KOCAELİ ÜNİVERSİTESİ * FEN BİLİMLERİ ENSTİTÜSÜ

METALLERDE PEKLEŞME ÜSTELİNİN SÜNEKLİĞE ETKİSİ

YÜKSEK LİSANS TEZİ

Makine Müh. Ersin Asım GÜVEN

Anabili Dalı: Makine Mühendisliği

Danışman: Prof. Dr. Levon ÇAPAN

KOCAELİ, 2006

KOCAELİ ÜNİVERSİTESİ *FEN BİLİMLERİ ENSTİTÜSÜ

METALLERDE PEKLEŞME ÜSTELİNİN SÜNEKLİĞE ETKİSİ

YÜKSEK LİSANS TEZİ

Mak. Müh. Ersin Asım GÜVEN

Tezin Enstitüye Verildiği Tarih: 26 Mayıs 2006

Tezin Savunulduğu Tarih: 21 Haziran 2006

Tez Danışmanı Prof. Dr. Levon CAPAN

.....

Üye Yrd. Doç. Dr. Kenan URAL

Üye Yrd. Doç. Dr. Erdal **KARADENİZ**

KOCAELİ 2006

ÖNSÖZ

Bir çok alanda günlük yaşantımızın bir parçası olan metal ve alaşımlarının şekillendirilebilirliğinde kullanılan pekleşme üsteli pekleşme kapasitesini belirlemek açısından önemli parametrelerden biridir. Soğuk haddelenmiş çeşitli malzemelerle anizotropi de göz önüne alınarak yapılan bu çalışmanın literatürdeki bir eksikliği gidereceği kanaatindeyim.

Bu çalışmanın hazırlanması esnasında yardımlarını esirgemeyen tez danışmanım Sayın Prof. Dr. Levon ÇAPAN 'a teşekkür ederim.

Ayrıca bu çalışmanın gerçekleştirilmesini her türlü maddi ve manevi yardımlarıyla destekleyen Sayın Prof. Yük. Müh. İbrahim UZMAN 'a, malzemelerin kimyasal analizlerindeki yardımları için Sayın Mak. Yük. Müh. Mehmet TÜRKER 'e, malzeme temini ve numune hazırlanmasındaki yardımlarından dolayı Yılmazlar A.Ş. adına Sayın Turgay YILMAZ, Çemsan A.Ş. adına Sayın Sedat AÇILDI ve Thyssenkrupp adına Sayın Ethem Oğuz GÖRTAN' a, ayrıca sonsuz sabır ve yardımlarından dolayı bütün Kocaeli Üniversitesi Makine Mühendisliği Bölümü mensuplarına teşekkürü bir borç bilirim.

İÇİNDEKİLER

ÖNSÖZ	i
İÇİNDEKİLER	ii
ŞEKİLLER DİZİNİ	iii
TABLOLAR DİZİNİ	iv
SİMGELER	vi
ÖZET:	vii
ABSTRACT	ix
1. GİRİŞ	1
1.1 Metal ve Metal Alaşımlarında Pekleşme ve Pekleşme Üsteli Kavramı	1
1.2 Pekleşme Özelliklerini Belirleme Metotları	5
1.2.1 Basit çekme deneyi	5
1.2.2 Basma deneyi	9
1.2.3 Basmada düzlemsel şekil değişimi	11
1.2.4 Hidrolik şişirme deneyi (İki eksenli çekme)	14
2. LİTERATÜR ÇALIŞMASI	17
2.1 Çalışmanın Amacı	22
3. MALZEME	24
3.1 Alüminyum Deney Malzemesi	24
3.2 DKP Çelik Deney Malzemesi	25
3.3 Pirinç Deney Malzemesi	25
3.4 409 Paslanmaz Çelik Deney Malzemesi	
3.5 430 Paslanmaz Çelik Deney Malzemesi	27
4. DENEYSEL ÇALIŞMALAR	
4.1 M. Reihle Metodu	
4.1.1 M.Reihle yöntemi değerler listesi	32
4.2 ASTM E 646-00 Deney Metodu	61
5. BULGULAR	66
6. SONUÇLAR	80
KAYNAKLAR	81
ÖZGEÇMİŞ	83

ŞEKİLLER DİZİNİ

Şekil 1.1: Yük-uzama ile gerçek gerilme-gerçek şekil değiştirme diyagramları	5
Şekil 1.2: a) Basma deneyi ve b) fiçilaşma oluşumu	9
Şekil 1.3: Basmada Watt ve Ford Metodu	10
Şekil 1.4: Basmada düzlemsel şekil değişimi	11
Şekil 1.5: Hidrolik şişirme deneyi	14
Şekil 2.1: H.K. Kim ve W.J. Kim tarafından yapılan şekillendirme tipinin şeması	17
Şekil 4.1: Numunelerin saç üzerindeki konumu.	28
Şekil 4.2: Çekme numunesi	29
Şekil 4.3: Numune kodlaması	29
Şekil 4.4: Numunelerin saç üzerindeki konumu	61
Şekil 4.5: Numune kodlaması	62
Şekil 4.6: Çekme numunesi	62
Şekil 5.1: 1145 Al malzeme için pekleşme üsteli ve % kopma uzaması	67
Şekil 5.2: 1145Al malzeme için pekleşme üsteli ve maksimum yükteki %	
uzama grafiği	68
Şekil 5.3: CuZn C26800 malzeme için pekleşme üsteli ve % kopma uzaması	
grafiği	69
Şekil 5.4: CuZn C26800 malzeme için pekleşme üsteli ve maksimum yükteki %	
uzama grafiği	70
Şekil 5.5: DKP 1005 malzeme için pekleşme üsteli ve% kopma uzaması	
grafiği	71
Şekil 5.6: DKP 1005 malzeme için pekleşme üsteli ve maksimum yükteki %	
uzama grafiği	72
Şekil 5.7: 409 paslanmaz çelik malzeme için pekleşme üsteli ve % kopma	
uzaması grafiği	73
Şekil 5.8: 409 paslanmaz çelik malzeme için pekleşme üsteli ve maksimum	
yükteki % uzama grafiği	74
Şekil 5.9: 430 paslanmaz çelik malzeme için pekleşme üsteli ve % kopma	
uzaması grafiği	75
Şekil 5.10: 430 paslanmaz çelik malzeme için pekleşme üsteli ve maksimum	
yükteki % uzama grafiği	76
Şekil 5.11: Pekleşme Üstelinin % kopma uzamasına etkisi	77
Şekil 5.12: Pekleşme üstelinin maksimum yükteki % uzamaya etkisi	78

TABLOLAR DİZİNİ

Tablo 3.1: Alüminyum malzemenin mekanik özellikleri	24
Tablo 3.2: 1145 alüminyum malzemenin kimyasal standardı	24
Tablo 3.3: Alüminyum malzemenin kimyasal analizi	24
Tablo 3.4: DKP çelik malzemenin mekanik özellikleri	25
Tablo 3.5 AISI 1005 malzemenin kimyasal standardı	25
Tablo 3.6: DKP çelik malzemenin kimyasal analizi	25
Tablo 3.7: Pirinç malzemenin mekanik özellikleri	25
Tablo 3.8: UNS C26800 malzemenin kimyasal standardı	26
Tablo 3.9: Pirinç malzemenin kimyasal analizi	26
Tablo 3.10: 409 paslanmaz çelik malzemenin mekanik özellikleri	26
Tablo 3.11: AISI 409 paslanmaz çelik malzemenin kimyasal standardı	26
Tablo 3.12: 409 paslanmaz çelik malzemenin kimyasal analizi	26
Tablo 3.13: 430 paslanmaz çelik malzemenin mekanik özellikleri	27
Tablo 3.14: AISI 430 paslanmaz çelik malzemenin kimyasal standardı	27
Tablo 3.15: 430 paslanmaz çelik malzemenin kimyasal analizi	27
Tablo 4.1: Çekme numunesinin ölçüleri	29
Tablo 4.2: 0 CuZn 01 kodlu numunenin değerleri	32
Tablo 4.3: 0 CuZn 02 kodlu numunenin değerleri	33
Tablo 4.4: 0 CuZn 03 kodlu numunenin değerleri	34
Tablo 4.5: 0 CuZn 04 kodlu numunenin değerleri	35
Tablo 4.6: 0 CuZn 05 kodlu numunenin değerleri	36
Tablo 4.7: 45 CuZn 01 kodlu numunenin değerleri	37
Tablo 4.8: 45 CuZn 02 kodlu numunenin değerleri	38
Tablo 4.9: 45 CuZn 03 kodlu numunenin değerleri	39
Tablo 4.10: 45 CuZn 04 kodlu numunenin değerleri	40
Tablo 4.11: 45 CuZn 05 kodlu numunenin değerleri	41
Tablo 4.12: 90 CuZn 01 kodlu numunenin değerleri	42
Tablo 4.13: 90 CuZn 02 kodlu numunenin değerleri	43
Tablo 4.14: 90 CuZn 03 kodlu numunenin değerleri	44
Tablo 4.15: 90 CuZn 04 kodlu numunenin değerleri	45
Tablo 4.16: 90 CuZn 05 kodlu numunenin değerleri	46
Tablo 4.17: 0 DKP 01 kodlu numunenin değerleri	47
Tablo 4.18: 0 DKP 02 kodlu numunenin değerleri	48
Tablo 4.19: 0 DKP 03 kodlu numunenin değerleri	49
Tablo 4.20: 0 DKP 04 kodlu numunenin değerleri	50
Tablo 4.21: 0 DKP 05 kodlu numunenin değerleri	51
Tablo 4.22: 45 DKP 01 kodlu numunenin değerleri	52
Tablo 4.23: 45 DKP 02 kodlu numunenin değerleri	53
Tablo 4.24: 45 DKP 03 kodlu numunenin değerleri	54
Tablo 4.25: 45 DKP 04 kodlu numunenin değerleri	55
Tablo 4.26: 45 DKP 05 kodlu numunenin değerleri	56
Tablo 4.27: 90 DKP 01 kodlu numunenin değerleri	57

58
59
60
62
66
66

SİMGELER

σ	:Gerçek gerilme
$\sigma_{\scriptscriptstyle n}$:Nominal gerilme (mühendislik gerilmesi)
$\sigma_{\scriptscriptstyle m max}$:Maksimum gerilme
$\Delta \sigma$:Gerilme farkı
Е	:Gerçek birim şekil değişimi
е	:Nominal birim şekil değişimi (mühendislik birim şekil değişimi)
l	:Son ölçü boyu
l_0	:İlk ölçü boyu
b_0	:İlk ölçü genişliği
b_1	:Son ölçü genişliği
e_0	:İlk ölçü kalınlığı
e_1	:Son ölçü kalınlığı
d_0	:Disk ilk ölçü çapı
d	:Disk son ölçü çapı
h_0	:Disk ilk ölçü yüksekliği
h	:Disk son ölçü yüksekliği
$ ho_{0}$:İlk şişirme yarı çapı
ρ	:Son şişirme yarı çapı
п	:Pekleşme üsteli
Κ	:Mukavemet katsayısı
F	:Kuvvet
$F_{\rm max}$:Maksimum kuvvet
р	:İç basınç

Kısaltmalar

ASTM : American Society for Testing Materials AISI : American Iron and Steel Institute

METALLERDE PEKLEŞME ÜSTELİNİN SÜNEKLİĞE ETKİSİ Ersin Asım GÜVEN

Anahtar Kelimeler: Pekleşme, pekleşme üsteli, süneklik

ÖZET: Bu çalışmada metal ve alaşımlarının pekleşme karakterlerini inceleyebilmek için gerekli olan ve deneysel olarak elde edilen gerçek gerilme gerçek şekil değişimi grafiklerindeki değerlere çok yakın sonuçlar veren, bazı araştırmacılar tarafından geliştirilmiş ampirik ifadelerden en çok kullanılanlardan biri olan Holloman tarafından 1945 yılında geliştirilmiş "Holloman Denklemi" üzerinde deneysel olarak çalışılarak farklı malzemeler için pekleşme üsteli değerleri bulunmuştur. Pekleşme üsteli ile malzemelerin süneklikleri arasındaki ilişki incelenmiştir.

Çalışmada kullanılan malzemelerin pekleşme üsteli değerlerinin belirlenmesinde iki farklı yöntem kullanılmıştır. Bu yöntemlerden biri REIHLE, M. (1961)'nin önerdiği yöntemdir. Bu yöntem çekme deneyi öncesi ve sonrasında çekme numunelerinin en ve kalınlıklarının ölçümüne dayalıdır. Diğer yöntem ise ASTM tarafından geliştirilen ASTM E 646 – 00 test yöntemidir. Bu yöntem çekme deneyinde sürekli olarak kaydedilen yük ve uzama bilgilerinin kullanıldığı bir yöntemdir.

Bu çalışmada, bir çok araştırmacı tarafından yapıldığı gibi, haddeleme doğrultusuna paralel olan eksene sahip çekme numuneleri kullanılmıştır. Ayrıca saç şekillendirme işlemlerinden en sık kullanılanlardan biri olan bükme göz önüne alındığında bükme kıvrımının levhanın haddeleme doğrultusuna dik olması gerekirken zorunluluk nedeniyle bu doğrultuyla 45° açı yapacak şekilde hatta haddeleme doğrultusuna paralel bükümler yapıldığı bilinmektedir. Bu işlemde de pekleşme üsteli ve süneklik oldukça önemli bir etkidir. Literatür taramasında bu doğrultularda inceleme yapılmamış olduğu belirlendiği için, deneylerde kullanılacak olan çekme numuneleri haddeleme doğrultusuna paralel, dik ve bu doğrultuyla 45° açı yapacak şekilde

Tüm çekme deneyleri Reihle ve ASTM 'nin önerdiği gibi oda sıcaklığında ve 5 mm/dk sabit hızda gerçekleşmiştir.

Bu çalışma kendi alt başlıkları olan altı bölümden oluşmaktadır. Bunlar;

- 1. Giriş : Bu bölümde kısaca pekleşme ve pekleşme üstelinin şekillendirme bakımından önemi açıklanmış, geçmiş yıllarda geliştirilmiş olan ampirik bağıntılar derlenmiştir.
- 2. Literatür Çalışması: Bu bölümde araştırmacıların konu üzerinde yapmış oldukları çalışmaları ve elde ettikleri sonuçlar özetlenmiştir.
- 3. Malzeme: Bu bölümde deneylerde kullanılan malzemeler hakkında bilgi verilmiştir.

- 4. Deneysel Çalışmalar: Bu bölümde çalışmada yapılan deneyler ve bu deneylerden elde edilen sonuçlar verilmiştir.
- 5. Bulgular : Bu bölümde deneylerden elde edilen sonuçlar ışığında çizilmiş diyagramlar ve yorumları bulunmaktadır.
- 6. Sonuçlar: Bu bölümde çalışmada elde edilen tüm sonuçlar maddeler halinde verilmiştir.

THE EFFECT OF STRAIN HARDENING EXPONENT ON DUCTILITY OF METALS Ersin Asım GÜVEN

Keywords: Strain hardening, strain hardening exponent, work hardening, work hardening exponent, ductility

ABSTRACT: In this study, in order to analyze the strain hardening behaviour and achieve the strain hardening exponents of many materials, one of the most suitable and frequently used empirical Holloman Equation, which was presented in 1945, was used.

Two different methods were used during the experimental study. One of these methods was presented by REIHLE, M. (1961). This method was based on dimensions of wideness and thickness of tensile specimens before and after tensile test. The other method was a standard method of ASTM E 646-00, which was based on continuously archived load and strain data of tensile test. The results of tensile tests were evaluated by means of Holloman equation in order to achieve the strain hardening exponents of the materials.

In this work, the tensile tests were conducted with samples which have a parallel axis with rolling directions as suggested by many researches. In sheet metal forming industry bending is frequently using. The bending edge must be perpendicular to rolling direction. On the other hand because of the manufacturing obligations the angle of bending edge and rolling direction realized as 45° and moreover 0° (parallel to the rolling direction). This anisotropic nature makes the modeling of deformation of sheet difficult. In literature there is limited studies were presented about the anisotropic materials.

In this study we used the tensile test samples which have different angles with the rolling directions. The tensile tests were performed at room temperature and constant cross head speed of 5 mm/min was used.

This study is presented as a six section. These sections can be summarized as;

- 1. Introduction: This part has implies the importance of strain hardening behavior and strain hardening exponent in sheet metal forming and previously invented empirical equations were presented.
- 2. Literature: In this section the similar studies were presented and their results were discussed.
- 3. Material: In this section materials are presented, which are used in experimental studies.
- 4. Experimental Study: In this section the experimental parameters and the standards were presented.
- 5. Results and Discussions: In this section, the results of experiments were presented and the results are discussed.

6. Conclusions: In this final section the conclusions of the study were presented.

1. GİRİŞ

1.1 Metal ve Metal Alaşımlarında Pekleşme ve Pekleşme Üsteli Kavramı

Metal ve alaşımlarının şekillendirilebilirliği pekleşme davranışlarıyla ilişkilidir[18]. Her hangi bir alaşım için pekleşme üsteli önemli bir parametredir çünkü pekleşme üsteli plastik şekil değişimi esnasında pekleşme kapasitesini belirler.

