KOCAELİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

REFAHİYE (ERZİNCAN) META-OFİYOLİTİ'NİN NİTELİĞİ VE JEOLOJİK EVRİMİ

YÜKSEK LİSANS

Jeoloji Müh. İsmail Emir ALTINTAŞ

Anabilim Dalı: Jeoloji Mühendisliği Danışman: Yrd. Doç. Dr. Ömer Faruk ÇELİK

KOCAELİ, 2011

KOCAELİ ÜNİVERSİTESİ * FEN BİLİMLERİ ENSTİTÜSÜ

REFAHİYE (ERZİNCAN) META-OFİYOLİTİ'NİN NİTELİĞİ VE JEOLOJİK EVRİMİ

YÜKSEK LİSANS TEZİ

Jeoloji Müh. İsmail Emir ALTINTAŞ

Tezin Enstitüye Verildiği Tarih: 03 HAZİRAN 2011 Tezin Savunulduğu Tarih: 27 HAZİRAN 2011

Tez Danışı Ved Des De Örsen İ	manı Famil CELİV
Y ru.Doç.Dr. Omer	Faruk ÇELIK
(Č.).)
Üye	Üye
Prof.Dr. Ömer Feyzi GÜRER /	Doç.Dr. Gültekin TOPUZ
() >	(Lepollus)
	V

KOCAELİ, 2011

ÖNSÖZ

Refahiye Meta-ofiyoliti dünit, harzburjit ve onları kesen meta-gabro, amfibolit ve meta-plajiyogranit sokulumlarından oluşmaktadır. Yaşı bugüne kadar yapılan çalışmalarda Üst Kretase olarak geçen birimin yaşı bu tez çalışması sonucunda Jura olarak ortaya konulmaktadır.

Bu çalışma TÜBİTAK 109Y059 numaralı proje tarafından desteklenmiştir. Tez konusunun belirlenmesi ve tezin yazılması süresince bana yardım eden hocam Doç. Dr. Gültekin Topuz'a teşekkür ederim.

Lisans eğitimimden başlayarak benimle ilgilenen, mesleğime olan sevgimin ve saygımın kaynağı olan, fikir ve önerileriyle bana yol gösteren danışman hocam Yrd. Doç. Dr. Ömer Faruk Çelik'e teşekkür ederim.

Tezin oluşum süreci boyunca, araziden laboratuara kadar her an birlikte çalıştığım ve yardımlarını benden asla esirgemeyen arkadaşlarım Gönenç Göçmengil ve Mutlu Özkan'a; hiç bir zaman desteklerini benden esirgemeyen arkadaşlarım Zeynep Erdem'e, Seden Baltacıbaşı'na, Esra Çetin'e, Nalan Lom'a, Doğuşhan Kılıç'a, Semih Can Ülgen'e, Müge Apaydın'a, Fatma Gülmez'e, Tunç Demir'e, Mahigül Rüzgar'a, Özlem Yıldız'a, Kenan Akbayram'a, Korhan Erturaç'a, Pınar Gutsuz'a ve Dursun Acar'a teşekkür ederim.

Hayatımın iyi ve kötü, her anında yanımda olan değerli dostlarım Seyhan Argun'a, Gürkan Okat'a ve Sevinç Zeynep Özaydın'a teşekkür ederim.

Doğduğum ilk günden itibaren, maddi ve manevi hiçbir desteği esirgemeden her zaman yanımda olan annem Mehtap Altıntaş'a ve babam Adnan Altıntaş'a teşekkür ederim.

Bana verdiği sonsuz sevgi, huzur ve mutluluk için Sinem Gürgöl'e teşekkür ederim.

İÇİNDEKİLER

ÖNSÖZ	i
İÇİNDEKİLER	ii
ŞEKİLLER DİZİNİ	iv
TABLOLAR DİZİNİ	ix
SİMGELER	X
ÖZET	xii
İNGİLİZCE ÖZET	. xiii
1. GİRİŞ	1
1.1. Çalışmanın Amacı	2
1.2. Bölgesel Jeoloji	2
1.3. Yöntem	3
1.3.1. Saha çalışmaları	3
1.3.2. Labaratuar çalışmaları	4
1.3.3. Büro çalışmaları	9
2. GENEL JEOLOJİ	10
2.1. Refahiye Meta-ofiyoliti	11
2.2. Kurtlutepe Metamorfitleri	15
2.3. Ofiyolitik Melanj	18
2.4. Gazipınarı Kırıntılı Kayaları	21
2.5. Onarı Formasyonu	22
2.6. Kadıköy Formasyonu	24
3. PETROGRAFİ ve MİNERAL KİMYASI	25
3.1. Refahiye Meta-ofiyoliti	25
3.1.1. Dunit	26
3.1.2. Serpantinize peridotit	26
3.1.3. Meta-gabro	30
3.1.4. Amfibolit	30
3.1.5. Meta-plajiyogranit	44
3.1.6. Klinopiroksenit	46
3.1.7. Serpantinit	54
3.1.8. Listvenit	55
3.2. Kurtlutepe Metamorfitleri	55
3.2.1. Yeşilşist	56
3.2.2. Mermer	60
3.2.3. Kalkfillat	60
3.2.4. Meta-gabro	61
3.2.5. Meta-marn	61
3.2.6. Meta-volkanoklastik	62
3.2.7. Meta-kumtaşı	63
4. JEOKİMYA	64
4.1. Refahiye Meta-ofiyoliti	64
4.1.1. Serpantinleşmiş peridotitler ve klinopiroksenit	64
4.1.2. Tip I gabro, gabroik pegmatit ve meta-plajiyogranit	67

4.1.3. Tip II gabro	71
4.1.4. Bazalt	
4.2. Kurtlutepe Metamorfitleri ve Ofiyolitik Melanj	
4.2.1. Kurtlutepe metamorfitleri	
4.2.2. Ofiyolitik melanj	
5. JEOKRONOLOJİ	
6. JEOLOJİK EVRİM	
7. SONUÇLAR	
KAYNAKLAR	
EKLER	
ÖZGEÇMİŞ	

ŞEKİLLER DİZİNİ

Şekil 1.1:	Türkiye kenet kuşakları (Okay ve Tüysüz, 1999) ve çalışma alanı yer bulduru haritası (İAEK: İzmir-Ankara- Erzincan Kenedi)
Sekil 2.1:	Calısma alanının genellestirilmis stratigrafik kesidi
Sekil 2 2	Calisma alanına ait ieoloji haritası
Sekil 2 3	Peridotiti kesen ve vaklasık kalınlığı hir metre olan meta-nlaiiyogranit
Ş U RH 2 .5.	sokulumu (37S 0479131 D 4410631 K) 12
Sehil 2 1.	Birbirini kesen gabroik kökenli iki amfibolit (Amf I ve Amf II:
ŞCKII 2.4.	Amfibolit Peg: Pegmatit Pla: Meta-plaivograpit) (378 0480787 D
	A_{107351} K) (375 040707 D,
Sekil 2 5.	Mikro gabro icinde negmatitik hölümler ve klorit damarları (37 S
ŞCKII 2.5.	WINTO gabio lefinde peginatulk bolumier ve klotit damanari $(57, 5)$ 0488652 D 4407200 K)
Saleil 2 G	V400032 D, 440/399 K)
Şeklî 2.0.	Kultulepe IIII guleyinde, Kelaniye Mela-Onyonti IIII içinde bulunan listronit (275.0480800 D. 4407205 K) 14
\mathbf{C} at $\mathbf{z} = 1$	Ilstvenit (5/5 0480809 D, 440/595 K)
Şekli 2.7:	Uliyolitin tektonit kisminda bulunan peridotitler içindeki kaptılmış krom
G -1-:1 2 9.	madeni $(3/5)$ 0494455 D, 44122838 K)
Şekil 2.8:	Açık işletme olarak çalıştırlan mangan madeninin goruntusu (3/S
G 1 1 0 0	0490809 D, 440/395 K)
Şekil 2.9:	Kurtlutepe nin guneyinde, Kurtlutepe Metamorfitleri Refahiye Meta-
a 1 1 a 1 a	ofiyoliti'ne bindiriyor (37S 0489830 D, 4408862 K)
Şekil 2.10:	Kurtlutepe'de gözlenen yeşilşistler (37S 0489638 D, 4412748 K) 16
Şekil 2.11:	Kurtlutepe'nin Güneybatisında meta-marn yüzleği (378 0485317 D,
	4409494 K)
Şekıl 2.12:	Meta-volkanoklastit biriminde gözlenen oldukça belirgin yapraklanma
	(37S 0485350 D, 4415538 K)
Şekil 2.13:	Ofiyolitik Melanj içinde blok halinde bulunan masif yapıdaki mermer
	(37S 0486580 E, 4407756 N)
Şekil 2.14:	Ofiyolitik Melanj içinde çapı iki metre olan serpantinit bloğu (37S
	0493637 E, 4403955 N)
Şekil 2.15:	Ofiyolitik Melanj'a ait yeşilşistlerin, Onarı formasyonunun üzerinde
	görüldüğü arazi görüntüsü (37S 0478353 E, 4407434 N) 20
Şekil 2.16:	Ofiyolitik Melanj'a ait mermerlerin Refahiye Meta-ofiyolitine ait
	peridotitlerinin üzerinde görüldüğü arazi görüntüsü (37S 0479207 D,
	4409795 K)
Şekil 2.17:	Gazipınarı Kırıntılı Kayaları'nın çakıltaşı, kumtaşı, kiltaşı ardalanması
	(37S 0482440 D, 4417017 K)
Şekil 2.18:	Gazipınarı Kırıntılı Kayaları'nın kiltaşı seviyesinde yaprak fosilleri (37S
	0482440 D, 4417017 K)
Şekil 2.19:	Onarı Formasyonun arazi görüntüsü (37S 0477395 D, 4406373 K) 23
Şekil 2.20:	Bazaltik sokulum sonucu marnda mangan zenginleşmesi (37S 0482944
	D, 4412741 K)

Şekil 2.21:	Kadıköy formasyonunun tipik özelliği çakıltaşı-kumtaşı ardalanmasının
Salvil 2 1.	gorulluşu $(5/5)$ 0463025 D, 441//69 K)24 Dünit içonişinde eliyin (Ol) ve Cr Al gninel (Sn) (Nermel yalı) (Örmel
Şekii 5.1.	197)
Şekil 3.2:	Olivin (Ol), Cr-Al spinel (Sp), ortopiroksen (Opx) ve serpantin (Srp)
	mineralleri ile temsil edilen serpantinleşmiş peridotit, (Kutuplanmış ışık)
	(Örnek 91)
Şekil 3.3:	91 numaralı örneğe ait piroksenler, piroksen adlandırma diyagramına iz
	düşürülerek isimlendirilmesi (Hess, 1941)
Şekil 3.4:	Plajioklas (Pl) ve piroksen (Px) minerallerinin hakim olduğu meta-gabro
	(Kutuplanmış ışık) (Örnek 317C)
Şekil 3.5:	Amfibolite ait bozușmuș plajiyoklas (Pl) ve hornblend (Hbl) (Normal
	ışık) (Örnek 245)
Şekil 3.6:	Leake ve diğ. (1997)'e göre 96B, 252, 270, 272 numaralı amfibolit içinde
	bulunan amfibolitlerin kimyasal bileşimleri
Şekil 3.7:	96B, 252, 270, 272 numaralı amfibolit örnekleri içinde bulunan feldispat
	minerallerinin Barth (1962)'ye göre sınıflandırılması
Şekil 3.8:	Meta-plajiyogranitin %60'ını oluşturan 0,5 mm çapındaki plajiyoklaslar
	(Pl) (Kutuplanmış ışık) (Örnek 96A)45
Şekil 3.9:	Meta-plajiyogranit örneği içinde bulunan amfibolitlerin Leake ve diğ.
	(1997)'e kimyasal bileşimleri
Şekil 3.10:	Meta-plajiyogranit genellikle albit bileşiminde feldispatların Barth
	(1962)'ye göre sınıflandırılması
Şekil 3.11:	Serpantin tarafından ornatılmış klinopiroksen (Cpx) (Kutuplanmış ışık)
	(Örnek 96D)
Şekil 3.12:	Klinopiroksenite ait piroksenlerin Hess (1941)'e göre isimlendirilmesi 54
Şekil 3.13:	Serpantinleşmenin yoğunluğuna bağlı olarak tanınamayacak kadar
	bozulmuş olan mineraller ve serpantin (Srp) minerallerinin arasında
	gelişen ikincil elek dokusu (Kutuplanmış 1şık) (Örnek 366B) 54
Şekil 3.14:	Listvenit içerisinde yaklaşık 1 mm çapındaki kalsit (Cal) minerali
	(Kutuplanmış ışık) (Örnek 258)
Şekil 3.15:	Plajiyoklas (Pl), epidot (Ep) ve klorit (Chl) kristallerinin oluşturduğu
	lepidogranoblastik doku (Normal ışık) (Örnek 105)57
Şekil 3.16:	Yeşilşiste ait feldispatların Barth (1962)'ye göre isimlendirilmesi 57
Şekil 3.17:	Oldukça küçk tanelerden oluşan mermer (Normal ışık) (Ornek 100C) 60
Şekil 3.18:	Tamamen bozuşmuş plajiyoklasların (Pl) etrafini sardığı kuvarslar (Qtz)
	(Kutuplanmış ışık) (Ornek 332C)
Şekil 3.19:	Meta-gabro içinde hornblend (Hbl) ve klinopiroksen (Cpx) mineralleri
	(Kutuplanmış ışık) (Ornek 363)
Şekil 3.20:	Meta-marn içinde ardışık olarak gelişmiş klorit (Chl) ve kalsit (Cal)
	bantları (Normal ışık) (Ornek 334)
Şekil 3.21:	Uzunlamasına gelişmiş klorit (Chl) mineralleri arasında görülen
	plajiyoklas (Pl) ve epidot (Ep) minerallerinin oluşturduğu porfiroblastik
	doku (Kutuplanmış ışık) (Ornek 335A)
Şekil 3.22:	Meta-kumtaşı içindeki kuvars (Qtz) mineralleri (Kutuplanmış ışık)
~	(Ornek 355B)
Şek1l 4.1:	Tip I Gabro grubuna ait meta-gabrolarin 3 farklı diyagrama iz
	düşürülmesi sonucu elde edilen kımyasal köken ayrımı: a) SiO_2 'e karşılık
	K ₂ O dıyagramı (LeMaitre ve diğ, 1989; Rickwood, 1989); b) AFM

- Tip I Gabro grubuna ait meta-gabrolar için tektonomagmatik Sekil 4.2: diyagramlar: a) Zr-Nb-Th üçgen diyagramı (Wood, 1980), A: Yay ile ilişkili bazalt, B: Normal tip okyanus ortası sırt bazalt, C: Zenginleşmiş tip okvanus ortası sırt bazalt, D: Okvanus adası bazaltı; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus adası bazaltı, 3B ve 3C: Zenginleşmiş tip okvanus ortası bazalt, 3D: Normal tip okvanus ortası bazalt; d) Ti've karşılık V diyagramı (Shervais, 1982); e) Zr/Y'a karşılık Zr avrim diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip okyanus ortası sırt bazalt; f) Th/Yb'a karşılık Nb/Yb

- Şekil 4.6: Onarı formasyonuna ait bazaltın 2 farklı diyagrama iz düşürülmesi sonucu elde edilen kimyasal köken ayrımı: a) AFM diyagramı (Irvine ve Baragar, 1971); b) Nb/Y'a karşılık Ti/Y diyagramı (Pearce, 1982)......74

