Bu amaçla birçok yöntem geliştirilmiştir. Bunlardan en basiti, standartlaştırılmış veri matrislerinin kullanılması halinde birden büyük değerli eigenvaluların sayısı m sayısını vermektedir veya yaklaşık aynı mantığa dayanan

$$\sum_{j=1}^{m} \frac{\lambda j}{n} \ge \frac{2}{3} \tag{1.6}$$

koşulunun sağlandığı en küçük m değeri önemli temel bileşenlerin sayısı olarak alınmaktadır (Oktay ve Alkan, 2010).

1.2.13.3. Hiyerarşik kümeleme analizi

Kümeleme Analizi özellikle son yıllarda popüler olan, çok değişkenli istatistiksel yöntemlerden biridir. Bu yöntem, özellikle bilim ve iş alanında, birçok durumda uygulanabilen, en etkili ve en kolay yorumlanabilen bir yöntem olma özelliği taşımaktadır. Kümeleme analizinin genel amacı, gruplandırarak verileri, benzerliklerine göre alt sınıflara ayırarak açıklamaktır. Bir başka ifade ile, çalışmalarda yer alan tüm değişkenler ile örnekler arasındaki benzerlikler esas alınarak, benzer örneklerin aynı gruplarda veya kümelerde toplanması ve yeni bir örneğin hangi gruba dahil olduğunun tahmin edilmesi kümeleme analizinin temelini oluşturmaktadır (Doğan, 2002). Kümeleme yöntemleri konusundaki çalışmalar 1963

yılında Sokal ve Sneath tarafından "Principles of Numerical Taxonomy" isimli kitabın yayınlanmasından sonra hız kazanmıştır (Çakmak, 1999). Kümeleme analizi, örneklerin sınıflandırılmasını ayrıntılı bir şekilde açıklamak amacıyla geliştirilmiştir. Bu amaca yönelik olarak, ele alınan örnekte yer alan değişkenler aralarındaki benzerliklere göre gruplara ayrılır, daha sonra bu gruplara dahil edilen örneklerin profili ortaya konur (Doğan, 2002).

Kümelemede pek çok yöntem bulunmaktadır. Kümeleme yöntemleri, birim ya da değişkenleri uygun gruplara ayırırken grupları belirlemede izledikleri yollara göre hiyararşik kümeleme ve hiyerarşik olmayan kümeleme yöntemleri şeklinde ikiye ayrılır.

Hiyerarşik kümeleme yöntemleri, birimlerin benzerliklerini dikkate alarak belirli düzeylerde (küme uzaklık ölçüleri) birbirleri ile birleştirmeyi amaçlayan yöntemlerdir. Bu yöntemler, birimleri birbirleri ile değişik aşamalarda bir araya getirerek ardışık biçimde kümeler belirlemeyi ve bu kümelere girecek elemanların hangi uzaklık (ya da benzerlik) düzeyinde küme elemanı olduğunu belirlemeye yönelik yöntemlerdir.

Veri matrisindeki değişkenlerin başlangıç aşamasında kaç küme oluşturduğuna ve küme elemanlarını belirlemede başlangıçta hangi kriterin seçildiğine göre hiyerarşik yöntemler iki ana gruba ayrılır. Bunlar,

a) Birleştirici hiyerarşik kümeleme yöntemleri (Agglomerative hierarchical clustering procedures)

b) Ayırıcı hiyerarşik kümeleme yöntemleri (Divisive hierarchical clustering procedures)

Birleştirici hiyerarşik kümeleme yöntemleri, başlangıçta tüm birimlerin ayrı birer küme oluşturduğunu kabul ederek, n birimi hiyerarşik olarak sırasıyla n, n-1, n-2,, n-r,,3, 2, 1 kümeye yerleştirmeyi amaçlayan bir yaklaşımdır.

Ayırıcı (divisive) hiyerarşik kümeleme yöntemleri, başlangıçta tüm birimlerin bir küme oluşturduğunu kabul ederek birimleri hiyerarşik olarak n birimi sırasıyla 1, 2, 3,, n-r, n-3, n-2, n-1, n kümeye ayırmayı amaçlayan bir yaklaşımdır (Kayaalp vd., 2000)
Hiyerarşik kümeleme tekniklerinde herhangi bir uzaklık ölcüsü yardımıyla oluşturulan uzaklık matrisinden yararlanılarak birbirine en yakın ya da en benzer birimden başlanılarak, gözlemler birbirine bağlanarak tüm bireyler bir kümede toplanacak şekilde dendogram adı verilen bri ağaç diyagramı oluşturulur.

N adet birimin kümelenmesi için hiyerarşik yöntemlerde kullanılan algoritmaların genel adımları şöyledir.

- Birimler arasındaki uzaklıkları N x N boyutlu simetrik bir matrisin (D={dij}) gosterdiği N küme ile işleme başlanır. Birbirine en yakın (D matrisindeki en kucuk değer) iki küme birleştirilir.
- Küme sayısı bir indirgenerek yinelenmiş uzaklıklar matrisi bulunur.
- Tek küme oluşuncaya kadar 2. ve 3. adımlar N-l kere tekrarlanır.

İki kümenin birleştirilmesi kriterinin belirlenmesine ilişkin farklı hiyerarşik teknikler bulunmaktadır. Bu teknikler

a) Tek Bağlantı Kümeleme Yöntemi (Single Linkage, Nearest Neighbor Method)

b) Ortalama Bağlantı Kümeleme Yöntemi (Average Linkage Method)

c) Tam Bağlantı Kümeleme Yöntemi (Complete Linkage Method)

d) McQuitty Bağlantı Kümeleme Yöntemi (McQuitty Linkage Method)

- e) Küresel Ortalama Bağlantı Kümeleme Yöntemi (Centroid Linkage Method)
- f) Ortanca Bağlantı Kümeleme Yöntemi (Median Linkage Method)

g) Ward Bağlantı Kümeleme Yöntemi (Ward Linkage Method)'dır.

Birim sayısı fazla olduğundan (N>50) iyi sonuçlar veren Ward kümeleme tekniği en çok kullanılan yöntemdir (Çakmak, 1999). Çalışmalarımızda Ward's metodu kullanılacağından dolayı diğer tekniklere yer verilmemiştir.

Ward's metodu: Ward's metodunda amaç, kümeler içindeki varyansı minimum kılmaktır. Bu amaçla aşağıdaki hata kareler toplamına ilişkin formülden yararlanılır:

$$ESS = \sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}$$
(1.7)

ESS: Hata kareleri toplamı

Burada Xi, i. inci gözlemin skoru ve n veri sayısıdır. Kümeleme sürecinin ilk adımında, her bir gözlem bir küme olduğundan ESS sıfırdır. Ward tekniği ESS' de minimum artışta sonuçlanan gruplar veya gözlemleri elde edilmesi ile devam eder (Çelik, 2013).

Kümeleme analizinin ana teması, gözlenen birey ya da nesneler arasındaki benzerlikleri ya da uzaklık/yakınlıkları tespit etmektir. Benzerlik, uzaklık kavramının tersi olup büyük bir sayı olduğunda iki nesnenin birbirine yakın olduğunu, küçük bir sayı olduğunda iki nesnenin birbirinden uzak olduğunu gösterir. Kümeleme analizinde birimlerin p değişkene göre birbirleri arasındaki uzaklıklarını hesaplamak için en sık kullanılan uzaklık ölçüleri

- ✓ Öklid (Euclid) Uzaklığı
- ✓ Pearson Uzaklığı
- ✓ Manhattan (City-Blok) Uzaklığı
- ✓ Mahalanobis Uzaklığı
- ✓ Hotelling T² Uzaklığı
- ✓ Canberra Uzaklığı olarak verilir.

Sayısal verilerde uzaklık ölçümleri için en çok tercih edilen yöntem Öklid Uzaklığı yöntemidir. Çalışmalarımızda Öklid uzaklığı yöntemi kullanılmıştır. A ve B noktaları arasındaki Öklid uzaklığı şu şekilde hesaplanır:

$$d(A,B) = \sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$$
(1.8)

Bu bağıntı genelleştirilecek olursak, i ve j noktaları için şu şekilde bir bağıntıya ulaşılır.

$$d(i,j) = \sqrt{\sum_{k=1}^{p} (X_{ik} - X_{jk})^2}$$
(1.9)

Kümeleme analizinde, orjinal değerler ya da standartlaştırılmış değerler kullanalabilir. Ayrıca önerilen bu metotta, örneklerin dikkate alınan özelliklerine ait bireysel değerlerinin büyüklükleri değil bütün örneklerin incelenen tüm özellikler bakımından birbirlerine göre uzaklıkları dikkate alındığından örnek seçmek yerine dikkate alınan bütün özellikler bakımından gruplar oluşturmak söz konusudur. Dolayısıyla örnek seçiminden ziyade grup seçimi söz konusu olduğundan zaman kaybı önlenmekte ve tüm özellikler bakımından toplu değerlendirmeye müsaade edildiğinden diğer yöntemlere üstünlük sağlamaktadır. Kümeleme analizinde, küme sayısının belirlenmesi konusunda son yıllarda yoğun çalışmalar yapılmaktadır. (Doğan, 2002).

Küme Sayısının Belirlenmesi: Hiyerarşik kümeleme yöntemlerinde küme sayısı kümeleme analizi sonuçlarına bağlı olarak belirlenir. Kümeleme analizi sonucundaki küme sayısı 1 ile n arasında değişebilir ve kümeler içindeki gözlemler uzaklık matrisine, kümeleme yöntemine, konu ile ilgili değişkenlerin veride yer alıp almamasına göre değişebilmektedir. Küme sayısının belirlenmesiyle ilgili olarak önerilen yaklaşımlardan en yaygını,

$$k = \sqrt{\frac{n}{2}}$$
(1.10)

şeklinde hesaplanmaktadır. Burada k küme sayısını, n ise birim sayısını ifade eder. Küçük örneklemler için kullanılan bu yöntem örneklem büyüklüğünün büyük olması durumunda iyi sonuçlar vermemektedir. Marriot tarafından önerilen diğer bir yöntemde ise W grup içi kareler toplamı matrisi olmak üzere küme sayısı,

$$\mathbf{M} = \mathbf{k}^2 |\mathbf{W}| \tag{1.11}$$

şeklinde hesaplanır. Burada

$$W = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - \overline{X_j}) (X_{ij} - \overline{X_j})'$$
(1.12)

n_j : j. Kümedeki birim sayısı, k: küme sayısı, X_{ij} : j. kümedeki i. birim değerleri, \overline{X}_{ij} : şj. kümenin örneklem ortalama vektörüdür. M değerini minimum yapan k değeri uygun küme sayısı olarak alınmaktadır (Çelik, 2013).

2. MATERYAL VE YÖNTEM

2.1. Materyal

Ganoderma lucidum, G. adspersum, G. applanatum ve *G. resinaceum* türlerine ait 14 mantar örneği 2014 yılı Eylül-Kasım ayları arasında Muğla ilinin bazı ilçeleri ile İzmir'in Balçova ilçesinden toplandı ve Prof. Dr. Aziz Türkoğlu tarafından teşhisleri yapıldı. Mantarların toplanma bölgeleri Şekil 2.1'de, mantarlara ait özellikler Çizelge 2.1.'de verilmektedir.

Şekil 2.1. Mantarların toplanma bölgeleri

Örnek Kodu	Mantar Türü	Fungaryum Numarası	Toplandığı Ağaç Türü	Toplandığı Bölge	Toplandığı Zaman	Maserasyon Miktarı (g)
1	G. lucidum	AT-21072	Sığla (Liquidambar orientalis)	Mugla, Fethiye, 36° 38' 5.7" N. 29° 10' 15.8"E. 46 m	Eylül 2014	50,01
2	G. lucidum	AT-21021	Sığla (Liquidambar orientalis)	Mugla, Koycegiz, 36°57'11.2"N. 28°36'38.3"E. 8 m	Eylül 2014	170,2
3	G. lucidum	AT-21042	Sığla (Liquidambar orientalis)	Mugla, Marmaris, 37°00'09.5"N 28°18'46.5"E 95m	Kasım 2014	150,1
4	G. lucidum	AT-21051	Sığla (Liquidambar orientalis)	Mugla, Ula, 37°00'30.2" N.28°27'27.5" E 95 m	Kasım 2014	160,2
5	G. lucidum	AT-21010	Dut (Morus alba)	Mugla, Koycegiz, 36°57'04.1"N. 28°37'17.8"E. 8 m	Kasım 2014	180,1
6	G. adspersum	AT-22001	Sığla (<i>Liquidambar</i> orientalis)	Mugla, Fethiye, 2014 36° 38' 5.7" N, 29° 10' 15.8 E, 46 m	Eylül 2014	175,1
7	G. adspersum	AT-22051	Ceviz (Juglans regia)	Izmir, Balcova, 38°24'01.7"N 27°03'10.3"E. 10 m	Ekim 2014	130,1
8	G. adspersum	AT-22071	Şeftali (Prunus persica)	Mugla, Ula, 37° 06' 05.1" N, 28° 24' 47.9E, 606 m	Ekim 2014	170,1
9	G.adspersum	AT-22092	Erik (Prunus domestica)	Mugla, Fethiye, 36° 38' 5.7" N, 29° 10' 15.8 E, 46 m	Eylül 2014	50,01
10	G. adspersum	AT-22012	Sığla (<i>Liquidambar</i> orientalis)	Mugla, Marmaris, 37°00'09.5"N 28°18'46.5"E 95m	Kasım 2014	230,1
11	G. adspersum	AT-22021	Dut (Morus alba)	Mugla, Koycegiz, 36°57'41.2"N. 28°36'27.3"E. 8 m	Kasım 2014	125,1
12	G. adspersum	AT-22031	Dut (Morus alba)	Muğla, Menteşe, 37° 11'29.6" N, 28°24' 12.8 E, 660m	Kasım 2014	80,01
13	G. applanatum	AT-23010	Dut (Morus alba)	Mugla, Koycegiz, 36°55'53.1"N. 28°37'08.8"E. 8 m	Eylül 2014	400,1
14	G. resinaceum	AT-24530	Dut (Morus alba)	Mugla, Fethiye, 36° 38' 5.7" N, 29° 10' 15.8 E, 46 m	Kasım 2014	1210

Çizelge 2.1. Mantar türlerine ait özellikler

2.2. Kimyasal Maddeler ve Çözücüler

Petrol eteri, n-hegzan, kloroform, aseton, metanol, etanol, asetonitril, sodyum hidroksit, sodyum klorür ve kullanılan tüm çözücüler Merck'den (Darmstadt, Almanya), asetik asit Riedel de Haen kimyasaldan, 1,1-difenil-2-pikrilhidrazil (DPPH), β -karoten, linoleik asit, Tween–40 (polioksietilen sorbitan monopalmitat), bütillenmiş hidroksi anisol (BHA), troloks, α -tokoferol (TOC), 2,2'-Azino-bis(3ethylbenzothiazoline-6-sulfonic asit diammonium salt) (ABTS), potasyum persülfat (K₂S₂O₈) neokuprin, bakır-II-klorür, Sigma'dan (Almanya)'dan elde edilmiştir. Fenolik bilesikler; kersetin, 3,4-dihidroksi benzoik asit (protokatesik asit), krisin, rutin, naringenin, rosmarinik asit, vanilin, p-kumarik asit, kafeik asit, klorojenik asit, kumarin, fumarik asit, Sigma'dan (Almanya), 4-OH-benzoik asit, trans-sinnamik asit, Aldrich' den (Almanya), gallik asit, vanilik asit, ferulik asit, pirokatekol, ellagik asit, trans-2-hidroksisinnamik asit, 6,7 dihidroksi kumarin, katekin, 2,4dihidroksibenzoik asit, 2-(4-hidroksifenil) etanol, trans-akonitik asit, p-benzokinon, metil 1,4- benzokinon Sigma-Aldrich (Almanya)'dan sağlanmıştır. Yağ asitleri; laurik asit, miristik asit, pentadekanoik asit, palmitik asit, margarik asit, linoleik asit, oleic asit, stearik asit Sigma'dan (Almanya), bor trifluorid-metanol kompleks (BF₃/MeOH) Merck'den (Almanya) temin edilmiştir. Ayrıca ince tabaka plakaları (Merc KGaA 1.05554), TLC silica jel 60 RP-18 (cam plate F254S, Merck KGaA 1.15685) temin edilmiştir. Ayrıca kullanılan diğer kimyasallar ve çözücüler analitik saflıktadır.

2.3. Alet ve Diğer Gereçler

- Liyafilizatör (Christ Alpha 1-4 LD)
- Hassas Terazi (Scaltec SBA 31)
- ✤ pH-metre (Thermo)
- Ultra Saf Su Cihazı (Younglin Instrument, aquaMAX-Ultra)
- Döner Buharlaştırıcı (Rota Evaparatör)
- ✤ Mikro Plaka Okuyucu (96-well microplate reader, SpectraMax 340PC³⁸⁴)

- Gaz Kromatografisi- Kütle Spektrometresi Cihazı (GC-MS) (Varian Saturn 2100T)
- Yüksek Performanslı Sıvı Kromatografisi (HPLC-DAD) (Shimadzu 20AT)
- Sıvı Kromatografisi-Tandem Kütle Spektroskopisi Cihazı (LC-MS/MS) (Shimadzu)
- Preparatif HPLC (Geri Dönüşümlü Preparatif HPLC, JAI, Japan Analytical Industry Co. Ltd.).
- Kütle Spektrometresi (EI için: JEOL MSRoute resolüsyon: 1.000; FAB MS için: JEOL JMS-HX110 (Gliserol standart matriks, gaz: xenon)
- Nükleer Manyetik Rezonans Cihazı (NMR), (Bruker Avance, 300 MHz, 400 Hz, 500 MHz ve 600 MHz (Cryo-cooled Problu)
- Santrifüj Cihazı (Nüve NF800)
- Pulvarizatör, Balon Jojeler, Armudi Cam Balonlar, Magnetler
- ✤ Azot ve Oksijen Tüpleri
- ◆ Otomatik pipetler (20–200µL, 100–1000µL, 50–5000µL) (Eppendorf)
- Manyetik Karıştırıcı (Heidolph MR 3001)
- Buzdolabı

2.4. Mantar Ekstrelerinin Hazırlanması

Mantarlar toplandıktan sonra gölgede, açık havada kurutuldu. Kurutulan mantarlar küçük parçalara ayrıldı ve tartımları yapıldı. Maserasyon yöntemi (Çizelge 2.1.), soxhlet ekstraksiyon yöntemi (50 g) ve ultrasonik ekstraksiyon yöntemi (10 g) için ayrı ayrı tartım alınarak ekstraksiyon işlemi yapıldı.

2.4.1. Maserasyon yöntemi ile petrol eteri/kloroform, aseton ve metanol ekstrelerinin hazırlanması

G. lucidum, G. adspersum, G. applanatum ve G. resinaceum mantarları Çizelge 2.1.'da belirtilen miktarlarda tartıldı. Her bir mantar türü oda sıcaklığında önce

petrol eteri/ kloroform (80:20, v:v) karışımı (15 L), sonra aseton (15 L) ve en son metanol (15 L) ile on beş gün boyunca zaman zaman çalkalanarak altışar defa ekstre edildi. Çözücü filtre kağıdı ile süzüldü ve döner buharlaştırıcı kullanılarak, vakumda kuruluğa kadar buharlaştırıldı. Ekstraksiyon işlemi sonucunda elde edilen madde miktarı tartılarak mantar örneklerinin ekstraksiyon verimleri hesaplandı (Çizelge 2.2.).

Mantar Örneği	Ekstrenin Adı	Kodu	Miktarı (g)	Verimi (%)
	Petrol eteri/Kloroform Ekstresi	1.GL.M	0,434	0,87
1. G. lucidum	Aseton Ekstresi	1.GL.M	0,387	0,77
	Metanol Ekstresi	1.GL.M	1,725	3,45
	Petrol eteri/Kloroform Ekstresi	2.GL.M	2,056	1,21
2.G. lucidum	Aseton Ekstresi	2.GL.M	2,216	1,30
	Metanol Ekstresi	3.GL.M	9,059	5,33
	Petrol eteri/Kloroform Ekstresi	3.GL.M	2,642	1,76
3. G. lucidum	Aseton Ekstresi	3.GL.M	3,684	2,46
	Metanol Ekstresi	3.GL.M	4,669	3,11
	Petrol eteri/Kloroform Ekstresi	4.GL.M	2,908	1,82
4. G. lucidum	Aseton Ekstresi	4.GL.M	2,244	1,40
	Metanol Ekstresi	4.GL.M	6,792	4,25
	Petrol eteri/Kloroform Ekstresi	5.GL.M	0,769	0,43
5. G.lucidum	Aseton Ekstresi	5.GL.M	3,135	1,74
	Metanol Ekstresi	5.GL.M	2,033	1,13
	Petrol eteri/Kloroform Ekstresi	6.GA.M	0,995	0,57
6. G. adspersum	Aseton Ekstresi	6.GA.M	3,331	1,90
1	Metanol Ekstresi	6.GA.M	6,653	3,80
	Petrol eteri/Kloroform Ekstresi	7.GA.M	0,852	0,66
7. G. adspersum	Aseton Ekstresi	7.GA.M	4,816	3,70
*	Metanol Ekstresi	7.GA.M	6,467	4,97
	Petrol eteri/Kloroform Ekstresi	8.GA.M	0,903	0,53
8. G. adspersum	Aseton Ekstresi	8.GA.M	1,466	0,86
ŕ	Metanol Ekstresi	8.GA.M	9,228	5,43
	Petrol eteri/Kloroform Ekstresi	9.GA.M	0,287	0,57
9. G. adspersum	Aseton Ekstresi	9.GA.M	0,699	1,40
ŕ	Metanol Ekstresi	9.GA.M	2,291	4,58
	Petrol eteri/Kloroform Ekstresi	10.GA.M	1,437	0,62
10. G. adspersum	Aseton Ekstresi	10.GA.M	4,671	2,03
	Metanol Ekstresi	10.GA.M	11,77	5,12
	Petrol eteri/Kloroform Ekstresi	11.GA.M	1,010	0,80
11. G. adspersum	Aseton Ekstresi	11.GA.M	2,768	2,31
	Metanol Ekstresi	11.GA.M	4,934	3,95
	Petrol eteri/Kloroform Ekstresi	12.GA.M	1,160	1,45
12. G. adspersum	Aseton Ekstresi	12.GA.M	1,225	1,53
	Metanol Ekstresi	12.GA.M	3,075	3,84
	Petrol eteri/Kloroform Ekstresi	13.GAp.M	1,385	0,35
13.G.applanatum	Aseton Ekstresi	13.GAp.M	7,901	1,98
	Metanol Ekstresi	13.GAp.M	16,28	4,07
	Petrol eteri/Kloroform Ekstresi	14.GR.M	5,687	0,47
14. G.resinaceum	Aseton Ekstresi	14.GR.M	18,15	1,50
	Metanol Ekstresi	14.GR.M	32,79	2,71

Çizelge 2.2. Maserasyon yöntemiyle elde edilen ekstrelerin miktarları ve verimleri

2.4.2. Soxhlet ekstraksiyon yöntemi ile petrol eteri/kloroform, aseton ve metanol ekstrelerinin hazırlanması

Her bir mantar türünden 50'şer gram tartıldı. Soxhlet cihazı içerisine mantar (50 g) yerleştirildi. Petrol eteri/ kloroform (80:20) karışımı (1L) eklendi. Soxhlet cihazı bir mantolu ısıtıcıda geri soğutucu düzeneğe bağlandı ve tüm mantarlar için dört kez sifonlama yapması sağlandı. Çözücü oda sıcaklığına soğutuldu ve filtre kağıdı ile süzüldü ardından döner buharlaştırıcıda (35-40 °C) buharlaştırıldı. Kalan madde bir beher içerisinde toplandı. Petrol eteri/kloroform ekstraksiyonundan kalan mantar açık havada kurutulduktan sonra sırayla aseton ve metanol ile ekstraksiyon işlemi tekrarlandı. Ekstraksiyon işlemi sonucunda elde edilen madde miktarları tartılarak ekstraksiyon verimleri hesaplandı (Çizelge 2.3.).

Mantar Örneği	Ekstrenin Adı	Kodu	Miktarı (g)	Verimi (%)
	Petrol eteri/Kloroform Ekstresi	1.GL.S	0,423	0,85
1. G. lucidum	Aseton Ekstresi	1.GL.S	0,564	1,13
	Metanol Ekstresi	1.GL.S	0,920	1,84
	Petrol eteri/Kloroform Ekstresi	2.GL.S	0,642	1,28
2.G. lucidum	Aseton Ekstresi	2.GL.S	0,669	1,34
	Metanol Ekstresi	2.GL.S	1,658	3,32
	Petrol eteri/Kloroform Ekstresi	3.GL.S	1,306	2,61
3. G. lucidum	Aseton Ekstresi	3.GL.S	1,373	2,75
	Metanol Ekstresi	3.GL.S	1,074	2,15
	Petrol eteri/Kloroform Ekstresi	4GL.S	0,872	1,74
4. G. lucidum	Aseton Ekstresi	4GL.S	1,367	2,73
	Metanol Ekstresi	4GL.S	1,103	2,21
	Petrol eteri/Kloroform Ekstresi	5GL.S	0,187	0,37
5. G.lucidum	Aseton Ekstresi	5GL.S	1,078	2,16
	Metanol Ekstresi	5GL.S	0,502	1,00
	Petrol eteri/Kloroform Ekstresi	6.GA.S	0,188	0,38
6. G. adspersum	Aseton Ekstresi	6.GA.S	0,326	0,65
	Metanol Ekstresi	6.GA.S	1,473	2,95
	Petrol eteri/Kloroform Ekstresi	7.GA.S	0,401	0,80
7. G. adspersum	Aseton Ekstresi	7.GA.S	0,539	1,08
	Metanol Ekstresi	7.GA.S	2,813	5,63
	Petrol eteri/Kloroform Ekstresi	8.GA.S	0,274	0,55
8. G. adspersum	Aseton Ekstresi	8.GA.S	0,249	0,50
	Metanol Ekstresi	8.GA.S	1,138	2,28
	Petrol eteri/Kloroform Ekstresi	9.GA.S	0,246	0,49
9. G. adspersum	Aseton Ekstresi	9.GA.S	0,209	0,42
	Metanol Ekstresi	9.GA.S	1,936	3,87
	Petrol eteri/Kloroform Ekstresi	10.GA.S	0,262	0,52
10. G. adspersum	Aseton Ekstresi	10.GA.S	0,517	1,03
	Metanol Ekstresi	10.GA.S	2,140	4,28
	Petrol eteri/Kloroform Ekstresi	11.GA.S	0,323	0,65
11. G. adspersum	Aseton Ekstresi	11.GA.S	0,827	1,65
-	Metanol Ekstresi	11.GA.S	1,905	3,81

Çizelge 2.3. Soxhlet ekstraksiyon yöntemiyle elde edilen ekstrelerin miktarları ve verimleri

Çizelge	2.3.	(Devam)
---------	------	---------

Mantar Örneği	Ekstrenin Adı	Kodu	Miktarı (g)	Verimi (%)
	Petrol eteri/Kloroform Ekstresi	12.GA.S	0,361	0,72
12. G. adspersum	Aseton Ekstresi	12.GA.S	0,532	1,06
-	Metanol Ekstresi	12.GA.S	1,781	3,56
	Petrol eteri/Kloroform Ekstresi	13.GAp.S	0,109	0,22
13.G.applanatum	Aseton Ekstresi	13.GAp.S	0,239	0,48
	Metanol Ekstresi	13.GAp.S	1,970	3,94
	Petrol eteri/Kloroform Ekstresi	14.GR.S	0,313	0,63
14 G. resinaceum	Aseton Ekstresi	14.GR.S	0,266	0,53
	Metanol Ekstresi	14.GR.S	0,562	1,12

2.4.3. Ultrasonik ekstraksiyon yöntemi ile petrol eteri/kloroform, aseton ve metanol ekstrelerinin hazırlanması

Her bir mantar türünden 10'ar gram tartıldı ve üzerlerine 0,1 L petrol eteri/ kloroform (80:20) karışımı ilave edildi. 20 dakika ultrasonik banyoda (25-30 °C) de bekletildi. Solvent filtre kağıdı ile süzüldü. Bu işlem 3 kez (3 x 0,1 L) tekrarlandı. Filtratlar birleştirildi. Evaporatörde (35-40 °C) kuruluğa kadar buharlaştırıldı. Petrol eteri/kloroform ekstraksiyonundan kalan mantarlar açık havada kurutulduktan sonra sırayla aseton ve metanol ile ekstraksiyon işlemi verimleri hesaplandı (Çizelge 2.4.). Maserasyon yönteminde örneklerin uzun süre solvent içerisinde bekletilmesi ve ekstraksiyon işleminin ard arda birçok defa tekrarlanması ekstraksiyon verimini arttıran en önemli nedendir. Soxhlet ekstaksiyon işlemi 1 saat sürmektedir. Dolayısı ile ultrasonik ekstrasiyon yönteminde verimin düşük olması beklenen bir sonuçtur. Maserasyon yönteminde örnekler yaklaşık iki hafta boyunca masere edildiği ve gün aşırı ekstreler toplandığı için bu yöntemin ekstraksiyon verimi yüksektir.

Mantar Örneği	Ekstrenin Adı	Kodu	Miktarı (g)	Verimi (%)
	Petrol eteri/Kloroform Ekstresi	1.GL.U	0,089	0,89
1. G. lucidum	Aseton Ekstresi	1.GL.U	0,052	0,52
	Metanol Ekstresi	1.GL.U	0,067	0,67
	Petrol eteri/Kloroform Ekstresi	2.GL.U	0,054	0,54
2.G. lucidum	Aseton Ekstresi	2.GL.U	0,149	1,49
	Metanol Ekstresi	2.GL.U	0,304	3,04
	Petrol eteri/Kloroform Ekstresi	3.GL.U	0,284	2,84
3. G. lucidum	Aseton Ekstresi	3.GL.U	0,250	2,50
	Metanol Ekstresi	renin AdiKoduMiktol eteri/Kloroform Ekstresi1.GL.U0,on Ekstresi1.GL.U0,anol Ekstresi1.GL.U0,ol eteri/Kloroform Ekstresi2.GL.U0,on Ekstresi2.GL.U0,anol Ekstresi2.GL.U0,on Ekstresi3.GL.U0,ol eteri/Kloroform Ekstresi3.GL.U0,on Ekstresi3.GL.U0,on Ekstresi3.GL.U0,on Ekstresi3.GL.U0,ol eteri/Kloroform Ekstresi4GL.U0,on Ekstresi4GL.U0,anol Ekstresi4GL.U0,	0,267	2,67
	Petrol eteri/Kloroform Ekstresi	4GL.U	0,119	1,19
4. G. lucidum	Aseton Ekstresi	4GL.U	0,110	1,10
	Metanol Ekstresi	4GL.U	0,285	2,85

Çizelge 2.4. Ultrasonik ekstraksiyon yöntemiyle elde edilen ekstrelerin miktarları ve verimleri

Çizelge 2.4. (Devam)

Mantar Örneği	Ekstrenin Adı	Kodu	Miktarı (g)	Verimi (%)
	Petrol eteri/Kloroform Ekstresi	5GL.U	0,048	0,48
5. G.lucidum	Aseton Ekstresi	5GL.U	0,134	1,34
	Metanol Ekstresi	5GL.U	0,193	1,93
	Petrol eteri/Kloroform Ekstresi	6.GA.U	0,033	0,33
6. G. adspersum	Aseton Ekstresi	6.GA.U	0,055	0,55
	Metanol Ekstresi	6.GA.U	0,31	3,07
	Petrol eteri/Kloroform Ekstresi	7.GA.U	0,054	0,54
7. G. adspersum	Aseton Ekstresi	7.GA.U	0,083	0,83
	Metanol Ekstresi	7.GA.U	0,390	3,90
	Petrol eteri/Kloroform Ekstresi	8.GA.U	0,023	0,23
8. G. adspersum	Aseton Ekstresi	8.GA.U	0,036	0,36
	Metanol Ekstresi	8.GA.U	0,171	1,71
	Petrol eteri/Kloroform Ekstresi	9.GA.U	0,029	2,87
9. G. adspersum	Aseton Ekstresi	9.GA.U	0,044	0,44
	Metanol Ekstresi	9.GA.U	0,278	2,78
	Petrol eteri/Kloroform Ekstresi	10.GA.U	0,027	0,27
10. G. adspersum	Aseton Ekstresi	10.GA.U	0,455	4,55
	Metanol Ekstresi	10.GA.U	0,513	5,13
	Petrol eteri/Kloroform Ekstresi	11.GA.U	0,060	0,60
11. G. adspersum	Aseton Ekstresi	11.GA.U	0,057	0,57
	Metanol Ekstresi	11.GA.U	0,370	3,70
	Petrol eteri/Kloroform Ekstresi	12.GA.U	0,064	0,64
12. G. adspersum	Aseton Ekstresi	12.GA.U	0,070	0,70
	Metanol Ekstresi	12.GA.U	0,602	6,02
	Petrol eteri/Kloroform Ekstresi	13.GAp.U	0,015	0,15
13.G.applanatum	Aseton Ekstresi	13.GAp.U	0,043	0,43
	Metanol Ekstresi	13.GAp.U	0,328	3,30
	Petrol eteri/Kloroform Ekstresi	14.GR.U	0,031	0,31
14 G. resinaceum	Aseton Ekstresi	14.GR.U	0,044	0,44
	Metanol Ekstresi	14.GR.U	0,128	1,28

2.5. Çözeltilerin Hazırlanması

2.5.1. DPPH serbest radikali giderim aktivitesi yönteminde kullanılan çözelti

 <u>0,4 mM DPPH çözeltisinin hazırlanması:</u> 16 mg DPPH tartılarak 100 mL metanolde çözüldü.

2.5.2. ABTS katyon radikali giderim aktivitesi yönteminde kullanılan çözelti

 <u>7 mM ABTS^{•+} hazırlanması:</u> 19,2 mg ABTS tartılarak 5 mL suda çözüldü.
3,3 mg K₂S₂O₈ (potasyum persülfat) (2.45 mM) ilave edilerek karıştırıldı. Radikallerin oluşması için 12-16 saat bekletildi.

2.5.3. CUPRAC aktivite yönteminde (Bakır (II) indirgeme gücü) kullanılan çözeltiler

- <u>10 mM Cu(II) çözeltisinin hazırlanması:</u> 170,5 mg CuCl₂.2H₂O katısından tartılarak 100 mL suda çözüldü.
- <u>1M, pH=7 Amonyumasetat tamponunun hazırlanması:</u> 7,708 g NH₄OAc tartılarak 100 mL suda çözüldü.
- <u>7,5 mM Neokuprin çözeltisinin hazırlanması:</u> 39 mg neokuprin tartılarak 25 mL etanolde çözüldü.

2.5.4. β-karoten-lineloik asit renk açılımı yönteminde kullanılan çözelti

β-karoten reaktifinin hazırlanması: β-karoten'den 0,5 mg tartıldı ve 1 mL kloroformda çözülerek balona aktarıldı. Üzerine 25 μL linoleik asit ve 200 μL tween 40 ilave edilip karıştırıldı. Vakum altında kloroformu uçuruldu. Daha sonra üzerine oksijen ile doyurulmuş 50 mL su ilave edilerek kuvvetlice çalkalandı.

2.5.5. HPLC-DAD analizinde kullanılan çözeltiler

- <u>% 0,1' lik asetik asit çözeltisi:</u> 1 mL glasiyel asetik asit 1000 mL ultra saf su içerisinde çözüldü. 20 dakika ultrasonik banyoda bekletildi.
- <u>3,38 mM DPPH çözeltisi:</u> 40 mg DPPH 10 mL etanolde çözüldü. Kullanılmadan önce 1ml DPPH, 2 mL etanol ile (1:2) seyreltildi.

2.6. Antioksidan Aktivite Testleri

2.6.1. DPPH serbest radikal giderim aktivite yöntemi

Mantar ekstrelerinin serbest radikali giderim aktiviteleri DPPH (2,2-difenil-1pikrilhidrazil) serbest radikali kullanılarak belirlendi (Blois, 1958; Tel vd., 2012). DPPH yöntemi, antioksidan tarafından DPPH serbest radikaline proton transferi reaksiyonu sonucu, kararlı, koyu menekşe renkli DPPH radikalinin renginde meydana gelen açılmanın 517 nm'de spektroskopik ölçümüne dayanan bir yöntemdir (Huang vd., 2005, Albayrak vd., 2010).

Farklı konsantrasyonlardaki 40 μ L örneğin üzerine 160 μ L 0,4 mM DPPH çözeltisi ilave edildi. Aseton ekstreleri etanolde, metanol ekstreleri metanol ve DMSO'da çözüldü ve kontrol olarak aseton ekstreleri için etanol, metanol ekstreleri için metanol ve dimetilsülfoksit (DMSO) ve standart olarak bütillenmiş hidroksi anisol (BHA) ve α -tokoferol kullanıldı. Oda sıcaklığında karanlıkta 30 dak. inkübasyonun ardından bir mikroplaka okuyucu kullanılarak 517 nm'de absorbansları ölçüldü. Serbest giderim aktivitesi 2.1.'deki eşitlik kullanılarak hesaplandı.

DPPH giderim aktivitesi (% İnhibisyon) =
$$\frac{A_{Kontrol} - A_{Örnek}}{A_{Kontrol}} \times 100$$
 (2.1)

A_{Kontrol} kontrolün absorbansı, A_{Örnek} örneğin absorbansıdır.

2.6.2. ABTS katyon radikal giderim aktivitesi yöntemi

Mantar ekstrelerinin katyon radikal giderim aktiviteleri ABTS kullanılarak belirlendi (Re vd., 1999; Öztürk vd., 2011). Bu yöntem ABTS (2,2'-azino-bis(3etilbenzotiazolin-6-sülfonat) radikal katyonunun absorbansının, antioksidanlar tarafından inhibisyonunu temel alır. ABTS katyon radikalinin belirli bir süre içerisinde absorbansındaki azalmadan toplam antioksidan kapasite bulunur. 600, 734 ve 820 nm de maksimum absorbans veren radikal mavi-yeşil renkli bir bileşiktir (Prior ve Cao, 1999). ABTS katyon radikalinin rengindeki azalma spektroskopik olarak belirlenir. ABTS katyon radikalini oluşturmak için ABTS ve potasyum persülfat (K₂S₂O₈) arasındaki reaksiyondan yararlanılır. (Haung vd., 2005; Öztürk vd., 2011; Okan vd., 2013). ABTS çözeltisi kullanılmadan önce 734 nm' de absorbansı 0,700 olacak şekilde etanol ile seyreltildi. Daha sonra farklı konsantrasyonlardaki 40 µL örneğin üzerine 160 µL ABTS çözeltisi eklendi. Oda sıcaklığında 10 dak. inkübasyona bırakıldı ve 734 nm de bir mikroplaka okuyucu kullanılarak absorbansları okundu. Kontrol olarak aseton ekstreleri için etanol, metanol ekstreleri için metanol ve DMSO ve standart olarak BHA ve α -tokoferol kullanıldı. ABTS katyon giderim aktivitesi 2.2.'deki eşitlik kullanılarak hesaplandı.

ABTS^{•+}giderim aktivitesi (% İnhibisyon)=
$$\frac{A_{Kontrol} - A_{Örnek}}{A_{Kontrol}} \times 100$$
 (2.2)

A_{Kontrol} kontrolün absorbansı, A_{Örnek} örneğin absorbansıdır.

2.6.3. CUPRAC aktivite yöntemi (Bakır (II) indirgeme aktivitesi)

Mantar ekstrelerinin Bakır (II) iyonu indirgeme antioksidan kapasitesi Apak ve arkadaşlarının (2004) geliştirdiği yöntem kullanılarak belirlendi. Bu yöntem ile neokuprin (Nc, 2,9-dimetil-1,10-fenantrolin)'in Cu(II) ile oluşturduğu bakır(II) neokuprin (Cu(II)-Nc) kompleksinin 450 nm'de maksimum absorbans veren bakır(I) neokuprin kelatına indirgenme yeteneğinden yararlanılarak antioksidan kapasite hesaplanır (Apak vd., 2004; Öztürk vd., 2007). Farklı konsantrasyonlardaki 40 μ L örneğin üzerine 50 μ L 10 mM Cu(II), 7,5 mM neokuprin ve 60 μ L amonyum asetat (NH₄OAc) tamponu (1 M, pH 7.0) eklenerek karıştırıldı. 1 saat inkübasyona bırakıldı ve bir mikroplaka okuyucu kullanılarak 450 nm dalga boyunda absorbanları ölçüldü. Kontrol olarak aseton ekstreleri için etanol, metanol ekstreleri için metanol ve DMSO ve standart olarak BHA ve α -tokoferol kullanıldı.

Bu yöntemde, absorbansa karşı konsantrasyon grafiği çizilerek $A_{0,5}$ değeri hesaplandı. $A_{0,5}$; 0,5 absorbans veren konsantrasyonu ifade etmektedir.

2.6.4. β-karoten-lineloik asit renk açılım aktivitesi yöntemi

Mantar ekstrelerinin toplam antioksidan aktivitesi linoleik asit oksidasyonundan ileri gelen konjuge dien hidroperoksitlerinin inhibisyonunun ölçülmesine dayanan β -karoten-linoleik asit yöntemiyle belirlendi. Bu yöntem, inhibisyon sonucu β -karotenin renginin açılması esasına dayanır (Miller, 1971; Öztürk vd., 2011). Farklı konsantrasyonlardaki 40 µL örneğin üzerine 160 µL β -karoten reaktifi ilave edildi. Bir mikroplaka okuyucu kullanılarak başlangıç absorbansları (0.dak.) 470 nm dalga boyunda ölçüldü. 45 °C' de inkübasyona bırakıldı ve kontrol olarak kullanılan kuyucuktaki β -karotenin rengi kayboluncaya kadar (120-180 dak.) inkübasyona devam edildi ve her 30 dak. bir ölçüm alınarak kontrol yapıldı. İnkübasyon sonunda aynı dalga boyunda tekrar absorbanlar ölçüldü. Kontrol olarak aseton ekstreleri için etanol, metanol ekstreleri için metanol ve DMSO ve standart olarak BHA ve α -

tokoferol kullanıldı. β -karoten renk açılım oranı (R), 2.3'deki eşitliğe göre hesaplandı.

$$R = \frac{\ln \frac{a}{b}}{t}$$
(2.3)

ln: doğal logaritma, a: başlangıç absorbansı, b: inkübasyondan sonraki absorbans, *t*: inkübasyon süresi (dak.).

Antioksidan aktivite (AA) 2.4' deki eşitliğe göre hesaplandı.

AA (% İnhibisyon) =
$$\frac{R_{Kontrol} - R_{Örnek}}{R_{Kontrol}} \ge 100$$
 (2.4)

 $R_{Kontrol}$ kontrolün renginin açılma hızı ve $R_{Örnek}$ örneğin renginin açılma hızıdır.

2.7. Kromatografik Yöntemler

2.7.1. Kolon kromatografisi

Üzerine çalışma yapılmayan G. resinaceum mantarının aseton ekstresini fraksiyonlandırmak ve bu fraksiyonlardan saf maddeler elde etmek amacıyla üç çeşit dolgu maddesi kullanıldı. Bu dolgu maddeleri silika jel, C18 ters faz ve Sephadex LH–20'dir. Mantarın aseton ekstresini fraksiyonlandırmak için kolon kromatografisinde silika jel kullanıldı. Ekstreler az miktarda uygun çözücüde çözülerek adsorban ile karıştırıldı. Karışım oda sıcaklığında kurumaya bırakıldı. Kuruyan karışım dibine az miktarda pamuk yerleştirilmiş, ekstre miktarına uygun olarak seçilmiş ve boyunun 2/3 oranında silika jel ile doldurulmuş kolonun üst kısmına paketleme yöntemiyle yerleştirildi. Elüsyona %100 petrol eteri ile başlandı ve sırasıyla kloroform, aseton ve metanol ile polarite arttırılarak elüsyona devam edildi, sonunda % 100 metanol ile elüsyon tamamlandı. 28 fraksiyon elde edildi. Benzer fraksiyonlar ince tabaka kromatografisi kullanılarak birleştirildi ve 5 fraksiyon elde edildi. Çizelge 2.5.'de bu fraksiyonların miktarları ve verimleri yer almaktadır. Fraksiyonlardan madde saflaştırmak için daha küçük boyuttaki kolonlarda silika jel adsorbanın yanı sıra Sephadex LH–20'de adsorban olarak

kullanıldı. Sephadex LH–20 içeren kolonlar kullanılırken karışımın polaritesine göre iki çözücü sistemi hazırlandı. Bunlar, apolar özellik gösteren fraksiyonlar için hegzan: kloroform: metanol (7:4:1) izokratik çözücü sistemi, polar özellik gösteren fraksiyonlar için ise % 100 izokratik metanol'dür. Fraksiyonlar kolonda kullanılacak çözücü sisteminde çözülerek sıvı halde Sephadex LH–20 ile doldurulan kolonun üst kısmından tatbik edildi. Bazı fraksiyonlar ise C18'in adsorban olarak kullanıldığı ters faz kolonlarda ayrıldı.

Fraksiyon No	Fraksiyon Kodu	Birleştirilen Fraksiyonlar	Miktarları (g)	% Verim	Elde Edilen Bileşikler
1	GRA-F1	1-3	1,20	6,86	
2	GRA-F2	4-6	1,60	9,14	GRM-1 (1)
3	GRA-F3	7-16	4,20	24,00	GRM-6 (2), GRM-9 (3) GRM-8 (4), GRM-5 (5)
4	GRA-F4	17-24	5,20	29,71	GRM-11 (6), GRM-10 (7), GRM-7 (8)
5	GRA-F5	25-28	3,50	20,00	

Çizelge 2.5. G. resinaceum aseton ekstresinden elde edilen fraksiyonların miktarları ve verimleri

İTK'da net spotlar veren ve aseton ekstresinin GRA-F2 fraksiyonunun tekrar kolon kromatografisi ile sephadex LH-20 adsorban kullanılarak alt fraksiyonlandırılması sonucu GRM-1 kodlu (1) saf maddesi izole edildi.

İTK'da net spotlar veren aseton ekstresinin GRA-F3 kodlu fraksiyonunun tekrar kolon kromatografisiyle silika jel adsorban kullanılarak alt fraksiyonlandırılması sonucu saf GRM-6 (2), GRM-9 (3), GRM-8 (4) ve GRM-5 (5) maddeleri izole edildi.

İTK'da net spotlar veren ve aseton ekstresinin GRA-F4 fraksiyonunun preparatif HPLC ile metanol:su (8:2) mobil faz sisteminde alt fraksiyonlandırılması sonucu saf GRM-11 (6), GRM-10 (7) ve GRM-7 (8) maddeleri izole edildi. Saflaştırılan 8 maddenin (1-8) yapılarını aydınlatmak amacıyla ¹H-NMR, ¹³C-NMR, COSY HMBC, HSQC ve MS analizleri yapıldı.

Şekil 2.2. G. resinaceum mantarının aseton ekstresinin fraksiyonlandırılması

2.7.2. İnce tabaka kromatografisi

İnce tabaka kromatografisinde (İTK), normal ve ters faz silika jel hazır plaklardan (Merck, 5554) yararlanıldı. Aseton ekstrelerinin kolon kromatografisi ile fraksiyonlandırılmasıyla elde edilen fraksiyonların benzer olanlarının birleştirilmesinde İTK plakları kullanıldı. Maddeleri saflaştırmak için preperatif ince tabaka kromatografisinden ayrıca faydalanıldı.

İTK'da çözücü sistemi olarak, uygun oranlarda hegzan:kloroform (50:50), hegzan:etilasetat (60:40); kloroform:aseton (70:30); kloroform:metanol (90:10);

kloroform:toluen:metanol (10:15:2) karışımları hazırlanarak ve polariteye göre uygun karışım kullanıldı.

2.7.3. Yüksek performanslı sıvı kromatografisi (HPLC-DAD)

2.7.3.1. Aseton ekstrelerinin HPLC-DAD analizi

Tüm aseton ekstrelerinden 16 mg alınarak 2 mL etanol içerisinde çözüldü. Hazırlanan ekstre çözeltisi 0,45 μ m filtreden geçirilerek etanol ile (1:1) oranında seyreltildi ve Çizelge 2.6.'de verilen analiz şartlarında HPLC-DAD ile analiz edildi.

HPLC-DAD Cihaz Parametreleri								
Kolon	C18 kolon (4	C18 kolon (4 µm, 150 mm x 4,0 mm i.d)						
Mobil Faz A	% 0,1' lik CH	3COOH içeren H2	$_{2}O$					
Mobil Faz B	Asetonitril							
Kolon Fırın Sıcaklığı	35 °C							
Dedektör	SPD-M20A D	AD Dedektör						
Dedektör Dalga Boyu	254 nm							
Enjeksiyon Hacmi	20 µL							
Analiz Süresi /Akış Hızı	80 dakika, 1,2	ml/dak						
Gradient Programi	Zaman (dak)	Akış (mL/dak)	% Solvent A	% Solvent B				
	0,01	1,20	98,00	2,000				
	3,00	1,20	95,00	5,000				
	10,0	1,20	75,00	25,00				
	25,0	1,20	75,00	25,00				
	28,0	1,20	70,00	30,00				
	33,0	1,20	60,00	40,00				
	40,0	1,20	50,00	50,00				
	50,0	1,20	40,00	60,00				
	60,0	1,20	35,00	65,00				
	70,0	1,20	20,00	80,00				
	73,0	1,20	0,000	100,0				
	74,0	1,20	0,000	100,0				
	78,0	1,20	75,00	25,00				
	80,0	1,20	98,00	2,000				

Çizelge 2.6. Aseton ekstreleri HPLC-DAD cihaz analiz şartları

Her bir mantarın aseton ekstreleri için ayrı ayrı HPLC-DAD kromatogramları oluşturuldu ve elde edilen kromatogramlarda aynı alıkonma sürelerinde gelen madde pikleri belirlendi.

2.7.3.2. Aseton ekstrelerinin HPLC-DAD kromatogramlarındaki maddelerin belirlenmesi

Ganoderma türlerine ait 14 mantarın maserasyon, soxhlet ekstraksiyon ve ultrasonik ekstraksiyon yöntemleri ile hazırlanan aseton ekstrelerinin HPLC-DAD kromatogramlarındaki maddelerin belirlenmesi amacıyla fumarik asit (ST1), gallik asit (ST2), trans-akonitik asit (ST3), p-benzokinon (ST4), pirokatekol (ST5), 3,4dihidroksi benzoik asit (protokateşik asit) (ST6), 2-(4-dihidroksifenil)etanol (ST7), 4-hidroksibenzoik asit (ST8), katekin (ST9), metil 1,4-benzokinon (ST10), 6,7dihidroksibenzoik asit (ST11), vanilik asit (ST12), kafeik asit (ST13), vanilin (ST14), 2,4-dihidroksi benzoik asit (ST15), klorojenik asit (ST16), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), rutin (ST21), elajik asit (ST22), trans-sinnamik asit (ST23), naringenin (ST24), kesretin (ST25), rosmarinik asit (ST26), krisin (ST27) standartları etanolde çözülerek hazırlandı ve tek tek HPLC-DAD cihazına verildi. Bu standartlar arasından alıkonma zamanları birbirleri ile çakışmayan 14 standart belirlenerek (gallik asit (ST2), pirokatekol (ST5), protokatesik asit (ST6), 2-(4-hidroksifenil) etanol (ST7), 4-hidroksibenzoik asit (ST8), vanilik asit (ST12), vanilin (ST14), p-kumarik asit (ST19), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), trans-sinnamik asit (ST23), naringenin (ST24), krisin (ST27)) bir karışım oluşturuldu ve HPLC-DAD cihazına aynı çalışma şartlarında verildi. Ayrıca G. resinaceum mantarından saflaştırılan bileşikler (ergosterol peroksit (1), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ganoderik asit D (8)) Çizelge 2.6'daki şartlarda sisteme verilerek kromatogramlardaki yerleri belirlendi. Triterpenler etanolde, steroit standardı ise kloroform-etanol (1:9)'de çözüldü. Bunun yanı sıra Dr. Erhan Kaplaner'in tez çalışması kapsamında Tricholoma anatolicum mantarından saflaştırdığı ve yapılarını aydınlattığı ergosterol (TA1) ve 5α - 6α epoksi ergosta-7,22dien-3*β*-ol (**TA2**) (Kaplaner, 2017), Dr. Selçuk Küçükaydın'ın tez çalışması kapsamında Bjerkandera adusta (Willd.) mantarından izole ettiği ve yapılarını aydınlattığı ergosta-7,9,22 trien-3-O- β -D-glukozit (**BA1**), ergosta-22-en 3 β -ol (BA2), betulinan A (BA3) ve betulinan B (BA4) maddeleri, Inonotus dryadeus (Willd) mantarından izole ettiği ve yapılarını aydınlattığı ergosta-5,22-dien 3β -ol (ID1) ve ergosta-5,22-dien-3-on (ID2) maddeleri (Küçükaydın, 2017), Dr. Zain

Ullah'ın tez çalışması kapsamında *Sarcosphaera crassa* mantarından izole ettiği ve yapılarını aydınlattığı ergosta-5,22-dien 3-*O*- β -*D*-glukopiranosit (**SC1**), ergosta-5,22-dien 3-*O*- β -*D*-ksilofuranosil (**SC2**), ergosta-5,22-dienil 3-*O*- α -heptanoat (**SC3**), ergosta-5,22-dienil 3-*O*- α -12- cis-hegzadekenoat (**SC4**), ergosta-5,22-dienil 3-*O*- α -dekanoat (**SC5**) maddeleri (Ullah, 2017) kloroform etanolde (1:9) çözülerek aynı HPLC-DAD şartlarında yürütüldü. Aynı şartlarda kromatogramlarda pik oluşturan maddelerin alıkonma zamanları belirlendi.

Ganoderik asit C2 (2) (500 μ g/mL), ganoderik asit G (3) (200 μ g/mL), ganoderik asit B (4) (500 μ g/mL), ganoderik asit A (5) (200 μ g/mL), ganoderenik D (6) (100 μ g/mL), ganoderenik asit C (7) (500 μ g/mL), ve ganoderik asit D (8) (100 μ g/mL) asitleri içeren bir standart karışımı hazırlanarak HPLC-DAD cihazında yürütüldü ve 6 seyreltme yapılarak 6 noktalı kalibrasyon eğrisi oluşturuldu (Çizelge 2.7.). Alıkonma zamanı ve UV spektrumları örneklerle uyumlu olan steroit standartları ile kalibrasyon eğrisi oluşturuldu. Ayrıca fenolik maddeler Çizelge 2.8.'de verilen konsantrasyon aralığında karıştırıldı ve kalibrasyon eğrisi oluşturuldu.

No	Maddeler	RT ^a (dak)	Kalibrasyon Denklemi	$\mathbf{R}^{2\mathbf{b}}$	Doğrusal Aralık (µg/mL)	LOD ^c (µg/mL)
1	Ganoderenik asit C (7)	29,40	y = 30195x + 79704	0,9993	6,25-100	1,56
2	Ganoderik asit C2 (2)	30,40	y = 11140x + 64980	0,9997	19,0-500	1,00
3	Ganoderik asit G (3)	32,50	y = 9641x + 46863	0,9995	12,5-200	1,56
4	Ganoderik asit B (4)	33,93	y = 13727x + 40799	0,9990	6,25-500	2,50
5	Ganoderik asit A (5)	35,10	y = 16065x + 10270	0,9993	12,5-200	0,80
6	Ganoderenik asit D (6)	36,85	y = 33792x + 102530	0,9993	6,25-100	0,80
7	Ganoderik asit D (8)	37,85	y = 19148x + 57194	0,9994	6,25-100	1,56
8	Ergosterol peroksit (1)	74,05	y= 9342x - 49049	0,9990	31,3-1000	2,00

Çizelge 2.7. Aseton ekstrelerinin HPLC-DAD analiz şartlarında triterpen ve steroitlere ilişkin analitik parametreler

(^aRT: Alıkonma zamanı, ^b R²Belirleme katsayısı, ^cLOD: Belirleme sınırı)

Cize	lge 2.8. Aseton	ekstrelerinin H	IPLC-DAD	analiz sartl	arında fenol	ik maddelere il	iskin analitik	parametreler
· · · · ·								

No	Maddeler	RT ^a (dak)	Kalibrasyon	R ^{2b}	Doğrusal Aralık	LOD ^c	RSD aynı gün	RSD farklı günler
110	Waddeler	KI (uak)	Denklemi	N	(µg/mL)	(µg/mL)	(6)	(7)
1	Gallik asit (ST2)	5,50	y = 29658x - 30269	0,9994	2,00-125	0,50	1,23	3,95
2	Protokateşik asit (ST6)	7,20	y = 69299x - 7077,5	0,9995	0,55-70,0	0,30	0,77	1,73
3	Pirokatekol (ST5)	8,20	y = 5733,6x + 5250,4	0,9982	6,00-388	4.50	8,29	7,88
4	2,(4-dihidroksifenil)etanol (ST7)	8,40	y = 2068, 6x + 9918, 9	0,9997	7,50-500	1,80	9,44	6,16
5	4-hidroksi benzoik asit (ST8)	8,90	y = 110626x + 7699,6	0,9989	2,30-75,0	1,00	0,33	0,69
6	Vanilik asit (ST12)	9,80	y = 73540x + 9275	0,9988	0,40-25,0	0,10	0,49	1,04
7	Vanilin (ST14)	11,20	y = 21851x - 1101,3	0,9992	0,85-55,0	0,50	0,93	1,66
8	<i>p</i> -kumarik asit (ST17)	11,60	y = 18096x + 17973	0,9989	1,45-92,5	0,70	1,88	3,64
9	Ferrulik asit (ST18)	12,30	y = 36024x + 17062	0,9987	1,00-62,5	0,10	1,26	2,03
10	trans-2-hidroksisinnamik asit (ST20)	14,30	y = 44172x + 9137,1	0,9985	0,68-43,8	0,50	0,94	2,32
11	Kumarin (ST19)	15,80	y = 34483x + 14988	0,9980	1,46-93,8	1,00	1,90	2,74
12	trans-sinnamik asit (ST23)	21,60	y = 76747x - 17486	0,9983	2,20-35,0	1,10	0,86	2,05
13	Naringenin (ST24)	28,50	y = 10291x + 33221	0,9980	13,9-888	1,00	5,00	3,78
14	Krisin (ST27)	38,30	y = 96786x + 37410	0,9987	0,61-38,8	0,10	0,90	0,89

(^a RT: Alıkonma zamanı, ^b R² Belirleme katsayısı, ^cLOD: Belirleme sınırı)

Tüm metanol ekstrelerinden 16 mg alınarak 1 mL metanol içerisinde çözüldü. Hazırlanan ekstre çözeltisi 0,45 µm filtreden geçirilerek metanol ile (1:1) oranında seyreltildi ve Çizelge 2.9.'de verilen analiz şartlarında HPLC-DAD ile analiz edildi. Her bir mantarın metanol ekstreleri için ayrı ayrı HPLC-DAD kromatogramları oluşturuldu ve elde edilen kromatogramlarda aynı alıkonma sürelerinde gelen madde pikleri belirlendi. Metanol ekstrelerinin kromatografik analizlerinde, aseton ekstrelerinin HPLC-DAD analizlerinde kullanılan metot ile (Çizelge 2.6.) iyi sonuç alınamadığı için Çizelge 2.9'da analiz şartları verilen yeni bir metot oluşturuldu.

HPLC-DAD Cihaz Para	metreleri						
Kolon	C18 kolon (4	C18 kolon (4 µm, 150 mm x 4,0 mm i.d)					
Mobil Faz A	% 0,1' lik CH	% 0,1' lik CH ₃ COOH içeren H ₂ O					
Mobil Faz B	Metanol						
Kolon Fırın Sıcaklığı	35 °C						
Dedektör	SPD-M20A D	AD Dedektör					
Dedektör Dalga Boyu	254 nm						
Enjeksiyon Hacmi	20 µL						
Analiz Süresi / Akış Hızı	85 dakika / 1.0) ml/dak					
Gradient Program	Zaman (dak)	Akış (mL/dak)	% Solvent A	% Solvent B			
	0,01	1,00	98,00	2,000			
	3,00	1,00	98,00	2,000			
	6,00	1,00	95,00	5,000			
	8,00	1,00	94,00	6,000			
	12,0	1,00	90,00	10,00			
	13,0	1,00	90,00	10,00			
	18,0	1,00	75,00	25,00			
	25,0	1,00	70,00	30,00			
	30,0	1,00	60,00	40,00			
	36,0	1,00	58,00	42,00			
	41,0	1,00	46,00	54,00			
	46,0	1,00	45,00	55,00			
	56,0	1,00	44,00	56,00			
	60,0	1,00	35,00	65,00			
	63,0	1,00	25,00	75,00			
	65,0	1,00	15,00	85,00			
	70,0	1,00	5,000	95,00			
	72,0	1,00	5,000	95,00			
	73,0	1,00	0,000	100,0			
	78,0	1,00	0,000	100,0			
	80,0	1,00	20,00	80,00			
	82,0	1,00	50,00	50,00			
	85,0	1,00	98,00	2,000			

Çizelge 2.9. Metano	l ekstreleri	HPLC-DAD	cihaz a	naliz şar	tları

2.7.3.4. Metanol ekstrelerinin HPLC-DAD kromatogramlarındaki maddelerin belirlenmesi

Ganoderma türlerine ait 14 mantarın maserasyon, soxhlet ekstraksiyon ve ultrasonik ekstraksiyon yöntemleri ile hazırlanan metanol ekstrelerinin HPLC-DAD kromatogramlarındaki maddelerin belirlenmesi amacıyla; fenolik ve organik madde standartları (fumarik asit (ST1), gallik asit (ST2), trans-akonitik asit (ST3), pbenzokinon (ST4), pirokatekol (ST5), 3,4-dihidroksi benzoik asit (protokateşik asit) (ST6), 2-(4-dihidroksifenil)etanol (ST7), 4-hidroksibenzoik asit (ST8), katekin (ST9), metil 1,4-benzokinon (ST10), 6,7-dihidroksibenzoik asit (ST11), vanilik asit (ST12), kafeik asit (ST13), vanilin (ST14), 2,4-dihidroksi benzoik asit (ST15), klorojenik asit (ST16), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), rutin (ST21), elajik asit (ST22), transsinnamik asit (ST23), naringenin (ST24), kesretin (ST25), rosmarinik asit (ST26), krisin (ST27)) metanolde çözülerek hazırlandı. Ayrıca G. resinaceum mantarından saflaştırılan triterpenler (ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ganoderik asit D (8)) ve steroit (ergosterol peroksit (1)) Çizelge 2.9.'da verilen şartlarda yürütülerek kromatogramlardaki yerleri belirlendi. Triterpenler etanolde, ergosterol peroksit (1) ise kloroform-etanol (1:9)'de çözüldü. Bunun yanı sıra Dr. Erhan Kaplaner'in tez calışması kapsamında Tricholoma anatolicum mantarından saflaştırdığı ve yapılarını aydınlattığı ergosterol (TA1) ve 5α - 6α epoksi ergosta-7,22dien- 3β -ol (TA2) (Kaplaner, 2017), Dr. Selçuk Küçükaydın'ın tez çalışması kapsamında Bjerkandera adusta (Willd.) mantarından izole ettiği ve yapılarını aydınlattığı ergosta-7,9,22 trien-3-O- β -D-glukozit (**BA1**), ergosta-22-en 3 β -ol (BA2), betulinan A (BA3) ve betulinan B (BA4) maddeleri, Inonotus dryadeus (Willd) mantarından izole ettiği ve yapılarını aydınlattığı ergosta-5,22-dien 3β -ol (ID1) ve ergosta-5,22-dien-3-on (ID2) maddeleri (Küçükaydın, 2017), Dr. Zain Ullah'ın tez çalışması kapsamında Sarcosphaera crassa mantarından izole ettiği ve yapılarını aydınlattığı ergosta-5,22-dien 3-O- β -D-glukopiranosit (SC1), ergosta-5,22-dien 3-O- β -D-ksilofuranosil (SC2), ergosta-5,22-dienil 3-O- α -heptanoat (SC3), ergosta-5,22-dienil 3-O- α -12- cis-hegzadekenoat (SC4), ergosta-5,22-dienil 3-O- α dekanoat (SC5) maddeleri (Ullah, 2017) kloroform etanolde (1:9) çözülerek aynı

HPLC-DAD şartlarında yürütüldü. Aynı şartlarda kromatogramlarda pik oluşturan maddelerin alıkonma zamanları belirlendi.

Ganoderik asit C2 (2) (160 μ g/mL), ganoderik asit G (3) (160 μ g/mL), ganoderik asit B (4) (120 μ g/mL), ganoderik asit A (5) (200 μ g/mL), ganoderenik asit D (6) (480 μ g/mL), Ganoderenik asit C (7) (80 μ g/mL) ve ganoderik asit D (8) (320 μ g/mL) standartlarından bir karışım hazırlanıp beş kez dilue edilerek HPLC-DAD cihazına verildi. Aynı sisteme steroit standardı (ergosterol, **TA1**) verilerek alıkonma zaman belirlendi ve kalibrasyon eğrileri oluşturuldu. Çizelge 2.10.'da triterpenler ve ergosterol için elde edilen analitik parametreler verildi. 27 organik ve fenolik madde Çizelge 2.11.'de belirtilen konsantrasyon aralığında karıştırılarak hazırlandı. Alıkonma zamanı ve UV spektrumlarının yardımıyla örneklerin kromatogramlarında yer alan maddeler belirlendi.