Örnek olarak endüstride pekleşme üsteli şekillendirme kuvvetinin hesaplanmasında kullanılır. Böylece gerekli motor kapasitesi elde edilir ve makine seçimi yapılabilir. Ayrıca pekleşme üsteli, şekillendirme takım malzemesinin seçiminde kullanıldığı gibi şekillendirme toleranslarında da yarar sağlar. Talaşlı şekillendirme endüstrisinde pekleşme üsteliyle malzemenin talaşlı şekillendirme kabiliyeti hesaplanır. Büyük pekleşme üsteli talaşlı şekillendirmede problem yaratır, çünkü takım malzeme üzerine bastığında malzeme sertleşir[24].

Pekleşme ve iyileştirme metallerde plastik şekil değişimini yöneten önemli bir mekanizmadır. Dislokasyon etkileşimi, plastik şekil değişimi esnasında kristalin dayanımını arttırdığı gibi, daha sonraki şekil değişim direncini yükseltir.

Diğer yandan, toparlanma^{*} ve yüksek sıcaklıkta tane sınırı kayması fiziksel özelliklerin, şekil değişiminden önceki değerleri almasını sağlar. Böylece pekleşme etkisi dengelenir. Pekleşme ve toparlanma arasındaki bu denge kararlı plastik deformasyon sonucuyla oluşur. Bu kararlı plastik deformasyon da metal alaşımının sünekliğini geliştirir [5,23].

Her hangi bir metal malzemenin gerçek gerilme gerçek şekil değiştirme eğrisinde pekleşme, pekleşme hızı ile açıklanabilir. Pekleşme hızı[13,6];

^{*} İngilizce "recovery" karşılığı kullanılmıştır.

$$\frac{d\sigma}{d\varepsilon} = nK\varepsilon^{n-1} \tag{1.1}$$

şeklinde ifade edilir. Bu değer gerçek gerilme gerçek şekil değiştirme eğrisinin eğimidir. Şekil değişimi esnasında gerçekleşen pekleşme miktarı ise her hangi iki şekil değiştirmeye (ε_1 ve ε_2) karşılık gelen gerilmelerin farkıdır. Özetle pekleşme miktarı:

$$\Delta \sigma = (\sigma_{\varepsilon^2} - \sigma_{\varepsilon^1}) \tag{1.2}$$

dır. Fakat günümüzde sahip olduğumuz bilgisayar teknolojisi olmadan, gerçek gerilme gerçek şekil değiştirme eğrilerini kullanarak yukarıda bahsedilen pekleşme parametrelerini elde etmek ve başka malzemelerle karşılaştırmak oldukça zordur. Bu sebeple birçok araştırmacı deneysel olarak elde edilen gerçek gerilme - gerçek şekil değiştirme eğrilerine çok uyan bazı amprik denklemler geliştirmişlerdir[5,18,2].

Holloman tarafından 1945 yılında geliştirilen ve en sık kullanılan denkleme göre gerçek gerilme ile gerçek şekil değiştirme arasında

$$\sigma = K\varepsilon^n \tag{1.3}$$

bağıntısı mevcut olup, K birimi gerilme ile aynı olan mukavemet katsayısı, n ise birimsiz bir sayı olan pekleşme üstelidir. Benzer şekilde Ludwig tarafından

$$\sigma = \sigma_0 + K\varepsilon^n \tag{1.4}$$

Ludwigson tarafından

$$\sigma = K\varepsilon^n + \exp(K_1 + n_1\varepsilon) \tag{1.5}$$

Swift tarafından

$$\varepsilon = \varepsilon_0 + K\sigma^n \tag{1.6}$$

ve Voce tarafından

$$\sigma = \sigma_s - K \exp(n\varepsilon) \tag{1.7}$$

ifadeleri geliştirilmiştir.

Holloman bağıntısına göre n pekleşme üsteli değeri, Dieter [6] ve Marin' e [13] göre

$$n = \frac{d(\log \sigma)}{d(\log \varepsilon)}$$
(1.8)

bağıntısıyla açıklanır. Ayrıca deneyde ölçülen maksimum kuvvette elde edilen gerçek şekil değiştirme ε, pekleşme üsteli n' e eşittir[5,2,12].

$$\varepsilon = n \tag{1.9}$$

Bu ifade aşağıdaki şekilde ispatlanabilir.

Çekme kuvveti F, gerçek birim uzama ε , yükün uygulandığı alan A ve gerçek gerilme σ ise;

$$\frac{dF}{d\varepsilon} = \frac{d}{d\varepsilon} (\sigma A) = A \frac{d\sigma}{d\varepsilon} + \sigma \frac{dA}{d\varepsilon}$$
(1.10)

Çekme çubuğunun ölçü boyu arasındaki hacim V=Al sabit kaldığı kabul edilirse

$$\frac{dV}{d\varepsilon} = \frac{d}{d\varepsilon} (Al) = l \frac{dA}{d\varepsilon} + A \frac{dl}{d\varepsilon} = 0$$
(1.11)

 $d\varepsilon$ yerine dl/l konduğu taktirde,

$$l\frac{dA}{d\varepsilon} + A\frac{dl}{dl/l} = 0 (1.12)$$

$$\frac{dA}{d\varepsilon} = -A$$
(1.13)

$$\frac{dF}{d\varepsilon} = A\frac{d\sigma}{d\varepsilon} - A\sigma \tag{1.14}$$

Çekme kuvveti maksimum olduğu anda $dF/d\varepsilon = 0$ olur,

$$\frac{d\sigma}{d\varepsilon} = \sigma \tag{1.15}$$

$$\sigma = K\varepsilon^n \tag{1.16}$$

ise

$$\frac{d\sigma}{d\varepsilon} = Kn\varepsilon^{n-1} = \sigma = K\varepsilon^n \tag{1.17}$$

$$\varepsilon = n \tag{1.18}$$

Böylece maksimum yükteki gerçek şekil değiştirme bulunarak pekleşme üsteli olan n değeri hesaplanabilir.

1.2 Pekleşme Özelliklerini Belirleme Metotları

Malzemelerin pekleşme özellikleri deneysel olarak belirlenebilir. Bu amaçla yapılacak deneyin tipi, malzemenin gerçekte kullanılan boyutları ve şekil verme tipi göz önüne alınarak karşılaştırılmalı.

1.2.1 Basit çekme deneyi

Burada çekme deneyi kabulleri verilmekte ve sonuç olarak eşdeğer gerilme ve eşdeğer şekil değiştirme terimleri çekme yönündeki ölçülebilir parametreler cinsinden ifade edilmektedir.

Şekil1.1'de görüldüğü gibi çekme yönü (1) ile gösterilmiştir. Asal doğrultular 1, 2 ve 3 eksenleriyle çakışıktır.

Gerçek çekme gerilmesi

$$\sigma_1 = \frac{F}{A} \tag{1.19}$$

(2) ve (3) doğrultularında

$$\sigma_2 = 0 \tag{1.20}$$

$$\sigma_3 = 0 \tag{1.21}$$

dır. Çekem doğrultularında gerçek birim uzama

$$\varepsilon_1 = \ln \frac{l}{l_0} \tag{1.22}$$

(2) ve (3) doğrultularında ise gerçek birim şekil değiştirmeler sırasıyla

$$\varepsilon_2 = \ln \frac{b}{b_0} \tag{1.23}$$

$$\varepsilon_3 = \ln \frac{e}{e_0} \tag{1.24}$$

şeklinde ifade edilir.

Levy-von Mises denklemleri, plastisitede, elastik şekil değiştirme bileşenini ihmal ederek, asal gerilmelerle asal şekil değiştirmeler arasında bağıntıları verirler

$$d\varepsilon_1 = \frac{2}{3} d\lambda \left[\sigma_1 - \frac{1}{2} (\sigma_2 + \sigma_3) \right]$$
(1.25)

$$d\varepsilon_2 = \frac{2}{3}d\lambda \left[\sigma_2 - \frac{1}{2}(\sigma_1 + \sigma_3)\right]$$
(1.26)

$$d\varepsilon_3 = \frac{2}{3} d\lambda \left[\sigma_3 - \frac{1}{2} (\sigma_1 + \sigma_2) \right]$$
(1.27)

 $\sigma_2 = \sigma_3 = 0$ alınarak Levy-von Mises denklemlerinde çekme deneyi için;

$$d\varepsilon_1 = \frac{2}{3} d\lambda(\sigma_1) \tag{1.28}$$

$$d\varepsilon_2 = \frac{2}{3}d\lambda \left(-\frac{1}{2}\sigma_1\right) \tag{1.29}$$

$$d\varepsilon_3 = \frac{2}{3} d\lambda \left(-\frac{1}{2}\sigma_1\right) \tag{1.30}$$

elde edilir. Buradan;

$$\frac{d\varepsilon_1}{d\varepsilon_2} = -2 \tag{1.31}$$

$$\frac{d\varepsilon_1}{d\varepsilon_3} = -2 \tag{1.32}$$

$$\varepsilon_2 = \varepsilon_3 \tag{1.33}$$

bulunur. Benzer şekilde efektif gerilmenin;

$$\overline{\sigma} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]^{1/2}$$
(1.34)

ifadesinde de çekme deneyi için $\sigma_2 = \sigma_3 = 0$ alınarak

$$\sigma = \sigma_1 \tag{1.35}$$

elde edilir.

Çekmede efektif şekil değiştirmeyi bulmak için, (1.31) ve (1.32) numaralı eşitlikler efektif şekil değiştirmenin;

$$d\overline{\varepsilon} = \frac{\sqrt{2}}{3} \left[\left(d\varepsilon_1 - d\varepsilon_2 \right)^2 + \left(d\varepsilon_2 - d\varepsilon_3 \right)^2 + \left(d\varepsilon_1 - d\varepsilon_3 \right)^2 \right]^{1/2}$$
(1.36)

ifadesine taşınır;

$$d\overline{\varepsilon} = d\varepsilon_1 \tag{1.37}$$

elde edilir.

Denklem (1.19) ve (1.35) ten

$$\overline{\sigma} = \sigma_1 = \frac{F}{A} \tag{1.38}$$

ifadesine ulaşılır. Hacim sabitliğinden

 $V = A_0 l_0 = Al \tag{1.39}$

ve buradan

$$\frac{l}{l_0} = \frac{A_0}{A} \tag{1.40}$$

elde edilir.

Dolayısıyla Denklem (1.37) ve (1.40) tan

$$\overline{\varepsilon} = \varepsilon_1 = \ln \frac{l}{l_0} = \frac{A_0}{A} \tag{1.41}$$

elde edilir.

Denklem (1.38) ve (1.41)de elde edilen sonuçlar çekme deneyi için efektif gerilmenin çekme yönündeki gerçek gerilme değerine, efektif şekil değiştirmenin ise çekme yönündeki gerçek şekil değiştirme değerine eşit olduğunu ortaya koymaktadır. Deney sırasında elde edilen ölçümlerden efektif gerilme-efektif şekil değiştirme diyagramı çizilmelidir.

1.2.2 Basma deneyi

Birçok plastik şekil verme yönteminde iş parçası basma kuvvetlerinin etkisinde olmasına rağmen basma deneyi çekme deneyi kadar geniş uygulama alanına sahip değildir. Sürtünme sebebiyle oluşan fiçılaşma (Şekil1.2) basma deneyini ve ilgili hesaplamaları güçleştirir. Dolayısıyla gerilme ve şekil değişimleri üniform değildir. Bu deneyde h_0 yüksekliğinde ve d_0 çapındaki silindirik deney örneğine basma kuvveti uygulanır. Herhangi bir anda gerçek gerilme ve gerçek şekil değiştirme

$$\sigma = \frac{F}{A} \tag{1.42}$$

$$\varepsilon = \ln \frac{h}{h_0} \tag{1.43}$$

şeklinde hesaplanır.

Cook ve Larke tarafından çalışılan ve daha sonra Watts ve Ford tarafından geliştirilen bir yöntem bu deneyde gerilme şekil değişimi verisi toplama açısından iyi bir metottur. Bu yöntemde eşit çaplarda ve değişik boylarda deney parçaları kullanılır. Çap ve boylar için koşul;

 $0,5 < \frac{d_0}{h_0} < 3$ olmasıdır.

Şekil 1.2: a) Basma deneyi ve b) fiçilaşma oluşumu[21]

Deney prosedürü şu şekildedir:

- Silindirler eş çaplı fakat değişik boylardadır.
- Parçaların uçları yağlanmalıdır.
- Belirli bir değere kadar yük uygulanır.
- Yük kaldırılarak boy ölçülür.
- Yukarıda belirtilenler artan yükte tekrar uygulanır.
- Belirli bir yük için boydaki azalma $\left(r = \frac{h_0 h}{h_0}\right)$ ile numunenin $\frac{d_0}{h_0}$ oranına göre

diyagram çizilir.

• Noktalardan geçen çizgi $\frac{d_0}{h_0} = 0$ 'a kadar uzatılır.

Şekil 1.3'de bu şekilde yapılan deney sonuçları verilmiştir. Yatay eksende belirtilen r boydaki azalma için kullanılmıştır. Şekil değiştirme ile r arasındaki ilişki

$$\left|\varepsilon\right| = \ln\!\left(\frac{1}{1-r}\right) \tag{1.44}$$

denkleminden bulunur.

• Belli sayıdaki nokta kullanılarak eşdeğer gerçek gerilme-eşdeğer gerçek şekil değişimi ($\sigma - \epsilon$) eğrisi çizilir.

Şekil 1.3: Basmada Watt ve Ford Metodu [21]

Sünek metallerde çekme ve basmada efektif gerilme-efektif şekil değiştirme eğrileri çakışıktır[5]. Bu eğrilerin çakışmaması halinde Bauschinger etkisi vardır. Bu durumda basmada, çekmeye kıyasla daha büyük şekil değişimleri elde edilir.

1.2.3 Basmada düzlemsel şekil değişimi

Özellikle levha malzemelere uygulanan bu deneyde özel kalıpların kullanılması gerekir. Kalıpların şematik görüntüsü ve asal doğrultular şekil 1.4 'te verilmiştir. Bu deneyin uygulanabilmesi için $\frac{b}{c} > 6$ ve $2 < \frac{c}{e} < 4$ sağlanmalıdır. Bu durumda (2) nolu yönde sürtünmeler nedeniyle şekil değişimi engellenir. Bu sebeple şekil değişimi (1) ve (3) nolu yönlerde olur yani şekil değişimi düzlemseldir

Şekil 1.4: Basmada düzlemsel şekil değişimi[21]

Deneyde gerilme ve şekil değiştirme değerleri aşağıdaki şekilde hesaplanır:

$$\sigma_1 = \frac{F}{bc} \tag{1.45}$$

$$\sigma_3 = 0$$
 (Dar kalıplar için kabul edilebilir) (1.46)

$$\varepsilon_1 = \ln \frac{e}{e_0} \tag{1.47}$$

$$\varepsilon_2 = \ln \frac{b}{b_0} = 0$$
 (Düzlemsel şekil değişimi kabulünden) (1.48)

$$\varepsilon_3 = \ln \frac{l}{l_0} \tag{1.49}$$

Hacim sabitliğinden

$$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0 \tag{1.50}$$

olması nedeniyle

 $\varepsilon_3 = -\varepsilon_1$ bulunur. (1.51)

Levy-von Mises denklemleri aşağıdaki şekildedir:

$$d\varepsilon_1 = \frac{2}{3}d\lambda \left[\sigma_1 - \frac{1}{2}(\sigma_2 + \sigma_3)\right]$$
(1.52)

$$d\varepsilon_2 = \frac{2}{3}d\lambda \left[\sigma_2 - \frac{1}{2}(\sigma_1 + \sigma_3)\right]$$
(1.53)

$$d\varepsilon_3 = \frac{2}{3}d\lambda \bigg[\sigma_3 - \frac{1}{2}(\sigma_1 + \sigma_2)\bigg]$$
(1.54)

Bu ifadelerde, Denklem (1.46) dan $\sigma_3 = 0$ alınırsa

$$d\varepsilon_1 = \frac{2}{3} d\lambda \left[\sigma_1 - \frac{1}{2} (\sigma_2) \right]$$
(1.55)

$$d\varepsilon_2 = \frac{2}{3}d\lambda \left[\sigma_2 - \frac{1}{2}(\sigma_2)\right] = 0$$
(1.56)

$$d\varepsilon_3 = \frac{2}{3}d\lambda \left[-\frac{1}{2} (\sigma_1 + \sigma_2) \right]$$
(1.57)

elde edilir. Denklem (1.53) ten

$$\sigma_2 = \frac{1}{2}\sigma_1 \tag{1.58}$$

$$\frac{d\varepsilon_1}{d\varepsilon_3} = -1 \tag{1.59}$$

$$\varepsilon_1 = -\varepsilon_3 \tag{1.60}$$

elde edilir. Efektif gerilmenin

$$\bar{\sigma} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]^{1/2}$$
(1.61)

ifadesine Denklem (1.46) ve (1.59) taşınırsa

$$\bar{\sigma} = \frac{\sqrt{3}}{2}\sigma_1 \tag{1.62}$$

elde edilir.

Efektif şekil değişimini bulmak için ise (1.48) ve (1.60) numaralı eşitlikler aşağıdaki eşdeğer şekil değişimi denklemine yerleştirilerek

$$d\bar{\varepsilon} = \frac{\sqrt{2}}{3} \left[\left(d\varepsilon_1 - d\varepsilon_2 \right)^2 + \left(d\varepsilon_2 - d\varepsilon_3 \right)^2 + \left(d\varepsilon_1 - d\varepsilon_3 \right)^2 \right]^{1/2}$$
(1.63)

sonuç olarak

$$\bar{d\varepsilon} = \frac{2}{\sqrt{3}} d\varepsilon_1 \tag{1.64}$$

elde edilir.