- Şekil 4.12: Kurtlutepe Metamorfitlerine ait yeşilşistlerin için tektonomagmatik diyagramlar: a) Zr-Nb-Th üçgen diyagramı (Wood, 1980), A: Yay ile ilişkili bazalt, B: Normal tip okyanus ortası sırt bazalt, C: Zenginleşmiş tip okyanus ortası sırt bazalt, D: Okyanus adası bazaltı; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus adası bazaltı, 3B ve 3C: Zenginleşmiş tip okyanus ortası bazalt, 3D: Normal tip okyanus ortası bazalt; d) Ti'ye karşılık V diyagramı (Shervais, 1982); e) Zr/Y'a karşılık Zr ayrım diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip okyanus ortası sırt bazalt; f) Th/Yb'a kaşılık Nb/Yb
- Şekil 4.13: Kurtlutepe Metamorfitlerine ait yeşilşistlerin normal tip okyanus ortası sırt bazalta göre normalleştirilmiş çoklu element diyagramları (Normalleştirilmiş değerler Sun ve McDonough, 1989'a göredir).......80

- Şekil 4.16: Ofiyolitik Melanj'a ait yeşilşistlerin için tektonomagmatik diyagramlar:
 a) Zr-Nb-Th üçgen diyagramı (Wood, 1980), A: Yay ile ilişkili bazalt, B: Normal tip okyanus ortası sırt bazalt, C: Zenginleşmiş tip okyanus ortası sırt bazalt, D: Okyanus adası bazaltı; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus adası bazaltı, 3B ve 3C: Zenginleşmiş tip okyanus ortası bazalt, 3D: Normal tip okyanus ortası bazalt; d) Ti'ye karşılık V diyagramı (Shervais,1982); e) Zr/Y'a karşılık Zr ayrım diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip

	okyanus ortası sırt bazalt; f) Th/Yb'a karşılık Nb/Yb diyagramı (Pearce
	2008)
Şekil 4.17:	Ofiyolitik Melanj'a ait yeşilşistlerin normal tip okyanus ortası sırt bazalta
	göre normalleştirilmiş iz element diyagramları (Normalleştirilmiş
	değerler Sun ve McDonough, 1989'a göredir)
Şekil 5.1:	96B numaralı amfibolit örneğine ait hornblendlerden yapılan ⁴⁰ Ar/ ³⁹ A
	yaşları
Şekil 5.2:	252 numaralı amfibolit örneğine ait hornblendlerden yapılan ⁴⁰ Ar/ ³⁹ A
	yaşları
Şekil 5.3:	96A numarlı meta-plajiyogranite ait yaş tayini diagramı

TABLOLAR DİZİNİ

Tablo 3.1:	Refahiye Meta-ofiyoliti'nde bulunan değişik kayaç türlerinin içerdikler	i
	minerallerin yaklaşık modal bollukları.	25
Tablo 3.2:	Serpantinleşmiş peridotite ait minerallerin bileşim aralığı.	28
Tablo 3.3:	Amfibolitlere ait minerallerin bileşim aralığı	31
Tablo 3.4:	Meta-plajiyogranit ve klinopiroksenite ait mineral kimyası sonuçları	47
Tablo 3.5:	Kurtlutepe Metamorfikleri'nde bulunan değişik kayaç türlerinin	
	içerdikleri minerallerin yaklaşık modal bollukları.	56
Tablo 3.6:	Yeşilşiste ait minerallerin bileşim aralığı	58
Tablo 4.1:	Refahiye Meta-ofiyoliti'ne ait 20 örneğin ve Onarı Formasyonu'na ait	1
	örneğin ana ve iz element içerikleri	65
Tablo 4.2:	Kurtlutepe Metamorfikleri'ne ait 10 adet kayacın ve melanja ait 2 adet	
	kayacın toplam kayaç analiz sonuçları.	76
Tablo 5.1:	Detaylı ⁴⁰ Ar/ ³⁹ Ar analiz verileri.	85
Tablo 5.2:	Meta-plajiyogranitten elde edilen zirkonlardan hesaplanan yaşlar ve L	A-
	ICP-MS U-Th-Pb izotopik verileri.	87

SİMGELER

- km: Kilometre
- m: Metre
- cm: Santimetre
- mm: Milimetre
- μm: Mikrometre
- kV: Kilovolt
- nA: Nanoamper
- gr: Gram
- cm³: Santimetre küp
- μl: Mikrolitre
- LOI: Ateşte kayıp
- ASI: Alüminyum doygunluk indeksi
- Ma: Milyon yıl
- ppm: Milyonda bir tane
- Act: Aktinolit
- Am: Amfibol
- An: Anortit
- Brc: Brusit
- Bt: Biyotit
- Cal: Kalsit
- Chl: Klorit
- Cpx: Klinopiroksen
- Cum: Kümmingtonit
- En: Enstatit
- Ep: Epidot
- Fds: Feldspat
- Hbl: Hornblend
- Ilm: İlmenit
- Leu: Lökoksen
- Mgt: Manyetit
- Ms: Muskovit
- Ol: Olivin
- Opq: Opak mineraller
- Opx: Ortopiroksen
- Phe: Fengit
- Phl: Flogopit
- Pl: Plajiyoklas
- Pmp: Pumpelleyit
- Prh: Prehnit
- Px: Piroksen
- Qtz: Kuvars
- Rt: Rutil
- Spl: Spinel

- Srp: Stp:
- Serpantin Stilpnomelan Tremolit
- Tr: Ttn: Titanit
- Zrn: Zirkon

REFAHİYE (ERZİNCAN) META-OFİYOLİTİ'NİN NİTELİĞİ VE JEOLOJİK EVRIMİ

İsmail Emir ALTINTAŞ

Anahtar Kelimeler: Ofiyolit, Metamorfizma, Doğu Pontidler, Jura.

Özet: Türkiye'nin Doğu Anadolu bölgesinin kuzeyinde, Erzincan ilinin sınırları içerisinde bulunan Refahiye Meta-ofiyoliti, İzmir-Ankara-Erzincan kenedinin üzerinde yer alır. Neo-Tetis'in kapanmasıyla oluşan İzmir-Ankara-Erzincan Kenedi Doğu Pontidleri, batısındaki Kırşehir Masifi'nden ve güneyindeki Anatolid-Torid Bloğu'ndan ayırmaktadır. Refahiye Meta-ofiyoliti, bölgedeki metamorfik kayalar ve ofiyolitik melanj ile tektonik dokanaklı olarak bulunmaktadır. Bütün bu birimler uyumsuz olarak Eosen ve daha genç çökeller tarafından örtülürler. Refahiye Metaofiyoliti, egemen olarak peridotitler tarafından temsil edilmektedir. Dünit ve harzburjit bileşimdeki peridotitlerin yaklaşık % 70'i serpantinleşmiştir. Bu ana kütle, meta-gabro, meta-plajiyogranit, klinopiroksenit ve köken kayaçları gabroik olan amfibolit sokulumları tarafından kesilmektedir. Refahiye Ofiyolti'ni kesen metagabrolar başlıca plajiyoklas, klinopiroksen, \pm flogopit, \pm ortopiroksen ve \pm olivin mineralleri ile temsil edilir. Bozuşmaya bağlı olarak gelişen ikincil mineraller klorit, aktinolit, kalsit ve serpantin ile temsil edilmektedir. Amfibolitler ise plajiyoklas, amfibol ve opak mineraller içermektedir. Kuvars, prehnit, pumpelleyit ve aktinolit minerallerinin modal bolluk oranları %10'dan daha az olarak görülmektedir. Metagabrolardan ve amfibolitlerden gerçeklestirilen kimyasal analizler, bu kayaçların toleyitik nitelikli olduklarını ve yitim sonucunda zenginleşmiş okyanus ortası sırtı tipi bir kaynaktan türemiş olduklarını göstermiştir. Refahiye Meta-ofiyoliti'ni kesen meta-plajiyogranitten elde edilen U-Pb yas tayini Alt Jura, Toarsiyen oluşum yaşını, gabrolardan elde edilen ⁴⁰Ar/³⁹Ar yaş tayinleri Orta Jura, Aalenyen soğuma yaşını vermektedir. Bu yaş tayinleri ile bölgedeki meta-ofiyolitin yaşı ilk kez Jura olarak belirlenmiştir.

CHARACTERISTICS AND GELOGICAL EVOLUTION OF REFAHIYE (ERZINCAN) META-OPHIOLITE

İsmail Emir ALTINTAŞ

Keywords: Ophiolite, Metamorphism, Eastern Pontides, Jurassic.

Abstract: Refahiye Meta-ophiolite is located in Erzincan (NE Turkey) and on İzmir-Ankara- Erzincan Suture Zone which was formed by clossing of Neo-Tethys. Eastern Pontides are separated from Kırsehir Massif and from Anatolide-Torides by İzmir-Ankara-Erzincan Suture Zone. Refahiye Meta-ophiolite has tectonic contact with metamorphic rocks and ophiolitic mélange. All of these units are covered by Eocene and younger units. Refahive Meta-ophiolite consists mainly of peridotites which are dunites and harzburgites but which are nearly % 70 serpantinized and listvenitized. Peridotites were intruded by gabbros, plagiogranites, clino-pyroxenites and amphibolites. Meta-gabbro intrusions of Refahiye Meta-ophiolite is represented by plagioclase, clinopyroxene, \pm phlogopite, \pm ortopyroxene and \pm olivine. Chlorite, actinolite, calcite and serpentine minerals in gabbros are related to the alteration. Amphibolites consist of plagioclase, amphibole and opaque minerals. Quartz, prehnite, pumpellyite and actinolite have an modal abundance lower than % 10. Chemical analysis shows that gabbros and amphibolites are derived from enriched mid-ocean ridge tholeiitic basalts. U-Pb measurements from meta-plagiogranite of Refahiye Meta-ophiolite are yielded an age which was Lower Jurassic, Toarcian. Hornblende plateau ages from the amphibolites which were measured with 40 Ar/ 39 Ar dating methode are dating the cooling age which was Middle Jurassic, Aalenian. Refahiye Meta-ophiolite yielded an age of Lower Jurassic, Toarcian. Jurassic age for the Refahiye Meta-Ophiolite was firstly reported in this study.

BÖLÜM 1. GİRİŞ

Türkiye'nin Doğu Anadolu bölgesinin Kuzeyinde, Erzincan ilinin sınırları içerisinde bulunan Refahiye ilçesi ve civarınıda gerçekleştirilen çalışma yaklaşık 320 km²'lik bir alan kaplamaktadır (Şekil 1.1). Çalışma alanı Erzincan'ın yaklaşık 48 km Kuzeybatısında, Sivas'ın ise 145 km Kuzeydoğusunda bulunmakta ve Divriği İ41-a2, Divriği İ41-a3, Divriği İ41-b1, Divriği İ41-b2, Divriği İ41-b3 ve Divriği İ41-b4 paftalarının içinde kalmaktadır.

Şekil 1.1: Türkiye kenet kuşakları (Okay ve Tüysüz, 1999) ve çalışma alanı yer bulduru haritası (İAEK: İzmir-Ankara-Erzincan Kenedi).

Bölgedeki başlıca yerleşim yeri, Erzincan ilinin Refahiye ilçesidir. Çalışma alanına ulaşım Sivas-Erzincan karayolu ile sağlanmaktadır. Yerleşim merkezleri arasındaki yollar çoğunlukla asfalttır. Çalışma alanında topografik açıdan en önemli yükselti Kurtlutepe'dir (2713 m).

1.1. Çalışmanın Amacı

Çalışma alanının Kuzeyinde Doğu Pontidler, Güneyinde Anatolid-Torid Bloğu ve Batısında Kırşehir Masifi bulunmaktadır. Bu üç tektonik birliğin kesişme noktasında bulunan çalışma alanının, İzmir-Ankara-Erzincan Kenedi üzerinde bulunması da göz önüne alındığında, çalışma alanının Türkiye Jeolojisi için önemi anlaşılmaktadır.

Kocaeli Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Bölümü'nde yüksek lisans tezi olarak hazırlanan çalışmanın amacı, bölgenin 1/25000 ölçekli jeoloji haritasını yapmak, bölgedeki birimlerin birbiriyle ilişkilerini belirlemek, ofiyolitik seriye ait kayaçlar üzerinde petrografik, jeokimyasal ve jeokronolojik incelemeler yaparak, Refahiye Meta-ofiyoliti'nin niteliğini ve evrimini açıklamaktır.

1.2. Bölgesel Jeoloji

Türkiye, jeolojik olarak, birbirlerinden kenet zonlarıyla ayrılan üç ana tektonik birimden oluşmaktadır. Bunlar Pontidler, Anatolid-Torid Bloğu ve Arap Platformudur (Ketin, 1966). Okay 2008'e göre, bu tektonik birimlerden Pontidler, Lavrasya'ya yakınlık göstermektedir ve hem Balkanlar'daki ve Kafkaslar'daki, hem de Avrupa'daki tektonik birliklerle karşılaştırılabilirler. Pontidler, Neo-Tetis'in Kuzey kolunun kapanmasıyla oluşan İzmir-Ankara-Erzincan Kenedi ile Anatolid-Torid Bloğundan ayrılmaktadır (Şekil 1.1).

Doğu Pontidler Karadeniz'in Güneydoğu kıyısı boyunca 500 km uzunluğunda ve 100 km genişliğinde bir dağ sırasıdır ve Senoniyen sırasında Kuzeye dalan okyanus tabanının üzerinde gelişmiş olan, en iyi korunmuş eski ada yayı örneklerinden biridir (Akın, 1978; Şengör ve Yılmaz, 1981; Akıncı, 1984). Coğrafik olarak Doğu Pontidler'in Batı sınırı Samsun dolayındaki Yeşilırmak veya Kızılırmak nehirleri olarak kabul edilmektedir. Tektonik olarak ise Doğu Pontidler, Sakarya Zonu'nun Doğu kesimini oluşturur (Okay, 1989). Güney sınırı İzmir-Ankara-Erzincan Neo-Tetis kenedidir; Kuzeyinde Karadeniz Havzası yer almaktadır (Khain, 1975; Yılmaz ve diğ., 1999). Orta Pontidler ile olan Batı sınırı stratigrafiktir ve Kretase istifindeki fasiyes değişikliklerine karşılık gelir. Doğu Pontidler'i de kapsayan Sakarya Zonu'nun belirleyici özellikleri, Paleozoyik sedimanter kayalarının yerli olmayışı, Paleo-Tetis'e ait Permo-Triyas yaşlı Karakaya Karmaşığı'nın varlığı ve geniş alanlara yayılmış olan Liyas transgresyonudur (Okay, 1989; Okay ve diğ., 1996). Bunun tersine, Güneydeki Toridler'de iyi gelişmiş bir Paleozoyik istifi gözlenir ve Paleo-Tetis'e ait yitim-yığışım karmaşıkları bulunmaz. Kuzeydoğu Türkiye'de bu iki paleocoğrafik bölge, birbirinden büyük peridotit kütleleri ve ofiyolitik melanjla belirlenen İzmir-Ankara-Erzincan Neo-Tetis kenedi ile ayrılmıştır (Konak ve diğ., 2009). İzmir-Ankara-Erzincan Kenedi üzerinde bulunan ofiyolitler ve ofiyolitik melanjlardan yapılan analizler Kretase yaşı vermektedir (Harris ve diğ., 1994, Önen, 2003). Yakın zamanda yapılan çalışmalarla Erken-Orta Jura yaşları tespit edilmiştir (Dilek ve Thy 2006; Çelik ve diğ., 2011).