Çizelge 2.10. Metanol ekstrelerinin HPLC-DAD analiz şartlarında triterpen ve steroitlere ilişkin analitik parametreler

No	Maddeler	RT ^a (dak)	Kalibrasyon Denklemi	R ^{2b}	Doğrusal Aralık (µg/mL)	LOD ^c (µg/mL)
1	Ganoderenik asit C (7)	47,30	y = 33763x + 82906	0,9990	5,00-80,0	0,20
2	Ganoderik asit C2 (2)	48,30	y = 9829, 4x + 28332	0,9990	10,0-160	1,00
3	Ganoderik asit G (3)	48,80	y = 14790x + 21352	0,9980	10,0-160	2,50
4	Ganoderik asit B (4)	49,70	y = 17599x + 49057	0,9980	7,50-120	1,25
5	Ganoderik asit A (5)	52,30	y = 42241x + 707628	0,9980	12,5-200	2,50
6	Ganoderenik asit D (6)	54,20	y = 29983x - 24963	0,9970	30,0-480	1,00
7	Ganoderik asit D (8)	54,80	y = 14335x + 246567	0,9980	20,0-320	1,25
8	Ergosterol (TA1)	78,20	y=12115x+144093	0,9998	31,3-1000	1,00

(^a RT: Alıkonma zamanı, ^b R² Belirleme katsayısı, ^cLOD: Belirleme sınırı)

Na	Maddalau		Kalibrasyon	D ^{2b}	Doğrusal Aralık	LOD ^c	RSD aynı	RSD farklı
INO	Wiaddeler	KI (dak)	Denklemi	ĸ	(µg/L)	(µg/L)	gün n= 6	günler n=7
1	Fumarik asit (ST1)	6,81	y=11584x-45691	0,9970	15,6-1000	5,00	4,96	2,20
2	Gallik asit (ST2)	8,39	y=45439x-137402	0,9950	6,25-200	1,00	3,50	1,87
3	trans -akonitik asit (ST3)	10,95	y=8314,5x+57114	0,9920	25,0-800	12,0	4,50	2,69
4	<i>p</i> -benzokinon (ST4)	12,62	y=39428x-759865	0,9970	50,0-200	26,0	4,88	2,17
5	Pirokatekol (ST5)	13,35	y=5269,6x+40422	0,9950	31,3-1000	3,80	5,44	1,40
6	Protokateşik asit (ST6)	14,10	y=76181x-88801	0,9995	3,13-100	0,70	3,19	1,22
7	2-(4-hidroksifenil)etanol (ST7)	18,40	y=2907,6x-7629,4	0,9995	21,3-1366	5,00	3,39	1,27
8	4-hidroksibenzoik asit (ST8)	19,50	y=111102x+21691	0,9993	0,78-50,0	0,20	4,00	2,41
9	Katekin (ST9)	20,00	y=3865,1x+32660	0,9980	15,6-500	12,5	3,78	2,87
10	Metil 1,4 benzokinon (ST10)	20,83	y=81195x-420112	0,9830	3,13-50,0	3,00	4,86	5,29
11	6,7 dihidroksi kumarin (ST11)	21,99	y=34377x-32740	0,9940	5,00-100	2,40	4,94	3,72
12	Vanilik asit (ST12)	22,37	y=74653x-9634,1	0,9998	1,56-100	0,40	5,06	3,88
13	Kafeik asit (ST13)	22,94	y=67972x-32965	0,9880	3,00-30,0	1,00	4,01	5,87
14	Vanilin (ST14)	24,02	y=45495x+313074	0,9920	3,13-100	1,00	1,76	3,76
15	2,4-dihidroksibenzoik asit (ST15)	24,78	y=70870x+258749	0,9920	1,56-100	1,00	5,10	5,81
16	Klorojenik asit (ST16)	26,13	y=39264x+66133	0,9920	6,25-50,0	3,00	5,20	3,53
17	<i>p</i> -kumarik asit (ST17)	28,43	y=18300x+6153,3	0,9998	6,25-400	5,00	3,14	0,44
18	Ferulik asit (ST18)	29,93	y=35737x+12977	0,9999	2,34-300	0,50	3,20	0,51
19	Kumarin (ST19)	31,10	y=36021x-23215	0,9999	3,13-100	0,50	3,59	1,08
20	trans-2-hidroksisinnamik asit (ST20)	33,65	y=53843x+124308	0,9996	3,13-400	1,20	2,85	0,75
21	Rutin (ST21)	35,02	y=40347x-30437	0,9999	3,13-200	1,60	3,01	2,53
22	Ellagik asit (ST22)	37,61	y=165729x-3000000	0,9880	12,5-100	3,10	7,34	6,56
23	Trans- sinnamik asit (ST23)	41,54	y=87505+4540,2	0,9999	1,25-50,0	0,50	5,78	5,66
24	Naringenin (ST24)	43,07	y=9895,8x+159212	0,9950	4,84-620	1,00	2,88	2,39
25	Kersetin (ST25)	43,49	y=67323x+36598	0,9960	3,13-100	2,30	1,87	5,04
26	Rosmarinik asit (ST26)	44,20	y=20734x+853142	0,9950	30,0-120	15,0	6,12	4,97
27	Krisin (ST27)	60,45	y=66794x-17157	0,9999	3,13-100	1,60	3,64	1,11

Çizelge 2.11. Metanol ekstrelerinin HPLC-DAD analiz şartlarında fenolik bileşikler ve organik asitlere ilişkin analitik parametreler

(^a RT: Alıkonma zamanı, ^b R² Belirleme katsayısı, ^cLOD: Belirleme sınırı)

2.7.3.5. Aseton ekstrelerinin HPLC-DAD kromatogramlarındaki antioksidan piklerin belirlenmesi

Maserasyon yöntemi ile elde edilen aseton ekstrelerinden 16 mg alınarak 2 mL etanol içerisinde çözüldü. Hazırlanan ekstre çözeltisi 0,45 µm filtreden geçirilerek 3,38 mM konsantrasyonda DPPH ile (1:1) oranında karıştırıldı. 30 dak karanlıkta inkübe edildi ve inkübasyonun ardından Çizelge 2.6.'da belirtilen cihaz parametreleri ile aynı koşullarda HPLC-DAD cihazına verilerek analiz edildi. Maserasyon yöntemi ile elde edilen aseton ekstreleri için HPLC-DAD kromatogramları oluşturuldu.

2.7.3.6. Metanol ekstrelerinin HPLC-DAD kromatogramlarındaki antioksidan piklerin belirlenmesi

Maserasyon yöntemi ile elde edilen metanol ekstrelerinden 16 mg alınarak 1 mL metanol içerisinde çözüldü. Hazırlanan ekstre çözeltisi 0,45 µm filtreden geçirilerek 3,38 mM konsantrasyonda DPPH ile (1:1) oranında karıştırıldı. 30 dak karanlıkta inkübe edildi ve inkübasyonun ardından çizelge 2.9.'da belirtilen cihaz parametreleri ile aynı koşullarda HPLC-DAD cihazına verilerek analiz edildi. Maserasyon yöntemi ile elde edilen metanol ekstreleri için HPLC-DAD kromatogramları oluşturuldu.

2.7.4. Preparatif HPLC

Ganoderma resinaceum mantarının aseton ekstrelerinden elde edilen GRA-F4 kodlu fraksiyonun saflaştırılması için preperatif HPLC kullanıldı. Preperatif HPLC şartları Çizelge 2.12.'de verilmektedir.

Kolon	YMC-ODS-L-80, C18 kolon (250 x 46 mm ID; 5µm)
Dedektör	UV
Mobil Faz	Metanol: Su (8:2)
Kolon Basıncı	2 psi
Toplam Akış Hızı	3 mL/dak
Kolon Akış Hızı	3 mL/dak
Enjeksiyon hacmi	3 mL

Çizelge 2.12. Preparatif HPLC'ye ilişkin analitik parametreler

Preparatif HPLC Cihaz Parametreleri

2.7.5. Mantarların yağ asidi bileşenlerinin gaz kromatografisi-kütle spektroskopisi (GC-MS) yöntemi ile belirlenmesi

Tez kapsamında Muğla'nın farklı bölgelerinden ve İzmir Balçova'dan temin edilen 14 mantarın yağ asidi bileşenlerinin belirlenmesi amacıyla maserasyon, soxhlet ve ultrasonik ekstraksiyon yöntemleri ile hazırlanan petrol eteri/kloroform (4:1) ekstrelerinden 25 mg tartıldı ve 25 mL'lik bir balon jojeye alındı. 0,5 N 1,5 mL metanollü NaOH ilave edildi ve 50 °C'de 5 dakika inkübe edildi. 1,5 mL metanollü BF₃ eklendi. 5 dakika 80 °C'de kaynatıldı ve soğumaya bırakıldı. Üzerine doymuş NaCl çözeltisinden 5 mL eklendi ve ayırma hunisi içerisine aktarıldı. Ayırma hunisine 5 mL -hegzan ilave edildi ve hegzan fazı (üst faz) alındı. Alttaki faz tekrar n-hegzan ile muamele edilerek işlem tekrarlandı. Hegzan fazları birleştirilerek vakum evaporatörde solvent uzaklaştırıldı. Metillenen yağ asidi miktarı tartılarak belirlendi. Her örnek hegzan ile çözülerek 20000 µg/mL konsantrasyonda GC-MS cihazına verildi. Bileşenlerin aydınlatılmasında alıkonma zamanı, standartlarla karşılaştırma, literatür bilgisi ve NIST/WILEY 2005 kütüphanesi verileri kullanıldı.

Laurik asit, miristik asit, pentadekanoik asit, palmitik asit, margarik asit, linoleik asit, oleik asit, stearik asit yağ asidi standartlarından 1'er mg tartıldı ve 25 mL' lik bir balon joje içerisine aktarıldı. Örneklerin hazırlanmasında kullanılan metilleme prosedürü yağ asidi standartlarına da uygulandı. İşlem sonucunda elde edilen yağ asidi metil esterleri seri şekilde seyreltilerek (4,2 – 2400 µg/mL) GC-MS cihazı ile analiz edildi. Pik alanlarına karşı konsantrasyon grafiği çizilerek her bir yağ asidi için kalibrasyon eğrisi oluşturuldu ve örneklerin miktarları kalibrasyon eğrisenlerinin hesaplandı.

analizinde kullanılılan GC-MS çalışma şartları Çizelge 2.13.'de ve bu şartlarda yağ asitleri için elde edilen analitik parametreler Çizelge 2.14.'de verildi.

GC-MS Cihaz Parametreleri	
Kolon	DB-1 Kapiler Kolon (30 m x 0.25mm, 0.25µm)
Taşıyıcı Gaz	He (15 psi)
Enjeksiyon Sıcaklığı	250 °C
Kolon Sıcaklığı	Fırın sıcaklığı 100 °C de 5 dakika bekletildi. 238 °C' ye 3 °C/dak hızla çıkarıldı ve 238 °C'de 9 dakika bekletildi.
Split Oranı	1:20
İyon Kaynağı Sıcaklığı	120 °C
Elektron Enerjisi	70 eV
Kütle Aralığı	28-450 <i>m/z</i>
Scan Aralığı	0.01
Enjeksiyon Miktarı	0.2 μL

Çizelge 2.13. Mantarların yağ asidi bileşenlerinin GC-MS analiz şartları

Çizelge 2.14. Yağ asitleri analizine ilişkin analitik parametreler

No	Analitler	RT ^a (dak)	Kalibrasyon Denklemi	R ^{2b}	Lineerite Aralığı (µg/L)	LOD ^c (µg/L)
1	Laurik asit	18,97	y=15667x-58089	0,9995	4,20-34,0	2,17
2	Miristik asit	26,54	y=20561x-43525	0,9904	4,40-35,4	1,11
3	Pentadekanoik asit	30,20	y=21379x-37478	0,9886	4,30-34,7	0,94
4	Palmitik asit	33,70	y=18546x-32151	0,9908	4,20-33,3	1,14
5	Margarik asit	37,02	y=17608x-27961	0,9870	4,20-33,7	1,08
6	Linoleik asit	38,90	y=17309x-34151	0,9866	4,70-37,5	1,11
7	Oleik asit	39,27	y=21967x-46269	0,9894	4,40-35,1	1,11
8	Stearik asit	40,22	y=18457x-33892	0,9889	4,40-35,4	1,11

(^aRT: Alıkonma zamanı, ^bR²Belirleme katsayısı, ^cLOD: Belirleme sınırı)

2.8. NMR Spektroskopisi

Kromatografik yöntemlerle saflaştırılan bileşiklerin ¹H NMR, ¹³C NMR, DEPT, COSY, HMBC, HMQC spektrumları alındı. Referans olarak tetrametilsilan (TMS) ve çözücü olarak döterokloroform (CDCl₃) ve döterometanol (CD₃OD) kullanıldı.

2.9. Kütle Spektroskopisi

Elektrosprey iyonizasyon (ESI-MS) yöntemi kullanılarak saf maddelerin spektrumları alındı.

2.10. İstatistiksel Hesaplamalar

Aktivite sonuçları 3 paralel testin ortalaması \pm standart hatası olarak verildi. Sonuçlar % 95 güven sınırları ile student-*t* testine göre belirlendi. Paralel ölçümler arasında anlamlı bir fark görülmedi. En küçük kareler yönteminin kullanıldığı doğrusal regrasyon analizi eğim, intersept ve korelasyon katsayılarının değerlendirilmesi ile yapıldı.

2.10.1. Kemometrik analiz

Tüm kemometrik hesaplamalar Minitab 16.2.1 istatistiksel software (Minitab Inc. 2010) kullanılarak yapıldı. Çalışmada 4 farklı *Ganoderma* türünü içeren toplam 14 mantar örneği ekstraksiyon yöntemleri, mantarların toplandığı bölge ve toplandığı ağaç türleri açısından incelendi. 14 mantar örneğinin kemometrik analizleri, yağ asitleri ve HPLC-DAD kromatogramlarında yer alan ve tanımlanan maddeler gibi değişkenler ile korelasyon analizi, temel bileşen analizi (PCA) ve hiyerarşik kümeleme analizi (HCA) teknikleri kullanılarak yapıldı.

2.11. IC₅₀ ve A_{0,5} Değerlerinin Hesaplanması

IC₅₀ değeri, maksimum inhibisyonun % 50 sini oluşturan konsantrasyonu ifade eder. Başka bir deyişle, maksimum absorbansın yarısına karşılık gelen yani absorbansı yarıya düşüren konsantrasyon miktarı IC₅₀ değerini verir. A_{0,5} değeri ise 0,5 absorbans veren konsantrasyonu ifade eder. Bir aktivte için ölçülen IC₅₀ ve A_{0,5} değeri ne kadar küçük ise antioksidan aktivitesi o kadar yüksektir

Tüm aktivite sonuçları % 50 inhibisyon konsantrasyonu (IC₅₀) olarak verildi. IC₅₀ değeri örnek konsantrasyonunun % inhibisyona karşı çizilen grafikten, $A_{0,5}$ değeri ise örnek konsantrasyonunun absorbansına karşı çizilen grafiğinden hesaplandı.

3. BULGULAR VE İRDELEME

3.1. Mantar Ekstrelerinin Antioksidan Aktivite Sonuçları

3.1.1. DPPH serbest radikali giderim aktivitesi yöntemi sonuçları

Farklı bölgelerden ve farklı ağaç türleri üzerinden toplanan 5 adet *G. lucidum*, 7 adet *G adspersum*, 1 adet *G. applanatum ve* 1 adet *G. resinaceum* türlerinden maserasyon, soxhlet ekstraksiyonu ve ultrasonik ekstraksiyon yöntemleri ile elde edilen petrol eteri, aseton ve metanol ekstrelerinde serbest radikal giderim aktivitesi DPPH yöntemi kullanılarak belirlendi. Sonuçlar Çizelge 3.1.'de verilmektedir.

Tüm örneklerin petrol eteri/kloroform ekstreleri DPPH serbest radikalini gideremedikleri için için Çizelge 3.1.'e konulmadılar. DPPH serbest radikali giderim aktiviteleri sonuçlarına göre tüm mantarların aseton ekstrelerinin yüksek serbest giderim aktivitesine sahip olduğu saptandı. Bunun yanısıra metanol ekstreleri de aseton ekstreleri kadar olmasada yüksek aktivite vermektedir. *G. applanatum* mantarının maserasyonla elde edilen aseton ekstresi (13.GAp.M) 5,78±0,24 µg/mL IC₅₀ değeri ile en yüksek serbest radikal giderim aktivitesine sahiptir. Bu değer *α*-tokoferol (TOC)'den (IC₅₀:10,34±0,42 µg/mL) daha yüksek ve sentetik antioksidan olan BHA (5,21±0,10 µg/mL) ile yarışmaktadır. Aynı türün üç ekstraksiyon yöntemiyle elde edilen ve sırayla (13.GAp.M, 13.GAp.S ve 13.GAp.U) IC₅₀:15,07±0,36, IC₅₀:7,98±0,05, IC₅₀:7,45±0,05 µg/mL IC₅₀ değerleri veren metanol ekstrelerinin de *α*-tokoferol (IC₅₀:14,54±0,18µg/mL) kadar aktivite gösterdiği görüldü.

G.lucidum mantarlarının aseton ekstrelerinin (4.GL.M, 4.GL.S ve 5.GL.M) aktiviteleri ile metanol ekstrelerinin (3.GL.U, 4.GL.U ve 5.GL.S) aktiviteleri diğer *G. lucidum* ekstrelerinden daha yüksektir. Ancak *G. lucidum* örneklerine ait hiçbir ekstre BHA ve α -tokoferol kadar yüksek aktivite göstermedi.

G. adspersum mantarlarının aseton ekstrelerinin aktiviteleri 6.GA.M, 6.GA.S, 7.GA.U, 8.GA.M, 9.GA.M, 10.GA.M, 10.GA.S, 11.GA.M, 11.GA.U, 12.GA.M örneklerinde standart α -tokoferol'ün (IC₅₀:10,34±0,42 µg/mL) aktivitesine yakındır. 6.GA.S, 7.GA.S, 8.GA.S, 9.GA.S, 9.GA.U, 10.GA.U, 11.GA.U ve 12.GA.S örneklerinde metanol ekstrelerinin aktiviteleri α -tokoferol (IC₅₀:14,54±0,18 µg/mL)'den daha yüksek aktivite gösterdi.

G. resinaceum örneğinin soxhlet ekstraksiyonu ile hazırlanmış metanol ekstresinin (14.GR.S) aktivitesi (IC₅₀:21,45±0,52 μ g/mL) diğer ekstraksiyon yöntemleri ile hazırlanan *G. resinaceum* örneklerininkinden daha yüksektir. Ayrıca maserasyon (14.GR.M) ve ultrasonik ekstraksiyon (14.GR.U) yöntemleri ile hazırlanan örneklerin aseton ekstreleri, metanol ekstrelerinden daha yüksek DPPH giderim aktivitesi gösterdi.

Tüm sonuçlar karşılaştırıldığında maserasyon yöntemiyle hazırlanan aseton ekstrelerinin ve soxhlet yöntemiyle hazırlanan metanol ekstrelerinin DPPH serbest radikal giderim aktiviteleri standart maddeler kadar yüksektir.

		DPPH Deneyi		ABTS	Deneyi
Mantan Örnaži	Ekstrelerin	Aseton	Metanol	Aseton	Metanol
Mantar Ornegi	Kodlaması	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)
	1.GL.M	34,07±2,64	155,6±3,73	32,66±2,89	52,25±2,98
1. G. lucidum	1.GL.S	32,22±1,77	154,8±2,64	23,40±0,69	36,21±0,43
	1.GL.U	88,09±1,60	166,5±3,99	39.66±1,89	52,85±2,35
	2.GL.M	54,79±1,69	116,4±3,03	34,87±7,46	74,64±4,17
2.G. lucidum	2. GL.S	35,97±2,05	55,91±0,69	28,87±1,50	24,79±0,46
	2. GL.U	39,26±0,50	115,5±1,54	31,93±0,14	48,51±0,29
	3. GL.M	32,17±1,64	43,70±0,57	25,47±1,97	22,98±0,11
3. G. lucidum	3. GL.S	31,86±0,73	52,44±0,46	23,75±0,20	26,77±0,62
	3. GL.U	34,22±1,31	21,53±0,62	25,11±0,93	15,23±0,13
	4. GL.M	26,56±0,27	57,80±0,98	18,79±0,98	25,15±0,51
4. G. lucidum	4. GL.S	22,78±1,45	35,45±0,71	17,92±0,50	23,85±0,42
	4. GL.U	35,45±1,25	16,46±0,18	26,15±0,71	14,45±0,29
	5. GL.M	25,35±1,67	31,11±0,54	16,17±0,58	20,71±0,17
5. G.lucidum	5. GL.S	33,04±0,80	10,65±0,29	21,61±2,16	11,27±0,31
	5. GL.U	34,79±0,61	58,55±0,55	24,48±0,13	30,27±0,50
	6.GA.M	6,410±0,38	61,16±1,09	6,120±0,17	47,55±3,17
6. G.adspersum	6.GA.S	9,740±0,40	9,270±0,14	$11,50\pm0,52$	8,850±0,11
	6.GA.U	10,36±0,69	16,99±0,27	17.72±1,60	13,92±0,20
	7.GA.M	18,95±0,86	31,96±0,90	23,67±0,66	23,68±0,18
7. G. adspersum	7.GA.S	13,24±0,40	13,50±0,51	13,38±0,12	12,46±0,21
-	7.GA.U	10,73±0,14	54,35±0,54	12,60±0,22	43,46±1,78

Çizelge 3.1. *Ganoderma* türü mantarların aseton ve metanol ekstrelerinin DPPH serbest radikal giderim ve ABTS katyon radikal giderim aktivitesi^a

		DPPH Deneyi		ABTS Deneyi	
Mantan Örmaži	Ekstrelerin	Aseton	Metanol	Aseton	Metanol
Mantar Ornegi	Kodlaması	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)
	8.GA.M	8,150±0,17	21,25±1,73	9,56±0,37	19,10±4,59
8. G. adspersum	8.GA.S	14,48±0,43	13,26±0,14	14,11±0,44	12,86±0,15
	8.GA.U	18,13±3,08	17,82±0,32	16,64±0,98	15,99±0,20
	9.GA.M	7,210±0,27	51,51±0,61	7,600±0,24	21,24±0,56
9. G. adspersum	9.GA.S	17,91±1,85	12,86±0,13	17,56±1,26	8,630±0,42
	9.GA.U	14,39±1,25	8,790±0,84	15,91±0,42	8,630±0,13
	10.GA.M	6,570±0,16	25,63±2,78	6,850±0,18	17,25±0,09
10. G. adspersum	10.GA.S	10,57±0,55	$18,50\pm0,08$	12,26±0,29	17,26±0,36
	10.GA.U	17,13±0,72	13,96±0,25	13,33±0,88	12,08±0,11
	11.GA.M	6,73±0,19	32,80±0,91	7,330±0,33	23,35±0,36
11. G. adspersum	11.GA.S	18,76±2,01	19,11±0,88	16,00±0,50	16,34±0,19
	11.GA.U	10,55±0,20	8,420±0,22	12,51±0,06	9,350±0,19
	12.GA.M	10,71±0,36	70,11±0,87	11,67±0,36	33,25±0,83
12. G. adspersum	12.GA.S	$28,88\pm1,48$	12,40±1,08	$20,29\pm 2,50$	15,16±0,11
	12.GA.U	25,21±2,18	17,84±0,13	21,65±1,96	22,42±0,19
	13.GAp.M	5,780±0,24	15,07±0,36	5,580±0,33	$11,76\pm0,18$
13.G.applanatum	13.GAp.S	9,370±0,61	7,980±0,05	12,11±0,27	7,720±0,02
	13.GAp.U	7,680±0,51	7,450±0,05	13,08±1,17	6,670±0,37
14.G. resinaceum	14.GR.M	135,6±3,58	160,7±5,74	86,62±2,45	55,97±1,99
	14.GR.S	173,0±5,63	21,45±0,52	92,64±6,13	21,95±0,16
	14.GR.U	121,80±3,18	161,7±1,61	63,60±3,54	58,39±0,89
Standartlar	TOC ^b	$10,34\pm0,42$	$14,54\pm0,18$	7,780±0,17	10,20±0,24
	BHA ^b	5,210±0,10	6,090±0,03	$2,300\pm0,06$	$2,300\pm0,06$

Çizelge 3.1. (Devam)

^aDeğerler 3 paralel ölçümün ortalaması olarak verildi. *p*<0,05. ^b Standart madde

3.1.2. ABTS katyon radikali giderim aktivitesi yöntemi sonuçları

Farklı orijinlere ait 4 *Ganoderma* türünden maserasyon, soxhlet ekstraksiyon ve ultrasonik ekstraksiyon yöntemleri ile elde edilen petrol eteri, aseton ve metanol ekstrelerinde katyon radikali giderim aktivitesi, ABTS yöntemi kullanılarak belirlendi. Mantarların herbir ekstresine ait sonuçlar IC₅₀ (μ g/mL) değerleri şeklinde Çizelge 3.1.'de verildi. Örneklerin petrol eteri/kloroform ektreleri ABTS katyon radikalini gideremediği için Çizelge 3.1.'e eklenmedi.

Genellikle ABTS katyon radikali giderim aktiviteleri sonuçlarına göre mantarların aseton ekstrelerinin, metanol ekstrelerinden daha yüksek ABTS katyon giderim aktivitesine sahip olduğu izlendi. Özellikle *G. applanatum* mantarının aseton ekstresine ait 13.GAp.M (IC₅₀:5,58±0,33 µg/mL) ile metanol ekstresine ait 13.GAp.S (IC₅₀:7,72±0,02 µg/mL) ve 13.GAp.U (IC₅₀:6,67±0,37 µg/mL) örnekleri standart antioksidan olan α -tokoferol'den daha yüksek aktivite gösterdiği belirlendi.

G. adspersum mantarının aseton ekstresi örneklerinden 6.GA.M, 9.GA.M, 10.GA.M, 11.GA.M, α -tokoferol'den daha yüksek ABTS katyon radikali giderim aktivitesi gösterdiği belirlenirken *G. adspersum*'un diğer aseton örneklerinin aktivitelerinin ise α -tokoferol'ün aktivitesine yakın değerler verdiği görüldü. Benzer şekilde *G. adspersum* metanol ekstresi örneklerinden 6.GA.S, 9.GA.S, 9.GA.U, 11.GA.U α -tokoferol'den daha yüksek ABTS katyon radikali giderim aktivitesi gösterdi.

G. resinaceum örneğinin soxhlet ekstraksiyonu ile hazırlanmış metanol ekstresinin aktivitesi (IC₅₀:21,95±0,16 μ g/mL) diğer ekstraksiyon yöntemleri ile hazırlanan *G. resinaceum* örneklerinkinden daha yüksektir.

Tüm örnekler incelendiğinde 13.GAp.M örneği ve *G. adsperum* mantarına ait 6.GA.M, 8.GA.M, 9.GA.M, 10.GA.M, 11.GA.M örnekleri için elde edilen yüksek DPPH aktivitesi sonuçları, ABTS aktivite sonuçlarını ile desteklemektedir.

3.1.3. Bakır (II) indirgeme antioksidan kapasitesi yöntemi

Ganoderma lucidum, G adspersum, G. applanatum ve G. resinaceum türlerinden maserasyon, soxhlet ekstraksiyon ve ultrasonik ekstraksiyon yöntemleri ile elde edilen petrol eteri, aseton ve metanol ekstrelerinde Cu^{2+} indirgeme antioksidan kapasitesi CUPRAC yöntemi kullanılarak belirlendi. Ekstrelerin ve standartların bakır (II) iyonu indirgeme antioksidan kapasitesi A_{0.50} (µg/mL) olarak Çizelge 3.2.'de verildi.

CUPRAC sonuçlarına göre aseton ekstrelerinin metanol ekstrelerinden daha yüksek bakır (II) iyonu indirgeme kapasitesinin olduğu görüldü. Aseton ekstreleri arasında *G. applanatum* mantarının 13.GAp.M (A_{0.50}:11,26±0,36 µg/mL), 13.GAp.S (A_{0.50}:17,96±0,39 µg/mL) ve 13.GAp.U (A_{0.50}:12,31±2,39 µg/mL) örnekleri ile *G. adspersum* mantarına ait tüm aseton ekstreleri standart α -tokoferolün (A_{0.50}:28,45±1,18 µg/mL) aktivitesinden yüksek (6.GA.M, 6.GA.S, 6.GA.U, 7.GA.S, 7.GA.U, 8.GA.M, 8.GA.U, 9.GA.M, 9.GA.U, 10.GA.M, 10.GA.S, 11.GA.M, 11.GA.S, 11.GA.U ve 12.GA.M) ya da çok yakın bakır (II) indirgeme antioksidan kapasitesi sergilediler. *G. lucidum* mantarına ait 5.GL.M, 5.GL.S, 5.GL.U ve 4.GL.S örneklerinin aktiviteleri de standart α -tokoferolün (A_{0.50}:28,45±1,18 µg/mL) aktivitesinden daha yüksektir. Metanol ekstresi örnekleri arasında 2.GL.U $(A_{0.50}:6,80\pm0,10 \ \mu\text{g/mL})$ kodu ile verilen *G. lucidum* örneği, standart antioksidan olan BHA'nın (A_{0.5}: 7,81±0,34 $\mu\text{g/mL}$) aktivitesinden bile daha yüksek aktivite gösterdi. Benzer şekilde, *G. applanatum* metanol ekstresi örneklerinin aktivitesi de aseton ekstresinde olduğu gibi çok yüksektir. *G. resinaceum* mantarının aseton ekstresinin aksine soxhlet ile hazırlanan metanol ekstresi örneği (14.GR.S)'nin Cu(II) iyonu indirgeme antioksidan kapasitesi α -tokoferolünkine yakın A_{0.50} değeri göstermektedir.

G. appalanatum, G. adspersum mantarları aseton ve metanol ekstreleri en yüksek aktivite gösteren örneklerdir. DPPH serbest radikali giderimi, ABTS katyon giderimi ve Bakır (II) iyonu indirgeme antioksidan kapasitesi dikkate alındığında hem radikal giderimleri hem de indirgeme gücü bakımından bu örnek ekstrelerinin en yüksek aktiviteyle doğal bir antioksidan kaynağı olabileceği düşünülmektedir.

		CUPRA	C Deneyi	β-Karoten-I Der	∠inoleik Asit 1eyi
Mantar Örnaži	Ekstrelerin	Aseton	Metanol	Aseton	Metanol
Mantar Ornegi	Kodlaması	(A _{0,5} μg/mL)	(A _{0,5} μg/mL)	(IC ₅₀ µg/mL)	(IC ₅₀ µg/mL)
	1.GL.M	47,80±0,70	127,9±7,29	10,26±3,00	15,27±0,29
1. G. lucidum	1.GL.S	41,33±0,26	133,9±3,56	6,030±1,13	28,25±0,18
	1.GL.U	71,44±1,25	118,1±4,98	36,97±2,64	$14,08\pm0,69$
	2.GL.M	57,54±1,48	158,7±3,08	27,00±2,65	22,12±2,47
2.G. lucidum	2. GL.S	47,42±1,26	68,60±4,25	4,740±0,85	9,620±1,64
	2. GL.U	51,59±0,88	6,800±0,10	8,410±2,07	55,29±3,33
	3. GL.M	41,53±1,69	47,61±0,28	8,560±0,49	25,77±0,86
3. G. lucidum	3. GL.S	37,48±1,50	48,90±0,06	7,770±0,54	28,03±1,92
	3. GL.U	36,47±1,07	28,25±0,65	14,38±1,33	8,220±0,32
	4. GL.M	30,27±1,13	52,47±1,55	8,680±2,38	18,05±2,02
4. G. lucidum	4. GL.S	23,14±1,22	47,09±1,12	2,450±1,02	16,90±2,90
	4. GL.U	34,69±0,36	24,21±0,67	3,602±0,80	$12,12\pm1,40$
	5. GL.M	20,50±0,43	31,20±0,47	3,240±0,21	23,79±2,71
5. G.lucidum	5. GL.S	24,63±0,96	15,53±0,19	6,930±0,50	2,030±0,16
	5. GL.U	26,26±0,25	59,07±2,21	8,960±1,15	14,40±1,20
	6.GA.M	12,29±0,41	117,9±2,17	3,550±0,75	24,17±1,45
6. G.adspersum	6.GA.S	19,90±0,43	20,05±0,23	4,670±0,70	7,060±0,23
	6.GA.U	15,11±1,80	25,80±0,72	9,790±5,73	3,090±0,11
	7.GA.M	35,85±1,07	45,15±0,69	15,55±2,27	7,830±0,62
7. G. adspersum	7.GA.S	21,85±0,77	25,00±0,33	12,40±0,82	3,460±0,27
	7.GA.U	20,41±0,53	88,38±2,45	6,200±0,25	17,97±5,17
	8.GA.M	18,97±0,21	29,76±1,01	3,480±0,15	7,890±0,23
8. G. adspersum	8.GA.S	23,29±0,34	26,28±0,78	$7,140\pm0,52$	14,77±1,49
-	8.GA.U	32,92±0,65	30,72±0,36	7,960±2,43	19,01±0,19
	9.GA.M	15,68±0,39	62,36±1,51	5,690±0,62	41,30±5,85
9. G. adspersum	9.GA.S	29,20±0,39	23,13±0,38	4,010±0,21	12,25±1,43
	9.GA.U	27,12±0,87	17,43±0,43	1,610±0,21	12,10±1,01

Çizelge 3.2. *Ganoderma* türü mantarların aseton ve metanol ekstrelerinin CUPRAC ve lipid peroksidasyon inhibisyonu^a

Çizelge	3.2.	(Devam)
---------	------	---------

		CUPRAC Deneyi		β-Karoten-I Der	Linoleik Asit neyi
Mantar Örneği	Ekstrelerin Kodlaması	Aseton (A _{0,5} µg/mL)	Metanol (A _{0,5} µg/mL)	Aseton (IC ₅₀ µg/mL)	Metanol (IC ₅₀ µg/mL)
10 0 1	10.GA.M	13,15±0,28	35,92±0,16	4,260±0,21	8,880±0,49
10.G. adspersum	10.GA.S	20,15±0,86	32,42±1,04	$3,780\pm0,38$	22,07±2,66
	10.GA.U	28,79±1,65	22,72±0,80	$8,950\pm1,49$	27,01±0,69
11.G. adspersum	11.GA.M	13,83±0,19	44,57±2,32	3,660±0,36	11,65±3,22
	11.GA.S	26,42±1,26	30,92±0,93	4,090±0,45	30,43±1,54
	11.GA.U	20,79±0,31	18,04±0,28	5,070±0,63	19,47±2,01
12.G. adspersum	12.GA.M	20,01±0,37	75,97±0,41	2,140±0,37	51,19±9,91
	12.GA.S	35,30±3,50	28,63±0,21	7,930±0,54	4,590±0,4 3
	12.GA.U	32,07±2,57	40,95±0,86	16,34±2,90	44,72±4,70
13.G.applanatum	13.GAp.M	11,26±0,36	23,03±0,37	3,290±0,57	5,070±0,10
	13.GAp.S	17,96±0,39	17,99±3,51	4,260±0,53	17,23±0,79
	13.GAp.U	12,31±2,39	13,40±0,73	18,03±0,58	8,150±0,41
14.G.resinaceum	14.GR.M	108,8±2,94	153,9±1,60	25,71±3,63	33,45±1,85
	14.GR.S	103,5±1,13	34,82±1,44	8,550±0,92	11,23±0,35
	14.GR.U	66,47±0,61	149,5±1,87	22,68±7,86	29,11±1,98
Standartlar	TOC ^b	28,45±1,18	40,88±1,94	2,000±0,02	2,000±0,02
	BHA ^b	4,570±0,05	7,810±0,34	0,540±0,04	0,540±0,04

^aDeğerler 3 paralel ölçümün ortalaması olarak verildi. p<0,05. ^b Standart madde

3.1.4. β-karoten-lineloik asit renk açılım aktivitesi yöntemi sonuçları

Farklı orijinli 14 örneğin lipit peroksidasyonu inhibisyonu aktivitesi β -karoten renk açılımı yöntemi kullanılarak belirlendi. Mantar ekstrelerinin ve standartların β karoten-linoleik asit yöntemiyle elde edilen toplam antioksidan aktiviteleri Çizelge 3.2.'de verilmektedir.

Petrol eteri/kloroform ekstrelerinin β -karoten-linoleik asit aktivitesi sonuçları (>400 μ g/mL) standart olarak kullanılan α -tokoferol (IC₅₀:2,00±0,02 μ g/mL) 'ün aktivitesinden çok daha düşük olduğu için Çizelge 3.2.'de verilmedi.

DPPH serbest radikali giderimi, ABTS katyon giderimi ve Bakır (II) iyonu indirgeme antioksidan kapasitesi gibi yöntemlere paralel şekilde aseton ekstresi örneklerinin lipid peroksidasyonu inhibisyonu aktivitesi en yüksektir. Bunu metanol ekstresi örnekleri takip etmektedir. Aseton ekstresi 9.GA.U koduyla verilen örneğin aktivitesi (IC₅₀: 1,61±0,21µg/mL) standart madde olarak kullanılan α -tokoferolden (IC₅₀:2,00±0,02 µg/mL) daha yüksektir. Bunun yanısıra aseton ekstreleri olan 4.GL.S, 4.GL.U, 5.GL.S, 6.GA.S, 8.GA.M 10.GA.S, 11.GA.M, 12.GA.M ve 13.GAp.M örneklerinin ve metanol ekstreleri olan 5.GL.S, 6.GA.U ve 7.GA.S örneklerinin aktivitesi standartlarla yarışmaktadır. Sonuçlar incelendiğinde tüm aktivite yöntemlerinde aseton ve metanol ekstrelerinin daha yüksek antioksidan özellik göstermesinden dolayı çalışmalarımızın bir sonraki adımınında aseton ve metanol ekstreleri kullanılacaktır.

3.2. *Ganoderma resinaceum* Mantarının Biyoaktif Bileşiklerinin Elde Edilmesine İlişkin Sonuçlar

3.2.1. *Ganoderma resinaceum* mantarının fraksiyonlandırma çalışmaları sonuçları

Ganoderma resinaceum mantarı üzerine literatür çalışmasının az olması ve aseton ekstrelerinin antioksidan aktivitesinin diğer G. resinaceum ekstrelerinden daha aktif olmasından dolayı kromatografik olarak fraksiyonlardırma yoluna gidildi. Bu nedenle ince tabaka kromatografisinde denemeler yapılarak uygun çözücü sistemi ve adsorban seçimi yapıldı. Kolon kromatografisinde adsorban olarak silika jel kullanıldı. Aseton ekstresi (17,50 g) az miktarda aseton-metanol karışımında cözülerek silika jel adsorban ile karıstırıldı. Boyutu (100 cm x 40 mm) olan cam silika jel adsorban kullanarak karışım kuru bazda tatbik edilerek kolon hazırlandı. Elüsyona %100 petrol eteriyle başlayarak sırayla, petrol eterine % 5 polarite arttırarak kloroform eklendi ve % 100 kloroform ile devam edildi. Ardından % 5 polarite artışlarıyla aseton ilave edilerek % 100 asetona ulaşıldı. Devamında % 10 polarite artışlarıyla metanol eklendi. % 100 metanol sistemine ulaşınca elüsyon tamamlandı. Bu çalışmada 500 mL hacimlerle fraksiyonlar toplandı ve toplamda 28 fraksiyon elde edildi. Bunların ince tabakaları kontrol edilerek benzer olanlar birleştirildi ve nihayetinde 5 fraksiyon elde edildi (Şekil 2.2.). Bu fraksiyonların kodları ve miktarları Çizelge 2.5'te verildi.

Fraksiyonlar arasında GRA-F2 kodlu fraksiyon İ.T.K.'da net spotlar verdiği ve miktarıda uygun olduğu için hegzan: kloroform: metanol (7:4:1) çözücü sistemiyle sephadex LH-20 üzerinden fraksiyonlandırıldı. Fraksiyonların İ.T.K. ile kontrolüyle GRM-1 (1) maddesi saf olarak elde edildi.
GRA-F3 kodlu fraksiyon İ.T.K.'da net spotlar verdiği ve miktarı da uygun olduğu için silika jel kolon kromatografisinde tekrar fraksiyonlandırıldı. Buradan saf GRM-6 (2), GRM-9 (3), GRM-8 (4) ve GRM-5 (5) maddeleri elde edildi.

Polaritesinin C18 adsorban ters faz kolonuna uygunluğu nedeniyle GRA-F4 fraksiyonu Recycle HPLC'de 250 mm x 46 mm, 5 μ m C18 preparatif kolonu kullanılarak çalışıldı. Mobil faz sistemi olarak metanol:su (8:2) kullanıldı. Buradan GRM-11 (6), GRM-10 (7) ve GRM-7 (8) maddeleri elde edildi.

3.2.2. Ganoderma resinaceum mantarından izole edilen bileşikler

G. resinaceum mantarından bir önceki bölümde anlatıldığı gibi 8 saf madde elde edildi. Bu maddelerin yapılarını tayin etmek amacıyla ¹H-NMR, ¹³C-NMR, COSY, HSQC, HMBC spektrumlarını amak üzere Çankırı Üniversitesi NMR laboratuarına gönderildi.

3.2.2.1. GRM-1 (1) kodlu maddenin yapı tayini

Şekil 3.1. Ergosterol peroksit (1)' in yapısı

Beyaz renkli olan bileşik amorf halde 7,2 mg elde edildi. Silikajel plakta UV lamba (254 nm) altında da görülen bileşik serik sülfat belirteci püskürtülüp yakıldığında (105°C) koyu yeşilimsi renk aldı.

¹H-NMR ve ¹³C-NMR, DEPT 135, COSY, HSQC, HMBC spektrumları (Spektrum 1.- Spektrum 7.) değerlendirildiğinde (1) bileşiğinin lanostan tipi steroit peroksit olduğu tespit edildi. Çifte bağın yeri HMBC spektrumu ile belirlendi. Ayrıca, C-5 ve C-8 arasında bir peroksit köprüsünün olduğu HMBC ve ¹³C-NMR spektrumu ile belirlendi. ¹³C-NMR, DEPT135, HMBC, COSY spektrumları beraber incelendiğinde yapının tamamı doğrulandı.

¹H-NMR spektrumunda (CDCl₃, 600 MHz) δ 0,79 (3H, *s*, H-18), δ 0,80 (3H, *d*, *J*= 6.5 Hz, H- 27), δ 0,80 (3H, *d*, *J*=7.0 Hz, H-26), δ 0,86 (3H, *s*, H-19), δ 0,88 (3H, d, *J*= 6.5 Hz, H-28) ve δ 0,98 (3H, *d*, *J*=6.5 Hz, H-21)'da 6 tane metil piki görüldü. δ 3,95 (1H, *m*, H-3) ppm'de hidroksil grubuna komşu proton, δ 5,12 (1H, *dd*, *J*=7.5; 15 Hz, H-22) ve δ 5,20 (1H, *dd*, *J*=7.5; 15.0 Hz, H-23)'de vinilik hidrojen pikleri, δ 6.4 (1H, *d*, *J*=8.5 Hz, H-7) ve δ 6.2 (1H, *d*, *J*=8.5 Hz, H-6) olefinik hidrojen pikleri izlendi.

Kütle spektrumunda (EI-MS) (Spektrum 7.), m/z 428 [M]⁺ piki C₂₈H₄₄O₃ yapısını belirtti. Su molekülünün ayrılmasıyla m/z 410'deki piki verdi [428-H₂O]⁺. Literatürde verilen spektral değerler ile karşılaştırıldığında NMR değerleri Çizelge 3.3.'de verilen (1) bileşiğinin ergosterol peroksit olduğu belirlendi (Kim vd., 1997).

C.no.	¹³ C-NMR (δ)		¹ H-NMR (δ)	HMBC (H \rightarrow C)
1	36.9	CH ₂	2,10 (1H, <i>m</i>), 1.91 (1H, <i>m</i>)	C-3, C-4
2	28.6	CH_2	1,75 (1H, <i>m</i>), 1.33 (1H, <i>m</i>)	
3	66.4	CH	3.95 (1H, <i>m</i>)	
4	30.1	CH_2	1,81 (1H, <i>m</i>), 1.50 (1H, <i>m</i>)	
5	79.4	С	-	
6	135.4	CH	6,49 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	C-5, C-8,
7	130.8	CH	6,22 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	C-5, C-8
8	82.1	С	-	
9	39.7	CH	2,01 (1H, <i>m</i>)	
10	35.6	С	-	
11	23.4	CH_2	1,49 (1H, <i>m</i>), 1.20 (1H, <i>m</i>)	
12	28.6	CH_2	1,94 (1H, <i>m</i>), 1.24 (1H, <i>m</i>)	C-13
13	44.6	С	-	
14	51.0	CH	1,55 (1H, <i>m</i>)	C-13, C-18, C-8, C-15
15	34.6	CH_2	1,93 (1H, <i>m</i>), 1.69 (1H, <i>m</i>)	
16	23.6	CH_2	1,44 (1H, <i>m</i>), 1.21 (1H, <i>m</i>)	
17	56.1	CH	1,21 (1H, <i>m</i>)	C-12, C-13, C-14, C-18
18	12.8	CH_3	0,79 (3H, <i>s</i>)	C-12, C-13, C-17
19	17.5	CH_3	0,86 (3H, <i>s</i>)	C-10, C-5, C-1, C-9
20	39.8	CH	2,01 (1H, <i>m</i>)	C-22, C-23
21	20.8	CH_3	0,98 (3H, d, J = 6.6 Hz)	C-17, C-22
22	135.2	CH	5,14 (1H, d, J = 9 Hz)	C-23, C-21, C-20, C-24
23	132.3	CH	5,19 (1H, <i>d</i> , <i>J</i> = 7.8 Hz)	C-20, C-24
24	42.7	CH	1,83 (1H, <i>m</i>)	C-23
25	33.1	CH	1,44 (1H, <i>m</i>)	
26	19.9	CH_3	0,80 (3H, d, J = 7.0 Hz)	C-25, C-24, C-27
27	19.7	CH_3	0,80 (3H, d, J = 6.5 Hz)	C-25, C-24, C-26
28	18.1	CH_3	0,88 (3H, d, J = 6.5 Hz)	C-25, C-24, C-23

Çizelge 3.3. Ergosterol peroksit (1) NMR spektral değerleri

Şekil 3.2. Ganoderik asit C2 (2)'nin yapısı

İzolasyon çalışmaları sonucunda (2) numaralı bileşik amorf halde 5 mg izole edildi ve yapısı spektroskopik yöntemler kullanılarak aydınlatıldı.

APT spektrumu (CDCl₃ + CD₃OD, 150 MHz, Spektrum 9.) değerlendirildiğinde 7 metil, 7 metilen, 7 metin ve 9 katerner karbon belirlendi. Aşağı alanda δ 158.8, 141.6 ppm'de rezonans olan pikler sırası ile C-8 ve C-9 katerner karbonlarına aittir. C-18, C-19, C-21, C-27 C-28, C-29, C-30 karbonlarına ait olan ve sırasıyla δ 16.8, 19.1, 19.5, 16.8, 27.9, 15.5, 19.2 ppm'de rezonans olan pikler molekülde bulunan 7 adet metil sinyalidir. δ 200.1, 210.1'de rezonans olan pikler sırasıyla C-11, C-23 karbonlarına ait olup yapıda iki tane karbonil grubunun varlığını göstermektedir. δ 77.8,69.1 ve 71.9 ppm'de rezonans olan pikler yapıda üç tane C-3, C-7, C-15 bağlı olan hidroksi grubunu göstermektedir. Ayrıca yapıda δ 178.0'da rezonans olan C-26 karbonu bir karboksilli asite aittir.

¹H- NMR spektrumunda (CDCl₃ + CD₃OD, 600 MHz, Spektrum 8.) δ 0,86 (3H, *s*, H-18) ve 1,13 (3H, *s*, H-19) ile δ 0,91 (3H, *s*, H-28), δ 0,74 (3H, *s*, H-29), δ 1,15 (3H, *s*, H-30), 0,78 (3H, *d*, *J*=6.2 Hz, H-21,) ve δ 1,09 (3H, *d*, *J*=7.1 Hz, H-27) ppm'de rezonans olan pikler karakteristik metil pikleridir. δ 3,08 (1H, *t*, *J*= 8.3 Hz H-3), δ 4,39 (1H, *t*, *J*= 8.8 Hz, H-7) ve δ 4,57 (1H, *t*, *J*= 8.4 Hz, H-15) ppm'de rezonans olan üç tane hidroksi grubuna ait pikler izlenmektedir.

(2) numaralı maddenin yapı tayini COSY (Spektrum 10.), HSQC (Spektrum 11.) spektrumları ile doğrulandı. ¹³C-NMR ve ¹H- NMR spektrumlarına ait korelasyonları

Çizelge 3.4'de verilmektedir. Yapının adı daha önce izole edilen Ganoderik asit C2 (**2**) olarak belirlendi (Kikuchi vd., 1986).

C no.	¹³ C-NMR	Karbon Türü	¹ H-NMR
1	34,5	CH_2	0,83 (1H, <i>d</i> , <i>J</i> =12.5 Hz); 1,61 (1H, <i>m</i>)
2	27,2	CH_2	1,52 (2H, <i>m</i>)
3	77,8	CH	3,08 (1H, <i>t</i> , <i>J</i> = 8.3 Hz)
4	38,4	С	-
5	49,0	СН	0,81 (1H, <i>d</i> , <i>J</i> =12.5 Hz)
6	27,5	CH_2	1,52 (1H, <i>m</i>); 1,99 (1H, <i>m</i>)
7	69,1	CH	4,39 (1H, <i>t</i> , <i>J</i> =8.8 Hz)
8	158,8	С	-
9	141,6	С	-
10	38,4	С	-
11	200,1	С	-
12	51,8	CH_2	2,33 (1H, <i>m</i>); 2,68 (1H, <i>d</i> , <i>J</i> =15 Hz)
13	46,6	С	
14	53,9	С	
15	71,9	СН	4,57 (1H, <i>t</i> , <i>J</i> = 8.4 Hz)
16	35,5	CH_2	1,66 (2H, <i>m</i>)
17	48,0	СН	1,72 (1H, <i>m</i>)
18	16,8	CH ₃	0,86 (3H, <i>s</i>)
19	19,1	CH ₃	1,13 (3H, <i>s</i>)
20	32,5	СН	1,90 (1H, <i>m</i>)
21	19,5	CH ₃	0,78 (3H, <i>d</i> , <i>J</i> = 6.2 Hz)
22	49,6	CH_2	2,16 (1H, <i>q</i> , <i>J</i> = 9.7 Hz); 2,33 (1H, <i>m</i>)
23	210,1	С	-
24	46,9	CH_2	2,35; 2,72 (2H, <i>m</i>)
25	34,8	CH	2,78 (1H, <i>m</i>)
26	178,0	С	-
27	16,8	CH_3	1,09 (3H, <i>d</i> , <i>J</i> = 7.1 Hz)
28	27,9	CH ₃	0,91 (3H, <i>s</i>)
29	15,5	CH ₃	0,74 (3H, <i>s</i>)
30	19,2	CH ₃	1,15 (3H, <i>s</i>)

Çizelge 3.4. Ganoderik asit C2 (2) bileşiğinin NMR spektral verileri

Şekil 3.3. Ganoderik asit G (3)'nin yapısı

GRA-F3 fraksiyonundan elde edilen GRM-9 (**3**) kodlu bileşik 5,2 mg ince tabaka kromatografisinde, UV lamba (254 nm) altında görülmekle birlikte serik sülfat belirteci püskürtülüp yakıldığında (105°C) pembemsi bir renk görüldü.

APT spektrumu (CDCl₃ + CD₃OD, 150 MHz, Spektrum 14.) değerlendirildiğinde 7 metil, 7 metilen, 6 metin ve 10 katerner karbon belirlendi. Aşağı alanda δ 199.7, 216.1 ve 208.8 ppm'de rezonans olan pikler sırası ile C-11, C-15 ve C-23 karbonlarına ait olup, bu da yapıda üç tane karbonil grubu olduğunu gösterdi. δ 184.2 ppm'de rezonans olan C-26 karbonuna ait karboksilli asit piki izlendi. C-18, C-19, C-21, C-27, C-28, C-29, C-30 karbonlarına ait olan sinyaller sırasıyla δ 16.9, 18.6, 19.5, 16.9, 27.6, 15.6, 21.0, ppm'de rezonans olmaktadırlar. Bunlar molekülde bulunan 7 adet metil sinyalidir. Aşağı alanda δ 155.5, 140.0 ppm'de rezonans olan pikler sırası ile C-8 ve C-9 katerner karbonlarına ait olup yapıda bir tane halka içinde çift bağ olduğunu göstermektedir.

¹H-NMR spektrumunda (CDCl₃ + CD₃OD, 600 MHz, Spektrum 13.) δ 0,71 (3H, *s*, H-18), δ 1,16 (3H, *s*, H-19), δ 0,96 (3H, *s*, H-28), δ 0,77 (3H, *s* H-29), δ 2,03 (3H, *s*, H-30), δ 1,29 (3H, *d*, *j*=6,4 Hz H-21) ve δ 1,13 (3H, *d*, *J*=7.5 Hz, H-27) ppm'de 7 tane metil piki görüldü. δ 3,10 (1H, *dd*, *J*= 8.2 Hz, H-3) ve δ 4,45 (1H, *m*, H-7) ppm'de rezonans olan iki tane hidroksi grubuna ait pikler görülmektedir.

¹H- ve ¹³C-NMR (Spektrum 13. ve Spektrum 14.), COSY (Spektrum 15.), HSQC (Spektrum 16.), HMBC (Spektrum 17.), spektrumları değerlendirildiğinde ve

litreratür verileri ile karşılaştırıldığında GRM-9 (**3**) kodlu bileşiğin asit taşıyan tetrasiklik triterpen yapısında olan "Ganoderik asit G" olduğu belirlendi (Çizelge 3.5.) (Komoda vd., 1985).

C no.	¹³ C-NMR	Karbon Türü	¹ H-NMR
1	34,9	CH_2	2,7 (1H, <i>m</i>); 0,99 (1H, <i>m</i>)
2	26,8	CH_2	1,60 (1H, <i>m</i>); 2,20 (1H, <i>m</i>)
3	78,2	CH	3, 10 (1H, dd , J = 8.2 Hz)
4	38,8	С	-
5	48,5	CH	0,83 (1H, <i>d</i> , <i>J</i> = 13.5 Hz)
6	27,8	CH_2	1,58 (1H, <i>m</i>)
7	69,1	CH	4,45 (1H, <i>m</i>)
8	155,5	С	-
9	140,1	С	-
10	37,7	С	
11	199,7	С	
12	80,3	CH	4,20 (1H, <i>m</i>)
13	49,0	С	-
14	58,5	С	-
15	216,1	С	-
16	42,1	CH_2	2,04; 2,64 (2H, <i>dd</i> , <i>J</i> =5.1; 18.5 Hz)
17	47,4	CH	2,13 (1H, <i>m</i>)
18	16,9	CH ₃	0.71 (3H, <i>s</i>)
19	18,6	CH ₃	1,16 (3H, <i>s</i>)
20	30,6	CH	2,02 (1H, <i>m</i>)
21	19,5	CH ₃	1,29 (3H, <i>d</i> , <i>j</i> = 6,4 Hz)
22	52,1	CH_2	2,82 (2H, <i>m</i>)
23	208,8	С	-
24	47,3	CH_2	2,41 (1H, <i>dd</i> , <i>J</i> = 2.5; 17.3 Hz); 2,79 (1H, <i>m</i>)
25	34,4	CH	2,90 (1H, <i>h</i> , <i>J</i> = 6.0 Hz)
26	184,2	С	-
27	16,9	CH_3	1,13 (3H, <i>d</i> , <i>J</i> =7.5 Hz)
28	27,6	CH_3	0,96 (3H, <i>s</i>)
29	15,6	CH_3	0,77 (3H, <i>s</i>)
30	21.0	CH_3	2.03 (3H, <i>s</i>)

Çizelge 3.5. Ganoderik asit G (3) bileşiğinin NMR spektral verileri

Şekil 3.4. Ganoderik asit B (4)'ün yapısı

Beyaz renkli olan GRM-8 (4) kodlu bileşik (10 mg) amorf halde elde edildi. İnce tabaka kromatografisinde, UV lamba (254 nm) altında koyu bir halka şeklinde görünen bileşik serik sülfat belirteci püskürtülüp yakıldığında (105°C) mor renk aldı. ¹³C-NMR spektrumu (CDCl₃, 150 MHz, Spektrum 19.) değerlendirildiğinde 7 metil, 7 metilen, 6 metin ve 10 katerner karbon belirlendi. Aşağı alanda δ 197.9, 217.5 ve 207.8 ppm'de rezonans olan pikler sırası ile C-11, C-15 ve C-23 karbonlarına ait olup, bu da yapıda üç tane keton grubu olduğunu gösterdi. δ 180.1 ppm'de rezonans olan pikler sırasıyla δ 17.4, 18.4, 19.6, 16.9, 28.1, 15.4, 24.4, ppm'de rezonans olan pikler molekülde bulunan 7 adet metil karbonunun sinyalleridir. Aşağı alanda δ 156.9, 142.7 ppm'de rezonans olan pikler sırası ile C-9 katerner karbonlarına ait olup yapıda bir tane halka içinde çift bağ olduğunu göstermektedir.

¹H- NMR spektrumunda (CDCl₃, 600 MHz, Spektrum 18.) δ 0,99 (3H, *s*, H-18) ve 1,21 (3H, *s*, H-19) ile δ 1,03 (3H, *s*, H-28), δ 0,85 (3H, *s*, H-29), δ 1,34 (3H, *s*, H-30) 0,99 (3H, *dd*, *J*=6.5 Hz, H-21), ve δ 1,22 (3H, *d*, *J*=7.8 Hz, H-27) ppm'de rezonans olan pikler karakteristik metil pikleridir. δ 3,09 (1H, *dd*, *J*= 8.3 Hz, H-3), δ 4,79 (1H, *t*, *J*=8.7 Hz, H-7) ppm'de rezonans olan iki tane hidroksi grubuna ait pikler görülmektedir.

¹³C-NMR ve ¹H-NMR spektrumlarına ait korelasyonları Çizelge 3.6.'da verilen GRM-8 (4) kodlu maddenin yapı tayini COSY (Spektrum 20.), HSQC (Spektrum

21.) ve HMBC (Spektrum 22.) spektrumları ve literatür araştırmasıyla tamamen belirlendi ve yapının "Ganoderik asit B" olduğu tespit edildi (Kubato vd., 1982).

C no.	¹³ C-NMR	Karbon Türü	¹ H-NMR
1	34,8	CH_2	2,8 (1H, <i>m</i>); 0,98 (1H, <i>m</i>)
2	26,6	CH_2	1,61 (1H, <i>m</i>); 2,18 (1H, <i>m</i>)
3	78,3	CH	3, 09 (1H, <i>dd</i> , <i>J</i> = 8.3 Hz)
4	38,6	С	-
5	49,1	CH	0,86 (1H, <i>d</i> , <i>J</i> = 13.7 Hz)
6	27,6	CH_2	1,65 (1H, <i>m</i>)
7	66,9	CH	4,79 (1H, <i>t</i> , <i>J</i> =8.7 Hz)
8	156,9	С	-
9	142,7	С	-
10	38,8	С	-
11	197,9	С	-
12	50,3	CH_2	2,70; 2,75 (2H, <i>d</i> , <i>J</i> =16.9 Hz)
13	45,3	С	
14	53,4	С	
15	217,5	С	
16	40,9	CH_2	2,04;2,64(2H, <i>dd</i> , <i>J</i> =5.1; 18.5 Hz)
17	45,5	СН	2,13 (1H, <i>m</i>)
18	17,4	CH ₃	0,99 (3H, <i>s</i>)
19	18,4	CH ₃	1,21 (3H, <i>s</i>)
20	32,0	СН	2,13 (1H, <i>m</i>)
21	19,6	CH ₃	0,99 (3H, <i>dd</i> , <i>J</i> =6.5 Hz)
22	49,0	CH_2	2,36 (2H, <i>br</i> , <i>s</i>)
23	207,8	С	-
24	46,6	CH_2	2,43 (1H, <i>dd</i> , <i>J</i> =2.6; 17.5 Hz); 2,82 (1H, <i>m</i>)
25	34,5	CH	2,97 (1H, <i>h</i> , <i>J</i> = 6.0 Hz)
26	180,1	С	-
27	16,9	CH_3	1,22 (3H, <i>d</i> , <i>J</i> =7.8 Hz)
28	28,1	CH_3	1,03 (3H, <i>s</i>)
29	15,4	CH_3	0,85 (3H, <i>s</i>)
30	24,4	CH ₃	1,34 (3H, <i>s</i>)

Çizelge 3.6. Ganoderik asit B (4) bileşiğinin NMR spektral verileri

Şekil 3.5. Ganoderik asit A (5)'nın yapısı

İzolasyon çalışmaları sonucunda elde edilen GRM-5 (5) kodlu madde amorf halde 9,2 mg elde edildi ve yapısı spektroskopik yöntemler kullanılarak aydınlatıldı.

¹³C-NMR spektrumu (CDCl₃, 150 MHz, Spektrum 24.) değerlendirildiğinde 7 metil, 7 metilen, 6 metin ve 10 katerner karbon belirlendi. Aşağı alanda δ 161.1, 139.8 ppm'de rezonans olan pikler sırası ile C-8 ve C-9 karbonlarına aittir. C-18, C-19, C-21, C-27, C-28, C-29, C-30 karbonlarına ait olan sinyaller sırasıyla δ 17.0, 19.3, 19.2, 16.9, 27.2, 20.4, 19.4 ppm'de rezonans olan pikler molekülde bulunan 7 adet metilin karbonlarına ait sinyallerdir. δ 218.3 (C-3), 200.1 (C-11), 209.4 (C-23) ppm'de aşağı alanda rezonans olan pikler yapıda bulunan üç tane keton grubunun varlığını göstermektedir. Ayrıca δ 178.0 (C-26) ppm'de rezonans olan bir adet karboksilli asit karbonuna ait pik de spektrumdan izlenmektedir.

¹H- NMR spektrumunda (CDCl₃, 600 MHz, Spektrum 23.) δ 0,89 (3H, *s*, H-18) ve 1,16 (3H, *s*, H-19), δ 1,02 (3H, *s*, H-28), δ 1,00 (3H, *s*, H-29), δ 1,14 (3H, *s*, H-30), 0,78 (3H, *d*, *J*=5.5 Hz, H-21), ve δ 1,10 (3H, *d*, *J*=6.7 Hz, H-25) ppm'de rezonans olan pikler lanostan tipi triterpenlerde karakteristik metil piklerine ait sinyallerdir.

¹³C-NMR ve ¹H- NMR spektrumlarına ait korelasyonları Çizelge 3.7.'de verilen (**5**) numaralı maddenin yapı tayini COSY (Spektrum 25.) HSQC (Spektrum 26.) ve HMBC (Spektrum 27.) spektrumları ve literatür yardımıyla yapının "Ganoderik asit A" olduğu doğrulandı (Kubato vd., 1982).

C.no.	¹³ C-NMR (δ)	Karbon Türü	¹ H-NMR (δ)
1	34,2	CH_2	2,40 (2H, <i>m</i>)
2	35,4	CH_2	1,38; 1,72 (2H, <i>m</i>)
3	218,3	С	-
4	46,5	С	-
5	48,6	СН	1,60 (1H, <i>s</i>)
6	28,4	CH_2	1,59 (1H, <i>br</i> , <i>s</i>); 1,92 (1H, <i>m</i>)
7	68,4	CH	4,60 (1H, <i>t</i> , <i>J</i> = 7.7 Hz)
8	161,1	С	-
9	139,8	С	-
10	37,8	С	-
11	200,1	С	-
12	51,6	CH_2	2,28 (1H, <i>m</i>); 2,65 (1H, <i>d</i> , <i>J</i> =15.8 Hz)
13	46,6	С	-
14	53,9	С	-
15	71,8	CH	4,47 (1H, <i>t</i> , <i>J</i> =8.9 Hz)
16	35,4	CH_2	1,69 (2H, <i>m</i>)
17	47,9	CH	1,73 (1H, <i>m</i>)
18	17,0	CH ₃	0,89 (3H, <i>s</i>)
19	19,3	CH ₃	1,16 (3H, <i>s</i>)
20	32,5	CH	1,92 (1H, <i>m</i>)
21	19,2	CH_3	0,78 (3H, <i>d</i> , <i>J</i> = 5.5 Hz)
22	49,6	CH_2	2,17 (1H, <i>q</i> , <i>J</i> =9.7 Hz); 2,34 (1H, <i>m</i>)
23	209,4	С	-
24	46,5	CH_2	2,36; 2,73 (2H, <i>m</i>)
25	34,5	CH	2,82 (1H, <i>q</i> , <i>J</i> = 6.0 Hz)
26	178,0	С	-
27	16,9	CH ₃	1,10 (3H, <i>d</i> , <i>J</i> = 6.7 Hz)
28	27,2	CH ₃	1,02 (3H, <i>s</i>)
29	20,4	CH ₃	1,00 (3H, <i>s</i>)
30	19.4	CH_3	1.14(3H, s)

Çizelge 3.7. Ganoderik asit A (5)'nın NMR spektral verileri

Şekil 3.6. Ganoderenik asit D (6)'nın yapısı

GRA-F4 fraksiyonunun preparatif HPLC ile saflaştırılmasıyla elde edilen GRM-11(6) kodlu bileşik (4,8 mg) beyaz amorf katı olarak elde edildi.

APT spektrumu (CDCl₃, 150 MHz, Spektrum 29.) değerlendirildiğinde 7 metil, 6 metilen, 5 metin ve 12 katerner karbon belirlendi. C-18, C-19, C-21, C-27, C-28, C-29, C-30, karbonlarına ait olan ve sırasıyla δ 19.0, 18.1, 20.7, 17.0, 27.0, 20.7, 24.7 ppm'de rezonans olan pikler molekülde bulunan 7 adet metile ait sinyallerdir.

Aşağı alanda δ 216.5 (C-3), 196.9 (C-11), 216.4 (C-15) ve 197.9 (C-23) ppm'de rezonans olan pikler yapıda dört tane keton grubunun olduğunu göstermektedir. δ 153.9 ve δ 124.6 ppm'de rezonans olan pikler C-20 ve C-22 karbonlarına bağlı ve δ 157.4 ve 141.3 ppm'de rezonans olan pikler C-8 ve C-9 karbonlarına bağlı iki tane çift bağın varlığını göstermektedir.

¹H- NMR spektrumunda (CDCl₃, 600 MHz, Spektrum 28.) δ 0,89 (3H, *s*, H-18) ve 1,25 (3H, *s*, H-19) ile δ 1,13 (3H, *s*, H-28), δ 1,11 (3H, *s*, H-29), δ 1,40 (3H, *s*, H-30), 2,17 (3H, *s*, H-21), ve δ 1,25 (3H, *d*, *J*=6.8 Hz, H-27) ppm'de rezonans olan pikler karakteristik metil pikleridir. δ 4,88 (1H, *t*, *J*= 8.8 Hz, H-7) ppm'de rezonans olan pik hidroksi grubuna bağlı karbonun hidrojenine aittir.

¹³C-NMR ve ¹H- NMR spektrumlarına ait korelasyonları Çizelge 3.8.'de verilen (6) kodlu bileşiğin yapı tayini COSY (Spektrum 30.), HSQC (Spektrum 31.), HMBC (Spektrum 32.) spektrumları ve literatür araştırmasıyla yapının "Ganoderenik asit D" olduğu doğrulandı (Komoda vd., 1985).