Denklem (1.45) ve (1.62) vasıtasıyla;

$$\bar{\sigma} = \sigma_1 = \frac{\sqrt{3}}{2} \frac{F}{bc} \tag{1.65}$$

ifadesine ulaşılır.

Denklem (1.47) ve (1.64) vasıtasıyla

$$\bar{\varepsilon} = \varepsilon_1 = \frac{2}{\sqrt{3}} \ln \frac{e}{e_0} \tag{1.66}$$

elde edilir.

Denklem (1.65) ve (1.66) de elde edilen sonuçlar basmada düzlemsel şekil değişimi için efektif gerilme ve efektif şekil değişimi değerlerini basma yönündeki parametrelerle ilişkilendirmektedir. Deney sırasında elde edilen ölçümlerden efektif gerilme-efektif şekil değişimi diyagramı çizilmelidir.

1.2.4 Hidrolik şişirme deneyi (İki eksenli çekme)

Bu deneyde dairesel ince bir saç çevresi civarından tutturulur ve içten artan miktarda akışkan basıncına tabi tutulur. Basınç arttıkça saçın orta kısmı şişerek yaklaşık küresel bir şekil alır

Şekil 1.5: Hidrolik şişirme deneyi[21]

Gerilme ve şekil değiştirme ifadeleri aşağıda verilmiştir:

$$\sigma_1 = \sigma_2 = \frac{p\rho}{2e} \tag{1.67}$$

$$\sigma_3 = 0 \tag{1.68}$$

$$\varepsilon_1 = \varepsilon_2 = \ln \frac{\rho}{\rho_0} \tag{1.69}$$

$$\varepsilon_3 = \ln \frac{e}{e_0} \tag{1.70}$$

Denklem (1.67) ve (1.68) Levy-von Mises denklemlerine yerleştirilirse

$$d\varepsilon_1 = \frac{2}{3} d\lambda \left[\sigma_1 - \frac{1}{2} (\sigma_1) \right] = \frac{2}{3} d\lambda \frac{1}{2} (\sigma_1)$$
(1.71)

$$d\varepsilon_2 = \frac{2}{3}d\lambda \left[\sigma_1 - \frac{1}{2}(\sigma_1)\right] = \frac{2}{3}d\lambda \frac{1}{2}(\sigma_1)$$
(1.72)

$$d\varepsilon_3 = \frac{2}{3}d\lambda \left[-\frac{1}{2}(\sigma_1 + \sigma_1) \right] = \frac{2}{3}d\lambda (-\sigma_1)$$
(1.73)

ve bu denklemlerden de

$$d\varepsilon_3 = -2d\varepsilon_1 = -2d\varepsilon_2 \tag{1.74}$$

elde edilir. Denklem (1.67) ve (1.68) aşağıdaki efektif gerilme denklemine taşınırsa;

$$\bar{\sigma} = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]^{1/2}$$
(1.75)

sonuç olarak;

$$\overline{\sigma} = \sigma_1 \tag{1.76}$$

elde edilir. Efektif şekil değiştirmeyi bulmak için ise (1.74) numaralı eşitlik aşağıdaki efektif şekil değiştirme denklemine yerleştirilir

$$d\bar{\varepsilon} = \frac{\sqrt{2}}{3} \left[\left(d\varepsilon_1 - d\varepsilon_2 \right)^2 + \left(d\varepsilon_2 - d\varepsilon_3 \right)^2 + \left(d\varepsilon_1 - d\varepsilon_3 \right)^2 \right]^{1/2}$$
(1.77)

sonuç olarak;

$$\bar{d\varepsilon} = 2d\varepsilon_1 \tag{1.78}$$

elde edilir.

(1.67) ve (1.76) kullanılarak;

$$\bar{\sigma} = \sigma_1 = \frac{p\rho}{2e} \tag{1.79}$$

ifadesine ulaşılır. Denklem (1.69) ve (1.78) kullanılarak

$$\bar{\varepsilon} = \varepsilon_1 = 2\ln\frac{\rho}{\rho_0} = \ln\frac{e}{e_0}$$
(1.80)

elde edilir. Pratikte ε_1 ve ε_2 ölçümler sonucu elde edilen verilerden hesaplanır. Deney sırasında elde edilen ölçümlerden efektif gerilme-efektif şekil değiştirme diyagramı çizilir.

2. LİTERATÜR ÇALIŞMASI

H.K. Kim ve W.J. Kim 2004 yılında yaptıkları çalışmayla 2024 alüminyum ve AZ31 magnezyum alaşımlarının pekleşme özellikleri incelemek amacıyla silindirik deney örneklerine 693° K 'de 2 saat süreyle katı çözelti tavlaması yapmışlardır.

Şekil2.1:H.K. Kim ve W.J. Kim tarafından yapılan şekillendirme tipinin şeması

Daha sonra numuneleri kalıp içinde, Şekil 2.1 deki gibi şekillendirmişler ve bu şekillendirme sonrasında tane büyüklüklerinin azaldığını gözlemişlerdir. Numuneleri bir de çekme deneyine tabi tutulmuşlardır. AZ31 numunelerin şekillendirme sonrasında kopma uzaması artarken, 2024 alüminyum numunelerin kopma uzaması azalmıştır. Buna paralel pekleşme üsteli artarken kopma uzamasının da arttığını görmüşlerdir. Sonuçta pekleşme üsteli ve kopma uzaması arasında doğru orantı olduğuna kanaat getirmişlerdir [10].

N. Selvakumar ve R. Narayanasamy 2003 yılında yaptıkları çalışmada gözenekli malzemede pekleşme etkisini incelemek amacıyla % 99,68 saflıkta alüminyum tozlarını 280 MPa basınçta ve 520° C'de sinterleyerek hazırladıkları disk şeklindeki numunelerle pekleşme üsteli ile şekil değişimleri arasındaki ilişkiyi araştırmışlardır. Çalışmalar sonucunda pekleşme üstellerinin bir maksimum değerden geçerek artan

şekil değişimi ile azaldığı görülmüştür. Aynı şekilde mukavemet katsayıları da bir maksimumdan geçerek, artan şekil değişimi ile belirli bir değere kadar azalıp daha sonra sabit kalmıştır [20].

E. Martin, A. Forn ve R. Nogué 2003 yılında yaptıkları çalışmada 2124 alüminyum alaşımına SiC partikül takviyelerin ilavesiyle pekleşme özelliklerinin nasıl değiştiğini incelemek amacıyla %17 SiC içeren silindirik numuneleri önce 505° C'de sinterlemişler daha sonra su verip doğal yaşlandırmaya tabi tutmuşlardır. Numunelere uygulanan çekme deneyi sonucunda takviyeli numunelerin dayanımı takviyesiz numunelere göre yüksek, pekleşme üsteli değerleri ise düşük çıkmıştır. Ayrıca hem takviyeli hem de takviyesiz numunelerin pekleşme üsteli değerleri sıcaklıktaki artışla azalmıştır. Gerçek gerilme ile gerçek birim şekil değiştirme arasında logaritmik koordinatlara çizilen eğride belirgin bir şekilde iki farklı bölge görülmüştür. Bu bölgeler farklı pekleşme üsteli değerlerine karşılık gelmektedir. Büyük ve küçük şekil değiştirmeler için farklı iki pekleşme üstelinin mevcut olduğu görülmüştür [14].

Praveen, Sastry ve Singh 2004 yılında yaptıkları çalışmada Nikel – Demir alaşımında pekleşme davranışlarını incelemişlerdir. Sıcak haddelemiş silindirik numunelerle yaptıkları çekme deneylerini pekleşme karakteristiklerini belirlemek amacıyla geliştirilen Ludwik, Hollomon, Ludwigson, Voce ve Swift denklemlerine değerlendirmişlerdir. Bu denklemlerin farklı ısıl işlemler için hangisinin daha doğru sonuç verdiğini araştırmışlardır. Sonuçta Ludwigson denklemi çözelti tavlaması ve 1 saat bekleme süreli aşırı yaşlandırma ısıl işlemine tabi tutulan numunelerde daha doğru sonuç verirken, Ludwig denklemi tepe yaşlanması ve 100 saat bekleme süreli aşırı yaşlandırma numunelerde doğru sonuç vermiştir. Pekleşme hızı-şekil değişimi diyagramlarından, pekleşme hızının artmasıyla şekil değişiminde bir azalma görülmüştür. Pekleşme hızı-logaritmik şekil değiştirme diyagramlarında belirgin olarak üç bölge gözükmektedir. İkinci bölgede çözelti tavlaması ve aşırı yaşlandırma için pekleşme hızı artarmış, tepe yaşlandırmasında azalmış ve 100 saatlik aşırı yaşlandırmada sabit kalmıştır [18].

R. Narayansany, T. Ramesh ve K. S. Pandey 2004 yılında yaptıkları çalışmada farklı oranda demir içeren alüminyum ve demir tozu karışımlarını 225 MPa basınçta ve 500° C ' de sinterleyerek elde ettikleri disk şeklindeki numunelere 0,01 MN 'luk adımlarla basma deneyi yapmışlardır. Eksenel gerilme ile mukavemet katsayısı ve pekleşme üsteli hesaplanmıştır. Tek eksenli gerilme halinde %0, %2 ve %4 Fe ilaveli numunelerde pekleşme üsteli değeri bağıl yoğunlukla kararlı bir şekilde artmıştır. Numunelerin en/boy oranındaki artış, numune bünyesindeki porozitenin de miktarını arttırdığı için, n değerini düşürmektedir [17].

S. Nagarjuna, M. Srinivas, K. Balasubramanian ve D. S. Sarma 1998 yılındaki çalışmalarında modülasyonun^{*} pekleşme üsteline etkisi incelemişleridir. Deneyleri için bakır titanyum alaşımını ağırlıkça %1,5 3, 4,5 ve 5 Titanyum içerek şekilde hazırlamışlardır. Farklı tane büyüklüğü elde etmek amacıyla farklı sıcaklılarda çözelti oluşturmuşlardır. Soğuk haddelenmiş silindirik çekme numunelerini haddeleme doğrultusunda, ölçü boyu 25 mm ve çapı 4 mm olacak şekilde hazırlayarak 0,001 s⁻¹ nominal şekil değiştirme hızında çekmişlerdir. %4 ' den fazla Ti içeren alaşımdaki küçük ölçekli çökelme etkisinin hesaptan çıkarılmasını modülasyon olarak tanımlamışlardır. Modülasyonun pekleşme üsteline çok önemli bir etkisinin olmadığını fakat mukavemet katsayısı K 'nın modülasyon mevcut iken artan Ti miktarına göre arttığını ve modülasyon yok iken ağırlıkça %4 Ti 'ma kadar şiddetle arttığını bulmuşlardır [15].

J. Yang ve S. K. Putatunda, 2004 yılında yaptıkları çalışmalarında dökme demirde ostemperlemenin pekleşme üsteline etkisini incelemişlerdir. Bu çalışmada 25,4 mm çapında ve 370 mm boyunda hazırlanan silindirik numunelere tek adımlı ve iki adımlı olmak üzere iki farklı ostemperleme yapmışlardır. Tek adımlı ostemperlemede 927 °C sıcaklıkta 2 saat ostenitlemeden sonra 2 saat süreyle farklı sıcaklıklarda (260, 288, 302, 316, 330, 343, 357, 371, 385 ve 400°C) ostemperleme yapılarak havada soğutulmuş. İki adımlı ostemperlemede ise 927°C sıcaklıkta 2 saat ostenitlemeden sonra 2 saat farklı sıcaklıklarda (288, 302, 316, 371, 385 ve 400°C) ostemperleme yapılarak havada soğutulmuş. İki adımlı ostemperlemede ise 927°C sıcaklıkta 2 saat farklı sıcaklıklarda (288, 302, 316, 371, 385 ve 400°C) ostemperleme yapılarak havada soğutulmuş.

^{*} Modülasyon: Numunenin %4 'ten fazla Ti içermesi esnasında küçük ölçekli çökelme etkisinin göz ardı edilmesi.

soğutulmuştur. Ostemperlemesi biten numunelere çekme deneyi uygulanmıştır. Her iki proseste de artan ostemperleme sıcaklığı pekleşme üstelini azaltmış ve tek adımlı proseste 343 °C de ve iki adımlı proseste 385 °C civarında minimum pekleşme üsteli elde edilmiştir. Genellikle tek adımlıda daha büyük pekleşme üsteli değerleri elde edilmiştir. Pekleşme davranışını da ilgilendiren kritik bir ostemperleme sıcaklığı vardır. Tek adımlı proseste, kritik sıcaklığa kadar artan sıcaklıkla pekleşme üsteli azalır. Kritik sıcaklığın üzerinde artan sıcaklık pekleşme üstelini de arttırır. İki adımlı proseste kritik sıcaklığın üzerinde pekleşme üstelinin değişimi ihmal edilebilecek seviyededir. Bunun sebebi karbürün ara yüzeye çökelmesidir. Pekleşme üsteli 0,1 ile 0,19 arasında ostemperleme sıcaklığına bağlıdır. Kritik sıcaklığın altında ferritin hacim yüzdesi pekleşme üzerinde baskın etki yapar. Kritik sıcaklığın üzerinde ise ostenitin hacim yüzdesi baskın hale gelir. Ostenitin martenzite dönüşmesi esnasında şekil değişimi az olur. Ostenitleme sıcaklığı arttıkça malzeme daha fazla sünekleşir. Böylece pekleşme üsteli artar [24].

M.Huang, J. Luo ve B. He 1984 yılında yaptıkları çalışmada farklı su verme ve temperleme sıcaklıklarında az karbonlu çeliklerde pekleşme üstelinin, ikinci fazın artan hacim yüzdesiyle azaldığını belirtmişlerdir.[9]

T. Chang ve W. Guo 1999 yılında yaptıkları çalışmada çatlak ucuna yaklaşıldıkça pekleşme ve gerilme durumunun nasıl değiştiğini incelemek amacıyla sonlu elemanlar yöntemini kullanmışlardır. Çalışmalar sonucunda, zorlanma faktörlerinin pekleşme üsteli ile olan ilişkisi gözlenmiş ve düzlem gerilme halinde pekleşme üsteli arttıkça zorlanma faktörleri azalmıştır. Düzlem şekil değişiminde de artan pekleşme üsteli zorlanma faktörlerini azaltmıştır. Bu azalma, düzlem gerilme hali ile kıyaslandığında, ihmal edilebilir düzeydedir [3].

T.J. Douthit ve C.J. Van Tyne 2003 yılında yaptıkları çalışmada çelik içerisindeki nitrojen miktarının etkilerini incelemek amacıyla sıcak haddelenmiş ve farklı sıcaklıklarda ısıl işleme tabi tutulmuş levhadan, silindirik çekme numuneleri hazırlayarak farklı sıcaklıklarda çekme deneyine tabi tutmuşlardır. Sonuçta artan sıcaklıkla genelde pekleşme üsteli ve mukavemet katsayısı azalmaktadır. Düşük sıcaklıklarda az nitrojen içeren çelikte pekleşme üsteli büyük, yüksek sıcaklıkta az

nitrojen içeren çelikte küçük pekleşme üsteli hesaplanmıştır. 180 ppm nitrojen içeren çelikte 260°C de en büyük pekleşme üsteli ölçülmüştür. Mukavemet katsayısı da aynı davranışı göstererek benzer sıcaklıklarda maksimum değer almıştır. Sonuçta nitrojen ilavesiyle dayanım artarken süneklik azalmaktadır. Sıcaklık arttıkça dayanım azalmakta ve süneklik artmaktadır [7].

R. Narayanasamy, T. Ramesh ve K.S. Pandey 2005 yılında yaptıkları çalışmada alüminyum demir alaşımında farklı bileşim ve en boy oranındaki pekleşme özelliklerini belirlemek amacıyla farklı oranlarda hazırlanan alüminyum, demir tozu karışımlarını silindirik disk şeklinde sinterleyerek basma deneyine tabi tutmuşlardır. Sonuçta demir içermeyen kompozitte yoğunluk artıkça, tek eksenli, çok eksenli ve düzlem gerilme durumları için pekleşme üsteli azalmakta ve bu azalma miktarı aynı aralıkta gerçekleşmektedir. %2 demir içeren kompozitte aynı davranış görülmektedir. Mukavemet katsayısı ise % 0 demir içeren kompozitte farklı gerilme durumları için aynı davranışı göstererek bir maksimumdan geçerek azalma eğiliminde iken, %2 demir içermesi halinde bir minimum değerden geçerek artma eğilimindedir. Hem pekleşme üsteli hem de mukavemet katsayısı farklı tane büyüklükleri için ayrı ayrı hesaplanması durumunda ise benzer davranış göstermiştir [16].

Ola Kristensson 2005 yılında yaptığı çalışmada şekillendirme sınır diyagramlarını sayısal olarak ifade etmiş pekleşme üstelinin bu diyagramlara nasıl etkidiğini araştırmıştır. Sonuçta pekleşme üsteli artışıyla şekillendirme sınır diyagramındaki şekillendirilebilirlik sınırının azaldığını fakat diyagramın şekil olarak değişmediğini gözlemiştir [11].