Doğu Pontidler'in Güney kısmı İç Doğu Pontidler, Kuzey kısmı ise Dış Doğu Pontidler olarak adlandırılmaktadır (Akın, 1978; Gedikoğlu ve diğ., 1979; Özsayar ve diğ., 1981; Konak ve Hakyemez, 2001). Dış Doğu Pontidler'de Üst Kretase öncesi jeoloji birimlerini, Senomaniyen ve Orta Eosen volkanik ve volkanoklastik kayalar örtmektedir. Diğer taraftan, Senomaniyen boyunca yay-önü konumunda bulunan ve Erkan Tersiyer kıta çarpışmasında Dış Doğu Pontidler'den daha yoğun deformasyona uğrayan İç Doğu Pontidler'de Senoniyen öncesi kayaları geniş yüzeylemelere sahiptir. Bu iki kesim arasındaki geçiş sınırı yaklaşık Niksar-Gümüşhane-Artvin hattını izler (Okay,2008).

1.3. Yöntem

Tez çalışmasını oluşturan aşamalar, saha çalışmaları, laboratuar çalışmaları ve büro çalışmaları olarak üç başlık altında özetlenmiştir.

1.3.1. Saha çalışmaları

Bu tezin saha çalışmasından önce, bölgede yapılan geçmiş çalışmaları içiren belgeler taranmış ve bulunan bilgiler derlenerek arazide karşılaşılacak kaya tipleri belirlenmiştir. Bu ön çalışmalar tamamlandıktan sonra saha çalışmaları, 2009, 2010 ve 2011 yıllarının farklı dönemlerinde, toplam 55 gün sürdürülmüştür.

Saha çalışmaları boyunca, çalışma alanının 1/25000 ölçekli jeoloji haritası çizilmiş, petrografik ve jeokimyasal incelemeler için çeşitli boyutlarda yaklaşık 200 gözlem noktasından örnekleme yapılmıştır.

1.3.2. Laboratuar çalışmaları

Saha çalışmaları sırasında, araziden doğal şekilleriyle alınan örnekler laboratuara getirildiğinde, hem içlerinden ince kesit için parça çıkarmak hem de diğer analizlerde kullanılmak üzere, taş kesici ile kesilerek küçük parçalara ayrılmıştır. Bu işlem sırasında ince kesit için çıkarılan parçanın seçildiği bölgenin, mümkün olduğu kadar kayanın genelini temsil ediyor olmasına dikkat edilmiştir. Ayrıca yine kesim yönü seçilirken minerallerin ve kıvrımların yönlenmesine dikkat edilmiştir.

İnce kesit için daha önceden kesilen örnek parçaları, kesit hazırlama laboratuarında tekrardan kesilerek, ince kesit boyutlarına uygun hale getirilmiştir. Gittikçe artan numaralardaki zımparalar ile aşındırılarak inceltilmiştir. Ayrı bir yerde kesilen lamlar da hazırlandıktan sonra, inceltilmiş kayaç parçaları lamlara yapıştırılmıştır. Daha sonra yeniden traşlanan ve inceltilen lam üzerindeki kayaçlar ince kesit halini almıştır. Bu tez çalışması sırasında, araziden alınan örneklerden gerekli görülen 100 tanesinin ince kesiti hazırlanmıştır. Hazırlanan ince kesitlerden 56 tanesi polarizan mikroskop altında petrografik olarak incelenmiş, bulundurdukları mineraller ve dokular belirlenmiştir.

Polarizan mikroskop altında gerçekleştirilen petrografik incelemeler sonucunda 30 tane örnek mikroprob analizi için Heidelberg (Almanya'ya) gönderilmiştir. Mineral analizleri Heidelberg Jeoloji Enstitüsü'nde, beş dalgaboyu dağıtıcı eklentili CAMECA SX51 elektron mikroprob cihazı ile gerçekleştirilmiştir. 15kV yükselen voltaj, 20nA ışın akımı ve yaklaşık 1µm ışın çapı olan standart yürütme koşulları sağlanmıştır. Sayım 10 saniye olarak yapılmıştır. Feldispatlar, alkali kaybını en aza indirmek amacıyla odaklanmasız ışın (10µm) ile analiz edilmiştir. Doğal ve yapay oksit ve silikat standartları ayarlama için kullanılmıştır. PAP algoritması (Pouchou ve Pichoir, 1984, 1985) ham veriye uygulanmıştır.

Araziden alınan örneklerden 53 tanesi örnek tüm kaya analizi yapılmak üzere seçilmiş ve analizler, Vancouver, Kanada'da bulunan Acme Analytical Laboratories Ltd (Acme Araştırma Laboratuarları) tarafından yapılmıştır. Grafit bir pota içinde, 200g pudra haline getirilmiş kaya numunesi ile akışkan haldeki 1.5g LiBO₂ karıştırılmıştır. Daha sonra pota fırına yerleştirilmiş ve 15 dakika boyunca 1050°C'de ısıtılmıştır. Ergimiş örnekler % 5'lik HNO₃ (minerallerinden arındırılmış su içinde seyreltilmiş, Amerika Kimya Birliğinin kabul ettiği saflıkta nitrik asit) ile çözülmüştür. Uluslararası referans materyaller ve kör numuneler örnek listesine eklenmiştir. Ana elementlerin ve Ba, Nb, Ni, Sr, Sc, Y ve Zr iz elementlerinin analiz edilmesi için örnek çözeltileri ICP emisyon spektrografına (Jarrel Ash AtomComb 975) gönderilmiştir. Nadir toprak elementler gibi diğer iz elementlerin tanımlanabilmesi için, çözeltiler ICP kütle spektrometresine (Perkin-Elmer Elan 6000) gönderilmiştir. Doğruluk oranı, göreceli olarak, ana elementler için % 2'den, iz elementler için % 10'dan fazladır.

⁴⁰Ar/³⁹Ar ölçümleri için biyotit ve hornblend minerallerini elde etmek üzere, daha önceden kesilip ufak parçalara ayrılan kayaçlar, basınçlı piston yardımıyla kırılmıştır. Kırılan örnekler 250, 180, 125 ve 63 mikronluk eleklerden geçebilecek şekilde çeneli kırıcıda parçalanmıştır. Tüm bu işlemler yapılırken, iki farklı örneğin birbiriyle karışmaması amacıyla laboratuarın ve laboratuar malzemelerinin temizliğine son derece önem gösterilmiştir. Bir örneğin işlemi bitip de, bir diğer örneğin işlemine başlanılmadan önce başınçlı piston ve çeneli kırıcı etanol ile iyice temizlenmiştir. Daha sonra kuruma sürecini hızlandırmak amacıyla kompresör ile kurutulmuştur. Öğütülmüş olan örnekler, otomatik eleyicide 250, 180, 125 ve 63 mikronluk eleklerden oluşun elek setinde elenmiştir. Eleklerin üzerinde kalan örnekler 250-180 mikron arası, 180-125 mikron arası ve 125-63 mikron arası olmak üzere üç ayrı kaba ayrılmıştır. 250 mikronluk eleğin üzerinde kalan örnek, daha sonra tekrar kullanılmak üzere kaldırılmıştır. 63 mikronun altında kalan bölüm ise atılmıştır. Daha sonra 3 kap da ayrı ayrı saf su ile yıkanarak tozlarından ayrılmıştır. İslak hale gelen numune içindeki su tamamen buharlaşana kadar etüvde kurutulmuştur. Kuruyan numuneler ağır sıvı ile arındırılma işleminden önce, içinde bulunan minerallere göre farklı işlemlerden geçirilmiştir.

5

İçinden mika ayıklanacak olan kayacın daha önceden 250, 180, 125 ve 63 mikronluk eleklerden geçebilecek şekilde çeneli kırıcıda parçalanan örneklerin 3 farklı fraksiyonu da ayrı ayrı kağıt üzerinde zenginleştirilmiştir. Bu işlem için önce toz örnek kağıda serpilmiştir. Üzerinde toz örnek olan kağıt yavaş hareketler ile sallanarak bir başka kağıda üzerindeki toz örnek boşaltılmıştır. Bu işlem sayesinde geometrik olarak yuvarlaksı olan maddeler diğer kağıda düşerken, levhamsı olan muskovit, biyotit gibi mika pulcukları sallanan kağıtta kalmıştır. Daha sonra kağıtta kalan mika pulcukları başka bir kaba aktarılarak birincil zenginleştirme sağlanmıştır. Daha sonra agat havan içine konulan zenginleştirilmiş mikaların üzerine aseton eklenmiş ve havan tokmağıyla hafifçe öğütülerek bir kez daha tozlarından ayrılması sağlanmıştır.

Hornblend ayırmak içinse, daha önceden 250, 180, 125 ve 63 mikronluk eleklerden geçebilecek şekilde çeneli kırıcıda parçalanan örnek kağıt üzerine yayılmıştır. Üzerinde mıknatıs dolaştırılarak mıknatıslanma özelliğine sahip mineraller elenmiştir. Mıknatıslanan minerallerinden ayrılmış örnek elektromanyetik ayırıcıdan geçirilerek, mıknatıslanma özelliğine göre koyu renkli ve açık renkli minerallerin kümelendiği iki bölüme ayrılmıştır. Hornblendin bulunduğu koyu renkli bölüm biriktirilirken, açık renkli bölüm atılmıştır.

Her iki yolla zenginleştirilen örnekler, yoğunluğu yaklaşık 2.9 gr/cm³ olan sodyum politungstat sıvısı yardımıyla süzme işleminden geçirilmiştir. Bu işlemde yoğunluk farkından yararlanılarak örnek içinde ayrıştırma sağlanmıştır. Bütün bu işlemler sonunda istenilen mineralden % 99.9 oranında bolluk elde etmek için örnekler son olarak binoküler mikroskop altında elle ayıklanmış ve elde edilen örnek özel şişelere konularak hazır hale getirilmiştir.

Hornblend minerallerinin bileşimleri elektron mikroprob analizi ile belirlenmiştir. Bu işlemler, 15kV ve 1 nA ışın akımıyla Cameca Camebax SX100 elektron mikroprob tarafından Blaise Pascal Üniversite'sinde (Clermont-Ferrand, Fransa) gerçekleştirilmiştir. Doğal örnekler, standart olarak kullanılmıştır.

Hornblend minerallerinden yapılan yaşlandırmada ⁴⁰Ar/³⁹Ar lazer ablasyon yöntemi kullanılmıştır. Hornblend mineralleri, yaşlandırma ölçümünden önce, elektron mikroprob analizinden geçirilerek, mineral bileşimlerindeki homojenlikten emin olunmuştur. Bir milimetreden ufak taneler, altere olmuş tanelerin ölçüme dahil olmasına engel olmak amacıyla, binoküler altında elle ayıklanmıştır. Örnekler daha sonra, McMaster Üniversitesi'nde (Hamilton, Kanada), 5c pozisyonunda, 1072 milyon yaşındaki (Turner ve diğ. 1971) Hb3gr hornblend nötron flüans izleyici ile beraber ışımaya maruz bırakılmıştır. Işıma süresince, toplam nötron akı yoğunluğu 9.0 x 10^{18} nötron cm⁻²'dir. 40 Ar*/ 39 Ar_K oranına karşılık gelen tahmini hata çizgisi, örneklerin içinde bulunduğu hacimde $\pm 0.2\%$ (1 σ)'dir. Tüm 40 Ar/ 39 Ar ölçümleri, Nice-Sophia Antipolis Üniversitesi'nde (UMR Azur Yerbilimleri) gerçekleştirilmiştir. Hornblend analizleri, 50 W CO2 Synrad 48-5 sürekli lazer akımıyla basamaklı olarak ısıtılarak gerçekleştirilmiştir. İzotopik oranların ölçümleri, Daly detektör sistemi donanımlı VG3600 kütle spektrometresiyle yapılmıştır. Detaylı prosedürler Jourdan ve diğ. (2004)'te tarif edilmiştir. Lazer sisteminin çıkarılması ve arıtılması için tipik boş değerler 4.2-8.75, 1.2-3.9 ve 2-6 cc STP kütleler için sırasıyla 40, 39 ve 36 aralığındadır. Kütle ayrımlaşması, hava pipet hacimlerinin düzenli olarak incelenmesiyle izlenilmiştir. Yarılanma sabitleri Steiger ve Jäger (1977)'deki gibidir. Belli yaşlar üzerindeki belirsizlikler 2 σ güvenlikle verilmiştir ve izleyiciye ait ${}^{40}\text{Ar}*/{}^{39}\text{Ar}_{\text{K}}$ oran hatası dahil edilmemiştir.

Bir plato yaşını tanımlarken laboratuarda genellikle şu kriterler kullanılır: (1) plato, salınan ³⁹Ar gazının en azından en azından %70'ini barındırmalıdır; (2) platoda peş peşe en az üç adet ısı adımı kesirlenmesi olmalıdır; (3) platonun entegre yaşı (plato üzerinde bulunan birbirinden bağımsız kesirlenmelerin yaşlarının ağırlıklı ortalaması) plato üzerindeki her bir kesirlenmenin yaşı ile 2 σ hata ile örtüşmelidir. Bu çalışmada da bu kriterlere uyulmuştur.

U-Pb izotopları yaş tayini yapmak üzere zirkon tanelerini ayırmak için daha önceden 250, 180, 125 ve 63 mikronluk eleklerden geçebilecek şekilde çeneli kırıcıda parçalanan örnek kağıt üzerine yayılmıştır. Üzerinde mıknatıs dolaştırılarak mıknatıslanma özelliğine sahip mineraller elenmiştir. Mıknatıslanan minerallerinden ayrılmış örnek elektromanyetik ayırıcıdan geçirilerek, mıknatıslanma özelliğine göre

koyu renkli ve açık renkli minerallerin kümelendiği iki bölüme ayrılmıştır. Zirkonun bulunduğu açık renkli bölüm biriktirilirken, koyu renkli bölüm atılmıştır. Açık renkli bölüm, yoğunluğu yaklaşık 2.9 gr/cm³ olan sodyum politungstat sıvısı yardımıyla süzme işleminden geçirilmiştir. Bu işlemde yoğunluk farkından yararlanılarak örnek içinde ayrıştırma sağlanmıştır. Son olarak örneğe binoküler altında incelenerek yapılması tasarlanan analizlere uygun minerallerin bulunup bulunmadığı belirlenmiştir ve elde edilen örnek özel şişelere konularak hazır hale getirilmiştir.

Bu çalışmanın LA-ICP-MS analizleri, Mainz Yerbilimleri Enstitüsü'nde, New Wave 213 nm lazer çifti içeren Agilent 7500ce kuadrupol ICP-MS sistemi ile gerçekleştirilmiştir. Üzerlerindeki karbon katmanı kaldırmak için, U-Pb yaşlandırma analizinden hemen önce, örneklerin yüzeyi y-alüminyum pudrası ile cilalanmış, sonra beş dakika boyunca milli-Q su dolu ultrasonik banyoda bekletilmiş ve son olarak etanole batırılmış temizleyici mendil ile kurulanmıştır. Daha fazla temizlik, analiz yapılacak noktaya beş defa 40 µm ışın çapında lazer atışı yapılarak sağlanmıştır. Her analiz, geri planda 40 s takip eden 30 s ölçümleri barındırmaktadır. U-Pb yaş verisi, 30 µm ısın capında, ca. 3.5 J/cm² enerji yoğunluğunda ve 10 Hz. tekrar hızında lazerlerle zirkonlar asındırılarak toplanmıştır. Asındırma boyunca üretilen ucucu madde ICP-MS'in içine, dakikada 1.3 litre akış hızına sahip Ar-He gaz karışımıyla taşınmıştır. İzotoplar, zaman-çözülme modunda ölçülmüştür. U-Pb yaşlandırması için, her kütle taraması için her izotopun yarılanma süresi ²³²Th ve ²³⁸U için 10 ms, ²⁰¹Hg, ²⁰⁴Hg+Pb ve ²⁰⁶Pb için 30 ms, ²⁰⁷Pb ve ²⁰⁸Pb için 50 ms'dir. Th ve U konsantrasyonları, 206 Pb/ 204 Pb oranları, 207 Pb/ 235 U, 206 Pb/ 238 U ve 208 Pb/ 232 Th vasları ICP-MS'ten elde edilen zaman-çözünme ham kayıtları offline olarak hesaplanmıştır. Bu çalışmada, PL zirkon standartı (Plesovice; Sláma ve diğ., 2008), hem lazeremiliminden, hem de her örnek ve her zirkon standartıyla aynı anda entegre olan ICP-emiliminden kaynaklanan kesirlenmeyi düzeltmede birincil standart olarak kullanılmıştır (Jackson ve diğ., 2004). 207 Pb/ 235 U, 206 Pb/ 238 U ve 208 Pb/ 232 Th yaşlarının isabet oranı, temel olarak GJ-1 zirkon standartlarının analizlerinde olağan olan 1.5% (Jackson ve diğ., 2004; ayrıca U ve Th konsantrasyonlarının hesaplanmasında da kullanılmıştır), 91.500 (Wiedenbeck ve diğ., 1995) ve çamur tankı (Black ve Gulson, 1978) olarak verilmiştir.