C no.	¹³ C-NMR	Karbon Türü	¹ H-NMR
1	34,2	CH_2	2,47 (1H, <i>m</i>); 2,52(1H, <i>m</i>)
2	35,6	CH_2	1,47(1H, <i>m</i>); 2,94(1H, <i>m</i>)
3	216,5	С	-
4	46,7	С	-
5	48,9	CH	1,57 (1H, <i>d</i> , <i>J</i> =13.5 Hz)
6	27,6	CH_2	1,67 (1H,q, J=12.3 Hz); 2,12 (1H,t, J=8.82 Hz)
7	66,3	CH	4,88 (1H, <i>t</i> , <i>J</i> = 8.8 Hz)
8	157,4	С	-
9	141,3	С	-
10	38,3	С	-
11	196,9	С	-
12	48,9	CH_2	2,63(1H, <i>m</i>); 2,84 (1H, <i>m</i>)
13	45,9	С	-
14	58,6	С	-
15	216,4	С	-
16	37,8	CH_2	2,65 (2H, <i>m</i>)
17	49,7	СН	3,08 (1H, <i>t</i> , <i>J</i> = 9.4 Hz)
18	19,0	CH ₃	0.89 (3H, <i>s</i>)
19	18,1	CH_3	1,25 (3H, <i>s</i>)
20	153,9	С	-
21	20,7	CH ₃	2,17 (3H, s)
22	124,6	СН	6,04 (1H, <i>m</i>)
23	197,9	С	-
24	47,5	CH_2	2,55(2H, <i>m</i>)
25	34,6	СН	3,00 (1H, <i>m</i>)
26	179,8	С	-
27	17,0	CH ₃	1,25 (3H, <i>d</i> , <i>J</i> = 6.8 Hz)
28	27,0	CH_3	1,13 (3H, <i>s</i>)
29	20,7	CH ₃	1,11 (3H, <i>s</i>)
30	24,7	CH ₃	1.40 (3H, <i>s</i>)

Çizelge 3.8. Ganoderenik asit D (6) bileşiğinin NMR spektral verileri

3.2.2.7. GRM-10 (7) kodlu maddenin yapı tayini

Şekil 3.7. Ganoderenik asit C (7)'nin yapısı

GRA-F4 fraksiyonunun preparatif HPLC ile saflaştırılmasıyla elde edilen GRM-10(7) kodlu bileşik (1,8 mg) beyaz amorf katı olarak elde edildi.

APT spektrumu (CDCl₃ + CD₃OD, 150 MHz, Spektrum 34.) değerlendirildiğinde 7 metil, 6 metilen, 7 metin ve 10 katerner karbon belirlendi. C-18, C-19, C-21, C-27, C-28, C-29, C-30, karbonlarına ait olan ve sırasıyla δ 12.0, 23.1, 21.4, 17.1, 15.4, 28.0, 18.8 ppm'de rezonans olan pikler molekülde bulunan 7 adet metile ait sinyallerdir.

Aşağı alanda 217.4 (C-11) ve 199.6 (C-23) ppm'de rezonans olan pikler yapıda iki tane keton grubunun olduğunu göstermektedir. δ 156.9 ve δ 123.9 ppm'de rezonans olan pikler C-20 ve C-22 karbonlarına bağlı ve δ 156.9 ve 142.4 ppm'de rezonans olan pikler C-8 ve C-9 karbonlarına bağlı iki tane çift bağın varlığını göstermektedir. ¹H- NMR spektrumunda (CDCl₃ + CD₃OD, 600 MHz, Spektrum 33.) δ 0,79 (3H, *s*, H-18) ve 1,44 (3H, *s*, H-19) ile δ 0,87 (3H, *s*, H-28), δ 1,03 (3H, *s*, H-29), δ 1,30 (3H, *s*, H-30) ve 1,14 (3H, *d*, *j*= 7.1 Hz, H-21), δ 1,21 (3H, *d*, *J*=7.1 Hz, H-27) ppm'de rezonans olan pikler karakteristik metil pikleridir. δ 4,77 (1H, *t*, *J*= 8.3 Hz, H-7) ve δ 4,34 (1H, *s*, H-15) ppm'de rezonans olan pikler hidroksi grubuna bağlı karbonun hidrojenine aittir.

¹³C-NMR ve ¹H- NMR spektrumlarına ait korelasyonları Çizelge 3.9.'de verilen (7) kodlu bileşiğin yapı tayini COSY (Spektrum 35.), HSQC (Spektrum 36.), HMBC (Spektrum 37.) spektrumları ve literatür araştırmasıyla yapının "Ganoderenik asit D" olduğu doğrulandı (Komoda vd., 1985).

C.no.	¹³ C-NMR (δ)	Karbon Türü	¹ H-NMR (δ)
1	34,6	CH_2	0,91 (1H, <i>m</i>); 2,61 (1H, <i>m</i>)
2	27,1	$\tilde{CH_2}$	1,66 (2H, <i>m</i>)
3	78,0	CH	3,20 (1H, t, j=6.7 Hz)
4	38,7	С	-
5	49,2	CH	0,87 (1H, <i>m</i>)
6	26,8	CH_2	2,23 (2H, <i>m</i>)
7	66,4	СН	4,77 (1H, $t, j = 8.3$ Hz)
8	156,9	С	-
9	142,4	С	-
10	38,2	С	-
11	217,4	С	-
12	48,6	CH_2	2,53 (2H, <i>m</i>)
13	46,5	С	-
14	51,9	С	-
15	78,0	CH	4,34 (1H, <i>s</i>)
16	38,2	CH_2	2,64 (1H, <i>m</i>); 2,15 (1H, <i>m</i>)
17	45,9	CH	2,58 (1H, <i>m</i>)
18	12,0	CH ₃	0,79 (3H, <i>s</i>)
19	23,1	CH ₃	1,44 (3H, <i>s</i>)
20	156,9	С	-
21	21,4	CH_3	1,14 (3H, <i>d</i> , <i>j</i> = 7.1 Hz)
22	123,9	СН	5,62 (1H, <i>m</i>)
23	199,6	С	
24	38,3	CH_2	2,64 (2H, <i>m</i>)
25	34,9	СН	2,95 (1H, <i>m</i>)
26	178,5	С	
27	17,1	CH ₃	1,21 (3H, d, J = 7.1 Hz)
28	15,4	CH ₃	0,87 (3H, <i>s</i>)
29	28,0	CH ₃	1,03 (3H, <i>s</i>)
30	18,8	CH_3	1,30 (3H, s)

Çizelge 3.9. Ganoderenik asit C (7) bileşiğinin NMR spektral verileri

Şekil 3.8. Ganoderik asit D (8)'nin yapısı

GRA-F4 fraksiyonundan preparatif HPLC ile çalışılmasıyla elde eidlen GRM-7 (8) kodlu madde amorf halde 3,8 mg elde edildi ve yapısı spektroskopik yöntemler kullanılarak aydınlatıldı.

APT spektrumu (CDCl₃, 150 MHz, Spektrum 39.) değerlendirildiğinde 7 metil, 7 metilen, 5 metin ve 11 katerner karbon belirlendi. Aşağı alanda δ 157.8 (C-8) ve 141.2 (C-9) ppm'de rezonans olan pikler halka içindeki bir çifte bağa aittir. C-18, C-19, C-21, C-27, C-28, C-29, C-30 karbonlarına ait olan pikler ve sırasıyla δ 17.7, 18.1, 19.6, 16.9, 27.0, 20.7, 24.7 ppm'de rezonans olmaktadır. δ 217.5 (C-3), 197.6 (C-11), 216.6 (C-15), 207.6 (C-23) ppm'de aşağı alanda rezonans olan pikler yapıda bulunan dört tane keton grubunun varlığını göstermektedir. Ayrıca δ 179.3 (C-26) ppm'de rezonans olan bir karboksilli asit karbonuna ait pik de spektrumdan izlenmektedir.

¹H- NMR spektrumunda (CDCl₃, 600 MHz, MeOH, Spektrum 38.) δ 1,03 (3H, *s*, H-18), δ 1,26 (3H, *s*, H-19), δ 1,11 (3H, *s*, C-29), δ 1,34 (3H, *s*, C-30), δ 1,00 (3H, *d*, *j*=4.2 Hz, H-21), δ 1,24 (3H, *d*, *j*=7.2 Hz, C-27) ppm'de rezonanas olan pikler karakteristik metil pikleridir. δ 4,84 (1H, d, j= 8.88 Hz, H-7) ppm'de rezonans olan pik hidroksi grubuna bağlı karbonun hidrojenine aittir.

¹³C-NMR ve ¹H- NMR spektrumlarına ait korelasyonları Çizelge 3.10.'da verilen GRM-7 (8) kodlu maddenin yapı tayini COSY (Spektrum 40.), HSQC (Spektrum 41.) ve HMBC (Spektrum 42.) spektrumları ve literatür araştırmasıyla yapının "Ganoderik asit D" olduğu doğrulandı. (Nishitoba vd., 1985b).

C.no.	13 C-NMR (δ)	Karbon türü	¹ H-NMR (δ)	HMBC (H \rightarrow C)
1	35,6	CH_2	2,95 (1H, <i>m</i>), 1,47 (1H, <i>m</i>)	C-15
2	34,3	CH_2	2,52 (1H, <i>m</i>), 2,46 (1H, <i>m</i>)	C-15, C-26
3	217,5	С	-	
4	46,8	С	-	
5	48,9	CH	1,56 (1H, <i>d</i> , <i>J</i> = 13.6 Hz)	C-7
6	27,6	CH_2	2,10 (1H, <i>m</i>), 1,67 (1H, <i>q</i> , <i>J</i> = 12.7 Hz)	C-7, C-8
7	66,3	CH	4,84 (1H, d, J = 8.88 Hz)	C-9
8	157,8	С	-	
9	141,2	С	-	
10	38,3	С	-	
11	197,6	С	-	
12	50,1	CH_2	2,74 (2H, q , J = 17.4 Hz)	C-11
13	45,0	С	-	
14	59,3	С	-	
15	216,6	С		
16	41,0	CH ₂	2,66 (1H, <i>dd</i> , <i>J</i> = 17.8; 4.74 Hz), 2,09 (1H, <i>m</i>)	C-3
17	45,6	СН	2,14 (1H, <i>m</i>)	
18	17,7	CH ₃	1,03 (3H, <i>s</i>)	
19	18,1	CH_3	1,26 (3H, <i>s</i>)	C-9
20	32,0	CH	2,15 (1H, <i>m</i>)	
21	19,6	CH ₃	1,00 (3H, d, J = 4.2 Hz)	
22	48,9	CH_2	2,38 (2H, <i>br.s</i>)	C-26
23	207,6	С		
24	46,6	CH ₂	2,83 (1H, <i>dd</i> , <i>J</i> = 17.9; 8.8 Hz), 2.46 (1H, <i>m</i>)	C-26, C-30
25	34,3	СН	2.99 (1H, m)	
26	179,3	С	-	
27	16,9	CH ₃	1,24 (3H, d, J = 7.2 Hz)	C-30
28	27,0	CH ₃	1,12 (3H, <i>m</i>)	C-15
29	20,7	CH_3	1,11 (3H, <i>s</i>)	C-15
30	24,7	CH ₃	1,34 (3H, <i>s</i>)	C-3, C-8

Çizelge 3.10. Ganoderik asit D (8) bileşiğinin NMR spektral verileri

3.2.3. Mantar ekstrelerinin HPLC-DAD analizi sonuçları

3.2.3.1. Aseton ekstrelerinin HPLC-DAD analizi sonuçları

G. lucidum, G. adspersum, G. applanatum ve *G. resinaceum* mantarlarının aseton ekstrelerinin HPLC-DAD profilleri oluşturuldu. Mantar örneklerinin aseton ekstreleri için bir gradient mobil faz sistemi ile 254 nm dalga boyunda kromatogramlar elde edildi. Herbir mantar türüne ait örnek kromatogramlar Şekil 3.9.-Şekil 3.12.'de verildi. Şekil 3.9., *G. lucidum* (1) mantarının, Şekil 3.10., *G. adspersum* (10) mantarının, Şekil 3.11., *G. applanatum* (13) mantarının, Şekil 3.12., *G. resinaceum* (14) mantarının üç ekstraksiyon yöntemi ile elde edilen kromatogramlarıdır.

Şekil 3.9. *G. lucidum* (1) örneği aseton ekstresi HPLC-DAD kromatogramı a) Maserasyon, b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

Şekil 3.10. *G. adspersum* (10) örneği aseton ekstresi HPLC-DAD kromatogramı a) Maserasyon,
b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

Şekil 3.11. *G. applanatum* (13) örneği aseton ekstresi HPLC-DAD kromatogramı a) Maserasyon,
b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

Şekil 3.12. *G. resinaceum* (14) örneği aseton ekstresi HPLC-DAD kromatogramı a) Maserasyon, b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

14 mantar örneğinin maserasyon yöntemiyle hazırlanan aseton ekstrelerinin Şekil 3.13.'de, soxhlet ekstraksiyonuyla hazırlanan ekstrelerin Şekil 3.14.'de ve ultrasonik ekstraksiyon yöntemi ile hazırlanan ekstrelerin parmak izi kromatogramları Şekil 3.15.'de verilmektedir.

Şekil 3.13. Maserasyon yöntemi ile hazırlanan aseton ekstrelerinin parmak izi kromatogramları (Yukarıdan aşağıya sıralama: 1.GL.M, 2.GL.M, 3.GL.M, 4.GL.M, 5.GL.M, 6.GA.M, 7.GA.M, 8.GA.M, 9.GA.M, 10.GA.M, 11.GA.M, 12.GA.M, 13.GAp.M, 14.GR.M ve etanole ait kromatogram)

Şekil 3.14. Soxhlet ekstraksiyon yöntemi ile hazırlanan aseton ekstrelerinin parmak izi kromatogramları (Yukarıdan aşağıya sıralama: 1.GL.S, 2.GL.S, 3.GL.S, 4.GL.S, 5.GL.S, 6.GA.S, 7.GA.S, 8.GA.S, 9.GA.S, 10.GA.S, 11.GA.S, 12.GA.S, 13.GAp.S, 14.GR.S ve etanole ait kromatogram)

Şekil 3.15. Ultrasonik ekstraksiyon yöntemi ile hazırlanan aseton ekstrelerinin parmak izi kromatogramları (Yukarıdan aşağıya sıralama: 1.GL.U, 2.GL.U, 3.GL.U, 4.GL.U, 5.GL.U, 6.GA.U, 7.GA.U, 8.GA.U, 9.GA.U, 10.GA.U, 11.GA.U, 12.GA.U, 13.GAp.U, 14.GR.U ve etanole ait kromatogram)

3.2.3.2. Aseton ekstrelerinin kromatogramlarındaki maddelerin belirlenmesine ilişkin sonuçlar

Ganoderma lucidum, G. adspersum, G. applanatum ve G. resinaceum türlerine ait 14 örneğin 42 adet aseton ekstresinin HPLC-DAD kromatogramlarındaki maddelerinin belirlenmesi amacıyla, fenolik madde standartları (gallik asit (ST2), pirokatekol (ST5), protokateşik asit (ST6), 2-(4-hidroksifenil)etanol (ST7), 4-hidroksibenzoik asit (ST8), vanilik asit (ST12), vanilin (ST14), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), trans-sinnamik asit (ST23), naringenin (ST24), krisin (ST27)) Çizelge 2.8.'de verilen konsantrasyon aralığında hazırlanarak aynı şartlarda HPLC cihazına verildi ve 6 seyreltme yapılarak 6 noktalı kalibrasyon eğrileri oluşturuldu. G. resinaceum mantarından saflaştırılan ergosterol peroksit (1), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7) ve ganoderik asit D (8) Çizelge 2.7'de verilen konsantrasyon aralıklarında hazırlanarak aynı şartlarda HPLC cihazına verildi ve beş seyreltme yapılarak 5 noktalı kalibrasyon eğrileri oluşturuldu. Farklı mantarlardan saflaştırılan diğer maddeler ise 1000 µg/mL konsantrasyonda hazırlanıp (ergosterol (**TA1**), 5α , 6α epoksi ergosta-7,22-dien-3 β -ol (TA2), ergosta-7,9,22 trien-3-O-β-D-glukozit (BA1), ergosta-22-en 3β-ol (BA2), betulinan A (BA3), betulinan B (BA4) ergosta-5,22-dien 3β -ol (ID1) ve ergosta-5,22-dien 3-on (**ID2**), ergosta-5,22-dien $3-O-\beta-D$ -glukopiranosit (**SC1**), ergosta-5,22-dien 3-O- β -D-ksilofuranosil (SC2), ergosta-5,22-dienil 3-O- α -heptanoat (SC3), ergosta-5,22-dienil 3-O- α -12-cis-hegzadekenoat (SC4), ergosta-5,22-dienil 3-O- α dekanoat (SC5)) tek tek enjekte edilerek HPLC-DAD cihazında analizleri gerçekleştirildi. Şekil 3.16.'da etanole (baseline) ait kromatogram verilmektedir. Şekil 3.17.-3.22.'de sırayla, 14 fenolik madde karışımı, G. resinaceum mantarından saflaştırılan triterpenlerin karışımı (2-8), ergosterol peroksit (1), betulinan A (BA3), betulinan B (**BA4**) ve ergosta-5,22-dien $3-O-\beta-D$ -ksilofuranosil (**SC2**) standartlarına ait kromatogramlar yer almaktadır. Diğer maddelere ilişkin kromatogramlarda pik görülmedi. Çalışmamız ile 4 farklı türe ait 14 mantar örneğinin üç farklı ekstraksiyon yöntemi ile hazırlanan aseton ekstrelerinde 14 fenolik maddenin (gallik asit (ST2), pirokatekol (ST5), protokateşik asit (ST6), 2-(4-hidroksifenil)etanol (ST7), 4hidroksibenzoik asit (ST8), vanilik asit (ST12), vanilin (ST14), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), trans-sinnamik asit (ST23), naringenin (ST24), krisin (ST27)) yanısıra ergosterol peroksit (1), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ve ganoderik asit D (8) ve diğer mantarlardan saflaştırılan steroit türevleri (ergosterol (TA1), 5α , 6α epoksi ergosta-7,22-dien-3β-ol (TA2), ergosta-7,9,22 trien-3-O-β-D-glukozit (BA1), ergosta-22-en 3β-ol (**BA2**), betulinan A (**BA3**), betulinan B (**BA4**) ergosta-5,22-dien 3β -ol (ID1) ve ergosta-5,22-dien-3-on (ID2), ergosta-5,22-dien $3-O-\beta-D$ glukopiranosit (SC1), ergosta-5,22-dien 3- $O-\beta$ -D-ksilofuranosil (SC2), ergosta-5,22-dienil 3-O- α -heptanoat (SC3), ergosta-5,22-dienil 3-O- α -12-cis-hegzadekenoat (SC4), ergosta-5,22-dienil 3-O- α -dekanoat (SC5)) için tarama yapıldı. Tespit edilen maddeler Çizelge 3.11.'de $\mu g/g$ cinsinden verildi. Ayrıca aseton ekstreleri için G. lucidum türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.23.-25.'de, G. adspersum türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.26.-28.'de, G. applanatum türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.29.-31.'de ve G. resinaceum türünün maserasyon, soxhlet ve ultrasonik ekstraksiyon ekstrelerine ait örnek kromatogramlar Şekil 3.32.-3.34.'de verilmektedir.

Aseton ekstrelerinin kromatogramlarında yer alan piklerin alıkonma zamanı ve UV spektrumları yukarıda incelenen standart maddelerin alıkonma zamanları ve UV spektrumları ile karşılaştırılarak piklerin hangi maddelere ait oldukları tanımlandı. Bazı *G. adspersum* örneklerinde vanilin, *p*-kumarik asit ve *trans*-hidroksisinnamik asit gibi fenolik bileşiklerin alıkonma zamanları aynı olmasına karşın UV spektrumlarının benzer olmamasından dolayı Çizelge 3.11.'de yer verilmedi.

Şekil 3.16. Etanole ait HPLC-DAD kromatogramı

Şekil 3.17. Fenolik madde standartlarının 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.18. *Ganoderma resinaceum* mantarından saflaştırılan triterpenlerin kromatogramı, ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ganoderik asit D (8)

Şekil 3.19. Ergosterol peroksit (1)'in 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.20. Betulinan A (BA3)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.21. Betulinan B (BA4)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.22. Ergosta-5,22-dien 3-*O-β-D*-ksilofuranosil (SC2)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.23. G. lucidum (1.GL.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.24. G. lucidum (1.GL.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.25. G. lucidum (1.GL.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.26. G. adspersum (8.GA.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.27. G. adspersum (8.GA.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.28. G. adspersum (8.GA.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.29. G. applanatum (13.GAp.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.30. G. applanatum (13.GAp.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.31. G. applanatum (13.GAp.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.32. G. resinaceum (14.GR.M) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.33. G. resinaceum (14.GR.S) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.34. G. resinaceum (14.GR.U) örneğinin aseton ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Maddeler	Alıkonma zamanı	1.GL.M	1.GL.S	1.GL.U	2.GL.M	2. GL.S	2.GL.U	3.GL.M	3.GL.S	3.GL.U	4.GL.M	4.GL.S	4.GL.U	5.GL.M	5.GL.S	5.GL.U
Gallik asit (ST2)	5.50	-	_	-	-	0,17	-	-	-	-	0,25	0,45	0,33	-	-	-
Protokateşik asit (ST6)	7.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pirokatekol (ST5)	8.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,(4-dihidroksifenil)etanol (ST7)	8.40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-hidroksi benzoik asit (ST8)	8.90	0,04*	0,03*	-	0,03*	-	-	0,03*		-	0,07*	0,03*	0,02*	0,01*	-	-
Vanilik asit (ST12)	9.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanilin (ST14)	11.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>p</i> -kumarik asit (ST17)	11.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ferrulik asit (ST18)	12.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-2-hidroksisinnamik asit (ST20)	14.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kumarin (ST19)	15.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-sinnamik asit (ST23)	21.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naringenin (ST24)	28.48	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ganoderenik asit C (7)	29.40	0,16*	-	-	2,64	0,83	tr	0,39	-	-	-	tr	-	0,10*	0,06*	2,13
Ganoderik asit C2 (2)	30.40	-	-	-	1,74	1,86	0,69	0,17*	tr	-	-	-	-	-	-	-
Ganoderik asit G (3)	32.60	tr	tr		2,60	2,68	1,08	1,85	0,66	tr	tr	0,22*	1,12	3,36	1,53	1,13
Ganoderik asit B (4)	33.93	3,43	4,62	2,41	7,00	6,64	3,78	8,76	5,88	4,57	2,90	2,02	1,33	4,84	1,98	4,13
Ganoderik asit A (5)	35.20	0,14*	0,29	tr	3,95	3,48	2,17	1,73	tr	tr	0,99	tr	0,32	2,12	2,23	5,27
Ganoderenik asit D (6)	36.85	tr	tr	tr	tr	tr	tr	0,53	tr	0,08*	tr	tr	0,33	0,85	0,66	1,06
Gonoderik asit D (8)	37.85	1,72	4,13	2,59	0,92	7,22	9,48	3,08	7,53	6,26	0,61	9,07	6,76	0,21*	10,7	12,7
Krisin (ST27)	38.30	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Betulinan A (BA3)	45.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Betulinan B (BA4)	45.86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ergosta-5,22-dien 3- O - β - D -ksilofuranosil (SC2)	72.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ergosterol peroksit (1)	74.05	8,81	15,4	30,9	5,89	7,57	17,6	16,8	14,7	20,9	8,16	14,3	10,8	3,00	4,62	10,6

Çizelge 3.11. Aseton ektrelerinin HPLC-DAD kromatogramlarında yer alan maddelerin miktarları (µg/g)

- tespit edilemedi. *tr* iz miktarda.

* μ g/mL cinsinden sonuca göre LOD değerinin altında.

Çizelge 3.11. (Devam)

Maddeler	Alıkonma zamanı	6.GA.M	6.GA.S	6.GA.U	7.GA.M	7. GA.S	7.GA.U	8.GA.M	8.GA.S	8.GA.U	9.GA.M	9.GA.S	9.GA.U	10.GA.M	10.GA.S	10.GA.U
Gallik asit (ST2)	5.50	-	-	0,27	-	-	0,23		0,22	0,20	0,29	0,58	0,46		0,73	0,64
Protokateşik asit (ST6)	7.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pirokatekol (ST5)	8.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,(4-dihidroksifenil)etanol (ST7)	8.40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-hidroksi benzoik asit (ST8)	8.90	0,08*	0,19*	0,03*	0,06*	0,41	0,24 *	0,27	0,72	0,63	0,07*	0,17*	0,63	0,47	1,08	0,81
Vanilik asit (ST12)	9.80	0,12*	0,07*	-	-	-	-	-	-	-	0,03*	-	-	-	-	_
Vanilin (ST14)	11.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>p</i> -kumarik asit (ST17)	11.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ferrulik asit (ST18)	12.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-2-hidroksisinnamik asit (ST20)	14.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kumarin (ST19)	15.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-sinnamik asit (ST23)	21.60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naringenin (ST24)	28.48	-	-	4,59	-	4,39	12,9	-	2,97	-	-	-	-	-	11,0	-
Ganoderenik asit C (7)	29.40	6,50	8,57	1,73	3,34	11,9	12,2	10,7	14,9	8,48	0,45	0,42	2,10	3,29	1,63	0,14*
Ganoderik asit C2 (2)	30.40	-	-	-	-	-	-	-	tr	-	7,20	-	-	-	-	-
Ganoderik asit G (3)	32.60	20,2	140	19,1	17,5	53,6	48,4	42,7	51,2	28,7	3,19	4,12	2,25	18,4	11,6	5,27
Ganoderik asit B (4)	33.93	43,0	81,1	36,9	42,7	128	155	173	245	208	87,3	161	147	47,0	90,6	41,7
Ganoderik asit A (5)	35.20	6,95	9,50	2,30	tr	11,1	5,75	8,17	tr	tr	3,79	7,29	3,32	0,48	0,41	tr
Ganoderenik asit D (6)	36.85	1,84	6,51	2,52	3,95	14,2	19,9	14,5	22,1	27,0	10,0	22,3	24,6	3,80	8,94	3,74
Gonoderik asit D (8)	37.85	6,11	25,4	9,19	1,12	5,22	9,11	2,49	12,6	6,85	tr	22,4	14,1	2,24	1,28	tr
Krisin (ST27)	38.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Betulinan A (BA3)	45.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Betulinan B (BA4)	45.86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ergosta-5,22-dien 3- O - β - D -ksilofuranosil (SC2)	72.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ergosterol peroksit (1)	74.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

- tespit edilemedi. *tr* iz miktarda.

* µg/mL cinsinden sonuca göre LOD değerinin altında.

Çizelge 3.11. (Devam)

Maddeler	Alıkonma zamanı	11.GA.M	11.GA.S	11.GA.U	12.GA.M	12. GA.S	12.GA.U	13.GAp.M	13.GAp.S	13.GAp.U	14.GR.M	14.GR.S	14.GR.U
Gallik asit (ST2)	5.50	0,28	0,78	0,47	-	0,29	0,23	-	-	-	0,56	0,83	0,58
Protokateşik asit (ST6)	7.20	-	-	-	-	-	-	-	-	-	0,14	0,11	0,05*
Pirokatekol (ST5)	8.20	-	-	-	-	-	-	-	-	-	-	-	-
2,(4-dihidroksifenil)etanol (ST7)	8.40	-	-	-	-	-	-	-	-	-	-	-	-
4-hidroksi benzoik asit (ST8)	8.90	0,69	1,17	1,51	0,37	0,38	0,41	0,09*	0,11*	0,01*	0,02*	0,28	0,08*
Vanilik asit (ST12)	9.80	-	-	-	-	-	-	0,07*	-	-	-	-	-
Vanilin (ST14)	11.20	-	-	-	-	-	-	-	-	-	-	-	-
<i>p</i> -kumarik asit (ST17)	11.60	-	-	-	-	-	-	-	-	-	-	-	-
Ferrulik asit (ST18)	12.30	-	-	-	-	-	-	-	-	-	-	-	-
trans-2-hidroksisinnamik asit (ST20)	14.25	-	-	-	-	-	-	-	-	-	-	-	-
Kumarin (ST19)	15.80	-	-	-	-	-	-	-	-	-	-	-	-
trans-sinnamik asit (ST23)	21.60	-	-	-	-	-	-	-	-	-	-	-	-
Naringenin (ST24)	28.48	-	-	-	-	-	-	-	-	-	-	-	-
Ganoderenik asit C (7)	29.40	1,77	0,79	3,44	2,08	2,39	7,87	0,93	1,58	0,34	2,99	2,24	0,59
Ganoderik asit C2 (2)	30.40	-	-	-	-	-	-	2,77	-	-	0,56	0,10*	tr
Ganoderik asit G (3)	32.60	17,2	5,86	10,4	19,5	13,6	23,8	20,8	20,4	16,6	2,52	2,03	tr
Ganoderik asit B (4)	33.93	49,6	43,4	56,4	82,6	84,2	106	27,3	45,9	23,9	13,9	13,8	9,20
Ganoderik asit A (5)	35.20	tr	tr	0,85	2,23	1,59	2,04	1,83	tr	1,33	10,8	9,45	5,04
Ganoderenik asit D (6)	36.85	5,11	4,64	5,56	7,36	11,1	13,8	2,61	6,06	3,41	0,30	0,39	tr
Gonoderik asit D (8)	37.85	7,97	4,13	5,69	2,78	1,43	1,88	2,94	2,84	4,64	4,28	6,11	5,75
Krisin (ST27)	38.30	-	-	-	-	-	-	-	-	-	-	-	-
Betulinan A (BA3)	45.80	-	-	-	-	-	-	-	-	-	-	-	-
Betulinan B (BA4)	45.86	-	-	-	-	-	-	-	-	-	-	-	-
Ergosta-5,22-dien 3- O - β - D -ksilofuranosil (SC2)	72.50	-	-	-	-	-	-	-	-	-	-	-	-
Ergosterol peroksit (1)	74.05	-	-	-	-	-	-	-	-	2,05	6,88	9,38	12,0

- tespit edilemedi. *tr* iz miktarda.

* µg/mL cinsinden sonuca göre LOD değerinin altında.

G.lucidum, G. adspersum, G. applanatum ve G. resinaceum mantarlarından elde edilen aseton ekstrelerinin HPLC-DAD kromatogramlarındaki bileşenlerin belirlenebilmesi için fenolik bileşenler (ST2-ST27), triterpenler (2-8) ve steroitler ile steroit glikozit maddelerinin taraması yapıldı. G. lucidum (3,00-30,9 µg/g) mantarı ve G. resinaceum (6,88-12,0 µg/g) mantarlarının aseton ekstrelerinin tümünde ergosterol peroksit (1) saptanırken G. applanatum ve G. adspersum mantarlarının aseton ekstrelerinde ergosterol peroksidin olmadığı belirlendi. Ayrıca dört mantar türünün aseton ekstrelerinde gallik asit (ST2) (0,17- 0,83 μ g/g) ve 4-hidroksibenzoik asit (ST8) (0,01-1,51 μ g/g) gibi fenolik bileşenlerin iz düzeylerde bile olsa varlığı belirlendi. G. resinaceum mantarından izole edilen triterpenler, neredeyse tüm aseton ekstrelerinde tespit edildi. Bununla birlikte elde edilen maddelerden ganoderik asit B (4)'nin (36,9-245 µg/g) G. adspersum mantarının aseton ekstrelerinde önemli miktarda bulunduğu görüldü. Ayrıca 8 numaralı Ganoderma adspersum'un aseton ekstrelerinde ganoderik asit B (4) bileşiğinin miktarının en yüksek olduğu görüldü. Ganoderik asit A (5) bileşiği G. lucidum mantarında (0,14-5,27 µg/g), G. adspersum mantarında $(0,41-11,1 \ \mu g/g)$, *G.applanatum* mantarında $(1,33-1,83 \ \mu g/g)$ ve *G*. resinaceum mantarında $(5,04-10,8 \ \mu g/g)$ tespit edildi. G. adspersum mantarı ile G. resinaceum mantarının Ganoderik asit A (5) bileşeni yönünden daha zengin olduğu görüldü. Ganoderik asit C2 (2)'nin 2, 3, 9, 13 ve 14 numaralı mantarlarda düşük miktarlarda var olduğu belirlendi. Ayrıca ganoderenik asit C (7), G. lucidum mantarında $(0,06-2,64 \ \mu g/g)$, G. adspersum mantarında $(0,14-14,9 \ \mu g/g)$, G. applanatum mantarında (1,34-1,58 μ g/g) ve G. resinaceum mantarında (0,59-2,99 $\mu g/g$) olarak tespit edildi. Ganoderik asit G (3) bileşiği ganoderik asit B (4) gibi G. adspersum mantarının aseton ekstresinde çok yüksek miktarlarda belirlendi (2,25-140 µg/g). G. lucidum (0,22-2,68), G. applanatum (16,6-20,8 µg/g) ve G. resinaceum (2,03-2,53 µg/g) mantarlarının aseton ekstrelerinde de ganoderik asit G (3) olduğu ve özellikle G. adspersum ve G. applanatum mantarlarındaki oralarının diğer mantarlardan daha yüksek olduğu görüldü. En yüksek miktarda ganoderik asit G (3) ise 6 numaralı mantarın soxhlet ekskteresinde (140 μ g/g) tespit edildi. Ayrıca ganoderenik asit D (6) bileşiğinin G. lucidum mantarında $(0,08-1,06 \ \mu g/g)$, G. adspersum mantarında (1,84-24,59 µg/g), G.applanatum mantarında (2,61-6,06 $\mu g/g$) ve G. resinaceum mantarında (0,30-0,39 $\mu g/g$) daha düşük miktarlarda olduğu belirlendi. Ganoderik asit D (8) bileşiği ise G. lucidum mantarında $(0,21-12,7 \mu g/g)$, G. adspersum mantarında (1,12-25,4 µg/g), G.applanatum mantarında (2,84-4,64

 μ g/g) ve *G. resinaceum* mantarında (4,28-6,11 μ g/g) olarak tespit edildi. Bazı örneklerin kromatogramlarında vanilin, kumarik asit ve *trans*-sinnamik asit gibi fenolik maddelerin alıkonma süresi ile aynı dakikalarda pikler görüldü. Ancak bu piklere ait UV spektrumları ile standartların UV spektrumları uyumlu olmadığı için aynı maddeler olarak kabul edilmedi. Ayrıca belirlenen tüm bileşiklere ait piklerin UV spektrumları standartlarla karşılaştırılarak doğrulandı (Ek C).

Aseton ekstrelerinin antioksidan aktivite sonuçlarında G. adspersum ve G. applanatum mantarlarının standart olarak kullanılan α -tokoferolün aktivitesinden daha yüksek aktivite gösterdiği görüldü. HPLC-DAD analizi sonuçlarında ise özellikle G. adspersum mantarlarının birçoğunda (6.GA.S, 7.GA.S, 7.GA.U, 8.GA.M, 8.GA.S, 8.GA.U, 9.GA.M, 9.GA.S, 9.GA.U, 10.GA.S, 11.GA.M, 11.GA.U, 12.GA.M, 12.GA.S ve 12.GA.U) ganoderik asit B miktarının 50 µg/g 'dan daha yüksek olduğu tespit edildi. G. applanatum mantarında ganoderik asit B miktarı (23,9-45,9 µg/g) G. adspersum mantarlarından daha düşük hesaplandı. Ganoderik asit G'nin miktarı içinde benzer sonuçlar elde edildi. G. adspersum mantarlarından 6.GA.S, 7.GA.S, 7.GA.U, 8.GA.M ve 8.GA.S örneklerinde ganoderik asit G miktarı 40 µg/g'ın üstünde tespit edildi. En yüksek miktarda ganoderik asit D, 6.GA.S örneğinde (25,4 µg/g) görüldü. Bunun yanı sıra 8.GA.S, 8.GA.U, 9.GA.S ve 9.GA.U örneklerinde de ganoderenik asit D'nin miktarı 20 µg/g 'ın üstünde tespit edildi. HPLC-DAD sonuçları, G. adspersum mantarlarında triterpenlerin miktarlarının yüksek olduğunu gösterdi. Bu sonuçlar antioksidan aktivite sonuçlarına da uyumlu olduğu için kromatogramlarda belirlenen triterpenlerden ganoderik asit B ve ganoderik asit G'nin miktarlarının artmasına paralel olarak antioksidan özelliğin arttığı düşünülmektedir. DPPH serbest radikal giderim aktivitesi, ABTS katyon giderim aktivitesi, CUPRAC ve beta karoten linoleik asit renk açılımı yöntemleri ile G. adsperum mantarları için elde edilen sonuçlar, kromatografik yöntemlerin sonuclari ile uyumludur. G. applanatum mantarinin antioksidan aktivite sonuclarinin çok yüksek olmasına karşın kromatogramlarda bu triterpenlerin miktarları, G. adspersum mantarlarından daha düşük tespit edildi. Bunun nedeni ise G. applanatum mantarının güçlü antioksidan aktivitesine neden olan bileşiklerin HPLC-DAD kromatogramlarında yer almaması, yani çalışılan gradient sistemi koşullarında yürümemesi şeklinde yorumlandı.

3.2.3.3. Aseton ekstrelerinin HPLC-DAD kromatogramlarındaki antioksidan piklerin belirlenmesi

G. lucidum, G. adspersum, G. applanatum ve *G. resinaceum* örneklerine ait aseton ekstreleri antioksidan piklerin belirlenmesi amacıyla 3,38 mM DPPH ile (1:1) oranda karıştırılarak 30 dakika inkübasyonun ardından aynı kromatografik şartlarda (kolon, mobil faz, akış hızı, dedektör, dalga boyu) HPLC-DAD cihazına enjekte edildi ve 254 nm dalga boyunda kromatogramlarındaki değişimler izlendi. Maserasyon yöntemi ile hazırlanan *G. lucidum, G. adspersum, G. applanatum* ve *G. resinaceum* türlerine ait aseton ekstrelerinde DPPH serbest radikali ile reaksiyona giren maddelerin pik şiddetlerinde azalma ya da kaybolma gözlendi. Pik alanlarındaki değişimler 1.GL.M kodlu örnek için Çizelge 3.12.'de verildi.

Pik Sayısı	Bileşik	Alıkonma Zamanı (dak)	G. lucidum (1)	<i>G. lucidum</i> (1) + DPPH	Azalma Oranı (%)
1		1,16	3287	20741	-
2		1,72	648290	526278	18,82
3		3,06	64487		100,0
4	4-OH benzoik asit (ST8)	9,00	38689	33226	14,12
5		13,56	39497	52017	-
6		18,55	303924	122994	59,53
7	Ganoderenik asit C (7)	29,48	98979	-	100,0
8		31,91	23885	24915	-
9	Ganoderik asit G (3)	32,61	18070	23920	-
10		33,15	163159	180485	-
11		33,69	58265	103896	-
12	Ganoderik asit B (4)	34,05	229376	219116	4,47
13		35,97	98494	142152	-
14	Ganoderik asit A (5)	35,20	111616	111142	-
15		35,76	82581	87668	-
16	Ganoderenik asit D (6)	36,97	73063	63529	13,05
17		37,29	164567	57416	65,11
18		37,69	116989	51263	56,18
19	Ganoderik asit D (8)	37,99	189054	185552	1,85
20		38,30	241429	224929	6,83
21		39,83	81531	113529	-
22		40,44	22054	105123	-
23		41,14	245247	234465	4,40
24		44,45	2001805	1941973	2,99
25		44,99	34502	42106	-
26		47,38	83763	78213	6,63
27		48,47	35009	-	100,0
28		51,55	45524	14875379	-
29		51,91	191094	748829	-
30		53,54	139193	164074	-

Çizelge 3.12. 1.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Bilesik	Alıkonma	G lucidum (1)	G. lucidum (1)	Azalma Oranı
Sayısı	Blieşik	Zamanı	0. <i>iuciuum</i> (1)	+ DPPH	(%)
31		56,98	81868	91341	-
32		58,68	326984	-	100,0
33		59,87	688612	754408	-
34		71,49	175195	197879	-
35		73,08	29016	-	-
36	Ergosterol peroksit (1)	73,94	280190	285514	-
37		74,64	11638	54655	-
38		75,01	35231	-	100,0
39		75,16	27434	-	100,0
40		75,30	28058	-	100,0
41		75,44	52629	30590	41,88
42		75,91	86538	42786	50,56

Çizelge 3.12. (Devam)

Çizelge 3.12.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 1.GL.M örneğinin aseton ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH serbest radikali ile reaksiyon sonucu pik şiddetlerinde azalma görülen ya da kaybolan piklere ait maddeler antioksidan özellik gösterir. DPPH ile inkübasyon sonrası 1.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 4-hidroksibenzoik asit (**ST8**), ganoderik asit B (**4**) ve ganoderenik asit D (**6**) bileşiklerinin pik alanlarının azaldığı ve ganoderenik asit C (**7**)'ye ait pikin tamamen kaybolduğu görüldü. Bununla birlikte ganoderik asit G (**3**), ganoderik asit A (**5**) ve ergosterol peroksit (**1**) bileşiklerinin pik alanlarında değişim görülmedi. Kromatogramda 18,5. dak., 37,3 dak. ve 37.7. dak. gelen tanımlanamayan bileşiklere ait piklerin güçlü antioksidan özellik gösterdiği belirlendi. 1.GL.M örneği için ana pikler 1,7. dak ve 44.5. dak. görüldü ve DPPH ile etkileşimi sonucu pik alanında azalma tespit edildi.

Pik	51 1	Alıkonma	G. lucidum	G. lucidum (2)	Azalma Oranı
Sayısı	Bileşik	Zamanı (dak)	(2)	+ DPPH	(%)
1		0,65	4709	-	-
2		0,95	1003	-	-
3		1,13	1586	-	-
4		1,32	2231	-	-
5		1,73	1172230	978024	16,57
6		2,75	34644	-	100,0
7		2,91	132224	106996	19,10
8	4-OH benzoik asit (ST8)	8,96	34938	20649	40,90
9		12,83	31712	24844	21,66
10		13,54	563134	536011	4,82
11		18,98	355397	153316	56,86
12		22.12	70107	47486	32.26

Çizelge 3.13. 2.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Bilesik	Alıkonma	G lucidum (?)	G. lucidum (2)	Azalma Oranı
Sayısı	Direşin	Zamanı (dak)	0. <i>iuciuum</i> (2)	+ DPPH	(%)
13		25,38	399395	165333	58,60
14		26,39	1348661	1059112	21,47
15	Ganoderenik asit C (7)	29,43	398005	299929	24,64
16	Ganoderik asit C2 (2)	30,41	142540	99201	30,40
17		31,38	24428	-	100,0
18		31,94	80304	69449	13,52
19	Ganoderik asit G (3)	32,66	147092	131406	10,66
20		33,17	925883	788304	14,86
21		33,55	946894	811433	14,31
22	Ganoderik asit B (4)	34,03	424884	382715	9,92
23		34,85	330533	336001	-
24	Ganoderik asit A (5)	35,31	356347	346812	2,67
25		35,82	148839	142752	-
26	Ganoderenik asit D (6)	36,96	23286	23571	-
27	Ganoderik asit D (8)	38,02	127492	125453	1,60
28		38,38	44799	105968	-
29		38,60	19631	206383	-
30		38,98	18511	95079	-
31		39,67	49607		100,0
32		40,09	71251	42250	40,70
33		40,47	129702	38021	70,69
34		40,78	99664	19261	80,67
35		41,14	106357	47085	55,72
36		41,40	32555	19740	36,36
37		43,31	79827	66937	16,14
38		43,96	89122	59332	37.32
39		44,48	3171817	2688736	15,23
40		47,03	81554		100.0
41		47.03	81554	-	100.0
42		47.39	58300	86856	-
43		48,57	40749	-	100.0
44		50.98	75435	38146	49.43
45		51.94	249468	-	100.0
46		53.56	98156	95017	-
47		56.01	71839	65883	8.50
48		56.82	241161	-	100.0
49		59.90	1026136	261554	74.51
50		68.00	220014	192018	12.72
51		71.53	104375	82427	21.03
52		73.12	27816	-	100.0
53		73.60	25115	17373	30.83
54	Ergosterol peroksit (1)	73,96	170869	175499	-
55	2150steror perokon (1)	74 65	35541	36371	-
56		75,03	115315	11022	90.44
57		75,05	75883	10603	86.03
58		75 33	120585	10561	11 42
59		75.95	36193	68580	

Çizelge 3.13. (Devam)

Çizelge 3.13.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 2.GL.M örneğinin aseton ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 2.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 4-hidroksibenzoik asit (**ST8**),

ganoderenik asit C (7), ganoderik asit C2 (2), ganoderik asit G (3) ve ganoderik asit B (4) bileşiklerinin pik alanlarının azaldığı görüldü. Bununla birlikte ganoderik asit A (5), ganoderenik asit D (6), ganoderik asit D (8) ve ergosterol peroksit (1) bileşiklerinin pik alanlarında önemli bir değişim görülmedi. Ganoderenik asit C (7), ganoderik asit C2 (2) ve 4-OH benzoik asit bileşiklerinin pik şiddetlerindeki azalma % 20'nin üstünde bulundu. Kromatogramda 1,7. dak, 18,5. dak., 25,4. dak, 26,4. dak, 33,2. dak, 33,6. dak, 40,4. dak, 40,8. dak, 41,1. dak, 44,5. dak 51,9. dak, 59,9. dak ve 75. dakikalarda gelen yapısı belirlenemeyen bileşiklere ait piklerin güçlü antioksidan özellik gösterdiği belirlendi. 2.GL.M örneği için ana pikler 1,7. dak, 13.5. dak. 26,4. dak, 44.5. dak, ve 59,9. dak. görüldü ve DPPH ile etkileşimi sonucu pik alanın azaldığı tespit edildi.

Pik	Dilacile	Alıkonma	G. lucidum	G. lucidum (3)	Azalma Oranı
Sayısı	Blieşik	Zamanı (dak)	(3)	+ DPPH	(%)
1		1,18	2119	-	-
2		1,35	3156	-	-
3		1,54	3223	-	-
4		1,74	232387	210682	9,34
5		3,03	29687	-	-
6	4-OH benzoik asit (ST8)	8,93	37291	9228	75,25
7		10,46	28481	23118	18,83
8		13,52	1575885	1452974	7,80
9		18,43	687488	531359	22,71
10		25,34	72751	94231	-
11		26,39	616968	556591	9,79
12	Ganoderik asit C2 (2)	30,49	72717	68530	5,76
13		31,93	119437	107823	9,72
14	Ganoderik asit G (3)	32,63	118076	107816	8,69
15		33,15	462931	431241	6,85
16		33,55	231201	182842	20,92
17		33,69	48596	34712	28,57
18	Ganoderik asit B (4)	34,12	521700	446424	14,43
19		34,95	150023	167390	-
20	Ganoderik asit A (5)	35,32	214159	173138	19,15
21		35,81	144964	98071	32,35
22		36,24	88064	30437	65,44
23		36,67	91387	-	100,0
24	Ganoderenik asit D (6)	36,92	174222	90324	48,16
25		37,45	351810	243293	30,85
26		37,74	293238	250144	14,70
27	Ganoderik asit D (8)	37,97	304745	206185	32,34
28		38,36	304533	257549	15,43
29		39,69	119996	174284	-
30		40,10	63520	45067	29,05
31		40,52	238216	215904	9,37
32		40,86	141361	131407	7,04
33		41,09	168213	31054	81,54
34		43,29	86600	166028	-
35		44,52	4632483	4422942	4,52

Çizelge 3.14. 3.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Dilagile	Alıkonma	C lust dum (2)	G. lucidum (3)	Azalma Oranı
Sayısı	Dileşik	Zamanı (dak)	G. iuciaum (5)	+ DPPH	(%)
36		46,36	31137	35481	-
37		46,89	223953	204321	8,77
38		47,37	119791	165057	-
39		50,20	46193	48737	-
40		51,06	149861	141265	5,74
41		51,61	59612	15440462	-
42		52,00	386551	963872	-
43		53,65	343412	330648	3,72
44		55,97	444572	186744	57,99
45		57,03	581863	535164	8,03
46		58,53	299441	-	100,0
47		59,95	1056783	991330	6,19
48		64,99	54093	51928	4,00
49		67,98	190036	178844	5,89
50		70,45	97859	-	100,0
51		71,53	512086	478829	6,49
52		73,10	84664	71158	15,95
54		73,68	36511	-	100,0
55	Ergosterol peroksit (1)	73,95	577702	674449	-
56		74,40	95593	121846	-
57		74,65	153524	183543	-
58		75,01	134572	121286	9,87
59		75,14	92755	70443	24,05
60		75,30	104976	87917	16,25
61		75,44	217105	260577	-
62		75,93	228107	294035	-

Çizelge 3.14. (Devam)

Çizelge 3.14.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 3.GL.M örneğinin aseton ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 3.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 4- hidroksibenzoik asit (**ST8**), ganoderenik asit C (**7**), ganoderik asit C2 (**2**), ganoderik asit G (**3**), ganoderik asit B (**4**), ganoderik asit A (**5**) ve ganoderik asit D (**8**), ganoderenik asit D (**6**) bileşiklerinin pik alanlarının azaldığı görüldü. Bununla birlikte ergosterol peroksit (**1**) bileşiğinin pik alanlarının azaldığı görülmedi. Kromatogramıda 18,5. dak., 26,4. dak, 33,2. dak, 33,6. dak, 37,5. dak, 40,8. dak, 44,5. dak, 46,9. dak., 55,9. dak, 57,02. dak., 58,5. dak., 59,9. dak ve 71,5. dak. gelen tanımlanamayan bileşiklere ait piklerin güçlü antioksidan özellik gösterdiği belirlendi. 3.GL.M örneği için ana pikler 13,5. dak, 44,5. dak. ve 59,9. dak.görüldü ve DPPH ile etkileşimi sonucu pik alanın azaldığı tespit edildi.

Pik	Bilesik	Alıkonma	G. lucidum	G. lucidum (4)	Azalma Oranı
Sayısı	Dileşik	Zamanı (dak)	(4)	+ DPPH	(%)
1		0,91	3561	-	-
2		1,02	5448	-	-
3		1,36	2454	-	-
4		1,64	354780	278944	21,38
5		2,84	20613	25787	-
6	Gallik asit (ST2)	5,65	28252	-	100,0
7	4-OH benzoik asit (ST8)	8,87	68651	43391	36,79
8		10,41	17974	29973	-
9		13,46	738114	694905	5,850
10		17.48	920863	638078	30.71
11		26.32	215761	-	100.0
12		31.93	46489	33449	28.05
13	Ganoderik asit G (3)	32.59	29818		100.0
14	Gunduerik usit G (5)	33 11	212609	185599	12.70
15		33 50	101608	94443	7.05
16	- Conoderik osit B (4)	34.07	200201	/873/	7,05
17	Ganoderik asit Λ (5)	35 35	166237	165010	73,71
10	Gallodelik asit A (3)	25,33	50782	70499	-
10		35,72	77884	25107	-
20		30,47	72004	25107	05,55
20	Consideratile asit D (C)	30,03	50825 79705	3508/	38,25 85.60
21	Ganoderenik asit D (6)	30,92	18/95	112/8	85,09 50,49
22		37,42	255921	103/0/	59,48
23	Ganoderik asit D (8)	37,79	587244	88661	84,90
24		38,33	103919	551367	-
25		39,67	60715	53304	12,21
26		40,06	15175	76246	-
27		40,50	162979	184916	-
28		40,82	40817	63776	-
29		41,10	42266	-	100,0
30		43,17	77270	34877	54,86
31		43,97	29249	-	100,0
32		44,50	2145004	2010027	6,29
33		47,36	38848	-	100,0
34		50,20	31147	-	100,0
35		51,02	80631	-	100,0
36		51,99	201375	-	100,0
37		53,62	78249	68832	12,03
38		55,91	54653	-	100,0
39		57,01	152253	142235	6,580
40		57,56	220545	-	100,0
41		59.93	371298	338996	8.70
42		62.81	47555	-	100.0
43		71.53	198754	-	100.0
44		73.06	40752	-	100,0
45		73,66	22033	339167	-
46	Fronsteral peraksit (1)	73 95	255754	256245	_
-0 /7	Ligosteror peroksit (1)	73,95	<u>47777</u>	-	- 100 0
+/ /9		77,00	7//4/ ///Q/	-	100,0 100 0
40 40		13,02 75 15	44404	-	100,0 50 52
49		/5,15	33140 41495	1039/	50,55
50		/5,31	41485	-	100,0
51		75,46	65076	10486	83,89
52		76,03	129509	261198	-

Çizelge 3.15. 4.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Çizelge 3.15.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 4.GL.M örneğinin aseton ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 4.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından gallik asit (**ST2**), 4- hidroksibenzoik asit (**ST8**), ganoderik asit G (**3**), ganoderik asit B (**4**), ve ganoderik asit D (**8**), ganoderenik asit D (**6**) bileşiklerinin pik alanlarının azaldığı görüldü. Ganoderik asit B (**4**), ganoderik asit D (**8**) ve ganoderenik asit D (**6**) bileşiklerinin pik şiddetlerindeki değişim miktarı % 75'in üstünde olup, bu bileşiklerin DPPH ile iyi etkileşim gösterdiği belirlendi. Bununla birlikte ganoderik asit A (**5**) ve ergosterol peroksit (**1**) bileşiklerinin pik alanlarında değişim görülmedi. Kromatogramda 1,6. dak, 13,5. dak., 17,5. dak., 26,4. dak, 33,1. dak, 33,5. dak, 37,5. dak, 44,5. dak, 59,9. dak ve 71,5. dak. gelen tanımlanamayan bileşiklere ait piklerin antioksidan özellik gösterdiği belirlendi. 4.GL.M örneği için ana pikler 17,5. dak ve 44.5. dak. dak. görüldü ve DPPH ile etkileşimi sonucu pik alanın azaldığı tespit edildi.

Pik	Bilesik	Alıkonma	G lucidum (5)	G. lucidum (5)	Azalma Oranı
Sayısı	Blicşik	Zamanı (dak)	0. <i>iuciuum</i> (3)	+ DPPH	(%)
1		1,05	5932		
2		1,18	5455	23364	-
3		1,33	3397	2274	33,06
4		1,65	121283	8214	93,23
5	4-OH benozik asit (ST8)	8,84	14082	-	100,0
6*	(Vanilin)	11,39	28405	-	100,0
7		12,68	218736	-	100,0
8		13,44	1359691	120196	91,16
9		13,77	23349	-	100,0
10		15,20	32399	-	100,0
11		17,06	1304454	-	100,0
12	Ganoderenik asit C (7)	29,47	91375	-	100,0
13		31,23	75359	-	100,0
14	Ganoderik asit G (3)	32,64	176442	-	100,0
15		33,09	403986	20745	94,86
16		33,47	113576	-	100,0
17	Ganoderik asit B (4)	34,10	306477	-	100,0
18	Ganoderik asit A (5)	35,21	239188	-	100,0
19		35,69	111571	-	100,0
20		35,92	68448	-	100,0
21		36,28	87947	-	100,0
22		36,58	202168	-	100,0
23	Ganoderenik asit D (6)	36,88	217584	-	100,0
24		37,20	325039	-	100,0
25		37,38	419295	-	100,0
26	Ganoderik asit D (8)	37,83	1148553	-	100,0
27		38,31	73106	-	100,0

Çizelge 3.16. 5.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Bilesik	Alıkonma	G Jucidum (5)	G. lucidum (5)	Azalma Oranı
Sayısı	Blicşik	Zamanı (dak)	0. <i>iuciuum</i> (3)	+ DPPH	(%)
28		38,66	78631	-	100,0
29		39,58	64841	-	100,0
30		41,09	52273	223405	-
31		42,05	41921	-	100,0
32		42,29	134352	-	100,0
33		43,38	23704	-	100,0
34		44,22	23954	32344	-
35		44,50	443164	37716	91,49
36		45,06	748271	62524	91,64
37		53,54	274242	-	100,0
38		59,92	119294	-	100,0
39		71,51	85249	-	100,0
40		73,77	11811	-	100,0
41	Ergosterol peroksit (1)	73,93	73137	71325	-
42		74,64	38487	-	100,0
43		75,42	19474		100,0
44		76,01	163931	204903	-

Çizelge 3.16. (Devam)

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.16.'da *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 5.GL.M örneğinin aseton ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. Burada neredeyse tüm maddeler DPPH ile etkileşerek pik şiddetleri azalmış yada pikler kaybolmuştur. DPPH ile inkübasyon sonrası 5.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 4-hidroksibenzoik asit, ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderik asit D (8) ve ganoderenik asit D (6) bileşiklerinin piklerinin tamamen kaybolduğu görüldü. Özellikle ganoderik asit D (8) bileşiğinin ana piklerden biri olduğu ve bu bileşiğin DPPH ile iyi etkileşim gösterdiği belirlendi. Bununla birlikte ergosterol peroksit (1) bileşiğinin pik alanında değişim görülmedi. Kromatogramda 13,5. dak., 17,1. dak., 37,8. dak ve 45,0. dak. gelen tanımlanamayan bileşiklere ait piklerin ana pikler olduğu ve antioksidan özellik gösterdiği belirlendi.

Çizelge 3.17. 6.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Dilacil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Dileşik	Zamanı (dak)	(6)	(6) + DPPH	(%)
1		1,74	309801	241282	22,12
2		2,95	32041	-	100,0
3	4-OH benzoik asit (ST8)	8,95	77696	65577	15,60
4	Vanilik asit (ST12)	9,74	80435	69133	14,05
5		10,79	45246	35994	20,45
6		10,98	32074	26220	18,25
7*	(vanilin)	11,24	40189	33121	17,59
8*	(<i>p</i> -kumarik asit)	11,56	25451	16095	36,76

Pik	Dilasil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Bileşik	Zamanı (dak)	(6)	(6) + DPPH	(%)
9		11,86	13379	10944	18,20
10		12,53	13586	16852	-
11		12,83	18512	15433	16,63
12		13,55	2084734	1840478	11,72
13		14,00	26400	-	100,0
14		14,30	98517	80100	18,69
15		14,73	30803	34626	-
16		15,44	168276	83048	50,65
17		15,77	123323	-	100,0
18		16,04	116191	62884	45,88
19		17,50	42595	62469	-
20		18,57	571541	474181	17,03
21		24,10	235789	-	100,0
22		25,87	94463	143720	-
23		28,89	97786	79136	19,07
24	Ganoderenik asit C (7)	29,30	864800	675954	21,84
25		30,00	171383	160319	6,46
26		31,32	622757	488399	21,57
27	Ganoderik asit G (3)	32,55	824869	724562	12,16
28		33,44	60610	39035	35,60
29	Ganoderik asit B (4)	34,06	2401291	2113594	11,98
30		34,48	342982	318774	7,06
31	Ganoderik asit A (5)	35,04	424024	383497	9,56
32		35,82	549558	433555	21,11
33		36,42	149770	114857	23,31
34	Ganoderenik asit D (6)	36,87	351062	370843	-
35		37,27	361556	329502	8,87
36	Ganoderik asit D (8)	37,92	524841	453713	13,55
37		38,11	408951	372084	9,02
38		38,70	163472	145973	10,70
39		41,13	228647	325206	-
40		75,93	54312	75530	-

Çizelge 3.17. (Devam)

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.17.'de *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan *G. adspersum* (6.GA.M) örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. *G. adspersum* mantarı için elde edilen parmak izi kromatogramında yer alan 40 pikin 29'unda pik şiddetinde azalma ve 4 pikte kaybolma görüldü. 13,5 dak., 18,5. dak., 29,3. dak. (ganoderik asit C, 7), 31,3. dak., 32,5. dak. ganoderik asit G (3), 34,1 ganoderik asit B (4), 35,8. dak. ve 37,9. dak. ganoderik asit D (8) bileşiklerin kromatogramdaki ana maddeler olduğu belirlendi. Bununla birlikte 1,7 dak., 15,4. dak., 15,8. dak., 24,1. dak., 31,3. dak., 35,8. dak., ve 36,4. dakikalarda gelen bileşiklerin pik şiddetlerindeki azalma oranlarının oldukça yüksek olduğu tespit edildi. Ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit G (3),

(ST8) ve vanilik asit (ST12) piklerinin alanlarında % 10'un üstünde azalma görüldü. Ganoderenik asit D (6) bileşiğinin pik alanında değişme olmadı. *G. lucidum* mantarlarının kromatogramlarında görülen ve yapısı belirlenemeyen 13.5. dakika ve 18.5. dakikalarda gelen maddeler *G. adspersum* örneklerinde de görüldü. Ancak *G. lucidum* örneğinin ana piki olan 45. dakikada kromatogramdan görülen pik ve ergosterol peroksit (1) bileşiğine ait olan ve 74. dakikada görülen pikler 6.GA.M örneğinde yer almadı.

Pik	Dilacil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Dileşik	Zamanı (dak)	(7)	(7) + DPPH	(%)
1		1,71	94953	69666	36,30
2	4-OH benzoik asit (ST8)	8,94	57190	47690	19,92
3		10,46	20572	48676	-
4*	(Vanilin)	11,21	27972	27161	2,99
5*	(<i>p</i> -Kumarik asit)	11,73	19617	18535	5,84
6		12,79	34489	25339	36,11
7		13,51	556940	507011	9,85
8		14,69	61080	-	100,0
9		15,38	114879	106441	7,93
10		16,02	28954	21327	35,76
11		18,58	127154	-	100,0
12	Ganoderenik asit C (7)	29,49	483498	252234	91,69
13		31,23	157473		100,0
14	Ganoderik asit G (3)	32,50	721591	515192	40,06
15		33,49	33345	-	100,0
16	Ganoderik asit B (4)	34,11	2386180	1795762	32,88
17	Ganoderik asit A (5)	35,02	90320	92566	-
18		35,80	194856	138707	40,48
19		36,36	34813	28116	23,82
21	Ganoderenik asit D (6)	36,84	636174	542440	17,28
22		37,30	79839	66067	20,85
23		37,55	90840	62600	45,11
24	Ganoderik asit D (8)	37,88	143306	118647	20,78
25		38,71	40326	31371	28,55
26		39,07	14172	23637	-
27		41,14	141993	153394	-
28		67,21	515951	422645	22,08
29		76,01	51158	62849	-

Çizelge 3.18. 7.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.18.'de *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan 7.GA.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. 13,5 dak., 29,3. dak. (ganoderenik asit C, 7), 32,5. dak. (ganoderik asit G, 3), 34,1 (ganoderik asit B, 4), 36,9. dak. (ganoderenik asit D, 6) ve 67.2. dak.'larda gelen bileşiklerin kromatogramdaki ana maddeler olduğu görüldü. Bununla birlikte

ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4) bileşikleri ile 18,5. dak, 31,3. dak. ve 35,8. dakikalarda gelen bileşiklerin pik şiddetlerindeki azalma oranlarının oldukça yüksek olduğu belirlendi. Ganoderenik asit D bileşiğinin pik alanında değişme olmadı. *G. lucidum* örneğinin ana piki olan 45. dakikada kromatogramdan görülen pik ve ergosterol peroksit (1) bileşiğine ait olan ve 74. dakikada görülen pikler 7.GA.M örneğinde yer almadı.

Pik	Dilagila	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Dileşik	Zamanı (dak)	(8)	(8) + DPPH	(%)
1		1,70	132967	128022	3,72
2	4-OH benzoik asit (ST8)	8,94	249894	243563	2,40
3		9,37	35538	-	100,0
4		10,44	179781	152849	14,98
5		10,66	34955	-	100,0
6		10,78	28053	29244	-
7*	(Vanilin)	11,22	154416	150833	-
8		12,81	34573	35167	-
9		13,51	997182	990997	6,20
10		14,25	39913	42577	-
11		14,71	179417	173531	-
12		15,45	238047	241804	-
13		15,80	93192	91854	-
14		16,01	192272	213871	-
15		17,50	31974	197828	
16		17,84	93519	· · ·	100,0
17		19,37	137476	-	100,0
18		24,71	325703	101715	68,77
19		28,06	57708	77892	-
20		28,93	122224	119608	-
21		29,06	114274	112470	-
22	Ganoderenik asit C (7)	29,61	1377187	1286383	6,60
23		30,80	281009	24796	91,18
24		31,93	253023	18294	92,77
25	Ganoderik asit G (3)	32,59	1692914	1545476	8,71
26		33,59	200170	94207	52,94
27		33,82	154087	125327	18,66
28	Ganoderik asit B (4)	34,06	9542075	9274460	2,80
29	Ganoderik asit A (5)	35,18	628023	522790	16,76
30		35,84	748691	551602	26,32
31		36,44	152957	103532	32,31
32	Ganoderenik asit D (6)	36,90	2059640	2011836	2,32
33		37,29	140574	111543	20,65
34		37,61	252130	181896	27,86
35	Ganoderik asit D (8)	37,95	248078	236560	4,64
36		38,16	380605	375919	-
37		38,77	215012	160404	25,40
38		39,12	163242	78256	52,06
39		40,57	1467045	-	100,0
40		41,10	91290	135403	-
41		42,52	19040	43030	-
42		51,73	116956	15184097	-
43		75,99	45247	72243	-

Çizelge 3.19. 8.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.19.'da *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan 8.GA.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. 13,5 dak., 29,3. dak. (ganoderenik asit C, 7), 32,5. dak. (ganoderik asit G, **3**), 34,1 (ganoderik asit B, **4**), 36,9. dak. (ganoderenik asit D, **6**) ve 40,6. dak.'larda gelen bileşiklerin kromatogramdaki ana maddeler olduğu görüldü ve bu ana piklerden dört tanesinin yapısı belirlendi. Bununla birlikte ganoderenik asit C (7), ganoderik asit G (**3**), ganoderik asit B (**4**), ganoderenik asit D (**6**) ve ganoderik asit D (**8**) bileşiklerinin DPPH ile inkübasyon sonucu kromatogramlarındaki pik şiddeti değişim oranlarının diğer piklerden daha az olduğu görüldü. Ayrıca 40,6. dakikada gelen bileşiğe ana pikin DPPH serbest radikali ile etkileşerek tamamen yok olması güçlü antioksidan özelliğe sahip olduğunu gösterdi. *G. lucidum* örneğinin ana piki olan 45. dakikada kromatogramdan görülen pik ve ergosterol peroksit (**1**) bileşiğine ait olan ve 74. dakikada görülen pikler 8.GA.M örneğinde de yer almadı.