M.B. Toloczko, M.L. Hamilton ve G.E. Lucas 2000 yılında yaptıkları çalışmada çekme deneyi ile ıstampayla delme arasındaki sünekliği karşılaştırmışlardır. Bu çalışma için 0,25 mm kalınlığında farklı alüminyum alaşımlardaki levha 1 mm çapındaki ıstampa ile delinirken, aynı malzemelerden hazırlanan çekme numunelerine de çekme deneyi uygulanmıştır. Deney verileriyle pekleşme üsteli hesaplanmış ve sonuçta pekleşme üsteli ile şekil değişimi arasında doğru orantı olduğu görülmüştür. Ayrıca delme esnasında kayma gerilmesiyle hesaplanan pekleşme üsteli değişimi ile doğu orantılıdır [22].

Ayrıca sabit n ve K değerleri:

- Oda sıcaklığında yapılan deneylerle Bühler (1965), Wagener (1967), Datsko (1966), Fitzpatrick (1968) tarafından,
- Yüksek sıcaklıklarda yapılan deneylerle Bühler (1965), Wagener (1967), Drobjnak (1970), Parr (1970), Sellars ve Tegart (1972) tarafından,
- Yorulma durumundaki davranışların incelemek için Challenger ve Moteff (1972), Hickerson ve Hertzberg (1972), Krafft (1965), Rowe (1966), Schwalbe ve Macherauch (1971), Schwalbe (1973) tarafından,
- Kırılma tokluğu için Hahn ve Rosenfield (1968), Krafft (1964), Peel ve Forsyth (1973) tarafından,
- Sürünme için Schmidt ve Dietrich (1972), Schmidt ve von den Steinen (1972) tarafından,
- Sertlik için Cahoon (1972) tarafında,
- Sünek kırılma için McLintock (1968) tarafından,
- Metallerin şekillendirilebilirliği bakımından Dillamore (1974), Gren (1971), Hughes ve Page (1971), Kashar (1967), Levy (1970), Painter ve Pearce (1974), Rowe ve Wolstencroft (1970) tarafından araştırılmıştır.

2.1 Çalışmanın Amacı

Yapılan bu çalışma farklı malzemeler için, pekleşme üsteli ile süneklikleri arasında nasıl bir ilişki bulunduğunun incelenmesi amaçlanmıştır. Malzemelerin süneklikleri ile kopma uzamaları arasında doğru orantı bulunması sebebiyle süneklik direk olarak kopma uzaması ve / veya maksimum yükteki uzama şeklinde değerlendirilecektir.

Soğuk haddeleme yöntemiyle elde edilen saç levhaların daha sonraki şekillendirilmesi esnasında farklı doğrultular için farklı kopma uzamaları vermesi sebebiyle tüm malzemelerin haddeleme doğrultusu ile farklı açılarda eksene sahip numunelerin kullanılmasına karar verilmiştir. Farklı doğrultularda alınan numuneler için doğrultular şunlardır;

1. Haddeleme doğrultusu, numune eksenine paralel yönde

- 2. Haddeleme doğrultusu numune eksine ile 45° açı yapacak şekilde
- 3. Haddeleme doğrultusu, numune eksenine dik yönde

Sonuçta hem farklı malzemeler, hem de farklı doğrular için pekleşme üsteli ve süneklik arasında bir bağ kurulması amaçlanmıştır.

3. MALZEME

Deneylerde, nominal kalınlığı 1mm olan soğuk haddelenmiş DKP, pirinç, alüminyum, 409 paslanmaz çelik ve nominal kalınlığı 1,25 mm olan 430 paslanmaz çelik saçlar kullanılmıştır.

3.1 Alüminyum Deney Malzemesi

Kullanılan 1 mm kalınlığındaki alüminyum saç malzemenin mekanik özelliği ve kimyasal analizi aşağıdaki tablolarda verilmiştir.

	Çekme Dayanımı	Akma Sınırı	Kopma Uzaması
	MPa	MPa	δ10
Alüminyum	110	105	<%6

Tablo 3.1: Alüminyum malzemenin mekanik özellikleri

Tablo 3.2: 1145 alüminyum malzemenin kimyasal standardı

Al	Si + Fe (max)	Cu (max)	Mn (max)
99,45	0,55	0,05	0,05

Tablo 3.3: Alüminyum malzemenin kimyasal analizi

Al				
Al	Si	Fe	Cu	Mn
99,48	0,0530	0,3280	0,0240	0,0040

Kimyasal analiz sonucunda kullanılan alüminyum saçın 1145 alüminyum alaşımı olduğu anlaşılmıştır.
3.2 DKP Çelik Deney Malzemesi

Kullanılan 1 mm kalınlığındaki DKP çelik saç malzemenin mekanik özelliği ve kimyasal analizi aşağıdaki tablolarda vermektedir.

	Çekme Dayanımı	Akma Sınırı	Kopma Uzaması
	MPa	MPa	δ10
DKP	330	285	%40

Tablo 3.4: DKP çelik malzemenin mekanik özellikleri

Tablo 3.5 AISI 1005 malzemenin kimyasal standardı

С	Mn	Р	S
0,06	0,35	0,04	0,05

Tablo 3.6: DKP çelik malzemenin kimyasal analizi

DKP				
С	Mn	Р	S	
0,0540	0,2460	0,0110	0,0090	

Kimyasal analiz sonucunda kullanılan DKP çelik saçın AISI 1005 olduğu anlaşılmıştır.

3.3 Pirinç Deney Malzemesi

Kullanılan 1 mm kalınlığındaki pirinç saç malzemenin mekanik özelliği ve kimyasal analizi aşağıdaki tablolarda vermektedir.

	Çekme Dayanımı	Akma Sınırı	Kopma Uzaması
	MPa	MPa	δ10
Pirinç	379	172	%42

Tablo 3.7: Pirinç malzemenin mekanik özellikleri

Tablo 3.8: C26800 malzemenin kimyasal standardı

Cu	Sn	Pb	Zn	Fe
62,0	0,5	0,2	39,2	0,10

Tablo 3.9: Pirinç malzemenin kimyasal analizi

		CuZn		
Cu	Sn	Pb	Zn	Fe
63,610	0,0190	0,0110	36,310	0,0010

Kimyasal analiz sonucunda kullanılan pirinç saçın C26800 bakır alaşımı olduğu anlaşılmıştır.

3.4 409 Paslanmaz Çelik Deney Malzemesi

Kullanılan 1 mm kalınlığındaki 409 paslanmaz çelik saç malzemenin mekanik özelliği ve kimyasal analizi aşağıdaki tablolarda vermektedir.

Tablo 3.10: 409 paslanmaz çelik malzemenin mekanik özellikleri

	Çekme Dayanımı	Akma Sınırı	Kopma Uzaması
	MPa	MPa	δ10
Paslanmaz 409	450	240	%22

Tablo 3.11: AISI 409 paslanmaz çelik malzemenin kimyasal standardı

С	Mn	Si	Cr	Р	S	Ti
0,08	1,00	1,00	11,75	0,045	0,045	0,48

Tablo 3.12: 409 paslanmaz çelik malzemenin kimyasal analizi

409						
С	Mn	Si	Cr	Р	S	Ti
0,008	0,470	0,531	11,770	0,022	0,001	0,245

Kimyasal analiz sonucunda kullanılan alaşımın AISI 409 Ferritik Paslanmaz Çelik olduğu anlaşılmıştır.

3.5 430 Paslanmaz Çelik Deney Malzemesi

Kullanılan 1,25 mm kalınlığındaki 430 paslanmaz çelik saç malzemenin mekanik özelliği ve kimyasal analizi aşağıdaki tablolarda vermektedir.

Tablo 3.13: 430 paslanmaz çelik malzemenin mekanik özellikleri

	Çekme Dayanımı	Akma Sınırı	Kopma Uzaması
	MPa	MPa	δ10
Paslanmaz 430	480	275	%29

Tablo 3.14: AISI 430 paslanmaz çelik malzemenin kimyasal standardı

С	Mn	Si	Cr	Р	S
0,055	0,379	0,368	16,020	0,025	0,001

Tablo 3.15: 430 paslanmaz çelik malzemenin kimyasal ar	nalizi
--	--------

		4,	30		
С	Mn	Si	Cr	Р	S
0,055	0,379	0,368	16,020	0,025	0,001

Kimyasal analiz sonucunda kullanılan alaşımın AISI 430 Ferritik Paslanmaz Çelik olduğu anlaşılmıştır.

4. DENEYSEL ÇALIŞMALAR

Kullanılacak farklı özelliklere sahip deney numunelerinin pekleşme üsteli değerlerinin deneysel olarak elde edilmesi esnasında literatürde karşılaşılan iki farklı deney yöntemi kullanılmıştır. Bu yöntemlerden biri M. Reihle 'nin 1961 [19] yılında yayımlanan makalesini kaynak gösteren L. Çapan'ın doçentlik tezinden [4] alınmıştır. Diğer yöntem ise ASTM 'nin geliştirdiği deney metodudur.

4.1 M. Reihle Metodu

Deney saçından Şekil 4.2 'de görülen çekme deneyi numuneleri soğuk haddelenmiş saçlardan, Şekil 4.1 'de görüldüğü gibi haddeleme doğrultusuna göre 3 farklı doğrultuda olacak şekilde, önce giyotin makasla dikdörtgen şekilde kesilmiştir.

Şekil 4.1: Numunelerin saç üzerindeki konumu

Daha sonra aynı doğrultuda kesilen parçalar bir arada olacak şekilde frezeye sabitlenip, standardın önerdiği boyutlarda talaş kaldırarak hazırlanmıştır. Tüm numunelerde, nominal değeri b_0 = 15 mm olan kısmı üzerinde, 10 mm aralıklarla işaretlenen 12 farklı noktada e₀ saç kalınlıkları ve b₀ enleri ölçülerek kaydedilmiştir.

Şekil 4.2: Çekme numunesi [4,19]

Tablo 4.1: Çekme numunesinin ölçüleri[4,19]

$b_0 (mm)$	$e_0(mm)$	$l_0(mm)$	c(mm)	a(mm)
15	1	165	20	50

Numunelerin birbirleri ile karışmasını önlemek amacıyla her bir numuneye şekil 4.3 de gösterildiği gibi kodlama yapılmıştır.

Şekil 4.3: Numune kodlaması

Doğrultuyu gösteren kodlar 0, 90 ve 45 şeklindedir. Burada 0 numune ekseninin haddeleme doğrultusuna paralel, 90 numune ekseninin haddeleme doğrultusuna dik ve 45 ise numune ekseninin haddeleme doğrultusuyla 45° açı yapacak şekilde hazırlandığını göstermektedir.

Tüm hazırlıkları biten çekme numuneleri Dartec marka 600 kN kapasiteli üniversal çekme makinesinde, çekme hızı sabit 5 mm/dk olacak şekilde çekme deneyine tabi tutulmuştur. Deney esnasında uygulanan çekme kuvveti load-cell tarafından kaydedilirken, şekil değiştirme değerleri ise LVDT yardımıyla ölçülmüştür. Deney esnasında güncel olarak çizilen yük – şekil değiştirme grafiğini daha hassas bir şekilde elde edebilmek amacıyla 600kN yerine 60 kN kapasiteli load-cell kullanılmasına karar verilmiştir.

Her numunenin çekme deneyinde, uygulanan kuvvette ve malzemenin gösterdiği şekil değişimine göre deney esnasında bilgisayar yardımıyla çizilen grafiklerde, deney gidişatına uygun olmayan bir azalma görüldüğünde, aynı zamanda da numune üzerinde bir boyun oluşumu fark edildiğinde uygulanan kuvvetin, maksimum kuvvet (F_{max}) olduğuna kanaat getirilerek deney sonlandırılıp yük boşaltılmıştır.

Çekme makinesinden çıkartılan numunede daha önce 12 farklı noktadan alınan e_0 ve b_0 değerleri tekrar ölçülerek e_1 ve b_1 olarak kaydedilmiştir.

Kaydedilmiş olan ölçüler ve maksimum kuvvet yardımıyla, n pekleşme üsteli değerine şu şekilde ulaşılmaktadır.

Çekme deneyi uygulanmadan önceki numune kesiti;

$$A_0 = e_0 b_0 \tag{4.1}$$

Çekme deneyi sonrasında numune kesiti ise

$$A_1 = e_1 b_1 \tag{4.2}$$

dir. Çekme kuvvetinin maksimum olduğu noktada;

$$\bar{\varepsilon} = n$$
 (4.3)

ve

$$\bar{\varepsilon} = \ln(A_0 / A_1) \tag{4.4}$$

olduğuna göre, pekleşme üsteli

$$n = \ln(A_0 / A_1) \tag{4.5}$$

dır. Mukavemet katsayısı ise, σ_{\max} saçın çekme dayanımı olmak üzere

$$K = \sigma_{\max} \left(e/n \right)^{n*} \tag{4.6}$$

^{*} Bu formülde kullanılan "e", numune kalınlığından ve nominal şekil değişiminden farklı olup değeri 2,71828... olan e sayısıdır..

denklemiyle hesaplanır.

Beş çekme deneyi haddeleme doğrultusunda, beş çekme deneyi haddeleme doğrultusuna dik doğrultuda ve beş çekme deneyi haddeleme doğrultusuyla 45° açı yapan doğrultuda yapılarak sonuçlar tablolar halinde verilmiştir. Ortalama n ve K değerleri her üç doğrultu için bulunduktan sonra, deney saçı malzemesinin pekleşme üsteli

$$n = \frac{1}{4} \left(n_0 + 2n_{45} + n_{90} \right) \tag{4.7}$$

mukavemet katsayısı ise

$$K = \frac{1}{4} \left(K_0 + 2K_{45} + K_{90} \right) \tag{4.8}$$

formüllerinden hesaplanır.

Hesaplamalar esnasında maksimum yük uygulandığında görülen boyun bölgelerinde şekil değişimi üniform değerden çok farklı olduğu için bu bölgeye denk gelen ölçümler hesaba katılmamıştır. Ayrıca çekme numunelerinin çekme çenelere yakın yerlere gelen ölçümler ise şekil değişimine yeterince katılmadıkları gerekçesiyle bazı numunelerde hesaplamaya katılmamıştır.

$K(kN/mm^2)$		0,626	0,613	0,584	0,566	0,566	0,557	0,565	0,567	0,564	0,570	0,568
$\sigma_{\max}(kN/mm^2)$	0,312											
$F_{ m max}(kN)$	4,839											
$n = \ln\left(A_0 / A_1\right)$		0,3302	0,3110	0,2724	0,2487	0,2487	0,2375	0,2479	0,2503	0,2463	0,2544	0,2520
A_0/A_1	1,4938	1,3912	1,3648	1,3132	1,2824	1,2824	1,2680	1,2814	1,2844	1,2792	1,2897	1,2866
$A_{ m l}(mm^2)$	10,3034	11,1056	11,4785	11,7469	12,0024	12,0561	12,3295	12,1823	12,1318	12,0695	11,9975	12,0386
$e_{I}(mm)$	0,846	0,866	0,881	0,891	0,900	0,902	0,911	0,904	0,903	0,903	0,902	0,907
$b_{\rm l}(mm)$	12,179	12,824	13,029	13,184	13,336	13,366	13,534	13,476	13,435	13,366	13,301	13,273
$A_0(mm^2)$	15,3912	15,4501	15,6655	15,4255	15,3918	15,4604	15,6341	15,6100	15,5822	15,4399	15,4735	15,4891
$e_0(mm)$	1,032	1,032	1,038	1,024	1,020	1,024	1,034	1,032	1,032	1,024	1,028	1,030
$p_0(mm)$	14,914	14,971	15,092	15,064	15,090	15,098	15,120	15,126	15,099	15,078	15,052	15,038
Ölçü Yeri	1	2	3	4	5	9	7	8	6	10	11	12

Tablo 4.2: 0 CuZn 01 kodlu numunenin değerleri

4.1.1 M.Reihle yöntemi degerler listesi

$K(kN/mm^2)$		565,0	0,582	0,578	0,571	0,563	0,570	0,572	0,572	0,571	0,570	
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,311											
$F_{ m max}(kN)$	4,830											
$n = \ln(A_0 / A_1)$		0,2890	0,2715	0,2667	0,2577	0,2469	0,2564	0,2593	0,2590	0,2573	0,2568	
A_0/A_1	1,3529	1,3351	1,3119	1,3056	1,2939	1,2800	1,2922	1,2960	1,2957	1,2934	1,2928	1,3599
$A_{\rm l}(mm^2)$	11,4479	11,6999	11,9100	11,9152	12,0292	12,1532	12,0516	11,9697	11,9970	11,9434	11,8230	11,3702
$e_{\rm l}(mm)$	0,854	0,862	0,874	0,874	0,876	0,884	0,880	0,876	0,878	0,878	0,873	0,858
$p_{\rm l}(mm)$	13,405	13,573	13,627	13,633	13,732	13,748	13,695	13,664	13,664	13,603	13,543	13,252
$A_0 \left(mm^2 \right)$	15,4878	15,6210	15,6244	15,5564	15,5650	15,5561	15,5736	15,5128	15,5444	15,4478	15,2854	15,4620
$e_0(mm)$	1,028	1,033	1,035	1,025	1,031	1,030	1,030	1,027	1,031	1,028	1,021	1,038
$b_0(mm)$	15,066	15,122	15,096	15,177	15,097	15,103	15,120	15,105	15,077	15,027	14,971	14,896
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.3: 0 CuZn 02 kodlu numunenin değerleri