1.3.3. Büro çalışmaları

Büro çalışmaları sırasında jeolojik harita ve jeolojik enine kesitin hazırlandı. Ayrıca, petrografik ve jeokimyasal analiz sonuçları değerlendirilerek, arazi gözlemleri ile karşılaştırıldı. Elde edilen tüm veriler ve sonuçlar rapor halinde yazıldı.

BÖLÜM 2. GENEL JEOLOJİ

Çalışma alanındaki en yaşlı kayaç topluluğu Refahiye Meta-ofiyoliti'dir. Refahiye Meta-ofiyoliti, Doğuda Kurtlutepe Metamorfitleri, Güney de ise Ofiyolitik Melanj ile tektonik olarak sınırlanır. Bu birimlerin üzerine, yaşlıdan gence doğru Gazipınarı Kırıntılı Kayaları, Onarı Formasyonu ve Kadıköy Formasyonu açısal uyumsuzluklar ile gelmektedir. Çalışma alanında görülen en genç birim ise alüvyondur (Şekil 2.1 ve Şekil 2.2).

KIIVATEDNED	Alüuvon	0	0	0	0	0
KUVATERNER	7 Huv yon	0	0 • •	0	0	0
PLİYOSEN ÜST MİYOSEN	Kadıköy Formasyonu					
ALT MİYOSEN	Onarı Formasyonu					
EOSEN	Gazipınarı Kırıntılı Kayaçları					
ÜST KRETASE	Ofiyolitik Melanj	s - s _ v s -	° _ s _ °	° ° V V	v o	s V - s V - s
JURA	Kurtlutepe Metamorfitleri	S	، ح	S	ی ج	
	Refahiye Meta-ofiyoliti	b	S	5	s	r S

Şekil 2.1: Çalışma alanının genelleştirilmiş stratigrafik kesiti.

Şekil 2.2: Çalışma alanına ait jeoloji haritası.

2.1. Refahiye Meta-ofiyoliti

Refahiye Meta-ofiyoliti, incelenen alanda egemen olarak peridotitler tarafından temsil edilmektedir. Dünit ve harzburjitten oluşan peridotitlerin yaklaşık % 70'i serpantinleşmiştir. Bu ana kütle, amfibolit, meta-gabro, meta-plajiyogranit ve klinopiroksenit sokulumları tarafından kesilmektedir. Peridotitlere ait çok iyi korunmuş yüzlek, Erzincan – Sivas karayolunun Refahiye'den itibaren iki km boyunca yolun her iki tarafında gözlenmektedir.

Sokulumların peridotitler ile olan sınırları keskindir. Damar kalınlıkları metagabrolar için 5 ile 8 m arasındayken, amfibolitler için 10'dan 15 m'ye kadar değişmektedir. Meta-plajiyogranit sokulumlarının kalınlıkları ise bir ile iki metre arasındadır ve genellikle peridotitleri ve amfibolit sokulumlarını keserler (Şekil 2.3).

Şekil 2.3: Peridotiti kesen ve yaklaşık kalınlığı bir metre olan meta-plajiyogranit sokulumu (37S 0479131 D, 4410631 K).

Genelde amfibolit sokulumları serpantinize peridotitleri kesmektedir. Fakat yer yer birden fazla amfibolit birbirini kesmektedir (Şekil 2.4). Hatta Kurtlutepe'nin Batısında ve Güneyinde görülen yüzleklerde amfibolitler meta-plajiyogranit sokulumları tarafından da kesilmektedir.

Şekil 2.4: Birbirini kesen gabroik kökenli iki amfibolit (Amf I ve Amf II: Amfibolit, Peg: Pegmatit, Pla: Meta-plajiyogranit) (37S 0489787 D, 4407351 K).

Kurtlutepe'nin Güneyinde görülen ve serpantiniti kesen, yaklaşık 10 m kalınlığındaki meta-gabro içinde, kalınlıkları 3 ile 4 cm arasında değişen gabro pegmatit damarları vardır. Meta-gabroları etkileyen hidrotermal alterasyon sonucu, plajiyoklas ve hornblend mineralleri bozuşarak klorite dönüşmüştür (Şekil 2.5).

Şekil 2.5: Mikro gabro içinde pegmatitik bölümler ve klorit damarları (37 S 0488652 D, 4407399 K).

Listvenit terimi 20 yıl öncesine kadar özellikle Rus jeologlar tarafından, kuvars \pm kalsit bileşimindeki hidrotermal damar tarafından alterasyona uğratılmış ve bileşimi kalsit \pm serisit \pm pirit olarak değişmiş mafik ve ultramafik kayaçları tanımlamak için kullanılmıştır. Listvenitler ofiyolitik karmaşıklardaki serpantinleşmiş ultramafik kayaçların karbonatlaşmış ve çeşitli oranlarda silisleşmiş eşdeğerleri olarak tanımlanmaktadır (Buisson ve Leblanc, 1985). Refahiye Meta-ofiyoliti içinde bulunan listvenitler de yoğun olarak karbonatlaşmış peridotitlerdir (Şekil 2.6).

Peridotitler içinde farklı yerlerde krom ocakları vardır. Hem bantlı hem de masif kromit bulunmaktadır. Bölgedeki krom ocakları genellikle krom piyasasındaki hareketliliğe göre açılıp, piyasa durgunlaştığında kapatılmaktadır (Şekil 2.7). Arazi çalışmalarına başlanılan 2009 yılında bölgedeki ocaklardan sadece bir tanesi çalışır durumdayken, 2010 yılında hiçbir işler ocak kalmamıştır.

Şekil 2.6: Kurtlutepe'nin Güneyinde, Refahiye Meta-ofiyoliti'nin içinde bulunan listvenit (37S 0480809 D, 4407395 K).

Şekil 2.7: Ofiyolitin tektonit kısmında bulunan peridotitler içindeki kaptılmış krom madeni (37S 0494455 D, 44122838 K).

Kurtlutepe'nin Güneyinde bulunan mangan madeni ise peridotitik kütle üzerinde yer almaktadır. Arazi çalışmasının yapıldığı 2010 yılı itibariyle açık işletme olarak çalıştırılmaktadır (Şekil 2.8).

Şekil 2.8: Açık işletme olarak çalıştırılan mangan madeninin görüntüsü (37S 0490809 D, 4407395 K).

2.2. Kurtlutepe Metamorfitleri

Çalışma alanında geniş yayılıma sahip olan Kurtlutepe Metamorfitleri başlıca yeşilşist ve mermer ile temsil edilmektedirler. Bunların yanı sıra kalkfillat, metagabro, meta-marn, meta-volkanoklastit ve meta-kumtaşı yersel olarak gözlenmektedir. Kurtlutepe Metamorfitleri haritalanan bölge içinde yaklaşık 150 km² alan kaplamaktadır (Şekil 2.2).

Refahiye'nin Doğusunda bulunan Kurtlutepe'de, tamamı Kurtlutepe Metametamorfitlerinden oluşan tepenin Doğu sınırında Refahiye Meta-ofiyoliti Kurtlutepe Metamorfitlerinin üzerine tektonik olarak gelirken, aynı sınırın Kurtlutepe'nin Batısına ve Güneyine gelen bölümlerinde, bu kez Kurtlutepe Metamorfitleri Refahiye Meta-ofiyoliti'nin üzerindedir (Şekil 2.9).

Şekil 2.9: Kurtlutepe'nin Güneyinde, Kurtlutepe Metamorfitleri Refahiye Meta-ofiyoliti'ne bindiriyor (37S 0489830 D, 4408862 K).

Yeşilşistlerin yapraklanmaları, kıvrımlanmaları ve minerallerinin yönlenmeleri belirgindir. Genelde yeşilimsi veya mavimsi kül rengi ile karakteristiktirler (Şekil 2.10). Yer yer kalınlıkları 40 cm'ye varan kuvars damarları yeşilşistleri kesmektedir. Neredeyse tüm yeşilşistler parlak bir dış yüzeye sahiptir. Bazı örneklerde manganlaşma vardır.

Şekil 2.10: Kurtlutepe'de gözlenen yeşilşistler (37S 0489638 D, 4412748 K).

Kurtlutepe Metamorfitleri'ne ait mermerler boz ayrışma rengi göstermektedir. Tamamen ince taneli ve masif mermerler olduğu gibi yer yer yapraklanmaları belirgin olan mermerler de mevcuttur. Bazı yerlerde mermerlerin içinde çapı 4 m'yi bulan kuvars damarları vardır.

Kalkfillat, mermerler veya yeşilşistler ile tektonik ilişkili olarak görülmektedirler. Yapraklanmaları ve kıvrımlanmaları belirgindir. İlksel kayacın kalsitçe zengin olması nedeniyle, kalkfillat da yoğun derecede kalsitleşmiştir.

Meta-marn, kalsiyum karbonat açısından zengin çamurtaşının basınç ve sıcaklık koşulları altında başkalaşım geçirmesiyle oluşur. Kurtlutepe Metamorfitleri içinde, Kurtlutepe'nin Güneybatısında yüzlek veren meta-marn, sarımsı pas rengi bir ayrışma göstermektedir ve yapraklanması belirgindir (Şekil 2.11).

Şekil 2.11: Kurtlutepe'nin Güneybatısında meta-marn yüzleği (37S 0485317 D, 4409494 K).

Meta-volkanoklastit'in ilksel kayacı mekanik olarak taşınmış ve sonrasında diyajenez geçirmiş kırıntılı volkanik kayaçtır. Meta-volkanoklastit, Kurtlutepe Metamorfitleri içinde meta-marn ile birlikte gözlenmektedir. Meta-volkanoklastit birimin yapraklanması belirgindir (Şekil 12). Meta-volkanoklastit içinde, kalınlıkları bir ile iki santimetre arasında değişen kuvars ve klorit damarları vardır.

Şekil 2.12: Meta-volkanoklastit biriminde gözlenen oldukça belirgin yapraklanma (37S 0485350 D, 4415538 K).

İçinde yoğun olarak kuvars bulunduran meta-kumtaşı, Kurtlutepe'nin Güneyinde kalkfillatla birlikte gözlenmektedir.

2.3. Ofiyolitik Melanj

Refahiye'nin Güneyinde yer alan Ofiyolitik Melanj, inceleme alanı içinde yaklaşık 50 km² alan kaplamaktadır. Ofioyolitik Melanj'ın kayaç içeriğini çamurtaşı, mermer, bazalt, kumtaşı, dolerit, mikrogabro, serpantinit ve meta-plajiyogranit oluşturmaktadır. Çamurtaşı matriks konumundadır. Yılmaz ve diğ. (1985) tarafından Üst Kretase olarak yaşlandırılmıştır.

Ofioyolitik Melanj'ın içindeki blokların çapları 30 cm'den 15 m'ye kadar değişmektedir. Mermerler masif yapıdadır ve boz ayrışma rengine sahiptirler (Şekil 2.13). Serpantinitler yer yer iki metre çapında bloklar halinde, yer yer çamurtaşı ile ardalanmalı katmanlar halinde yer almaktadır (Şekil 2.14). Mülk Köyü'nün Kuzeyinde Ofiyolitik Melanj içinde çok büyük bir mikrogabro mostrası

görülmektedir. Mikrogabrolar genellikle altere olmuşlardır. Mikrogabro bloğunun etrafında çört, serpantinit, mermerler ve kireçtaşları vardır. Ofiyolitik Melanj, hem Refahiye Meta-ofiyoliti hem de Onarı formasyonu ile tektonik olarak sınırlıdır ve her ikisinin de üzerine bindirmektedir (Şekil 2.15 ve Şekil 2.16).

Şekil 2.13: Ofiyolitik Melanj içinde blok halinde bulunan masif yapıdaki mermer (37 S 0486580 E, 4407756 N).

Şekil 2.14: Ofiyolitik Melanj içinde çapı iki metre olan serpantinit bloğu (37 S 0493637 E, 4403955 N).

Şekil 2.15: Ofiyolitik Melanj'a ait yeşilşistlerin, Onarı formasyonunun üzerinde görüldüğü arazi görüntüsü (37 S 0478353 E, 4407434 N).

Şekil 2.16: Ofiyolitik Melanj'a ait mermerlerin Refahiye Meta-ofiyolitine ait peridotitlerinin üzerinde görüldüğü arazi görüntüsü (37S 0479207 D, 4409795 K).

2.4. Gazipınarı Kırıntılı Kayaları

Gazipınarı Kırıntılı Kayaları, çakıltaşı, kumtaşı, kiltaşı ve marn ardalanmalı bir istiften oluşan, Eosen yaşlı göl çökellerdir (Yılmaz ve diğ, 1985). En güzel yüzeylemeleri, Sivas-Erzincan yolunda, Refahiye'den yaklaşık 4 km sonra yol yarmasında gözlenmektedir (Şekil 2.17). Ayrıca Refahiye'nin Kuzeyinde bulunan Sağlık Köyü'nün girişinde de iyi yüzeylemeler vardır. Gazipınarı Kırıntılı Kayaları'nın, Refahiye'nin Kuzeyinde Refahiye Meta-ofiyoliti ve Kurtlutepe Metamorfitleri'nin üzerine uyumsuzlukla örtü olarak geldikleri görülmektedir.

Şekil 2.17: Gazipınarı Kırıntılı Kayaları'nın çakıltaşı, kumtaşı, kiltaşı ardalanması (37S 0482440 D, 4417017 K).

Gazipınarı Kırıntılı Kayaları birimine ait çakıltaşları açık gri renkli matrikse sahiptir ve çakılların boyları 1mm ile 1cm arasında değişmektedir. İçinde serpantinit, amfibolit, gabro, kireçtaşı çakılları vardır. Gazipınarı Kırıntılı Kayaları biriminde gözlemlenen çakıltaşlarının küresellikleri ve boylanmaları kötüdür ama yuvarlaklıkları iyidir. Çakılların çapları bir milimetreden beş santimetreye kadar değişkenlik gösterir. Tabakalanma her zaman belirgin değildir. Yer yer katmanlanmaya dik gelişmiş çatlak sistemleri görülmektedir. Kiltaşı içinde yaprak fosili barındıran seviyeler vardır (Şekil 2.18).

Şekil 2.18: Gazipınarı Kırıntılı Kayaları'nın kiltaşı seviyesinde yaprak fosilleri (37S 0482440 D, 4417017 K).