Pik	Dilogil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Diicşik	Zamanı (dak)	(9)	(9) + DPPH	(%)
1		1,73	321419	250952	21,92
2		2,95	36656	10503	71,35
3		3,50	23667	-	100,0
4	Gallik asit (ST2)	5,57	38892	-	100,0
5	4-OH benzoik asit (ST8)	8,92	72202	70781	-
6		9,35	27823	18370	33,98
7	Vanilik asit (ST12)	9,86	28079	-	100,0
8		10,46	59631	66634	-
9		10,66	52621	-	100,0
10		10,78	46318	83988	-
11		10,99	66747	60379	9,54
12*	(Vanilin)	11,24	131363	108370	17,50
13*	(<i>p</i> -Kumarik asit)	11,52	45443	25983	42,82
14		11,85	49524	33308	32,74
15		12,51	33239	30148	9,30
16		12,81	66011	62160	5,83
17		13,51	1814834	1718590	5,30
18		14,75	40680	84466	-
19		15,10	194235	207422	-
20		15,79	143978	98890	31,32
21		16,01	212337	207674	-
22		17,48	117293	124576	-
23		18,87	322627	308466	4,39
24		26,02	224129	283305	-
25		28,84	73885	-	100,0
26	Ganoderenik asit C (7)	29,43	133457	88038	34,03
27	Ganoderik asit C2 (2)	30,42	385646	-	100,0
28		31,48	443308	401972	9,32
29	Ganoderik aisit G (3)	32,60	169716	128799	24,2

Çizelge 3.20. 9.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Dilagil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Dileşik	Zamanı (dak)	(9)	(9) + DPPH	(%)
30		33,43	41847	-	100,0
31	Ganoderenik asit B (4)	34,04	4836471	4014882	16,98
32	Ganoderik asit A (5)	35,09	346499	295341	14,76
33		35,83	409307	392827	4,03
34	Ganoderenik asit D (6)	36,87	1455300	1456051	-
35		37,27	71005	59440	16,29
36		37,57	118281	145465	-
37		38,13	903210	885855	-
38		38,73	24877	19183	22,89
39		41,09	274473	98191	64,23
40		42,50	107118	111692	-
41		76,00	53467	40219	24,78

Çizelge 3.20. (Devam)

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.20.'de *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan 9.GA.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. Kromatogramda gallik asit (**ST2**), 4-hidroksibenzoik asit (**ST8**), vanilik asit (**ST12**), ganoderik asit C2 (2), ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5) ve ganoderenik asit D (6)'ye ait pikler tanımlandı. Bu bileşikler arasından ganoderenik asit D (6) ve 4-hidroksibenzoik asit (**ST8**) hariç diğerleri DPPH serbest radikali ile etkileşim gösterdi. Dolayısıyla başta ganoderik asit C2 (2) olmak üzere bu bileşiklerin antioksidan özellik gösterdiği belirlendi. Ganoderik asit C2 (2), ganoderik asit B (4) ve ganoderik asit A (5) bileşikleri ile 1,7. dak., 13.,5. dak., 18,5. dak., 30,4. dak., 31,5. dak., 35,1. dak. ve 35.8. dakikalarda görünen pikler ana bileşenler olarak tespit edildi ve pik alanlarında azalma görüldü. Ganoderenik asit D (6) ile 38,1. dakikada gelen bileşikler aktivite göstermedi.

Çizelge 3.21. 10.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Dilasila	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Blieşik	Zamanı (dak)	(10)	(10) + DPPH	(%)
1		1,70	109033	95772	12,16
2	4-OH benzoik asit (ST8)	8,89	422038	369218	12,52
3		9,35	36203	33264	8,12
4		10,73	60383	55684	7,78
5		10,92	45760	40328	11,87
6*	(Vanilin)	11,21	65238	57209	12,31
7*	(p-Kumarik asit)	11,50	42277	30644	27,52
8		11,82	31146	35299	-
9		12,47	53800	47910	10,95

Pik	D'1 '1	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Bileşik	Zamanı (dak)	(10)	(10) + DPPH	(%)
10		12,76	209529	189196	9,70
11		13,48	3779767	3383801	10,48
12		14,18	287850	270195	6,13
13		14,59	327882	289750	11,63
14		15,31	852449	779905	8,51
15		15,69	92250	-	100,0
16		15,93	102498	161289	-
17		17,07	58567	38750	33,84
18		17,33	75593	92250	_
19		18,22	525871	541525	-
20		22,46	1267220	1083594	14,49
21		23,84	188894	55408	70,67
22		25,38	232285	182026	21,64
23		28,75	80963	-	100,0
24		29,13	175066	279906	-
25	Ganoderenik asit C (7)	29,55	476753		100,0
26		30,99	457260	-	100,0
27	Ganoderik asit G (3)	32,52	757456	644029	14,97
28		32,93	42661	17237	59,60
29		33,37	128488		100,0
30		33,75	193441	151341	21,76
31	Ganoderik asit B (4)	34,10	2620322	2351953	10,24
32		34,48	157442	155671	-
33	Ganoderik asit A (5)	35,00	133534	120604	9,68
34		35,79	733786	636413	13,27
35	Ganoderenik asit D (6)	36,83	615812	578807	6,01
36		37,25	375107	346390	7,66
37		37,53	106913	85825	19,72
38	Ganoderik asit D (8)	37,83	229112	209590	8,52
39		38,09	58874	87033	-
40		38,70	36489	35254	-
41		39,90	21282	40828	-
42		41,07	67590	82086	-
43		75,90	63670	70807	-
44		76,01	52727	51448	2,43

Çizelge 3.21. (Devam)

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.21.'de *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan 10.GA.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. Çizelge 3.21.'de yer alan 44 pikin 28'inde pik şiddetinin azaldığı ve 5 pikin tamamen kaybolduğu görüldü. 13,5 dak., 15,3. dak., 22,5. dak., 32,5. dak. (ganoderik asit G, **3**), 34,1 (ganoderik asit B, **4**), 35,8. dak. ve 36,8. dak. (ganoderenik asit D, **6**) bileşiklerin kromatogramdaki ana maddeler olduğu belirlendi. 10.GA.M örneğinin kromatogramında yapıları belirlenen piklerin tümü, DPPH ile yüksek oranda etkileşim gösterdi. Bu nedenle bu bileşiklerin antioksidan aktivitesinin yüksek olduğu belirlendi. 10.GA.M örneği aseton ekstresinin DPPH,

ABTS, beta karoten ve CUPRAC sonuçları da bu sonucu desteklemektedir. Ergosterol peroksit (1) bileşiğine ait olan ve 74. dakikada görülen pik 10.GA.M örneğinde yer almadı.

Pik	Dilagil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Blieşik	Zamanı (dak)	(11)	(11) + DPPH	(%)
1		1,65	348650	266918	23,44
2	Gallik asit (ST2)	5,83	36327	-	100,0
3	4-OH benzoik asit (ST8)	8,87	614484	442641	27,96
4		10,43	49670	35865	27,80
5		10,66	80638	80749	-
6*	(Vanilin)	11,18	176549	140240	21,20
7*	(<i>p</i> -Kumarik asit)	11,47	28619	12284	57,00
8		13,46	2856044	2597500	9,52
9		14,20	82686		100,0
10		14,46	58881	50719	-
11		15,19	185002	182910	-
12		15,93	74998	-	100,0
13		17,31	539445	479038	11,32
14		18,09	79669	-	100,0
15*	(trans-Sinnamik asit)	21,57	126227	-	100,0
16		24,52	378089	138827	63,27
17		28,78	116884	-	100,0
18	Ganoderenik asit C (7)	29,86	293076	-	100,0
19	Ganoderik asit G (3)	32,46	710586	561760	20,94
20		33,60	270589	44501	83,55
21	Ganoderik asit B (4)	34,05	2765899	2276096	17,71
22		34,43	486813	417894	14,20
23		34,86	258298	114230	55,82
24	Ganoderik asit A (5)	35,24	73213	101897	-
25		35,71	1007937	689504	31,60
26		36,31	123654	108388	12,20
27	Ganoderenik asit D (6)	36,75	793347	605706	23,65
28		37,24	372781	-	100,0
29	Ganoderik asit D (8)	37,97	667310	301603	54,80
30		38,65	40987	63200	-
31		39,65	51287	-	100,0
32		41,09	79084	-	100,0
33		42,35	61388	60355	-
34		45,04	22492	55270	-
35		76,00	194331	23503	87,90

Çizelge 3.22. 11.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.22.'de *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan 11.GA.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. Çizelge 3.22.'de yer alan 35 pikin 18'inde pik şiddetinin azaldığı ve 10 pikin tamamen kaybolduğu görüldü. 8,9. dak (4-hidroksibenzoik asit, **ST8**), 13,5 dak., 17,3. dak., 32,5. dak. (ganoderik asit G, **3**), 34,1 (ganoderik asit B, **4**), 35,8.

dak., 36,8. dak. (ganoderenik asit D, 6) ve 37,9. dak. (ganoderik asit D, 8) bileşiklerinin kromatogramdaki ana maddeler olduğu belirlendi. 11.GA.M örneğinin kromatogramında ganoderik asit A (5) dışında, yapıları belirlenen maddeler DPPH ile yüksek oranda etkileşim gösterdi. Ayrıca 4-hidroksibenzoik asit (ST8) bileşiğine ait olan pik sinyalinin diğer *Ganoderma* örneklerinde daha fazla olduğu belirlendi. Ergosterol peroksit (1) bileşiğine ait olan ve 74. dakikada görülen pik 11.GA.M örneğinde yer almadı.

Pik	Dilasil	Alıkonma	G. adspersum	G. adspersum	Azalma Oranı
Sayısı	Blieşik	Zamanı (dak)	(12)	(12) + DPPH	(%)
1		1,60	392014	281062	28,30
2		3,16	57609	34763	39,66
3	4-OH benzoik asit (ST8)	8,82	336306	275829	17,98
4*	(Vanilin)	11,40	59592	63454	-
5*	(<i>p</i> -Kumarik asit)	11,76	96224	103834	-
6		12,69	47221	49000	-
7		13,44	4033287	3971525	1,50
8		15,17	102240	89412	12,55
9		17,18	300920	255530	15,08
10		24,41	162926	123378	24,27
11	Ganoderenik asit C (7)	29,67	331408	290468	12,35
12	Ganoderik asit G (3)	32,70	796968	707629	11,10
13		33,51	83368	19159	77,02
14		33,72	61571	161589	-
15	Ganoderik asit B (4)	34,06	4575962	4419460	3,50
16		34,88	245825	265381	-
17	Ganoderik asit A (5)	35,22	28752	15328	46,42
18		35,73	946262	825645	12,75
19		36,33	112387	111802	-
20	Ganoderenik asit D (6)	36,77	1097720	1064194	3,05
21		37,24	222227	200551	9,750
22		37,47	187581	188610	-
23	Ganoderik asit D (8)	37,82	270419	204220	24.45
24		38,01	192787	179394	6,940
25		38,67	107425	93957	12,54
26		38,96	96834	87035	10,12
27		41,20	405687	415251	-
28		42,29	994950	976466	1,85
29		42,92	363549	347449	4,43
30		43,40	44094	48340	-
31		45,07	1783097	1753453	1,70
32		47,06	54625	57493	-
33		53,54	819993	796067	2,80
34		54,55	506675	528186	-
35		58,62	149776	145549	2,68
36		66,26	78439	73398	6,43
37		75,48	60798	-	100,0
38		75,94	95962	153346	-
39		76,03	97309	-	100,0

Çizelge 3.23. 12.GA.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

*Alıkonma zamanı aynı olup, UV spektrumu farklı olan pikler

Çizelge 3.23.'de *Ganoderma adspersum*'dan maserasyon yöntemiyle hazırlanan 12.GA.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. Kromatogramda ana maddeler 13,5 dak., 32,5. dak. (ganoderik asit G, **3**), 34,1 (ganoderik asit B, **4**), 35,7. dak., 36,8. dak. (ganoderenik asit D, **6**) ve 42,3. dak., 45,0. dak. ve 53,5. dakikalarda görülmektedir. 12.GA.M örneğinin kromatogramında yapıları belirlenen pikler DPPH ile etkileşim gösterdiği için antioksidan aktiviteye sahiptir. *G. lucidum* örneğinin ana piki olan 45. dakikada kromatogramıda görülen pik 12.GA.M örneğinde de görüldü.

Pik	Bilesik	Alıkonma	G. applanatum	G. applanatum	Azalma Oranı
Sayısı	DIICŞIK	Zamanı (dak)	(13)	(13) + DPPH	(%)
1		1,74	114255	94300	17,47
2	4-OH benzoik asit (ST8)	8,96	84851	61079	28,02
3		9,37	47593	-	100,0
4	Vanilik asit (ST12)	9,74	47652	16256	65,89
5		10,49	69831	70841	-
6		10,78	73728	65203	11,56
7*	(Vanilin)	11,23	74992	74858	-
8		12,55	60329	67130	-
9		13,53	2124178	2084961	-
10		14,76	20188	76062	
11		15,43	68309	134114	-
12		17,51	37939	37576	-
13		18,73	921323	811253	11,95
14		28,92	87658	92454	-
15	Ganoderenik asit C (7)	29,39	192590	177193	7,99
16	Ganoderik asit C2 (2)	30,42	188484	-	100,0
17		31,10	41836	-	100,0
18		31,48	296859	374336	-
19	Ganoderik asit G (3)	32,54	848059	697866	17,71
20		33,23	196039	-	100,0
21		33,45	155796	64000	58,92
22		33,67	153274	93989	38,68
23	Ganoderik asit B (4)	34,05	1539059	1221367	20,64
24		34,49	354009	253116	28,50
25		35,07	284968	173666	39,06
26	Ganoderik asit A (5)	35,25	220156	-	100,0
27		35,84	839417	537529	35,96
28		36,43	144544	37569	74,01
29	Ganoderenik asit D (6)	36,88	454948	235672	48,20
30		37,28	484790	280412	42,16
31		37,58	134406	-	100,0
32	Ganoderik asit D (8)	37,94	282216	172351	38,93
33		38,13	99270	75061	24,39
34		41,14	199901	210556	-
35		42,32	44384	73311	-
36		45,10	201530	104988	47,90
37		53,60	189805	189696	-
38		75,92	49661	63525	-

Çizelge 3.24. 13.GAp.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Çizelge 3.24.'de *Ganoderma applanatum*'dan maserasyon yöntemiyle hazırlanan 13.GAp.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. Şekil 3.29.'da *G. applanatum* mantarı için elde edilen parmak izi kromatogramında yer alan 38 pike ait bileşiğin 19'unda pik şiddetinde azalma ve 6 pikte ise kaybolma gözlendi. 13,5 dak., 18,7. dak., 32,5. dak. (ganoderik asit G, **3**), 34,0 dak. (ganoderik asit B,**4**), 35,8. dakikada kromatogramda görülen piklere ait bileşiklerin bileşiklerinin ana maddeler olduğu belirlendi. Bunun yanı sıra ganoderik asit C2 (**2**) ve ganoderik asit A (**5**) ile 33,2. dak ve 37,6. dakikalarda görülen maddelere ait pikler DPPH ile inkübasyon sonucu tamamen kaybolmuştur. Ayrıca Şekil 3.29.'daki kromatogramda yapıları belirlenen maddelerin hepsinin pik alanlarında azalma yada kaybolma söz konusudur. Dolayısıyla bu bileşiklerin antioksidan aktivite gösterdiği söylenebilir. Ergosterol peroksit (**1**) bileşiğine ait olan ve 74. dakikada görülen pik 13.GAp.M örneğinde yer almadı

Pik	Bilecik	Alıkonma	G. resinaceum	G. resinaceum	Azalma Oranı
Sayısı	Direşik	Zamanı	(14)	(14) + DPPH	(%)
1		1,71	805989	676599	16,05
2		3,04	141359	174656	-
3		5,15	102570	109270	-
4	Gallik asit (ST2)	5,81	26946	25780	4,33
5	Protokateşik asit (ST6)	7,45	68701	63041	8,23
6	4-OH benzoik asit (ST8)	8,95	29610	26634	10,05
7		9,56	179914	180751	-
8		13,53	1362948	1334527	2,09
9		18,46	142511	-	100,0
10		25,22	410820	206598	49,71
11		26,28	1625772	1486894	8,54
12		28,32	77071	93344	-
13		29,20	68264	88426	-
14	Ganoderenik asit C (7)	29,42	441374	430632	2,50
15	Ganoderik asit C2 (2)	30,43	90047	91854	-
16		31,30	47053	45710	2,85
17	Ganoderik asit G (3)	32,59	143982	75024	47,59
18		33,12	767418	767392	_
19		33,50	683566	701101	-
20	Ganoderik asit B (4)	34,09	801093	796290	-
21		34,83	245968	237866	-
22	Ganoderik asit A (5)	35,29	795372	821741	-
23		35,74	161526	158299	2,00
24		36,32	58597	40410	31,04
25		36,61	33939	-	100,0
26	Ganoderenik asit D (6)	36,86	143432	24732	82,76
27		37,26	98265	-	100,0
28		37,45	232137	284798	-
29	Ganoderik asit D (8)	37,97	385044	325379	15,50

Çizelge 3.25. 14.GR.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Bileşik	Alıkonma	G. resinaceum	G. resinaceum	Azalma Oranı
Sayısı		Zamanı	(14)	(14) + DPPH	(%)
30		38,29	49864	42471	14,83
31		40,44	106281	110937	
32		40,79	62982	-	100,0
33		41,13	244005	475200	-
34		41,70	80624	83604	-
35		42,08	66973	56161	16,14
36		42,31	152868	177533	-
37		44,45	832114	883766	-
38		45,09	600249	621004	-
39		51,92	107766	-	100,0
40		53,57	344318	349351	-
41		56,99	74816	59407	20,60
42		59,88	130647	131622	-
43		71,49	210015	211370	-
44		73,08	25169	21378	15,06
45	Ergosterol peroksit (1)	73,93	208015	215705	-
46		74,64	30185	11028403	-
47		75,43	61410	92787	-
48		75,92	113675	93162	18,05

Çizelge 3.25. (Devam)

Çizelge 3.25.'de Ganoderma resinaceum'dan maserasyon yöntemiyle hazırlanan 14.GR.M örneğinin aseton ekstresinin DPPH serbest radikali ile inkübasyonu sonucu elde edilen kromatogramına ait pik alanları ve pik alanlarındaki azalma oranları yer almaktadır. Şekil 3.32.'de G. resinaceum mantarı için elde edilen parmak izi kromatogramında gallik asit (ST2), protokateşik asit (ST6), 4-hidroksibenzoik asit (ST8), ganoderenik asit C (7), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderik asit D (8) ve ergosterol peroksit (1) maddeleri belirlendi. Bu maddelerden protokateşik asit (ST6), 4-hidroksibenzoik asit (ST8), ganoderik asit G (3), ganoderenik asit D (6) ve ganoderik asit D (8) bileşiklerinin DPPH ile inkübasyonu sonrası pik şiddetlerinde önemli miktarda kayıp olmuştur. 1,7. dak, 13,5. dak., 25,2. dak., 26,3. dak., 34,1. dak., 35.2. dak. ve 38.0 dakikalardaki pikler ana bilesiklere ait piklerdir. 29.4. dak. (ganoderenik asit C, 7), 33,1. dak., 33,5. dak., 35,2. dak. (ganoderik asit A, 5), 37,4. Dak, 41,1. dak., 44,4. dak., 45,1. dak., 71,5. dak., ve 73,9. dakikada (ergosterol peroksit, 1) gelen bileşiklerin pik alanlarının yüksek olmasına karşın DPPH ile inkübasyon sonucu pik alanlarında önemli bir azalma görülmemesi bu bileşiklerin antioksidan özelliğinin diğer örneklerden daha zayıf olduğunu gösterir.

Ondört mantarın aseton ekstreleri DPPH serbest radikali ile etkileştirilerek HPLC-DAD cihazına yeniden verilmek suretiyle analizlendi. İlk kromatogram ile daha sonra elde edilen kromatogramlarda pik alanlarında azalma veya pikin tamamen ortadan kaybolması o pike ait bileşiğin antioksidan aktivite gösterdiğine işaret etmektedir. Kesin olarak söylemek mümkündür ki ergosterol peroksit (1) bileşiğinin pik alanında değişiklik olmaması DPPH serbest radikali ile etkileşime girmediğinin göstergesidir. Dolayısıyla bu bileşiğin antioksidan aktivite yönünden aktif olmadığı belirlendi. Diğer yönden kromatogramlarda belirlenen fenolik madde kökenli bileşiklerden gallik asit (ST2), 4- hidroksibenzoik asit (ST8) ve vanilik asit (ST12) bileşiklerinin antioksidan özellik gösteriği pik şiddetlerindeki değişimlerden görüldü. Ayrıca G. resinaceum mantarından izole edilen triterpenlerden ganoderenik asit C (7), Ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4) ve ganoderik asit D (8)'nin görüldüğü mantar ekstrelerinde pik şiddetlerinin azalması yada tamaman kaybolması bu bileşiklerin de antioksidan aktiviteye sahip olduklarını göstermektedir. Ganoderik asit A (5) bileşiği 1.GL.M, 4.GL.M, 7.GA.M, 11.GA.M ve 14.GR.M kodlu örneklerin kromatogramlarında pik şiddetinde değişim göstermedi. Benzer sekilde ganoderenik asit D (6) ise 2.GL.M, 6.GA.M ve 9.GA.M kodlu örneklerin kromatogramlarında DPPH inkübasyonu sonucu pik şiddetlerinde değişime neden olmadı. Ancak diğer mantar ekstresi kromatogramlarında ganoderik asit A (5) ve ganoderenik asit D (6) maddelerinin geldiği alıkonma sürelerinde pik şiddetleri DPPH inkübasyonundan etkilenerek pik şiddetlerinde değişime neden olmaktadır.

Çizelge 3.16-3.24.'de vanilin (**ST14**), kumarik asit (**ST17**) ve *trans*-sinnamik asit (**ST23**) gibi maddeler alıkonma süresi aynı olmasına karşın UV spektrumu ile doğrulanamadığından tanımlanan maddeler arasında yer almamaktadır.

G. lucidum, G. adspersum, G. applanatum ve *G. resinaceum* mantarlarının metanol ekstrelerinin HPLC-DAD profilleri de oluşturuldu. Mantar örneklerinin metanol ekstreleri için bir gradient mobil faz sistemi ile 254 nm dalga boyunda kromatogramlar elde edildi. Herbir mantar türüne ait örnek HPLC-DAD kromatogramları Şekil 3.35.-Şekil 3.38.'de verildi. Şekil 3.35. *G. lucidum* (1) mantarının, Şekil 3.36. *G. adspersum* (7) mantarının, Şekil 3.37 *G. applanatum* (13) mantarının, Şekil 3.38. *G. resinaceum* (14) mantarının üç ekstraksiyon yöntemi ile elde edilen kromatogramlarıdır.

Şekil 3.35. *G. lucidum* (1) örneği metanol ekstresi HPLC-DAD kromatogramı a) Maserasyon,
b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

Şekil 3.36. *G. adspersum* (7) örneği metanol ekstresi HPLC-DAD kromatogramı Maserasyon, b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

a)

Şekil 3.37. *G. applanatum* (13) örneği metanol ekstresi HPLC-DAD kromatogramı a) Maserasyon, b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

Şekil 3.38. *G. resinaceum* (14) örneği metanol ekstresi HPLC-DAD kromatogramı a) Maserasyon, b) Soxhlet ekstraksiyon c) Ultrasonik ekstraksiyon

14 mantar örneğinin maserasyon yöntemiyle hazırlanan metanol ekstrelerinin Şekil 3.39'da, soxhlet ekstraksiyonuyla hazırlanan ekstrelerin Şekil 3.40.'da ve ultrasonik ekstraksiyon yöntemi ile hazırlanan ekstrelerin parmak izi kromatogramları Şekil 3.41.'de verilmektedir.

Şekil 3.39. Maserasyon yöntemi ile hazırlanan metanol ekstrelerinin parmak izi kromatogramları (Yukarıdan aşağıya sıralama: 1.GL.M, 2.GL.M, 3.GL.M, 4.GL.M, 5.GL.M, 6.GA.M, 7.GA.M, 8.GA.M, 9.GA.M, 10.GA.M, 11.GA.M, 12.GA.M, 13.GAp.M, 14.GR.M ve metanole ait kromatogram)

Şekil 3.40. Soxhlet ekstraksiyon yöntemi ile hazırlanan metanol ekstrelerinin parmak izi kromatogramları (Yukarıdan aşağıya sıralama: 1.GL.S, 2.GL.S, 3.GL.S, 4.GL.S, 5.GL.S, 6.GA.S, 7.GA.S, 8.GA.S, 9.GA.S, 10.GA.S, 11.GA.S, 12.GA.S, 13.GAp.S, 14.GR.S ve metanole ait kromatogram)

Şekil 3.41. Ultrasonik ekstraksiyon yöntemi ile hazırlanan metanol ekstrelerinin parmak izi kromatogramları (Yukarıdan aşağıya sıralama: 1.GL.U, 2.GL.U, 3.GL.U, 4.GL.U, 5.GL.U, 6.GA.U, 7.GA.U, 8.GA.U, 9.GA.U, 10.GA.U, 11.GA.U, 12.GA.U, 13.GAp.U, 14.GR.U ve metanole ait kromatogram)

3.2.3.5. Metanol ekstrelerinin kromatogramlarındaki maddelerin belirlenmesine ilişkin sonuçlar

Ganoderma türlerine ait 14 mantarın maserasyon, soxhlet ekstraksiyon ve ultrasonik ekstraksiyon yöntemleri ile hazırlanan metanol ekstrelerinin HPLC-DAD kromatogramlarındaki maddelerin belirlenmesi amacıyla organik ve fenolik madde standartları (fumarik asit (ST1), gallik asit (ST2), trans-akonitik asit (ST3), pbenzokinon (ST4), pirokatekol (ST5), 3,4-dihidroksi benzoik asit (protokatesik asit) (ST6), 2-(4-dihidroksifenil)etanol (ST7), 4-hidroksibenzoik asit (ST8), katekin (ST9), metil 1,4-benzokinon (ST10), 6,7-dihidroksibenzoik asit (ST11), vanilik asit (ST12), kafeik asit (ST13), vanilin (ST14), 2,4-dihidroksi benzoik asit (ST15), klorojenik asit (ST16), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), rutin (ST21), elajik asit (ST22), transsinnamik asit (ST23), naringenin (ST24), kesretin (ST25), rosmarinik asit (ST26), krisin (ST27)) Çizelge 2.11.'de verilen konsantrasyon aralığında hazırlanarak Çizelge 2.9.'da verilen şartlarda yürütüldü ve 6 seri seyreltme yapılarak 6 noktalı kalibrasyon eğrisi oluşturuldu. G. resinaceum mantarından saflaştırılan ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7) ve ganoderik asit D (8) kodlu maddeler Çizelge 2.10.'da verilen konsantrasyon aralıklarında hazırlanarak aynı şartlarda yürütüldü ve 5 seri seyreltme yapılarak 5 noktalı kalibrasyon eğrileri oluşturuldu. Ayrıca G. resinaceum mantarından saflaştırılan ergosterol peroksit (1) 'de 1000 µg/mL konsantrasyonda hazırlanarak HPLC cihazına verildi. Farklı mantarlardan elde edilen maddeler ise 1000 µg/mL konsantrasyonda hazırlanıp (ergosterol (TA1), 5α , 6α epoksi ergosta-7, 22-dien-3 β -ol (TA2), ergosta-7, 9, 22 trien-3-*O*-β-D-glukozit (**BA1**), ergosta-22-en 3β-ol (**BA2**), betulinan A (**BA3**), betulinan B (BA4), ergosta-5,22-dien 3β -ol (ID1) ve ergosta-5,22-dien-3-on (ID2), ergosta-5,22-dien 3-O- β -D-glukopiranosit (SC1), ergosta-5,22-dien 3-O- β -D-ksilofuranosil (SC2), ergosta-5,22-dienil 3-O- α -heptanoat (SC3), ergosta-5,22-dienil 3-O- α -12-cishegzadekenoat (SC4), ergosta-5,22-dienil 3-O- α -dekanoat (SC5)) tek tek enjekte edilerek HPLC-DAD cihazında analizleri gerçekleştirildi.

Sekil 3.42.'de metanole (baseline) ait kromatogram verilmektedir. Sekil 3.43.-3.48.'de sırayla, 27 fenolik ve organik madde standartları karışımı, G. resinaceum mantarından saflaştırılan maddelerin karışımı, ergosterol (TA1), betulinan A (BA3), β -ergosta-5,22-dien (**ID1**) ve 5 α -6 α epoksi ergosta-7,22-dien- 3 β -ol (**TA2**) standartlarına ait kromatogramlar yer almaktadır. Diğer maddelere ilişkin kromatogramlarda pik elde edilemedi. Çalışmamız ile 4 farklı türe ait 14 mantar örneğinin üç farklı ekstraksiyon yöntemi ile hazırlanan aseton ekstrelerinde 27 fenolik maddenin (fumarik asit (ST1), gallik asit (ST2), trans-akonitik asit (ST3), pbenzokinon (ST4), pirokatekol (ST5), 3,4-dihidroksi benzoik asit (protokateşik asit) (ST6), 2-(4-dihidroksifenil)etanol (ST7), 4-hidroksibenzoik asit (ST8), katekin (ST9), metil 1,4-benzokinon (ST10), 6,7-dihidroksibenzoik asit (ST11), vanilik asit (ST12), kafeik asit (ST13), vanilin (ST14), 2,4-dihidroksi benzoik asit (ST15), klorojenik asit (ST16), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), rutin (ST21), elajik asit (ST22), transsinnamik asit (ST23), naringenin (ST24), kesretin (ST25), rosmarinik asit (ST26), krisin (ST27)) yanısıra ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ve ganoderik asit D (8) ve diğer mantarlardan saflaştırılan steroit türevleri (ergosterol (TA1), $5\alpha, 6\alpha$ epoksi ergosta-7,22-dien-3 β -ol (TA2), ergosta-7,9,22 trien-3-O- β -Dglukozit (**BA1**), ergosta-22-en 3β -ol (**BA2**), betulinan A (**BA3**), betulinan B (**BA4**) ergosta-5,22-dien 3β -ol (**ID1**) ve ergosta-5,22-dien-3-on (**ID2**), ergosta-5,22-dien 3- $O-\beta$ -D-glukopiranosit (SC1), ergosta-5,22-dien 3- $O-\beta$ -D-ksilofuranosil (SC2), ergosta-5,22-dienil 3-O- α -heptanoat (SC3), ergosta-5,22-dienil 3-O- α -12-cishegzadekenoat (SC4), ergosta-5,22-dienil $3-O-\alpha$ -dekanoat (SC5)) için tarama yapıldı. Tespit edilen maddeler Çizelge 3.26.-3.28.'de µg/g cinsinden verilmektedir.

Ayrıca metanol ekstreleri için *G. lucidum* türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.49.-51'de, *G. adspersum* türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.52-54.'de, *G. applanatum* türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.55-57.'de ve *G. resinaceum* türünün maserasyon, soxhlet ve ultrasonik ekstrelerine ait örnek kromatogramlar Şekil 3.58.-3.60.' da verilmektedir.

Şekil 3.42. Metanole ait HPLC-DAD kromatogramı

Şekil 3.43. Fenolik madde standartlarının 254 nm dalga boyundaki HPLC-DAD kromatogramı (fumarik asit (ST1), gallik asit (ST2), trans-akonitik asit (ST3), pbenzokinon (ST4), pirokatekol (ST5), 3,4-dihidroksi benzoik asit (protokateşik asit) (ST6), 2-(4-dihidroksifenil)etanol (ST7), 4-hidroksibenzoik asit (ST8), katekin (ST9), metil 1,4-benzokinon (ST10), 6,7-dihidroksibenzoik asit (ST11), vanilik asit (ST12), kafeik asit (ST13), vanilin (ST14), 2,4-dihidroksi benzoik asit (ST15), klorojenik asit (ST16), p-kumarik asit (ST17), ferrulik asit (ST18), kumarin (ST19), trans-2-hidroksisinnamik asit (ST20), rutin (ST21), elajik asit (ST22), transsinnamik asit (ST23), naringenin (ST24), kesretin (ST25), rosmarinik asit (ST26), krisin (ST27))

Şekil 3.44. *Ganoderma resinaceum* mantarından saflaştırılan triterpenlerin kromatogramı, ganoderenik asit C (7), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderik asit D (8)

Şekil 3.45. Ergosterol (TA1)'ün 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.46. Betulinan A (BA3)'nın 254 nm dalga boyundaki HPLC-DAD kromatogramı

Şekil 3.47. Ergosta-5,22-dien 3β-ol (ID1) standardının 254 nm dalga boyundaki HPLC-DAD kromatogram

Şekil 3.48. 5α-6α epoksi ergosta-7,22-dien- 3β-ol (TA2)' ün 254 nm dalga boyundaki HPLC-DAD kromatogram

Metanol ekstrelerinin kromatogramlarında yer alan piklerin alıkonma zamanı ve UV spektrumları yukarıda incelenen standart maddelerin alıkonma zamanı ve UV spektrumları ile karşılaştırılarak piklerin hangi maddelere ait oldukları tespit edildi. Mantarların metanol ekstrelerinin birçoğunun kromatogramlarında 2,4dihidroksibenzoik asit (ST15) (24.8 dak.), klorojenik asit (ST16) (26.1 dak.), *p*kumarik asit (ST17) (28.4 dak.), ferrulik asit (ST18) (30 dak.), kumarin (ST19) (31,1 dak.) ve *trans*-2-hidroksisinnamik asit (ST20) (33,6 dak.) fenolik maddeleri ile aynı alıkonma zamanında pikler görüldü. Ancak örneklerdeki pikler ile standartlardaki piklerin UV spektrumlarının farklı olmasından dolayı aynı maddeler olarak kabul edilmedi ve miktarları hesaplanmadı.

Şekil 3.49. G. lucidum (1.GL.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.50. G. lucidum (1.GL.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.51. G. lucidum (1.GL.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı 196

Şekil 3.52. G. adspersum (8.GA.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.53. G. adspersum (8.GA.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.54. G. adspersum (8.GA.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.55. G. applanatum (13.GAp.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.56. *G. applanatum* (13.GAp.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.57. G. applanatum (13.GAp.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.58. G. resinaceum (14.GR.M) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.59. G. resinaceum (14.GR.S) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Şekil 3.60. G. resinaceum (14.GR.U) örneğinin metanol ekstresinde bulunan bileşenlerin 254 nm'de HPLC-DAD kromatogramı

Beş farklı G. lucidum örneğinin metanol ekstreleri üç farklı ekstraksiyon yöntemiyle hazırlandı (15 metanol ekstresi). G. lucidum örneklerinde fumarik asit (ST1) (0,85-5,5 µg/g), gallik asit (ST2) (0,44-1,04 µg/g), trans-akonitik asit (ST3) (0,29-5,39 µg/g), pirokatekol (ST5) (1,74-2,34), 2-(4-hidroksi fenil)etanol (ST7) (2,18-5,33) $\mu g/g$), vanilik asit (ST12) (0,09-0,12 $\mu g/g$), naringenin (ST24) (0,92-10,57 $\mu g/g$), rosmarinik asit (ST26) (0,06-11,66 μ g/g) gibi fenolik bileşenler tespit edildi. Her bir örnek ve her örnekteki bilesenler standartların alıkonma süreleri ile ve UV spektrumları ile doğrulandı. Ancak örneklerdeki fenolik bileşenlerin iz miktarlarda var olduğu belirlendi. Ayrıca G. resinaceum mantarından saflaştırılan ganoderenik asit C (7) (0,11-2,39 µg/g), ganoderik asit G (3) (0,94-24,54 µg/g), ganoderik asit C2 (2) $(0,27-8,65 \ \mu g/g)$, ganoderik asit B (4) $(0,18-3,54 \ \mu g/g)$ neredevse tüm G. lucidum mantarlarında tespit edildi. Ganoderenik asit D (6) (3.GL.U: 2,33 µg/g), ganoderik asit D (8) (5.GL.U: 458 μ g/g) ve ganoderik asit A (5) (3GL.U: 2,70 μ g/g) ise her örnekte gözlenmedi. Metanol ekstresi örneklerinde T. anatolicum mantarlardan saflastırılan ergosterol standardının alıkonma süresi aynı dakikada gelen pikin ergosterol (TA1) olduğu UV spekturumları ile doğrulandı (Ek C). Beş G. lucidum örneğinde de ergosterol (TA1) tespit edildi (0,93-46,62 µg/g). 1. numaralı örneğin ergosterol içeriğinin diğer G. lucidum örneklerinden daha yüksek olduğu izlendi.

G. adspersum mantarlarının metanol ekstreleri maserasyon, soxhlet ekstraksiyon ve ultrasonik ekstraksiyon olmak üzere üç ekstraksiyon yöntemiyle hazırlandı (21 metanol ekstresi). Bu ekstrelerde fumarik asit (**ST1**) (0,89-1,87 µg/g), gallik asit (**ST2**) (0,81-1,00 µg/g), *trans*-akonitik asit (**ST3**) (1,05-13,51 µg/g), 2-(4-hidroksi fenil)etanol (**ST7**) (1,53-16,12 µg/g), vanilik asit (**ST12**) (0,12-0,25 µg/g), naringenin (**ST24**) (0,18-6,09 µg/g), rosmarinik asit (**ST26**) (0,29-1,32 µg/g) gibi fenolik bileşenler tespit edildi. *G. lucidum* örneklerinde olduğu gibi fenolik bileşenlerin miktarlarının çok düşük olduğu görüldü. *G. resinaceum* mantarından saflaştırılan ganoderenik asit C (**7**) (0,45-19,50 µg/g), ganoderik asit G (**3**) (0,46-4,09 µg/g), ganoderik asit C2 (**2**) (0,14-3,33 µg/g), ganoderik asit B (**4**) (19,41-148,16 µg/g) ganoderenik asit D (**6**) (0,51-12,13 µg/g), ganoderik asit D (**8**) (0,36-10,43 µg/g) ve ganoderik asit A (**5**) (0,59-46,81 µg/g) metanol ekstrelerinin HPLC-DAD kromatogramlarında tespit edildi (Çizelge 3.26.-3.28) . Ayrıca tüm *G. adspersum* örneklerinde ergosterol (**TA1**) piki görüldü (0,13-47,46 µg/g). 6.GA.M (47,46 µg/g), 7.GA.U $(37,27\mu g/g)$ ve 9.GA.U $(21,29 \mu g/g)$ örneklerindeki ergosterol **(TA1)** miktarı diğer *G. adspersum* örneklerinden daha yüksek miktarda belirlendi.

G. resinaceum mantarının metanol ekstrelerinde gallik asit (**ST2**) (2,66-5,25 μ g/g), 2-(4-hidroksi fenil)etanol (**ST7**) (1,07-6,27 μ g/g) ve rosmarinik asit (**ST26**) (2,07-9,01 μ g/g) tespit edildi. Her bir örnek ve her örnekteki bileşenler standartların alıkonma süreleri ile ve UV spektrumları ile doğrulandı (Ek C). *G. resinaceum* mantarından saflaştırılan triterpenler HPLC-DAD sistemine verilerek metanol ektrelerinde hangi tiriterpenlerin olduğu belirlendi. Ganoderenik asit C (7) (0,86-19,12 μ g/g), ganoderik asit G (3) (9,05-19,129 μ g/g), ganoderik asit C2 (2) (14.GR.U:4,54 μ g/g), ganoderik asit B (4) (14.GR.S: 0,14 μ g/g) ve ganoderik asit D (8) (14.GR.U: 0,80 μ g/g) metanol ekstrelerinin HPLC-DAD kromatogramlarında tespit edildi (Çizelge 3.28.). Ayrıca tüm *G. resinaceum* örneklerinde ergosterol (**TA1**) piki tespit edildi (0,51-32,06 μ g/g).

G. applanatum mantarının metanol ekstrelerinde 2-(4-hidroksi fenil)etanol (**ST7**) (2,46 μ g/g) dışında başka bir fenolik madde saptanmadı. *G. resinaceum* mantarından saflaştırılan ganoderenik asit C (**7**) (0,21-0,36 μ g/g), ganoderik asit G (**3**) (1,18-2,73 μ g/g), ganoderik asit C2 (**2**) (1,01-3,18 μ g/g), ganoderik asit B (**4**) (4,26-10,08 μ g/g), ganoderik asit D (**8**) (0,76-2,50 μ g/g) ve ganoderik asit A (**5**) (0,21-0,73 μ g/g) metanol ekstrelerinin HPLC-DAD kromatogramlarında tespit edildi. Ayrıca HPLC kromatogramında 78. dakika görülen pikin ergosterol (**TA1**)'e ait olduğu belirlendi (6,27-12,75 μ g/g).

Her bir örnek ve her örnekteki bileşenler standartların alıkonma süreleri ile ve UV spektrumları ile doğrulandı. 2,4-dihidroksibenzoik asit (ST15), *p*-kumarik asit (ST17), ferrulik asit (ST18), *trans*-2-hidroksisinnamik asit (ST20), *trans*-sinnamik asit (ST23), 5α - 6α epoksi ergosta-7,22-dien- 3β -ol (TA2), betulinan A (BA3) alıkonma süreleri uyumlu olmasına karşın, UV spektrumlarında benzerlik görülmedi.

G. applanatum ve *G. resinaceum* mantarlarında fumarik asit (**ST1**) görülmezken, 2 numara ile kodlanmış Köyceğiz'den sığla ağacından toplanan *G. lucidum* mantarında en yüksek miktarda (2,58-5,50 μ g/g) tespit edildi. Aynı zamanda bu mantarın kromatograında pirokatekol (**ST5**)'e ait pik belirlendi. Ancak hesaplanan değerin LOD değerinin altında olduğu görüldü. *G. resinaceum* mantarında gallik asit (**ST2**) maddesi tespit edildi. Diğer mantarların (1.GL.S, 3.GL.S, 6.GA.U, 9.GA.S ve 9.GA.U) mantarlarının gallik asit (**ST2**) miktarlarının çok düşük olduğu görüldü. protokateşik asit (**ST6**), 4-hidroksibenzoik asit (**ST8**), *p*-benzokinon (**ST4**), katekin (**ST9**), metil 1,4-benzokinon (**ST10**), 6,7 dihidroksikumarin (**ST11**), kafeik asit (**ST13**), 2,4-dihidroksibenzoik asit (**ST15**), klorojenik asit (**ST16**), *p*-kumarik asit (**ST17**), ferrulik asit (**ST18**), kumarin (**ST19**), *trans*-2-hidroksisinnamik asit (**ST20**), rutin (**ST21**), elajik asit (**ST22**), *trans*-sinnamik asit (**ST23**), kesretin (**ST25**), krisin (**ST27**) gibi bileşenler 4 mantar türünde de görülmedi. 2-(4-hidroksifenil)etanol (**ST7**) 4 mantar türünde de belirlenirken, 2-(4-hidroksifenil)etanol (**ST7**) miktarı *G. adspersum* türü mantarlarda daha yüksek olduğu belirlendi. 1.GL.M, 1.GL.S, 1.GL.U, 6.GA.M ve 6. GA.S kodlu Fethiye'den sığla ağacından toplanan *G. lucidum* (0,09-0,12 µg/g) ve *G. adspersum* (0,12-0,25 µg/g) örneklerinde vanilik asit (**ST12**) çok düşük miktarlarda bile olsa tespit edildi. *G. lucidum* ve *G. adspersum* örnekleri arasında *trans*-akonitik asit (**ST3**) varlığı da tespit edildi. 12.GA.M örneği haricinde diğer örneklerde *trans*-akonitik asit (**ST3**) miktarının LOD değerinin altında olduğu belirlendi.

Örneklerin kromatogramlarda 78. dakikada görülen pik ergosterolün alıkonma süresi ile aynı olup, ergosterolün UV spektrumu ile de uyumludur. *Ganoderma* türü mantarların metanol ekstrelerinin neredeyse tümünde ergosterol türü steroit tespit edilirken, *G. resinaceum* mantarından elde edilen ergosterol peroksit metanol ekstrelerinde saptanmadı. *G. lucidum* örnekleri arasında en yüksek ergosterol miktarı Fethiye'den sığla ağacından toplanan 1.GL.S (46,62 μ g/g), *G. adspersum* örnekleri arasında en yüksek ergosterol miktarı 6.GA.M (47,46 μ g/g) ve Fethiye'den dut ağacından toplanan *G. resinaceum* örneğinin ultrasonik ekstresinde (14.GR.U) (32,06 μ g/g) tespit edildi.

Ganoderik asit B (**4**) bileşiği *G. adspersum* örneklerinin metanol ekstrelerinde aynı aseton ekstrelerinde olduğu gibi yüksek miktarlarda belirlendi. Ganoderik asit G (**3**) bileşiği ise tüm metanol ekstrelerinin arasında en yüksek miktarda *G. resinaceum* mantarında tespit edildi. Ganoderenik asit D (**6**) maddesi, 6 numaralı *G. adspersum* örneği dışında diğer tüm metanol ekstresi örneklerinde iz miktarlarda tespit edildi.

Ganoderma örneklerinin metanol ekstrelerinin antioksidan aktivite sonuçları aseton ekstreleri kadar olmasada özellikle *G. adspersum* ve *G. applanatum* mantarları için yüksek aktivite gösterdi. HPLC-DAD analizleri sonucu ise *G. adspersum* mantarlarının metanol ekstrelerinin triterpen ve steroit içerikleri toplamının daha yüksek olduğunu ortaya koydu. Özellikle ganoderik asit B maddesinin aseton ile tamamen mantardan alınamadığı ve poleritenin artmasıyla da ekstrakte edilmeye devam ettiği görüldü. 6.GA.S, 6.GA.U, 8.GA.S, 8.GA.U, 9.GA.M ve 9.GA.U metanol ekstresi örneklerinde ganoderik asit B miktarı 90 μ g/g'ın üzerinde tespit edildi. Bunun yanı sıra aseton ekstrelerinde (0,66-140 μ g/g) yüksek olan ganoderik asit G'nin metanol ekstrelerinde (0,46-19,1 μ g/g) daha düşük miktarlarda olduğu belirlendi. Ayrıca aseton ekstresi örneklerinde (8.GA.S, 8.GA.U, 9.GA.S ve 9.GA.U) yüksek olan ganoderenik asit D'nin miktarının metanol ekstrelerinde çok azaldığı gözlendi. Metanol ekstrelerinin antioksidan aktivite sonuçlarının yüksek olmasında en büyük etkinin hem aseton hemde metanol ektrelerinde yüksek miktarlarda tespit edilen ganoderik asit B maddesinden kaynaklandığı düşünülmektedir.

Ganoderik asit B maddesinin izole edilerek ticari hale getirilmesinde *G. adspersum* mantarlarının kullanılabileceği ve yüksek verim sağlamak amacıyla özellikle de ultrasonik ve soxhlet ekstraksiyon yöntemlerinin ganoderik asit B'nin eldesinde daha başarılı sonuçlar vereceği ortaya kondu.

Bileşikler	Alıkonma zamanı	1.GL.M	1.GL.S	1.GL.U	2.GL.M	2. GL.S	2.GL.U	3.GL.M	3.GL.S	3.GL.U	4.GL.M	4.GL.S	4.GL.U	5.GL.M	5.GL.S	5.GL.U
Fumarik asit (ST1)	6,80	0,85	-	-	2,58	4,51	5,50	-	-	-	-	-	1,26	-	-	-
Gallik asit (ST2)	8,39	-	0,44	-	-	-	-	-	1,04	-	-	-	-	-	-	-
trans -akonitik asit (ST3)	10,90	-	-	-	-	0,29*	-	-	-	-	-	5,39	-	-	-	-
<i>p</i> -benzokinon (ST4)	12,61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pirokatekol (ST5)	13,34	-	-	-	-	1,74	2,34	-	-	-	-	-	-	-	-	-
Protokateşik asit (ST6)	14,10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-(4-hidroksifenil)etanol (ST7)	18,49	-	-	-	5,33	2,18	2,99	-	2,70	-	-	4,47	2,23	-	-	-
4-hidroksibenzoik asit (ST8)	19,50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Katekin (ST9)	19,99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metil 1,4 benzokinon (ST10)	20,82	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6,7 dihidroksi kumarin (ST11)	21,99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanilik asit (ST12)	22,36	0,10	0,09	0,12	-	-	-	-	-	-	-	-	-	-	-	-
Kafeik asit (ST13)	22,94	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanilin (ST14)	24,02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-dihidroksibenzoik asit (ST15)	24,77	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Klorojenik asit (ST16)	26,12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>p</i> -kumarik asit (ST17)	28,40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ferulik asit (ST18)	29,93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kumarin (ST19)	31,10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-2-hidroksisinnamik asit (ST20)	33,65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rutin (ST21)	35,02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ellagik asit (ST22)	37,61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trans- sinnamik asit (ST23)	41,54	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naringenin (ST24)	43,17	-	-	1,53	-	-	-	-	-	10,6	-	-	5,56	-	-	-
Kersetin (ST25)	43,49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rosmarinik asit (ST26)	44,38	tr	tr	tr	tr	2,74	1,48*	0,06*	9,13	11,7	tr	tr	tr	tr	tr	tr
Krisin (ST27)	60,45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Çizelge 3.26. Metanol ektrelerinin HPLC-DAD kromatogramlarında belirlenen maddelerin miktarları (µg/g) (1-5)

Çizelge 3.26. (Devam)

Bileşikler	Alıkonma zamanı	1.GL.M	1.GL.S	1.GL.U	2.GL.M	2. GL.S	2.GL.U	3.GL.M	3.GL.S	3.GL.U	4.GL.M	4.GL.S	4.GL.U	5.GL.M	5.GL.S	5.GL.U
Ganoderenik asit C (7)	47,30	tr			tr	0,47	tr	0,96	1,60	0,11		0,63	tr	tr	0,29	2,39
Ganoderik asit G (3)	48,30	7,61	4,27	3,78	4,16	3,70	5,42	24,5	13,5	3,79	2,11	4,90	3,84	0,94	8,31	2,66
Ganoderik asit C2 (2)	48,80	-	2,61	2,07	-	7,08	-	0,66	-	8,65	4,05	0,96	3,16	0,27*	6,76	3,16
Ganoderik asit B (4)	49,70	0,49	-	0,18	0,19	3,54	2,74	tr	3,23	0,65	tr	0,46	tr	0,61	0,37	-
Ganoderenik asit D (6)	52,30	tr	-	tr	-	-	tr	tr	tr	2,33	-	tr	tr	tr	tr	tr
Ganoderik asit D (8)	54,20	-	-	-	-	0,14*	-	-	1,23	0,89	-	1,32	0,47	-	0,51	4,58
Ganoderik asit A (5)	54,80	-	tr	-	-	tr	-	tr	tr	2,70	-	tr	1,07	tr	tr	-
Betulinan A (BA3)	64,10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5α - 6α epoksi ergosta-7,22-dien- 3β -ol (TA2)	71,80	tr	tr	tr	-	-	-	tr	-	tr	tr	-	-	tr	-	tr
Ergosta-5,22-dien 3β -ol (ID1)	77,60	tr	tr	-	-	-	-	-	-	-	-	-	-	tr	tr	tr
Ergosterol (TA1)	78,00	31,6	46,6	24,8	4,15	6,34	12,9	8,63	13,7	13,1	0,93	0,89	17,6	3,90	8,24	27,8

tespit edilemedi tr iz miktarda
 * μg/mL cinsinden sonuca göre LOD değerinin altında

Bileşikler	Alıkonma zamanı	6.GA.M	6.GA.S	6.GA.U	7.GA.M	7. GA.S	7.GA.U	8.GA.M	8.GA.S	8.GA.U	9.GA.M	9.GA.S	9.GA.U	10.GA.M	10.GA.S	10.GA.U
Fumarik asit (ST1)	6,80	-	1,04	1,87	-	-	-	-	-	-	1,48	1,43	1,85	0,99	-	-
Gallik asit (ST2)	8,39	-	-	0,81	-	-	-	-	-	-	-	0,92	1,00	-	-	-
<i>trans</i> -akonitik asit (ST3)	10,90	-	-	-	-	-	2,65	-	-	-	-	-	6,30	-	-	-
<i>p</i> -benzokinon (ST4)	12,61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pirokatekol (ST5)	13,34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Protokateşik asit (ST6)	14,10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-(4-hidroksifenil)etanol (ST7)	18,49	2,91	-	5,23	9,87	2,96	2,58	1,53	3,24	7,40	6,40	7,79	-	7,12	5,23	9,68
4-hidroksibenzoik asit (ST8)	19,50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Katekin (ST9)	19,99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metil 1,4 benzokinon (ST10)	20,82	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6,7 dihidroksi kumarin (ST11)	21,99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanilik asit (ST12)	22,36	0,25	0,12	-	-	-	-	-	-	-	-	-	-	-	-	-
Kafeik asit (ST13)	22,94	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanilin (ST14)	24,02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-dihidroksibenzoik asit (ST15)	24,77	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Klorojenik asit (ST16)	26,12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<i>p</i> -kumarik asit (ST17)	28,40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ferulik asit (ST18)	29,93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kumarin (ST19)	31,10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-2-hidroksisinnamik asit (ST20)	33,65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rutin (ST21)	35,02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ellagik asit (ST22)	37,61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trans- sinnamik asit (ST23)	41,54	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naringenin (ST24)	43,17	-	-	5,68	1,10	-	6,07	0,18	2,10	6,09	-	-	-	-	-	3,30
Kersetin (ST25)	43,49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rosmarinik asit (ST26)	44,38	-	tr	-	tr	0,29*	-	-	-							
Krisin (ST27)	60,45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Çizelge 3.27. Metanol ektrelerinin HPLC-DAD kromatogramlarında belirlenen maddelerin miktarları (µg/g) (6-10)

C ¹	2 25	(Devam)
170 00	4 11	()
LIZUIZU	J.41.	

Bileşikler	Alıkonma zamanı	6.GA.M	6.GA.S	6.GA.U	7.GA.M	7. GA.S	7.GA.U	8.GA.M	8.GA.S	8.GA.U	9.GA.M	9.GA.S	9.GA.U	10.GA.M	10.GA.S	10.GA.U
Ganoderenik asit C (7)	47,30	-	19,5	8,47	2,93	2,56	6,03	2,61	7,62	8,96	0,45	0,57	2,79	2,32	1,99	2,70
Ganoderik asit G (3)	48,30	-	-	-	-	-	1,29	-	0,46	1,73	tr	-	tr	0,66	1,27	4,09
Ganoderik asit C2 (2)	48,80	0,72	2,49	2,66	1,06	0,29	0,42	1,20	-	-	0,14	3,33	tr	-	tr	2,00
Ganoderik asit B (4)	49,70	26,9	141	147	59,3	20,0	50,1	62,0	90,7	148	96,8	63,4	96,6	50,4	43,1	45,6
Ganoderenik asit D (6)	52,30	tr	12,1	11,8	tr	tr	2,04	tr	tr	1,92	tr	tr	tr	tr	tr	0,51
Ganoderik asit D (8)	54,20	3,47	7,29	1,29	4,08	0,36	3,61	2,37	1,89	10,4	-	0,44	-	-	0,94	0,54
Ganoderik asit A (5)	54,80	tr	46,8	41,7	-	1,01	-	2,92	tr	-	7,01	6,36	4,63	3,07	0,59	2,86
Betulinan A (BA3)	64,10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5α - 6α epoksi ergosta-7,22-dien- 3β -ol (TA2)	71,90	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ergosta-5,22-dien 3β -ol (ID1)	77,60	tr	tr	tr												
Ergosterol (TA1)	78,00	47,46	7,73	10,3	8,29	0,13	37,27	0,85	3,60	19,2	1,63	3,31	21,29	tr	tr	4,68

- tespit edilemedi tr iz miktarda * μg/mL cinsinden sonuca göre LOD değerinin altında

Bileşikler	Alıkonma zamanı	11.GA.M	11.GA.S	11.GA.U	12GA.M	12 GA.S	12GA.U	13.GAp.M	13.GAp.S	13.GApU	14.GR.M	14.GR.S	14.GR.U
Fumarik asit (ST1)	6,80	0,89	1,42	1,54	-	-	-	-	-	-	-	-	-
Gallik asit (ST2)	8,39	-	-	-	-	-	-	-	-	-	2,66	5,25	2,96
<i>trans</i> -akonitik asit (ST3)	10,90	-	1,05*	-	13,51	-	2,87	-	-	-	-	-	-
<i>p</i> -benzokinon (ST4)	12,61	-	-	-	-	-	-	-	-	-	-	-	-
Pirokatekol (ST5)	13,34	-	-	-	-	-	-	-	-	-	-	-	-
Protokateşik asit (ST6)	14,10	-	-	-	-	-	-	-	-	-	-	-	-
2-(4-hidroksifenil)etanol (ST7)	18,49	8,03	6,23	16,1	2,69	-	6,79	2,46	-	-	2,08	6,27	1,07
4-hidroksibenzoik asit (ST8)	19,50	-	-	-	0,01*	-	-	-	-	-	-	0,05*	-
Katekint (ST9)	19,99	-	-	-	-	-	-	-	-	-	-	-	-
Metil 1,4 benzokinon (ST10)	20,82	-	-	-	-	-	-	-	-	-	-	-	-
6,7 dihidroksi kumarin (ST11)	21,99	-	-	-	-	-	-	-	-	-	-	-	-
Vanilik asit (ST12)	22,36	-	-	-	-	-	-	-	-	-	-	-	-
Kafeik asit (ST13)	22,94	-	-	-	-	-	-	-	-	-	-	-	-
Vanilin (ST14)	24,02	-	-	-	-	-	-	-	-	-	-	-	-
2,4-dihidroksibenzoik asit (ST15)	24,77	-	-	-	-	-	-	-	-	-	-	-	-
Klorojenik asit (ST16)	26,12	-	-	-	-	-	-	-	-	-	-	-	-
<i>p</i> -kumarik asit (ST17)	28,40	-	-	-	-	-	-	-	-	-	-	-	-
Ferulik asit (ST18)	29,93	-	-	-	-	-	-	-	-	-	-	-	-
Kumarin (ST19)	31,10	-	-	-	-	-	-	-	-	-	-	-	-
trans-2-hidroksisinnamik asit (ST20)	33,65	-	-	-	-	-	-	-	-	-	-	-	-
Rutin (ST21)	35,02	-	-	-	-	-	-	-	-	-	-	-	-
Ellagik asit (ST22)	37,61	-	-	-	-	-	-	-	-	-	-	-	-
Trans- sinnamik asit (ST23)	41,54	-	-	-	-	-	-	-	-	-	-	-	-
Naringenin (ST24)	43,17	-	-	-	-	-	3,21	-	-	-	-	-	-
Kersetin (ST25)	43,49	-	-	-	-	-	-	-	-	-	-	-	-
Rosmarinik asit (ST26)	44,38	tr	tr	1,32*	tr	tr	tr	tr	tr	tr	2,07	4,75	9,01
Krisin (ST27)	60,45	-	-	-	-	-	-	-	-	-	-	-	-

Çizelge 3.28. Metanol ektrelerinin HPLC-DAD kromatogramlarında belirlenen maddelerin miktarları (µg/g) (11-14)

Çizelge 3.28. (Devam)

Bileşikler	Alıkonma zamanı	11.GA.M	11.GA.S	11.GA.U	12GA.M	12 GA.S	12GA.U	13.GAp.M	13.GAp.S	13.GApU	14.GR.M	14.GR.S	14.GR.U
Ganoderenik asit C (7)	47,30	2,36	1,18	4,69	1,78	1,99	2,41	-	0,36	0,21	1,56	2,41	0,86
Ganoderik asit G (3)	48,30	1,32	-	-	0,17*	0,16*	0,49	2,73	1,18	tr	19,1	9,05	13,1
Ganoderik asit C2 (2)	48,80	1,64	-	-	0,28	2,06		1,01	3,18	-	-	-	4,54
Ganoderik asit B (4)	49,70	30,4	19,4	34,8	41,5	42,9	49,2	4,26	10,1	8,11	tr	0,14*	tr
Ganoderenik asit D (6)	52,30	tr	tr	3,79	tr	tr	tr	tr	tr	tr	tr	tr	tr
Ganoderik asit D (8)	54,20	3,40	-	3,06	1,64	0,57	5,07	0,76	2,24	2,50	-	-	0,80
Ganoderik asit A (5)	54,80	16,6	11,9	18,5	tr	5,20	-	tr	0,21*	0,73	-	-	-
Betulinan A (BA3)	64,10	-	-	-	-	-	-	-	-	-	-	-	-
5α - 6α epoksi ergosta-7,22-dien- 3β -ol (TA2)	71,90	-	-	-	-	-	-	-	-	-	-	-	-
Ergosta-5,22-dien 3β -ol (ID1)	77,60	-	-	-	-	-	-	tr	tr	tr	-	-	-
Ergosterol (TA1)	78,00	0,93	6,70	7,65	0,37	-	10,2	12,8	6,27	7,33	0,51	15,2	32,1

tespit edilemedi tr iz miktarda
 * μg/mL cinsinden sonuca göre LOD değerinin altında

3.2.3.6. Metanol ekstrelerinin HPLC-DAD kromatogramlarındaki antioksidan piklerin belirlenmesi

G. lucidum, G. adspersum, G. applanatum ve *G. resinaceum* örneklerine ait metanol ekstreleri antioksidan piklerin belirlenmesi amacıyla 3,38 mM DPPH ile (1:1) oranda karıştırılarak aynı kromatografik koşullarda (kolon, mobil faz, akış hızı, dedektör, dalga boyu) çalışıldı ve 254 nm dalga boyunda kromatogramlarındaki değişimler izlendi. Maserasyon yöntemi ile hazırlanan *G. lucidum, G. adspersum, G. applanatum* ve *G. resinaceum* türlerine ait metanol ekstrelerinde DPPH serbest radikali ile reaksiyona giren maddelerin pik şiddetlerinde azalma ya da kaybolma gözlendi.

Pik	Dilogik	Alıkonma	C lucidum (1)	G. lucidum (1)	Azalma Oranı
Sayısı	Diicşik	Zamanı	G . <i>iuciaum</i> (1)	+ DPPH	(%)
1		1,11	19269	17197	-
2		1,49	39420	46497	-
3		1,72	604779	542173	10,35
4		3,16	112625		100,0
5		3,56	17811	13068	
6		4,05	74547	54120	-
7		6,19	57548	26513	53,93
8	Fumarik asit (ST1)	6,74	32741	-	100,0
9	4-OH benzoik asit (ST8)	19,39	49135	-	100,0
10	Vanilik asit (ST12)	22,25	50352	-	100,0
11*	(Kumarik asit)	28,78	99164	128070	-
12		30,50	21589	-	100,0
13		36,80	112272	94612	15,73
14		38,15	75211	108413	_
15		39,06	48457	48068	-
16		40,57	182253	178138	2,26
17*	(Trans-sinnamik asit)	41,38	51775	11737	77,3
18		42,54	316135	368037	-
19		42,84	144619	219141	-
20	Rosmarinik asit (ST26)	44,50	296332	82806	72,05
21		44,76	160136	186098	_
22		45,00	82341	-	100,0
23		46,07	25269	38544	-
24	Ganoderenik asit C (7)	47,28	33068	49776	-
25		47,64	129406	152204	-
26	Ganoderik asit G (3)	48,27	627137	550535	12,21
27	Ganoderik asit B (4)	49,82	118736	-	100,0
28		51,48	393465	229278	41,73
29	Ganoderenik asit D (6)	52,14	223409	-	-
30		52,85	217683	168921	22,40
31		66,16	37017	-	100,0
32		66,42	87302	-	100,0
33		67,22	351089	335809	4,35

Çizelge 3.29. 1.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Pik	Pilogik	Alıkonma	C lucidum (1)	G. lucidum (1)	Azalma Oranı
Sayısı	Diieşik	Zamanı	G. uclaum(1)	+ DPPH	(%)
34		69,57	19062	-	100,0
35		70,50	47433	50343	-
36	5α-6α epoksi ergosta-7,22- dien- 3β-ol (TA2)	71,71	32080	28541	11,03
37	-	72,44	75395	461177	-
38		73,26	46446	40642	12,50
39		76,95	20078	28606	-
40	Ergosta-5,22-dien 3β-ol (ID1)	77,20	29402	32462	-
41	Ergosterol (TA1)	78,09	3209486	2349492	26,80
42		81,14	8520	12705	-
43		81,25	35832	40013	-

Çizelge 3.29. (Devam)

Çizelge 3.29.'da Ganoderma lucidum'dan maserasyon yöntemiyle hazırlanan 1.GL.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH serbest radikali ile reaksiyon sonucu pik şiddetlerinde azalma görülen ya da kaybolan piklere ait maddeler antioksidan özelliktedir. DPPH ile inkübasyon sonrası 1.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından rosmarinik asit (ST26) ve ganoderik asit G (3) ve ergosterol (TA1) bileşiklerinin pik alanlarının azaldığı ve fumarik asit (ST1), vanilik asit (ST12), ganoderik asit B (4), ve ganoderenik asit D (6)'ye ait pikin tamamen kaybolduğu görüldü. Bununla birlikte ganoderenik asit C (7) bileşiğinin pik alanlarınında azalma görülmedi. Kromatogramda ergosterol (TA1), ganoderik asit G, rosmarinik asit (ST26), ganoderenik asit D (6), 1,7. dak. ve 52,8. dak. gelen bileşiklere ait piklerin kromatogramdaki majör maddelere ait olduğu ve herbirinin pik alanlarının DPPH ilavesi ile inkübasyon sonucu azaldığı ve dolayısıyla antioksidan özelllik gösterebileceği belirlendi. Çizelge 3.29.'da 11 ve 17 numaralı piklerin alıkonma süreleri, 4-OH benzoik asit (ST8), p-kumarik asit (ST17) ve transsinnamik asit (ST23) standartlarının alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

Pik	D'1'1-	Alıkonma		G. lucidum (2) +	Azalma Oranı
Sayısı	Bileşik	Zamanı	G. lucidum (2)	DPPH	(%)
1		1,13	24893	35943	-
2		1,35	32168	27951	13,11
3		1,66	441106	466473	-
4		2,48	307788	303482	-
5		2,93	274459	-	100,0
6		3,51	37509	207023	-
7		3,71	175303	33100	81,12
8	Fumarik asit (ST1)	6,79	193378	164301	15,04
9	2-(4-hidroksifenil)etanol (ST7)	18,17	116270	101725	12,51
10*	(2,4-dihidroksibenzoik asit)	24,45	674054	434159	35,59
11*	(p-Kumarik asit)	28,62	320451	334043	-
12*	(<i>trans</i> -2-hidroksisinnamik asit)	33,43	77883	78285	-
13		40,46	36655	-	100,0
14		44,21	200517	187813	6,34
15	Rosmarinik asit (ST26)	44,30	151369	120950	20,10
16		45,15	98110	94570	3,61
17		45,72	38900	41822	-
18	Ganoderenik asit C (7)	47,23	28301	30779	-
19	Ganoderik asit G (3)	48,17	355638	246094	30,80
20	Ganoderik asit C2 (2)	48,85	75676	16708	77,92
21		67,16	138999	97069	30,17
22	Ergosterol (TA1)	77,94	546617	554540	-
23		81,26	8766	36985	-

Çizelge 3.30. 2.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim

Çizelge 3.30.'da *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 2.GL.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 2.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından furmarik asit (**ST1**), 2-(4-dihidroksifenil) etanol (**ST7**), rosmarinik asit (**ST26**), ganoderik asit G (**3**) ve ganoderik asit C2 (**2**) bileşiklerinin pik alanlarının azaldığı görüldü. Bununla birlikte ganoderenik asit C (**7**) bileşiğinin pik alanlarınında azalma görülmedi. Kromatogramda ergosterol (**TA1**), ganoderik asit G (**3**), 1,7. dak., 2,5. dak, 3,0. dak., 24,5. dak., 28,6. dak. ve 52,8. dak. gelen piklerin kromatogramdaki majör maddelere ait olduğu belirlendi.