$K(kN/mm^2)$	0,625	0,610	0,608	0,613	0,612	0,604	0,584	625'0	965'0	0,617	0,631	
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,309											
$F_{ m max}(kN)$	4,751											
$n = \ln\left(A_0 / A_1\right)$	0,3376	0,3149	0,3130	0,3195	0,3179	0,3063	0,2799	0,2727	0,2954	0,3251	0,3453	
A_0/A_1	1,4016	1,3701	1,3675	1,3764	1,3742	1,3584	1,3229	1,3135	1,3436	1,3841	1,4125	1,4917
$A_{ m l}\left(mm^2 ight)$	10,9121	11,2002	11,2519	11,1665	11,1543	11,2860	11,7337	11,7044	11,4431	11,1186	10,8570	10,2479
$e_1(mm)$	0,862	0,877	0,877	0,873	0,87	0,88	0,897	0,896	0,882	0,875	0,864	0,859
$b_{\rm l}(mm)$	12,659	12,771	12,83	12,791	12,821	12,825	13,081	13,063	12,974	12,707	12,566	11,93
$A_0(mm^2)$	15,2939	15,3458	15,3871	15,3702	15,3284	15,3309	15,5229	15,3742	15,3753	15,3897	15,3352	15,2869
$e_0(mm)$	1,031	1,032	1,032	1,029	1,026	1,025	1,037	1,027	1,029	1,031	1,029	1,027
$p_0(mm)$	14,834	14,87	14,910	14,937	14,940	14,957	14,969	14,970	14,942	14,927	14,903	14,885
Ölçü Yeri	1	2	3	4	5	9	٢	8	6	10	11	12

Tablo 4.4: 0 CuZn 03 kodlu numunenin değerleri

$K(kN/mm^2)$			0,569	0,556	0,561	0,571	0,566	0,560	0,561	0,567	0,560	0,579
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,299											
$F_{ m max}(kN)$	4,650											
$n = \ln\left(A_0 / A_1\right)$			0,2838	0,2658	0,2731	0,2866	0,2806	0,2721	0,2726	0,2812	0,2716	0,2980
A_0/A_1	1,4389	1,3567	1,3282	1,3044	1,3141	1,3319	1,3239	1,3127	1,3133	1,3247	1,3121	1,3472
$A_{ m l} \left(mm^2 ight)$	10,8174	11,3545	11,7811	11,9821	11,9096	11,6698	11,7372	11,8939	11,8114	11,6623	11,7602	11,3869
$e_{\rm l}(mm)$	0,83	0,849	0,871	0,88	0,875	0,857	0,861	0,875	0,869	0,864	0,873	0,859
$p_{\rm l}(mm)$	13,033	13,374	13,526	13,616	13,611	13,617	13,632	13,593	13,592	13,498	13,471	13,256
$A_0(mm^2)$	15,5648	15,4046	15,6473	15,6299	15,6502	15,5434	15,5392	15,6130	15,5122	15,4494	15,4305	15,3402
$e_0(mm)$	1,034	1,022	1,037	1,034	1,035	1,028	1,028	1,035	1,029	1,029	1,032	1,031
$b_0(mm)$	15,053	15,073	15,089	15,116	15,121	15,120	15,116	15,085	15,075	15,014	14,952	14,879
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.5: 0 CuZn 04 kodlu numunenin değerleri

$K(kN/mm^2)$			0,576	0,564	0,567	0,567	0,564		225'0	0,571	0.570	0,593
$\sigma_{ m max}\left(kN/mm^{2} ight)$	0,307											
$F_{ m max}(kN)$	4,752											
$n = \ln\left(A_0 / A_1\right)$			0,2734	0,2570	0,2617	0,2618	0,2572		0,2741	0,2662	0,2648	0,2964
A_0/A_1	1,3451	1,3269	1,3144	1,2931	1,2991	1,2993	1,2933	1,3239	1,3154	1,3049	1,3032	1,3451
$A_{ m l}\left(mm^2 ight)$	11,5252	11,6493	11,8024	11,9546	11,9073	11,9385	12,0006	11,6992	11,7256	11,8451	11,7818	11,3954
$e_1(mm)$	0,881	0,878	0,887	0,894	0,891	0,89	0,9	0,889	0,891	0,896	0,898	0,882
$b_{\rm l}(mm)$	13,082	13,268	13,306	13,372	13,364	13,414	13,334	13,16	13,16	13,22	13,12	12,92
$A_0(mm^2)$	15,5028	15,4580	15,5132	15,4586	15,4690	15,5113	15,5203	15,4882	15,4235	15,4572	15,3535	15,3275
$e_0(mm)$	1,034	1,028	1,029	1,023	1,022	1,025	1,026	1,027	1,024	1,03	1,025	1,028
$b_0(mm)$	14,993	15,037	15,076	15,111	15,136	15,133	15,127	15,081	15,062	15,007	14,979	14,910
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.6: 0 CuZn 05 kodlu numunenin değerleri

$K(kN/mm^2)$			0,584	0,563	0,545	0,542	0,534	0,532	0,547	0,534	0,570	0,578
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,288											
$F_{ m max}(kN)$	4,452											
$n = \ln\left(A_0 / A_1\right)$			0,3384	0,3060	0,2799	0,2750	0,2638	0,2616	0,2828	0,2638	0,3170	0,3294
A_0/A_1	1,5721	1,4317	1,4027	1,3579	1,3230	1,3165	1,3019	1,2990	1,3268	1,3019	1,3730	1,3901
$A_{ m l}\left(mm^2 ight)$	9,7387	10,7025	10,9756	11,2857	11,6125	11,7378	11,9207	11,9029	11,7174	11,9626	11,3312	11,0569
$e_1(mm)$	0,814	0,849	0,856	0,868	0,88	0,884	0,892	0,891	0,883	0,895	0,863	0,855
$p_{\rm l}(mm)$	11,964	12,606	12,822	13,002	13,196	13,278	13,364	13,359	13,27	13,366	13,13	12,932
$A_0(mm^2)$	15,3104	15,3223	15,3954	15,3252	15,3631	15,4526	15,5194	15,4624	15,5472	15,5739	15,5580	15,3701
$e_0(mm)$	1,034	1,030	1,032	1,024	1,024	1,026	1,029	1,024	1,029	1,032	1,033	1,027
$p_0(mm)$	14,807	14,876	14,918	14,966	15,003	15,061	15,082	15,100	15,109	15,091	15,061	14,966
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.7: 45 CuZn 01 kodlu numunenin değerleri

$F_{ m max}(kN) \left[\sigma_{ m max}(kN/mm^2) \right] K(kN/mm^2)$	4,433 0,290		0,535	0,527	0,518	0,519	0,506	0,515	0,500	0.508	0,514
$n = \ln(A_0 / A_1)$			0,2604	0,2499	0,2377	0,2385	0,2206	0,2328	0,2132	0,2242	0,2317
A_0/A_1	1,5303	1,3476	1,2975	1,2839	1,2684	1,2693	1,2468	1,2622	1,2376	1,2513	1,2607
$A_{ m l}\left(mm^2 ight)$	9,8739	11,2172	11,6823	11,8879	12,0309	12,0991	12,3136	12,1769	12,4304	12,2315	12,0736
$e_{\rm l}(mm)$	0,828	0,873	0,889	0,897	0,902	0,904	0,913	0,904	0,922	0,913	0,905
$b_{\rm l}(mm)$	11,925	12,849	13,141	13,253	13,338	13,384	13,487	13,47	13,482	13,397	13,341
$A_0 \left(mm^2 \right)$	15,1098	15,1164	15,1577	15,2627	15,2596	15,3578	15,3532	15,3691	15,3836	15,3048	15,2218
$e_0(mm)$	1,029	1,027	1,025	1,028	1,024	1,029	1,028	1,027	1,029	1,026	1,024
$b_0(mm)$	14,684	14,719	14,788	14,847	14,902	14,925	14,935	14,965	14,950	14,917	14,865
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11

Tablo 4.8: 45 CuZn 02 kodlu numunenin değerleri

$K(kN/mm^2)$					0,551	0,575	0,557	0,564	0,548	0,550	0,558	0,564
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,278											
$F_{ m max}(kN)$	4,561											
$n = \ln\left(A_0 / A_1\right)$					0,3204	0,3594	0,3291	0,3415	0,3157	0,3192	0,3322	0,3409
A_0/A_1	1,7808	1,4577	1,4614	1,4526	1,3776	1,4324	1,3897	1,4070	1,3712	1,3760	1,3940	1,4061
$A_{\rm l}(mm^2)$	9,0650	11,0347	11,3383	11,5703	12,0952	11,8388	12,0466	11,8228	11,9171	11,6629	11,6125	11,2770
$e_1(mm)$	0,773	148,0	0,875	0,878	606'0	0,888	0,899	0,889	0,893	0,875	0,879	0,869
$b_{\rm l}(mm)$	11,727	12,669	12,958	13,178	13,306	13,332	13,4	13,299	13,345	13,329	13,211	12,977
$A_0(mm^2)$	16,1433	16,0851	16,5696	16,8072	16,6628	16,9579	16,7417	16,6349	16,3405	16,0479	16,1882	15,8571
$e_0(mm)$	1,089	1,076	1,107	1,121	1,111	1,130	1,115	1,107	1,100	1,070	1,079	1,057
$b_0(mm)$	14,824	14,949	14,968	14,993	14,998	15,007	15,015	15,027	14,855	14,998	15,003	15,002
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.9: 45 CuZn 03 kodlu numunenin değerleri

$K(kN/mm^2)$	0,506	0,503	0,511	605'0	0,503	0,520	0,520	0,532	0,545	0,537		
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,288											
$F_{ m max}(kN)$	4,450											
$n = \ln\left(A_0 / A_1\right)$	0,2259	0,2225	0,2330	0,2299	0,2220	0,2444	0,2446	0,2612	0,2795	0,2692		
A_0/A_1	1,2535	1,2491	1,2623	1,2585	1,2486	1,2769	1,2771	1,2984	1,3225	1,3089	1,4195	1,6166
$A_{\rm l}(mm^2)$	12,2680	12,2924	12,3207	12,3279	12,4278	12,1788	12,0664	11,9678	11,7013	11,6637	10,7422	9,5106
$e_{\rm l}(mm)$	0,908	0,909	0,906	0,908	0,912	0,902	0,895	0,897	0,887	0,889	0,855	797,0
$b_{\rm l}(mm)$	13,511	13,523	13,599	13,577	13,627	13,502	13,482	13,342	13,192	13,12	12,564	11,933
$A_0(mm^2)$	15,3779	15,3549	15,5528	15,5149	15,5177	15,5508	15,4095	15,5394	15,4747	15,2668	15,2481	15,3750
$e_0(mm)$	1,028	1,024	1,033	1,030	1,028	1,033	1,026	1,037	1,036	1,028	1,030	1,044
$p_0(mm)$	14,959	14,995	15,056	15,063	15,095	15,054	15,019	14,985	14,937	14,851	14,804	14,727
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.10: 45 CuZn 04 kodlu numunenin değerleri

$K(kN/mm^2)$			0,561	0,533	0.530	0,520	0,504	0,515	0,502	0,503	0,518	0,525
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,295											
$F_{ m max}(kN)$	4,554											
$n = \ln\left(A_0 / A_1\right)$			0,2853	0,2465	0,2427	0,2300	0,2095	0,2232	0,2058	0,2079	0,2273	0,2358
A_0/A_1	1,5122	1,3526	1,3302	1,2796	1,2747	1,2586	1,2330	1,2501	1,2285	1,2311	1,2552	1,2659
$A_{ m l}\left(mm^2 ight)$	10,0819	11,3586	11,6143	12,0895	12,2029	12,2885	12,4588	12,4618	12,6824	12,5843	12,3108	12,0944
$e_{\rm l}(mm)$	0,802	0,859	0,86	0,889	0,888	0,887	0,894	0,89	0,909	0,896	0,883	0,874
$b_{\rm l}(mm)$	12,571	13,223	13,505	13,599	13,742	13,854	13,936	14,002	13,952	14,045	13,942	13,838
$A_0(mm^2)$	15,2463	15,3640	15,4490	15,4697	15,5550	15,4666	15,3622	15,5782	15,5799	15,4920	15,4522	15,3105
$e_0(mm)$	1,028	1,031	1,032	1,032	1,035	1,027	1,020	1,034	1,035	1,028	1,027	1,019
$b_0(mm)$	14,831	14,902	14,970	14,990	15,029	15,060	15,061	15,066	15,053	15,070	15,046	15,025
Ölçü Yeri	1	2	ю	4	5	9	L	8	6	10	11	12

Tablo 4.11: 45 CuZn 05 kodlu numunenin değerleri

$K(kN/mm^2)$		0,567	0,538	0,532	0,531	0,504	0,482	0,502	0,521	0,543	0,572	0,565
$\sigma_{\max}(kN \ / \ mm^2)$	0,289											
$F_{ m max}(kN)$	4,447											
$n = \ln\left(A_0 / A_1\right)$		0,3121	0,2693	0,2614	0,2591	0,2228	0,1947	0,2200	0,2459	0,2764	0,3192	0,3082
A_0/A_1	1,4525	1,3662	1,3090	1,2987	1,2958	1,2496	1,2149	1,2461	1,2787	1,3183	1,3761	1,3610
$A_{ m l} \left(mm^2 ight)$	10,4648	11,2481	11,7254	11,7377	11,8825	12,3633	12,5666	12,4427	12,1113	11,8458	11,2113	11,3990
$e_{\rm l}(mm)$	0,831	0,861	0,883	0,883	0,883	606'0	0,929	0,926	0,899	0,892	0,857	0,865
$p_l(mm)$	12,593	13,064	13,279	13,293	13,457	13,601	13,527	13,437	13,472	13,28	13,082	13,178
$A_0(mm^2)$	15,1998	15,3676	15,3487	15,2437	15,3974	15,4490	15,2673	15,5046	15,4870	15,6165	15,4274	15,5140
$e_0(mm)$	1,034	1,038	1,034	1,023	1,032	1,034	1,023	1,038	1,038	1,045	1,037	1,041
$b_0(mm)$	14,700	14,805	14,844	14,901	14,920	14,941	14,924	14,937	14,920	14,944	14,877	14,903
Ölçü Yeri	1	2	3	4	5	9	7	8	6	10	11	12

Tablo 4.12: 90 CuZn 01 kodlu numunenin değerleri

$K(kN / mm^2)$			0,565	0,547	0,557	0,534	0,517	0,482	0,504	0,515	0,501	0,485
$\sigma_{\max}\left(kN / mm^2\right)$	0,298											
$F_{ m max}(kN)$	4,639											
$n = \ln\left(A_0 / A_1\right)$			0,2821	0,2576	0,2714	0,2412	0,2186	0,1757	0,2029	0,2165	0,1986	0,1788
A_0/A_1	1,4534	1,3409	1,3259	1,2938	1,3118	1,2727	1,2444	1,1920	1,2249	1,2417	1,2197	1,1958
$A_{\rm l}(mm^2)$	10,5970	11,5274	11,6791	12,0118	11,8062	12,2502	12,5716	13,0957	12,8399	12,7798	12,7371	12,9475
$e_{\rm l}(mm)$	0,864	10610	0,902	0,917	6'0	0,917	0,934	0,952	0,939	0,939	0,938	0,953
$b_{\rm l}(mm)$	12,265	12,794	12,948	13,099	13,118	13,359	13,46	13,756	13,674	13,61	13,579	13,586
$A_0(mm^2)$	15,4013	15,4573	15,4857	15,5410	15,4870	15,5911	15,6440	15,6105	15,7279	15,8683	15,5354	15,4826
$e_0(mm)$	1,046	1,043	1,044	1,044	1,038	1,041	1,043	1,038	1,044	1,040	1,035	1,033
$b_0(mm)$	14,724	14,820	14,833	14,886	14,920	14,977	14,999	15,039	15,065	15,258	15,010	14,988
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.13: 90 CuZn 02 kodlu numunenin değerleri

$K(kN/mm^2)$				0,540	0,542	0,538	0,527	0,534	0,520	0,506	0,531	0,533
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,287											
$F_{ m max}(kN)$	4,443											
$n = \ln\left(A_0 / A_1\right)$				0,2754	0,2784	0,2724	0,2573	0,2675	0,2478	0,2280	0,2630	0,2648
A_0/A_1	1,4460	1,4284	1,3497	1,3170	1,3210	1,3130	1,2934	1,3067	1,2812	1,2561	1,3008	1,3032
$A_{ m l} \left(mm^2 ight)$	10,5706	10,7569	11,3947	11,6729	11,6985	11,8095	12,0151	11,9044	12,1525	12,3646	11,9488	11,8088
$e_1(mm)$	38,0	0,848	0,878	0,887	0,888	0,889	0,899	0,895	0,904	0,914	0,898	0,894
$b_{\rm l}(mm)$	12,436	12,685	12,978	13,16	13,174	13,284	13,365	13,301	13,443	13,528	13,306	13,209
$A_0(mm^2)$	15,2848	15,3648	15,3795	15,3733	15,4532	15,5064	15,5404	15,5554	15,5696	15,5316	15,5434	15,3890
$e_0(mm)$	1,025	1,025	1,024	1,024	1,024	1,024	1,023	1,025	1,026	1,026	1,028	1,023
$p_0(mm)$	14,912	14,990	15,019	15,013	15,091	15,143	15,191	15,176	15,175	15,138	15,120	15,043
Ölçü Yeri	1	2	3	4	5	9	7	8	6	10	11	12