2.5. Onarı Formasyonu

Refahiye'nin Güneyinde ve Güneydoğusunda yüzeyleyen Onarı Formasyonu, hem Kurtlutepe Metamorfitleri'nin hem de Refahiye Meta-ofiyoliti'nin üzerine açısal uyumsuzlukla gelmektedir. Onarı Formasyonu ilk kez Yılmaz ve diğ. (1985) tarafından Alt Miyosen yaşlı denizel çökel birim olarak tanımlanmıştır.

Onarı Formasyonu başlıca çakıltaşı, kumtaşı, kiltaşı, marn, kireçtaşı ve bunları kesen volkanik dayklardan oluşmaktadır. Çakıltaşları stratigrafik olarak birimin en alt seviyesini oluşturmaktadır. Tabakasız ve kırmızı ve pas rengi olarak görülen çakıltaşı, serpantinit, listvenit, peridotit, gabro, volkanit çakıllarından meydana gelmiştir. Çakılların boylanmaları kötü olsa da yuvarlaklıkları iyidir (Şekil 2.19).

Tabakalı olarak gözlenen kireçtaşı, beyaz renklidir. Kireçtaşı, çakıltaşı, kumtaşı, kiltaşı ve marn ile ardalanmalı olarak bulunmaktadır. Bu ardalanmalı sıra zaman zaman bazalt karakterli volkanitler tarafından kesilmektedir. Volkanitin sokulması sonucu marn silisleşmiş ve içinde mangan zenginleşmesi olmuştur (Şekil 2.20).

Volkanite ait bazalt çakıllarının yer yer çakıltaşları içinde görülmesi, volkanizmanın çökelimle eş zamanlı olduğuna işaret etmektedir.

Şekil 2.19: Onarı Formasyonun arazi görüntüsü (37S 0477395 D, 4406373 K).

Şekil 2.20: Bazaltik sokulum sonucu marnda mangan zenginleşmesi (37S 0482944 D, 4412741 K).

2.6. Kadıköy Formasyonu

Kadıköy Formasyonu açısal uyumsuzluk ile Gazipınarı Kırıntılı Kayalarının üzerine gelmektedir. Kadıköy Formasyonu ilk kez Yılmaz ve diğ. (1985) tarafından Üst Miyosen-Pliyosen yaşlı karasal çökel olarak tanımlanmıştır.

Çakıltaşı-kumtaşı ardalanması gösteren Kadıköy Formasyonu'nun rengi pas rengidir. Katman kalınlıkları 10 ile 15 cm arasında değişmektedir. Çakıltaşı seviyeleri içinde kötü boylanmış, orta yuvarlaklaşmış, gevşek tutturulmuş, amfibolit, çört mermer, yeşilşist, serpantinit çakılları bulunmaktadır (Şekil 2.21). Bu çakılların çapları 2 mm'den 3 cm'e kadar değişmektedir.

Şekil 2.21: Kadıköy formasyonu'ndan çakıltaşı-kumtaşı ardalanmasının görünüşü (37S 0483623 D, 4417789 K).

BÖLÜM 3. PETROGRAFİ ve MİNERAL KİMYASI

3.1. Refahiye Meta-ofiyoliti

Refahiye Meta-ofiyoliti'ni oluşturan farklı kayaç türlerinden 36 adet örneğin içerdiği minerallerin yaklaşık bollukları Tablo 3.1'te verilmektedir ve bu örneklerin petrografik nitelikleri de aşağıda ayrıntılı olarak özetlenmektedir.

Örnekler	Ol	Opx	Срх	Sp	Mgt	Srp	Pl	Chl	Phl	Act	En	Brc	Cal	Opq
Dünit														
197	91	-	-	3	1	5	-	-	-	-	-	-	-	-
Serpantin	ize pe	ridotit												
91	67	7	2	2	5	15	-	-	-	2	-	-	-	-
93	77	-	5	3	-	15	-	-	-	-	-	-	-	-
195	82	2	-	4	2	10	-	-	-	-	-	-	-	-
219	77	-	-	6	-	15	-	2	-	-	-	-	-	-
316	53	-	-	5	2	40	-	-	-	-	-	-	-	-
329A	30	5	2	3	2	58	-	-	-	-	-	-	-	-
352B	75	2	4	3	5	10	-	-	-	-	1	-	-	-
Serpantin	it													
96Ĉ	-	8	-	3	2	87	-	-	-	-	-	-	-	-
107	6	4	-	2	2	86	-	-	-	-	-	-	-	-
267	5	3	-	4	3	85	-	-	-	-	-	-	-	-
268	-	15	-	3	5	78	-	-	-	-	-	-	-	-
330B	-	3	3	4	8	82	-	-	-	-	-	-	-	-
339D	-	-	-	3	3	92	-	1	-	-	-	1	-	-
366B	-	2	2	2	5	89	-	-	-	-	-	-	-	-
Meta-gab	ro													
317A	-	-	10	-	-	-	71	-	16	-	-	-	-	3
317C	5	5	10	-	-	-	72	2	-	2	-	-	4	-
318	-	-	25	-	-	-	70	-	-	5	-	-	-	-
322	-	-	15	-	-	20	65	-	-	-	-	-	-	-
Amfibolit														
95	-	-	-	21	70	-	-	3	3	-	-	-	-	3
96B	-	-	-	20	75	-	-	-	2	-	-	-	-	3
241	-	-	-	25	70	-	-	-	-	-	-	-	-	5
242	-	-	-	25	65	-	-	-	5	-	-	-	-	5
245	-	-	-	27	70	-	-	-	-	-	-	-	-	3
247	-	-	-	23	70	-	-	-	-	2	-	-	-	5
252	-	-	-	26	60	-	-	-	-	-	9	-	-	5
270	-	-	-	35	60	-	-	-	-	-	-	-	-	5

Tablo 3.1: Refahiye Meta-ofiyoliti'nde bulunan değişik kayaç türlerinin içerdikleri minerallerin yaklaşık modal bollukları.

Örnekler	Ol	Срх	Srp	Pl	Am	Hbl	Bt	Act	Prh	Pmp	Qtz	Cal	Zrn	Opq
Amfibolit														
339B	-	-	-	59	40	-	-	-	-	-	-	-	-	1
358A	-	-	-	28	65	-	-	-	2	-	-	-	-	5
358B	-	-	-	32	50	-	-	-	3	-	-	-	-	15
615	-	-	-	19	75	-	-	-	-	-	5	-	-	1
Meta-plaji	iyogra	nit												
96A	-	-	-	60	-	1	7	-	-	-	30	-	-	2
342	-	-	-	77	-	7	-	-	10	-	2	-	1	3
Klinopirol	ksenit													
96D	12	80	8	-	-	-	-	-	-	-	-	-	-	-
Listvenit														
212	-	-	-	-	-	-	-	-	-	-	14	85	-	1
258	-	-	-	-	-	-	-	-	-	-	12	87	-	1

Tablo 3.1: Refahiye Meta-ofiyoliti'nde bulunan değişik kayaç türlerinin yaklaşık modal bollukları (Devamı).

3.1.1. Dünit

Dünit, masif yapılı olup, herhangi bir yönlenme göstermeyen orta tane boylu (1-2 mm), öz şekilsiz veya yarı öz şekilli minerallerden oluşmaktadır (Şekil 3.1). Olivin dışında, Cr-Al spinel gözlenmektedir. Serpantin ve manyetit ikincil olarak bulunmaktadır. Olivinler, çatlaklar veya tane sınırları boyunca serpantinleşmiştir. Serpantinleşmenin ilerlemiş aşamalarında ikincil elek dokusu gelişmiştir. Cr-Al spinel ya olivin içerisinde kapanım olarak ya da bireysel taneler olarak bulunmaktadır ve çapları 1 ile 1.5 mm arasında değişmektedir. Bazı Cr-Al spinel taneleri olivin kapanımları içermektedir.

Yersel olarak Cr-Al spinel tanelerinin çatlakları serpantin mineralleri tarafından işgal edilmiştir. Serpantinleşmiş örneklerde, Cr-Al spinellerin etrafları manyetit ve klorit tarafından çevrelenmektedir.

3.1.2. Serpantinleşmiş peridotit

Bu çalışmada serpantinleşmiş peridotit kavramı, içinde % 70'ten daha az serpantin minerali bulunan ve ilksel bileşimi nadiren belirlenebilen kayaç olarak kullanılmıştır.

İlksel hali harzburjitik veya dünitik karakterde olan bu kayaçların içinde bulunan minerallerin en az % 10'u serpantinleşmiştir. Herhangi yönlü bir doku göstermeyen bu kayaçlar, ortalama 1 ile 2 mm çapındaki minerallerden oluşmaktadır.

Şekil 3.1: Dünit içerisinde olivin (Ol) ve Cr-Al spinel (Sp) (Normal 1ş1k) (Örnek 197).

Şekil 3.2: Olivin (Ol), Cr-Al spinel (Sp), ortopiroksen (Opx) ve serpantin (Srp) mineralleri ile temsil edilen serpantinleşmiş peridotit (Kutuplanmış ışık) (Örnek 91).

Bolluk sırasına göre ana bileşenleri olivin, Cr-Al spinel, \pm ortopiroksen ve \pm klinopiroksendir (Şekil 3.2). Serpantin mineralleri, manyetit, klorit ve aktinolit ikincil olarak bulunmaktadır.

Olivinler öz şekilsiz taneler oluşturmakta ve yersel olarak ortopiroksenler tarafından çevrelenmektedir. Bu dokusal durum ortopiroksenlerin olivinlerden daha sonra kristallendiğine işaret etmektedir. Ortopiroksenler, yarı öz şekilliden öz şekilsize kadar ulaşan taneler oluşturmakta ve yersel olarak yaklaşık 0,1 mm eninde klinopiroksen kusma lamelleri içermektedir. Cr-Al spinel, olivinin ve piroksenin tane sınırlarında, öz şekilsiz taneler olarak bulunmaktadır. Yersel olarak bazı Cr-Al spinel taneleri olivin kapanımları barındırmaktadır. Serpantin mineralleri ise Cr-Al spinel tanelerinin çatlaklarını doldurmaktadır. Serpantinleşmenin yaygın olduğu örneklerde, spinelin çekirdek kısmı kahverengi iken, çekirdekten uzaklaşıldıkça koyu bir renk egemen hale gelmektedir. Bu durum, Cr-Al spinelin manyetite dönüşmesinin sonucudur.

91 ve 219 numaralı serpantinleşmiş peridotit örneklerinden elde edilen mineral kimyası sonuçları Tablo 3.2'de verilmiştir.

Örnek	91	91	91	91	91	91	91	91	91	91	91	219	219
Kayaç	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP
Mineral	Срх	Срх	Hbl	Hbl	Srp	Srp	Srp	Srp	Srp	Srp	Mgt	Ol	Ol
SiO ₂	52.91	53.74	56.72	57.05	42.32	38.05	41.03	40.89	41.63	42.49	0.14	41.33	40.72
TiO ₂	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.04	0.01
Al_2O_3	2.19	1.46	1.81	1.29	0.49	0.46	0.90	0.66	0.87	0.55	0.00	0.00	0.00
Cr_2O_3	0.96	0.51	0.49	0.34	0.08	0.73	0.63	0.12	0.67	0.26	0.00	0.26	0.00
FeO	2.26	2.06	2.08	2.82	4.31	6.69	4.62	5.01	4.62	6.54	92.18	6.98	8.77
MnO	0.13	0.03	0.13	0.01	0.06	0.08	0.11	0.08	0.15	0.09	0.06	0.11	0.13
MgO	17.87	17.29	23.26	23.03	38.95	35.54	37.86	38.02	37.33	36.11	0.06	51.68	50.79
CaO	23.37	24.69	12.81	13.08	0.23	0.19	0.29	0.24	0.53	1.45	0.01	0.14	0.00
Na ₂ O	0.07	0.10	0.14	0.06	0.02	0.03	0.02	0.01	0.02	0.05	0.00	0.00	0.01
K ₂ O	0.01	0.00	0.02	0.04	0.01	0.04	0.01	0.02	0.03	0.02	0.00	0.00	0.01
Toplam	99.77	99.87	97.47	97.72	86.46	81.81	85.46	85.08	85.85	87.57	92.46	100.53	3100.44
Mg Değeri	93.40	93.70	95.20	93.60	94.20	90.50	93.60	93.10	93.50	90.80	0.10	93.00	91.20
Mg#	97.10	95.80	98.90	96.60	94.20	90.50	93.60	93.10	93.50	90.80	0.30	93.00	91.20
Cr Değeri	0.23	0.19	-	-	-	-	-	-	-	-	-	-	-

Tablo 3.2: Serpantinleşmiş peridotite ait minerallerin bileşim aralığı.

Örnek	219	219	219	219	219	219	219	219	219	219	219	219	219
Kayaç SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP
Mineral	Ol	Srp	Srp	Srp	Srp	Srp	Srp	Hem	Mgt	Chl	Chl	Chl	Cal
SiO2	40.51	39.37	41.44	39.47	43.74	39.37	38.10	1.38	0.02	28.54	27.63	34.80	0.01
TiO2	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.03	0.00
Al2O3	0.01	0.00	0.00	0.00	0.68	0.01	0.02	0.01	0.00	22.60	24.60	12.81	0.00
Cr2O3	0.00	0.02	0.02	0.00	0.29	0.00	0.00	0.00	1.22	1.65	1.68	0.48	0.42
FeO	8.40	3.70	3.18	4.52	2.10	3.82	3.74	86.14	90.96	2.73	2.25	2.80	0.32
MnO	0.15	0.03	0.04	0.00	0.04	0.00	0.03	0.97	0.08	0.00	0.03	0.06	0.00
MgO	50.60	38.76	40.60	39.36	40.22	38.71	38.51	2.06	0.81	31.55	31.45	35.79	0.00
CaO	0.06	0.04	0.02	0.03	0.04	0.05	0.02	0.00	0.02	0.02	0.13	0.01	53.39
Na2O	0.02	0.01	0.05	0.03	0.00	0.00	0.02	0.04	0.05	0.02	0.02	0.01	0.01
K2O	0.00	0.01	0.01	0.00	0.00	0.01	0.03	0.01	0.01	0.01	0.01	0.00	0.00
Toplam	99.75	81.93	85.37	83.42	87.10	81.97	80.48	90.62	93.18	87.12	87.80	86.77	54.14
_													
Mg Değeri	91.5	94.9	95.8	93.9	97.2	94.8	94.8	4.1	1.6	95.4	96.1	95.8	0.0
Mg#	91.5	94.9	95.8	93.9	97.2	94.8	94.8	11.7	4.6	95.4	96.1	95.8	?
-													

Tablo 3.2: Serpantinleşmiş peridotite ait minerallerin bileşim aralığı (Devamı).

(SP: Serpantinleşmiş Peridotit, Cal: Kalsit, Chl: Klorit, Cpx: Klinopiroksen, Hbl: Hornblend, Hem: Hematit, Mgt: Manyetit, Ol: Olivin, Srp: Serpantin).

Serpantinleşmiş peridotitlerde bulunan klinopiroksenlerin 100Cr/(Cr+Al) değerleri 0.19 ile 0.23 arasındadır. Olivinlerin Mg/(Mg+Fe⁺²) oranı 91 ile 93 arasında değişmektedir ve forsterit (Fo₉₁₋₉₃) bileşimindedirler. Klinoprioksenlerin Mg/(Mg+Fe⁺²) oranı ise 95 ile 98 arasında değişmektedir ve diyopsit bileşimindedirler (Şekil 3.3).

Şekil 3.3: 91 numaralı örneğe ait piroksenler, piroksen adlandırma diyagramına iz düşürülerek isimlendirilmesi (Hess, 1941).