Pik		Alıkonma		G lucidum (3)	Azalma
Savisi	Bileşik	Zamanı	G. lucidum (3)	+ DPPH	Orani (%)
1		1.11	15341	-	100.0
2		1,37	19976	17820	10,79
3		1,75	286270	279992	2,19
4		3,22	99988	-	100,0
5		3,87	6125	-	100,0
6		4,08	42193	-	100,0
7	(4-hidroksibenzoik asit)	19,30	55254	-	100,0
8		21,74	50234	-	100,0
9	(2,4-dihidroksibenzoik asit)	24,99	2152661	1367337	36,48
10	(Klorojenik asit)	26,19	138203	103259	25,28
11	(<i>p</i> -Kumarik asit)	28,74	4238465	4057010	4,28
12		36,81	185910	184842	-
13		38,89	231130	244593	-
14		40,15	31537	-	100,0
15		40,58	102498	85557	16,53
16		41,88	29684		100,0
17		42,56	109969	102833	6,49
18		42,92	73237	76099	-
19	Rosmarinik asit (ST26)	44,28	863016	692474	19,76
20		44,68	261115	431308	-
21		45,82	279709	262916	6,00
22		46,25	435083	348119	19,99
23		46,71	59460	-	100,0
24		47,00	121641	45160	62,87
25	Ganoderenik asit C (7)	47,23	341897	228667	33,12
26	Ganoderik asit G (3)	48,18	1958140	1672649	14,58
27	Ganoderik asit C2 (2)	48,99	99589	-	100,0
28	Ganoderik asit B (4)	49,89	38218	-	100,0
29		51,25	447733	294497	34,22
30		51,88	144169	-	100,0
31	Ganoderenik asit $D(6)$	52,25	42174	-	100,0
32		52,60	45254	-	100,0
33	Ganoderik asit A (5)	54,85	72137	49581	31,27
34 25		59,40	25005	-	100,0
33 26		03,34	39432 05539	5/50/	3,27
20 27		03,08	95528 19541	70250	20,40
31 39		03,43 65 72	10301 30072	-	100,0
30		03,13	JU7/J 151/70	-	100,0
39 40		67 22	775008	- 616570	14 06
40 //1		69.24	723000 36465	26144	17,20 28 30
41		69,24	107060	62586	20,50 41 55
43		70 49	84192	78476	6.79
73	5a-6a enoksi ergosta-7 ??-	· · · · · ·	07174	/04/0	0,17
44	dien- 3β -ol (TA2)	71,72	15978	-	100,0
45		72,44	155523	485409	-
46		73,29	38615	39256	-
47		76,94	43393	-	100,0
48	Ergosterol (TA1)	78,08	980463	844445	13,87

Çizelge 3.31. 3.GL.M örneğinin DPPH ilavesi sonrası pik alanlarındaki değişim değişim

Çizelge 3.31.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 3.GL.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki

değişim görülmektedir. DPPH ile inkübasyon sonrası 3.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından rosmarinik asit (ST26), ganoderenik asit C (7) ve ganoderik asit G (3), ganoderik asit A (5), ergosterol (TA1) ve 5α - 6α epoksi ergosta-7,22-dien- 3β -ol (TA2) bileşiklerinin pik alanlarının azaldığı ve ganoderik asit C2 (2), ganoderik asit B (4) ve ganoderenik asit D (6)' ye ait piklerin tamamen kaybolduğu görüldü. Kromatogramda ergosterol (TA1), ganoderik asit G (3), rosmarinik asit (ST26), 24,9. dak., 28,7. dak. ve 67,2. dak. gelen piklerin kromatogramdaki majör maddelere ait olduğu belirlendi.

değişim

Çizelge 3.32. G. lucidum (4) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki

Pik	Bilesik	Alıkonma	G lucidum (A)	G. lucidum (4) +	Azalma
Sayısı	Diicşik	Zamanı	0. <i>iuciuum</i> (4)	DPPH	Oranı (%)
1		1.107	13530		100,0
2		1.274	13653	29945	-
3		1.407	11510	-	100,0
4		1.577	27328	45049	-
5		1.690	306548	279306	8,89
6		3.016	52643	45071	14,38
7		3.846	134377	133233	-
8		5.401	54664	-	100,0
9*	(2,4-dihidroksibenzoik asit)	24.518	2585338	1995527	22,81
10*	(Klorojenik asit)	26.257	44950	-	-
11*	(<i>p</i> -kumarik asit)	28.674	1785891	1188209	33,70
12		36.727	175391	167698	4,39
13		38.845	80157	-	100,0
14		43.554	59985	157150	-
15	Rosmarinik asit (ST26)	44.369	266541	118855	55,41
16		44.874	183087	-	100,0
17		46.534	283716	284710	-
18		47.958	194570	187260	3,76
19	Ganoderik asit G (3)	48.335	500943	369507	26,23
20	Ganoderik asit C2 (2)	48.933	87098	-	100,0
21	Ganoderik asit B (4)	49.766	56158	-	100,0
22		51.392	9048	-	100,0
23		51.750	32463	65022	-
24		60.591	44148	-	100,0
25		61.861	41988	62225	-
26		66.507	75912	36184	52,33
27		67.235	274419	274409	-
28		70.471	32830	63072	
29	5α-6α epoksi ergosta-7,22- dien- 3β-ol (TA2)	71.724	18115	-	100,0
30		72.407	71474	112057	-
31	Ergosterol (TA1)	78.040	234335	218087	6,93
32		81.155	67950	75695	-

* Alıkonma süreleri aynı olmasına karşın, UV spektrumları uyumlu olmayan pikler

Çizelge 3.32.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 4.GL.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 4.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından rosmarinik asit (**ST26**), ganoderik asit G (**3**) ve ergosterol (**TA1**) bileşiklerinin pik alanlarının azaldığı ve ganoderik asit C2 (**2**) ve ganoderik asit B'ye ait piklerin tamamen kaybolduğu görüldü. Kromatogramda ergosterol (**TA1**), ganoderik asit G (**3**), 24,5. dak., 28,7. dak. gelen piklerin kromatogramdaki majör maddelere ait olduğu ve DPPH ilavesi ile pik alanlarının azaldığı belirlendi. Çizelge 3.32.'de 9, 10 ve 11 numaralı piklerin alıkonma süreleri, 4-OH benzoik asit (**ST8**), 2,4-dihidroksibenzoik asit (**ST15**) ve *p*-kumarik asit (**ST17**) standartlarının alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

~				~	
Pik	Bilesik	Alıkonma	G lucidum (5)	G. lucidum (5)	Azalma
Sayısı	Bireşin	Zamanı	G. <i>inclutini</i> (5)	+ DPPH	Oranı (%)
1		1,15	4283	11313	-
2		1,32	2936	9282	-
3		1,71	153977	132033	14,25
4		3,11	26532	-	100,0
5*	(4-hidroksibenzoik asit)	19,55	67006	-	100,0
6*	(2,4-dihidroksibenzoik asit)	24,31	4508822	4077285	9,57
7*	(<i>p</i> -kumarik asit)	28,76	221846	218625	-
8		32,20	677035	150534	77,77
9*	(trans-2-hidroksisinnamik asit)	33,47	46796	-	100,0
10		34,35	89988	104438	-
11		36,80	155252	120331	22,49
12		38,87	511266	394418	23,00
13		40,66	16142	39644	-
14		42,10	191411	29562	84,56
15		42,49	42791	83663	-
16		42,91	29182	241010	-
17		43,01	94118	139235	-
18	Rosmarinik asit (ST26)	44,32	128135	35568	72,24
19		46,08	65400	-	100,0
20		46,43	89281	-	100,0
21		46,72	114110	30276	73,47
22	Ganoderenik asit C (7)	47,16	24852	-	100,0
23		47,63	20646	-	100,0
24		47,99	102543	102188	-
25	Ganoderik asit G (3)	48,33	28789	-	100,0
26	Ganoderik asit C2 (2)	48,82	53500	-	100,0
27	Ganoderik asit B (4)	49,70	134857	-	100,0
28		50,51	6723	-	100,0
29		50,67	33489	124168	-
30		51,13	90373	-	100,0
31		51,60	22800	-	100,0

Çizelge 3.33. *G. lucidum* (5) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

Pik	D'1 '1	Alıkonma	~	G. lucidum (5)	Azalma
Sayısı	Bileşik	Zamanı	G. lucidum (5)	+ DPPH	Oranı (%)
32		51,86	72064	-	100,0
33	Ganoderenik asit D (6)	52,21	40395	-	100,0
34	Ganoderik asit A (5)	54,85	126313	-	100,0
35		58,80	73594	28342	61,49
36		59,25	119635	163215	_
37		59,73	86414	88187	-
38		60,26	161353	91421	43,34
39		60,62	60895	69749	-
40		60,89	22144	23764	-
41		61,25	111818	47796	57,26
42		61,54	34870	31909	-
43		62,51	14666	-	100,0
44		62,88	20921	-	100,0
45		63,42	20457	-	100,0
46		65,27	31630	-	100,0
47		66,52	176762	-	100,0
48		67,27	140158	82291	41,29
49		68,73	25030	27830	-
50		70,47	24438	53475	-
51	5α-6α epoksi ergosta-7,22- dien- 3β-ol (TA2)	71,73	31211	27870	10,70
52		72,41	104731	120175	-
53		76,94	69954	72764	-
54	Ergosta-5,22-dien 3β -ol (ID1)	77,78	46719	46108	-
55	Ergosterol (TA1)	78,07	522193	490408	6,09

Çizelge 3.33. (Devam)

56

81,21

128983

98436

23,68

Çizelge 3.33.'de *Ganoderma lucidum*'dan maserasyon yöntemiyle hazırlanan 5.GL.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 5.GL.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından rosmarinik asit (**ST26**), 5α - 6α epoksi ergosta-7,22-dien- 3β -ol (**TA2**) ve ergosterol (**TA1**) bileşiklerinin pik alanlarının azaldığı, ganoderenik asit C, ganoderik asit G (**3**), ganoderik asit C2 (**2**), ganoderik asit B (**4**), ganoderenik asit D (**6**) ve ganoderik asit A (**5**)'ya ait piklerin tamamen kaybolduğu görüldü. Kromatogramda ergosterol (**TA1**), 24,3. dak., 32,2. dak. ve 38,9. dak. gelen piklerin kromatogramdaki majör maddelere ait olduğu belirlendi. 5.GL.M örneği örnekleri arasında dut ağacından elde edilen *G.lucidum* örneğidir. Diğer *G. lucidum* örneklerinde majör bileşiklerden biri ganoderik asit G (**3**) iken, bu örnekte düşük miktarda bulunması dikkat çekicidir. Çizelge 3.33.'de 5, 6, 7 ve 9 numaralı piklerin alıkonma süreleri, 4-OH benzoik asit (**ST8**), 2,4-dihidroksibenzoik asit (**ST15**), *p*-kumarik asit (**ST17**) ve *trans*-2-

hidroksisinnamik (**ST20**) asit standartlarının alıkonma süreleri ile aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

Pik		Alıkonma	C d d d d d d d d d d	G. adspersum (6)	Azalma
Sayısı		Zamanı	G. aaspersum (6)	+ DPPH	Oranı (%)
1		1,12	7283	15218	-
2		1,22	9634	27737	-
3		1,43	13579	-	100,0
4		1,73	278424	324107	-
5		3,17	41834	-	100,0
6		3,65	13677	63132	-
7		5,77	93648	-	100,0
8	2-(4-hidroksifenil)etanol (ST7)	18,57	59962	-	100,0
9	Vanilik asit (ST12)	22,12	140629	91457	34,96
10*	(2,4-dihidroksibenzoik asit)	24,50	914578	491740	46,23
11*	(Klorojenik asit)	26,04	96777	62390	35,53
12*	(Ferulik asit)	30,01	49496	-	100,0
13		42,26	19186	34821	-
14		43,45	20618	-	100,0
15		43,64	47717	33621	29,54
16		46,88	233909	237172	-
17	Ganoderik asit C2 (2)	48,69	106556	139062	-
18	Ganoderik asit B (4)	49,67	3840139	3611679	5,95
19		50,51	60509	63297	-
20		51,77	93227	99330	-
21	Ganoderenik asit D (6)	52,05	288181	263757	8,47
22		53,49	216612	222780	-
23	Ganoderik asit D (8)	54,21	807116	764978	5,22
24	Ganoderik asit A (5)	54,95	158286	93248	41,00
25		56,56	203821	224635	-
26		58,27	465113	441216	5,13
27		62,90	52951	-	100,0
28		67,29	44313	18549	58,14
29		68,94	38043	43256	-
30		76,87	24489	55547	-
31	Ergosta-5,22-dien 3 β -ol (ID1)	77,70	77036	75882	-
32	Ergosterol (TA1)	77,99	4744026	4299373	9,37
33	-	81,24	18026	39228	-

Çizelge 3.34. *G.* adspersum (6) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

* Alıkonma süreleri aynı olmasına karşın, UV spektrumları uyumlu olmayan pikler

Çizelge 3.34.'de *Ganoderma adsperum*'dan maserasyon yöntemiyle hazırlanan 6.GA.M örneğinin metanol ekstresinin kromatogramındaki piklerin DPPH ilavesi ile değişimi yer almaktadır. *G. adspersum* mantarı için elde edilen parmak izi kromatogramında yer alan 33 pikin 11 tanesinde DPPH ilavesine bağlı pik şiddetinin azaldığı ve 7 pikin ise tamamen kaybolma görüldü. DPPH ile inkübasyon sonrası 6.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler

arasından vanilik asit (**ST12**), ganoderik asit B (**4**), ganoderenik asit D (**6**), ganoderik asit D (**8**), ganoderik asit A (**5**) ve ergosterol (**TA1**) bileşiklerinin pik alanlarının azaldığı, 2-(4-dihidroksifenil)etanol (**ST7**)'e ait pikin tamamen kaybolduğu görüldü. Kromatogramda ergosterol (**TA1**), ganoderik asit B (**4**), ganoderik asit D (**8**), 24,3. dak. ve 58,2. dak. gelen piklerin kromatogramdaki majör maddelere ait olduğu belirlendi. DPPH' ait pik 66,6. dak. gelmektedir. *G. lucidum* örneklerinde majör bileşenlerden olan ergosterol (**TA1**), *G. adspersum* örneklerinde de ana bileşiktir. Ancak *G. lucidum* örneklerinin önemli majör bileşenlerinden olan ganoderik asit G (**3**)'nin yerini ganoderik asit B (**4**) almaktadır. Çizelge 3.34.'de 10, 11 ve 12 numaralı piklerin alıkonma süreleri standartların alıkonma süreleri ile aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

Fik SayısıBileşikAlıkolma ZamanıG. adspersum (7)G. adspersum (7)Azalma (7)+ DPPHOrani (%)11.05134851155614,3021,1817586169293,7431,662693302475508,0943,8845669-100,052-(4-hidroksifenil)etanol (ST7)18,3222192016500825,656*(2,4-dihidroksibenzoik asit)24,865039264688706,967*(Klorojenik asit)26,001441321387543,738*(p-Kumarik asit)28,623321313201873,60929,4712644311128011,991031,89702413203854,3911*(trans-2-hidroksisinnamik asit)33,5124739221587212,741238,8440100-100,013*(trans- Sinnamik asit)41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,5270095964371843,8440455929068828,1519Rosmarinik asit (C7)47,198732167895759,5825Ganoderenik asit C (7)47,198732167895759,5826Ganoderik asit G (3)48,3814721710918825,8027Ganoderik asit B (4)49,64	D:1-		A 1.1		C law	A = 0 1 mm 0
SayistZatitatil (1) + DFr1Otalit (76)11.0513485(1)55614,3021,1817586169293,7431.662693302475508,0943,8845669-100,052-(4-hidroksifenil)etanol (ST7)18,322219201650086*(2,4-dihidroksibenzoik asit)24,865039264688706,967*(Klorojenik asit)26,001441321387543,738*(p-Kumarik asit)28,623321313201873,60929,4712644311128011,991031,89702413203854,3911*(trans-2-hidroksisinnamik asit)33,5124739221587212,741238,8440100-100,013*(trans- Sinnamik asit)41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,5270095966437163356202044,78966844390154,59292144,95146047163356288034,9824Ganoderenik asit C7)47,198732167895759,5825Ganoderenik asit C (2)49,00130802144795-27Ganoderik asit B (4)49,648	PIK	Bileşik	Alikonma	G. adspersum (7)	G. aaspersum	Azalma $O_{rom}(0/)$
11,05134851155614,3021,1817586169293,7431,662693302475508,0943,8845669-100,052-(4-hidroksifeni)etanol (ST7)18,3222192016500825,65 6^* (2,4-dihidroksibenzoik asit)24,865039264688706,96 7^* (Klorojenik asit)26,001441321387543,73 8^* (p-Kumarik asit)28,623321313201873,60929,4712644311128011,991031,89702413203854,3911*(trans-2-hidroksisinnamik asit)33,5124739221587212,741238,8440100-100,013*(trans-Sinnamik asit)41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-100,02044,78966844390154,592144,95146047163356-100,0236anoderenik asit C (7)47,198732167895759,5825Ganoderik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asi				12405	(/)+ DPPH	01alli (%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		1,05	13485	11550	14,30
31,662093302475508,0943,8845669-100,052-(4-hidroksifenil)etanol (ST7)18,3222192016500825,65 6^* (2,4-dihidroksibenzoik asit)24,865039264688706,96 7^* (Klorojenik asit)26,001441321387543,73 8^* (p-Kumarik asit)28,623321313201873,60929,4712644311128011,991031,89702413203854,3911*(trans-2-hidroksisinnamik asit)33,5124739221587212,741238,8440100-100,013*(trans- Sinnamik asit)41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-1843,8440455929068828,1519Rosmarinik asit (ST26)44,78966844390154,592144,95146047163356-2246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit B (4)49,6	2		1,18	1/580	16929	5,74
43,8845069.100,052-(4-hidroksifenil)etanol (ST7)18,3222192016500825,65 $(2,4-dihidroksibenzoik asit)$ 24,865039264688706,967*(Klorojenik asit)26,001441321387543,738*(p-Kumarik asit)28,623321313201873,60929,4712644311128011,991031,89702413203854,3911*(trans-2-hidroksisinnamik asit)33,5124739221587212,741238,8440100-100,013*(trans- Sinnamik asit)41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-1843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,95146047163356-2246,31101920-100,023Ganoderik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit B (4)49,648398802652896622,262850,8172400<	3		1,66	269330	247550	8,09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4		3,88	45009	-	100,0
6^{+-} (2,4-dinidroksibenzoik asit) 24,86 503926 468870 6,96 7^* (Klorojenik asit) 26,00 144132 138754 3,73 8^* (p-Kumarik asit) 28,62 332131 320187 3,60 9 29,47 126443 111280 11,99 10 31,89 70241 32038 54,39 11* (trans-2-hidroksisinnamik asit) 33,51 247392 215872 12,74 12 38,84 40100 - 100,0 13* (trans-Sinnamik asit) 41,52 36139 40617 - 14 42,39 313006 401481 - - - - 15 42,87 233457 287070 -	5	2-(4-hidroksitenil)etanol (S17)	18,32	221920	165008	25,65
7^* (Klorojenik asit) 26,00 144132 138754 3,73 8^* (p-Kumarik asit) 28,62 332131 320187 3,60 9 29,47 126443 111280 11,99 10 31,89 70241 32038 54,39 11* (trans-2-hidroksisinnamik asit) 33,51 247392 215872 12,74 12 38,84 40100 - 100,0 - 100,0 13* (trans-Sinnamik asit) 41,52 36139 40617 - 14 42,39 313006 401481 - - 15 42,87 233457 287070 - - 16 Naringenin (ST24) 43,27 246337 70581 71,35 17 43,52 70095 966437 - 100,0 18 43,84 404559 290688 28,15 19 Rosmarinik asit (ST26) 44,39 76636 11100 85,52 20 46,31 101920 - 100,0 -	6*	(2,4-dihidroksibenzoik asit)	24,86	503926	468870	6,96
8^* (p-Kumarik asit) 28,62 332131 320187 $3,60$ 9 29,47 126443 111280 11,99 10 31,89 70241 32038 $54,39$ 11* (trans-2-hidroksisinnamik asit) 33,51 247392 215872 12,74 12 38,84 40100 - 100,0 - 100,0 13* (trans-Sinnamik asit) 41,52 36139 40617 - - 14 42,39 313006 401481 - - - - 15 42,87 233457 287070 - - - - 16 Naringenin (ST24) 43,27 246337 70581 71,35 - 17 43,52 70095 96437 - - - - 18 A384 404559 290688 28,15 -<	/*	(Klorojenik asit)	26,00	144132	138754	3,73
929,4712644311128011,991031,89702413203854,3911* $(trans-2-hidroksisinnamik asit)$ 33,5124739221587212,741238,8440100-100,013* $(trans-Sinnamik asit)$ 41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-1843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,95146047163356-2246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,3649644144307511,873253,2649568471890,483353,7257501355	8*	(<i>p</i> -Kumarik asit)	28,62	332131	320187	3,60
1031,89702413203854,3911* $(trans-2-hidroksisinnamik asit)$ 33,5124739221587212,741238,8440100-100,013* $(trans-Sinnamik asit)$ 41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-1843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,951460471633562246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,3649644144307511,873253,725750135590102.06	9		29,47	126443	111280	11,99
11* $(trans-2-hidroksisinnamik asit)$ 33,5124739221587212,741238,8440100-100,013* $(trans-Sinnamik asit)$ 41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-1843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,951460471633562246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,3649644144307511,873253,7649568471890,483353,725750135590102.06	10		31,89	70241	32038	54,39
1238,8440100-100,0 13^* (trans-Sinnamik asit)41,523613940617-1442,39313006401481-1542,87233457287070-16Naringenin (ST24)43,272463377058171,351743,527009596437-1843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,951460471633562246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit G (2)49,00130802144795-27Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,364964414307511,873253,2649568471890,483353,265750135580102.06	11*	(<i>trans</i> -2-hidroksisinnamik asit)	33,51	247392	215872	12,74
13^* $(trans-Sinnamik asit)$ $41,52$ 36139 40617 $-$ 14 $42,39$ 313006 401481 $-$ 15 $42,87$ 233457 287070 $-$ 16Naringenin (ST24) $43,27$ 246337 70581 $71,35$ 17 $43,52$ 70095 96437 $-$ 18 $43,84$ 404559 290688 $28,15$ 19Rosmarinik asit (ST26) $44,39$ 76636 11100 $85,52$ 20 $44,78$ 96684 43901 $54,59$ 21 $44,95$ 146047 163356 22 $46,31$ 101920 - $100,0$ 23 $46,84$ 151163 98280 $34,98$ 24Ganoderenik asit C (7) $47,19$ 873216 789575 $9,58$ 25Ganoderik asit G (3) $48,38$ 147217 109188 $25,80$ 26Ganoderik asit B (4) $49,64$ 8398802 6528966 $22,26$ 28 $50,81$ 72400 - $100,0$ 29 $51,36$ 40267 - $100,0$ 30 $51,99$ 75680 14796 $80,45$ 31Ganoderenik asit D (6) $52,36$ 496441 443075 $11,87$ 32 $53,26$ 49568 4718 $90,48$	12		38,84	40100	-	100,0
1442,39 313006 401481 -1542,87 233457 287070 -16Naringenin (ST24) $43,27$ 246337 70581 $71,35$ 1743,52 70095 96437 -1843,84 404559 290688 $28,15$ 19Rosmarinik asit (ST26) $44,39$ 76636 11100 $85,52$ 2044,78 96684 43901 $54,59$ 2144,95 146047 163356 2246,31 101920 - $100,0$ 2346,84 151163 98280 $34,98$ 24Ganoderenik asit C (7) $47,19$ 873216 789575 $9,58$ 25Ganoderik asit G (3) $48,38$ 147217 109188 $25,80$ 26Ganoderik asit C (2) $49,00$ 130802 144795 -27Ganoderik asit B (4) $49,64$ 8398802 6528966 $22,26$ 28 $50,81$ 72400 - $100,0$ 29 $51,36$ 40267 - $100,0$ 30 $51,99$ 75680 14796 $80,45$ 31Ganoderenik asit D (6) $52,36$ 495641 443075 $11,87$ 32 $53,72$ 575013 558010 29.6	13*	(trans- Sinnamik asit)	41,52	36139	40617	-
15 $42,87$ 233457 287070 $-$ 16Naringenin (ST24) $43,27$ 246337 70581 $71,35$ 17 $43,52$ 70095 96437 18 $43,84$ 404559 290688 $28,15$ 19Rosmarinik asit (ST26) $44,39$ 76636 11100 $85,52$ 20 $44,78$ 96684 43901 $54,59$ 21 $44,95$ 146047 163356 22 $46,31$ 101920 - $100,0$ 23 $46,84$ 151163 98280 $34,98$ 24Ganoderenik asit C (7) $47,19$ 873216 789575 $9,58$ 25Ganoderik asit G (3) $48,38$ 147217 109188 $25,80$ 26Ganoderik asit C (2) $49,00$ 130802 144795 -27Ganoderik asit B (4) $49,64$ 8398802 6528966 $22,26$ 28 $50,81$ 72400 - $100,0$ 29 $51,36$ 40267 - $100,0$ 30 $51,99$ 75680 14796 $80,45$ 31Ganoderenik asit D (6) $52,36$ 49568 4718 $90,48$ 32 $53,26$ 49568 4718 $90,48$ 33 $53,72$ 575013 558010 2.96	14		42,39	313006	401481	-
16Naringenin (ST24)43,272463377058171,351743,5270095964371843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,951460471633562246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit C2 (2)49,00130802144795-27Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,3649568471890,483353,2649568471890,483353,725750135580102.96	15		42,87	233457	287070	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	Naringenin (ST24)	43,27	246337	70581	71,35
1843,8440455929068828,1519Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,951460471633562246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit C2 (2)49,00130802144795-27Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,3649644144307511,873253,2649568471890,483353,725750135580102.06	17		43,52	70095	96437	
19Rosmarinik asit (ST26)44,39766361110085,522044,78966844390154,592144,951460471633562246,31101920-100,02346,841511639828034,9824Ganoderenik asit C (7)47,198732167895759,5825Ganoderik asit G (3)48,3814721710918825,8026Ganoderik asit C2 (2)49,00130802144795-27Ganoderik asit B (4)49,648398802652896622,262850,8172400-100,02951,3640267-100,03051,99756801479680,4531Ganoderenik asit D (6)52,3649644144307511,873253,2649568471890,483353,725750135580102.06	18		43,84	404559	290688	28,15
20 $44,78$ 96684 43901 $54,59$ 21 $44,95$ 146047 163356 22 $46,31$ 101920 - $100,0$ 23 $46,84$ 151163 98280 $34,98$ 24 Ganoderenik asit C (7) $47,19$ 873216 789575 $9,58$ 25 Ganoderik asit G (3) $48,38$ 147217 109188 $25,80$ 26 Ganoderik asit C2 (2) $49,00$ 130802 144795 - 27 Ganoderik asit B (4) $49,64$ 8398802 6528966 $22,26$ 28 $50,81$ 72400 - $100,0$ 29 $51,36$ 40267 - $100,0$ 30 $51,99$ 75680 14796 $80,45$ 31 Ganoderenik asit D (6) $52,36$ 496441 443075 $11,87$ 32 $53,26$ 49568 4718 $90,48$ 33 $53,72$ 575013 559010 2.96	19	Rosmarinik asit (ST26)	44,39	76636	11100	85,52
21 $44,95$ 146047 163356 22 $46,31$ 101920 - $100,0$ 23 $46,84$ 151163 98280 $34,98$ 24 Ganoderenik asit C (7) $47,19$ 873216 789575 $9,58$ 25 Ganoderik asit G (3) $48,38$ 147217 109188 $25,80$ 26 Ganoderik asit C2 (2) $49,00$ 130802 144795 - 27 Ganoderik asit B (4) $49,64$ 8398802 6528966 $22,26$ 28 $50,81$ 72400 - $100,0$ 29 $51,36$ 40267 - $100,0$ 30 $51,99$ 75680 14796 $80,45$ 31 Ganoderenik asit D (6) $52,36$ 496441 443075 $11,87$ 32 $53,26$ 49568 4718 $90,48$ 33 $53,72$ 575013 559010 2.96	20		44,78	96684	43901	54,59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21		44,95	146047	163356	
23 46,84 151163 98280 34,98 24 Ganoderenik asit C (7) 47,19 873216 789575 9,58 25 Ganoderik asit G (3) 48,38 147217 109188 25,80 26 Ganoderik asit C2 (2) 49,00 130802 144795 - 27 Ganoderik asit B (4) 49,64 8398802 6528966 22,26 28 50,81 72400 - 100,0 29 51,36 40267 - 100,0 30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.96	22		46,31	101920	-	100,0
24 Ganoderenik asit C (7) 47,19 873216 789575 9,58 25 Ganoderik asit G (3) 48,38 147217 109188 25,80 26 Ganoderik asit C2 (2) 49,00 130802 144795 - 27 Ganoderik asit B (4) 49,64 8398802 6528966 22,26 28 50,81 72400 - 100,0 29 51,36 40267 - 100,0 30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.96	23		46,84	151163	98280	34,98
25 Ganoderik asit G (3) 48,38 147217 109188 25,80 26 Ganoderik asit C2 (2) 49,00 130802 144795 - 27 Ganoderik asit B (4) 49,64 8398802 6528966 22,26 28 50,81 72400 - 100,0 29 51,36 40267 - 100,0 30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 5372 575013 558010 2.96	24	Ganoderenik asit C (7)	47,19	873216	789575	9,58
26 Ganoderik asit C2 (2) 49,00 130802 144795 - 27 Ganoderik asit B (4) 49,64 8398802 6528966 22,26 28 50,81 72400 - 100,0 29 51,36 40267 - 100,0 30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.96	25	Ganoderik asit G (3)	48,38	147217	109188	25,80
27 Ganoderik asit B (4) 49,64 8398802 6528966 22,26 28 50,81 72400 - 100,0 29 51,36 40267 - 100,0 30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.06	26	Ganoderik asit C2 (2)	49,00	130802	144795	_
28 50,81 72400 - 100,0 29 51,36 40267 - 100,0 30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.96	27	Ganoderik asit B (4)	49,64	8398802	6528966	22,26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28		50,81	72400	-	100,0
30 51,99 75680 14796 80,45 31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.06	29		51,36	40267	-	100,0
31 Ganoderenik asit D (6) 52,36 496441 443075 11,87 32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.06	30		51,99	75680	14796	80,45
32 53,26 49568 4718 90,48 33 53,72 575013 558010 2.96	31	Ganoderenik asit D (6)	52,36	496441	443075	11,87
33 53 72 575013 558010 2.06	32		53,26	49568	4718	90,48
<i>JJ</i> , <i>12 J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U J</i> , <i>J</i> , <i>U</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>U</i> , <i>J</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i> , <i>U</i>	33		53,72	575013	558010	2,96

Çizelge 3.35. *G. adspersum* (7) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

Pik	ו וית	Alıkonma		G. adspersum	Azalma
Sayısı	Bileşik	Zamanı	G. adspersum (7)	(7)+ DPPH	Oranı (%)
34	Ganoderik asit D (8)	54,31	953701	614160	35,57
35		55,53	345721	269430	22,07
36		56,88	673609	433523	35,64
37		57,34	49340	-	100,0
38		58,58	2791418	2663857	4,57
39		60,82	197938	175543	11,31
40		62,79	136954	87864	35,84
41		63,09	35587	-	100,0
42		63,38	33203	12625	61,98
43*	(Betulinan A)	64,13	69128	118286	-
44		65,76	46231	1037437	-
45		66,03	36928	-	100,0
46		66,65	32880	17056197	-
47		67,31	16190	21952	-
48		68,76	25834	28988	-
49		69,10	19575	19234	-
50		71,17	93667	68592	26,77
51		76,88	432084	421487	2,45
52	Ergosterol (TA1)	78,04	947650	887574	6,34
53		81,16	12868	15114	-
54		81,26	34669	36940	-

Çizelge 3.35. (Devam)

Çizelge 3.35.'de *Ganoderma adsperum*'dan maserasyon yöntemiyle hazırlanan 7.GA.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir DPPH ile inkübasyon sonrası 7.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 2-(4dihidroksifenil)etanol (ST7), naringenin (ST24), rosmarinik asit (ST26), ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4), ganoderenik asit D (6), ganoderik asit D (8) ve ergosterol (TA1) bileşiklerinin pik alanlarının azaldığı görüldü. Kromatogramda ergosterol (TA1), ganoderik asit B (4), ganoderenik asit C (7), ganoderik asit D (8), 24,5. dak. , 43,8. dak., 53,7. dak, 56,8. dak., 58,2. dak. ve 76,8. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. DPPH' ait pik 66,6. dak. geldiği Çizelge 3.35'de (46)' da görüldü. Çizelge 3.35.'de 6, 7, 8, 11 ve 13 numaralı piklerin alıkonma süreleri standartların alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

Pik	Bilocik	Alıkonma	G adaparsum (8)	G. adspersum	Azalma
Sayısı	Dileşik	Zamanı	G. <i>daspersum</i> (8)	(8)+DPPH	Oranı (%)
1		1,18	16129	-	100,0
2		1,33	10879	16590	-
3		1,73	170976	186940	-
4		4,02	39811	-	100,0
5	2-(4-hidroksifenil)etanol (ST7)	18,47	182582	107042	41,37
6*	(2,4-dihidroksibenzoik asit)	25,09	678748	560881	17,37
7*	(Klorojenik asit)	26,04	112675	-	100,0
8*	(<i>p</i> -Kumarik asit)	28,68	375850	370318	-
9		30,40	163944	173608	-
10		30,89	105943	112474	-
11		32,86	52786	33458	36,62
12		36,74	120575	98670	18,17
13		39,18	11594	-	100,0
14		42,95	173677	108006	37,81
15	Naringenin (ST24)	43,40	196600	47688	75,74
16		43,87	175579	47270	73,08
17	Rosmarinik asit (ST26)	44,41	11430	-	100,0
18		45,58	59840	30341	49,30
19		46,14	111555	66709	40,20
20		46,75	68036	62403	8,28
21	Ganoderenik asit C (7)	47,13	786733	785448	-
22		48,64	163428	79374	51,43
23	Ganoderik asit C2 (2)	49,09	152177	-	100,0
24	Ganoderik asit B (4)	49,69	8771643	8039946	8,34
25		50,45	34226	-	100,0
26		51,52	50491	· ·	100,0
27	Ganoderenik asit D (6)	52,32	503501	403092	19,88
28		53,50	63025	-	100,0
29	Ganoderik asit D (8)	54,17	544105	-	100,0
30	Ganoderik asit A (5)	54,78	581824	238842	58,95
31		55,78	587903	526991	10,36
32		56,95	1375851	1311735	4,66
33		58,66	2719336	2376121	12,50
34		60,82	207617	256656	_
35		62,81	418171	366702	12,31
36*	(Betulinan A)	64,19	72483	59935	17,31
37	· · · · · ·	67,33	24073	16169	32,83
38	Ergosterol (TA1)	78,05	226402	210288	7,12
39		81,17	12819	15766	-
40		81,27	39036	36946	5,35

Çizelge 3.36. G. adspersum	8) örneğinin DPPH ilavesi sonrası	kromatogramda pik
----------------------------	-----------------------------------	-------------------

alanlarındaki değişim

* Alıkonma süreleri aynı olmasına karşın, UV spektrumları uyumlu olmayan pikler

Çizelge 3.36.'da *Ganoderma adsperum*'dan maserasyon yöntemiyle hazırlanan 8.GA.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 8.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 2-(4-dihidroksifenil)etanol (**ST7**), naringenin (**ST24**), ganoderik asit B (**4**), ganoderenik asit D (**6**), ganoderik asit A (**5**) ve ergosterol (**TA1**) bileşiklerinin pik alanlarının

azaldığı görüldü. Ayrıca rosmarinik asit (**ST26**) ve ganoderik asit D (**8**)'ye ait pikler DPPH ile inkübasyon sonrası tamamen kayboldu. Kromatogramda ganoderenik asit C (**7**), ganoderik asit B (**4**), ganoderenik asit D (**6**), ganoderik asit D (**8**), ganoderik asit A (**5**), 24,5. dak., 28,6. dak., 56,8. dak., 58,6. dak. ve 62,8. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. Çizelge 3.36.'da 6, 7, 8 ve 36 numaralı piklerin alıkonma süreleri standartların alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

Pik	Dilagil	Alıkonma	G. adspersum	G. adspersum	Azalma
Sayısı	Blieşik	Zamanı	(9)	(9)+DPPH	Oranı (%)
1		1,76	487579	411724	15,56
2		3,84	16296		100,0
3		4,13	71460		100,0
4	Fumarik asit (ST1)	6,76	91555	-	100,0
5	Gallik asit (ST2)	8,81	245621	157689	35,80
6		11,84	705593	118362	83,23
7	2-(4-hidroksifenil)etanol (ST7)	18,49	141198	83146	41,11
8*	(2,4-dihidroksibenzoik asit)	25,48	107761	-	100,0
9*	(Klorojenik asit)	26,20	213650	375960	-
10*	(<i>p</i> -Kumarik asit)	28,82	152911	135003	11,71
11		30,52	130984	93795	28,39
12*	(Kumarin)	31,05	101763	93845	7,78
13		41,32	109462	124144	-
14*	(trans- Sinnamik asit)	41,59	53988	71098	-
15		41,76	98381	-	100,0
16		41,96	62600	-	100,0
17		42,58	196949	112068	43,10
18		42,86	130516	-	100,0
19		43,02	100087	-	100,0
20		43,49	279250	172391	38,27
21		43,65	95985	131532	-
22	Rosmarinik asit (ST26)	44,00	134676	-	100,0
23		44,58	36248	69451	-
24		44,91	163675	137550	-
25		45,65	47882	60018	-
26		46,28	105540	-	100,0
27		46,73	36696	-	100,0
28	Ganoderenik asit C (7)	47,27	203624	121320	40,42
29	Ganoderik asit C2 (2)	48,63	37994	-	100,0
30		49,07	15784	-	100,0
31	Ganoderik asit B (4)	49,65	13681000	10805784	21,05
32		50,79	104800	423291	-
33		51,43	233432	346750	-
34	Ganoderenik asit D (6)	52,31	67307	-	100,0
35		53,77	507748	354266	30,23
36	Ganoderik asit A (5)	54,78	1049932	882325	15,96
37		55,66	550795	544927	-
38		56,84	223814	232286	-
39		58,56	6009606	5031767	16,30
40		60,82	202607	183478	9,44

Çizelge 3.37. *G. adspersum* (9) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim
Çizelge	3.37.	(Devam)
---------	-------	---------

Pik Sayısı	Bileşik	Alıkonma Zamanı	G. adspersum (9)	G. adspersum (9)+ DPPH	Azalma Oranı (%)
41		62,77	115618	167784	-
42		63,07	53663	-	100,0
43		63,35	43623	117724	-
44*	(Betulinan A)	64,17	139245	129980	6,65
45		65,78	15471	1118537	-
46		67,34	39570	70409	-
47	Ergosterol (TA1)	78,17	301716	287800	4,61
48		81,13	16919	23800	-
49		81,22	42206	38225	9,43

Çizelge 3.37.'de *Ganoderma adsperum*'dan maserasyon yöntemiyle hazırlanan 9.GA.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 9.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 2-(4-dihidroksifenil)etanol (**ST7**), gallik asit (**ST2**), ganoderenik asit C (7), ganoderik asit B (4) ve ganoderik asit A (5) bileşiklerinin pik alanlarının azaldığı görüldü. Ayrıca fumarik asit (**ST1**), rosmarinik asit (**ST26**), ganoderik asit C2 (2) ve ganoderenik asit D (6)'ye ait pikler DPPH ile inkübasyon sonrası tamamen kayboldu. Kromatogramda ganoderik asit B, ganoderik asit A, 11,8. dak., 53,7. dak., 55,6. dak. ve 58,5. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. Çizelge 3.37.'de 8, 9, 10, 12, 14, 44 numaralı piklerin alıkonma süreleri 2,4-dihidroksibenzoik asit (**ST15**), *p*-kumarik asit (**ST17**), klorojenik asit (**ST16**), kumarin (**ST19**), *trans*-sinnamik asit (**ST23**) ve betulinan A (**BA3**) standartlarının alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

Pik	Dilacile	Alıkonma	G. adspersum	G. adspersum	Azalma
Sayısı	DIICŞIK	Zamanı	(10)	(10)+ DPPH	Oranı (%)
1		1,74	118873	122645	-
2		3,95	10316	-	100,0
3		4,16	33939	-	100,0
4	Fumarik asit (ST1)	7,10	45717	-	100,0
5	2-(4-hidroksifenil)etanol (ST7)	18,36	158007	90613	42,65
6*	(2,4-dihidroksibenzoik asit)	25,39	2079388	1897623	8,74
7*	(<i>p</i> -Kumarik asit)	28,70	4267533	4090549	4,41
8	-	30,59	285341	297211	-
9		31,95	227591	234042	-
10		32,75	96775	-	100,0
11*	(trans-2-hidroksisinnamik asit)	33,62	270163	279949	-

Çizelge 3.38. *G. adspersum* (10) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

Pik	Dilocil	Alıkonma	C adaptaria (10)	G. adspersum	Azalma
Sayısı	DIIEŞIK	Zamanı	G. aaspersum (10)	(10)+ DPPH	Oranı (%)
12		36,82	284661	280472	-
13		38,95	58968	54688	-
14		41,13	126790	96483	23,90
15*	(trans- Sinnamik asit)	41,59	364394	515473	-
16		42,13	113150	221634	-
17		42,82	87785	-	100,0
18	Naringenin (ST24)	43,28	22636	-	100,0
19		43,64	223711	231850	-
20	Rosmarinik asit	44,10	205064	111599	45,60
21		44,90	2040507	2057251	-
22		46,17	132668	-	100,0
23	Ganoderenik asit C (7)	47,10	709504	701790	-
24	Ganoderik asit G (3)	48,43	80518	61218	23,97
25	Ganoderik asit C2 (2)	48,87	155053	109538	29,34
26	Ganoderik asit B (4)	49,63	7142507	6788624	4,95
27		51,31	90896	96100	-
28		51,77	33598	32478	-
29	Ganoderenik asit D (6)	52,29	215003	161035	25,10
30		53,74	573711	134247	76,60
31	Ganoderik asit A (5)	54,66	599033	505853	15,56
32		55,55	499745	339216	32,12
33		56,75	779801	-	100,0
34		58,53	1911782	1906604	-
35		60,78	185425	215744	-
36		62,77	162446	166975	-
37*	(Betulinan A)	64,19	161670	102815	36,40
38		65,99	59856	-	100,0
39		67,32	57660	-	100,0
40		81,28	65412	28507	56,42

Çizelge 3.38. (Devam)

Çizelge 3.38.'de *Ganoderma adsperum*'dan maserasyon yöntemiyle hazırlanan 10.GA.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 10.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından 2-(4-dihidroksifenil)etanol (**ST7**), naringenin (**ST24**), rosmarinik asit (**ST26**), ganoderik asit B (**4**), ganoderik asit G (**3**), ganoderik asit C2 (**2**), ganoderenik asit D (**6**) ve ganoderik asit A (**5**) bileşiklerinin pik alanlarının azaldığı görüldü. Ayrıca fumarik asit (**ST1**)'e ait pik tamamen kayboldu. Kromatogramda ganoderenik asit C (**7**), ganoderik asit B (**4**), ganoderik asit A (**5**), 25,4. dak., 28,7. dak., 44,9. dak., 53,7. dak., 55,6. dak., 56,7. dak ve 58,5. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. 6, 7, 11, 15 ve 37 numaralı piklerin alıkonma süreleri standartlarla aynı olmasına karşın UV spektrumları farklıdır.

Pik	Bilesik	Alıkonma	G. adspersum	G. adspersum	Azalma
Sayisi	3	Zamanı	(11)	(11)+ DPPH	Orani (%)
1		1,73	175338	148330	15,40
2		3,29	71989	-	100,0
3		4,18	55686	-	100,0
4	Fumarik asit (ST1)	6,48	269624	-	100,0
5		7,20	57028	33935	8,35
6		11,66	54384	-	100,0
/	2-(4-hidroksifenil)etanol (S17)	18,49	179046	129239	27,82
8* 0*	(2,4-dihidroksibenzoik asit)	25,10	693646	718765	-
9* 10	(<i>p</i> -Kumarik asit)	28,79	2542558	2493374	1,96
10 11*	(V	30,51	118/10	82461	30,54 24 72
11*	(Kumarin)	31,05	108338	81549	24,73
12		30,89	214328	204724	4,48
13		40,83	50988	-	100,0
14	(turne Simmersile seit)	41,18	102//0	104384	35,87
15*	(trans- Sinnamik asit)	41,05	149491	21/359	-
10		42,40	210332	92044	55,95
17		42,75	237730	200209	-
10		43,52	29079	-	100,0
19	Pogmarinik agit (ST26)	43,90	239430	520700 121250	- 52.00
20	Rosmannik asit (3120)	44,55	284900	151550	55,90 91 31
21		45,20	140101	120821	81,51
22		40,00	25444	139621	-
25		40,02	58800	269945	-
24	Consideranily esit C (7)	40,89	720204	500045 590017	-
25	Ganoderik asit $C(7)$	47,20	132428	500917 70730	19,34
20	Ganoderik asit $G(3)$	40,33	132420	40430 81640	62 13
27	Ganouerik asit C2 (2)	40,72	213394 75467	8044	02,13 80 34
20		40 33	93038	31110	66 55
30	Ganoderik asit B (4)	42,55 50.07	4324846	3735410	13 63
31	Ganouerik asit D (4)	51,05	460803	26110	94 33
32		51,05	533424	157605	70 45
33	Ganoderenik asit D (6)	52.24	99293	-	100.0
34		52.62	260568	217985	16.34
35		52.77	129776		100.0
36		53.03	194197	-	100.0
37		53.48	146842	-	100.0
38		53.91	306169	305866	
39	Ganoderik asit D (8)	54.47	789414	539944	31.60
40	Ganoderik asit A (5)	55,02	2144772	1887102	12,01
41		56,11	249843	37486	85,00
42		57.64	429627	541748	-
43		59,01	1135053	1048697	7,61
44		59,47	42484	-	100,0
45		60,34	221501	353793	-
46		60,53	31786	-	-
47		61,15	404913	143601	64,54
48		62,97	201063	180354	10,30
49		63,17	103876	-	100,0
50		63,87	73981	90770	-
51*	(Betulinan A)	64,24	106932	-	100,0
52		66,00	21431	-	100,0
53		67,38	40248	21954	45,45
54	Ergosterol (TA1)	78,18	190967	184816	3,22

Çizelge 3.39. G. adspersum (11) örneğinin DPPH ilavesi sonrası kromatogramda pik
alanlarındaki değişim

Çizelge 3.39.'da *Ganoderma adsperum*'dan maserasyon yöntemiyle hazırlanan 11.GA.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 11.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından fumarik asit (**ST1**), 2-(4-dihidroksifenil)etanol (**ST7**), rosmarinik asit (**ST26**), ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit C2 (2), ganoderik asit B (4), ganoderik asit D (8), ganoderik asit A (5) ve ergosterol (**TA1**) bileşiklerinin pik alanlarının azaldığı görüldü. Ayrıca fumarik asit (**ST1**) ve ganoderenik asit D (6)'ye ait pikler DPPH ilavesi sonucu tamamen kayboldu. Kromatogramda ganoderenik asit C (7), ganoderik asit B (4), ganoderik asit D (8), ganoderik asit A (5), 25,0. dak., 28,7. dak., 51,05. dak., 51,8. dak., 59,0. dak. ve 61,1. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi.

Pik	D.1 .1	Alıkonma	G. adspersum	G. adspersum	Azalma
Sayısı	Bileşik	Zamanı	(12)	(12) + DPPH	Oranı (%)
1		1,72	259606	231625	10,78
2		3,96	43162	41666	3,47
3		5,81	438709	180084	58,95
4	Pirokatekol (ST5)	11,07	955490	889218	6,94
5	2-(4-hidroksifenil)etanol (ST7)	18,37	54963	-	100,0
6*	(4-hidroksibenzoik asit)	19,38	32597	-	100,0
7*	(2,4-dihidroksibenzoik asit)	24,68	1220215	295890	75,75
8*	(p-Kumarik asit)	28,72	423445	385563	8,95
9		36,01	51916	-	100,0
10		36,81	125466	124181	-
11		42,34	245392	172034	29,89
12		42,68	314837	139767	55,61
13		43,76	349251	73139	79,06
14		43,87	220963	116838	47,12
15	Rosmarinik asit (ST26)	44,37	384640	97892	74,55
16		45,28	358848	242444	32,44
17		46,82	84914	16372	80,72
18	Ganoderenik asit C (7)	47,27	564697	502292	11,05
19	Ganoderik asit G (3)	48,01	42024	41973	-
20	Ganoderik asit C2 (2)	48,93	54291	-	100,0
21		49,47	346523	362116	-
22	Ganoderik asit B (4)	50,04	5894822	5098087	13,52
23		51,49	367204	252533	31,23
24	Ganoderenik asit D (6)	52,07	198546	-	100,0
25		52,60	62167	64320	-
26		53,04	266406	282824	-
27		53,69	13294	55803	-
28		54,03	60924	-	100,0
29		54,14	81889	-	100,0
30	Ganoderik asit D (8)	54,35	367882	536218	-

Çizelge 3.40. *G. adspersum* (12) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

Pik	Bilogil	Alıkonma	G. adspersum	G. adspersum	Azalma
Sayısı	Blieşik	Zamanı	(12)	(12) + DPPH	Oranı (%)
31	Ganoderik asit A (5)	55,02	222801	87768	60,81
32		55,30	228367	-	100,0
33		55,68	36124	-	100,0
34		56,84	135428	68612	49,34
35		58,20	376221	-	100,0
36		58,57	50132	-	100,0
37		59,43	1576917	1302920	17,38
38		60,83	45982	-	100,0
39		61,23	88367	-	100,0
40		61,45	157234	-	100,0
41		62,59	204867	-	100,0
42		63,09	269416	114472	57,51
43		63,63	62566	50965	18,54
44*	(Betulinan A)	64,29	100459	100550	-
45		64,72	69358	-	100,0
46		65,28	354110	161526	54,39
47		65,81	318874	-	100,0
48		66,54	579893	-	100,0
49		67,37	26617	26939	-
50		68,71	153124	118235	22,78
51		72,40	24420	22727	-
52	Ergosterol (TA1)	78,08	179964	147039	18,30
53		81,22	118969	75348	36,67

Çizelge 3.40. (Devam)

Çizelge 3.40.'da Ganoderma adsperum'dan maserasyon yöntemiyle hazırlanan 12.GA.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 12.GA.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından rosmarinik asit (ST26), ganoderenik asit C (7), ganoderik asit B (4), ganoderik asit A (5) ve ergosterol bileşiklerinin pik alanlarının azaldığı görüldü. Ayrıca 2-(4dihidroksifenil)etanol (ST7), ganoderik asit C2 (2), ganoderenik asit D (6)'ye ait pikler DPPH ilavesi sonucu tamamen kayboldu. Kromatogramda ganoderenik asit C (7), ganoderik asit B (4), 11,4. dak., 24,7. dak., 59,4. dak. ve 66,5. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. 6, 7, 8 ve 44 numaralı süreleri 4-hidroksibenzoik asit (ST8), piklerin alıkonma süreleri 2.4dihidroksibenzoik asit (ST15), p-kumarik asit (ST17) ve betulinan A (BA3) standartları ile aynı, UV spektrumları farklıdır.

Pik	Dilacily	Alıkonma	G. applanatum	G. applanatum	Azalma
Sayısı	DIICŞIK	Zamanı	(13)	(13) + DPPH	Oranı (%)
1		1,17	36348	-	100,0
2		1,71	105169	76594	27,17
3	2-(4-hidroksifenil)etanol (ST7)	18,53	49669	-	100,0
4*	(2,4-dihidroksibenzoik asit)	24,34	1297893	1015797	21,73
5*	(<i>p</i> -Kumarik asit)	28,67	305620	278170	8,98
6*	(Ferulik asit)	29,87	46859	-	100,0
7		30,31	72771	43224	40,60
8		30,86	53357	-	100,0
9		31,74	41167	-	100,0
10		32,77	36910	-	100,0
11*	(trans-2-hidroksisinnamik asit)	33,43	44799	-	100,0
12		34,16	52219	-	100,0
13		38,54	131521	-	100,0
14		40,98	198094	142703	27,96
15*	(trans- Sinnamik asit)	41,34	210069	137061	34,75
16		42,32	104277	31639	69,66
17		42,61	370482	-	100,0
18		43,06	131020	-	100,0
19		43.41	334647	52250	84.39
20		43.51	76306	-	100.0
21		43.62	149147	-	100.0
22		43.87	229544		100.0
23	Rosmarinik asit (ST26)	44.32	485404	141743	70.80
24		44.85	650176	151613	76.68
25		45.23	196824	6141	96.88
26		45.62	183858	-	100.0
27		46.30	228614	162565	28.90
28		46.58	63365	-	100.0
29		46.77	48831	30114	38.33
30		47.67	46181	82911	-
31	Ganoderik asit G (3)	48 35	243299	313197	-
32	Ganoderik asit C2 (2)	48.76	141215	181708	-
33		49.47	851046	746156	12.32
34	Ganoderik asit B (4)	49.82	648267	723977	-
35		51.19	169623	88951	47.56
36	Ganoderenik asit D (6)	52.01	56816	23765	58 17
37	Guilduci chink usit D (0)	53.18	150214	604939	-
38		53,10 53 54	493859	-	100.0
39		54 08	104405	_	100,0
40	Ganoderik asit D (8)	54 27	158370	253297	-
41	Ganoderik asit A (5)	54 89	47515	-	100.0
42	Gunouerin usierr (c)	55 53	214616	156694	26 99
42		56 89	111358	-	100.0
43		59,95	96843	_	100,0
44 15		60.85	171506	126840	26.08
		62.84	83063	88000	20,00
40		63 40	5005 50765	-	100.0
47 19*	(Botulinon)	64 13	37203 86056	-	100,0
40. 70	(Detuillail)	64 95	00000 10/67/	-	100,0
49 50		U4,00 66 12	104024 70700	-	100,0
50		67 20	4740U 26844	-	100,0
51	Errorate 5 22 dias 2.0 al (ID1)	01,49	20044 05855	- 00226	100,0
52 52	Ergosta-5,22-dien 3β -ol (IDI)	77,70	73833	90330	-
33 54	Ergosterol (TA1)	11 ,99	1380231	1213295	12,09
54		81,24	27914	49236	-

Çizelge 3.41. G. applanatum (13) örneğinin DPPH ilavesi sonrası kromatogramda pik

alanlarındaki değişim

* Alıkonma süreleri aynı olmasına karşın, UV spektrumları uyumlu olmayan pikler

Çizelge 3.41.'de *Ganoderma applanatum*'dan maserasyon yöntemiyle hazırlanan 13.GAp.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 13.GAp.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından rosmarinik asit (**ST26**), ganoderenik asit D (**6**), ve ergosterol (**TA1**) bileşiklerinin pik alanlarının azaldığı görüldü. Ayrıca 2-(4-dihidroksifenil)etanol (**ST7**), ganoderik asit A (**5**)'ya ait pikler DPPH ilavesi sonucu tamamen kayboldu. Kromatogramda ganoderik asit B (**4**), ergosterol (**TA1**), 24,4. dak., 44,8. dak. ve 49,4. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. Çizelge 3.41.'de 4, 5, 6, 11, 15 ve 48 numaralı piklerin alıkonma süreleri 2,4-dihidroksibenzoik asit (**ST15**), *p*-kumarik asit (**ST17**), ferrulik asit (**ST18**), *trans*-2-hidroksisinnamik asit (**ST20**), *trans*-sinnamik asit (**ST23**) ve betulinan A (**BA3**) standartlarının alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pik Sayısı	Bileşik	Alıkonma Zamanı	G. resinaceum (14)	G. resinaceum (14) + DPPH	Azalma Oranı (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1,68	950535	738564	22,30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		2,98	84589	-	100,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		3,73	558949	293345	47,52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		4,24	39367	68943	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Gallik asit (ST2)	8,33	829282	751020	9,44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2-(4-hidroksifenil)etanol (ST7)	18,09	40806	28489	30,18
8* (p-Kumarik asit) 28,62 961112 847987 13,64 9 36,62 86727 64444 25,69 10 40,48 107410 93571 12,88 11 41,83 50980 - 12 42,45 154030 110860 28,03 13 42,65 70697 64624 8,60 14 43,70 39416 - 100,0 15 Rosmarinik asit (ST26) 44,18 1197243 911212 23,89 16 44,58 366774 338708 7,65 17 45,25 279925 144045 48,54 18 45,71 109846 98547 10,29 19 46,17 192489 98758 48,69 20 Ganoderenik asit C (7) 47,21 504775 415524 17,68 21 Ganoderik asit G (3) 48,14 1531548 1320160 13,80 22 Ganoderik asit B (4) 50,04 28778 - 100,0 23 51,69 <	7*	(2,4-dihidroksibenzoik asit)	24,51	162173	-	100,0
936,62867276444425,691040,481074109357112,881141,8350980-1242,4515403011086028,031342,6570697646248,601443,7039416-100,015Rosmarinik asit (ST26)44,18119724391121223,891644,583667743387087,651745,2527992514404548,541845,711098469854710,291946,171924899875848,6920Ganoderenik asit C (7)47,2150477541552417,6821Ganoderik asit G (3)48,141531548132016013,8022Ganoderik asit B (4)50,0428778-100,02351,194350753916259,082451,6936466252257100,025Ganoderenik asit D (6)52,37336032653,501216888309931,712762,7152842-100,0	8*	(<i>p</i> -Kumarik asit)	28,62	961112	847987	13,64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	• ·	36,62	86727	64444	25,69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10		40,48	107410	93571	12,88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11		41,83	50980	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12		42,45	154030	110860	28,03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13		42,65	70697	64624	8,60
15 Rosmarinik asit (ST26) 44,18 1197243 911212 23,89 16 44,58 366774 338708 7,65 17 45,25 279925 144045 48,54 18 45,71 109846 98547 10,29 19 46,17 192489 98758 48,69 20 Ganoderenik asit C (7) 47,21 504775 415524 17,68 21 Ganoderik asit G (3) 48,14 1531548 1320160 13,80 22 Ganoderik asit B (4) 50,04 28778 - 100,0 23 51,19 435075 391625 9,08 24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	14		43,70	39416	-	100,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	Rosmarinik asit (ST26)	44,18	1197243	911212	23,89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16		44,58	366774	338708	7,65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17		45,25	279925	144045	48,54
19 46,17 192489 98758 48,69 20 Ganoderenik asit C (7) 47,21 504775 415524 17,68 21 Ganoderik asit G (3) 48,14 1531548 1320160 13,80 22 Ganoderik asit B (4) 50,04 28778 - 100,0 23 51,19 435075 391625 9,08 24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	18		45,71	109846	98547	10,29
20 Ganoderenik asit C (7) 47,21 504775 415524 17,68 21 Ganoderik asit G (3) 48,14 1531548 1320160 13,80 22 Ganoderik asit B (4) 50,04 28778 - 100,0 23 51,19 435075 391625 9,08 24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	19		46,17	192489	98758	48,69
21 Ganoderik asit G (3) 48,14 1531548 1320160 13,80 22 Ganoderik asit B (4) 50,04 28778 - 100,0 23 51,19 435075 391625 9,08 24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	20	Ganoderenik asit C (7)	47,21	504775	415524	17,68
22 Ganoderik asit B (4) 50,04 28778 - 100,0 23 51,19 435075 391625 9,08 24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	21	Ganoderik asit G (3)	48,14	1531548	1320160	13,80
23 51,19 435075 391625 9,08 24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	22	Ganoderik asit B (4)	50,04	28778	-	100,0
24 51,69 36466 252257 100,0 25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62,71 52842 - 100,0	23		51,19	435075	391625	9,08
25 Ganoderenik asit D (6) 52,37 33603 - - 26 53,50 121688 83099 31,71 27 62.71 52842 - 100.0	24		51,69	36466	252257	100,0
2653,501216888309931,712762.7152842-100.0	25	Ganoderenik asit D (6)	52,37	33603	-	-
27 62.71 52842 - 100.0	26		53,50	121688	83099	31,71
	27		62,71	52842	-	100,0

Çizelge 3.42. *G. resinaceum* (14) örneğinin DPPH ilavesi sonrası kromatogramda pik alanlarındaki değişim

Pik Sayısı	Bileşik	Alıkonma Zamanı	G. resinaceum (14)	<i>G. resinaceum</i> (14) + DPPH	Azalma Oranı (%)
28		63,33	102781	-	100,0
29		65,79	31947	1125300	-
30		66,42	49033	41537	-
31		67,19	124148	73903	40,47
32		72,37	52756	437903	_
33		73,21	21178	18921	-
34	Ergosterol (TA1)	78,01	193242	172206	10,88
35	_	81,26	54509	45894	15,80

Çizelge 3.42. (Devam)

Çizelge 3.42.'de *Ganoderma resinaceum*'dan maserasyon yöntemiyle hazırlanan 14.GR.M örneğinin metanol ekstresinin DPPH ilavesi sonucu pik alanlarındaki değişim görülmektedir. DPPH ile inkübasyon sonrası 14.GR.M örneğinin kromatogramında yer alan ve yapısı belirlenen bileşikler arasından gallik asit (ST2), 2-(4-dihidroksifenil)etanol (ST7), rosmarinik asit (ST26), ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4), ganoderenik asit D (6) ve ergosterol (TA1) bileşiklerinin pik alanlarının azaldığı görüldü. Kromatogramda gallik asit (ST2), rosmarinik asit (ST26), ganoderik asit G (3), 28,0. dak. ve 51,2. dak. gelen piklerin kromatogramdaki majör bileşiklere ait olduğu belirlendi. Çizelge 3.42.'de 7 ve 8 numaralı piklerin alıkonma süreleri 2,4-dihidroksibenzoik asit (ST15) ve *p*-kumarik asit (ST17) standartlarının alıkonma süreleri aynı olmasına karşın, UV spektrumları ile uyumlu değildir.

3.2.4. Mantarların yağ asidi bileşenlerinin GC-MS analizi sonuçları

Dört farklı Ganoderma türünü içeren 14 örneğin maserasyon, soxhlet ve ultrasonik ekstraksiyon yöntemleri ile hazırlanan petrol eteri/kloroform ekstrelerindeki (4:1) yağ asidi bileşenlerinin belirlenmesi amacıyla GC-MS cihazı ile analiz yapıldı. Bu amaçla BF₃-metanol reaktifi kullanılarak ekstredeki yağ asitlerinin metil esterleri oluşturuldu. Uçucu hale gelen örnekler GC-MS cihazında analiz edildi. Laurik asit, miristik asit, pentadekanoik asit, palmitik asit, margarik asit, linoleik asit, oleik asit ve stearik asit standartları da GC-MS cihazında analizlendi ve 5 seri seyreltme yapılarak 5 noktalı kalibrasyon eğrisi oluşturuldu. Standartların alıkonma süreleri belirlendi. 42 adet metilenmiş yağ asidi örneğinin yağ asidi bileşenleri, standartların alıkonma süreleri ile karşılaştırılarak, her bir yağ asidinin kütle spektrumları alınarak ve kütüphane verileri ile karşılaştırılarak aydınlatıldı. Ayrıca oluşturulan yağ asidi standartlarının kalibrasyon eğrilerinden yararlanılarak her bir örnekte yer alan yağ asidi bileşenlerinin miktarları (µg/g) hesaplandı. Çizelge 3.43.'de meserasyon yöntemiyle hazırlanan, Çizelge 3.44.'de soxhlet ekstraksiyon yöntemi ile hazırlanan ve Çizelge 3.45.'de ultrasonik ektraskiyon yöntemi ile hazırlanan Ganoderma örneklerindeki yağ asidi bileşimleri ve miktarları ($\mu g/g$) verilmektedir.

*Ganoderm*a türü örneklerde 21 yağ asidi bileşeni tespit edildi. Bu yağ asitleri dekanoik asit (2,17-161 µg/g), undekanoik asit (2,17-249 µg/g), laurik asit (2,17-314 µg/g), miristik asit (1,11-127 µg/g), pentadekenoik asit (0,94-52,1 µg/g), pentadekanoik asit (0,94-214 µg/g), palimitoleik asit (1,14-159 µg/g), 2-*trans* hegzadekenoik asit (1,14-72,0 µg/g), palmitik asit (15,5-1272 µg/g), heptadekenoik asit (1,08-107 µg/g), m (1,08-161 µg/g), linolenik asit (1,11-83,3 µg/g), linoleik asit (9,80-3467 µg/g), oleik asit (16,9-3356 µg/g), elaidik asit (1,11-159 µg/g), stearik asit (1,11-286 µg/g), araşidik asit (1,11-155 µg/g), heneikosanoik asit (1,11-113 µg/g), behenik asit (1,11-221 µg/g), trikosanoik asit (1,11-406 µg/g) ve tetrakosanoik asit (1,11-408 µg/g)'dir. Undekanoik asit, mirisitik asit, pentadekanoik asit, 2-transhegzadekenoik asit ve linolenik asit düşük konsantrasyonlarda tespit edildi. 15 yağ asidinin tüm örneklerde bulunduğu belirlendi. Ayrıca palmitik asit, linoleik asit ve oleik asidin *Ganoderma* türü mantarlarda görülen majör yağ asitleri olduğu görüldü.

Hesaplamalar yapılırken dekanoik asit, undekanoik asit, laurik asit yağ asitleri için laurik asidin kalibrasyon eğrisi, miristik asit için miristik asidin kalibrasyon eğrisi, pentadekenoik asit ve pentadekanoik asit için pentadekanoik asidin kalibrasyon eğrisi, palmitoleik asit, 2-*trans* hegzadekenoik asit, palmitik asit için palmitik asidin kalibrasyon eğrisi, heptadekanoik asit için margarik asidin kaibrasyon eğrisi, linoleik asit ve oleik asit için linoleik asidin kalibrasyon eğrisi, elaidik asit, stearik asit, araşidik asit, heneikosanoik asit, behenikasit, trikosanoik asit ve tetrakosanoik asit için stearik asidin kalibrasyon eğrisi kullanıldı. Ayrıca toplamda 8 mg olarak tartılan yağ asidi standartlarının 7.2 mg yağ asidi metil esterine dönüşmesinden dolayı, bu farklılık düzeltme faktörü kullanılarak giderilmiştir. *Ganoderma* türlerinin yağ asidi profillerini gösteren örnek GC-MS kromatogramları *G. lucidum* (1) ve *G. adspersum* (6) mantraları için Şekil 3.61.'de ve *G. applanatum* (13) ve *G. resinaceum* (14) mantarları için Şekil 3.62.'de verildi.