Tablo 4.14: 90 CuZn 03 kodlu numunenin değerleri

$K(kN / mm^2)$	0,539	0,552		0,524	0,529	0,514	0,498	0,487	0,479	0,484		
$\sigma_{ m max} \left(kN / mm^2 ight)$	0,304											
$F_{ m max}(kN)$	4,672											
$n = \ln\left(A_0 / A_1\right)$	0,2332	0,2501		0,2143	0,2206	0,2024	0,1832	0,1699	0,1612	0,1662		
A_0/A_1	1,2626	1,2842	1,2874	1,2390	1,2468	1,2243	1,2011	1,1852	1,1749	1,1809	1,1532	1,1486
$A_{\rm l}(mm^2)$	12,1297	11,9584	11,8904	12,4072	12,3562	12,5779	12,9153	13,0250	13,0989	12,9632	13,3150	13,2812
$e_{\rm l}(mm)$	0,905	0,903	868,0	0,916	0,915	0,922	0,943	0,942	0,944	0,941	296,0	0,959
$b_{\rm l}(mm)$	13,403	13,243	13,24T	13,545	13,504	13,642	13,696	13,827	13,876	13,776	13,84T	13,849
$A_0(mm^2)$	15,3153	15,3570	15,3079	15,3720	15,4053	15,3995	15,5120	15,4367	15,3898	15,3077	15,3549	15,2553
$e_0(mm)$	1,042	1,042	1,036	1,039	1,039	1,037	1,045	1,040	1,036	1,035	1,037	1,033
$b_0(mm)$	14,698	14,738	14,776	14,795	14,827	14,850	14,844	14,843	14,855	14,790	14,807	14,768
Ölçü Yeri	1	2	ы	4	5	9	L	8	6	10	11	12

Tablo 4.15: 90 CuZn 04 kodlu numunenin değerleri

$K(kN / mm^2)$	0,547	0^{230}	0,529	0,538	0,533	0,527	0,513	0,533	0,546	2837		
$\sigma_{ m max}\left(kN/mm^{2} ight)$	0,290											
$F_{ m max}(kN)$	4,521											
$n = \ln\left(A_0 / A_1\right)$	0,2787	0,2541	0,2534	0,2660	0,2587	0,2509	0,2321	0,2585	0,2763	0,2649		
A_0/A_1	1,3214	1,2892	1,2884	1,3047	1,2953	1,2852	1,2612	1,2950	1,3182	1,3033	1,3375	1,4547
$A_{\rm l}(mm^2)$	11,6867	12,0602	12,0979	11,8977	11,7366	12,1940	12,3173	12,0560	11,8545	11,8427	11,6209	11,2213
$e_1(mm)$	0,863	0,886	0,881	0,868	0,864	0,888	0,896	0,884	0,873	0,874	0,866	0,851
$b_{\rm l}(mm)$	13,542	13,612	13,732	13,707	13,584	13,732	13,747	13,638	13,579	13,55	13,419	13,186
$A_0(mm^2)$	15,4423	15,5485	15,5873	15,5231	15,2025	15,6723	15,5351	15,6124	15,6271	15,4345	15,5431	16,3236
$e_0(mm)$	1,033	1,031	1,032	1,027	1,019	1,039	1,028	1,034	1,038	1,025	1,036	1,024
$p_0(mm)$	14,949	15,081	15,104	15,115	14,919	15,084	15,112	15,099	15,055	15,058	15,003	15,941
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.16: 90 CuZn 05 kodlu numunenin değerleri

$K(kN/mm^2)$	0,552	0,568	0,589				0,576	0,551	0,548	0,527	0,529	0,541
$\sigma_{\max}(kN \ / \ mm^2)$	0,320											
$F_{ m max}(kN)$	4,810											
$n = \ln\left(A_0 / A_1\right)$	0,2147	0,2333	0,2595				0,2434	0,2135	0,2095	0,1856	0,1873	0,2013
A_0/A_1	1,2395	1,2628	1,2963	1,3346	1,3181	1,3405	1,2756	1,2380	1,2330	1,2039	1,2060	1,2229
$A_{\rm l}(mm^2)$	12,1594	11,9652	11,6207	11,2843	11,3061	11,2128	11,7753	12,1611	12,2227	12,3221	12,4190	12,2787
$e_1(mm)$	0,917	0,914	0,903	868,0	268,0	0,888	0,906	0,919	0,917	0,921	0,923	0,914
$b_{\rm l}(mm)$	13,26	13,091	12,869	12,566	12,675	12,627	12,997	13,233	13,329	13,379	13,455	13,434
$A_0(mm^2)$	15,0710	15,1092	15,0641	15,0600	14,9029	15,0310	15,0200	15,0551	15,0711	14,8348	14,9770	15,0160
$e_0(mm)$	1,004	1,005	1,003	1,004	0,993	1,001	0,999	1,002	1,003	0,988	0,999	1,002
$p_0(mm)$	15,011	15,034	15,019	15,000	15,008	15,016	15,035	15,025	15,026	15,015	14,992	14,986
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.17: 0 DKP 01 kodlu numunenin değerleri

$K(kN/mm^2)$	0,541	0,571	0.570	625'0	0,593	665'0	0,602	$209^{\circ}0$				
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,336											
$F_{ m max}(kN)$	5,100											
$n = \ln\left(A_0 / A_1\right)$	0,1729	0,2055	0,2048	0,2146	0,2306	0,2368	0,2409	0,2465				
A_0/A_1	1,1887	1,2282	1,2273	1,2393	1,2594	1,2671	1,2724	1,2796	1,2869	1,3090	1,2989	1,2737
$A_{\rm l}(mm^2)$	12,8304	12,3988	12,3878	12,2906	12,1206	12,0208	11,9455	11,8234	11,7585	11,5071	11,6740	11,8691
$e_{\rm l}(mm)$	0,934	0,917	0,917	0,917	606'0	0,906	0,904	0,904	6.0	0,887	0,896	206,0
$b_{\rm l}(mm)$	13,737	13,521	13,509	13,403	13,334	13,268	13,214	13,079	13,065	12,973	13,029	13,415
$A_0 \left(mm^2 \right)$	15,2520	15,2278	15,2036	15,2319	15,2641	15,2319	15,1997	15,1293	15,1323	15,0630	15,1634	15,1182
$e_0(mm)$	1,006	1,006	1,005	1,007	1,01	1,007	1,007	1,003	1,005	1,001	1,006	1,005
$b_0(mm)$	15,161	15,137	15,128	15,126	15,113	15,126	15,094	15,084	15,057	15,048	15,073	15,043
Ölçü Yeri	1	2	Э	4	5	9	7	8	6	10	11	12

Tablo 4.18: 0 DKP 02 kodlu numunenin değerleri

$K(kN / mm^2)$	0,555	0,531	0,520	0,538	0,507	0,527	0,562	0,558	0,566	0,575		
$\sigma_{ m max} \left(kN / mm^2 ight)$	0,325											
$F_{ m max}(kN)$	4,920											
$n = \ln\left(A_0 / A_1\right)$	0,2079	0,1810	0,1689	0,1889	0,1555	0,1764	0,2164	0,2116	0,2203	0,2308		
A_0/A_1	1,2310	1,1984	1,1840	1,2080	1,1682	1,1929	1,2416	1,2356	1,2465	1,2596	1,3954	1,4393
$A_{\rm l}(mm^2)$	12,1232	12,5564	12,7336	12,4997	12,9346	12,8342	12,2747	12,3344	12,2074	12,0219	10,8546	10,4114
$e_{\rm l}(mm)$	0,884	0,931	0,941	0,929	0,951	0,954	0,928	0,943	0,942	0,952	768,0	0,829
$p_{\rm l}(mm)$	13,714	13,487	13,532	13,455	13,601	13,453	13,227	13,08	12,959	12,628	104,21	12,559
$A_0 \left(mm^2 \right)$	14,9240	15,0480	15,0760	15,0991	15,1101	15,3095	15,2404	15,2404	15,2161	15,1429	15,1470	14,9850
$e_0(mm)$	0,995	1,004	1,005	1,005	1,006	1,019	1,014	1,014	1,014	1,010	1,010	1,001
$b_0(mm)$	14,999	14,988	15,001	15,024	15,020	15,024	15,030	15,030	15,006	14,993	14,997	14,970
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.19: 0 DKP 03 kodlu numunenin değerleri

$K(kN / mm^2)$	0,535	0,536	0,532	0,560	0,562	0,568	0,587				0,583	0,558
$\sigma_{ m max} \left(kN / mm^2 ight)$	0,324											
$F_{ m max}(kN)$	4,896											
$n = \ln\left(A_0 / A_1\right)$	0,1868	0,1885	0,1835	0,2150	0,2182	0,2248	0,2480				0,2429	0,2125
A_0/A_1	1,2053	1,2074	1,2014	1,2398	1,2438	1,2521	1,2815	1,3030	1,3052	1,2870	1,2750	1,2368
$A_{\rm l}(mm^2)$	12,4666	12,4190	12,3502	12,1897	12,1416	12,0653	11,8215	11,6250	11,6484	11,7750	11,9141	12,1965
$e_{\rm l}(mm)$	0,924	0,927	0,924	0,917	0,916	0,913	0,906	206,0	206,0	206,0	0,911	0,927
$p_{l}(mm)$	13,492	13,397	13,366	13,293	13,255	13,215	13,048	12,888	12,914	13,017	13,078	13,157
$A_0 \left(mm^2 \right)$	15,0266	14,9949	14,8371	15,1131	15,1020	15,1072	15,1494	15,1473	15,2034	15,1543	15,1904	15,0841
$e_0(mm)$	1,006	1,002	0,990	1,007	1,007	1,005	1,006	1,007	1,011	1,008	1,010	1,003
$b_0(mm)$	14,937	14,965	14,987	15,008	14,997	15,032	15,059	15,042	15,038	15,034	15,040	15,039
Ölçü Yeri	1	2	ю	4	5	9	7	8	6	10	11	12

Tablo 4.20: 0 DKP 04 kodlu numunenin değerleri

$K(kN / mm^2)$		0,564	0,569	0,577	0,588	0,592	0,606	0,597	0,609	0,565		0,606
$\sigma_{ m max}\left(kN/mm^{2} ight)$	0,329											
$F_{ m max}(kN)$	5,000											
$n = \ln\left(A_0 / A_1\right)$		0,2105	0,2171	0,2257	0,2391	0,2442	0,2605	0,2496	0,2646	0,2118		0,2609
A_0/A_1	1,1836	1,2343	1,2425	1,2532	1,2700	1,2766	1,2976	1,2835	1,3029	1,2359	1,3237	1,2981
$A_{ m l} \left(mm^2 ight)$	12,8541	12,3410	12,2759	12,1612	12,0265	11,9292	11,7400	11,7218	11,7063	12,2614	11,4596	11,6417
$e_1(mm)$	146,0	0,913	0,914	0,91	0,905	0,901	0,894	0,895	6'0	0,886	68,0	0,894
$b_{\rm l}(mm)$	13,66	13,517	13,431	13,364	13,289	13,24	13,132	13,097	13,007	13,839	12,876	13,022
$A_0(mm^2)$	15,2146	15,2328	15,2529	15,2399	15,2742	15,2288	15,2339	15,0444	15,2520	15,1534	15,1694	15,1122
$e_0(mm)$	1,004	1,005	1,005	1,006	1,009	1,006	1,007	0,995	1,010	1,005	1,007	1,005
$p_0(mm)$	15,154	15,157	15,177	15,149	15,138	15,138	15,128	15,120	15,101	15,078	15,064	15,037
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.21: 0 DKP 05 kodlu numunenin değerleri

$K(kN/mm^2)$	0,567	0,581	0,598			0,637	665'0	0,592	0,592	0,593	0,600	0,633
$\sigma_{\max}(kN / mm^2)$	0,351											
$F_{ m max}(kN)$	5,232											
$n = \ln\left(A_0 / A_1\right)$	0,1757	0,1896	0,2073			0,2498	0,2079	0,2008	0,2013	0,2019	0,2090	0,2455
A_0/A_1	1,1920	1,2088	1,2304	1,3391	1,2877	1,2838	1,2311	1,2224	1,2229	1,2238	1,2325	1,2782
$A_{ m l} \left(mm^2 ight)$	12,5289	12,3453	12,1139	11,1457	11,5945	11,6353	12,1233	12,1506	12,2326	12,1784	12,0975	11,6580
$e_{\rm l}(mm)$	0,898	6'0	0,885	0,862	18.0	0,873	0,889	0,891	0,898	0,896	0,893	0,873
$b_{\rm l}(mm)$	13,952	13,717	13,688	12,93	13,327	13,328	13,637	13,637	13,622	13,592	13,547	13,354
$A_0(mm^2)$	14,9350	14,9228	14,9050	14,9249	14,9300	14,9369	14,9250	14,8523	14,9596	14,9036	14,9102	14,9016
$e_0(mm)$	1,000	1,002	1,000	1,001	1,000	1,001	1,000	0,994	1,004	1,003	1,005	1,007
$b_0(mm)$	14,935	14,893	14,905	14,910	14,930	14,922	14,925	14,942	14,900	14,859	14,836	14,798
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.22: 45 DKP 01 kodlu numunenin değerleri

$K(kN/mm^2)$	0,581	0,585	0,574	0,572	0,535	0,586			0,582	0,569	0,566	0,565
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,341											
$F_{ m max}(kN)$	5,106											
$n = \ln\left(A_0 / A_1\right)$	0,2082	0,2116	0,1996	0,1974	0,1596	0,2129			0,2087	0,1944	0,1914	0,1904
A_0/A_1	1,2315	1,2356	1,2209	1,2183	1,1731	1,2373	1,2496	1,2405	1,2321	1,2146	1,2109	1,2098
$A_{ m l} \left(mm^2 ight)$	12,1727	12,1394	12,2523	12,3078	12,7182	12,1502	12,0354	12,1085	12,1763	12,3448	12,3599	12,3897
$e_{\rm l}(mm)$	0,894	0,893	0,898	0,902	0,902	0,893	0,886	0,896	0,894	0,902	0,901	0,901
$b_{\rm l}(mm)$	13,616	13,594	13,644	13,645	14,1	13,606	13,584	13,514	13,62	13,686	13,718	13,751
$A_0(mm^2)$	14,9904	14,9995	14,9590	14,9940	14,9191	15,0330	15,0390	15,0210	15,0020	14,9940	14,9670	14,9887
$e_0(mm)$	1,006	1,006	1,000	1,001	0,997	1,002	1,002	1,002	1,000	1,000	1,000	1,004
$p_0(mm)$	14,901	14,910	14,959	14,979	14,964	15,003	15,009	14,991	15,002	14,994	14,967	14,929
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.23: 45 DKP 02 kodlu numunenin değerleri

$K(kN/mm^2)$		0,633	0,575	0,587	0,569	0,565	0,547	0,557	0,540	0,553		0,549
$\sigma_{\max}\left(kN \ / \ mm^2\right)$	0,348											
$F_{ m max}(kN)$	5,311											
$n = \ln\left(A_0 / A_1\right)$		0,2507	0,1870	0,1996	0,1807	0,1772	0,1590	0,1690	0,1521	0,1645		0,1603
A_0/A_1	1,3062	1,2850	1,2056	1,2210	1,1980	1,1939	1,1724	1,1842	1,1643	1,1788	1,1611	1,1739
$A_{ m l}\left(mm^2 ight)$	11,4719	11,8360	12,6321	12,4101	12,6890	12,8091	12,9907	12,9234	12,9843	13,0891	13,3192	13,0321
$e_1(mm)$	0,886	0,891	0,903	0,904	0,903	0,915	0,914	0,911	0,916	0,915	0,932	0,924
$b_{\rm l}(mm)$	12,948	13,284	13,989	13,728	14,052	13,999	14,213	14,186	14,175	14,305	14,297	14,104
$A_0 \left(mm^2 \right)$	14,9849	15,2090	15,2293	15,1523	15,2016	15,2924	15,2298	15,3035	15,1180	15,4300	15,4655	15,2981
$e_0(mm)$	1,002	1,014	1,014	1,008	1,008	1,011	1,005	1,009	1,000	1,014	1,013	1,005
$p_0(mm)$	14,955	14,999	15,019	15,032	15,081	15,126	15,154	15,167	15,118	15,217	15,267	15,222
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.24: 45 DKP 03 kodlu numunenin değerleri

$K(kN/mm^2)$		0,643	0,624	0,578	0,580	0,510	0,529	0,552	0,543	0,529	0,526	0,567
$\sigma_{\max}(kN/mm^2)$	0,352											
$F_{ m max}(kN)$	5,300											
$n = \ln\left(A_0 / A_1\right)$		0,2550	0,2344	0,1846	0,1865	0,1188	0,1370	0,1593	0,1503	0,1364	0,1339	0,1741
A_0/A_1	1,3774	1,2905	1,2641	1,2027	1,2051	1,1262	1,1469	1,1727	1,1622	1,1461	1,1432	1,1902
$A_{ m l}\left(mm^2 ight)$	10,7285	11,5615	11,9223	12,4910	12,4889	13,4368	13,2715	13,0143	13,1062	13,2304	13,0891	12,6720
$e_{\rm l}(mm)$	0,889	0,878	0,888	906'0	0,914	0,924	0,95	0,923	0,941	0,936	0,934	0,922
$p_l(mm)$	12,068	13,168	13,426	13,787	13,664	14,542	13,97	14,1	13,928	14,135	14,014	13,744
$A_0(mm^2)$	14,7777	14,9197	15,0711	15,0234	15,0499	15,1322	15,2205	15,2617	15,2316	15,1631	14,9640	15,0821
$e_0(mm)$	1,007	1,010	1,014	1,007	1,005	1,007	1,012	1,014	1,012	1,010	1,000	1,017
$b_0(mm)$	14,675	14,772	14,863	14,919	14,975	15,027	15,040	15,051	15,051	15,013	14,964	14,830
Ölçü Yeri	1	2	3	4	5	9	7	8	6	10	11	12