3.1.3. Meta-gabro

Meta-gabrolar, boyları 0.5'den 1 mm'ye kadar değişen, yarı öz şekilli, belirgin bir yönlü doku göstermeyen tanelerden oluşmaktadır. İncelenen meta-gabroların başlıca mineralleri bolluk sırasına göre plajiyoklas, klinopiroksen, \pm flogopit, \pm ortopiroksen ve \pm olivindir (Şekil 3.4). Bozuşmaya bağlı olarak gelişen ikincil mineraller klorit, aktinolit, kalsit ve serpantin ile temsil edilmektedir.

Plajiyoklas bütünüyle bozuşmuştur ve bulanık gözükmektedir. Yalnızca dış şekillerinden plajiyoklas oldukları anlaşılmaktadır. Bazı plajiyoklasların içinde piroksen kapanımları vardır. Piroksen ise uralitleşme sonucu aktinolite dönüşmüştür. Kloritle beraber kalsit de ikincil mineral olarak bulunmaktadır.

Şekil 3.4: Plajioklas (Pl) ve piroksen (Px) minerallerinin hakim olduğu meta-gabro (Kutuplanmış ışık) (Örnek 317C).

3.1.4. Amfibolit

Belirgin bir yapraklanmaya sahip amfibolitlerin tane boyları 1 ile 2 mm arasında değişmektedir. Bolluk sırasına göre plajiyoklas, amfibol ve opak mineraller içermektedir. Kuvars, prehnit, pumpelleyit, ve aktinolit minerallerinin modal bolluk

oranları % 10'dan daha az olarak görülmektedir. Plajiyoklaslar yoğun olarak bozuşmuştur (Şekil 3.5). Bozuşmaya uğramış plajiyoklaslardan bazılarında amfibol kapanımları görülmektedir. Amfiboller yarı öz şekillidir. Kayaçlar yersel olarak prehnit damarları tarafından kesilmektedir. Bu da başkalaşımın zaman içinde gerilediğini göstermektedir.

96B, 252, 270 ve 272 numaralı amfibolit örneklerinden yapılan analiz sonucu elde edilen mineral kimyası sonuçları Tablo 3.3'de verilmiştir.

Şekil 3.5: Amfibolite ait bozuşmuş plajiyoklas (Pl) ve hornblend (Hbl) (Normal ışık) (Örnek 245).

	Tablo 3.3: Amfibolitlere	minerallerin	bileşim	aralığı	(Devamı).
--	--------------------------	--------------	---------	---------	-----------

Örnek Mineral	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl
SiO ₂	45.61	46.36	45.29	45.92	47.20	45.40	45.75	45.66	44.58	45.38	47.23	53.32	45.66
TiO ₂	1.27	1.20	1.17	1.23	0.77	1.05	1.26	1.16	1.42	1.26	1.05	0.03	1.41
Al_2O_3	7.82	7.10	8.01	7.63	7.13	8.34	7.94	8.01	8.25	8.07	6.64	0.44	7.97
Cr_2O_3	0.03	0.08	0.00	0.02	0.03	0.00	0.00	0.03	0.05	0.03	0.02	0.00	0.05
FeO	18.37	18.35	18.90	18.57	17.17	17.92	18.36	18.47	18.76	19.19	18.46	24.13	18.48
MnO	0.36	0.43	0.31	0.33	0.40	0.20	0.26	0.27	0.29	0.37	0.34	0.33	0.37
MgO	10.19	10.78	10.11	10.48	11.14	10.53	10.54	10.18	10.03	10.00	11.21	8.70	10.28

Örnek Mineral	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl	96B Hbl
CaO	11.33	11.28	11.61	11.32	11.54	11.69	11.59	11.65	11.52	11.59	11.48	12.02	11.42
Na ₂ O	1.22	1.12	1.11	1.15	0.94	1.08	1.01	1.17	1.14	1.16	0.94	0.03	1.04
K_2O	0.30	0.27	0.28	0.26	0.24	0.30	0.32	0.32	0.28	0.32	0.25	0.03	0.29
Toplam	96.49	96.96	96.78	96.92	96.54	96.52	97.02	96.93	96.32	97.38	97.60	99.02	96.96
Mg Değeri	49.71	51.16	48.81	50.16	53.62	51.16	50.57	49.57	48.80	48.16	51.97	39.12	49.79
Mg#	65.91	66.88	66.17	66.42	66.49	68.50	66.07	66.23	67.07	65.56	66.12	39.12	64.53
An (Fds)	-	-	-	-	-	-	-	-	-	-	-	-	-
Px Al6/Al4	-	-	-	-	-	-	-	-	-	-	-	-	-
Cr/Cr+Al	-	-	-	-	-	-	-	-	-	-	-	-	-

Tablo 3.3: Amfibolitlere minerallerin bileşim aralığı (Devamı).

Şekil 3.6: Leake ve diğ. (1997)'e göre 96B, 252, 270, 272 numaralı amfibolit içinde bulunan amfibolitlerin kimyasal bileşimleri.

96B, 252, 270 ve 272 numaralı amfibolit örnekleri içinde bulunan amfibol mineralleri, kalsik amfiboller için Leake ve diğ. (1997) tarafından belirlenen diyagrama aktarılarak isimlendirilmiştir (Şekil 3.6). Buna göre 96B, 252, 270 ve 272 numaralı amfibolit örneklerinde bulunan amfibolit mineralleri çoğunlukla magnezyo-hornblend'tir. Bunun yanı sıra, 252 numaralı örnekte çermakit, 270 ve 272 numaralı örnekte ferro-aktinolit, 96B numaralı örnekte hem çermakit hem de ferro-aktinolit mineralleri vardır.

96B, 252, 270 ve 272 numaralı amfibolit örnekleri içinde bulunan feldispatlar, Albit-Anortit-Ortoz üçlü diyagramına iz düşürelerek isimlendirilmiştir (Şekil 3.7). Buna göre 96B, 252, 270 ve 272 numaralı amfibolit örneklerinde bulunan feldispat

96B Fds	69,44 0,00 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.00	0.19
96B Fds	70,03 0,00 0,00 0.01 0.00 0.01 0.01 0.01 0.01	0.26
96B Fds	57,37 0,02 27,04 0.02 8.79 0.12 0.12 0.12	42.07
Pds B	64,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00	16.55
96B	51,79 0,09 0,00 0,00 0,00 0,00 0,00 0,00 0	16.78
eeB Fds	55,66 2000 2019 2019 2019 2019 2019 2019 2019	14.58
69 19	9,01 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0	33
ds B	4,54 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00)(0,0)	4.09
ds B	9,80 6 0,10 0 0,01 0 0,02 0 0,00 0 0,01 0 0,01 0 0,11 0 0,12 0 0,12 0 0,12 0 0,16 0 0,000 0 0,000 0 00000000	
ds B B	3,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00	629 6
ds B	8.79 6 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.03 0 03 0 03 0 03 0 03 0 03 0 03 0	18
6B 9 bl F	2559 2529 2520 2500 2500 2500 2500 2500	0.12 - 8.01 - -
6 19 H 76	A 114 100 001 717 4 9 23 1002 002 002 002 002 002 002 002 002 00	8.67 5 7.28 6 -
6 H 8	04 1.20 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0	7.48 4 7.51 6 -
96 H H 36	21 22 21 22 22 22 22 22 22 22 22 22 22 2	18 21
E E	22 10 10 18 19 19 19 19 19 19 19 19 19 19 19 19 19	59 48 59 59 48 59 59 48
B 96	24 10 00 00 00 00 00 00 00 00 00 00 00 00	64 65 1
B 96	772 50 661 440 30 661 443 0,30 97 97, 97, 97, 97, 97, 97, 97, 97, 97, 9	22 20
8 E	08 46. 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,	20 20 26
961 HD	83 46. 1 7,6 1 0,0 1	41 50 20 66.
96E	79 46. 6 1,1. 7 10,0 6 0,0 7 10,0	07 50. 12 63.
Hol Hol	2 21. 2 21. 2 20. 2	28.0 27 28.1 -
96H Holi	6 52 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	1 34.1 8 34.2
96B Hbl	9 45.4 0,777 9 18.9 9 18.9 0.31 9 11.0 9 18.9 0.31 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.38 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	1 48.0 9 63.7 -
96B Hbl	1 52.5 0,003 0,007 0,007 0,007 8 8.98 8 8.98 8 8.98 8 8.98 8 0.00 0.00 0.00	2 40.4 9 41.0 -
96B Hbi	45.7 1,65 1,65 0,05 0,05 11,5 11,5 11,5 0,26 0,26 0,26 0,26	49.1 63.0
Omek Mineral	SiO ₂ TTO ₂ Cr ₂ O ₃ Cr ₂ O ₃ MMO MgO Kr ₂ O Toplam Toplam	Mg Değeri Mg# An (Fds) Px Al6/Al4 Cr/Cr+Al

Tablo 3.3: Amfibolitlere minerallerin	bileşim	aralığı	(Devamı)).
---------------------------------------	---------	---------	----------	----

252	Hbl	50.24	0.40	4.55	0.02	19.37	0.29	10.57	11.83	0.51	0.14	97.92	49.31	54.30	,	ï	í	
252	Hbl	45.89	1.04	8.30	0.04	19.23	0.34	9.87	11.16	1.18	0.29	97.32	47.77	62.79	,	ŗ	,	
252	IdH	45.54	1.15	8.37	0.02	19.01	0.42	9.85	11.16	1.12	0.28	16:96	48.00	62.85	1	Ţ	I.	
252	Hbl	45.60	1.15	8.49	0.02	18.35	0.28	10.53	11.34	1.09	0.29	97.13	50.58	67.05	1	ī	ī	
252	Hbl	45.85	1.16	7.98	00.00	19.56	0.36	10.19	11.07	1.21	0.27	97.63	48.15	64.91	,			
252	IdH	45.70	1.07	8.31	0.06	19.69	0.31	9.85	11.10	1.10	0.27	97.47	47.14	62.12	,	ĩ	ï	
252	IgH	44.90	1.35	8.99	00.00	20.00	0.38	9.46	11.30	1.30	0.30	97.98	45.74	64.06	,	ī	ï	
252	IdH	45.33	1.14	8.26	0.03	19.17	0.39	9.98	11.31	1.16	0.28	97.05	48.14	65.25	,	ï		
252	IdH	45.54	1.10	8.11	0.02	19.10	0.30	10.14	11.30	1.19	0.30	97.11	48.61	65.74	,		,	
252	IdH	47.29	0.94	6.88	0.00	18.61	0.39	10.94	11.49	1.04	0.23	97.81	51.18	65.82	1	ı	i	
252	IdH	46.08	1.10	7.80	0.03	19.15	0.34	10.23	11.36	1.12	0.25	97.44	48.77	64.59	1	ī	i	
252	Hbl	46.17	1.06	8.10	0.06	19.06	0.35	10.16	11.44	1.16	0.27	97.82	48.73	64.68	1	ï	ï	
252	IdH	45.89	1.05	8.00	0.04	18.57	0.33	10.02	11.38	1.06	0.28	96.62	49.04	62.96	,			
252	Hbl	45.95	1.14	8.10	0.03	18.92	0.40	10.13	11.25	1.07	0.25	97.25	48.82	63.40	,		ŗ	
252	IdH	45.81	1.13	7.90	0.07	18.84	0.40	10.21	11.40	1.16	0.29	97.20	49.13	65.60	,	i.	,	
252	IdH	45.59	1.15	8.25	0.01	19.46	0.34	10.03	11.31	1.23	0.30	97.66	47.87	65.44	,	ī		
96B	ЦЦ	30.33	38.84	0.89	0.03	0.83	0.02	0.00	28.13	0.01	0.00	99.07	0.00	c	ï		,	
96B	IIm	0.02	50.19	0.00	00.00	46.02	2.22	0.07	0.35	0.06	0.02	98.93	0.27	0.30		ī	ï	
96B	IIm	0.03	51.84	0.00	0.03	45.76	1.78	0.07	0.10	0.02	0.01	99.64	0.28	0.28	1	Ţ	ţ	
96B	IIm	0.01	50.86	0.00	0.01	46.44	1.71	0.04	0.04	00.00	0.01	99.11	0.16	0.17	,	I	ī	
96B	Im	0.02	51.09	0.00	0.03	46.76	1.83	0.07	0.02	0.03	0.00	4 99.85	0.28	0.30	,	,	,	
96B	IIm	0.01	51.16	0.00	0.01	46.96	1.78	0.08	0.04	0.00	0.02	100.0	0.30	0.32	,	ï	,	
96B	Im	0.17	50.81	0.00	0.02	46.51	1.63	0.07	0.05	0.03	0.03	99.32	0.27	0.29	1	ī	ī	
96B	Im	0.03	51.13	0.00	0.03	46.24	1.79	0.07	0.10	0.00	0.02	99.42	0.27	0.29	ï			
96B	Ш	0.00	51.16	00.0	00.00	46.64	1.76	0.05	0.02	0.04	0.01	69 .66	0.18	0.19				
Omek	Mineral	SiO	Tio ₂	Al ₂ O ₃	Cro	FeO	MnO	MgO	CaO	Na ₂ O	$K_{2}O$	Toplam	Mg Değeri	13M	An (Fds)	PX AI6/AI4	Cr/Cr+AI	

152 252 252 Pmp Pmp Pmp	7.01 37.52 36.91 0.02 0.00 0.01 7.01 2.775 26.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.01 0.04 0.04 0.01 0.04 0.04 0.01 0.04 0.04 0.01 0.04 0.04	0.50 0.66 16.45 0.50 0.66 16.45
FF 252	43.58 0.03 0.03 0.00 0.19 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.0	800
252 Prh	43.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0	88
252 Fds	1 5653 0.04 0.04 0.01 0.01 0.04 0.04 0.04 0.04	4 - 5 - - 23.28 -
252 Hbl	6 42.7 9.87 9.87 9.87 9.87 9.87 8.77 8.77 1.62 1.62 0.21 0.21 0.07.0	7 43.6 0 67.4 -
252 Hbi	1 45.4 1111 827 827 9036 9938 9938 1112 026 026 026 026	9 64.6
252 Hbl	4 45.7 8.46 8.46 9.84 9.84 9.84 9.84 0.09 0.09 7 97.0	8 48.3 8 62.4 -
252 Hbl	6 45.5 8 123 8 19.2 9 11.2 9 95 11.19 0.27 7 97.2 7 97.2	5 64.5
252 Hbl	4 45.4 6 8.45 6 8.45 0.01 9.90 9.90 1.10 0.28 1.10 0.28 1.10	9 47.5 3 63.7 -
252 Hbl	8 43.1 2.19 2.19 10.1 10.1 8.60 8.60 8.60 8.60 9.038 9.77 9 97.7	5 42.9 0 64.6 -
252 Hbl	3 452 826 826 002 033 033 033 033 033 033 8 972 8 972	7 47.7 8 64.7 -
252 Hbl	0 46.0 1.22 8.43 8.43 8.43 0.04 0.04 0.04 0.03 0.33 10.7 5 11.4 0.33 8 97.0 8 97.0	6 52.1 8 67.7 -
252 Hbl	5 46.2 1.11 8.02 8.02 8.03 8.03 8.03 8.03 8.03 10.7 1.13 0.27 2 97.4	4 51.0 5 67.2 -
252 Hbl	3 45.5 8.40 8.40 9.99 9.99 9.99 0.31 1.09 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31	1 48.0 1 64.2 -
252 Hbl	8 45.0 1.18 8.37 8.37 8.37 9.03 9.79 9.79 9.79 9.79 9.70 9.70 9.70 9.70	2 47.2 9 64.7 -
252 Hbl	2 45.3 1.000 8.260 9.01 0.02 9.97 0.35 9.97 0.35 9.97 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	3 48.1 9 65.2 - -
252 Hbl	9 45.8 1.14 8.35 8.35 8.35 0.03 0.03 0.03 0.32 1.18 1.18 0.29 0.29 0.29 0.29	2 47.7 4 64.4 -
252 Hbl	0 45.7 1.21 8.27 8.27 9.042 9.98 9.11.1 9.13 0.27 0.27 0.27	3 48.2 0 63.6 -
252 Hbl	4 45.8 1.17 8.32 9.45 9.85 9.85 9.85 9.85 9.85 9.85 9.85 9.8	0 47.4 8 63.8 -
252 Hbl	4 45.8 1.15 8.34 9 18.6 9 9.83 9 9.83 1.16 0.25 9 9.83 9 96.7	8 48.4 1 62.3 -
252 Hbl	8 461 7.900 7.900 7.900 7.900 6 11.2 7 97.5 7 97.5	8 48.8 6 64.6
252 Hbl	3 45.5 1.09 8.42 9.84 9.84 9.84 1.11 1.11 1.10 0.31 0.31 0.31	8 47.5 8 62.2 -
22 191	45.6 1.00 0.00 0.00 0.30 0.30 0.30 0.30 0.30	47.6 63.6
Omek Mineral	SiO ₂ TriO ₂ AL ₃ O ₃ Cr ₂ O ₃ Mra Mra Mra CraO Kr ₃ O Toplam	Mg Değeri Mg# An (Fds) Px Al6/Al4 Cr/Cr+Al