Chromatogram Plots

Plot 1: ...ms datalarý\ozge tokul alm - kopya\1.gl.m.sms RIC Ignore

Plot 2: ...ms datalarý\ozge tokul alm - kopya\1.gl.s.sms RIC Ignore

Plot 3: ...ms datalarý\ozge tokul alm - kopya\1.gl.u.sms RIC Ignore

Plot 4: ...ms datalarý\ozge tokul alm - kopya\6.ga.m.sms RIC Ignore

Plot 5: ...ms datalarý\ozge tokul alm - kopya\6.ga.s.sms RIC Ignore

Plot 6: ...ms datalarý\ozge tokul alm - kopya\6.ga.u.sms RIC Ignore

Şekil 3.61. *Ganoderma* türlerinin yağ asidi metil esterlerinin GC-MS kromatogramları (Yukarıdan aşağı 1.GL.M, 1.GL.S, 1.GL.U, 6.GA.M, 6.GA.S, 6.GA.U)

Chromatogram Plots

- Plot 1: ... datalarý\ozge tokul alm kopya\13.gap.m.sms RIC Ignore
- Plot 2: ... datalarý\ozge tokul alm kopya\13.gap.s.sms RIC Ignore
- Plot 3: ... datalarý\ozge tokul alm kopya\13.gap.u.sms RIC Ignore
- Plot 4: ...s datalarý\ozge tokul alm kopya\14.gr.m.sms RIC Ignore Plot 5: ...s datalarý\ozge tokul alm - kopya\14.gr.s.sms RIC Ignore
- Plot 6: ...s datalarý\ozge tokul alm kopya\14.gr.u.sms RIC Ignore

Yağ asitleri	1.GL.M	2.GL.M	3.GL.M	4.GL.M	5.GL.M	6 .GA.M	7.GA.M	8GA.M	9.GA.M	10.GA.M	11.GA.M	12.GA.M	13.GA.p.M	14.GR.M
Dekanoik asit ($C_{10:0}$)	160,9	-	-	-	-	-	-	-	-	141,0	-	-	-	-
Undekanoik asit ($C_{11:0}$)	99,61	-	-	-	-	118,6	-	146,9	249,4	1110	2,170	64,11	2,17	94,66
Laurik asit ($C_{12:0}$)	120,7	83,91	61,75	119,4	88,14	222,0	-	194,3	245,0	131,1	117,3	112,6	314,0	74,97
Miristik asit $(C_{14:0})$	71,06	50,65	36,38	65,20	38,34	57,45	-	47,06	101,3	80,28	65,10	46,43	127,3	49,61
Pentadekenoik asit ($C_{15:1}$)	52,12	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentadekanoik asit (C _{15:0})	109,5	108,4	60,51	126,7	37,32	81,26	0,940	59,92	214,2	94,31	83,50	66,88	121,8	101,0
Palmitoleik asit ($C_{16:1}$)	63,80	70,80	67,34	124,7	54,23	42,76	1,140	38,10	112,9	158,9	112,3	69,72	1,140	66,50
2-trans hegzadekenoik asit ($C_{16:1}$)	48,00	55,74	27,78	50,41	34,04	39,65	-	-	72,01	64,53	49,26	48,41	-	41,35
Palmitik asit (C _{16:0})	524,3	509,0	703,2	1272	347,0	479,4	49,26	325,0	941,6	629,4	663,2	532,8	1025	318,1
Heptadekenoik asit (C _{17:1})	57,88	49,97	31,35	1,080	32,28	42,92	-	34,29	106,5	70,08	60,14	42,63	1,080	45,87
Heptadekanoik asit ($C_{17:0}$)	80,30	45,54	32,40	53,77	32,33	83,74	-	68,18	161,1	78,75	64,06	55,40	106,1	50,72
Linolenik asit ($C_{18:3}$)	83,26	-	-	1,110	-	48,02	-	42,14	-	-	-	-	-	-
Linoleik asit ($C_{18:2}$)	920,1	1725	874,4	1801	471,2	195,4	125,9	297,5	3467	2482	2063	1597	1071	1574
Oleik asit ($C_{18:1}$)	511,8	1156	2355	3356	760,7	422,7	100,7	510,8	1530	2262	2332	999,3	1422	280,4
Elaidik asit ($C_{18:1}$)	125,4	103,3	41,36	77,41	48,41	65,59	32,94	56,50	151,0	101,8	63,91	96,10	106,0	158,7
Stearik asit ($C_{18:0}$)	99,69	68,45	137,1	254,7	119,5	95,88	1,110	62,23	126,9	93,78	108,0	78,95	285,5	64,35
Araşidik asit ($C_{20:0}$)	71,31	1,110	47,51	88,75	63,62	66,87	-	58,80	154,6	64,63	55,14	52,89	131,0	50,02
Heneikosanoik asit ($C_{21:0}$)	65,88	-	32,60	55,62	48,46	47,27	-	40,67	86,03	59,86	41,60	31,19	1,110	37,76
Behenik asit ($C_{22:0}$)	107,8	1,110	80,19	112,0	62,63	109,6	-	70,54	116,1	108,0	69,07	77,22	221,4	50,10
Trikosanoik asit (C _{23:0})	346,5	1,110	171,8	198,6	59,65	219,9	-	250,8	174,1	406,3	86,91	60,33	354,5	58,11
Tetrakosanoik asit (C _{24:0})	125,0	1,110	161,0	368,6	1,110	167,7	-	82,90	157,4	191,5	140,0	161,2	396,7	76,68
Doymamış yağ asidi %	1862	3160	3398	5412	1401	857,1	260,7	979,3	5439	5140	4680	2854	2601	2167
Doymuş yağ asidi %	1983	870,4	1524	2716	897,7	1750	51,31	1407	2728	2189	1496	1340	3086	1026
Toplam	3845	4031	4922	8127	2299	2607	312,0	2387	8168	7328	6176	4194	5687	3193
Oleik asit/Linoleik asit	0,560	0,670	2,690	1,860	1,610	2,160	0,800	1,720	0,440	0,910	1,130	0,630	1,330	0,180
- Sonuçlar üç paralel ölçümün ortalamas	ıdır. (p<0,0	5)	- T	espit ediler	nedi									

Çizelge 3.43. *Ganoderma* örneklerinin maserasyon yöntemiyle hazırlanan ekstrelerindeki yağ asidi bileşimi (µg/g)

Yağ asitleri	1.GL.S	2.GL.S	3.GL.S	4.GL.S	5.GL.S	6 .GA.S	7.GA.S	8GA.S	9.GA.S	10.GA.S	11.GA.S	12.GA.S	13.GA.p.S	14.GR.S
Dekanoik asit (C _{10:0})	145,3	2,170	-	-	-	122,8	-	-	-	2,170	-	-	-	-
Undekanoik asit ($C_{11:0}$)	2,170	-	-	-	-	79,20	-	63,54	2,170	38,89	38,13	2,170	87,97	2,170
Laurik asit ($C_{12:0}$)	107,1	2,170	21,81	2,170	65,50	86,95	2,170	76,16	78,85	41,92	50,93	81,69	119,2	105,3
Miristik asit $(C_{14:0})$	57,58	36,65	12,94	1,110	38,25	40,61	1,110	36,99	39,92	27,19	26,16	48,62	55,90	1,110
Pentadekenoik asit ($C_{15:1}$)	0,940	-	-	-	-	-	-	-	-	-	-	-	-	-
Pentadekanoik asit ($C_{15:0}$)	77,22	77,57	22,52	110,2	36,33	47,55	43,30	41,01	62,23	30,33	32,57	59,93	53,53	59,95
Palmitoleik asit ($C_{16:1}$)	45,84	44,04	29,11	107,8	42,05	29,76	54,33	34,47	34,80	53,99	45,14	74,60	55,14	40,60
2-trans hegzadekenoik asit ($C_{16:1}$)	1,140	35,92	9,750	47,92	29,52	-	37,70	-	1,140	20,10	18,46	51,74	-	1,140
Palmitik asit ($C_{16:0}$)	361,9	323,7	280,3	1095	290,9	281,2	278,0	211,7	238,4	207,9	257,2	445,0	472,2	147,4
Heptadekenoik asit (C _{17:1})	1,080	35,47	10,14	1,080	30,57	31,27	33,17	25,98	37,32	22,43	20,97	44,67	36,18	1,080
Heptadekanoik asit (C _{17:0})	67,94	31,71	12,57	51,17	38,73	51,95	34,82	41,60	53,43	26,05	26,80	53,95	44,85	39,52
Linolenik asit ($C_{18:3}$)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Linoleik asit ($C_{18:2}$)	166,2	1309	341,4	1370	482,0	278,1	1342	628,6	1335	728,6	754,0	1706	338,6	663,4
Oleik asit ($C_{18:1}$)	307,2	862,6	982,0	2853	491,3	330,9	1035	410,8	373,3	759,0	979,5	1287	531,9	116,2
Elaidik asit ($C_{18:1}$)	83,15	68,23	15,67	81,19	40,01	39,70	46,49	41,96	54,55	30,76	31,56	77,35	47,68	81,00
Stearik asit ($C_{18:0}$)	84,51	47,23	50,08	218,7	181,7	68,91	63,54	52,33	55,41	37,24	48,72	86,70	135,5	50,61
Araşidik asit ($C_{20:0}$)	53,74	32,94	16,02	77,66	67,66	45,79	36,84	56,60	36,48	22,77	19,71	44,07	63,21	1,110
Heneikosanoik asit ($C_{21:0}$)	45,75	27,98	12,70	53,26	-	34,67	-	1,110	34,65	19,67	113,1	-	46,71	-
Behenik asit (C _{22:0})	65,51	1,110	28,43	125,8	74,27	63,68	55,43	56,10	51,57	47,54	28,92	75,91	142,9	46,92
Trikosanoik asit (C _{23:0})	74,24	1,110	47,21	162,7	105,9	79,97	-	100,9	70,13	113,8	39,95	65,39	171,9	52,60
Tetrakosanoik asit (C _{24:0})	204,0	1,110	73,62	408,3	109,1	90,39	234,5	58,95	1,110	152,0	46,76	307,4	282,3	1,110
Doymamış yağ asidi %	605,6	2355	1389	4461	1115	709,7	2549	1141	1836	1615	1850	3242	1010	903,4
Doymuş yağ asidi %	1347	585,5	578,2	2305	1008	1094	749,7	797,0	724,3	767,6	728,9	1271	1677	507,8
Toplam	1953	2941	1966	6767	2124	1803	3298	1939	2560,3	2382	2579	4512	2686	1411
Oleik asit/Linoleik asit	1,850	0,660	2,880	2,080	1,020	1,190	0,770	0,650	0,280	1,040	1,300	0,750	1,570	0,180

Çizelge 3.44. Ganoderma örneklerinin soxhlet ekstraksiyon yöntemiyle hazırlanan ekstrelerindeki yağ asidi bileşimi (µg/g)

- Sonuçlar üç paralel ölçümün ortalamasıdır. (p<0,05)

- Tespit edilemedi

Yağ asitleri	1.GL.U	2.GL.U	3.GL.U	4.GL.U	5.GL.U	6 .GA.U	7.GA.U	8GA.U	9.GA.U	10.GA.U	11.GA.U	12.GA.U	13.GA.p.U	14.GR.U
Dekanoik asit (C _{10:0})	94,44	-	-	-	-	52,31	-	-	-	-	-	-	-	-
Undekanoik asit ($C_{11:0}$)	2,170	-	-	-	-	42,47	-	-	26,43	-	2,170	-	10,94	39,10
Laurik asit ($C_{12:0}$)	72,78	2,170	2,170	65,22	2,170	136,6	2,170	2,170	34,65	2,170	36,33	2,170	27,35	53,51
Miristik asit $(C_{14:0})$	39,87	27,17	1,110	44,99	1,110	18,98	1,110	1,110	16,40	1,110	26,42	1,110	5,560	21,58
Pentadekenoik asit ($C_{15:1}$)	28,81	-	-	-	-	8,230	-	-	-	-	-	-	-	-
Pentadekanoik asit ($C_{15:0}$)	47,10	57,51	27,42	91,78	0,940	27,89	0,940	0,940	24,91	6,330	31,91	0,940	5,240	28,86
Palmitoleik asit ($C_{16:1}$)	37,14	32,65	31,84	102,1	17,96	14,41	9,970	1,140	13,98	8,440	50,60	1,140	1,140	20,18
2-trans hegzadekenoik asit ($C_{16:1}$)	31,78	26,63	1,140	33,62	-	13,76	1,140	-	12,25	1,140	18,21	1,140	-	1,140
Palmitik asit ($C_{16:0}$)	223,2	240,0	327,9	1030	84,08	269,5	40,11	15,47	101,0	30,40	294,9	203,0	40,94	91,51
Heptadekenoik asit $(C_{17:1})$	28,07	26,29	1,080	35,21	1,080	8,140	1,080	1,080	15,58	1,080	20,69	1,080	1,080	17,24
Heptadekanoik asit ($C_{17:0}$)	36,05	23,51	15,02	37,60	15,65	43,51	1,080	1,080	19,07	5,970	23,33	1,080	5,330	18,10
Linolenik asit ($C_{18:3}$)	-	-	-	-	-	29,99	-	-	-	-	-	-	-	-
Linoleik asit ($C_{18:2}$)	112,3	970,4	395,5	1433	158,4	101,8	162,5	16,91	588,6	113,8	787,6	746,4	9,820	335,5
Oleik asit ($C_{18:1}$)	217,6	639,5	1188	2926	213,1	266,8	144,4	16,91	187,6	102,9	1085	582,4	25,65	68,03
Elaidik asit ($C_{18:1}$)	47,31	50,59	23,97	44,92	18,88	16,31	10,14	1,110	21,09	6,400	24,00	49,97	1.110	39,39
Stearik asit ($C_{18:0}$)	53,42	35,02	55,86	215,3	43,28	58,85	12,77	7,410	21,37	8,000	53,90	54,40	11,36	29,87
Araşidik asit ($C_{20:0}$)	34,97	27,05	20,23	61,71	1,110	54,87	-	8,070	13,65	6,420	30,00	1,110	11,53	30,06
Heneikosanoik asit ($C_{21:0}$)	30,84	-	1,110	35,16	-	31,98	-	6,440	15,42	7,540	21,75	-	7,400	-
Behenik asit ($C_{22:0}$)	39,28	1,110	31,79	102,4	19,03	59,19	12,76	7,490	29,13	18,03	39,35	1,110	21,90	25,70
Trikosanoik asit (C _{23:0})	46,66	1,110	57,86	134,0	1,110	78,20	-	14,31	17,76	27,15	43,54	1,110	17,86	24,24
Tetrakosanoik asit (C _{24:0})	1,110	1,110	84,96	292,2	1,110	87,88	-	11,33	25,18	15,17	1,110	1,110	27,68	1,110
Doymamış yağ asidi %	503,0	1746	1641	4574	409,4	459,4	329,2	37,15	839,1	233,8	1986	1382	37,70	481,4
Doymuş yağ asidi %	721,9	415,8	625,4	2110	169,6	962,2	70,94	75,81	345,0	128,3	604,7	266,7	193,1	363,7
Toplam	1225	2162	2267	6684	579,0	1422	400,1	113,0	1184,1	362,1	2591	1649	230,8	845,1
Oleik asit/Linoleik asit	1,940	0,660	3,000	2,040	1,350	2,620	0,890	1,000	0,320	0,900	1,380	0,780	2,610	0,200

Çizelge 3.45. Ganoderma örneklerinin soxhlet ekstraksiyon yöntemiyle hazırlanan ekstrelerindeki yağ asidi bileşimi (µg/g)

Sonuçlar üç paralel ölçümün ortalamasıdır. (p<0,05) - Tespit edilemedi

Muğla'nın Ula ilçesi sığla ağacından temin edilen G. lucidum (4.GL.M, 4.GL.S ve 4.GL.U) örneği palmitik asit ve oleik asit konsantrasyonu en yüksek konsantrasyonlu örnek olarak belirlendi. Aynı zamanda bu örneğin doymamış yağ içeriğinin (4460-5411 µg/g) de en yüksek olduğu tespit edildi. Muğla'nın Fethiye ilçesi erik ağacından toplanan 9.GA.M örneğindeki linoleik asit konsantrasyonu (3467 µg/g) ve doymamış yağ asidi düzeyinin (5439 µg/g) en yüksek olduğu görüldü. Aynı şekilde, maserasyon yöntemi ile hazırlanan 10.GA.M (5139 µg/g) ve 11.GA.M (4680 µg/g) örneklerinin de doymamış yağ asidi düzeylerinin yüksek olduğu belirlendi. Tüm Ganoderma türlerinin doymamış yağ asidi düzeyleri karşılaştırıldığında G. adspersum (9-12) türü mantarların doymamış yağ asidi düzeylerinin ortalamanın üzerinde olduğu tespit edildi. G. applanatum örneğinin (13.GAp.M ve 13.GAp.S) laurik asit ve mirisik asit gibi kısa zincirli yağ asidi konsantrasyonu düzeylerinin diğer Ganoderma türlerinden daha yüksek olması dikkat çekici bir husustur. Çizelge 3.45.'de görüldüğü gibi Muğla'nın Ula ilçesi şeftali ağacından alınan G. adspersum (8.GA.U) örneğinin toplam yağ asitliği en düşükken, sığla ağacından toplanan G. lucidum (4.GL.M) ve erik ağacından alınan G. adspersum (9.GA.M) örneklerinin en yüksek olduğu belirlendi (Çizelge 3.43).

Kemotaksonomik belirteçler olarak düşünülen oleik asit ve linoleik asit oranları Şekil 3.63.'de verilmiştir. Yüksek oleik asit/linoleik asit oranına sahip örneklerin oksidasyona karşı daha dirençli ve ayrıca daha sağlıklı besinler olduğu bilinir (Duman, Baydır & Duman, 2015). *G. lucidum* örnekleri (3.GL.M, 3.GL.S, 3.GL.U, 4.GL.S, 4.GL.U), *G. adspersum* örnekleri (6.GA.M, 6.GA.U) ve *G. applanatum* örneği (13.GAp.U) yüksek oleik asit/linoleik asit oranına sahiptir. En düşük oleik asit/linoleik asit oranı ise *G. resinaceum* örneklerinde (14.GR.M, 14.GR.S ve 14.GR.U) tespit edilmiştir.

Şekil 3.63. Ganoderma örneklerinin oleik asit/linoleik asit oranları

3.3. Kemometrik Analiz

3.3.1. Aseton ekstrelerinin HPLC-DAD analizlerine ilişkin kemometrik analiz sonuçları

3.3.1.1. Korelasyon analizi

Ganoderma örneklerine ait 42 aseton ektresinin 9 değişken ile yapılan kemometrik analizleri Çizelge 3.46.'da yer alan veri seti kullanılarak yapıldı.

Ganoderma örneklerinin aseton ekstrelerinin HPLC-DAD kromatgramlarında tespit edilen ergosterol peroksit (1), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ganoderik asit D (8), gallik asit (ST2) ve 4-OH benzoik asit (ST8) maddeleri ile yapılan korelasyon analizinin Pearson's korelasyon katsayıları Çizelge 3.47.'de verildi. İki değişken arasında görülen pozitif ve negatif korelasyon katsayıları pozitif ve negatif korelasyonları gösterdi. p < 0.01 olmak üzere en yüksek korelasyon ganoderenik asit D ve ganoderik asit B (0,959) arasında görüldü. Ganoderenik asit D-ganoderenik asit C (0,636), ganoderik asit B-ganoderenik asit C (0,736), ganoderik asit G-ganoderenik asit C (0,710) arasında oldukça yüksek pozitif korelasyonlar belirlendi. Bunlara ilaveten ergosterol peroksit-ganoderik asit B (-0,560) ve ganoderenik asit D (-0,527) ile negatif korelasyon gösterdi. Korelasyonun güçlü olması, iki değişken arasındaki ilişkinin güçlü olduğu anlamına gelmektedir. Değişkenlerden biri ne kadar yüksekse diğer değişkeninde o oranda artacağını ifade eder. Pozitif korelasyonda diğer değişken artma eğiliminde iken, negatif korelasyonda azalma eğilimindedir. Bazı değişkenler arasında korelasyonun yüksek olması istatistiksel olarak oldukça önemlidir.

Örnekler	Ganoderenik asit C	Ganoderik asit G	Ganoderik asi B	Ganoderik asit A	Ganoderenik asit D	Ganoderik asit D	Ergosterol peroksit	4-hidroksi benzoik asit	Gallik asit
1.GL.M	0,39	0,39	3,43	0,20	0,20	1,72	8,81	0,25	0,12
1.GL.S	0,39	0,39	4,62	0,29	0,20	4,13	15,4	0,25	0,12
1.GL.U	0,39	0,39	2,41	0,20	0,20	2,59	30,9	0,25	0,12
2.GL.M	2,64	2,60	7,00	3,95	0,20	0,92	5,89	0,25	0,12
2.GL.S	0,83	2,68	6,64	3,48	0,20	7,22	7,57	0,25	0,17
2.GL.U	0,39	1,08	3,78	2,17	0,20	9,48	17,6	0,25	0,12
3.GL.M	0,39	1,85	8,76	1,73	0,53	3,08	16,8	0,25	0,12
3.GL.S	0,39	0,66	5,88	0,20	0,20	7,53	14,7	0,25	0,12
3.GL.U	0,39	0,39	4,57	0,20	0,20	6,26	20,9	0,25	0,12
4.GL.M	0,39	0,39	2,90	0,99	0,20	0,61	8,16	0,25	0,25
4.GL.S	0,39	0,22	2,02	0,20	0,20	9,07	14,3	0,25	0,45
4.GL.U	0,39	1,12	1,33	0,32	0,33	6,76	10,8	0,25	0,33
5.GL.M	0,39	3,36	4,84	2,12	0,85	0,21	3,00	0,25	0,12
5.GL.S	0,39	1,53	1,98	2,23	0,66	10,7	4,62	0,25	0,12
5.GL.U	2,13	1,13	4,13	5,27	1,06	12,7	10,6	0,25	0,12
6.GA.M	6,50	20,2	43,0	6,95	1,84	6,11	0,50	0,25	0,12
6.GA.S	8,57	140	81,1	9,50	6,51	25,4	0,50	0,25	0,12
6.GA.U	1,73	19,1	36,9	2,30	2,52	9,19	0,50	0,25	0,27
7.GA.M	3,34	17,5	42,7	0,20	3,95	1,12	0,50	0,25	0,12
7.GA.S	11,9	53,6	128	11,1	14,2	5,22	0,50	0,41	0,12
7.GA.U	12,2	48,4	155	5,75	19,9	9,11	0,50	0,25	0,23
8.GA.M	10,7	42,7	173	8,17	14,5	2,49	0,50	0,27	0,12
8.GA.S	14,9	51,2	245	0,20	22,1	12,6	0,50	0,72	0,22
8.GA.U	8,48	28,7	208	0,20	27,0	6,85	0,50	0,63	0,20
9.GA.M	0,45	3,19	87,3	3,79	10,0	0,39	0,50	0,25	0,29
9.GA.S	0,42	4,12	161	7,29	22,3	22,4	0,50	0,25	0,58
9.GA.U	2,10	2,25	147	3,32	24,6	14,1	0,50	0,63	0,46
10.GA.M	3,29	18,4	47,0	0,48	3,80	2,24	0,50	0,47	0,12
10.GA.S	1,63	11,6	90,6	0,41	8,94	1,28	0,50	1,08	0,73
10.GA.U	0,14	5,27	41,7	0,20	3,74	0,39	0,50	0,81	0,64
11.GA.M	1,77	17,2	49,6	0,20	5,11	7,97	0,50	0,69	0,28
11.GA.S	0,79	5,86	43,4	0,20	4,64	4,13	0,50	1,17	0,78
11.GA.U	3,44	10,4	56,4	0,85	5,56	5,69	0,50	1,51	0,47
12.GA.M	2,08	19,5	82,6	2,23	7,36	2,78	0,50	0,37	0,12
12.GA.S	2,39	13,6	84,2	1,59	11,1	1,43	0,50	0,38	0,29
12.GA.U	7,87	23,8	107	2,04	13,8	1,88	0,50	0,41	0,23
13.GAp.M	0,93	20,8	27,3	1,83	2,61	2,94	0,50	0,25	0,12
13.GAp.S	1,58	20,4	45,9	0,20	6,06	2,84	0,50	0,25	0,12
13.GAp.U	0,34	16,6	23,9	1,33	3,41	4,64	2,05	0,25	0,12
14.GR.M	2,99	2,52	13,9	10,8	0,30	4,28	6,88	0,25	0,56
14.GR.S	2,24	2,03	13,8	9,45	0,39	6,11	9,38	0,28	0,83
14.GR.U	0,59	0,39	9,20	5,04	0,20	5,75	12,0	0,25	0,58

Çizelge 3.46. Aseton ekstrelerinin kemometrik analiz veri seti $(\mu g/g)$

Değişkenler	Ganoderenik asit C	Ganoderik asit G	Ganoderik asit B	Ganoderik asit A	Ganoderenik asit D	Ganoderik asit D	Ergosterol peroksit	4-OH benzoic asit	Gallik asit
Ganoderenik asit C	1,000								
Ganoderik asit G	0,710	1,000							
Ganoderik asit B	0,763	0,494	1,000						
Ganoderik asit A	0,403	0,396	0,195	1,000					
Ganoderenik asit D	0,636	0,377	0,959	0,153	1,000				
Ganoderik asit D	0,219	0,465	0,291	0,355	0,323	1,000			
Ergosterol peroksit	-0,414	-0,407	-0,560	-0,181	-0,527	-0,051	1,000		
4-OH benzoik asit	0,113	0,012	0,296	-0,285	0,272	-0,070	-0,355	1,000	
Gallik asit	-0,183	-0,231	0,067	0,134	0,101	0,054	-0,149	0,513	1,000

Çizelge 3.47. *Ganoderma* örneklerinin aseton ekstrelerinde tespit edilen maddelerin korelasyon matrisleri

3.3.1.2. Temel bileşen analizi (PCA)

Farklı ağaç türlerinden toplanan 4 mantar türüne ait aseton ekstreleri üç ekstraksiyon yöntemiyle hazırlanarak HPLC-DAD cihazında analizlendi. Elde edilen kromatogramlarda tespit edilen ortak maddelerin (ergosterol peroksit (1), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ganoderik asit D (8), gallik asit (ST2) ve 4-OH benzoik asit (ST8)) µg/g cinsinden hesaplanan değerleri ile temel bileşen analizi (PCA) yapıldı. PCA sonucunda eiganvalue değeri 1'den büyük olan 3 değer belirlendi (Çizelge 3.48.). Aseton ekstrelerinin HPLC-DAD analizi verilerinin PCA sonucuna göre ilk üç temel bileşen toplam varyansın % 74,90'ını açıkladı. 1. temel bileşen (PC1) toplam varyansın % 41,50'sini, 2. temel bileşen (PC2) % 20,30'unu ve 3. temel bileşen (PC3) % 13,10'unu açıklarken, diğer temel bileşenlerde bu değerin gittikçe azaldığı görüldü.

Temel bileşenleri açıklamada etkin olan değişkenler Çizelge 3.48.'de koyu renkle gösterildi. Data setinde en yüksek varyansı 1. temel bileşenin gösterdiği görüldü. 1. temel bileşen için ganoderenik asit C (7), ganoderenik asit D (6), ganoderik asit G (3) ve ganoderik asit B (4)'nin, negatif yönden ergosterol peroksit (1)'in, 2. Temel bileşen için ganoderik asit A (5)'nın, negatif yönden 4-hidroksibenzoik asit (ST8) ve gallik asit (ST2)'in, 3. temel bileşen için negatif yönden ganoderik asit A (5), ganoderik asit D (8) ve gallik asit (ST2)'in baskın değişkenler olduğu belirlendi.

Çizelge 3.48. *Ganoderma* örneklerinin aseton ekstrelerinin PCA analizi loading, eigenvalue, varyans ve kümülatif varyans değerleri

Değişkenler	PC1	PC2	PC3	PC4	PC5
Ganoderenik asit C (7)	0,441	0,147	0,194	-0,155	0,011
Ganoderik asit G (3)	0,382	0,290	0,020	-0,029	-0,588
Ganoderik asit B (4)	0,473	-0,128	0,156	0,142	0,335
Ganoderik asit A (5)	0,219	0,336	-0,542	-0,500	0,194
Ganoderenik asit D (6)	0,442	0,157	0,118	0,242	0,458
Ganoderik asit D (8)	0,235	0,245	-0,475	0,661	-0,194
Ergosterol peroksit (1)	-0,344	0,235	-0,087	0,437	0,238
4-OH benzoic asit (ST8)	0,136	-0,616	-0,019	0,094	-0,433
Gallik asit (ST2)	0,026	-0,496	-0,629	-0,099	0,113
Eigenvalue	3,735	1,829	1,179	0,788	0,654
Varyans (%)	41,50	20,30	13,10	8,800	7,300
Kümülatif varyans (%)	41,50	61,80	74,90	83,70	90,90

Çizelge 3.49.'de her bir *Ganoderma* örneği için ilk üç temel bileşenin skor değerleri verildi. 1. temel bileşen için 6.GA.S, 7.GA.S, 7.GA.U, 8.GA.M, 8.GA.S, 8.GA.U, 9.GA.S ve 9.GA.U örnekleri ganoderenik asit C (7), ganoderenik asit D (6), ganoderik asit G (3) ve ganoderik asit B (4) gibi triterpenler ile, negatif açıdan ise 1.GL.M, 1.GL.S, 1.GL.U, 3.GL.M, 3.GL.S, 3.GL.U örnekleri ergosterol peroksit (1) ile karakterize olmaktadır (Çizelge 3.49.). 2. temel bileşen için 6.GA.S örneğinde ganoderik asit A (5)'nın, negatif yönden ise 10.GA.S, 10.GA.U, 11.GA.S ve 11.GA.U örneklerinde 4-hidroksibenzoik asit (ST8) ve gallik asit (ST2)'in baskın değişkenler olduğu belirlendi.

Şekil 3.64.'de PCA analizine ilişkin skor grafiği ve Şekil 3.65.'de ise loading grafiği yer almaktadır. Çalışma kapsamında 4 farklı bölgeden ve 2 ağaç türünden toplanan 5 adet *G. lucidum* örneği, 6 farklı bölgeden ve 5 ağaç türünden toplanan 7 adet *G. adspersum* örneği, 1 adet *G. applanatum* ve 1 adet *G. resinaceum* örneği olmak üzere toplam 14 örnek değerlendirildi. Aynı zamanda maserasyon, soxhlet ve ultrasonik ekstraksiyon yöntemlerinin karşılaştırılması da mümkün oldu. Şekil 3.64.'de yer alan

skor grafiğinden *G. adspersum* türünün diğer *Ganoderma* türlerinden ayrıldığı belirlendi. *G.lucidum, G.applanatum* ve *G. resinaceum* türleri grafiğin sol üst kısmında toplanırken, *G. adspersum* türüne ait örnekler grafiğin sağ kısmında yer aldı. Skor grafiği ve loading grafiklerinin birlikte değerlendirilmesi sonucu grafiğin sağ kısmında yer alan örneklerin yani *G. adspersum* türlerinin incelenen triterpenler açısından daha zengin olduğu tespit edildi. Bununla birlikte *G. lucidum* türlerinin de ergosterol peroksit (**1**) yönünden farklılaştığı görüldü.

Örnekler	PC1	PC2	PC3	Örnekler	PC1	PC2	PC3
1.GL.M	-1,8521	0,2573	0,8783	8.GA.M	3,0724	1,0636	0,7750
1.GL.S	-2,0456	0,5858	0,5771	8.GA.S	4,7798	-0,5548	1,4080
1.GL.U	-2,8732	1,0155	0,5345	8.GA.U	3,4049	-1,1062	1,6160
2.GL.M	-1,1750	0,6198	0,4811	9.GA.M	-0,0041	-0,4378	0,3477
2.GL.S	-1,2168	0,7248	-0,2538	9.GA.S	2,4902	-0,1610	-2,6561
2.GL.U	-1,7872	1,1036	-0,2337	9.GA.U	2,2202	-1,4538	-0,8500
3.GL.M	-1,9859	0,7357	0,4267	10.GA.M	-0,1635	-0,2699	1,1961
3.GL.S	-1,8585	0,7082	0,3064	10.GA.S	0,4799	-3,4064	-0,4789
3.GL.U	-2,2209	0,8505	0,3401	10.GA.U	-0,6480	-2,6022	-0,3607
4.GL.M	-1,8039	-0,0381	0,4602	11.GA.M	0,0896	-0,9951	0,1975
4.GL.S	-1,7675	-0,0133	-0,8220	11.GA.S	-0,1516	-3,5259	-1,0800
4.GL.U	-1,6906	0,0748	-0,2382	11.GA.U	0,6084	-3,2747	-0,2335
5.GL.M	-1,4171	0,2191	0,7744	12.GA.M	0,2819	-0,0297	0,9464
5.GL.S	-1,0937	0,7446	-0,1930	12.GA.S	0,3763	-0,7150	0,7313
5.GL.U	-0,8519	1,3912	-0,8473	12.GA.U	1,5533	-0,3444	1,1807
6.GA.M	0,5910	1,2391	-0,0857	13.GAp.M	-0,5970	0,3746	0,7403
6.GA.S	4,2564	3,6942	-1,8272	13.GAp.S	-0,3044	0,1125	1,1522
6.GA.U	-0,1451	0,3437	-0,2733	13.GAp.U	-0,7442	0,3679	0,6265
7.GA.M	-0,3658	0,1184	1,3491	14.GR.M	-0,4641	0,4703	-2,2502
7.GA.S	3,4070	1,4612	-0,0116	14.GR.S	-0,6368	-0,2429	-3,0664
7.GA.U	3,6350	0,9402	0,3922	14.GR.U	-1,3820	-0,0454	-1,6761

Çizelge 3.49. Aseton ekstrelerinin temel bileşen skor değerleri

Şekil 3.64. Aseton ekstrelerinin PC1 ve PC2 skor grafiği. • ceviz, ∎ dut, • erik, ▲ sığla, ▶ şeftali

6.GA.S örneği dışında sığla ağaçlarından toplanan mantarların triterpen içeriklerinin diğer ağaçlardan toplanan mantarlardan daha az olduğu belirlendi. *G. adspersum* mantarları olan 8.GA.S, 8.GA.U örnekleri şeftali, 7.GA.S, 7.GA.U örnekleri ceviz, 9.GA.S, 9.GA.U örnekleri erik, 12.GA.U örneği ise dut ağacından elde edildi. Meyve veren bu ağaçlardan toplanan mantarlarda triterpenlerin çok daha baskın bir biçimde yer aldığı görüldü. Bu nedenle 6.GA.S, 8.GA.M, 8.GA.S, 8.GA.U, 7.GA.S, 7.GA.U, 9.GA.S, 9.GA.U ve 12.GA.U örnekleri bir grup oluşturdu. Aynı zamanda bu örnekler soxhlet ve ultrasonik ekstraksiyon yöntemleri ile hazırlanan örneklerdir (S. ve U.). *G. adspersum* mantarından daha yüksek konsantrasyonlarda triterpen (ganoderik asitler) elde edilebilmesi için soxhlet ve ultrasonik ekstraksiyon yöntemlerin daha uygun olduğu tespit edildi. Aynı örneklerin maserasyon ekstrelerinin çoğunlukla grafiğin sol tarafında yer alması incelenen triterpenlerin ekstraksiyonunda soxhlet ve ultrasonik ekstraksiyon yöntemlerinin daha başarılı olduğunu gösterdi. Dut ağaçlarından elde edilen mantarlarda incelenen triterpenlerin, sığla ağaçlarından toplanan mantarlarda ndaha baskın olduğu ancak diğer meyve ağaçlarından da daha

az olduğu belirlendi. 2. grupta çoğunlukla dut ağaçlarından toplanan mantarlar yer aldı (2.GL.M, 2.GL.S, 5.GL.U, 5.GL.M, 5.GL.S, 6.GA.M, 6.GA.U, 7.GA.M, 9.GA.M, 10.GA.M, 11.GA.M, 12.GA.M, 12.GA.S, 13.GAp.M, 13.GAp.S, 13.GAp.U, 14.GR.M, 14.GR.S, 14.GR.U). Ayrıca Muğla ili Köyceğiz ilçesinden toplanan 5.GL.M, 5.GL.S, 5.GL.U, 2.GL.M ve 2.GL.S örnekleri de bu gruba dahil oldu ve diğer *G. lucidum* örneklerinden ayrıldı. Bu farklılaşmanın nedeni bu iki örneğin Köyceğiz'den toplanmış olması yada 5 numaralı örneğin dut ağacından alınmış olması olabilir.

Şekil 3.65. Aseton ekstrelerinin PC1 ve PC2 loading grafiği

G. lucidum örneklerinden oluşan 3. grupta Fethiye ilçesinden toplanan 1.GL.M, 1.GL.S, 1.GL.U, Köyceğiz ilçesinden toplanan 2.GL.U, Marmaris ilçesinden toplanan 3.GL.M, 3.GL.S, 3.GL.U ve Ula ilçesinden toplanan 4.GL.M, 4.GL.S, 4.GL.U örnekleri yer almaktadır. Bunların tümü sığla ormanlarından alındı. Diğer bir grup ise Marmaris'ten sığla ağacından toplanan 10.GA.S, 10.GA.U ve Köyceğiz'den dut ağacından toplanan 11.GA.S, 11.GA.U örneklerini içerir. Bu örneklerin diğer

örneklerden farkı gallik asit (**ST2**) ve 4-hidroksibenzoik asit (**ST8**) miktarlarının diğer örneklerden biraz daha yüksek oluşudur.

Ganoderma türü mantarların aseton ekstrelerinin HPLC-DAD kromatogramlarında yer alan maddelerle yapılan PCA sonucunda *Ganoderma* türlerinin, ekstraksiyon yöntemlerinin ve mantarın toplandığı ağaçların değerlendirilmesi mümkün oldu. Ancak bölgesel anlamda bir ayırım görülmedi.

3.3.1.3. Hiyerarşik kümeleme analizi (HCA)

Ganoderma örneklerinin benzerliklerini değerlendirmek amacıyla yapılan kümeleme analizine (HCA) ilişkin dendogram Şekil 3.66.'da verildi. *Ganoderma* örneklerinde ekstraksiyon yöntemleri, türler arası farklılıklar, mantarın toplandığı ağaca bağlı farklılıkları karşılaştırabilmek ve ayrıca PCA sonuçları ile kıyaslayabilmek için kümeleme analizi (HCA) uygulandı. HCA, *Ganoderma* türlerinin aseton ekstrelerinin HPLC-DAD kromatogramlarında tespit edilen ortak maddelerin (ergosterol peroksit (1), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7), ganoderik asit D (8), gallik asit (**ST2**) ve 4-OH benzoik asit (**ST8**)) μ g/g cinsinden hesaplanan değerlerine uygulandı. Ölçümlerde Öklid uzaklığı ve sınıflandırma metodu olarak ise Ward metodu kullanıldı. Dendogramda 7 grup oluştuğu izlendi.

1. Grup: 1.GL.M, 4.GL.M, 6.GA.U, 13.GAp.M, 13.GAp.U, 7.GA.M, 13.GAp.S, 10.GA.M, 12.GA.M, 11.GA.M, 2.GL.M, 5.GL.M, 6.GA.M, 2.GL.S, 5.GL.S ve 5.GL.U

2. Grup: 1.GL.S, 3.GL.M, 3.GL.U, 2.GL.U, 3.GL.S, 1.GL.U, 4.GL.S ve 4.GL.U

3. Grup: 6.GA.S

4. Grup: 10.GA.S, 10.GA.U, 11.GA.S ve 11.GA.U

5. Grup: 14.GR.M, 14.GR.S, 14.GR.U

6. Grup: 7.GA.S, 8.GA.M, 7.GA.U, 12.GA.U, 9.GA.M, 12.GA.S, 8.GA.S ve 8.GA.U

7. Grup: 9.GA.S ve 9.GA.U

Farklı *Ganoderma* türlerinden ve farklı ağaçlardan alınan mantarların kümeleme analizi sonucunda 7 gruba ayrıldığı Şekil 3.66.'daki dendogramdan görülmektedir. 2.

grupta yer alan örneklerin *G. lucidum* örneklerine ait olduğu ve sığla ağaçlarından toplandığı izlendi. Buradaki örnekler PCA analizinde 3. grup ile benzerlik gösterdi. *G. lucidum* örneklerinden olan 1.GL.M, 4.GL.M, 2.GL.M, 2.GL.S, 5.GL.M, 5.GL.S ve 5.GL.U örnekleri ise 1. grup içerisinde yer aldı. Fethiye ilçesinden alınan 6.GA.S örneği ise hiçbir gruba üye olmadı. 4. Grupta yer alan örnekler Marmaris'ten sığla ağacından toplanan 10.GA.S, 10.GA.U ve Köyceğiz'den dut ağacından toplanan 11.GA.S, 11.GA.U örnekleri olup PCA analizi ile tamamen uyumludur. *G. resinaceum* örneğinin ayrı bir grup oluşturduğu görüldü. Oysa PCA analizinde dut ağaçlarından alınan çoğu mantarla birlikte gruplandı. 6. grupta yer alan örneklerden 7 kodlu örnek ceviz, 8 kodlu örnek şeftali, 9 kodlu örnek erik, 12 kodlu örnek ise dut ağaçlarından toplandı. Bu örneklerin meyve veren ağaçlardan toplanmış olması ortak noktasıdır ve bu gruptaki örnekler benzer şekilde PCA sonuçlarında da yer almaktadır. Son grupta ise 9 numara ile kodlanan erik ağacının soxhlet ve ultrasonik ektrelerine ait örneklerin yer aldığı görüldü.

Şekil 3.66. Aseton ekstrelerinin Öklid uzaklığı ve Ward Linkage metodu ile elde edilen dendogramı

3.3.2. Metanol ekstrelerinin HPLC-DAD analizlerine ilişkin kemometrik analiz sonuçları

3.3.2.1. Korelasyon analizi

Ganoderma örneklerine ait 42 metanol ektresinin 7 değişken ile yapılan kemometrik analizleri Çizelge 3.50.'de yer alan veri seti kullanılarak yapıldı.

Ganoderma örneklerinin metanol ekstrelerinin HPLC-DAD kromatgramlarında tespit edilen ergosterol (**TA1**), ganoderik asit C2 (**2**), ganoderik asit G (**3**), ganoderik asit B (**4**), ganoderenik asit C (**7**), ganoderik asit D (**8**), 2-(4-hidroksifenil)etanol (**ST7**) maddeleri ile yapılan korelasyon analizinin Pearson's korelasyon katsayıları Çizelge 3.51.'da verildi. İki değişken arasında görülen pozitif ve negatif korelasyon katsayıları pozitif ve negatif korelasyonları gösterdi. p<0,1 olmak üzere en yüksek korelasyon ganoderik asit B ve ganoderenik asit C (0,766) arasında görüldü. Ganoderik asit D-ganoderenik asit C (0,654), ganoderik asit D-ganoderik asit B (0,549) yüksek pozitif korelasyonları belirlendi. Korelasyonun güçlü olması, iki değişken arasındaki ilişkinin güçlü olduğu anlamına gelmektedir. Değişkenlerden biri ne kadar yüksekse diğer değişkeninde o oranda artacağını ifade eder. *Ganoderma* türlerinin metanol ekstrelerinin korelasyon analizi maddeler arasındaki korelasyonun çok yüksek olmadığını gösterdi.

Örnekler	Janoderenik asit C	Ganoderik asit G	Ganoderik asit C2	Ganoderik asit B	Ganoderik asit D	Ergosterol	2-(4-hidroksifenill) etanol
1 CL M	0.03	7.61	0.13	0.49	0.16	31.63	0.62
1 GL S	0,03	4 27	2.61	0,49	0,10	46 62	0,02
1.GL.5 1.GL.U	0,03	3 78	2,01 2.07	0.18	0,10	24 78	0,62
2 GL M	0.03	4 16	0.13	0.19	0.16	4 15	5 33
2.GL.S	0.47	3 70	7.08	3 54	0.16	6 34	2.18
2.GL.U	0.03	5.42	0.13	2.74	0.16	12.9	2,10
3.GL.M	0.96	24.5	0.66	0.16	0.16	8.63	0.62
3.GL.S	1.60	13.5	0.13	3.23	1.23	13.73	2.70
3.GL.U	0.11	3.79	8.65	0.65	0.89	13.05	0.62
4.GL.M	0.03	2,11	4,05	0,16	0,16	0.93	0,62
4.GL.S	0,63	4,90	0,96	0.46	1.32	0.89	4,47
4.GL.U	0,03	3,84	3,16	0,16	0,47	15,58	2,23

Çizelge 3.50. Metanol ekstrelerinin kemometrik analiz veri seti (µg/g)

Çizelge	3.50.	(Devam)
---------	-------	---------

Örnekler	Ganoderenik asit C	Ganoderik asit G	Ganoderik asit C2	Ganoderik asit B	Ganoderik asit D	Ergosterol	2-(4- hidroksifenill) etanol
5.GL.M	0,03	0,94	0,27	0,61	0,16	3,90	0,62
5.GL.S	0,29	8,31	6,76	0,37	0,51	8,24	0,62
5.GL.U	2,39	2,66	3,16	0,16	4,58	27,8	0,62
6.GA.M	0,03	0,31	0,72	26,9	3,47	47,5	2,91
6.GA.S	19,5	0,31	2,49	141	7,29	7,73	0,62
6.GA.U	8,47	0,31	2,66	147	1,29	10,3	5,23
7.GA.M	2,93	0,31	1,06	59,3	4,08	8,29	9,87
7.GA.S	2,56	0,31	0,29	20,0	0,36	0,13	2,96
7.GA.U	6,03	1,29	0,42	50,1	3,61	37,3	2,58
8.GA.M	2,61	0,31	1,20	62,0	2,37	0,85	1,53
8.GA.S	7,62	0,46	0,13	90,7	1,89	3,60	3,24
8.GA.U	8,96	1,73	0,13	148	10,4	19,2	7,40
9.GA.M	0,45	0,31	0,14	96,8	0,16	1,63	6,40
9.GA.S	0,57	0,31	3,33	63,4	0,44	3,31	7,79
9.GA.U	2,79	0,31	0,13	96,6	0,16	21,3	0,62
10.GA.M	2,32	0,66	0,13	50,4	0,16	0,13	7,12
10.GA.S	1,99	1,27	0,13	43,1	0,94	0,13	5,23
10.GA.U	2,70	4,09	2,00	45,6	0,54	4,68	9,68
11.GA.M	2,36	1,32	1,64	30,4	3,40	0,48	8,03
11.GA.S	1,18	0,31	0,13	19,4	0,16	6,80	6,23
11.GA.U	4,69	0,31	0,13	34,8	3,06	7,65	16,1
12.GA.M	1,78	0,17	0,28	41,5	1,64	0,37	2,69
12.GA.S	1,99	0,16	2,06	42,9	0,57	0,13	0,62
12.GA.U	2,41	0,49	0,13	49,2	5,07	10,2	6,79
13.GAp.M	0,03	2,73	1,01	4,26	0,76	12,8	2,46
13.GAp.S	0,36	1,18	3,18	10,1	2,24	6,27	0,62
13.GAp.U	0,21	0,31	0,13	8,11	2,50	7,33	0,62
14.GR.M	1,56	19,1	0,13	0,16	0,16	0,51	2,08
14.GR.S	2,41	9,05	0,13	0,16	0,16	15,2	6,27
14.GR.U	0,86	13,1	4,54	0,16	0,80	32,1	1,07

Çizelge 3.51. *Ganoderma* örneklerinin metanol ekstrelerinde tespit edilen maddelerin korelasyon matrisleri

Tespit edilen maddeler	Ganoderenik asit C	Ganoderik asit G	Ganoderik asit C2	Ganoderik asit B	Ganoderik asit D	Ergosterol	2-(4- hidroksifenill)etanol
Ganoderenik asit C (7)	1,000						
Ganoderik asit G (3)	-0,217	1,000					
Ganoderik asit C2 (2)	-0,114	-0,050	1,000				
Ganoderik asit B (4)	0,766	-0,436	-0,203	1,000			
Ganoderik asit D (8)	0,654	-0,284	-0,120	0,549	1,000		
Ergosterol (TA1)	-0,053	0,103	0,067	-0,125	0,155	1,000	
2-(4-hidroksifenill)etanol (ST7)	0,145	-0,253	-0,311	0,298	0,221	-0,265	1,000

3.3.2.2. Temel bileşen analizi (PCA)

Farklı ağaç türlerinden toplanan 4 mantar türüne ait metanol ekstreleri üç ekstraksiyon yöntemiyle hazırlanarak HPLC-DAD cihazında analizlendi. Elde edilen kromatogramlarda tespit edilen ortak maddelerin (ergosterol (TA1), ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderenik asit C (7), ganoderik asit D (8), 2-(4-hidroksifenil)etanol (ST7)) µg/g cinsinden hesaplanan değerleri ile temel bileşen analizi (PCA) yapıldı. PCA sonucunda eiganvalue değeri 1'den büyük olan 2 değer belirlendi (Çizelge 3.52.). Metanol ekstrelerinin HPLC-DAD analizi verilerinin PCA sonucuna göre ilk iki temel bileşen toplam varyansın % 57,80'ini açıkladı. 1. temel bileşen (PC1) toplam varyansın % 38,70, 2. temel bileşen (PC2) % 19,10'unu açıklarken, 3. temel bileşen (PC3) % 14,00'ünü ifade etti. Diğer temel bileşenlerde bu değerin gittikçe azaldığı görüldü. Temel bileşenleri açıklamada etkin olan değişkenler Çizelge 3.52.'de koyu renkle gösterildi. Data setinde en yüksek varyansı 1. temel bilesen gösterdiği görüldü. 1. temel bilesen için ganoderenik asit C (7), ganoderik asit D (8) ve ganoderik asit B (4)'nin, 2. Temel bileşen için ergosterol ve ganoderik asit C2 (2)'nin, negatif yönden ise 2-(4-hidroksifenil)etanol (ST7)'ün baskın değişkenler olduğu belirlendi.

Çizelge 3.52. *Ganoderma* örneklerinin metanol ekstrelerinin PCA analizi loading, eigenvalue, varyans ve kümülatif varyans değerleri

Değişkenler	PC1	PC2	PC3	PC4	PC5
Ganoderenik asit C (7)	0,501	0,265	-0,040	-0,400	-0,044
Ganoderik asit G (3)	-0,332	0,109	0,405	-0,731	0,355
Ganoderik asit C2 (2)	-0,197	0,383	-0,747	0,002	0,489
Ganoderik asit B (4)	0,539	0,067	-0,105	-0,132	-0,182
Ganoderik asit D (8)	0,464	0,328	0,135	0,018	0,296
Ergosterol (TA1)	-0,086	0,614	0,476	0,492	0,123
2-(4-hidroksifenill)etanol (ST7)	0,294	-0,532	0,145	0,214	0,705
Eigenvalue	2,711	1,336	0,978	0,814	0,617
Varyans (%)	38,70	19,10	14,00	11,60	8,800
Kümülatif varyans (%)	38,70	57,80	71,80	83,40	92,20

Çizelge 3.53'de her bir *Ganoderma* örneği için ilk üç temel bileşenin skor değerleri verildi. 1. temel bileşen için 8.GA.U, 6.GA.S, 6.GA.U, 8.GA.S ve 7. GA.M örnekleri (Çizelge 3.53.'de koyu renk ile gösterildi) ganoderenik asit C (7), ganoderik asit D (8) ve ganoderik asit B (4) gibi triterpenler ile karakterize olduğu ve ayrıca 3.GL.M ve 14.GR.U örneklerinde (Çizelge 3.53.'de koyu renk ile gösterildi) bu üç triterpenin

diğer örneklerden daha az bulunduğu Çizelge 3.53'de görüldü. 2. temel bileşen için 1.GL.S, 5.GL.U, 14.GR.U, 6.GA.M, 7.GA.U ve 6.GA.S örneklerinde ergosterol ve ganoderik asit C2 (2)'nin baskın bir şekilde bulunduğu tespit edildi. Ayrıca 11.GA.U örneğinin bu maddeler açısından en zayıf olduğu görüldü. Bunun yanısıra negative açıdan 11.GA.U örneği için 2-(4-hidroksifenil)etanol (**ST7**) bileşiği baskın değişken olarak belirlendi.

Örnekler	PC1	PC2	PC3	Örnekler	PC1	PC2	PC3
1.GL.M	-1,5477	0,8143	1,4903	8.GA.M	0,7140	-0,1651	-0,6267
1.GL.S	-1,6796	1,9355	0,9193	8.GA.S	1,9023	-0,1422	-0,2111
1.GL.U	-1,4479	0,7555	0,2431	8.GA.U	4,8159	1,4865	1,0263
2.GL.M	-0,7434	-1,3331	0,3809	9.GA.M	0,8898	-1,5145	-0,2130
2.GL.S	-1,5487	0,5651	-2,2032	9.GA.S	0,3510	-1,0641	-1,1301
2.GL.U	-1,0505	-0,5130	0,7045	9.GA.U	0,5888	0,5151	0,2721
3.GL.M	-2,3696	0,2018	1,7015	10.GA.M	0,6172	-1,6284	-0,1131
3.GL.S	-1,1246	0,0193	1,3836	10.GA.S	0,4432	-1,2427	-0,0760
3.GL.U	-1,8129	1,5035	-2,5092	10.GA.U	0,4900	-1,3088	-0,2082
4.GL.M	-1,3664	-0,0850	-1,4994	11.GA.M	0,9514	-1,0004	-0,3031
4.GL.S	-0,5821	-0,9711	0,0427	11.GA.S	-0,0362	-1,3046	0,1659
4.GL.U	-1,2860	0,3032	-0,4035	11.GA.U	2,1154	-2,0680	0,7172
5.GL.M	-0,9524	-0,6557	-0,1253	12.GA.M	0,3797	-0,7444	-0,2627
5.GL.S	-1,9442	0,9704	-1,7000	12.GA.S	-0,1439	-0,2534	-1,0685
5.GL.U	-0,2224	1,9235	0,1327	12.GA.U	1,5756	-0,3397	0,5505
6.GA.M	-0,0186	1,7372	1,5609	13.GAp.M	-0,8613	-0,2360	0,1889
6.GA.S	4,9087	2,6783	-0,9405	13.GAp.S	-0,6452	0,3525	-0,9538
6.GA.U	2,4993	0,3998	-0,9771	13.GAp.U	-0,3026	-0,1491	0,1339
7.GA.M	1,7661	-0,8372	0,1654	14.GR.M	-1,7140	-0,5872	1,2260
7.GA.S	-0,0416	-0,9624	-0,2899	14.GR.S	-0,7073	-0,6607	1,1844
7.GA.U	1,1622	1,7580	1,2255	14.GR.U	-2,0213	1,8475	0,3986

Çizelge 3.53. Metanol ekstrelerinin temel bileşen skor değerleri

Şekil 3.67.'de metanol ekstrelerinin PCA analizine ilişkin skor grafiği ve Şekil 3.68.'de ise loading grafiği yer almaktadır. Çalışma kapsamında 4 farklı bölgeden ve 2 ağaç türünden toplanan 5 adet *G. lucidum* örneği, 6 farklı bölgeden ve 5 ağaç türünden toplanan 7 adet *G. adspersum* örneği, 1 *G. applanatum* ve 1 *G. resinaceum* örneği olmak üzere toplam 14 örnek değerlendirildi. Aynı zamanda mesarasyon, soxhlet ve ultrasonik ekstraksiyon yöntemlerinin karşılaştırılması da mümkün oldu. Şekil 3.67.'de yer alan skor grafiğinden *G. adspersum* türünün diğer *Ganoderma* türlerinden ayrıldığı belirlendi. *G.lucidum*, *G.applanatum* ve *G. resinaceum* türleri grafiğin sol üst kısmında toplanırken, *G. adspersum* türüne ait örnekler grafiğin sağ kısmında yer alan örneklerin yani *G. adspersum* türlerinin Ganoderik asit B (4) başta olmak üzere, ganoderenik asit C (7) ve ganoderik asit D

(8) bileşikleri bakımından daha zengin olduğu tespit edildi. Bununla birlikte *G. lucidum* ve *G. resinaceum* türlerinin ise ergosterol (**TA1**), ganoderik asit C2 (2) ve ganoderik asit G (3) farklılaştığı görüldü.

Şekil 3.67. Metanol ekstrelerinin PC1 ve PC2 skor grafiği. • ceviz, ■ dut, • erik, ▲ sığla, > şeftali

Muğla'nın Fethiye ilçesinden sığla ağaçlarından toplanan 6 numaralı örnek (6.GA.S, 6.GA.U) ile Muğla'nın Ula ilçesinden şeftali ağacından alınan 8 numara ile kodlanan örnek (8.GA.U, 8.GA.S) ganoderik asit D (8), ganoderenik asit C (7) ve ganoderik asit B (4) yönden en zengin örnekler olduğu görüldü. 6.GA.S, 8.GA.U, 6.GA.U, 8.GA.S, 7.GA.M, 11.GA.U, 12.GA.U ve 7.GA.U örneklerinin bu üç tirterpen açısından bezerlik göstererek bir grup oluşturduğu belirlendi. Ayrıca bu gruba dahil olan örneklerin çoğunun ultrasonik ektraksiyon yöntemiyle elde edildiği tespit edildi. Benzer bir gruplama aseton ekstreleri ile yapılan analizde de görüldü. Bu nedenle *G. adspersum* örneklerinin triterpenlerin ekstraksiyonlarında ultrasonik yöntemin daha başarılı olduğu belirlendi. 6 numara ile kodlanan örnek dışında bu grupta yer alan diğer örnekler meyve veren ağaçlardan elde edildi. Metanol ekstrelerinin temel bileşen analizi sonucunda ağaçlardan kaynaklanan net bir farklılık tespit edilemedi.

10 numara ile kodlanan ve sığla ağacından toplanan *G. adspersum* örneği ise incelenen bileşikler açısından en zayıf örnektir.

İkinci bir grubu 1.GL.M, 1.GL.S, 1.GL.U, 2.GL.S, 3.GL.M, 3.GL.S, 3.GL.U, 4.GL.U, 5.GL.S, 5.GL.U 6.GA.M, 14.GR.U ve 13.GAp.S, örnekleri ile oluştuğu görüldü ve bu örnekler ganoderik asit G (**3**), ganoderik asit C2 (**2**) ve ergosterol (**TA1**) ile karakterize oldu. Çoğunlukla *G. lucidum* örneklerinden oluşan bu grupta soxhlet ve ultrasonik ektraksiyon yöntemleri ile hazırlanan örnekler yer aldı. Ayrıca 5 numaralı *G. lucidum* örneği dut ağacından alınmış olmasına diğer *G. lucidum* örnekleri ile birlikte yer aldı.

Şekil 3.68. Metanol ekstrelerinin PC1 ve PC2 loading grafiği

11.GA.U, 11.GA.M, 11.GA.S, 12.GA.M, 12.GA.S, 12.G.A.U, 10.GA.M, 10.GA.S, 10.GA.U, 9.GA.M, 9.GA.S, 8.GA.M, 8.GA.S, 7.GA.M ve 7.GA.S örnekleri ise 3. grubu oluşturmuştur. Bu örnekler 2-(4-hidroksifenil)etanol (**ST7**)'ün yönünden karakterize olmaktadır.

Ganoderma örneklerinin benzerliklerini değerlendirmek amacıyla yapılan kümeleme analizine (HCA) ilişkin dendogram Şekil 3.69.'da verildi. *Ganoderma* örneklerinde ekstraksiyon yöntemleri, türler arası farklılıklar, mantarın toplandığı ağaca bağlı farklılıkları karşılaştırabilmek ve ayrıca PCA sonuçları ile kıyaslayabilmek için kümeleme analizi (HCA) uygulandı. HCA, *Ganoderma* türlerinin metanol ekstrelerinin HPLC-DAD kromatogramlarında tespit edilen ortak maddelerin (ergosterol (**TA1**), ganoderik asit C2 (**2**), ganoderik asit G (**3**), ganoderik asit B (**4**), ganoderenik asit C (**7**), ganoderik asit D (**8**), 2-(4-hidroksifenil)etanol (**ST7**)) µg/g cinsinden hesaplanan değerlerine uygulandı. Ölçümlerde Öklid uzaklığı ve sınıflandırma metodu olarak ise Ward metodu kullanıldı. Dendogramda 3 grup oluştuğu görüldü.

1. Grup: 1.GL.M, 1.GL.S, 1.GL.U, 2.GL.S, 2.GL.U, 3.GL.M, 3.GL.S, 3.GL.U, 4.GL.U, 5.GL.S, 5.GL.U, 6.GA.M, 7.GA.U, 13.GAp.U, 14.GR.M, 14.GR.S, 14.GR.U.

2. Grup: 2.GL.M, 4.GL.M, 4.GL.S, 5.GL.M, 7.GA.M, 7.GA.S, 8.GA.M, 9.GA.M, 10.GA.M, 10.GA.S. 11.GA.M, 11.GA.S, 12.GA.M, 12.GA.S, 13.GAp.M ve 13.GAp.S.

3. Grup: 6:GA.S, 6.GA.U, 8.GA.S, 8.GA.U, 9.GA.S, 9.GA.U, 10.GA.U, 11.GA.U ve 12.GA.U

Şekil 3.69.'da farklı *Ganoderma* türlerinden ve farklı ağaçlardan alınan mantarların metanol ektresi örneklerinin 3 gruba ayrıldığı dendogam yer almaktadır. 1. grupta yer alan örneklerin tüm türlerden içerdiği ancak özellikle *G. lucidum* ve *G. resinaceum* örneklerini bulundurduğu görüldü. PCA analizi sonucu oluşan 2. grup ile neredeyse tamamen aynı örnekleri içerdiği tespit edildi. 3. grupta yer alan örneklerin PCA analizinde 1. Grupta yer alan örneklerle uyumlu olduğu belirlendi. 3. grupta yer alan örneklerin tüm *G. adspersum* örneklerinin tüm ultrasonik ektrelerini içerdiği saptandı (7.GA.U hariç). Benzer şekilde 2. grupta yer alan 10 örneğin maserasyon yöntemi ile hazırlandığı belirlendi. Burada ekstraksiyon yöntemleri açısından belirgin bir ayırım olduğu tespit edildi.

HCA verileri göz önüne alındığından *G. adspersum* örnekleri özellikle ultrasonik ekstreleri diğer örneklerden ayrılırken, *G. lucidum* örneklerinin, *G. applanatum* ve *G. resinaceum* örnekleri ile benzer özellik gösterek bir arada gruplaştığı tespit edildi. Bu sonuçların PCA sonuçları ile de uyumlu olduğu gözlendi.

Şekil 3.69. Metanol ekstrelerinin Öklid uzaklığı ve Ward Linkage metodu ile elde edilen dendogramı

3.3.3. Yağ asitlerinin GC-MS ile analizlerine ilişkin kemometrik analiz sonuçları

3.3.3.1. Korelasyon analizi

Ganoderma örneklerine ait 42 petrol eteri/kloroform ektresinin 15 yağ asidi metil esteri ile yapılan kemometrik analizleri Çizelge 3.54.'de yer alan veri seti kullanılarak yapıldı.

15 yağ asidi için Person's korelasyon katsayıları Çizelge 3.55'de verildi. İki yağ asidi arasında pozitif ve negatif korelasyon katsayıları pozitif ve negatif korelasyonları gösterdi. p<0,0001 olmak üzere stearik asit-palmitik asit (0,897), heptadekanoik asitpentadekanoik asit (0,884), oleik asit ile palmitik asit (0,878) heptadekanoik asitlaurik asit (0,861), heptadekanoik asit -miristik asit (0,858), elaidik asit pentadekanoik asit (0,857), behenik asit-araşidik asit (0,856) miristik asit-laurik asit (0,849), behenik asit-stearik asit (0,835), tetrakosanoik asit-behenik asit (0,832), tricosanoik asit-behenik asit (0,825), araşidik asit-miristik asit (0,815), tetrakosanoik asit-stearik asit (0,813) tetrakosanoik asit-palmitik asit (0,811), palmitik asit pentadekanoik asit (0,808), araşidik asit-pentadekanoik asit (0,802) yağ asidi çiftleri arasında çok yüksek pozitif korelasyon görülmektedir. Değişkenler arasında korelasyon çok yüksektir ve bu istatistiksel olarak oldukça önemli olup anlamlı bir korelasyon göstermektedir.