Tablo 4.25: 45 DKP 04 kodlu numunenin değerleri

$K(kN/mm^2)$		0,573	0,542	0,541	0,547	0,578	0,562	0,582	0,580	0,581	0,594	
$\sigma_{\max}(kN/mm^2)$	0,333											
$F_{ m max}(kN)$	5,010											
$n = \ln\left(A_0 / A_1\right)$		0,2126	0,1784	0,1775	0,1832	0,2183	0,2002	0,2228	0,2197	0,2214	0,2366	
A_0/A_1	1,1410	1,2369	1,1953	1,1943	1,2010	1,2439	1,2216	1,2495	1,2458	1,2478	1,2670	1,2817
$A_{ m l}\left(mm^2 ight)$	13,1360	12,1518	12,6014	12,6572	12,5726	12,1091	12,3478	12,0590	12,0618	12,0120	11,7888	11,5647
$e_{\rm l}(mm)$	10610	0,911	0,903	0,907	0,901	0,889	0,899	0,888	0,881	0,888	0,882	0,869
$b_{\rm l}(mm)$	14,537	13,339	13,955	13,955	13,954	13,621	13,735	13,58	13,691	13,527	13,366	13,308
$A_0 \left(mm^2 \right)$	14,9879	15,0310	15,0630	15,1162	15,1001	15,0629	15,0841	15,0681	15,0260	14,9889	14,9359	14,8222
$e_0(mm)$	0,997	0,999	1,000	1,003	1,002	0,999	1,001	1,001	1,000	1,002	1,001	0,999
$b_0(mm)$	15,033	15,046	15,063	15,071	15,070	15,078	15,069	15,053	15,026	14,959	14,921	14,837
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.26: 45 DKP 05 kodlu numunenin değerleri

$K(kN / mm^2)$	0,547		0,585	0,585				0,565	0,542	0,532	0,528	0,548
$\sigma_{\max}\left(kN / mm^2\right)$	0,324											
$F_{ m max}(kN)$	4,865											
$n = \ln\left(A_0 / A_1\right)$	0,2004		0,2461	0,2451				0,2222	0,1956	0,1845	0, 1797	0,2025
A_0/A_1	1,2219	1,2997	1,2790	1,2778	1,2987	1,3207	1,2825	1,2488	1,2161	1,2026	1,1969	1,2244
$A_{ m l}\left(mm^2 ight)$	12,4009	11,6652	11,7734	11,7092	11,5308	11,4034	11,6516	11,9712	12,3299	12,4007	12,5405	12,2153
$e_{\rm l}(mm)$	0,922	0,885	0,917	0,917	216,0	216,0	0,924	0,922	0,936	0,934	0,933	0,924
$b_{\rm l}(mm)$	13,45	13,481	12,839	12,769	12,602	12,49	12,61	12,984	13,173	13,277	13,441	13,22
$A_0(mm^2)$	15,1523	15,1618	15,0587	14,9618	14,9753	15,0606	14,9433	14,9494	14,9940	14,9128	15,0091	14,9566
$e_0(mm)$	1,008	1,012	1,007	1,003	1,006	1,012	1,005	1,005	1,008	1,002	1,008	1,004
$b_0(mm)$	15,032	14,982	14,954	14,917	14,886	14,882	14,869	14,875	14,875	14,883	14,890	14,897
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

Tablo 4.27: 90 DKP 01 kodlu numunenin değerleri

$K(kN / mm^2)$	0,552	0,568	0,589				0,576	0,551	0,548	0,527	0,529	0,541
$\sigma_{\max}(kN \ / \ mm^2)$	0,320											
$F_{\max}(kN)$	4,810											
$n = \ln\left(A_0 / A_1\right)$	0,2147	0,2333	0,2595				0,2434	0,2135	0,2095	0,1856	0,1873	0,2013
A_0/A_1	1,2395	1,2628	1,2963	1,3346	1,3181	1,3405	1,2756	1,2380	1,2330	1,2039	1,2060	1,2229
$A_{ m l} \left(mm^2 ight)$	12,1594	11,9652	11,6207	11,2843	11,3061	11,2128	11,7753	12,1611	12,2227	12,3221	12,4190	12,2787
$e_{\rm l}(mm)$	0,917	0,914	0,903	868,0	268,0	0,888	0,906	0,919	0,917	0,921	0,923	0,914
$b_{\rm l}(mm)$	13,26	13,091	12,869	12,566	12,675	12,627	12,997	13,233	13,329	13,379	13,455	13,434
$A_0(mm^2)$	15,0710	15,1092	15,0641	15,0600	14,9029	15,0310	15,0200	15,0551	15,0711	14,8348	14,9770	15,0160
$e_0(mm)$	1,004	1,005	1,003	1,004	0,993	1,001	0,999	1,002	1,003	0,988	0,999	1,002
$p_0(mm)$	15,011	15,034	15,019	15,000	15,008	15,016	15,035	15,025	15,026	15,015	14,992	14,986
Ölçü Yeri	1	2	3	4	5	9	L	8	6	10	11	12

değerleri
numunenin
02 kodlu
0 DKP
Tablo 4.28: 9

$K(kN / mm^2)$	0,536	0,531	0,520	0,537	0,537	0,544	0,568	0,564	0,578			
$\sigma_{\max}(kN \ / \ mm^2)$	0,329											
$F_{ m max}(kN)$	4,963											
$n = \ln\left(A_0 / A_1\right)$	0,1806	0,1748	0,1633	0,1811	0,1816	0,1886	0,2164	0,2115	0,2278			
A_0/A_1	1,1980	1,1911	1, 1774	1,1985	1,1992	1,2075	1,2417	1,2355	1,2558	1,2679	1,2664	1,2453
$A_{\rm l}(mm^2)$	12,6482	12,6911	12,7305	12,6408	12,6517	12,4867	12,0997	12,2158	12,0429	11,9352	11,9288	12,0818
$e_{\rm l}(mm)$	0,917	0,924	0,931	0,926	0,93	0,927	0,909	0,918	0,914	206.0	606.0	816,0
$b_{\rm l}(mm)$	13,793	13,735	13,674	13,651	13,604	13,47	13,311	13,307	13,176	654.81	13,123	13,461
$A_0 \left(mm^2 \right)$	15,1522	15,1160	14,9891	15,1503	15,1714	15,0778	15,0237	15,0931	15,1232	15,1323	15,1067	15,0450
$e_0(mm)$	1,002	1,000	0,992	1,003	1,003	966,0	966'0	1,001	1,003	1,003	966,0	1,001
$b_0(mm)$	15,122	15,116	15,110	15,105	15,126	15,108	15,084	15,078	15,078	15,087	15,137	15,030
Ölçü Yeri	1	2	3	4	5	9	7	8	6	10	11	12

Tablo 4.29: 90 DKP 03 kodlu numunenin değerleri

$K(kN / mm^2)$	0,520	0,545	0.530	0,538	0,541	0,564	0,571	285,0	0,586			
$\sigma_{ m max} \left(kN / mm^2 ight)$	0,331											
$F_{ m max}(kN)$	5,000											
$n = \ln\left(A_0 / A_1\right)$	0,1604	0,1868	0,1708	0, 1793	0,1827	0,2072	0,2155	0,2337	0,2333			
A_0/A_1	1,1739	1,2054	1,1863	1,1964	1,2005	1,2302	1,2404	1,2633	1,2628	1,2967	1,3436	1,3056
$A_{\rm l}(mm^2)$	12,7926	12,8481	12,7246	12,6319	12,6102	12,3144	12, 1780	11,9665	11,9353	11,5573	11,2633	11,5420
$e_{\rm l}(mm)$	0,927	156,0	0,932	0,928	0,929	0,917	0,92	0,91	0,912	2060	268,0	206,0
$p_{\rm l}(mm)$	13,8	13,712	13,653	13,612	13,574	13,429	13,237	13,15	13,087	12,813	12,627	12,796
$A_0 \left(mm^2 \right)$	15,0175	15,4875	15,0950	15,1131	15,1383	15,1494	15,1062	15,1172	15,0721	14,9858	15,1333	15,0691
$e_0(mm)$	0,995	1,026	1,000	1,001	1,003	1,004	1,002	1,003	1,001	0,996	1,005	1,003
$b_0(mm)$	15,093	15,095	15,095	15,098	15,093	15,089	15,076	15,072	15,057	15,046	15,058	15,024
Ölçü Yeri	1	2	3	4	5	9	7	8	6	10	11	12

Tablo 4.30: 90 DKP 04 kodlu numunenin değerleri
Tüm malzemelerde, her üç doğrultuda Reihle metoduna göre hesaplanan değerlerden elde edilen sonuçlarla ASTM 646 – 00 deney metodundan elde edilen sonuçların uygun olduğu görülmektedir.

Fakat Reihle metodunda bazı bölgelerdeki değerlerin hesaba katılması sonuçları önemli derecede etkilemektedir. Bu bölgelerden biri, şekil değişiminin homojenliğini kaybettiği büzülme bölgesiyken, diğeri şekil değişimine katılamamış çekme çenelerine yakın bölgelerdir. Bu bölümlerin belirlenmesi oldukça öznel bir durum olması, başka bir araştırmacının aynı işlemleri yapması halinde farklı sonuçların bulunabileceği ihtimaliyle deneylerin yorumlanmasında ASTM metodu kullanılmıştır.

4.2 ASTM E 646-00 Deney Metodu

Bir önceki bölümde bahsi geçen deney yöntemine ek olarak ASTM ' nin en son Mayıs 2000 'de revize ettiği 646-00 test metodu hem karşılaştırma hem de doğrulama amacıyla kullanılmıştır. Uygulanan bu yöntem için de soğuk olarak haddelenmiş saçlar kullanılmıştır. Saç levhalardan numune ekseni Şekil 4.4 'te görüldüğü gibi haddeleme yönünde, haddeleme yönüne dik ve haddeleme yönüyle 45° açı yapacak şekilde önce giyotin makasta dikdörtgen şeklinde parçalar kesilmiştir.

Şekil 4.4: Numunelerin saç üzerindeki konumu

Bu parçalar daha sonra aynı doğrultuda kesilenler bir arada olacak şekilde frezeye bağlanıp, ilgili standardın önerdiği ve Şekil 4.6 'da gösterilen ölçülerde talaş

kaldırılarak hazırlanmıştır. Numune doğrultularının birbirlerine karışmaması için numunelere şekil 4.5 teki gibi kodlama yapılmıştır.

Şekil 4.5: Numune kodlaması

Hazırlıkları biten numuneler 5 mm/dk sabit çekme hızına ayarlanmış Dartec marka 600 kN üniversal çekme makinesinde çekme deneyine tabi tutulmuştur. Uygulanan yük 60 kN kapasiteli load-cell ile ölçülüp kaydedilirken, numunelerin gösterdiği şekil değiştirme ise LVDT ile ölçülüp kaydedilmiştir. Deney esnasında hassasiyet amacıyla her 0,11 saniyede 1 veri kaydedilecek şeklide cihaz ayarlanmıştır. Tüm numunelere kopana kadar çekme deneyi uygulanmıştır.

Şekil 4.6: Çekme numunesi[1]

Tablo 4.31: Çekme numunesinin ölçüleri [1]

B (mm)	L (mm)	A (mm)	G (mm)	w (mm)	c (mm)
50	200	60	50	12,5	20

Her bir doğrultu için yapılan beş adet çekme deneyi sonucunda gerçek gerilme (σ)gerçek şekil değiştirme (ε) diyagramları çizilmiştir.

$$\sigma_n = \frac{F}{A_0} \text{ ve } e = \frac{l - l_0}{l_0} \text{ ise}$$
(4.9)

$$\varepsilon = \ln \frac{l}{l_0}$$
 ve $e = \frac{l}{l_0} - \frac{l_0}{l_0}$ (4.10)
 $\frac{l}{l_0} = e + 1$ (4.11)

$$\varepsilon = \ln(e+1)$$
 ve $\sigma = \sigma_n(e+1)$

elde edilir. Holloman bağıntısı [8]

$$\sigma = K \varepsilon^n$$

bu ifadenin logaritması alındığında

$$\log \sigma = \log K + n \log \varepsilon$$

(4.14)

(4.13)

haline dönüşür.

Yukarıda logaritması alınan ifade doğru denklemine benzer,

$$y = ax + b$$

(4.15)

Bu ifadede *a* doğrunun eğimidir. Logaritmik koordinatlarda çizilen gerçek gerilme gerçek şekil değiştirme diyagramları da bir doğru halini almakta ve bu doğrunun eğimi pekleşme üstelini vermektedir. Fakat çekme deneyinde elde edilen gerilme ve şekil değiştirme verileri çok fazla olduğu için bu verilere uyan doğru denklemi en küçük kareler yöntemi ile elde edilir. Hesaba katılan veri sayısı N ise bu yöntem şu şekildedir;

$$Fonk = \sum_{i=1}^{N} [y_i - (ax_i + b)]^2$$
(4.16)

$$\frac{\partial Fonk}{\partial a} = aN + b\sum_{i=1}^{N} x_i - \sum_{i=1}^{N} y_i = 0$$
(4.17)

$$\frac{\partial Fonk}{\partial b} = a \sum_{i=1}^{N} x_i + b \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} x_i y_i = 0$$
(4.18)

Denklem çözülüp katsayılar bulunduğunda, a yani pekleşme üsteli olan n;

$$a = n = \frac{N \sum_{i=1}^{N} (\log x_i \log y_i) - \left(\sum_{i=1}^{N} \log x_i \sum_{i=1}^{N} \log y_i\right)}{N \sum_{i=1}^{N} (\log x_i)^2 - \left(\sum_{i=1}^{N} \log x_i\right)^2}$$
(4.19)

elde edilir. Deneyde x değişkeni şekil değişimi yani ε ve y değişkeni ise gerçek gerilme yani σ olduğuna göre, pekleşme üsteli

$$n = \frac{N \sum_{i=1}^{N} (\log \varepsilon_i \log \sigma_i) - \left(\sum_{i=1}^{N} \log \varepsilon_i \sum_{i=1}^{N} \log \sigma_i\right)}{N \sum_{i=1}^{N} (\log \varepsilon_i)^2 - \left(\sum_{i=1}^{N} \log \varepsilon_i\right)^2}$$
(4.20)

ve mukavemet katsayısı

$$K = \exp\left[\frac{\sum_{i=1}^{N} y_i - n \sum_{i=1}^{N} x_i}{N}\right]$$
(4.21)

şeklinde hesaplanmaktadır.

Pekleşme üstelinin hesaplanması için gerçek gerilme – gerçek şekil değiştirme eğrilerinden akma noktası ile maksimum yükün uygulandığı nokta arasındaki veriler kullanılmıştır.

Deneyde bazı numuneler ölçü boyu dışında kalan bir bölgeden kopmuşlardır. Bu numuneler hesaplamalarda kullanılmamıştır.

Deney sonucunda numunelerden ölçülen kopma uzamaları ve maksimum yükteki uzamalarla hesaplanan pekleşme üsteli değerleri Tablo 5.1 'de verilmiştir.

5. BULGULAR

	Ort n ASTM	Ort. % Kop. Uzaması	Maks. Yükteki Ort. % Uzama
0Al	0,0384	3,360	1,94
45Al	0,0319	2,80	1,72
90Al	0,0200	2,80	1,42
Ort Al	0,0306	3,07	1,69
45CuZn	0,2857	40,00	34,30
0CuZn	0,2845	38,50	34,00
90CuZn	0,2612	28,00	25,90
Ort CuZn	0,2793	35,50	31,89
0DKP	0,2562	42,00	34,30
90DKP	0,2468	35,60	25,16
45DKP	0,2325	34,40	24,90
Ort DKP	0,2420	37,33	28,45
0409	0,2942	25,64	15,37
45409	0,2751	23,39	15,03
90409	0,2748	23,24	14,37
Ort 409	0,2798	24,09	14,92
0430	0,2427	29,40	21,42
45430	0,2361	29,20	21,10
90430	0,2355	28,40	20,08
Ort 430	0,2376	29,00	20,87

Tablo: 5.1 ASTM yöntemi ile hesaplanan pekleşme üsteli, kopma uzaması ve maksimum yükteki uzama değerleri

Tablo 5.2: ASTM ve Reihle metoduna göre yapılan deneylerden elde edilen pekleşme üsteli,

kopma uzaması ve maksimum yükteki uzama değerleri

	Ort n	Ort n	Ort. % Kop.	Maks Yükteki Ort.
	Reihle	ASTM	Uzaması	% Uzama
45CuZn	0,2679	0,2857	40,00	34,30
0CuZn	0,2768	0,2845	38,50	34,00
90CuZn	0,2416	0,2612	28,00	25,90
Ort CuZn	0,2635	0,2793	35,50	31,89
0DKP	0,2220	0,2562	42,00	34,30
90DKP	0,2036	0,2468	35,60	25,16
45DKP	0,1898	0,2325	34,40	24,90
Ort DKP	0,2013	0,2420	37,33	28,45

1145 Al malzeme, Tablo 5.1 'den de görülebildiği üzere, hem ortalama pekleşme üsteli (0,0306), hem ortalama % kopma uzaması (3,07), hem de ortalama maksimum yükteki % uzama (1,69) bakımından en son sıradadır.