252 Ilm	0.03 51.31 0.00 0.00 0.07 0.07 0.01 0.01 0.01 0.0	0.30 0.31 -
252 Ilm	0.07 48.78 0.00 0.01 0.04 0.04 0.03 97.23 97.23	0.16 0.18
252 Ilm	0.02 50.88 0.01 0.01 0.07 0.07 0.02 97.58	0.28 0.29 -
252 Ilm	0.02 49.89 0.02 0.02 0.03 0.03 97.37	0.33 0.35
252 Ilm	0.00 50.25 0.00 0.00 0.00 0.00 0.00 0.00	0.32 0.33
252 Ilm	0.00 49.86 0.01 1.44 0.00 0.00 97.60	033 035
252 Ilm	0.05 46.56 0.06 0.06 0.19 0.19 0.19 0.21 0.21 0.21 0.21 97.11	0.70 0.86 -
252 Ilm	0.01 50.22 0.00 0.00 0.00 0.00 0.00 97.42	0.23 0.24
252 Ilm	0.07 48.01 0.04 0.04 1.38 0.62 1.02 0.00 0.00 98.34	2.30
252 Ilm	0.04 49.93 0.00 0.03 0.03 0.03 0.03 0.03 96.16	0.13 0.13
252 Ilm	0.05 52.95 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.15 0.15
252 Ilm	0.00 50.76 0.00 0.07 0.07 0.00 98.08	0.25 0.26 -
252 Ilm	0.10 51.05 0.00 0.02 0.03 0.03 0.03 0.03 0.03 0.03	0.14 0.14 -
252 Ilm	0.04 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03	0.19 0.20 -
252 Ilm	0.08 50.62 0.00 0.03 0.03 0.03 0.03 0.03 95.69	0.11 0.11
252 Ilm	0.14 46.12 0.00 0.01 1.07 0.10 0.34 0.34 0.34 0.34 0.33 0.34 0.34	0.36 0.44
252 Ilm	0.08 50.13 0.06 0.06 0.13 0.13 0.25 0.00 0.00 96.67	053
252 Ilm	0.00 50.87 0.00 0.00 0.01 0.01 0.01 98.15	024
252 Ilm	0.02 50.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.24 0.24 -
252 Ilm	0.00 49.69 0.04 1.64 1.64 0.04 0.04 0.05 0.04 0.05	0.14 0.15 -
252 Ilm	80.00 49.33 0.00 0.07 0.07 0.03 0.03 0.03 0.03 0	0.25 0.28 -
Qtz 252	100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
252 Punp	37.23 0.06 0.19 0.19 0.12 22.38 0.01 0.01 91.45	48.53 48.53
252 Purp	36.77 0.01 5.91 5.91 0.03 0.03 0.04 0.03 0.05 92.42	11.63 11.63
252 Purp	36.84 0.01 27.63 0.03 6.16 0.10 0.10 0.03 93.01	2.76 2.76 -
Omek Mineral	SiO ₂ TTiO ₂ AL ₂ O ₃ Co ₂ CaO MMO MgO CaO CaO CaO Toplam	Mg Değeri Mg# An (Fds) Px Al6/Al4 Cr/Cr+Al

0 19	833 833 00 00 00 00 00 00 00 00 00 00 00 00 0	88 88 00
E H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 51 33 55 0 0.0
270 Hbl	9 43.0 0.7 0 0.0 0 0 0	0.0
270 Hbl	46.3 0.83 0.01 17.3 0.40 0.40 0.40 0.94 0.94 0.94 0.94 0.94	52.80 67.11
270 Hbi	46.59 1.07 7.96 0.05 18.08 0.33 10.93 11.61 11.61 11.61 12.88 97.88	51.86 67.22 -
270 Hbl	46.98 1.00 7.64 0.04 17.42 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.28	53.22 67.27 -
270 Hbl	46.68 1.01 7.81 0.33 0.33 0.33 11.02 11.02 0.26 97.54	52.85 68.59 -
270 Hbl	46.27 0.95 7.93 0.06 0.33 11.82 11.82 11.82 0.33 97.07 97.07	52.25 68.20 -
270 Hbl	46.10 1.02 7.73 0.05 17.40 0.05 0.05 0.05 0.05 0.09 0.19 0.19 0.19	52.57 67.79 -
270 Hbl	45.71 0.82 8.18 0.03 11.56 11.13 0.29 97.20	51.02 70.19 -
270 Hbl	46.56 0.96 0.04 18.12 0.03 11.10 0.28 0.97 0.97 0.97 0.20	52.20
Hbl	46.07 0.80 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05	52.39
570 Hbl	46.40 0.87 0.03 0.03 0.32 0.32 0.32 0.32 0.25 0.25 0.25	52.25
ET0	46.70 0.84 0.84 0.00 0.00 0.00 0.28 0.29 0.21 0.21 0.21 0.21	52.76
570 Hbi	46.79 0.84 0.84 0.06 0.06 0.29 0.29 0.76 0.76 0.23 0.23 0.23 0.23	54.01
570 Hbi	46.09 0.94 0.94 0.00 0.28 0.28 0.28 0.28 0.28 0.28 0.28	55.25
I IQI	1.14 4 1.159 10 1.129 10 1.146 11 1.146	0.16
E I I	6.03 4 1.11 1 1.11 1 1.54 1 6.85 9 6.85 9	2.55 5 9.59 7 -
Ц 1 1 1 2	9.81 4 6.65 0 6.65 0 6.65 0 1.72 7 7 7.72 7 7 1.13 0 1.13	00.00 6
1 2 1	9.79 2 6.47 3 6.47 3 9.95 0 9.92 0 6.89 2 6.89 2 00 0 5.12 9	00.
Щ 1 2	9.94 2 6.95 3 6.95 3 7.09 2 7.09 2 6.68 9 7.09 2 7.	8.
12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8
H R	800500000000000000000000000000000000000	ö
11 11 12 12	1 30. 4 37. 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.	0
7 <mark>1</mark> 22	29.9 37.45 0.72 0.72 0.02 27.30 0.02 0.03 96.11	0.00
252 Th	30.69 37.02 0.95 0.97 0.10 0.00 97.13 97.13	8
1 日 日 日	0.03 48.28 0.00 0.03 0.03 0.03 0.03 0.01 0.01 0.01	0.10 0.12 -
Omek Mineral	SiO ₂ TTiO ₂ AL ₂ O ₃ Cr ₂ O ₃ Mr Mr Mr Cr ₂ O Cr ₂ O Cr ₂ O Toplam	Mg-Value Mg# An (Fsp) Pyx Al6/Al4 Cr/Cr+Al

1	8-88-8	
270 Fds	688 600 000 000 000 000 000 000	
270 Fds	68.68 0.00 0.00 0.00 0.00 0.00 0.00 11.71 11.71 0.00 0.00	
270 Fds	51.94 0.00 30.25 0.00 0.00 12.62 99.45 99.45	
270 Fds	55.90 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10	
270 Fds	55.19 0.00 0.13 0.13 0.13 0.00 0.00 0.06 99.71	
270 Fds	56.79 5.00 27.66 0.00 0.00 9.00 0.11 0.11	
270 Fds	54.90 0.00 27.46 0.02 0.02 11.45 5.50 99.68	53.50
270 Fds	69.75 0.01 0.021 0.01 0.01 0.01 0.01 0.01 0.0	0.60
270 Fds	68.55 0.03 0.03 0.01 0.06 0.00 0.00 0.01 0.01 0.01	4.40
270 Fds	59.27 0.01 0.06 0.05 0.14 1.77 1.77 1.77 1.77 9.98 99.98	19.17
270 Fds	68.00 0.03 19.75 0.00 0.01 0.01 0.04 13.44 13.44 13.44	35.59
270 Fds	70.64 70.64 0.00 0.38 0.03 0.03 0.03 0.03 0.03 0.03	1.07
270 Fds	67.80 0.06 0.02 0.037 0.03 0.05 0.05 0.05 0.05 12.96 12.96	46.62
270 Fds	71.35 0.02 0.037 0.05 0.015 0.015 0.015 0.04 0.04 0.04	0.72
270 Fds	66.45 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	42.24
270 Fds	57.80 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0	40.78
270 Fds	58.54 0.04 0.01 0.01 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	15.38
270 Fds	58.89 5000 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.02
270 Fds	63.15 0.02 0.03 0.06 0.03 0.03 0.03 0.38 0.38 0.38	13.66
270 Fds	62.81 0.01 0.00 0.00 0.09 0.04 0.02 0.03 0.32 0.32 0.32	15.22
270 Fds	48.39 0.00 0.03 0.05 0.05 0.05 1.21 1.21 98.67	31.09
270 Fds	67.49 0.01 19.58 0.00 0.02 0.02 0.02 0.02 99.47	33.33
270 Fds	61.02 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.71 0.71 0.71 0.71	- 16.80
270 Hbl	46.66 7.68 7.68 10.01 17.84 0.28 11.51 0.29 0.22 0.22 0.22 0.22	52.32 66.91
270 Hbl	45.71 1.08 8.24 8.24 17.44 0.38 11.59 11.59 11.02 0.26 0.26 96.52	52.45 68.80
Omek Mineral	SiO ₂ TIO ₂ Cr ₂ O ₃ MreO MreO Mra ₂ O CraO CraO Toplam	Mg-Value Mg# An (Fsp) Pyx Al6/Al4 Cr/Cr+Al

Tablo 3.3: Amfibolitlere minerallerin bileşim aralığı (Devamı).

270 Prh	45.28 0.11 2.6.01 0.53 0.07 0.53 0.09 0.15 95.48	51.59
270 Prh	43.24 0.06 0.06 0.03 0.03 0.03 0.03 0.03 0.03	0.99 51.59 -
270 Chl	2936 0.04 19.42 0.06 0.08 0.03 0.03 0.03 87.18 87.18	57.43 0.99 -
270 Fds	52.30 0.00 35.01 0.03 0.03 0.03 0.03 1.84 1.84 1.84 0.07 0.07 0.07 0.07 0.03 0.03 0.03 0.03	57.43 22.96
270 Fds	52.79 0.03 30.54 0.01 0.06 0.00 0.00 0.06 0.06	60.71
270 Fds	68.48 0.01 19.66 0.07 0.04 0.04 0.06 0.05 0.05 0.03	53.89
270 Fds	55.74 0.00 28.64 0.02 0.02 5.67 0.02 5.67 0.02 0.02	50.03
270 Fds	62.56 0.00 0.00 0.34 0.00 0.10 0.10 0.83 0.83 0.83 0.10 0.10 0.10 0.10 0.10	7.04
270 Fds	68.62 0.04 19.77 0.00 0.32 0.05 0.04 14.00 14.00	23.16
270 Fds	56.32 0.00 27.45 0.03 0.03 0.00 9.31 6.14 0.00 9.31 0.08	45.61
270 Fds	65.33 0.00 0.05 0.05 0.00 0.00 0.00 0.01 0.01	16.47
270 Fds	64.35 0.03 2.677 0.02 0.04 0.04 0.04 0.04 0.01 0.16	16.41
270 Fds	56.37 0.04 0.02 0.03 0.04 0.00 9.42 0.09 1100.54	45.97
270 Fds	55.68 0.00 0.17 0.17 0.00 0.00 5.82 5.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00	49.37
270 Fds	57.84 0.03 27.26 0.04 0.01 8.69 0.01 0.01 0.01	41.62
270 Fds	53.84 0.00 35.33 0.00 0.00 0.02 0.05 0.05 101.8	
270 Fds	46.43 0.01 0.00 0.00 0.08 0.08 0.08 2.10 0.03 0.93	67.92 - 3.24 0.00
270 Fds	68.55 0.00 0.00 0.05 0.05 0.05 0.05 0.05	67.92 9.04
270 Fds	55.11 0.00 0.00 0.16 0.10 0.00 0.00 0.10 99.82 99.82	
270 Fds	55.80 0.00 0.00 0.13 0.13 0.00 0.00 0.00 0.0	
270 Fds	55.19 0.00 0.00 0.44 0.00 9.85 5.71 0.08 99.88	
270 Fds	52.87 0.00 0.00 0.00 0.00 11.66 0.00 0.00 999.38	
270 Fds	56.06 0.00 0.00 0.00 0.07 0.07 0.07 100.5	
270 Fds	65.14 0.00 0.27 0.27 0.27 0.01 13.49 97.78	
270 Fds	64.81 0.00 0.17 0.17 0.17 0.00 0.00 0.01 14.71 14.71 98.36	
Omek Mineral	SiO, TTO, Cr ₂ O, Cr ₂ O, MnO MnO MnO Na ₂ O CaO CaO CaO CaO CaO CaO CaO CaO CaO Ca	Mg-Value Mg# An (Fsp) Pyx Al6/Al4 Cr/Cr+Al