Örnekler	Laurik asit	Miristik asit	Pentadekanoik asit	Palmitoleik asit	Palmitik asit	Heptadekenoik asit	Heptadekanoik asit	Linoleik asit	Oleik asit	Elaidik asit	Stearik asit	Araşidik asit	Behenik asit	Trikosanoik asit	Tetrakosanoik asit
1.GL.M	120,7	71,06	109,5	63,80	524,3	57,88	80,30	920,1	511,8	125,4	99,69	71,31	107,8	346,5	125,0
1.GL.S	107,1	57,58	77,22	45,84	361,9	1,080	67,94	166,2	307,2	83,15	84,51	53,74	65,51	74,24	204,0
1.GL.U	72,78	39,87	47,10	37,14	223,2	28,07	36,05	112,3	217,6	47,31	53,42	34,97	39,28	46,66	1,110
2.GL.M	83,91	50,65	108,4	70,80	509,0	49,97	45,54	1725	1156	103,3	68,45	1,110	1,110	1,110	1,110
2.GL.S	2,170	36,65	77,57	44,04	323,7	35,47	31,71	1309	862,6	68,23	47,23	32,94	1,110	1,110	1,110
2.GL.U	2,170	27,17	57,51	32,65	240,0	26,29	23,51	970,4	639,5	50,59	35,02	27,05	1,110	1,110	1,110
3.GL.M	61,75	36,38	60,51	67,34	703,2	31,35	32,40	874,4	2355	41,36	137,1	47,51	80,19	171,8	161,0
3.GL.S	21,81	12,94	22,52	29,11	280,3	10,14	12,57	341,4	982,0	15,67	50,08	16,02	28,43	47,21	73,62
3.GL.U	2,170	1,110	27,42	31,84	327,9	1,080	15,02	395,5	1188	23,97	55,86	20,23	31,79	57,86	84,96
4.GL.M	119,4	65,20	126,7	124,7	1272	1,080	53,77	1801	3356	77,41	254,7	88,75	112,0	198,6	368,6
4.GL.S	2,170	1,110	110,2	107,8	1094	1,080	51,17	1370	2853	81,19	218,7	77,66	125,8	162,7	408,3
4.GL.U	65,22	44,99	91,78	102,1	1030	35,21	37,60	1433	2926	44,92	215,3	61,71	102,4	134,0	292,2
5.GL.M	88,14	38,34	37,32	54,23	346,6	32,28	32,33	471,2	760,7	48,41	119,5	63,62	62,63	59,65	1,110
5.GL.S	65,50	38,25	36,33	42,05	290,9	30,57	38,73	482,0	491,3	40,01	181,7	67,66	74,27	105,9	109,1
5.GL.U	2,170	1,110	0,940	17,96	84,08	1,080	15,65	158,4	213,1	18,88	43,28	1,110	19,03	1,110	1,110
6.GA.M	222,0	57,45	81,26	42,76	479,4	42,92	83,74	195,4	422,7	65,59	95,88	66,87	109,6	219,9	167,7
6.GA.S	86,95	40,61	47,55	29,76	281,2	31,27	51,95	278,1	330,9	39,70	68,91	45,79	63,68	79,97	90,39
6.GA.U	136,6	18,98	27,89	14,41	269,5	8,140	43,51	101,8	266,8	16,31	58,85	54,87	59,19	78,20	87,88
7.GA.M	2,170	1,110	0,940	1,140	49,26	1,080	1,080	125,9	100,7	32,94	1,110	1,110	1,110	1,110	1,110
7.GA.S	2,170	1,110	43,30	54,33	278,0	33,17	34,82	1342	1035	46,49	63,54	36,84	55,43	1,110	234,5
7.GA.U	2,170	1,110	0,940	9,970	40,11	1,080	1,080	162,5	144,4	10,14	12,77	1,110	12,76	1,110	1,110

Çizelge 3.54. Kemometrik analiz için kullanılan yağ asidi veri seti (µg/g)
Çizelge 3.54. (Devam)

Örnekler	Laurik asit	Miristik asit	Pentadekanoik asit	Palmitoleik asit	Palmitik asit	Heptadekenoik asit	Heptadekanoik asit	Linoleik asit	Oleik asit	Elaidik asit	Stearik asit	Araşidik asit	Behenik asit	Trikosanoik asit	Tetrakosanoik asit
8.GA.M	194,3	47,06	59,92	38,10	325,0	34,29	68,18	297,5	510,8	56,50	62,23	58,80	70,54	250,8	82,90
8.GA.S	76,16	36,99	41,01	34,47	211,7	25,98	41,60	628,6	410,8	41,96	52,33	56,60	56,10	100,9	58,95
8.GA.U	2,170	1,110	0,940	1,140	15,47	1,080	1,080	16,91	16,91	1,110	7,410	8,070	7,490	14,31	11,33
9.GA.M	245,0	101,3	214,2	112,9	941,6	106,5	161,1	3467	1530	151,0	126,9	154,6	116,1	174,1	157,4
9.GA.S	78,85	39,92	62,23	34,80	238,4	37,32	53,43	1335	373,3	54,55	55,41	36,48	51,57	70,13	1,110
9.GA.U	34,65	16,40	24,91	13,98	101,0	15,58	19,07	588,6	187,6	21,09	21,37	13,65	29,13	17,76	25,18
10.GA.M	131,1	80,28	94,31	158,9	629,4	70,08	78,75	2482	2262	101,8	93,78	64,63	108,0	406,3	191,5
10.GA.S	41,92	27,19	30,33	53,99	207,9	22,43	26,05	728,6	759,0	30,76	37,24	22,77	47,54	113,8	152,0
10.GA.U	2,170	1,110	6,330	8,440	30,40	1,080	5,970	113,8	102,9	6,400	8,000	6,420	18,03	27,15	15,17
11.GA.M	117,3	65,10	83,50	112,3	663,2	60,14	64,06	2063	2332	63,91	108,0	55,14	69,07	86,91	140,0
11.GA.S	50,93	26,16	32,57	45,14	257,2	20,97	26,80	754,0	979,5	31,56	48,72	19,71	28,92	39,95	46,76
11.GA.U	36,33	26,42	31,91	50,60	294,9	20,69	23,33	787,6	1085	24,00	53,90	30,00	39,35	43,54	1,110
12.GA.M	112,7	46,43	66,88	69,72	532,8	42,63	55,40	1597	999,3	96,10	78,95	52,89	77,22	60,33	161,2
12.GA.S	81,69	48,62	59,93	74,60	445,0	44,67	53,95	1706	1287	77,35	86,70	44,07	75,91	65,39	307,4
12.GA.U	2,170	1,110	0,940	1,140	202,6	1,080	1,080	746,4	582,4	49,97	54,40	1,110	1,110	1,110	1,110
13.GAp.M	314,0	127,3	121,8	1,140	1025	1,080	106,1	1070	1422	105,9	285,5	131,0	221,4	354,5	396,7
13.GAp.S	119,2	55,90	53,53	55,14	472,2	36,18	44,85	338,6	531,9	47,68	135,5	63,21	142,9	171,9	282,3
13.GAp.U	27,35	5,560	5,240	1,140	40,94	1,08	5,330	9,820	25,65	1,110	11,36	11,53	21,90	17,86	27,68
14.GR.M	74,97	49,61	101,0	66,50	318,1	45,87	50,72	1574	280,4	158,7	64,35	50,02	50,10	58,11	76,68
14.GR.S	105,3	1,110	59,95	40,60	147,4	1,080	39,52	663,4	116,2	81,00	50,61	1,110	46,92	52,60	1,110
14.GR.U	53,51	21,58	28,86	20,18	91,51	17,24	18,10	335,5	68,03	39,39	29,87	30,06	25,70	24,24	1,110

Yağ asitleri	Laurik asit	Miristik asit	Pentadekanoik asit	Palmitoleik asit	Palmitik asit	Heptadekenoik asit	Margarik asit	Linoleik asit	Oleik asit	Elaidik asit	Steraik asit	Araşidik asit	Behenik asit	Trikosanoik asit	Tetrakosanoik asit
Laurik asit	1,000														
Miristik asit	0,849	1,00													
Pentadekanoik asit	0,661	0,785	1,00												
Palmitoleik asit	0,278	0,493	0,706	1,00											
Palmitik asit	0,523	0,648	0,808	0,730	1,00										
Heptadekenoik asit	0,450	0,620	0,648	0,630	0,335	1,00									
Margarik asit	0,861	0,858	0,884	0,546	0,645	0,685	1,00								
Linoleik asit	0,338	0,566	0,789	0,796	0,652	0,719	0,640	1,00							
Oleik asit	0,178	0,371	0,567	0,794	0,878	0,250	0,337	0,648	1,00						
Elaidik asit	0,574	0,703	0,857	0,579	0,566	0,621	0,776	0,717	0,308	1,00					
Steraik asit	0,523	0,607	0,635	0,520	0,897	0,140	0,538	0,409	0,726	0,432	1,00				
Araşidik asit	0,774	0,815	0,802	0,518	0,767	0,512	0,871	0,540	0,478	0,612	0,759	1,00			
Behenik asit	0,761	0,739	0,645	0,457	0,767	0,294	0,738	0,362	0,498	0,500	0,835	0,856	1,00		
Trikosanoik asit	0,712	0,721	0,580	0,489	0,625	0,375	0,686	0,331	0,435	0,492	0,614	0,708	0,825	1,00	
Tetrakosanoik asit	0,436	0,497	0,552	0,544	0,811	0,119	0,510	0,402	0,687	0,384	0,813	0,668	0,832	0,600	1,00

Çizelge 3.55. Ganoderma örneklerinin yağ asidi bileşenlerinin korelasyon matrisleri

3.3.3.2. Temel bileşen analizi (PCA)

Farklı ağaç türlerinden toplanan 4 mantar türü üç ekstraksiyon yöntemiyle ektrakte edilerek GC-MS cihazı ile analizlendi ve miktarları µg/g cinsinden hesaplanan 15 yaygın yağ asidi ile temel bileşen analizi (PCA) yapıldı. PCA sonucunda eiganvalue değeri 1'den büyük olan 3 değer belirlendi (Çizelge 3.56.). *Ganoderma* türlerinin yağ asitlerinin PCAsonucuna göre ilk üç temel bileşen toplam varyansın % 89,50'ını açıkladı. 1. temel bileşen (PC1) varyansın % 64,00'ını, 2. temel bileşen (PC2) % 12,60'ını ve 3. temel bileşen (PC3) % 11,20'ini ifade etti. Diğer temel bileşenlerde bu değerin gittikçe azaldığı görüldü. Çizelge 3.56'de koyu renkle gösterilen değerler temel bileşenleri açıklamada diğerlerinden daha etkindir. 1. temel bileşen data setinde en yüksek varyansı göstermektedir. 1. temel bileşen için, pentadekanoik asit, araşidik asit, palmitik asit, heptadekanoik asit, miristik asit ve behenik asit, 2. Temel bileşen için tetrakosanoik asit, stearik asit ve oleik asit, negatif yönden heptadekenoik asit ve elaidik asit, 3. temel bileşen için palimitoleik asit, linoleik asit ve oleik asit, negatif yönde ise laurik asit ve behenik asit baskın değişkenler olduğu belirlendi.

Yağ asitleri	PC1	PC2	PC3	PC4
Laurik asit	0,244	-0,148	-0,413	-0,019
Miristik asit	0,279	-0,170	-0,201	-0,044
Pentadekanoik asit	0,296	-0,157	0,096	0,315
Palmitoleik asit	0,241	-0,006	0,431	-0,340
Palmitik asit	0,288	0,253	0,145	0,145
Heptadekenoikasit	0,196	-0,469	0,177	-0,394
Heptadekanoik asit	0,287	-0,239	-0,161	0,070
Linoleik asit	0,237	-0,207	0,415	0,104
Oleik asit	0,218	0,334	0,404	-0,145
Elaidik asit	0,247	-0,298	0,063	0,442
Stearik asit	0,258	0,369	-0,045	0,206
Araşidik asit	0,291	0,008	-0,182	0,070
Behenik asit	0,276	0,210	-0,277	-0,100
Trikosanoik asit	0,250	0,077	-0,254	-0,560
Tetrakosanoik asit	0,241	0,393	-0,012	0,054
Eigenvalue	9,594	1,883	1,687	0,504
Varyans (%)	64,00	12,60	11,20	3,400
Kümülatif varyans (%)	64,00	76,50	87,80	91,10

Çizelge 3.56. *Ganoderma* örneklerinin PCA analizi loading, eigenvalue, varyans ve kümülatif varyans değerleri

Çizelge 3.57.'de her bir *Ganoderma* örneği için ilk üç temel bileşenin skor değerleri verildi. Çizelge 3.57.'de görüldüğü gibi 1. temel bileşen için 9.GA.M, 13.GAp.M, 10.GA.M, 4.GL.M, 4.GL.S, 4.GL.U, 1.GL.M, 11.GA.M ve 6.GA.M örnekleri pentadekanoik asit, araşidik asit, palmitik asit, heptadekanoik asit, miristik asit ve behenik asit gibi yağ asitleri ile, 2. temel bileşen için, 4.GL.M, 4.GL.S ve 4.GL.U örnekleri pozitif yönden tetrakosanoik asit, stearik asit ve oleik asit gibi yağ asitleri ile karakterize olduğu görüldü. Bununla birlikte negatif açıdan değerlendirme yapıldığında 2.GL.M, 9.GA.M ve 14.GR.M örneklerde heptadekenoik asit ve elaidik asit gibi yağ asitlerinin baskın olduğu belirlendi.

Çizelge 3.57. Ganoderma örneklerinin yağ asidi bileşimlerine ait temel bileşen skor değerleri

Örmalıları	DC1	DC2	DC2	Örmalıları	DC1	DC2	DC2
Ornekler	PCI	PC2	PC3	Ornekler	PCI	PC2	PC3
1.GL.M	3,3855	-1,4801	-1,2214	8.GA.M	0,9570	-0,7796	-1,9972
1.GL.S	0,5821	0,0916	-1,3238	8.GA.S	-0,6958	-0,4566	-0,7138
1.GL.U	-1,3549	-0,7624	-0,6254	8.GA.U	-4,3095	0,3414	-0,3692
2.GL.M	0,4983	-2,0096	1,9556	9.GA.M	8,4253	-3,8780	0,6330
2.GL.S	-0,9650	-1,2282	1,4347	9.GA.S	-0,3697	-1,3836	-0,0519
2.GL.U	-1,8757	-0,8428	0,9758	9.GA.U	-2,8129	-0,2872	-0,1544
3.GL.M	1,3599	1,5312	0,8292	10.GA.M	5,1990	-0,9949	1,4088
3.GL.S	-2,3589	0,8320	0,3140	10.GA.S	-1,1664	0,2766	0,2122
3.GL.U	-2,2464	1,2208	0,5581	10.GA.U	-3,9884	0,3338	-0,2753
4.GL.M	5,4042	3,2767	1,4943	11.GA.M	2,9249	-0,5588	1,8624
4.GL.S	3,5732	3,6861	1,9316	11.GA.S	-1,5666	-0,0300	0,5127
4.GL.U	3,3559	2,4911	1,7791	11.GA.U	-1,5054	0,0861	0,6203
5.GL.M	-0,2185	-0,1120	-0,3346	12.GA.M	1,6072	-0,7808	0,5515
5.GL.S	0,1691	0,6328	-0,8161	12.GA.S	1,6672	-0,0559	0,9256
5.GL.U	-3,6947	0,3879	-0,0378	12.GA.U	-3,4104	0,3161	0,5461
6.GA.M	2,2230	-0,5966	-2,3854	13.GAp.M	7,1273	2,0595	-4,4688
6.GA.S	-0,5227	-0,3568	-1,0052	13.GAp.S	1,7183	1,0103	-1,5495
6.GA.U	-1,3013	0,3876	-1,6807	13.GAp.U	-3,9220	0,3953	-0,6667
7.GA.M	-4,1904	0,0099	-0,0862	14.GR.M	1,3030	-2,3046	0,6890
7.GA.S	-0,6993	0,4257	1,3498	14.GR.S	-1,6507	-0,6341	-0,2997
7.GA.U	-4,1525	0,3070	-0,0628	14.GR.U	-2,5024	-0,5666	-0,4578

Şekil 3.70.'de PCA analizine ilişkin skor grafiği ve Şekil 3.71.'de ise loading grafiği yer almaktadır. Çalışma kapsamında 4 farklı bölgeden ve 2 ağaç türünden toplanan 5 adet *G. lucidum* örneği, 6 farklı bölgeden ve 5 ağaç türünden toplanan 7 adet *G. adspersum* örneği, 1 *G. applanatum* ve 1 *G. resinaceum* örneği olmak üzere toplam 14 örnek değerlendirildi. Ekstraksiyon yöntemleri arasında belirgin bir ayrım olduğu görüldü. Skor ve loading grafiklerinin birlikte değerlendirilmesi en yüksek yağ asidi konsantrasyonuna sahip olan örnekler hakkında bilgi verir. Maserasyon yöntemi ile elde edilen ekstrelerin yağ asidi miktarlarının soxhlet ve ultrasonik ekstraksiyon yöntemi ile elde edilen ekstrelerin yağ asidi miktarlarından daha fazla olduğu skor ve

loading grafiklerinin yorumlanması ile belirlendi. İzmir'den ceviz ağacından elde edilen *G. adspersum* örneğinin 7.GA.M, 7.GA.S, 7.GA.U kodlu ekstrelerinin yağ asidi içeriği ve miktarı bakımından diğer örneklerden farklı olduğu görüldü. Bu örneğin farklı bir bölgeden alınmış olması bu farklılığın sebebi olabilir.

Şekil 3.70. Ganoderma örneklerinin PC1 ve PC2 skor grafiği.

G. lucidum (soxhlet),
G. lucidum (ultrasonik),
G. adspersum (soxhlet),
G. adspersum (soxhlet),
G. applanatum (soxhlet),
G. applanatum (ultrasonik),
G. resinaceum (soxhlet),
G. resinaceum (soxhlet),
G. resinaceum (ultrasonik),

3.GL.M, 4.GL.M, 4.GL.S, 4.GL.U ve 13.GAp.S örneklerinin bir grup oluşturduğu belirlendi. Bu örneklerde tetrakosanoik asit, stearik asit, oleik asit ve palmitik asit yağ asidi miktarlarının diğer örneklerin yağ asidi miktarlarından daha fazla olduğu tespit edildi. Bu örneklerden 3.GL.M, 4.GL.M, 4.GL.S, 4.GL.U kodlu olan ekstreler *G. lucidum*, 13.GAp.S kodlu olan ekstre ise *G. applanatum* mantarıdır. 3 ve 4 numaralı mantarlar kasım ayı içerisinde sığla ağaçlarından toplandı. 1 ve 2 numaralı örnekler ise *G. lucidum* mantarı olmasına karşın skor grafiğinde farklı bir grup içerisinde yer aldı. 1 ve 2 numaralı örnekler ise eylül ayında sığla ağaçlarından toplandı. Farklı bir zaman diliminde toplanmış olması örneklerin farklılaşmasının

nedeni olabilir. 5 numaralı örnek ise *G. lucidum* mantarına ait son örnektir ve Şekil 3.70.'deki skor grafiğinde her iki gruptan farklı bir bölgede yer aldığı görüldü. Bu örneğin farklılığı ise toplandığı ağaç türünün sığla ağacı değil de dut ağacı olmasından kaynaklı olabilir.

6.GA.M, 8.GA.M, 10.GA.M, 11.GA.M ve 12.GA.M kodlu *G. adspersum* örnekleri ile 12.GA.S kodlu örneği içeren bir başka grup Şekil 3.70.'de skor grafiğinde görülmektedir. Bu grup içerisine 1.GL.M, 1.GL.S ve 2.GL.M kodlu *G. lucidum* örnekleri ile 14.GR.M kodlu *G. resinaceum* örneği yer aldı. Laurik asit, pentadekanoik asit, miristik asit, linoleik asit, heptadekanoik asit, elaidik asit ve heptadekenoik asit bu grubu karakterize eden yağ asitleri olarak belirlendi. 2. grupta yer alan örnekler toplandığı ağaçlar açısından özel bir grup oluşturmadı. Ayrıca 9.GA.M and 13.GAp.M örnekleri herhangi bir gruba dahil olmadı. Fakat bu iki örneğin yağ asitlerini en yüksek oranlarda içerdiği belirlendi.

Şekil 3.71. Ganoderma örneklerinin PC1 ve PC2 loading grafiği

Ultrasonik ekstraksiyon yöntemiyle hazırlanan 5.GL.U, 7.GA.U, 8.GA.U, 10.GA.U, 12.GA.U, 13.GAp.U kodlu örnekler ile 7.GA.M kodlu örneğin yağ asidi konsantrasyonlarının diğer örneklerden çok daha düşük olduğu ve bir grup

oluşturarak skor grafiğinin en sol kısmında yer aldığı belirlendi. Skor grafiğinin orta kısmında ise soxhlet ekstraksiyon yöntemi ile hazırlanan örneklere (1.GL.S, 4.GL.S, 12.GA.S, and 13.GAp.S) ait bir başka grubunun bulunduğu görüldü.

3.3.3.3. Hiyerarşik kümeleme analizi (HCA)

Farklı ekstraksiyon yöntemleri ile hazırlanan *Ganoderma* örneklerinin benzerliklerini belirlemek amacıyla yapılan kümeleme analizi (HCA) sonuçlarına ilişkin dendogram Şekil 3.72.'de verildi. Örneklerdeki ekstraksiyondan kaynaklı farklılıkları ve türler arası farklılıkları karşılaştırabilmek ve ayrıca PCA sonuçları ile kıyaslayabilmek için kümeleme analizi (HCA) yapıldı. HCA, *Ganoderma* türlerindeki 15 yağ asidi için hesaplanan µg/g cinsinden hesaplanan sonuçlara uygulandı. Ölçümlerde Öklid uzaklığı ve sınıflandırma metodu olarak ise Ward metodu kullanıldı. Dendogramda 6 grup oluştuğu görüldü.

1. Grup: 1.GL.M, 2.GL.M, 10.GA.M, 11.GA.M, 12.GA.M, 12.GA.S ve 14.GR.M

2. Grup: 3.GL.M, 4.GL.U, 4.GL.M ve 4.GL.S

3. Grup: 9.GA.M ve 13.GAp.M

4. Grup: 1.GL.S, 1.GL.U, 5.GL.M, 5.GL.S, 6.GA.M, 6.GA.S, 6.GA.U, 8.GA.M, 8.GA.S, 9.GA.S ve 13.GAp.S

5. Grup: 2.GL.S, 2.GL.U, 3.GL.S, 3.GL.U, 7.GA.S 9.GA.U, 10.GA.S, 11.GA.S, 11.GA.U, 12.GA.U, 14.GR.S ve 14.GR.U

6. Grup: 5.GL.U, 7.GA.M, 7.GA.U, 8.GA.U, 10.GA.U ve 13.GAp.U

Şekil 3.72.'de görülen dendogram sonuçlarına göre, farklı *Ganoderma* türlerinden ve farklı bölgelerden alınan mantarların 6 farklı gruba ayrıldığı görülmektedir. 3. grupta 9.GA.M ve 13.GAp.M örnekleri yer aldı ve bu örnekler PCA analizinde herhangi bir gruba dahil olmadı. 1., 5. ve 6. gruplarda ekstraksiyon metodu farklılıkları dikkati çekmektedir. 12.GA.S dışında, 1. grupta yer alan örnekler maserasyon yöntemi ile elde edildi. Benzer şekilde 7.GA.M dışında 6. gruptaki tüm örneklerde ultrasonik ektraksiyon yöntemi ile hazırlandı. 5. Grupta yer alan örnekler ise hem ultrasonik hemde soxhlet ekstraksiyon yöntemleri ile elde edildi.

3.GL.M, 4.GL.U, 4.GL.M, ve 4.GL.S kodlu *G. lucidum* örnekleri sığla ağacından toplandı ve 2. grupta yer aldı. 1. grupta yer alan örneklerden 1.GL.M ve 2.GL.M

kodlu G. lucidum örnekleri de sığla ağacından, 11.GA.M, 12.GA.M, 12.GA.S kodlu G. adspersum örnekleri dut ağacından ve 14.GR.M kodlu G. resinaceum örneği ise dut ağacından toplandı. Ayrıca 4. grupta yer alan 5.GL.N, 5.GL.S ve 13.GAp.S örnekleri ile 5. grupta ver alan 11.GA.S, 11.GA.U, 12.GA.U, 14.GR.S ve 14.GR.U örneklerin dut ağaçlarından toplanarak hazırlanan Ganoderma örnekleri olduğu belirlendi. Benzer şekilde dut ağacından toplanan Ganoderma örneklerinin diğer ekstraksiyon yöntemlerine ait ekstreleri ise 1. grupta toplandı. Aslında 1., 4. ve 5. grup örneklerinin birbirlerine çok benzer olduğu görüldü (Şekil 3.72.). Diğer yönden, sığla ağaçlarından elde edilen Ganoderma örneklerinin tüm gruplar içerisine dağıldığı tespit edildi. Kümeleme analizi dut ağaçlarının gruplanmaya etkisi olduğunu, ancak etkinin ektraksiyon yöntemlerindeki farklılıktan asıl kaynaklandığını gösterdi. Ekstraksiyon yöntemi esas etki yapan etmen olsa bile mantarların yetiştiği ağaçlardaki farklılıklar kümeleme analizini etkilemiş ve gruplamayı yönlendirmiştir. Elde edilen veriler temel bileşen analizi sonuçları ile de oldukça uyumludur.

Şekil 3.72. Öklid uzaklığı ve Ward Linkage metodu ile elde edilen dendogram

4. SONUÇLAR VE ÖNERİLER

Bu tez kapsamında Ege Bölgesi'nde doğal olarak yetişen ve tıbbi öneminden dolayı ticari öneme sahip olan *Ganoderma* türü mantarlardan *G. lucidum, G. adspersum, G. applanatum* ve *G. resinaceum* mantarları ile çalışıldı. Örnekler, maserasyon, soxhlet ve ultrasonik olmak üzere üç farklı ekstraksiyon yöntemi ile petrol eteri-kloroform, aseton ve metanol ekstreleri elde edildi ve bu ekstrelerin β -karoten-linoleik asit, DPPH serbest radikal giderimi, ABTS katyon radikali giderimi ve bakır (II) indirgeme antioksidan kapasitesi (CUPRAC) yöntemleri kullanılarak antioksidan aktiviteleri belirlendi.

Mantarların yağ asidi içeriklerinin belirlenmesi amacıyla GC-MS cihazı kullanılarak yağ asidi bileşenleri tespit edildi ve standartlar kullanılarak yağ asitlerinin nicel analizleri yapıldı. Mantarların türlerden, bölgelerden, ekstraksiyon yöntemlerinden ve yetiştikleri ağaç türlerinden kaynaklanan benzerlikleri yağ asidi bileşimleri açısından incelendi.

G. resinaceum mantarının antioksidan aktivite gösteren aseton ekstresi, silikajel, sefadeks LH-20 gibi dolgu maddeleri kullanılarak fraksiyonlandırıldı ve kolon kromatografisi, ince tabaka kromatografisi, preparatif HPLC gibi kromatografik yöntemler kullanılarak saflaştırıldı. Saflaştırma sonucunda 1 adet steroit türevi olan ergosterol peroksit (1) ve 7 adet triterpen türevi olan ganoderik asit C2 (2), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6), ganoderenik asit C (7) ve ganoderik asit D (8) bileşikleri elde edildi. Saflaştırılan maddelerin yapıları, 1D ve 2D NMR gibi spektroskopik metotlar kullanılarak aydınlatıldı.

Ergosterol peroksit (1); *G. amboinense, G. carnosum, G. lucidum* ve *G. concinna* gibi türü mantarından izole edilmiştir (Baby, 2015) ve ¹H-NMR, ¹³C-NMR, COSY, HMQC ve HMBC gibi yöntemlerle yapısı aydınlatılmıştır (Kim vd., 1997). Literatürde insan prostat kanserinde apoptotik aktivite (Russo vd., 2010), Epstein-Bar virüs aktivasyonuna inhibisyon etkisi (Dudgaonkar vd., 2009) ve antikomplement aktivitesi (Kim vd., 1997) gösterdiği bildirilmiştir.

Ganoderik asit C2 (2); Kikuchi vd. (1986) *G. lucidum* mantarından izole etmiştir. ¹H ve ¹³C NMR yöntemleri ile yapısını tanımlamıştır. Ganoderik asit C2 (2) yüksek oranda aldoz redüktaz inhibitör aktivitesi göstermektedir (Ma vd., 2015). Ayrıca Epstein-Bar virüsü aktivasyonuna inhibisyon etkisine de sahiptir (Akihisa vd., 2007; Dudhgaonkar vd., 2009). Ganoderik asit C2 (2), *G. lucidum*'un ana terpenoitlerindendir ve çoğu *Ganoderma* cinsinde görülmektedir. Bu güne kadar yapılan çalışmalarda anti-tümör, anti-histamin, anti-aging ve sitotoksik etkilere sahip olduğu bildirilmiştir. Aldoz redüktaz inhibitör aktivitesine sahip olması nedeniyle diyabet hastalarının tedavisinde kullanılma potansiyeli vardır. Ayrıca ganoderik asit C2 (2), *G. lucidum*'un kalite kontrolü için temel triterpen olup, *Ganoderma* türleri arasındaki farklılıkları ayırt etmek için kullanılmaktadır (Guo vd., 2013).

Ganoderik asit G (**3**); yüksek oksijenli lanostan tipi bir triterpenoit olan ganoderik asit G (**3**), Komoda vd. (1985) tarafından *G. lucidum* mantarından izole edilmiştir. Min vd. (2000), ganoderik asit G (**3**)'nin Meth-A (sarkoma) ve LLC (akciğer kanseri) fare tümör hücrelerine karşı sitotoksik aktivitesini değerlendirmiştir. Bu çalışma ile ganoderik asit G (**3**)'nin Meth-A hücrelerine karşı sitotoksik aktivite gösterdiği rapor edilmiştir. Ayrıca Ruan ve Popovich (2012) *G. lucidum* mantarından elde ettikleri fraksiyonlarda yer alan triterpenlerden birinin de ganoderik asit G (**3**) olduğunu belirtmiş ve bu fraksiyonun insan-kolon kanser hücrelerine (Coco-2) karşı sitotoksik aktivite gösterdiğini bildirmiştir.

Ganoderik asit B (4); Kubato vd.'nin (1982) *G. lucidum* mantarından izole ettiği diğer triterpendir. Ganoderik asit A (5) gibi C30 lanostan tipi bir triterpen olan ganoderik asit B (4) de antioksidan aktiviteye sahiptir. Ganoderik asit B (4) asetilkolinesteraz inhibitör aktivitesine (Lee vd., 2011) sahip olmasının yanında HeLa tümör hücrelerine karşı sitotoksik aktivite (Yue vd., 2010), önemli derecede HIV-proteaz aktivitesi ve hepatokoruyucu aktivite gösterir (Hapuarachchi vd., 2016).

Ganoderik asit A (5); 1982 yılında Kubato vd. tarafından *G. lucidum* mantarından izole edilmiştir. Kayık şekilli bir lanostan halkası taşıyan çok oksitli, 30 C'lu bir triterpendir. Ganoderik asit A (5) üzerine birçok çalışma mevcuttur ve genellikle aktiviteleri araştırılmıştır. Sliva (2003) ganoderik asit A (5)'nın farnesil protein transferaz inhibisyonu aktivitesine sahip olduğunu, Dudhgaonkar vd (2009) kulak ödemi inflamasyonunu baskılayıcı etkisini, Epstein-Bar virüsü (EBV) aktivasyonuna inhibisyon etkisini ve anti-enflamatuvar aktivitesini rapor etmiştir. *G. lucidum*'dan

izole edilen ganoderik asit A (5), insan meme kanseri hücrelerinin büyümesini, çoğalmasını ve invaziv davranışlarını inhibe etmektedir (Jiang vd., 2008). Ayrıca antioksidan (Shi vd., 2010) ve Anti-HIV (Wang vd., 2006) aktivitesi olduğu da bilinmektedir.

Ganoderenik asit D (6); Komoda vd. (1985) tarafından G. lucidum mantarından izole edilen triterpenlerden biridir. Birçok Ganoderma (G. applanatum, G. tsugae, G. lucidum) türünde görülmekle birlikte ana triterpenlerdendir. Ganoderenik asit D (6), İnsan hepatoselüler karsinoma (Hep G2), kolorektal adenokarsinoma (Caco-2) ve servikal adenokarsinoma (HeLa) hücre hatlarına karşı hücre büyümesini azaltarak sitotoksik etki göstermiştir (Ruan vd., 2014). Cheng ve Sliva (2015) da ganoderenik asit D (6)'nin serviakal, kolon ve akciğer kanserine karşı sitotoksik aktivite gösterdiğini rapor etmiştir. Fatmawati vd. (2013), G. linghzi'nin lanostan tipi triterpenoitlerinde α -glikozidaz inhibitör aktivitesini değerlendirmiş ve ganoderenik asit D (6)'nin α -glikozidaz inhibitör aktivitesi göstermediğini bildirmiştir.

Ganoderenik asit C (7); Komoda vd. (1985) tarafından *G. lucidum* mantarından izole edilen triterpenlerden biridir. H460 (İnsan-büyük akciğer kanser hücresi), A549 (insan akciğer adenokarsinom epitelyum hücre hattı) ve K562 (İnsan miyolojenli lösemi) hücreleri ile anti-kanser aktivitesi araştırılmıştır. Ganoderenik asit C (7), H549 ve K562 hücre hatlarında aktivite göstermezken, H460 hücrelerine karşı zayıf anti-kanser aktivitesi vermiştir (Chen vd.,2017b).

Ganoderik asit D (8); *G. lucidum* mantarının ana triterpenlerinden olan ganoderik asit D (8), Nishitoba (1985b) tarafından izole edilmiş çok oksijenli C30 lanostan tipi bir terpenoittir. Özellikle doğu ülkelerindeki diyetlerde günlük olarak kullanılmasının yanında, birçok hastalığın tedavisinde klinik amaçlı da kullanılmaktadır (Cheng vd., 2012b). Ganoderik asit D (8), HeLa tümör hücrelerine karşı sitotoksik aktivite (Yue vd., 2010), histamin salımını engelleyici aktivite (Hapuarachchi vd., 2016), antioksidan aktivite (Shi vd., 2010) göstermektedir. Liu vd. (2018), Ganoderik asit D (8)'nin kolon kanseri üzerindeki etkisini araştırmıştır. Glikoz alımı, laktat üretimi, kolon kanseri hücrelerindeki pürivat ve asetil koenzim üretimini içeren kolon kanseri hücrelerinin enerjiyi yeniden programlamasını engellediğini rapor etmiştir.

Mantarların antioksidan aktivite sonuçları incelendiğinde aseton ve metanol ekstrelerinin oldukça yüksek antioksidan aktiviteye sahip olduğu görüldü. Bu

nedenle aseton ve metanol ektreleri kullanılarak HPLC-DAD kromatogramları oluşturuldu. Kromatogramlarda yer alan maddelerin belirlenebilmesi amacıyla G. resinaceum mantarından izole edilen maddeler (1-8) ve diğer saf maddeler tek tek HPLC-DAD sisteminde çalışıldı. Kromatogramlarda standartlara ait piklerin alıkonma zamanları belirlendi ve her bir mantar örneği ekstresinde yer alan piklerin alıkonma zamanları ve UV spektrumları ile karşılaştırılarak kromatogramlardaki maddeler tespit edildi ve miktarları hesaplandı. Mantarların türlerden, bölgelerden, ekstraksiyon yöntemlerinden ve yerleştikleri ağaç türlerinden kaynaklı benzerlikleri HPLC-DAD kromatogramlarında belirlenen bileşikler açısından incelendi. Herbir mantarın mesarasyon yöntemiyle hazırlanan aseton ve metanol ekstrelerinin HPLC-DAD kromatogramlarında tespit edilen maddelerin antioksidan aktiviteye sahip olup olmadığı belirlendi. Bu amaçla ekstreler DPPH ile inkübe edildi ve inkübasyonun ardından aynı koşullarda HPLC-DAD cihazında yürütüldü ve aynı örneğe ait ikinci bir kromatogram oluşturuldu. İki kromatogram birbiriyle karşılaştırıldığında ilk kromatogramlarda yer alan bazı maddelere ait piklerin kaybolduğu yada pik şiddetlerinin önemli oranda azaldığı belirlendi. Kromatogramlarda pik şiddetleri azalan veya tamamen kaybolan piklere ait maddelerin antioksidan aktiviteye sahip olduğu tespit edildi. 5.GL.M ile kodlanan G. lucidum mantarı örneğinin aseton ekstresinin kromatogramında görülen 4-hidroksibenzoik asit (ST8), ganoderenik asit C (7), ganoderik asit G (3), ganoderik asit B (4), ganoderik asit A (5), ganoderenik asit D (6) ve ganoderik asit D (8) bileşiklerine ait olan piklerin tamamen kaybolduğu görüldü. Özellikle ganoderik asit B (4) ve ganoderik asit D (8)'nin ana pikler olması ve DPPH ile inkübasyon sonucu pikin tamamen kaybolması antioksidan aktiviteye sahip olduğunu gösterdi. Benzer şekilde 9.GA.M ile kodlanan G. adspersum örneğinin aseton ekstresi kromatogramlarında yer alan ganoderik asit C2 (2)'ye ait pikin ve 10.GA.M ve 11.GA.M örneklerinin aseton ekstrelerinde ganoderenik asit C (7)'ye ait piklerin tamamen kaybolduğu görüldü. Ayrıca belirlenen tüm fenolik içerikli maddelere ait piklerin de antioksidan aktiviteye sahip olduğu pik şiddetlerindeki azalma veya piklerin kaybolması sonucu belirlendi. 8.GA.M örneğinin metanol ekstresinin kromatogramında görülen ganoderik asit D (8)'ye ait pikin tamamen kaybolması ve ganoderik asit A (5)'ya ait pikin pik alanının % 60 oranında azalması bu triterpenlerin antioksidan aktiviteye sahip olduğunu gösterdi. HPLC-DAD cihazında analiz edilen, analiz sonucu tespit edilen maddelerin bir özeti Çizelge 4.1.'de verildi.

Bileşik	Bileşiğin yapısı	HPLC- DAD/Aseton	HPLC- DAD/Metanol	Antioksidan aktivitesi
Fumarik asit (ST1)	но-Кон	-	G.lucidum G. adspersum	+
Gallik asit (ST2)	но он но он	G.lucidum G. adspersum G. resinaceum	G.lucidum G. adspersum G .resinaceum	+
<i>trans</i> -Akonitik asit (ST3)	он он он он он	-	G.lucidum G. adspersum	Tespit edilemedi
<i>p</i> -Benzokinon (ST4)	Ů	- /		Tespit edilemedi
Pirokatekol (ST5)	ОН		G.lucidum	+
Protokateşik asit (ST6)	нотон	G. resinaceum	-	+
2-(4-hidroksifenil) etanol (ST7)	НО	-	G.lucidum G. adspersum G. applanatum G .resinaceum	+
4-hidroksibenzoik asit (ST8)	HOFO	G.lucidum G. adspersum G. applanatum G .resinaceum	G. adspersum G .resinaceum	+
Katekin (ST9)	HO OH OH	-	-	Tespit edilemedi
Metil 1,4-benzokinon (ST10)	CH ₃	-	-	Tespit edilemedi
6,7-dihidroksi kumarin (ST11)	HO HO	-	-	Tespit edilemedi
Vanilik asit (ST12)	нотон	G. adspersum G. applanatum	G.lucidum G. adspersum	+
Kafeik asit (ST13)	но он он	-	-	Tespit edilemedi
Vanilin (ST14)	HO	-	-	Tespit edilemedi

Çizelge 4.1. HPLC-DAD cihazında analiz edilen maddeler

Bileşik	Bileşiğin yapısı	HPLC- DAD/Aseton	HPLC- DAD/Metanol	Antioksidan aktivitesi
2,4- dihidroksibenzoik asit (ST15)	HO HO OH	-	-	Tespit edilemedi
Klorojenik asit (ST16)		-	-	Tespit edilemedi
<i>p</i> -Kumarik asit (ST17)	но		-	Tespit edilemedi
Ferulik asit (ST18)	оста стран			Tespit edilemedi
Kumarin (ST19)	C_{0}	-	-	Tespit edilemedi
<i>trans</i> -2- hidroksisinnamik asit (ST20)	ОН ОН	-	-	Tespit edilemedi
Rutin (ST21)	HO + + + + + + + + + + + + + + + + + + +	-		Tespit edilemedi
Ellagik asit (ST22)	но нео нео	-	-	Tespit edilemedi
trans- Sinnamik asit (ST23)	ОН	-	-	Tespit edilemedi
Naringenin (ST24)	но он он	-	G.lucidum G. adspersum	+
Kersetin (ST25)	но о он	-	-	Tespit edilemedi
Rosmarinik asit (ST26)		-	G.lucidum G. adspersum G. applanatum G. resinaceum	+

Çizelge	4.1.	(Devam)
---------	------	---------

Bileşik	Bileşiğin yapısı	HPLC- DAD/Aseton	HPLC- DAD/Metanol	Antioksidan aktivitesi
Krisin (ST27)	HOLO	-	-	Tespit edilemedi
Ganoderik asit C2 (2)	HO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	G.lucidum G. adspersum G. applanatum G .resinaceum	G.lucidum G. adspersum G. applanatum G .resinaceum	+
Ganoderik asit G (3)		G.lucidum G. adspersum G. applanatum G.resinaceum	G.lucidum G. adspersum G. applanatum G.resinaceum	+
Ganoderik asit B (4)		G.iuciaum G. adspersum G. applanatum G.resinaceum	G.uciaum G. adspersum G. applanatum G .resinaceum	+
Ganoderik asit A (5)		G.lucidum G. adspersum G. applanatum G.resinaceum	G. adspersum G. applanatum	+
Ganoderenik asit D (6)		G.lucidum G. adspersum G. applanatum G.resinaceum	G.lucidum G. adspersum G. applanatum G .resinaceum	+
Ganoderenik asit C (7)	$HO \xrightarrow{1}_{A} \xrightarrow{2}_{A$	G.lucidum G. adspersum G. applanatum G.resinaceum	G.lucidum G. adspersum G. applanatum G .resinaceum	+
Ganoderik asit D (8)		G.lucidum G. adspersum G. applanatum G.resinaceum	G.lucidum G. adspersum G. applanatum G .resinaceum	+
Ergosterol peroksit (1)		G.lucidum G.applanatum G.resinaceum	-	-

Çizelge 4.1. (Devam)

Bileşik	Bileşiğin yapısı	HPLC- DAD/Aseton	HPLC- DAD/Metanol	Antioksidan aktivitesi
Ergosterol (TA1)	HO	G.lucidum G. adspersum G. applanatum G.resinaceum	G.lucidum G. adspersum G. applanatum G .resinaceum	+
5α-6α epoksi ergosta- 7,22-dien- 3β-ol (TA2)		-	G. lucidum	-
Ergosta-7,9,22 trien-3- O - β - D -glukozit (BA1)		-	-	Tespit edilemedi
Ergosta-22-en-3β-ol (BA2)	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $		-	Tespit edilemedi
Betulinan A (BA3)				Tespit edilemedi
Betulinan B (BA4)		-	-	Tespit edilemedi
Ergosta-5,22-dien 3β- ol (ID1)		-	G.lucidum G. adspersum G. applanatum	-
Ergosta-5,22-dien-3-on (ID2)	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	-	-	Tespit edilemedi
ergosta-5,22-dien 3- O - β - D -glukopiranosit (SC1)		-	-	Tespit edilemedi

Çizelge 4.1. (Devam)

Bileşik	Bileşiğin yapısı	HPLC- DAD/Aseton	HPLC- DAD/Metanol	Antioksidan aktivitesi
Ergosta-5,22-dien 3- O - β - D -ksilofuranosil (SC2)		-	-	Tespit edilemedi
Ergosta-5,22-dienil 3- O - α -heptanoat (SC3)		-	-	Tespit edilemedi
Ergosta-5,22-dienil 3- $O-\alpha$ -12- cis- hegzadekenoat (SC4)			-	Tespit edilemedi
Ergosta-5,22-dienil-3- <i>Ο-α</i> -dekanoat (SC5)	the second			Tespit edilemedi

Çizelge 4.1. (Devam)

Ganoderma türlerine ait dört mantar türünün aseton ekstrelerinde gallik asit (**ST2**) (0,17- 0,83 µg/g) ve 4-hidroksibenzoik asit (**ST8**) (0,01-1,51 µg/g) gibi fenolik bileşenler belirlendi. *Ayrıca G. resinaceum* mantarı aseton ekstresinde protokateşik asit (**ST6**) varlığı da tespit edildi. *G. resinaceum* mantarından izole edilen maddelerden ergosterol peroksit (**1**) *G. lucidum* (3,00-30,92 µg/g) mantarı ve *G. resinaceum* (6,88-12,03 µg/g) mantarlarının aseton ekstrelerinin tespit edildi. *G. applanatum* ve *G. adspersum* mantarlarının aseton ekstrelerinde ergosterol peroksit (**1**)'in olmadığı belirlendi. *G. resinaceum* mantarından izole edilen triterpenler, neredeyse tüm aseton ekstrelerinde tespit edildi. Bununla birlikte elde edilen maddelerden ganoderik asit B (**4**)'nin (36,91-244,87 µg/g) *G. adspersum* mantarının aseton ekstrelerinde önemli miktarda bulunduğu görüldü. Ayrıca 8.GA.M, 8.GA.S ve 8.GA.U kodlu aseton ekstrelerinde ganoderik asit B (**4**) bileşiğinin miktarının en yüksek olduğu tespit edildi.

G. lucidum örneklerinin metanol ektrelerinde fumarik asit (**ST1**) (0,85-5,5 μ g/g), gallik asit (**ST2**) (0,44-1,04 μ g/g), *trans*-akonitik asit (**ST3**) (0,29-5,39 μ g/g),

pirokatekol (ST5) (1,74-2,34), 2-(4-hidroksi fenil)etanol (ST7) (2,18-5,33 µg/g), vanilik asit (ST12) (0,09-0,12 µg/g), naringenin (ST24) (0,92-10,57 µg/g), rosmarinik asit (ST26) (0,06-11,66 μ g/g) gibi fenolik bileşenler tespit edildi. G. adspersum mantarlarının metanol ekstrelerinde ise fumarik asit (ST1) (0,89-1,87 $\mu g/g$), gallik asit (ST2) (0,81-1,00 $\mu g/g$), trans-akonitik asit (ST3) (1,05-13,51 $\mu g/g$), 2-(4-hidroksi fenil)etanol (ST7) (1,53-16,12 µg/g), vanilik asit (ST12) (0,12-0,25 µg/g), naringenin (ST24) (0,18-6,09 µg/g), rosmarinik asit (ST26) (0,29-1,32 $\mu g/g$) gibi fenolik bileşenler belirlendi. G. resinaceum mantarının metanol ekstrelerinde gallik asit (ST2) (2,66-5,25 µg/g), 2-(4-hidroksi fenil)etanol (ST7) $(1,07-6,27 \ \mu g/g)$ ve rosmarinik asit (**ST26**) $(2,07-9,01 \ \mu g/g)$ görülürken G. applanatum mantarının metanol ekstrelerinde 2-(4-hidroksi fenil)etanol (ST7) (2,46 µg/g) dışında başka bir fenolik madde saptanmadı. Ganoderma türü mantarların metanol ekstrelerinin neredeyse tümünde ergosterol (TA1) türü steroit tespit edilirken, G. resinaceum mantarından elde edilen ergosterol peroksit (1) metanol ekstrelerinde saptanmadı. G. lucidum örnekleri arasında en yüksek ergosterol (TA1) miktarı Fethiye'den sığla ağacından alınan 1.GL.S örneğinde (46,62 $\mu g/g$), G. adspersum örnekleri arasında en yüksek Fethiye'den sığla ağacından toplanan 6.GA.M örneğinde (47,46 µg/g) ve Fethiye'den dut ağacından toplanan 14.GR.U kodlu G. resinaceum örneğinde (32,06 μ g/g) tespit edildi. Ganoderik asit B (4) bileşiği G. adspersum örneklerinin metanol ekstrelerinde aynı aseton ekstrelerinde olduğu gibi yüksek miktarlarda belirlendi. Ganoderik asit G (3) bilesiği ise tüm metanol ekstrelerinin arasında en yüksek miktarda G. resinaceum mantarında tespit edildi. Ganoderenik asit D (6) maddesinin 6.GA.S ve 6.GA.U örnekleri dışında diğer tüm metanol ekstresi örneklerinde iz miktarlarda olduğu görüldü.

*Ganoderm*a türü örneklerde 21 yağ asidi bileşeni tespit edildi. 15 yağ asidinin tüm örneklerde bulunduğu belirlendi. Ayrıca palmitik asit (15,5-1272 μ g/g), linoleik asit (9,80-3467 μ g/g) ve oleik asidin (16,9-3356 μ g/g) *Ganoderma* türü mantarlarda görülen majör yağ asitleri olduğu görüldü.

Tez çalışmasında elde edilen veriler kemometrik olarak değerlendirildi. *Ganoderma* türlerindeki yağ asitlerinin miktarları ile yapılan temel bileşen analizi ve hiyerarşik kümeleme analizleri sonucunda maserasyon yöntemi ile hazırlanan ekstrelerdeki yağ asidi bileşimlerinin daha yüksek olduğu, ultrasonik ekstraksiyon yönteminin bu tür

analizlerde yetersiz olduğu belirlendi. Ayrıca yağ asidi bileşimleri bakımından *G. adspersum* örnekleri ile, *G. resinaceum* örnekleri benzerlik gösterirken, *G.lucidum* örneklerinin *G. applanatum* örnekleri ile benzerlik gösterdiği ve gruplandığı tespit edildi.

Aseton ekstrelerinin HPLC-DAD analizleri sonucu kromatogramlarda belirlenen maddeler ile yapılan temel bileşen analizi ve hiyerarşik kümeleme analizlerinde mantarların toplandığı ağaç türlerine ve ekstraksiyon yöntemlerine göre ayrıldığı tespit edildi. Meyveli ağaçlardan alınan (şeftali, erik, dut, ceviz) *G. adspersum* örneklerinin sığla ağaçlarından alınan mantarlardan ayrıldığı belirlendi. Aynı zamanda triterpen ekstraksiyonunda soxhlet ve ultrasonik ektraksiyon yöntemlerinin maserasyon yöntemine göre daha iyi sonuç verdiği tespit edildi. Türler arasında net bir ayrım olmamakla birlikte dut ağacından alınan *G. lucidum, G. adsperum, G.resinaceum* ve *G. applanatum* örneklerinin aynı grup içerisinde yer aldığı belirlendi. Dut ağaçlarından elde edilen mantarlarda incelenen triterpenlerin, sığla ağaçlarından daha baskın olduğu ancak diğer meyve ağaçlarından da daha zayıf olduğu saptandı.

Metanol ekstrelerinin HPLC-DAD analizleri sonucu kromatogramlarda belirlenen maddeler ile yapılan temel bileşen analizi ve hiyerarşik kümeleme analizlerinde *G. adspersum* türünün ayrı bir grup oluşturduğu, ekstraksiyon yöntemlerinden ultrasonik ekstraksiyonun triterpenlerin analizinde daha başarılı sonuç verdiği tespit edildi. Mantarların toplandığı ağaç türlerine göre bir gruplanma söz konusu olmadı.

KAYNAKLAR

- Abidi S., L. (2001) Chromatographic analysis of plant sterols in foods and vegetable oils. *J Chromatogr A*, 935: 173–201.
- Adams, M., Christen, M., Plitzko, I., Zimmermann, S., Brun, R., Kaiser, M. ve Hamburger, M. (2010) Antiplasmodial lanostanes from the *Ganoderma lucidum* mushroom. J Nat Prod, 73: 897–900.
- Adaskaveg J.E. ve Gilbertson R.L. (1988) Basidiospores, pilocystidia, and other basidiocarp characters in several species of the *Ganoderma lucidum* complex. Mycologia, 80(4): 493-507.
- Ajith, T.A. ve Janardhanan, K.K. (2007) Indian medicinal mushrooms as a source of antioxidant and antitumor agents. *J Clin Biochem Nutr*, 40: 157–162.
- Akihisa, T., Nakamura, Y., Tagata, M., Tokuda, H., Yasukawa, K., Uchiyama, E., Suzuki, T. ve Kimura, Y. (2007) Anti-Inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus *Ganoderma lucidum*. *Chem Biodivers*, 4: 224–231.
- Akyüz, E. (2011). Digitalis ferruginea ssp schischkinii ve bazı endemik Digitalis türlerinin ekstratlarında mevcut kardiyak glikozitleri ve fenolik bileşiklerin kromatografik yöntemlerle belirlenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, toplam 119s.
- Albayrak, S., Sağdiç, O. ve Aksoy, A. (2010) Bitkisel ürünlerin ve gıdaların antioksidan kapasitelerinin belirlenmesinde kullanılan yöntemler. *Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, 26(4): 401–409.
- Allı, H., Işıloğlu, M., Solak, M.H. (2007) Macrofungi of Aydın Province, Turkey. *Mycotaxon*, 99: 163–165.
- Allı, H., Türkoğlu, A., Işıloğlu, M. ve Gezer, K. (2008) Truffles of Turkey. *Mycotaxon*, Accepted, 07-185.

- Altuntaş, D., Allı, H., Kaplaner, E. ve Öztürk, M. (2016) Bazı Lactarius türlerinin yağ asidi bileşenlerinin ve makrobesinsel özelliklerinin belirlenmesi. *Türk Tarım - Gıda Bilim ve Teknoloji Dergisi*, 4(3): 216–220.
- Alves, M.J., Ferreira, I. C.F.R., Dias, J., Teixeira, V., Martins, A. ve Pintado M. (2012) A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. *Planta Medica*, 78(16): 1707–1718.
- Amaral, A.E., Carbonero, E.R., Simao, R.D.C.G., Kodawaki, M.K., Sassaki, G.L., Osaku, C.A., Gorin, P.A.J. ve Iacomini, M. (2008) An unusual water-soluble βglucan from the basidiocarp of the fungus *Ganoderma resinaceum*. *Carbohyd Polym*, 72: 473 – 478.
- Amen, Y., M., Zhu, Q., Tran, H.B., Afifi, M.S., Halim, A.F., Ashour, A., Mira, A. ve Shimizu, K. (2016) Lucidumol C, a new cytotoxic lanostanoid triterpene from *Ganoderma lingzhi* against human cancer cells. *J Nat Med*, 70: 661–666.
- Anonim, *Ganoderma applanatum: The Artist's Conk*, <u>http://blogs.evergreen.edu/fungalkingdom/ganoderma-applanatum-the-artists-</u> <u>conk/</u>, 2014.
- Anonim, *Temel bileşenler analizine genel bir bakış,* <u>http://www.zafercomert.com/IcerikDetay.aspx?zcms=78,</u> 2015, 42s.
- Anonim, *Ganoderma applanatum: The Artist's Conk*, <u>http://www.fungusfactfriday.com/070-ganoderma-applanatum/#citations</u>, 2018,
- Apak, R., Güçlü, K., Özyürek, M. Ve Karademir, S.E. (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method, J Agric Food Chem, 52: 7970 - 7981.
- Atanur, O.M. (2008) Ganoderma lucidum mantarlarından konvansiyonel ve süperkritik ekstraksiyon yöntemleri ile elde edilen ekstrelerin bileşenlerinin tanımlanması, Doktora Tezi, Çukurova Üniversitesi, Adana, 242s.
- Baby, S., Johnson, A.J. ve Govindan, B. (2015) Secondary metabolites from *Ganoderma*. *Phytochemistry*, 114: 66–101.
- Badalyan, S.M., Gharibyan, N.G. ve Asatryan, A.N. (2012) Antifungal activity of some *Ganoderma species* against potentially pathogenic for humans and

animals keratinophilic fungi. *Modern State of Biotechnological Developments and Ways of Commercialization*. September 11-12, Yerevan, Armenia, 95-96.

- Badalyan, S.M., Gharibyan, N.G. ve Innocenti, G. (2014) Antifungal/antagonistic activity of different *Ganoderma* collections against plant pathogenic fungi and their antagonists. 8th International Conference on Mushroom Biology and Mushroom Products, 19-22 November 2014, New Delhi India, 6.
- Balasundram, N., Sundram, K. ve Samman, S. (2006) Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. *Food Chem*, 99: 191–203.
- Balın, T. (2007) (Reishi veya Ling-Chi) mantarının Ganoderma lucidum subkritik su ile ekstraksiyonu ve bileşenlerinin tanımlanması, Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, 85s.
- Bhosle, S., Ranadive, K., Bapat, G., Garad, S., Deshpande, G. ve Vaidya, J. (2010) Taxonomy and diversity of *Ganoderma* from the western parts of Maharashtra. *Mycosphere*, 1(3): 249–262.
- Bingöl, D., Ay, Ü., Karayünlü Bozbaş, S. ve Uzgören, N. (2013) Chemometric evaluation of the heavy metals distribution in waters from the Dilovasi region in Kocaeli, Turkey. *Mar Pollut Bull*, 68: 134–139.
- Bishop, K.S., Kao, C. H. J., Xu, Y., Glucina, M. P., Paterson, R.R.M. ve Ferguson, L. R. (2015) From 2000 years of *Ganoderma lucidum* to recent developments in nutraceuticals. *Phytochemistry*, 114: 56–65.
- Blois, M.S. (1958) Antioxidant determinations by the use of a stable free radical. *Nature*, 181: 1199-1200.
- Büyüköztürk, Ş. (2002) Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. *Kuram ve Uygulamada Eğitim Yöntemi*, 32: 470 483
- Büyüktuncel, E. (2013) Toplam fenolik içerik ve antioksidan kapasite tayininde kullanılan başlıca spektrofotometrik yöntemler. *Marmara Pharm Journal*, 17: 93-103.
- Cao, Y., Wu, S.H. ve Dai, Y.C. (2012) Species clarification of the prize medicinal *Ganoderma* mushroom "Lingzhi". *Fungal Divers*, 56: 49–62.

- Cao, W.W., Luo, Q., Cheng, Y.X. ve Wang, S.M. (2016) Meroterpenoid enantiomers from *Ganoderma sinensis*. *Fitoterapia*, 110: 110–115.
- Chairez-Ramirez, M.H., Moreno-Jimenez, M.R., Gonzalez-Laredo, R.F., Gallegos-Infante, J.A. ve Rocha-Guzman, N.E. (2016) Lupane-type triterpenes and their anti-cancer activities against most common malignant tumors: A review. *EXCLI* J, 15: 758–771.
- Chen, Y., Zhu, S.B., Xie, M.Y., Nie, S.P., Liu, W., Li, C., Gong, X.F. ve Wang, Y.X. (2008) Quality control and original discrimination of *Ganoderma lucidum* based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. *Anal Chim Acta*, 623: 146–156.
- Chen, Y., Yan, Y., Xie, M.Y., Nie, S.P., Liu, W., Gong, X.F. ve Wang, Y.X. (2008b) Development of a chromatographic fingerprint for the chloroform extracts of *Ganoderma lucidum* by HPLC and LC–MS. J Pharm Biomed Anal, 47: 469– 477..
- Chen, M., Zhang, M., Sun, S., Xia, B. ve Zhang, H.Q. (2009) A new triterpene from the fruiting bodies of *Ganoderma lucidum*. *Acta Pharm Sinic*, 44(7): 768–770.
- Chen, S.Y., Chang, C.L., Chen, T.H., Chang, Y.W. ve Lin, S.B. (2016) Colossolactone H, a new *Ganoderma* triterpenoid exhibits cytotoxicity and potentiates drug efficacy of gefitinib in lung cancer. *Fitoterapia*, 114: 81–91.
- Chen, B., Ke, B., Ye, L., Jin, S., Jie, F., Zhao, L. ve Wu, X. (2017a) Isolation and varietal characterization of *Ganoderma resinaceum* from areas of *Ganoderma lucidum* production in China. *Sci Hortic*, 224: 109–114.
- Chen, B., Tian, J., Zhang, J., Wang, K., Liu, L., Yang, B., Bao, L. ve Liu, H. (2017b) Triterpenes and meroterpenes from *Ganoderma lucidum* with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. *Fitoterapia*, 120: 6–16.
- Chen, S., Li, X., Yong, T., Wang, Z., Su, J., Jiao, C., Xie, Y. ve Yang, B. B. (2017c) Cytotoxic lanostane-type triterpenoids from the fruiting bodies of *Ganoderma lucidum* and their structure-activity relationships. *Oncotarget*, 8(6): 10071– 10084.
- Chen, X., Chen, L., Li, S. ve Zhao, J. (2017d) Meroterpenoids from the fruiting bodies of higher fungus *Ganoderma resinaceum*. *Phytochem Lett*, 22: 214–218.

- Chen, X. Q., Chen, L. X., Zhao, J., Tang, Y. P. ve Li, S. P. (2017e) Nortriterpenoids from the fruiting bodies of the mushroom *Ganoderma resinaceum*. *Molecules*, 22(7):1073.
- Chen, X. Q., Chen, L. X., Li, S. P. ve Zhao, J. (2017f) A new nortriterpenoid and an ergostane-type steroid from the fruiting bodies of the fungus *Ganoderma resinaceum*. *J Asian Nat Prod Res*, 19(12): 1239 1244.
- Cheng, C.R., Yue, Q.X., Wu, Z.Y., Song, X.Y., Tao, S.J., Wu, X.H., Xu, P.P., Liu, X., Guan, S.H. ve Guo, D.A. (2010) Cytotoxic triterpenoids from *Ganoderma lucidum*. *Phytochemistry*, 71: 1579–1585.
- Cheng, C.R., Li, Y.F., Xu, P.P., Feng, R.H., Yang, M., Guan, S.H. ve Guo, D.A. (2012a) Preparative isolation of triterpenoids from *Ganoderma lucidum* by counter-current chromatography combined with pH-zone-refining. *Food Chem*, 130: 1010–1016.
- Cheng, C.R., Yang, M., Yu, K., Guan, S., Tao, S., Millar, A., Pang, X. ve Guo, D. (2012b) Identification of metabolites of Ganoderic Acid D by Ultra-Performance Liquid Chromatography/Quadrupole time-of-flight mass spectrometry. *Drug Metab Dispos*, 40(12): 2307 – 2314.
- Cheng, S. ve Sliva, D. (2015) *Ganoderma lucidum* for cancer treatment: We are close but still not there. *Integr Cancer Ther*, 14(3): 249–257.
- Çakmak, Z. (1999) Kümeleme analizinde geçerlilik problemi ve kümeleme sonuçlarının değerlendirilmesi. *Dumlupınar Üniversitesi Sosyal Bilimler Dergisi*, 3: 187 205.
- Çayan, F., Tel, G., Duru, M.E., Öztürk, M., Türkoğlu, A. ve Harmandar, M. (2014) Application of GC, GC-MSD, ICP-MS and spectrophotometric methods for the determination of chemical composition and in vitro bioactivities of Chroogomphus rutilus: The edible mushroom species. *Food Anal Methods*, 7: 449–458.
- Çelik, Ş. (2013) Kümeleme analizi ile sağlık göstergelerine göre Türkiye'deki illerin sınıflandırılması. *Doğuş Üniversitesi Dergisi*, 14(2): 175 194.
- Da, J., Wu, W.Y., Hou, J.J., Long, H.L., Yao, S., Yang, Z., Cai, L.Y., Yang, M., Jiang, B.H., Liu, X., Cheng, C.R., Li, Y.F. ve Guo, D.A. (2012) Comparison of two officinal Chinese pharmacopoeia species of *Ganoderma* based on chemical

research with multiple technologies and chemometrics analysis. *J Chromatogr A*, 1222: 59–70.

- Dai, Y.C., Yang, Z.L., Cui, B.K., Yu, C.J. ve Zhou, L.W. (2009) Species diversity and utilization of medicinal mushrooms and fungi in China (Review). *Int J Med Mushrooms*, 11(3): 287–302.
- Dai, W.F., Guo, P.X., Tu, Z.C., Li, R.T. ve Cheng, Y.X. (2015) Five new compounds from the fungus *Ganoderma petchii*. *Fitoterapia*, 106: 68–71.
- Dıraman, H., Özdemir D. ve Hışıl, Y. (2009) Ayvalık zeytin çeşidinden üretilen erken hasat natürel zeytinyağlarının yağ asitleri bileşenlerine göre kemometrik karakterizasyonu. *Electron J Food Technol*, 4: 1–11.
- Doğan, H.H. (2013) Evaluation of phenolic compounds, antioxidant activities and fatty acid composition of Amanita ovoidea (Bull.) Link. in Turkey. *J Food Compos Anal*, 31: 87–93.

Doğan, İ. (2002) Kümeleme analizi ile seleksiyon. Turk J Vet Anim Sci, 26: 47 – 53.

- Dudhgaonkar, S., Thyagarajan, A. ve Sliva, D. (2009) Suppression of the inflammatory response by triterpenes isolated from the mushroom *Ganoderma lucidum*. *Int Immunopharmacol*, 9: 1272–1280.
- Duman, E., Türk Baydır, A. ve Duman, S. (2015) Ayçiçek yağının oksidasyon kararlılığına retinol palmitat'ın etkisinin ransimat metodu ile tespiti. *Kocatepe Vet J*, 8, 33–38.
- Duru, M. E. ve Tel-Çayan, G. (2015) Biologically active terpenoids from mushroom origin: A review. *Rec Nat Prod*, 9(4): 456–483.
- Duru, S. ve Bozdoğan Konuşkan, D. (2014) Bitkisel yağlarda oleik asit miktarının arttırılması ve yağ kalitesi üzerine etkileri. *Gida*, 39(6): 1–7.
- Ede, S. O., Olaniru, E., Otimenyin, S., Aguiyi, J. C. ve Ekwere, E. O. (2012) Analgesic and anti-inflammatory activities of the ethanolic extract of the mushroom *Ganoderma applanatum*. *IJRRAS*, 13(1): 349 - 352.
- El-Dine, R.S., El Halawany, A.M., Ma, C.M. ve Hattori, M. (2008) Anti-HIV-1 protease activity of lanostane triterpenes from the Vietnamese mushroom *Ganoderma colossum. J Nat Prod*, 71: 1022–1026.