Şekil 5.1: 1145 Al malzeme için pekleşme üsteli ve % kopma uzaması

1145 alüminyum malzemede Şekil 5.1 ve 5.2 'ye göre ölçülen en büyük pekleşme üsteli değeri (0,0384) haddeleme doğrultusuna paralel (0°) doğrultuda hazırlanan numunelerde görülürken, en küçük pekleşme üsteli değeri (0,0200) haddelemeye dik (90°) doğrultuda hazırlanan numunelerde görülmüştür. Pekleşme üsteli değerinin Şekil 5.1 'e göre 0,0200 den 0,0384'e artması % kopma uzamasını 2,80 'den 3,60 değerine yükselmiştir.

Pekleşme üstelindeki bu artış Şekil 5.2 'ye göre maksimum yükteki % uzamayı 1,42 değerinden 1,94 değerine arttırmıştır.

Şekil 5.2: 1145Al malzeme için pekleşme üsteli ve maksimum yükteki % uzama grafiği

Al malzemede diğer malzemelere kıyasla en küçük uzama değerleri ölçülmüştür. Yaklaşık $1 \sim 2$ mm uzama gösterdikten sonra numunelerde hasar gözlenmiştir. Bu küçük uzama değerleri sebebiyle Al malzeme için ölçülen kopma uzaması değerlerinin hassasiyeti diğer malzemelere göre daha azdır. Bu sebeple kopma uzaması değeri bakımından haddeleme doğrultusu ile 90° ve 45° açı yapan numunelerde aynı değer okunmuştur. Tablo 5.1 e göre C26800 malzemede ölçülen ortalama pekleşme üsteli değeri (0,2793) tüm malzemeler içinde ikinci en büyük değerdir.

Şekil 5.3: CuZn C26800 malzeme için pekleşme üsteli ve % kopma uzaması grafiği

Şekil 5.3 ve 5.4 'e göre bu malzemeden elde edilen en büyük pekleşme üsteli değeri (0,2857) ise haddeleme doğrultusuna ile 45° açı yapan numunelerde görülürken en küçük pekleşme üsteli değeri (0,2612) haddeleme doğrultusuyla 90° açı yapan numunelerde ölçülmüştür.

Şekil 5.4: CuZn C26800 malzeme için pekleşme üsteli ve maksimum yükteki % uzama grafiği

C26800 malzemede pekleşme üsteli değerinin 0,2612 'den 0,2857 'ye artmasıyla Şekil 5.3 'te görüldüğü gibi % kopma uzaması değeri 28,00 'den 40,00 'e yükselmiştir.

Ayrıca pekleşme üstelindeki bu artış Şekil 5.4 'te de görüldüğü üzere maksimum yükteki % uzama değerini de 25,90 'dan 34,30 'a artmıştır.

DKP 1005 çelik saç Tablo 5.1 'e göre ortalama pekleşme üsteli (0,2420) bakımından üçüncü büyük, maksimum yükteki ortalama % uzama (28,45) bakımından ikinci büyük malzeme olmasına rağmen ortalama % kopma uzaması (37,33) bakımından en büyük malzemedir. Bu malzemede hesaplanan en büyük pekleşme üsteli (0,2562) değeri haddeleme doğrultusuna paralel (0°) yönde hazırlanan numunelerde görülürken en küçük pekleşme üsteli (0,2325) değeri ise haddeleme doğrultusuyla 45° açı yapan numunelerde görülmüştür.

Şekil 5.5: DKP 1005 malzeme için pekleşme üsteli ve %kopma uzaması grafiği

Şekil 5.6: DKP 1005 malzeme için pekleşme üsteli ve maksimum yükteki % uzama grafiği

DKP 1005 çelik malzemede deneyler sonucunda hesaplanan pekleşme üsteli değerlerinin 0,2325'ten, 0,2562 'ye artmasıyla Şekil 5.5 'te görüldüğü gibi % kopma uzaması 34,40 'tan, 42,00'e yükselmektedir. Ayrıca pekleşme üstelindeki bu artış Şekil 5.6 'ya göre maksimum yükteki % uzama değerini de 28,45 'ten, 34,30 'a çıkmaktadır.

409 Paslanmaz çelik malzemede yapılan deneyler sonucunda Tablo 5.1 'e göre deneyi yapılan tüm malzemeler içinde en büyük ortalama pekleşme üsteli (0,2798) değerine sahip olan malzeme iken gerek ortalama % kopma uzaması (24,09) ve gerekse maksimum yükteki ortalama % uzama (14,92) bakımında sondan ikinci malzemedir.

Şekil 5.7 ve 5.8 'e göre haddeleme yönüne paralel yönde (0°) hazırlanan numunelerde ölçülen pekleşme üsteli (0,2942) değeri diğer yönlerde hesaplanan pekleşme üsteli değerlerine göre en büyük değerdir. Bu malzemede hesaplanan en küçük pekleşme üsteli (0,2748) değeri ise haddeleme doğrultusuna dik (90°) yönde hazırlanan numunelerdedir.

Şekil 5.7: 409 paslanmaz çelik malzeme için pekleşme üsteli ve % kopma uzaması grafiği

Şekil 5.8: 409 paslanmaz çelik malzeme için pekleşme üsteli ve maksimum yükteki % uzama grafiği

409 paslanmaz çelik malzemeden ölçülen pekleşme üsteli değerlerinin Şekil 5.7 'den de görüldüğü gibi 0,2748 'den, 0,2942 'ye artmasıyla malzemenin göstermiş olduğu kopma uzaması değerleri de 23,24 'ten, 25,64 'e yükselmiştir.

Benzer durum Şekil 5.8 'den de görüldüğü gibi maksimum yükteki uzama değerlerinde de gözlenmiş ve bu değerler 14,37 'den, 15,37 'ye artmıştır.

430 paslanmaz çelik numunede ölçülen ortalama pekleşme üsteli (0,2376) değeri bakımından sondan ikinci, gerek ortalama % kopma uzaması (29,00), gerekse maksimum yükteki ortalama % uzama (20,87) bakımından sondan üçüncüdür.

Bu malzemeden elde edilen değerlere göre en büyük pekleşme üsteli (0,2427) değeri haddeleme doğrultusuna paralel (0°) yönde hazırlanan numunelerde görülürken en küçük pekleşme üsteli (0,2355) değer ise haddeleme yönüne dik (90°) yönde hazırlanan numunelerde görülmüştür.

Şekil 5.9: 430 paslanmaz çelik malzeme için pekleşme üsteli ve % kopma uzaması grafiği

Şekil 5.10: 430 paslanmaz çelik malzeme için pekleşme üsteli ve maksimum yükteki % uzama grafiği

430 paslanmaz çelik malzemede yapılan deneyler sonucunda Şekil 5.9 'dan görüldüğü gibi pekleşme üsteli değerlerinin 0,2355 'ten, 0,2427 'ye artmasıyla % kopma uzaması değerleri 28,40 'tan, 29,40 'a yükselmektedir.

Benzer biçimde Şekil 5.10' dan görüldüğü gibi artan pekleşme üsteli değerleri maksimum yükteki % kopma uzaması değerlerini de 20,08 'den, 21,42 'ye yükseltmektedir.

Şekil 5.11 Pekleşme Üstelinin % kopma uzamasına etkisi

Şekil 5.11 'den görüldüğü gibi tüm malzemelerin deneyleri sonucunda elde edilen veriler ışığında hazırlanan ortalama pekleşme üsteli ve ortalama % kopma uzaması diyagramında alüminyum malzeme hem pekleşme üsteli hem de kopma uzaması bakımından en küçük değerlere sahiptir.

Fakat 409 paslanmaz çelik malzemede en büyük pekleşme üsteli değerinin bulunmasına rağmen kopma uzamasında en büyük değer elde edilmemiştir. Benzer şekilde en büyük kopma uzaması ölçülen DKP çelik malzemede de en büyük pekleşme üsteli değeri bulunmamıştır. Çekme deneyi yapılan sünek malzemelerde maksimum yük uygulandıktan sonra şekil değişimi homojenliğini kaybetmektedir ve büzülme (kesit daralması) oluşmaktadır. Şekil değişiminin homojenliğini kaybetmesiyle kopma uzamasının pekleşme üsteli ile doğrudan ilişkilendirilmemesi gerekmektedir.

Şekil 5.12: Pekleşme üstelinin maksimum yükteki % uzamaya etkisi

Pekleşme üsteli ile maksimum yükteki % uzama arasında çizilen diyagramda (Şekil 5.12) görüldüğü gibi, alüminyum numune pekleşme üsteli ve maksimum yükteki % uzama bakımından yine en düşük değeri almıştır.

C26800 malzeme ise maksimum yükteki % uzama bakımından en büyük değerde olduğu gibi, pekleşme üsteli de en yüksek değeri veren 409 paslanmaz çeliğinkine eşit kabul edilecek kadar yakındır (0,2793 ve 0,2798 Tablo 5.1).

Daha önce de belirtilmiş olduğu gibi, gerçek gerilme – gerçek şekil değiştirme eğrileri logaritmik koordinatlarda çizildikleri taktirde doğruya dönüşmüşlerdir. Akma

sınırı ile gerçek çekme dayanımı arasında bu doğrunu eğimi pekleşme üstelidir. Gerek gerilme gerekse şekil değişimi birer malzeme özelliğidir. Bu sebeple pekleşme üstelinin hesaplanmasında her malzemede farklı olan gerilme ve şekil değiştirme değerleri kullanılmaktadır. Bu sebeple aynı malzemelerin karşılaştırılması esnasında artan pekleşme üsteli değeri maksimum noktaya kadar olan uzamayı arttırmaktadır. Kopma uzaması maksimum noktaya kadar olan uzama ve büzülme esnasında meydana gelen uzamanın toplamıdır. Bu sebeple maksimum noktaya kadar olan uzama ne kadar çok ise kopma uzaması da o kadar çok olacaktır. Sonuçta pekleşme üstelindeki artış malzemenin maksimum noktaya kadar olan uzamasını arttırdığı için kopma uzamasını da arttırmaktadır.

430 ve 409 paslanmaz çeliklerle alüminyumda pekleşme üsteli değerleri büyükten küçüğe doğru sıralanırsa, numunelerin haddeleme doğrultusuyla 0°,45° ve 90° açı yaptığı sıralamada olduğu görülür. Diğer malzemelerde ise bu sıra değişmektedir. Yani haddeleme doğrultusuna göre hep aynı doğrultuda en büyük mukavemet değerleri elde edilmemektedir. Bunun sebebi ise malzemelerin haddeleme geçmişleridir. Haddeleme parametrelerine göre malzemenin mukavemet ve süneklik değerleri farklı doğrultulara göre farklı değerler alabilmektedir [5,6].

6. SONUÇLAR

Çalışmada elde edilen sonuçlar aşağıda maddeler halinde verilmiştir:

- Numune doğrultusuna göre pekleşme üstelinin artması kopma uzamasını arttırmaktadır.
- Numune doğrultusuna göre pekleşme üstelinin artması maksimum yükteki uzamayı arttırmaktadır.
- Maksimum yükteki uzama değerlerinin sıralaması kopma uzaması değerlerinde de aynen korunmaktadır.
- 1145 alüminyum, 409 ve 430 paslanmaz çelik malzemeden doğrultulara göre hesaplanan pekleşme üsteli değerleri büyükten küçüğe doğru sıralanırsa n₀>n₄₅
 >n₉₀ olduğu gözlenirken, DKP 1005 ve CuZn C26800 malzeme bu sıralama farklıdır. Bu fark, malzemelerin haddeleme geçmişlerine bağlıdır.
- Malzemelerde maksimum yükten sonra oluşan büzülme bölgesinde şekil değişiminin üniform olmaması sebebiyle, pekleşme üsteli değerinin kopma uzamasını doğrudan etkileyen bir değişken olmadığı, pekleşme üstelinin maksimum noktaya kadar olan uzamayı doğrudan etkilediği anlaşılmaktadır.

KAYNAKLAR

- 1. ASTM E 646 00, Standard Test Method for Tensile Strain Hardening Exponents (n values) of Metallic Sheet Materials, *ASTM Standarts*, 2000
- 2. Bowen A W, Partridge P G, Limitations of the Hollomon strain-hardening equationt, *J. Phys. D: Appl. Phys.*, Vol. 7, 1974
- 3. Chang T., Guo W., Effects of strain hardening and stress state on fatigue crack closure, *International Journal of Fatigue* 21 (1999) 881–888
- Çapan L., Silindirik Kapların Derin Çekilmesinde Anizotropinin Etkisi, Doçentlik Tezi, *İTÜ* 1979
- 5. Çapan L., Metallere Plastik Şekil Verme, Çağlayan Kitabevi, 2003
- 6. Dieter G E (Jr), Mechanical Metallurgy, *McGraw-Hill* 1961
- 7. Douthit T.J., Van Tyne C.J., The effect of nitrogen on the cold forging properties of 1020 steel, *Journal of Materials Processing Technology* 160 (2005) 335–347
- 8. Hollomon J H Trans. Metall. Soc. AZME 162 268-90 1945
- 9. Huang M., Luo J., He B., Proceedings of the Fourth International Conference on the Mechanical Behavior of Material, vol. 2, *Pergamon Press, Oxford*, 1984.
- Kim H.K., Kim W.J., Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation, *Materials Science and Engineering A* 385 (2004) 300–308
- 11. Kristensson Ola, Numerically produced forming limit diagrams for metal sheets with voids considering micromechanical effects, *European Journal of Mechanics A/Solids*
- 12. Low JR 1949, Properties of Engineering Materials, ASM pp 17-59
- 13. Marin J, Mechanical Behaviour of Engineering Materials, Prentice-Hall, 1962
- Martin E., Forn A., Nogué R. ,Strain hardening behaviour and temperature effect on Al-2124/SiCp *Journal of Materials Processing Technology* 143–144 (2003) 4

- Nagarjuna S., Srinivas M., Balasubramanian K., Sarma D. S., Effect of Modulations on Yield Stres and Strain Hardening Exponent of Solution Treated Cu-Ti Alloys *Scripta Materialia*, Vol. 38, No. 9, pp. 1469–1474, 1998
- 16. Narayanasamy R., Ramesh T., Pandey K.S. ,Some aspects on strain hardening behaviour in three dimensions of aluminium–iron powder metallurgy composite during cold upsetting, *Materials and Design*, 2005
- Narayanasamy R., Ramesh T., Pandey K.S. An investigation on instantaneous strain hardening behaviour in three dimensions of aluminium-iron composites during cold upsetting, *Materials Science and Engineering A* 394 (2005) 149– 160
- Praveen K.V.U., Sastry G.V.S., Singh V. Work Hardening Behaviour of The Ni-Fe BasedD Superalloy IN 718 *International Symposium of Research Students on Material Science and Engineering* December 20-22, 2004, Chennai, India
- 19. REIHLE, M., Verfahren zur Ermittlung der Fliesskurve von Stahle aus der Gleichmassdehnung und der Zugfestigkeit, Blench Nr. II, 1961, pp 828-833
- Selvakumar N., Narayanasamy R., Phenomenon of strain hardening behaviour of sintered aluminium preforms during cold axial forming *Journal of Materials Processing Technology* 142 (2003) 347–354
- 21. ŞENALP, A.Z. Metal Şekillendirme ve Plastisite Teorisi Ders Notları, *Gebze Yüksek Teknoloji Enstitüsü*, 2005
- 22. Toloczko M.B., Hamilton M.L., Lucas G.E., Ductility correlations between shear punch and uniaxial tensile test data, *Journal of Nuclear Materials* 283-287 (2000) 987-991
- 23. Yang B., Riester L., Nieh T.G., Strain hardening and recovery in a bulk metallic glass under nanoindentation , *Scripta Materialia* 54 (2006) 1277–1280
- 24. Yang J., Putatunda S. K., Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI), Materials Science and Engineering A 382 (2004) 265–279

ÖZGEÇMİŞ

21.12.1980 İstanbul doğumlu Ersin Asım GÜVEN, eğitim hayatına İstanbul ili, Fatih ilçesinde bulunan Hırka-i Şerif ilkokulu'nda başlayıp daha sonra yine aynı semtte bulunan Oruçgazi Orta Okulu ve Özel Oğuzkaan Koleji'nde devam ederek ilk ve orta öğrenimini tamamlamıştır.

2000 yılında girdiği Kocaeli Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümünden 2004 yılında Makine Mühendisi olarak mezun olmuştur.

2004-2005 eğitim öğretim yılında Kocaeli Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Ana Bilim Dalında yüksek lisans eğitimine başlamıştır. Halen bu eğitimine devam etmektedir.

2004 yılı Kasım ayından itibaren Kocaeli Üniversitesi Fen Bilimleri Enstitüsü'nde kadrolu olarak Makine Mühendisliği, Makine Malzemesi ve İmalat Teknolojileri Ana Bilim Dalı'nda Araştırma Görevlisi olarak akademik çalışmalarına devam etmektedir.