- El-Mekkawy, S., Meselhy, M. R., Nakamura, N., Tezuka, Y., Hattori, M., Kakiuchi, N., Shimotohno, K., Kawahata, T. ve Otake, T. (1998) Anti-HIV-1 and anti-HIV-1-protease substances from *Ganoderma lucidum*. *Phytochemistry*, 49(6): 1651–1657.
- Fatmawati, S., Kondo, R. ve Shimizu, K. (2013) Structure-activity relationships of lanostane-type triterpenoids from *Ganoderma lingzhi* as α-glucosidase inhibitors. *Bioorg Med Chem Lett*, 23: 5900–5903.
- Filiz, Z. (2003) Güvenilirlik çözümlemesi, temel bileşenler ve faktör çözümlemesi. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 4(2): 211 – 222.
- Fraaye, R.H.B. ve Fraaye, M.W. (1995) Miocene bracket fungi (Basidiomycetes, Aphyllophorales) from the Netherlands. *Contr Tert Quatern Geol*, 32(1-3): 27–33.
- Fujita, A., Arisawa, M., Saga, M., Hayashi, T. ve Morita, N. (1986) Three new lanostanoids from *Ganoderma lucidum*. J Nat Prod, 49(6): 1122 1125.
- Fushimi, K., Horikawa, M., Suzuki, K., Sekiya, A., Kanno, S., Shimura, S. ve Kawagishi, H. (2010) Applanatines A-E from the culture broth of *Ganoderma* applanatum. Tetrahedron, 66: 9332–9335.
- Gao, J.J., Min, B.S., Ahn, E.M., Nakamura, N., Lee, H.K. ve Hattori, M. (2002) New triterpene aldehydes, lucialdehydes A-C, from *Ganoderma lucidum* and their cytotoxicity against murine and human tumor cells. *Chem Pharm Bull*, 50(6): 837–840.
- Gao, Y., Tang, W., Gao, H., Chan, E., Lan, J., Li, X. Ve Zhou S. (2005) Antimicrobial Activity of the Medicinal Mushroom *Ganoderma*. *Food Rev Int*, 21: 211–229.
- Garcia, H. ve Filzmoser, P. (2017) Multivariate statistical analysis using the R package chemometrics, Vienna, Austria, 1-71.
- Gonzalez, A. G., Leon, F., Rivera, A., Padron, J. I., Gonzalez-P.J., Zuluaga, J.C., Quintana, J., Estevez, F. ve Bermejo, J. (2002) New lanostanoids from the fungus *Ganoderma concinna*. *J Nat Prod*, 65: 417 421.
- Grienke, U., Kaserer, T., Pfluger, F., Mair, C.E., Langer, T., Schuster, D. ve Rollinger, J.M. (2015) Accessing biological actions of *Ganoderma* secondary metabolites by in silico profiling. *Phytochemistry*, 114: 114–124

- Guan, S.H., Yang, M., Wang, X.M., Xia, J.M., Zhang, Z.M., Liu, X.ve Guo, D.A. (2007) Structure elucidation and complete NMR spectral assignments of three new lanostanoid triterpenes with unprecedented $\Delta^{16,17}$ double bond from *Ganoderma lucidum. Magn Reson Chem*, 45: 789 791.
- Guan, S.H., Xia, J.M., Yang, M., Wang, X.M., Liu, X. ve Guo, D.A. (2008) Cytotoxic lanostanoid triterpenes from *Ganoderma lucidum*. J Asian Nat Prod Res, 10(8): 695–700.
- Guo, X.Y., Liu, D., Ye, M., Han, J., Deng, S., Ma, X.C., Zhao, Y., Zhang, B., Shen, X. ve Che, Q.M. (2013) Structural characterization of minor metabolites and pharmacokinetics of ganoderic acid C2 in rat plasma by HPLC coupled with electrospray ionization tandem mass spectrometry. *J Pharmaceut Biomed*, 75: 64–73.
- Gümüş, C.E. ve Tekin, A. (2012) Presleme ve çözgen ekstraksiyonu ile elde edilen findik yağlarının sterol ve mumsu madde bileşimlerinin karşılaştırılması. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, 54s.
- Güzeldağ, G. (2007) "Polyporaceae" türlerinde (Ganoderma spp., ve Trametes spp.) üretim ve biyoteknolojik optimizasyon olanaklarının araştırılması. Doktora Tezi, Çukurova Üniversitesi, Adana, 148s.
- Hajimahmoodi, M., Vander Heyden, Y., Sadeghi, N., Jannat, B., Oveisi, M.R. ve Shahbazian, S. (2005) Gas-chromatographic fatty-acid fingerprints and partial least squares modeling as a basis for the simultaneous determination of edible oil mixtures. *Talanta*, 66: 1108–1116.
- Hapuarachchi, K.K., Wen, T.C., Deng, C.Y., Kang, J.C. ve Hyde, K.D. (2015) Mycosphere Essays 1: Taxonomic Confusion in the *Ganoderma lucidum* Species Complex. *Mycosphere*, 6(5): 542–559.
- Hapuarachchi, K.K., Wen, T.C., Jeewon, R., Wu, X.L. ve Kang, J.C. (2016) Mycosphere Essay 15. *Ganoderma lucidum* – are the beneficial medical properties substantiated? *Mycosphere*, 7(11): 687 - 715.
- Hirotani, M., Ino, C., Furuya, T. ve Shiro, M. (1986) Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of *Ganoderma lucidum*. *Chem Pharm Bull*, 34(5): 2282–2285.

- Hirotani, M., Asaka, I., Ino, C., Furuya, T. ve Shiro, M. (1987) Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from *Ganoderma lucidum*. *Phytochemistry*, 26(10): 2797 2803.
- Hirotani, M., Ino, C., Hatano, A., Tkayanagi, H. ve Furuya, T. (1995) Ganomastenols A, B, C and D, cadinene sesquiterpenes, from *Ganoderma mastoporum*. *Phytochemistry*, 40(1): 161 165.
- Hu, L.L., Ma, Q.Y., Huang, S.Z., Guo, Z.K., Guo, J.C., Dai, H., F. ve Zhao, Y.X. (2013) Three new lanostanoid triterpenes from the fruiting bodies of *Ganoderma tropicum. Bull Korean Chem Soc*, 34(3): 884–886.
- Huang, D., Boxin, O.U. ve Prior, R.L. (2005) The chemistry behind antioxidant capacity assays. *J Agric Food Chem*, 53: 1841–1856.
- Huang, S.Z., Cheng, B.H., Ma, Q.Y., Wang, Q., Kong, F.D., Dai, H.F., Qui, S.Q., Zheng, P.Y., Liu, Z.Q. ve Zhao, Y.X. (2016) Anti-allergic prenylated hydroquinones and alkaloids from the fruiting body of *Ganoderma calidophilum*. *RSC Advances*, 6: 21139 21147.
- Isaka, M., Chinthanom, P., Sappan, M., Supothina, S., Vichai, V., Danwisetkanjana, K., Boonpratuang, T., Hyde, K., D. ve Choeyklin, R. (2017a) Antitubercular activity of mycelium-associated *Ganoderma lanostanoids*. J Nat Prod, 80: 1361–1369.
- Isaka, M., Chinthanom, P., Mayteeworakoon, S., Laoteng, K., Suvannakad, R. ve Choeyklin, R. (2017b) Lanostane triterpenoids from cultivated fruiting bodies of the basidiomycete *Ganoderma orbiforme*. *Phytochem Lett*, 21: 251–255.
- Ishmuratov, G Y., Vydrina, V.A., Galkina, Y.A., Yakovleva, M.P., Ishmuratova, N.M. ve Tolstikov, A.G. (2015) Natural seven-membered terpene lactones: synthesis and biological activity. *Chem Nat Compd*, 51(6): 1011–1034.
- Işık, F.E. (2005) Edirne bölgesinde yetişen Trifolium resupinatum L var. Microcephalum bitkisinin fitokimyasal incelenmesi. Doktora Tezi, Trakya Üniversitesi, Edirne, 133s.
- Işıloğlu, M. ve Oder, N. (1995) Contribution to the macrofungi of Mediterranean Turkey. *Turk J Bot* 19, 603–609.

- Jiang, J., Grieb, B., Thyagarajan, A. ve Sliva, D. (2008) Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signaling. *Int J Mol Med*, 21: 577–584.
- Jung, M., Liermann, J. C., Opatz, T. ve Erkel, G. (2011) Ganodermycin, a novel inhibitor of CXCL10 expression from *Ganoderma applanatum*. J Antibiot, 64: 683–686.
- Kao, C. H. J., Jesuthasan, A. C., Bishop, K. S., Glucina, M. P. ve Ferguson, L. R. (2013) Anti-cancer activities of *Ganoderma lucidum*: active ingredients and pathways. *Functional Foods in Health and Disease*, 3(2): 48–65.
- Kaplaner, E. (2017) Tricholoma imbricatum (Fr.) P.kumm. ve Tricholoma anatolicum H.H. Doğan ve Intini türlerinin antioksidan ve sitotoksik aktivite gösteren bileşiklerinin HPLC ile izolasyonu ve yapılarının aydınlatılması. Doktora Tezi, Muğla Sıtkı Koçman Üniversitesi, Muğla, 251s.
- Karabacak, Ç. ve Cengiz, M. (2007) Bazı Scutellaria orientalis türlerinin içerisindeki ekstraktif bileşiklerin araştırılması. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, 106s.
- Karaca, E. ve Aytac, S. (2007) Yağ bitkilerinde yağ asitleri kompozisyonu üzerine etki eden faktörler. *J of Fac of Agric OMU*, 22(1): 123–131.
- Karakaş, N. S. ve Gören, N. (2015) Bazı Apiaceae familyası bitkilerinin yağ asitleri profilinin ve biyoaktivitelerinin araştırılması. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, İstanbul, 117s.
- Karataş, G. (2009) Ganoderma lucidum üretiminde inokulum büyüklüğünün meyve oluşturma hızına ve ürün miktarına etkisi. Doktora Tezi, Çukurova Üniversitesi, Adana, 88s.
- Kayaalp, G. T., Yazgan, E. ve Şahinler, S. (2000) Aşamalı kümeleme analizi (Hierarchical cluster analysis) yöntemlerinin karşılaştırılmalı olarak incelenmesi. Devletİstatistik Enstitüsü Araştırma 2000 Sempozyumu, 2000, Ankara, 154 – 163.
- Keller, A.C., Keller, J., Maillard, M.P. ve Hostettmann, K. (1997) A lanostane-type steroid from the fungus *Ganoderma carnosum*. *Phytochemistry*, 46(5): 963–965.
- Khoddami, A., Wilkes, M.A. ve Roberts, T.H. (2013) Techniques for analysis of plant phenolic compounds. *Molecules*, 18: 2328–2375.

- Kikuchi, T., Kanomi, S., Kadota, S., Murai, Y., Tsubono, K. ve Ogita, Z. I. (1986) Constituents of the fungus *Ganoderma lucidum* (FR.) KARST. I. Structures of ganoderic acids C2, E, I, and K, lucidenic acid F and related compounds. *Chem Pharm Bull*, 34(9): 3695 – 3712.
- Kim, D.S., Beak, N.I., Oh, S.R., Jung, K.Y., Lee, I.S., Kim, J.H. ve Lee, H.K. (1997) Anticomplementary Activity of Ergosterol Peroxide from *Naematoloma fasciculare* and Reassignment of NMR Data. *Arch Pharm Res*, 20(3): 201-205.
- Ko, H. H., Hung, C. F., Wang, J. P. ve Lin, C. N. (2008) Antiinflammatory triterpenoids and steroids from *Ganoderma lucidum* and *G. tsugae*. *Phytochemistry*, 69: 234–239.
- Komoda, Y., Nakamura, H., İshihara, S., Uchida, M., Kohda, H. ve Yamasaki, K. (1985) Structures of new terpenoid constituents of *Ganoderma lucidum* (Fr.) KARST (Polyporaceae). *Chem Pharm Bull*, 33(11): 4829–4835.

Kowalski, B. R. (1980) Chemometrics. Anal Chem, 52(5): 112R-122R.

- Kubato, T., Asaka, Y., Miura, I. ve Mori, H. (1982) Structures of ganoderic acid A and B, two new lanostane type bitter triterpenes from *Ganoderma lucidum* (FR.) KARST. *Helv Chim Acta*, *65*, Fasc.2 (1982) Nr. 62: 611.
- Küçükaydın, S. (2017) Inonotus dryadeus ve Bjerkandera adusta'nın antioksidan ve antikanser aktivite gösteren bileşiklerin izolasyonu ve yapılarının aydınlatılması. Doktora Tezi, Muğla Sıtkı Koçman Üniversitesi, Muğla, 306s.
- Lakornwong, W., Kanokmedhakul, K., Kanokmedhakul, S., Kongsaeree, P., Prabpai, S., Sibounnavong, P. ve Soytong, K. (2014) Triterpene lactones from cultures of *Ganoderma sp.* KM01. J Nat Prod, 77: 1545–1553.
- Lee, S., Shim, S.H., Kim, J.S., Shin, K.H. ve Kang, S.S. (2005) Aldose reductase inhibitors from the fruiting bodies of *Ganoderma applanatum*. *Biol Pharm Bull*, 28(6): 1103–1105.
- Lee, I., Kim, J., Ryoo, I., Kim, Y., Choo, S., Yoo, I., Min, B., Na, M., Hattori, M. ve Bae, K. (2010a) Lanostane triterpenes from *Ganoderma lucidum* suppress the adipogenesis in 3T3-L1 cells through down-regulation of SREBP-1c. *Bioorg Med Chem Lett*, 20: 5577–5581.
- Lee, I., Seo, J., Kim, J., Kim, H., Youn, U., Lee, J., Jung, H., Na, M., Hattori, M., Min, B., Bae, K. (2010b) Lanostane triterpenes from the fruiting bodies of

Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 cells. *J Nat Prod*, 73: 172–176.

- Lee, I., Ahn, B., Choi, J. S., Hattori, M., Min, B. ve Bae, K. (2011) Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of *Ganoderma lucidum*. *Bioorg Med Chem Lett*, 21: 6603–6607.
- Li, C., Yin, J., Guo, F., Zhang, D. ve Sun, H.H. (2005) Ganoderic acid Sz, a new lanostanoid from the mushroom *Ganoderma lucidum*. *Nat Prod Res*, 19(5): 461–465.
- Li, C., Li, Y. ve Sun, H. H. (2006) New ganoderic acids, bioactive triterpenoid metabolites from the mushroom *Ganoderma lucidum*. *Nat Prod Res*, 20(11): 985–991.
- Li, Y. Y., Mi, Z. Y., Tang, Y., Wang, G., Li, D. S. ve Tang, Y. J. (2009) Lanostanoids isolated from *Ganoderma lucidum* mycelium cultured by submerged fermentation. *Helv Chim Acta*, 92: 1586–1593.
- Li, P., Deng, Y. P., Wei, X. X. ve Xu, J. H. (2013a) Triterpenoids from *Ganoderma lucidum* and their cytotoxic activities. *Nat Prod Res*, 27(1): 17–22.
- Li, Y. B., Liu, R. M. ve Zhong, J. J. (2013b) A new ganoderic acid from *Ganoderma lucidum* mycelia and its stability. *Fitoterapia*, 84: 115–122.
- Li, C. G., Luo, Q., Guo, P. X., Chen, L. L. ve Cheng, Y. X. (2016a) Petchiethers A and B, novel meroterpenoids with a 14- or 15-membered ring from *Ganoderma petchii*. *Phytochem Lett*, 18: 14–18. (b)
- Li, W., Lou, L. L., Zhu, J. Y., Zhang, J. S., Liang, A. A., Bao, J. M., Tang, G., H. ve Yin, S. (2016b) New lanostane-type triterpenoids from the fruiting body of *Ganoderma hainanense*. *Fitoterapia*, 115: 24–30.
- Li, X., Kong, W., Shi, W. ve Shen, Q. (2016c) A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils. *ChemometrIntell Lab*, 155: 145–150.
- Lian, C., Wu, Y., Chen, T., Liu, X., Cong, H., Xiao, L., Xu, Y. ve Liu, J. (2017) Identification of new trace triterpenoids from the fungus *Ganoderma duripora*. *Phytochem Lett*, 21: 237–239.

- Lin, K.W., Chen, Y.T., Yang, S.C., Wei, B.L., Hung, C.F. ve Lin, C.N. (2013) Xanthine oxidase inhibitory lanostanoids from *Ganoderma tsugae*. *Fitoterapia*, 89: 231–238.
- Liu, C., Zhao, F. ve Chen, R.Y. (2010) A novel alkaloid from the fruiting bodies of *Ganoderma sinense* Zhao, Xu et Zhang. *Chinese Chem Lett*, 21: 197–199.
- Liu, J., Shiono, J., Shimizu, K., Kukita, A., Kukita, T. ve Kondo, R. (2009) Ganoderic acid DM: Anti-androgenic osteoclastogenesis inhibitor. *Bioorgan Med Chem Letters*, 19: 2154–2157.
- Liu, J.Q., Wang, C.F., Peng, X.R. ve Qiu, M.H. (2011a) New alkaloids from the fruiting bodies of *Ganoderma sinense*. *Nat Prod Bioprospect*, 1: 93–96.
- Liu, J.Q., Wang, C.F., Li, Y., Luo, H.R. ve Qiu, M.H. (2012a) Isolation and bioactivity evaluation of terpenoids from the medicinal fungus *Ganoderma* sinense. Planta Med, 78(4): 368-376
- Liu, L.Y., Chen, H., Liu, C., Wang, H. Q., Kang, J., Li, Y. ve Chen, R.Y. (2014) Triterpenoids of *Ganoderma theaecolum* and their hepatoprotective activities. *Fitoterapia*, 98: 254–259.
- Liu, L.Y., Yan, Z., Kang, J., Chen, R.Y. ve Yu, D.Q. (2017) Three new triterpenoids from *Ganoderma theaecolum*. J Asian Nat Prod Res, 19(9): 847–853.
- Liu, R.M., Li, Y.B. ve Zhong, J.J. (2012b) Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. *Eur J Pharmacol*, 681: 23–33.
- Liu, X., Yuan, J.P., Chung, C.K. ve Chen, X.J. (2002) Antitumor activity of the sporoderm-broken germinating spores of *Ganoderma lucidum*, *Cancer Lett*, 182: 155 161.
- Liu, Y., Liu, Y., Qiu, F. ve Di, X. (2011b) Sensitive and selective liquid chromatography-tandem mass spectrometry method for the determination of five ganoderic acids in *Ganoderma lucidum* and its related species. J *Pharmaceut Biomed*, 54: 717–721.
- Liu, Z., Li, L. ve Xue, B. (2018) Effect of ganoderic acid D on colon cancer Warburg effect: Role of SIRT3/cyclophilin D. *Eur J Pharmacol*, 824: 72-77.

- Luo, Q., Yang, X. H., Yang, Z.L., Tu, Z.C. ve Cheng, Y.X. (2016) Miscellaneous meroterpenoids from *Ganoderma applanatum*. *Tetrahedron*, 72: 4564–4574.
- Luo, Q., Yang, Z.L., Yan, Y.M. ve Cheng, Y.X. (2017) Ganotheaecolin A, a neurotrophic conjugated ergosterol with a Naphtho[1,8-ef]azulene scaffold from *Ganoderma theaecolum. Org Lett*, 19: 718–721.
- Ma, B.J., Zhou, Y., Ruan, Y., Ma, J.C., Ren, W. ve Wen, C.N. (2012) Lanostanetype triterpenes from the sporoderm-broken spores of *Ganoderma lucidum*. J *Antibiot*, 65: 165–167.
- Ma, H.T., Hsieh, J.F. ve Chen, S.T. (2015) Anti-diabetic effects of *Ganoderma lucidum*. *Phytochemistry*, 114: 109–113.
- Ma, J., Ye, Q., Hua, Y., Zhang, D., Cooper, R., Chang, M.N., Chang, J.Y. ve Sun, H.H. (2002) New lanostanoids from the mushroom *Ganoderma lucidum*. *J Nat Prod*, 65: 72–75.
- Ma, Q.Y., Huang, S.Z., Hu, L.L., Guo, Z.K., Dai, H.F. ve Zhao, Y.X. (2016) Two new tirucallane triterpenoids from the fruiting bodies of *Ganoderma tropicum*. *Chem Nat Compd*, 52(4): 656–659.
- Marek, S., Piotr, R., Przemyslaw, N., Anna, B., Monika, G., Kalac, P., Agnieszka, J., Sylwia, B., Lidia, K. ve Miroslaw, M. (2017) Comparison of multielemental composition of Polish and Chinese mushrooms (*Ganoderma spp.*). *Eur Food Res Technol*, 243: 1555–1566.
- Marekov, I., Momchilova, S., Grung, B. ve Nikolova-Damyanova, B. (2012) Fatty acid composition of wild mushroom species of order agaricales-examination by gas chromatography-mass spectrometry and chemometrics. *J Chromatogr B*, 910: 54–60.
- Metcalfe, L.D. ve Schmitz, A.A. (1961) The rapid preparation of fatty acid esters for gas chromatographic analysis. *Anal Chem*, 33(3): 363–364.
- Miller, H.E. (1971) A simplified method for the evaluation of antioxidants. *J Am Oil Chem Soc*, 48(2): 91-91.
- Min, B.S., Nakamura, N., Miyashiro, H., Bae, K.W. ve Hattori, M. (1998) Triterpenes from the spores of *Ganoderma lucidum* and their inhibitory activity against HIV-1 protease. *Chem Pharm Bull*, 46(10): 1607 – 1612.

- Min, B. S., Gao, J.J., Nakamura, N. ve Hattori, M. (2000) Triterpenes from the spores of *Ganoderma lucidum* and their cytotoxicity against Meth-A and LLC tumor cells. *Chem Pharm Bull*, 48(7): 1026–1033.
- Mizuno, T. (1999) The extraction and development of antitumour-active polysaccharides from medicinal mushrooms in Japan. *Int. J. Med. Mushrooms*, 1, 9-29.
- Mizushina, Y., Takahashi, N., Hanashima, L., Koshino, H., Esumi, Y., Uzawa, J., Sugawara, F, ve Sakaguchi, K. (1999) Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, *Ganoderma lucidum. Bioorgan Med Chem*, 7: 2047–2052.
- Mohanty, P. S., Harsh, N.S.K. ve Pandey, A. (2011) First report of *Ganoderma* resinaceum and *G. weberianum* from north India based on ITS sequence analysis and micromorphology. *Mycosphere*, 2(4): 469–474.
- Moradali, M. F., Mostafavi, H., Ghods, S. ve Hedjaroude, G.A. (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). *Int Immunopharmacol*, 7: 701–724.
- Morigiwa, A., Kitabatake, K., Fujimoto, Y. ve İkekawa, N. (1986) Angiotensin converting enzyme-inhibitory triterpenes from *Ganoderma lucidum*. *Chem Pharm Bull*, 34(7): 3025 3028.
- Mothana, R.A.A., Awadh A.N.A., Jansen, R., Wegner, U., Mentel, R. ve Lindequist, U. (2003) Antiviral lanostanoid triterpenes from the fungus *Ganoderma pfeifferi*. *Fitoterapia*, 74: 177–180.
- Nguyen, V. T., Tung, N.T., Cuong, T.D., Hung, T.M., Kim, J.A., Woo, M.H., Choi, J.S., Lee, J.H. ve Min, B.S. (2015) Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from *Ganoderma lucidum*. *Phytochem Lett*, 12: 69–74.
- Niedermeyer, T. H. J., Lindequist, U., Mentel, R., Gördes, D., Schmidt, E., Thurow, K. ve Lalk, M. (2005) Antiviral terpenoid constituents of *Ganoderma pfeifferi*. *J* Nat Prod, 68: 1728–1731.
- Niedermeyer, T.H.J., Jira, T., Lalk, M. ve Lindequist, U. (2013) Isolation of farnesylhydroquinones from the basidiomycete *Ganoderma pfeifferi*. *Nat Prod Bioprospect*, 3: 137–140.

- Nishitoba, T., Sato, H. ve Sakamura, S. (1985a) New terpenoids, Ganoderic Acid J and Ganolucidic Acid C, from the fungus *Ganoderma lucidum*. Agric Biol Chem, 49(12): 3637–3638.
- Nishitoba, T., Sato, H. ve Sakamura, S. (1985b) New terpenoids from *Ganoderma lucidum* and their bitterness. *Agric Biol Chem*, 49(5): 1547–1549.
- Nishitoba, T., Sato, H. ve Sakamura, S. (1986) New terpenoids, Ganolucidic Acid D, Ganoderic Acid L, Lucidone C and Lucidenic Acid G, from the fungus *Ganoderma lucidum. Agric Biol Chem*, 50(3): 809–811.
- Nishitoba, T., Sato, H. ve Sakamura, S. (1987a) Triterpenoids from the fungus Ganoderma lucidum. Phytochemistry, 26(6):1777 1784
- Nishitoba, T., Sato, H. ve Sakamura, S. (1987b) Novel mycelial components, ganoderic acid Mg, Mh, Mi, Mj and Mk, from the fungus *Ganoderma lucidum*. *Agric Biol Chem*, 51(4): 1149–1153.
- Nishitoba, T., Sato, H., Shirasu, S. ve Sakamura, S. (1987c) Novel triterpenoids from the mycelial mat at the previous stage of fruiting of *Ganoderma lucidum*. Agric *Biol Chem*, 51(2): 619–622.
- Nishitoba, T., Oda, K., Sato, H. ve Sakamura, S. (1988a) Novel triterpenoids from the fungus *Ganoderma lucidum*. *Agric Biol Chem*, 52(2): 367–372.
- Nishitoba, T., Sato, H., Oda, K. ve Sakamura, S. (1988b) Novel triterpenoids and a steroid from the fungus *Ganoderma lucidum*. *Agric Biol Chem*, 52(1): 211–216.
- Niu, X., Qiu, M., Li, Z., Lu, Y., Cao, P. ve Zheng, Q. (2004) Two novel 3,4-secotrinorlanostane triterpenoids isolated from *Ganoderma fornicatum*. *Tetrahedron Lett*, 45: 2989–2993.
- Niu, X.M., Li, S.H., Sun, H.D. ve Che, C.T. (2006) Prenylated phenolics from *Ganoderma fornicatum. J Nat Prod*, 69: 1364–1365.
- Niu, X.M., Li, S.H., Xiao, W.L., Sun, H.D. ve Che, C.T. (2007) Two new lanostanoids from *Ganoderma resinaceum*. J Asian Nat Prod Res, 9(7): 659–664.
- Okan, O. T., Varlıbaş, H., Öz, M. ve Deniz, İ. (2013) Antioksidan analiz yöntemleri ve Doğu Karadeniz Bölgesinde antioksidan kaynağı olarak kullanılabilecek

odun dışı bazı bitkisel ürünler. *Kastamonu Univ Journal of Forestry Faculty*, 13(1): 48–59.

- Oktay, E. ve Alkan, Ö. (2010) Temel bileşenler analizi yöntemiyle toplu taşıma araçlarından memnuniyeti etkileyen faktörlerin belirlenmesi: Erzurum ili örneği. *11th International Symposium on Econometrics*, 28.05.2010, Sakarya, 811 826.
- Oskay, D. ve Oskay, M. (2009) Bitki Sekonder Metabolitlerinin Biyoteknolojik Önemi. NWSA *Ecological Life Sciences*, 4(2): 31-41.
- Otto, M. (2016) Chemometrics: Statistics and Computer Application in Analytical Chemistry, 3. Bask1, WILEY-VCH, Weinheim, 383.
- Öztürk, M., Aydoğmuş-Öztürk, F., Duru, M.E. ve Topçu, G.(2007) Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. *Food Chem* 103: 623–630.
- Öztürk M. (2008) Micromeria cilicica ve M. juliana türlerinde antioksidan bileşiklerin HPLC ile analizi ve yapılarının aydınlatılması. Doktora Tezi, İstanbul Üniversitesi, İstanbul, 200s.
- Öztürk , M., Kolak, U., Topçu, G., Öksüz, S. ve Iqbal Choudhary S., M. (2011) Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. *Food Chem*, 126: 31–38.
- Öztürk, M. (2012) Anticholinesterase and antioxidant activities of Savoury (*Satureja thymbra* L.) with identified major terpenes of the essential oil. *Food Chem*, 134 48–54.
- Öztürk, M., Tel, G., Muhammad, A., Terzioğlu, P. ve Duru, M. E. (2015) Mushrooms: A source of exciting bioactive compounds. 45: 363 – 456, (editör), Atta-ur-Rahman, *Studies in Natural Products Chemistry*, Elsevier, 554.
- Paliya, B. S., Verma, S. ve Chaudhary, S. (2014) Major Bioactive Metabolites of the Medicinal Mushroom: *Ganoderma lucidum. Int J of Pharm R*, 6(1): 12 24.
- Papp, V. ve Szabo, I. (2013) Distribution and host preference of poroid Basidiomycetes in Hungary I. *Ganoderma. Acta Silv Lign Hung*, 9: 71 83.
- Paterson, R.R.M. (2006) *Ganoderma-A* therapeutic fungal biofactory. *Phytochemistry*, 67: 1985–2001.
- Peng, X.R., Liu, J.Q., Han, Z.H., Yuan, X.X., Luo, H.R. ve Qiu, M.H. (2013) Protective effects of triterpenoids from *Ganoderma resinaceum* on H₂O₂induced toxicity in HepG2 cells. *Food Chem*, 141: 920–926.
- Peng, X.R., Liu, J.Q., Wan, L.S., Li, X.N., Yan, Y.X. ve Qiu, M.H. (2014a) Four new polycyclic meroterpenoids from *Ganoderma cochlear*. Org Lett, 16: 5262– 5265.
- Peng, X.R., Liu, J.Q., Wang, C.F., Li, X.Y., Shu, Y., Zhou, L. ve Qiu, M.H. (2014b) Hepatoprotective effects of triterpenoids from *Ganoderma cochlear*. J Nat Prod, 77: 737–743.
- Peng, X.R., Liu, J.Q., Wang, C.F., Han, Z.H., Shu, Y., Li, X.Y., Zhou, L. ve Qiu, M. H. (2015a) Unusual prenylated phenols with antioxidant activities from *Ganoderma cochlear*. Food Chem, 171: 251–257.
- Peng, X.R., Liu, J. Q., Xia, J.J., Wang, C.F., Li, XY., Deng, Y.Y., Bao, N.M., Zhang, Z.R. ve Qiu, M.H. (2015b) Lanostane triterpenoids from *Ganoderma hainanense* J. D. Zhao. *Phytochemistry*, 114: 137–145.
- Peng, X., Li, L., Wang, X., Zhu, G., Li, Z. ve Qiu, M. (2016) Antioxidant farnesylated hydroquinones from *Ganoderma capense*. *Fitoterapia*, 111: 18–23.
- Pereira, D.M., Valentao, P., Pereira, J.A. ve Andrade, P.B. (2009) Phenolics: From chemistry to biology. *Molecules*, 14: 2202–2211.
- Prior, R.L. ve Cao, G. (1999) In vivo total antioxidant capacity: comparison of different analytical methods. *Free Radic Biol Med*, 27(11–12): 1173–1181.
- Qiao, Y., Zhang, X.M., Dong, X.C. ve Qiu, M.H. (2006) A new 18(13→ 12β)-abeo-Lanostadiene Triterpenoid from *Ganoderma fornicatumhi*. *Helv Chim Acta*, 89: 1038–1041.
- Qiao, Y., Zhang, X.M. ve Qiu, M.H. (2007) Two novel lanostane triterpenoids from *Ganoderma sinense*. *Molecules*, 12: 2038–2046.

- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. ve Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay, *Free Radical Bio Med*, 26(9-10): 1231–1237.
- Ribeiro, L., Pinheiro, V., Outor-Monteiro, D., Mourao, J., Bezerra, R.M.F., Dias, A.A., Bennett, R.N., Marques, G. ve Rodrigues, M.A.M. (2012) Effect of the dietary incorporation of untreated and white-rot fungi (*Ganoderma resinaceum* Boud) pre-treated olive leaves on growing rabbits. *Anim Feed Sci Tech*, 173: 244 – 251.
- Richter, C., Wittstein, K., Kirk, P.M. ve Stadler, M. (2015) An assessment of the taxonomy and chemotaxonomy of *Ganoderma*. *Fungal Divers*, 71: 1–15.
- Ruan, W. ve Popovich, D.G. (2012) *Ganoderma lucidum* triterpenoid extract induces apoptosis in human colon carcinoma cells (Caco-2). *Biomedicine and Preventive Nutrition*, 2: 203–209.
- Ruan, W., Lim, A.H.H., Huang, L.G. ve Popovich, D.G. (2014) Extraction optimisation and isolation of triterpenoids from *Ganoderma lucidum* and their effect on human carcinoma cell growth. *Nat Prod Res*, 28(24): 2264–2272.
- Russo, A., Cardile, V., Piovano, M., Caggia, S., Espinoza, C.L. ve Garbarino, J.A. (2010) Pro-apoptotic activity of ergosterol peroxide and (22E)-ergosta-7,22dien-5α-hydroxy-3,6-dione in human prostate cancer cells. *Chem-Biol Interact*, 184: 352–358.
- Rustan, A.C. ve Drevon, C.A. (2005) Fatty Acids: Structures and properties. *Encyclopedia of Life Sciences*, 1–7.
- Sadava, D., Still, D.W., Mudry, R.R. ve Kane, S.E. (2009) Effect of *Ganoderma* on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. *Cancer Lett*, 277: 182 189.
- Sato, N., Zhang, Q., Ma, C.M. ve Hattori, M. (2009a) Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from *Ganoderma sinense*. *Chem Pharm Bull*, 57(10): 1076–1080.
- Sato, N., Ma, C.M., Komatsu, K. ve Hattori, M. (2009b) Triterpene-farnesyl hydroquinone conjugates from *Ganoderma sinense*. J Nat Prod, 72: 958–961.
- Schwarze, F.W.M.R. ve Ferner, D. (2003) *Ganoderma* on trees differentiation of species and studies of invasiveness. *Arboricultural Journal*, 27: 59–77.

- Seo, H.W., Hung, T.M., Na, M.K., Jung, H.J., Kim, J.C., Choi, J.S., Kim, J.H., Lee, H. K., Lee, I., Bae, K., Hattori, M. ve Min, B.S. (2009) Steroids and triterpenes from the fruit bodies of *Ganoderma lucidum* and their anti-complement activity. *Arch Pharm Res*, 32(11): 1573–1579.
- Sheikh, I.A., Vyas, D., Ganaie, M.A., Dehariya, K. ve Singh, V. (2014) HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms. *Int J of Pharm Pharm Sci*, 6(2): 679–684.
- Shi, L., Ren, A., Mu, D. ve Zhao, M. (2010) Current progress in the study on biosynthesis and regulation of ganoderic acids. *Appl Microbiol Biotechnoly*, 88: 1243–1251.
- Shiao, M.S., Lin, L.J., Yeh, S.F. ve Chou, C.S. (1987) Two new triterpenes of the fungus *Ganoderma lucidum*. J Nat Prod, 50(5): 886–890.
- Shim, S. H., Ryu, J., Kim, J. S., Kang, S. S., Xu, Y., Jung, S. H., Lee, Y., S., Lee, S. ve Shin, K. H. (2004) New lanostane-type triterpenoids from *Ganoderma* applanatum. J Nat Prod, 67: 1110–1113.
- Singh, R., Singh, A.P., Dhingra, G.S. ve Shri, R. (2014) Taxonomy, physicochemical evaluation and chemical investigation of *Ganoderma applanatum* and *G*. *brownii*. *Int J Adv Res*, 2(5): 702–711.
- Sliva, D. (2003) *Ganoderma lucidum* (Reishi) in cancer treatment. *Integr Cancer Ther*, 2(4): 358–364.
- Smania, E.F.A., Delle Monache, F., Smania, A., Yunes, R.A. ve Cuneo, R.S. (2003) Antifungal activity of sterols and triterpenes isolated from *Ganoderma* annulare. Fitoterapia, 74: 375–377.
- Smania, E.D.F.A., Monache, F.D., Yunes, R.A., Paulert, R. ve Smania, A. (2007) Antimicrobial activity of methyl australate from *Ganoderma australe*. Braz J Pharmacogn, 17(1): 14–16.
- Stojkovic, D.S., Barros, L., Calhelha, R.C., Glamoclija, J., Ćiric, A., Van Griensven, L.J.L.D., Sokovic, M. ve Ferreira, I.C.F.R. (2014) A detailed comparative study between chemical and bioactive properties of *Ganoderma lucidum* from different origins. *Int J Food Sci Nutr*, 65(1): 42–47.

- Sun, X., Wang, H., Han, X., Chen, S., Zhu, S. ve Dai, J. (2014) Fingerprint analysis of polysaccharides from different *Ganoderma* by HPLC combined with chemometrics methods. *Carbohyd Polym*, 114: 432–439.
- Taner, G. (2015) Doğal ürünlerde bulunan fenolik bileşiklerin genotoksik ve Antigenotoksik etkileri. Doktora Tezi, Gazi Üniversitesi, Ankara, 226s.
- Tang, W., Gu, T. ve Zhong, J.J. (2006) Separation of targeted ganoderic acids from *Ganoderma lucidum* by reversed phase liquid chromatography with ultraviolet and mass spectrometry detections. *Biochem Eng J*, 32: 205–210.
- Tel-Çayan, G. (2015a) Rhizopogon luteolus ve Ganoderma adspersum mantar türlerinden antioksidan ve antikolinestreraz aktivite gösteren bileşiklerin izolasyonları ve yapılarının aydınlatılması, Doktora Tezi, Muğla Sıtkı Koçman Üniversitesi, Muğla, 261s.
- Tel, G., Apaydin, M., Duru, M.E. ve Öztürk M. (2012) Antioxidant and Cholinesterase Inhibition Activities of Three *Tricholoma* Species with Total Phenolic and Flavonoid Contents: The Edible Mushrooms from Anatolia. *Food Anal. Methods* 5:495–504.
- Tel-Çayan, G., Öztürk, M., Duru, M.E., Rehman, M.U., Adhikari, A., Türkoğlu, A. ve Choudhary, M. I. (2015b) Phytochemical investigation, antioxidant and anticholinesterase activities of *Ganoderma adspersum*. *Ind Crop Prod*, 76: 749–754.
- Tel-Çayan, G., Muhammad, A., Duru, M.E., Öztürk, M., Adhikari, A. ve Türkoğlu, A. (2016) A new fatty acid ester from an edible mushroom *Rhizopogon luteolus*. *Nat Prod Res*, 30(20): 2258 – 2264.
- Thawthong, A., Hapuarachchi, K. K., Wen, T.-C., Raspe, O., Thongklang, N., Kang, J. C. ve Hyde, K. D. (2017) *Ganoderma sichuanense* (Ganodermataceae, Polyporales) new to Thailand. *MycoKeys*, 22: 27–43.
- Tong, H., Xia, F., Feng, K., Sun, G., Gao, X., Sun, L., Jiang, R., Tian, D. ve Sun, X. (2009) Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of *Pleurotus ostreatus*. *Bioresource Technol*, 100: 1682–1686.
- Tortic, M. (1971) Ganoderma adspersum (S. Schulz.) Donk (=Ganoderma europaeum steyaert) and it's distribution in Jugoslavia. Acta Bot Croat, 30: 113-118.

- Tung, N.T., Trang, T.T.T., Cuong, T.D., Van Thu, N., Woo, M.H. ve Min, B.S. (2014) Cytotoxic triterpenoids from the fruiting bodies of *Ganoderma lucidum*. *Natural Product Sciences*, 20(1): 7–12.
- Turan, H., Erkoyuncu, İ. ve Kocatepe, D. (2013) Omega-6, Omega-3 yağ asitleri ve balık. *Yunus Araştırma Bülteni*, 2013(2): 45–50.
- Ullah, Z. (2017) Mycochemical investigation on Sarcosphaera crassa (Santi) pouzar and cytotoxic activity, Doktora Tezi, Muğla Sıtkı Koçman Üniversitesi, Muğla, 347s.
- Villares, A., Garcia-Lafuente, A., Guillamon, E. ve Ramos, A. (2012) Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. *J Food Compos Anal*, 26: 177–182.
- Villares, A., Mateo-Vivaracho, L., Garcia-Lafuente, A. ve Guillamon, E. (2014) Storage temperature and UV-irradiation influence on the ergosterol content in edible mushrooms. *Food Chem*, 147: 252–256.
- Wachtel-Galor, S., Yuen, J., Buswell, J.A. ve Benzie, I.F.F. (2011) Ganoderma lucidum (Lingzhi or Reishi), 1–31, Benzie, I.F.F., Wachtel-Galor, S., (editörler) Herbal Medicine, Biomolecular and Clinical Aspects, 2. Baski, Taylor & Francis, 453.
- Wang, X.M., Yang, M., Guan, S. H., Liu, R.X., Xia, J.M., Bi, K.S. ve Guo, D.A. (2006) Quantitative determination of six major triterpenoids in *Ganoderma lucidum* and related species by high performance liquid chromatography. J *Pharmaceut Biomed*, 41: 838–844.
- Wang, F., Dong, Z.J. ve Liu, J.K. (2007a) Benzopyran-4-one derivatives from the fungus *Ganoderma applanatum*. Verlag der *Z Naturforsch*, 62b: 1329-1332.
- Wang, G., Zhao, J., Liu, J., Huang, Y., Zhong, J.J. ve Tang, W. (2007b) Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. *Int Immunopharmacol*, 7: 864-870.
- Wang, F. ve Liu, J.K. (2008) Highly oxygenated lanostane triterpenoids from the fungus Ganoderma applanatum. Chem Pharm Bull, 56(7): 1035-1037.

- Wang, C.F., Liu, J.Q., Yan, Y.X., Chen, J.C., Lu, Y., Guo, Y.H. ve Qiu, M.H. (2010a) Three new triterpenoids containing four-membered ring from the fruiting body of *Ganoderma sinense*. Org Lett, 12(8): 1656–1659.
- Wang, J.L., Li, Y.B., Liu, R.M. ve Zhong, J.J. (2010b) A new ganoderic acid from *Ganoderma lucidum* mycelia. *J Asian Nat Prod Res*, 12(8): 727–730.
- Wang, K., Bao, L., Xiong, W., Ma, K., Han, J., Wang, W., Yin, W. ve Liu, H. (2015) Lanostane Triterpenes from the Tibetan medicinal mushroom *Ganoderma leucocontextum* and their inhibitory effects on HMG-CoA reductase and α-Glucosidase. *J Nat Prod*, 78: 1977–1989.
- Wang, K., Bao, L., Ma, K., Zhang, J., Chen, B., Han, J., Ren, J., Luo, H. ve Liu, H. (2017a) A novel class of α-glucosidase and HMG-CoA reductase inhibitors from *Ganoderma leucocontextum* and the anti-diabetic properties of ganomycin I in KK-A^y mice. *Eur J Med Chem*, 127: 1035–1046.
- Wang, X.L., Dou, M., Luo, Q., Cheng, L. Z., Yan, Y. M., Li, R. T. ve Cheng, Y. X. (2017b) Racemic alkaloids from the fungus *Ganoderma cochlear*. *Fitoterapia*, 116: 93–98.
- Wei, J. C., Wang, Y. X., Dai, R., Tian, X. G., Sun, C. P., Ma, X. C., Jia, J. M., Zhang, B. J., Huo, X. K. ve Wang, C. (2017) C27-Nor lanostane triterpenoids of the fungus *Ganoderma lucidum* and their inhibitory effects on acetylcholinesteras. *Phytochem Lett*, 20: 263–268.
- Weng, C. J., Fang, P. S., Chen, D. H., Chen, K. D. ve Yen, G. C. (2010) Antiinvasive effect of a rare mushroom, *Ganoderma colossum*, on human hepatoma cells. J Agric Food Chem, 58: 7657–7663.
- Weng, Y., Lu, J., Xiang, L., Matsuura, A., Zhang, Y., Huang, Q. ve Qi, J. (2011) Ganodermasides C and D, two new anti-aging ergosterols from spores of the medicinal mushroom *Ganoderma lucidum*. *Biosci Biotechnol Biochem*, 75(4): 800-803.
- Wu, T. S., Shi, L. S. ve Kuo, S. C. (2001) Cytotoxicity of *Ganoderma lucidum* triterpenes. *J Nat Prod*, 64: 1121–1122.
- Wu, G. S., Lu, J. J., Guo, J. J., Li, Y. B., Tan, W., Dang, Y. Y., Zhong, Z. F., Xu, Z. T., Chen, X. P. ve Wang, Y. T. (2012) Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. *Fitoterapia*, 83: 408–414.

- Xia, Q., Zhang, H., Sun, X., Zhao, H., Wu, L., Zhu, D., Yang, G., Shao, Y., Zhang, X., Mao, X., Zhang, L. ve She, G. (2014) A comprehensive review of the structure elucidation and biological activity of triterpenoids from *Ganoderma spp. Molecules*, 19: 17478–17535.
- Yang, M., Wang, X., Guan, S., Xia, J., Sun, J., Guo, H. ve Guo, D. (2007) Analysis of triterpenoids in *Ganoderma lucidum* using liquid chromatography coupled with electrospray ionization mass spectrometry. *J Am Soc Mass Spectrom*, 18: 927-939.
- Yang, S.X., Yu, Z.C., Lu, Q.Q., Shi, W.Q., Laatsch, H. ve Gao, J.M. (2012) Toxic lanostane triterpenes from the basidiomycete *Ganoderma amboinense*. *Phytochem Lett*, 5: 576–580.
- Yang, S., Ma, Q.Y., Kong, F.D., Xie, Q.Y., Huang, S.Z., Zhou, L.M., Dai, H.F., Yu, Z.F. ve Zhao, Y.X. (2018) Two new compounds from the fruiting bodies of *Ganoderma philippii*. J Asian Nat Prod Res, 20(3): 249 - 254: 1–6.
- Yaylı, N. (2013) Uçucu yağlar ve tibbi kullanımları. İlaç Kimyası, Üretimi, *Teknolojisi, Standardizasyonu Kongresi, Kimyagerler Derneği,* 29-31 Mart 2013, Antalya, 9s.
- Yıldız, H. ve Baysal, T. (2003) Bitkisel fenoliklerin kullanım olanakları ve insan sağlığı üzerine etkileri. *Gıda Mühendisliği Dergisi*, 14: 29–35.
- Yue, Q.X., Song, X.Y., Ma, C., Feng, L.X., Guan, S.H., Wu, W.Y., Yang, M., Jiang, B.H., Liu, X., Cui, Y.J. ve Guo, D.A. (2010) Effects of triterpenes from *Ganoderma lucidum* on protein expression profile of HeLa cells. *Phytomedicine*, 17: 606–613.
- Yuen, J. W. M. ve Gohel, M. D. I. (2005) Anticancer effects of *Ganoderma lucidum*: A review of scientific evidence. *Nutrition and Cancer*, 53(1): 11 17.
- Zengin, G., Sarıkürkçü, C., Güneş, E., Ceylan, R., Uysal, S., Güngör, H. ve Aktümsek, A. (2015) Two *Ganoderma species:* HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders. *Food Funct*, 6(8): 2794-2802.
- Zhao, Z.Z., Chen, H.P., Feng, T., Li, Z.H., Dong, Z.J. ve Liu, J.K. (2015) Lucidimine A-D, four new alkaloids from the fruiting bodies of *Ganoderma lucidum*. J Asian Nat Prod Res, 17(12): 1160–1165.

EKLER

Ek A. Ganoderma Türlerine Ait Resimler ve Özellikleri

e)

f)

Ek A. Ganoderma türlerine ait resimler ve özellikleri

a) 1. G. lucidum, Sığla ağacı, Muğla, Fethiye b) 2. G. lucidum, Sığla ağacı, Muğla, Köyceğiz,

c) 3. G. lucidum, Sığla ağacı, Muğla, Marmaris, d) 4. G. lucidum, Sığla ağacı, Muğla, Ula., e) 5.

G. lucidum, Dut ağacı, Muğla, Köyceğiz, f) 6. G. adspersum, Sığla ağacı, Muğla, Fethiye.

Ek A.^(Devam) Ganoderma Türlerine Ait Resimler ve Özellikleri

Ek A. (Devam)

Muğla, Fethiye

Ek B. NMR ve MS Spektrumları

Spektrum 1. Ergosterol peroksit (1)'in ¹H-NMR spektrumu (600 MHz, CDCl₃)

Spektrum 2. Ergosterol peroksit (1)'in APT spektrumu (150 MHz, CDCl₃)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 3. Ergosterol peroksit (1)'in DEPT 135 spektrumu

Spektrum 4. Ergosterol peroksit (1)'in COSY spektrumu

Spektrum 5. Ergosterol peroksit (1)'in HSQC spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 7. Ergosterol peroksit (1)'in EI-MS spektrumu

Spektrum 8. Ganoderik asit C2 (2) bileşiğinin ¹H-NMR spektrumu (CDCl₃ + CD₃OD, 600 MHz)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 9. Ganoderik asit C2 (2) bileşiğinin APT spektrumu (CDCl₃ + CD₃OD , 150 MHz)

Spektrum 10. Ganoderik asit C2 (2) bileşiğinin COSY spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 11. Ganoderik asit C2 (2) bileşiğinin HSQC spektrumu

Spektrum 12. Ganoderik asit C2 (2) bileşiğinin HMBC spektrumu 314

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 13. Ganoderik asit G (3) bileşiğinin ¹H-NMR spektrumu (CDCl₃ + CD₃OD, 600 MHz)

Spektrum 14. Ganoderik asit G (3) bileşiğinin APT spektrumu (CDCl₃₊ CD₃OD, 150 MHz)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 15. Ganoderik asit G (3) bileşiğinin COSY spektrumu

Spektrum 16. Ganoderik asit G (3) bileşiğinin HSQC spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 17. Ganoderik asit G (3) bileşiğinin HMBC spektrumu

Spektrum 18. Ganoderik asit B (4) bileşiğinin ¹H-NMR spektrumu (CDCl₃, 600 MHz)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 19. Ganoderik asit B (4) bileşiğinin APT spektrumu (CDCl₃, 150 MHz)

Spektrum 20. Ganoderik asit B (4) bileşiğinin COSY spektrumu 318

Spektrum 21. Ganoderik asit B (4) bileşiğinin HSQC spektrumu

Spektrum 22. Ganoderik asit B (4) bileşiğinin HMBC spektrumu 319

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 23. Ganoderik asit A (5) bileşiğinin ¹H-NMR spektrumu (CDCl₃, 600 MHz)

Spektrum 24. Ganoderik asit A (5) bileşiğinin APT spektrumu (CDCl₃, 150 MHz)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 25. Ganoderik asit A (5) bileşiğinin COSY spektrumu

Spektrum 26. Ganoderik asit A (5) bileşiğinin HSQC spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 27. Ganoderik asit A (5) bileşiğinin HMBC spektrumu

Spektrum 28. Ganoderenik asit D (6) bileşiğinin ¹H-NMR spektrumu (CDCl₃, 600 MHz)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 29. Ganoderenik asit D (6) bileşiğinin APT spektrumu (CDCl₃, 150 MHz)

Spektrum 30. Ganoderenik asit D (6) bileşiğinin COSY spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 31. Ganoderenik asit D (6) bileşiğinin HSQC spektrumu

Spektrum 32. Ganoderenik asit D (6) bileşiğinin HMBC spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 33. Ganoderenik asit C (7) bileşiğinin ¹H-NMR spektrumu (CDCl₃ + CD₃OD, 600 MHz)

Spektrum 34. Ganoderenik asit C (7) bileşiğinin APT spektrumu (CDCl₃ + CD₃OD, 150 MHz)

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 35. Ganoderenik asit C (7) bileşiğinin COSY spektrumu

Spektrum 36. Ganoderenik asit C (7) bileşiğinin HSQC spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 37. Ganoderenik asit C (7) bileşiğinin HMBC spektrumu

Spektrum 38. Ganoderik asit D (8) bileşiğinin ¹H-NMR spektrumu (CDCl₃, 600 MHz)

Ek B.^(devam) NMR ve MS Spektrumları

Spektrum 39. Ganoderik asit D (8) bileşiğinin APT spektrumu (CDCl₃, 150 MHz)

Spektrum 40. Ganoderik asit D (8) bileşiğinin COSY spektrumu

Ek B.^(Devam) NMR ve MS Spektrumları

Spektrum 41. Ganoderik asit D (8) bileşiğinin HSQC spektrumu

Spektrum 42. Ganoderik asit D (8) bileşiğinin HMBC spektrumu

Spektrum 43. a) Protokateşik asit (ST6) standardının UV spektrumu b) 14.GR.M aseton ekstresindeki protokateşik asit (ST6)'in UV spektrumu

Spektrum 44. a) Ergosterol peroksit (1) standardının UV spektrumu b) 3.GL.M aseton ekstresindeki ergosterol peroksit (1)'in UV spektrumu

Spektrum 45. a) Ganoderik asit C2 (2) standardının UV spektrumu b) 14.GR.M aseton ekstresindeki ganoderik asit C2 (2)'nin UV spektrumu

Spektrum 46. a) Ganoderik asit G (3) standardının UV spektrumu b) 7.GA.M aseton ekstresindeki ganoderik asit G (3)'nin UV spektrumu

Spektrum 47. a) Ganoderik asit B (4) standardının UV spektrumu b) 7.GA.M aseton ekstresindeki ganoderik asit B (4)'nin UV spektrumu

Spektrum 48. a) Ganoderik asit A (5) standardının UV spektrumu b) 14.GR.M aseton ekstresindeki ganoderik asit A (5)'nın UV spektrumu

Spektrum 49. a) Ganoderenik asit D (6) standardı b) 7.GA.M aseton ekstresindeki ganoderenik asit D (6)'nin UV spektrumu

Spektrum 50. a) Ganoderenik asit C (7) standardının UV spektrumu b) 7.GA.M aseton ekstresindeki ganoderenik asit C (7)'nin UV spektrumu

Spektrum 51. a) Ganoderik asit D (8) standardının UV spektrumu b) 14.GR.M aseton ekstresindeki ganoderik asit D (8)'nin UV spektrumu

Ek C.^(Devam) UV Spektrumları

Spektrum 52. a) Fumarik asit (ST1) standardının UV spektrumu, b) 2.GL.M metanol ekstresindeki fumarik asit (ST1)'in UV spektrumu

Spektrum 53. a) Gallik asit (ST2) standardının UV spektrumu b) 14.GR.M metanol ekstresindeki gallik asit (ST2)'in UV spektrumu

Spektrum 54. a) *trans*-Akonitik asit (ST3) standardının UV spektrumu b) 7.GA.U metanol ekstresindeki *trans*-akonitik asit (ST3)'in UV spektrumu

Spektrum 55. a) 2-(4-hidroksifenil)etanol (ST7) standardının UV spektrumu b) 7.GA.U metanol ekstresindeki 2-(4-hidroksifenil)etanol (ST7)'ün UV spektrumu

Spektrum 56. a) Vanilik asit (ST12) standardının UV spektrumu b) 6.GA.M metanol ekstresindeki vanilik asit (ST12)'in UV spektrumu

Spektrum 57. a) Ergosterol (TA1) standardının UV spektrumu b) 2.GL.M metanol ekstresindeki ergosterol (TA1)'ün UV spektrumu

Ek D. Turnitin Tez İntihal Raporu

turnitin

Dijital Makbuz

Bu makbuz ödevinizin Turnitin'e ulaştığını bildirmektedir. Gönderiminize dair bilgiler şöyledir:

Gönderinizin ilk sayfası aşağıda gönderilmektedir.

Gönderen:	Özge Tokul Ölmez
Ödev başlığı:	Doktora Tezleri
Gönderi Başlığı:	GANODERMA TÜRLERINDE BIYOA
Dosya adr.	Ozge_TokulOlmez_18-06-2018.docx
Dosya boyutu:	19.25M
Sayfa sayısı:	364
Kelime sayısı:	82,591
Karakter sayısı:	521,361
Gönderim Tarihi:	02-Tem-2018 01:40PM (UTC+0300)
Gönderim Numarası:	979952506

Copyright 2018 Turnitin. Tüm hakları saklıdır.
GANODERMA TÜRLERİNDE BİYOAKTİF BİLEŞİKLERİN HPLC-DAD İLE BELİRLENMESİ VE KEMOMETRİK ANALİZLERİ

ORIJIN	ALLIK RAPORU				
%	ERLIK ENDEKSI	%2 Internet Kaynaklari	%5 Yayınlar	% ÖĞRENCI ÖDEVLEF	રા
BIRINCI	L KAYNAKLAR				
1	Ozge To Ozturk, 2 acid prof collected chemom Systema Yayn	kul-Olmez, E Zain Ullah, N ile of four G from variou etric approa tics and Eco	Erhan Kaplaner, lehmet Emin Du anoderma spec is host trees wit ch", Biochemica logy, 2018	Mehmet uru. "Fatty % ies h l	2
2	nardus.n	npn.gov.rs		%	1
3	www.md	pi.com		%	1
4	Qin-Gan Limonoid Chemica	g Tan, Xiao- ds: Chemistry Il Reviews, 2	Dong Luo. "Meli y and Biological 011	iaceous Activities", %	1

Alıntıları çıkart

Kapat

Eşleşmeleri çıkar < %1

ÖZGEÇMIŞ

Kişisel Bilgiler

Ad Soyad	: Özge TOKUL ÖLMEZ			
Uyruk	: T.C.			
Doğum Yeri ve Tarihi: 30/07/1981				
Medeni Hali	: Evli			
Telefon	: 0 543 308 3938			
E-posta	: ozgetokul@mu.edu.tr			

Eğitim

E posta :	ozgotokul e mulodu.u				
Eğitim					
Alınan Derece	Aldığı Kurum/Üniversite	Mezuniyet Yılı			
Lise	Çimentaş Lisesi	1998			
Lisans	Celal Bayar Üniversitesi	2002			
Yüksek Lisans	Dokuz Eylül Üniversitesi	2004			
Yüksek Lisans	Celal Bayar Üniversitesi	2005			
Doktora	Muğla Sıtkı Koçman Üniversitesi	2018			

İş Tecrübesi

Yıl	Yer	Pozisyon/görev
2006-2010	Ege Üniversitesi Tıp Fakültesi	Kimyager
2010-	Muğla Sıtkı Koçman Üniversitesi	Öğretim Görevlisi

Yabancı Dil(ler)

İngilizce	Başlangıç	Orta	İleri
Yazma		X	
Konușma		X	
Anlama		X	
Okuma		X	

Bilimsel Faliyetler

1. Yayınlar

A. SCI veya SCI Expanded, SSCI, AHCI Tarafından Taranan Dergilerde

A1. Tokul Ölmez Özge, Kaplaner Erhan, Öztürk Mehmet, Ullah Zain, Duru Mehmet Emin (2018). Fatty acid profile of four *Ganoderma* species collected from various host trees with chemometric approach. Biochemical Systematics and Ecology (78): 91-97. https://doi.org/10.1016/j.bse.2018.03.008

A2. Varhan Oral Elif, **Tokul Ölmez Özge**, Yener İsmail, Fırat Mehmet, Tünay Zeki, Terzioğlu Pınar, Aydın Fırat, Öztürk Mehmet, Ertaş Abdulselam. Trace Elemental Analysis of *Allium* Species by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) with Multivariate Chemometrics. Analytical Letters, Online at 9 May 2018, Article in press, <u>https://doi.org/10.1080/00032719.2018.1460376</u>

A3. Dost.,K., **Tokul.,Ö**., (2006). Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Analytica Chimica Acta, (558), 1-2: 22-27.

B. Bilimsel Toplantılar (Konferans, Panel, Sempozyum, Kongre, Seminer)

> Uluslararası Kongre ve Sempozyumlarda

B1. Öztürk Mehmet, Küçükaydın Selçuk, Sıcak Yusuf, **Tokul Ölmez Özge**, Elik Kübra, Duru Mehmet Emin (2017). Chemotaxonomic Markers of Mugla Pine Honey with Chemometric Approach. 45th Apimondia International Apicultural Congress.

B2. Tokul Ölmez Özge, Ertaş Abdulselam, Yılmaz Mustafa Abdullah, Öztürk Mehmet, Yener İsmail, Fırat Mehmet, Yarış Esra, İrtegün Sevgi, Temel Hamdi, Kolak Ufuk, 2017. The Fatty Acid Analysis Of Some *Salvia* Species by GC-MS and Chemometric Approach. 1st International Congress on Medical and Aromatic Plants

B3. Türkoğlu Hüseyin, Şahin Bihter, **Tokul Ölmez Özge**, Kaplaner Erhan, Öztürk Mehmet, Duru Mehmet Emin, 2017. Evaluation Of The Fatty Acid Compositions of 14 *Pistacia Vera* Fruits With Chemometric Approach. 1st International Congress on Medical and Aromatic Plants

B4. Tokul Ölmez Özge, Ertaş Abdulselam, Saruhan Fidan Hilal, Fırat Mehmet, Yılmaz Mustafa Abdullah, Zengin Gökhan, Öztürk Mehmet, Temel Hamdi, Kolak Ufuk, 2017. The Essential Oil Analysis Of Some *Salvia* Species From Anatolia Wıth Chemometric Approach. 1st International Congress on Medical and Aromatic Plants

B5. Tokul Ölmez., Ö., Ertaş., A., Boğa., M., Yılmaz., A., Yener., İ., Fırat., M., Temel ., H., Öztürk., M., Kolak., U., 2016. "The Phenolic Content Analysis in Some *Salvia* Species by LC-MS/MS and Chemometric Approach", 3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey, P. 179.

B6. Tokul Ölmez., Ö., Yener.,İ., Ertaş.,A., Yılmaz.,A., Boğa.,M., Yeşil .,Y., Terzioğlu.,P., Aydın.,I., Öztürk.,M., Temel .,H., 2016. "Analysis of The Phenolic Content of *Euphorbia macroclada* by LC-MS/MS with Chemometric Approach" 3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey, P. 87.

B7. Tokul Ölmez., Ö., Yener.,İ., Ertaş.,A., Fırat.,M., Kaplaner.,E., Öztürk.,M., Temel.,H., 2016. "Trace Element Analysis in Some *Euphorbia* Species by ICP-MS and Chemometric Approach", 3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey, P. 176.

B8. Tokul Ölmez., Ö., Yener.,İ., Oral.,V., İzol.,E., Tunay.,Z., Ertaş.,A., Fırat.,M., Temel.,H., Aydın.,F., Öztürk .,M., 2016. "Trace Element Analysis in Some *Allium* Species by ICP-MS and Chemometric Approach"3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey, P. 161.

B9. Tokul Ölmez., Ö., Yılmaz., A., İzol., E., Ertaş., A., Yeşil., Y., Erol., E., Boğa., M., Temel., H., Öztürk., M., 2016. "The Phenolic Content Analysis in Some *Allium* Species by LC-MS/MS and Chemometric Approach", 3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey, P.168.

B10. Tokul Ölmez., Ö., Yılmaz.,A., Ertaş.,A., Boğa.,M., Muhammad.,A., Sıcak.,Y., Öztürk.,M., Temel.,H., 2016. "The Phenolic Content Analysis in Some *Achillea* Species by LC-MS/MS and Chemometric Approach", 3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey, P. 187.

B11. Tokul Ölmez., Ö., Tünay.,Z., Yener.,İ., Varhan Oral.,E., Fırat.,M., Aydın.,I., Ertaş.,A., Aydın.,F., Öztürk.,M., 2016. "Trace Element Analysis in Some *Salvia* Species by ICP-MS and Chemometric Approach"3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey.

B12. Batıbay.,H., **Tokul. Ölmez., Ö.,** Oral.,V., Yılmaz.,A., Ertaş.,A., Fırat.,M., Öztürk.,M., Temel.,H., Ziyadanoğulları.,B., 2016. "The Chemical Content Analysis in Some *Salvia* Species from Anatolia and Chemometric Approach", 3rd International Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey

B13. Tokul Ölmez., Ö., Ertaş.,A., Yılmaz.,A., Öztürk.,M., Aydın.,I., Tilkat.,E., Onay.,A., 2016. "The Phenolic Content Analysis Male and Female *Pistacia* lentiscus L by LC-MS/MS and Chemometric Approach", 3rd İnternational Conference on New Trends in Chemometrics and Applications, 25-28 May 2016, Side-Antalya, Turkey.

B14. Tokul Ölmez., Ö., Ullah.,Z., Öztürk.,M., Duru.,E., 2016. "The Fatty acid compositions of Four *Ganoderma* Species with Chemometric Approach", 29th International Symposium on the Chemistry of Natural Products (ISCNP-29) and the

9th International Conference on Biodiversity (ICOB-9), September 24-27, 2016 in İzmir-Turkey.

B15. Sıcak.,Y., Öztürk.,M., Küçükaydın., S., **Tokul Ölmez.,Ö**., Duru .,E., 2016. The Antioxidant Activity Range of Mugla Pine Honeys with Chemometric Analyses, 5. Uluslararası Mugla Arıcılık ve Çam Balı Kongresi. 5. Uluslararası Mugla Arıcılık ve Çam Balı Kongresi

B16. Aslan .,S., Anık.,Ü., **Tokul.,Ö**., 2015. "Effect of Au-Pt-MWCNT hybrid nanocomposite on electrochemical *G.oxydans* microbial biosensor performance" The 11th Nanoscience and Nanotechnology Conference, 22-25 June 2015, Ankara, Turkey - 2015.

B17. Tokul.,Ö., Çevik.,S., Anık.,Ü., 2013. "Synthesis, Characterization and Electroanalytical Applications of Au-Pt-MWCNT Hybrid Nanocomposite"I. Uluslararası Katılımlı Elektrokimya Çalıştayı, 23-28 Haziran 2013, Muğla, 2013.

B18. Çevik.,S., **Tokul.,Ö.,** Anık.,Ü., 2013. "Development of Hybrid-Nanostructured Modified Electrochemical Transducer" I. Uluslararası Katılımlı Elektrokimya Çalıştayı, 23-28 Haziran 2013, Muğla, 2013.

B19. Tokul.,Ö., Yavuz.,Y., Anık.,Ü., 2011. "Synthesis, Characterization and Electrochemical applications of Fe3O4 and Fe3O4/Au nanocomposites"9th International Electrochemistry Meeting, 25-29 September 2011, Çeşme-İzmir/Turkey.

✓ Vlusal Kongre ve Sempozyumlarda

B20. Ölmez.,T., Öztürk.,M., 2016. "Ganoderma Türlerindeki Antioksidan Bileşiklerin HPLC-DAD ile Belirlenmesi", Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri Enstitüsü III. Fen Bilimleri Araştırma Sempozyumu, 5 Mayıs 2016, Muğla-Türkiye.

B21. Tokul.,Ö., Yavuz.,Y., Özcan.,S., Kaya.,A., Anık.,Ü., 2011. "Altın ve Mangan (IV) Oksit Nanopartiküllerinin Elektrokimyasal Kompozit Yapılarda Potasyumferrisiyanür Sistemine Karşı Boyut Etkilerinin İncelenmesi"25.Ulusal Kimya Kongresi, 27 Haziran -02 Temmuz 2011, Erzurum/Türkiye.

B3. Tokul.,Ö., Dost.,K., 2005. "Doğal Ürünlerde Fitik Asit Analizleri"19. Ulusal Kimya Kongresi, 30 Eylül- 4 Ekim 2005, Kuşadası-Aydın/Türkiye . 19. Ulusal Kimya Kongresi, 30 Eylül- 4 Ekim 2005, Kuşadası-Aydın/Türkiye

C. Kitaplar İçinde Bölüm Yazarlığı

C1. Tokul.,Ö., Aslan.,S., Çevik .,s., Sultan.,C., Yapışık.,U., Tepeli.,Y., Anık.,Ü., . 2013. "Chemical Synthesis and characterization of some metal/metal oxide nanoparticles "I. Uluslararası Katılımlı Elektrokimya Çalıştayı, 23-28 Haziran 2013, Muğla.

C2. Çevik.,S., **Tokul.,Ö.,** Aslan.,S., Sultan.,C., Yapışık.,U., Tepeli.,Y., Anık.,Ü., . 2013. "Polimeric Composite electrode and nanomaterial based composite electrodes: Chapter II Display of nanomaterial modified composite electrodes by cyclic voltammetry".

2. Proje Faaliyetleri

- A. Ganoderma Türlerinde Antioksidan Bileşiklerin HPLC-DAD ile Belirlenmesi ve Kemometrik Analizleri. Proje Türü: Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırma Projesi, Tez Projesi (Araştırmacı), Tez Bütçesi: 11799,99 TL, Tez Süresi: 2015-2018
- B. Ticari önemi olan ve ülkemizde doğal yetişen Ganoderma lucidum ağaç mantarlarının triterpen içeriğinin yetiştiği ağaç ve toplandığı bölge bakımından değerlendirilmesi: Kemometrik analiz. Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırma Projesi, Hızlı Destek Projesi (Araştırmacı), Tez Bütçesi: 9992,01 TL, Tez Süresi: 2017-2018
- C. Muğla Propolisinin Kimyasal içeriğinin Belirlenmesi. Muğla Sıtkı Koçman Üniversitesi Bilimsel Araştırma Projesi, Teşvik Projesi (Araştırmacı), Tez Bütçesi: 7462,55 TL, Tez Süresi: 2018 -6 ay