270 270 Thi Thi	5 30.10 30.66 3 38.42 35.62 3 38.42 35.62 0.62 2.59 0.84 0.78 0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.03 0.01 0.03	0.00 0.00
270 Th	83 30.1 56 38.6 56 38.6 56 0.0 56 0.0 56 0.0 56 97.9 70 27.7 70 27.7 70 27.7 70 27.7 70 2005	0.00
270 Th	95 291 95 291 1 0.66 2 0.00 83 27. 3 0.00 83 27.	0.000.
70 11	228 38. 0.1 225 0.8 25 0.8 25 0.0 27 27. 27 0.0	2 100
0 270 IIm	0 0.0 0.	900 900
11m	2 0.0 2 0.0 3 0.0 1 19 41. 7 0.1 8 1.7 0 0.0	2 05
270 m	80 0.0 90.0 10.0	11
270 270	57 99. 57 99. 58 0.00 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	
б б л	81 98 0 0.0 00000000	
50 10 10	20 000 000 000 000 000 000 000 000 000	80.
0 27 Pm	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	71 50
0 27 Pn	50 000 000 000 000 000 000 000 000 000	5.02 10 10 10 10 10 10 10 10 10 10 10 10 10
0 27 Pn	00 37 00 37 00 000 0000	51 12 14 14 14 14 14 14 14 14 14 14 14 14 14
p Pu	228 37 26 26 26 26 26 26 26 26 26 26 26 26 26 2	24 45
0 27 Pn	52 200 52 200 53 200 54 118 56 222 56 222 56 222 56 222 56 200 56 202 56 202 56 202 56 202 57 31 57	73 50
р 27 Пр	22 22 22 20 00 00 00 00 00 00 00 00 00 0	.80 46 .80 46
о Ри Ри	92 200 210 200 210 200 200 200 200 200 20	8 8 8 4 9 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 Р. Р.	58 94 00 00 00 00 00 00 00 00 00 00 00 00 00	- 67 0.
р 50 Р 70	2331 43 101 102 103 114 104 104 104 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105	8.42 31 8.42 31 -
70 Th P	100 000 000 000 000 000 000 000 000 000	88
70 Th P1	2.67 4.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00	00'.'. 88
70 Th P	4402 4402 4402 4402 4402 4402 4402 4410 200 002 002 002 002 002 002 002 002 0	88 88
70 2 th P	3.15 4 4.23 2.00 1.17 0.00 3.86 2.00 0.06 0.00 1.89 9 93 80 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.89 9 1.80 0 1.8	84 0. 84 0.
Omek 2 Mineral P	SiO ₂ SiO ₂ Al ₂ O ₃ MnO MnO MnO MgO Cr2O ₃ O 22 Cr2O ₃ O 22 Cr2O ₃ O 22 Cr2O ₃ O 22 Cr2O ₃ O 22 Cr2O ₃ O 22 Cr2O 0 3 Cr2OO3 Cr2O Cr2OO3 Cr2O Cr2OO3 Cr2O Cr2O Cr2O Cr2O Cr2O Cr2O Cr2O Cr2O	Mg-Value 6 Mg# 6 An (Fsp) - Pyx Al6/Al4 -

6F	24.36 24.36 0.03 0.00 0.00 8.88 8.88 0.07 0.04 0.01 86.57 86.57	32.19 32.19 -
272 Chl	25.45 20.39 0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05	43.03 43.03 -
272 Chi	25.32 20.64 0.00 0.05 0.03 0.03 0.03 0.03 0.03 0.03	43.82
272 Fds	70.61 0.00 0.00 0.04 0.01 0.04 0.04 0.04 0.0	0.53
272 Fds	69.36 69.36 0.00 0.05 0.05 0.05 0.03 0.05 0.02 0.02	- 0.42 -
272 Fds	63.32 0.00 0.01 0.01 0.01 9.30 0.09 0.09	
272 Fds	61.90 0.00 0.00 0.00 0.00 8.62 0.15 0.15	25.57
272 Fds	70.80 0.02 0.02 0.04 0.01 0.00 0.01 10.99 0.01	0.12
272 Fds	59.38 59.38 0.02 0.00 0.00 0.10 0.10 0.10	35.16
272 Fds	57.23 0.01 27.37 0.00 0.00 0.00 0.10 0.10 0.10	40.56
272 Fds	57.52 0.00 0.00 0.00 0.02 0.00 0.11 0.11 100.01	41.41
272 Hbi	44.63 8.98 8.98 0.00 0.38 9.28 111.15 1.27 0.35 0.35 97.19	63.06
272 Hbi	44.59 9.22 9.22 9.02 11.45 1.22 0.36 0.36 0.36 0.36	62.13
272 Hbi	44.18 9.52 9.52 0.00 0.08 8.63 8.63 111 0.43 0.43 0.43	43.31 59.54 -
272 Hbi	44.38 9.45 9.45 9.00 9.00 11.19 0.33 0.33 0.33 0.33 0.33 0.33	61.78
Hbl	44.39 8.87 8.87 0.01 0.03 9.03 9.03 0.38 0.38 0.38 0.38 0.38	60.03
272 Hbl	44.72 9.00 9.00 0.00 0.30 8.99 11.10 0.36 0.36 0.36 0.36	60.11
272 Hbl	44.00 9.29 9.33 9.33 9.33 9.33 9.33 9.33 9.33	45.44
272 Hbi	44.49 9.17 9.17 9.37 9.31 1.124 1.14 0.36 96.96	62.35
272 Hbi	44.21 1.16 8.92 0.00 9.29 9.29 9.29 0.34 0.34 0.34	62.48
272 Hbi	5221 5221 0.05 0.33 0.01 8.76 8.76 0.05 0.05 0.05 0.05	38.81
272 Hbi	44.62 0.86 8.87 0.00 0.35 9.31 11.20 1.07 0.37 0.37 0.37 0.37	45.66 61.39 -
272 Hbl	51.76 0.02 0.19 0.31 0.31 0.02 0.03 0.03 0.03	32.19 32.19 -
272 Hbl	45.83 7.98 0.00 9.78 9.78 0.29 0.29 0.29	46.59 60.63
272 Hbl	44.98 1.02 9.52 9.49 9.49 0.33 0.33 0.33 0.33	46.70 61.58 -
Örnek Mineral	SiO ₂ TiO ₂ Cr ₂ O ₃ Cr ₂ O ₃ MgO CaO CaO CaO Na ₂ O Na ₂ O Toplam	Mg-Value Mg# An (Fsp) Pyx Al6/Al4 Cr/Cr+Al

0.00 - - - - -	0.08 	0.16 0.18 - - - -	0.10 0.11 	0.14 0.14 - - <i>Prehn</i>	0.05 0.05 - - -	0.17 0.18 - - -	0.08 0.08 - - - -		- - Îlmenii		30.16 30.16 - - -	35.63 35.63 - - -	46.63 46.63 - - -	- - -		21,	
0.00 97.45	98.52	0.01 98.04	0.02 98.77	0.01 98.37	0.01 97.43	0.00 98.31	0.00 98.59	0.01 100.31	0.01 99.32	0.00	0.02 92.19	48	8.6	0.02 0.0 92.68 93.	0.04 0.02 0.0 96.86 92.68 93.	0.02 0.04 0.02 0.0 96.79 96.86 92.68 93.	0.01 0.02 0.04 0.02 0.0 96.87 96.79 96.86 92.68 93.
0.02	0.41	0.34	0.18	0.00	0.10	0.08	0.33	0.06	0.05	0.00	22.06	15 66	20	21.39 22 0.05 0.	23.46 21.39 22 0.04 0.05 0.	23.33 23.46 21.39 22 0.02 0.04 0.05 0.	23.48 23.33 23.46 21.39 22 0.02 0.02 0.04 0.05 0.
0.00	0.02	0.04	0.03	0.04	0.01	0.05	0.02	0.01	0.00	0.00	1.06	80	1	225 1.1	0.03 2.25 1.3	0.05 0.03 2.25 1.1	0.07 0.05 0.03 2.25 1.2
0.03 0.03	199	2.12	46.19 1.73	4.54	43.94	46.12 1.68	45.36	0.42	0.03	0.47	4.36 0.03	-	0.0	4.58 4.1	7.98 4.58 4.1	6.20 7.98 4.58 4.1 0.16 0.08 0.00 0.00	6.14 6.20 7.98 4.58 4.1 0.05 0.16 0.08 0.00 0.00
0.05	0.01	0.06	0.06	0.00	0.06	0.00	0.00	0.01	0.01	0.00	0.06	-	0.00	0.05 0.00	0.04 0.05 0.00	0.05 0.04 0.05 0.00	0.05 0.05 0.04 0.05 0.00
3.83	0.00	0.00	0.00	0.00	000	000	00.0	0.01	0.02	10.0	27.98	. 00	27.7	27.39 27.7	27.42 27.39 27.7	28.88 27.42 27.39 27.7	28.62 28.88 27.42 27.39 27.7
30.71	0.03	0.04	0.01	0.03	0.03	0.00	0.03	60.67	98.48	99.41	36.49	00	37.2	36.86 37.2	37.67 36.86 37.2	38.01 37.67 36.86 37.2	38.38 38.01 37.67 36.86 37.2
臣	ШШ	Im	Im	Ilm	Im	Im	ШШ	^{zz}	Qtz	QIZ O	Pup		Pup	Pmp Pmp	Epi Pmp Pmp	Epi Epi Pmp Pmp	Epi Epi Epi Pmp Pmp
272	272	272	272	272	272	272	272	272	222	272	272		272	272 272	272 272 272	272 272 272 272	272 272 272 272 272

Tablo 3.3: Amfibolitlere minerallerin bileşim aralığı (Devamı).

mineralleri albitten labradora kadar değişen bir çeşitlilik sunmaktadır. Ayrıca 270 numaralı örnekte ortoz'a da rastlanmıştır.

İlmenit minerallerinin TiO₂ içerekleri % 46 ile 53 arasında, FeO içerikleri ise % 37 ile 49 arasında değişmektedir. Titanitlerin içerdikleri TiO₂ miktarı % 33 ile 39 arasında değişirken, Al₂O₃ miktarı en fazla % 3.83 'e kadar çıkmaktadır.

Şekil 3.7: 96B, 252, 270, 272 numaralı amfibolit örnekleri içinde bulunan feldispat minerallerinin Barth (1962)'ye göre sınıflandırılması.

3.1.5. Meta-plajiyogranit

Meta-plajiyogranit belirgin bir yapraklanma gösteren sokulum kayacıdır. Mineral içeriğinin % 60 ile 75 arasında değişen büyük bir bölümü plajiyoklastır (Şekil 3.8). Plajiyoklaslar genellikle bozuşmuş olsa da, bozuşmamış olanları da mevcuttur. Plajiyoklasın haricinde, % 10 ile 30 arasında değişen miktarda kuvars vardır. Kuvarslar, alt tane gelişimi ve dalgalı sönme göstermektedir.

Şekil 3.8: Meta-plajiyogranitin %60'ını oluşturan 0,5 mm çapındaki plajiyoklaslar (Pl) (Kutuplanmış ışık) (Örnek 96A).

Meta-plajiyogranitte, hacimsel olarak % 10'dan az miktarda hornblend, biyotit, kümmingtonit (Şekil 3.9) ve zirkon mineralleri gözlenmektedir. İkincil olarak prehnit damarları gelişmiştir.

Şekil 3.9: Meta-plajiyogranit örneği içinde bulunan amfibolitlerin Leake ve diğ. (1997)'e kimyasal bileşimleri.

96A numaralı meta-plajiyogranitten yapılan analiz sonucu elde edilen mineral kimyası sonuçları Tablo 3.4'de verilmiştir. Plajiyoklasların anortit içeriği, 0.2 ve 32 arasında değişmektedir. Hornblendlerin Mg/(Mg+Fe⁺²) oranı 48 ile 70 arasında, Al oranı ise 0.05 ile 1.8 arasında değişmektedir. Kummingtonitlerin Mg/(Mg+Fe⁺²) oranı 52 ile 57 arasında, Ca oranı ise 0.113 ile 0.936 arasında değişmektedir. Meta-plajiyogranite ait feldispatlar genellikle albit bileşimi göstermektedir (Şekil 3.10).

Şekil 3.10: Meta-plajiyogranit genellikle albit bileşiminde feldispatların Barth (1962)'ye göre sınıflandırılması.

3.1.6. Klinopiroksenit

Klinopiroksenit belli bir yönlenme göstermeyen, ortalama 2.5 mm boyunda tanelerden meydana gelmiştir (Şekil 3.11). Başlıca klinopiroksen ve olivin içeren klinopiroksenitte, hiç ortopiroksen yoktur. Olivin bütünüyle serpantinleşmiştir. Klinopiroksenler yarı öz şekillidir.

96D numaralı klinopiroksenitten yapılan analiz sonucu elde edilen mineral kimyası sonuçları Tablo 3.4'te verilmiştir. Klinopiroksenlerin 100Cr/(Cr+Al) değerleri 0.10 ile 0.42 arasında, Mg/(Mg+Fe⁺²) oranı ise 71 ile 94 arasında değişmektedir. Klinopirokseniti oluturan tüm piroksenler diyopsit bileşimindedir (Şekil 3.12).

Table 3 1. Meta plaijyograpit	t ve klinoniroksenite	ait minerallerin	mineral kinwası sonucları
1 abio 5.4. Micia-piajiyogram	i ve kiniopii oksenne	an mineranerm	innici ar Kiniyasi sonuçiari.

1.2	0 8 6 4 1	
PL Ch	328 2100 173 173 221 221 173 001 910 919	49.1 1.04 -
96A Chi	34.07 2.21 16.43 16.43 0.04 0.04 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03	49.8 49.8 -
96A Chl	27.07 0.05 0.05 0.01 0.01 0.44 14.90 0.01 0.20 0.10 0.05 85.81	525
96A Chi	28.94 0.70 0.70 0.70 17.48 0.17 14.30 0.02 0.02 0.04 87.09	51.0
64 64	29.28 1.03 1.03 1.03 0.03 1.4.87 1.4.87 1.4.87 1.4.87 1.4.87 0.03 0.03 0.03 0.03	222
96A Chi	26.79 0.01 18.75 0.02 0.03 14.63 0.09 0.03 0.03 0.03 0.03	49.1
Sed Chi	30.01 0.42 17.45 0.02 0.02 0.04 0.10 0.10 86.76	54.4
Sed Mark	28.67 0.46 17.59 0.05 0.05 0.05 0.04 86.48	50.2
96A Chi	30.15 0.43 18.18 18.18 0.00 0.24 14.76 0.07 0.03 0.03 87.82	53.1
96A Ch	28.80 0.27 0.27 0.00 0.00 14.75 0.74 0.01 0.04 86.88	23.0
PL 96A	28.92 0.28 0.28 0.01 0.01 14.58 14.58 14.58 14.58 0.02 0.05 0.05 0.05	55
Sed Land	29.07 21 21 21 23 23 29 20 16 20 16 20 20 20 20 20 20 20 20 20 20 20 20 20	52.6
PL 96A	29.46 7.49 17.35 0.00 0.00 14.19 14.19 0.04 0.08 0.08 0.08 0.08	51.6
64 19 19	25.61 0.14 0.14 0.00 0.00 0.16 0.16 0.16 0.16 0.16 0.09 0.09 0.09	8 8
Chi 1	26.36 20.04 20.04 20.02 20.02 224.91 224.91 224.91 224.91 224.91 224.91 20.02 0.01 0.01 0.01 0.01 0.01 0.01 0.	221
Otz Otz	100.50 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01	
PL PL	55.54 0.00 0.12 0.12 0.12 0.03 0.47 0.35 0.35 0.35 0.35	16.3
N I I	51.74 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.03	
A 10	8.60 6 2.258 2 2.258 2 2.16 0 2.16 0 2.21 6 2.21 6 2.21 6 2.251 6 2.251 6 2.251 6 2.251 6 2.251 6 2.251 6 2.251 6 2.200 0 3.771 0 000 0 000000	2.4 3
No Polo	53.90 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03	611
E I	9.44 0 0.09 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2
A I	9.13 0.52 0.52 0.52 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	o . n
A Io	9.72 6 0.05 2 0.06 2 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0 0.01 0 0 0.01 0 0 0.05 0 0 0.05 0 0 0.05 0 0 0.05 0 0 0.05 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000000	2
L F	0.69 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	. ۲۰۰ ۲
A P	99.46 0.22 0.22 0.20 0.10 0.22 0.22 0.22 0.20 0.114 0.14 0.144 0.1361 0.1.861 0.1.861	
Omek 5 Kayaç F Mineral F	SiO ₂ TiO ₂ Cr ₂ O ₃ Cr ₂ O ₃ Mg0 Mg0 Mg0 CaO CaO CaO CaO CaO CaO CaO CaO CaO CaO	Mg Değeri - Mg# Px Al6/Al4 0 Cr/Cr+Al -

Tablo 3.4: Meta-plajiyogranit ve klinopiroksenite ai	t minerallerin	mineral kimyası	sonuçları
(Devamı).			

96A PL Hbi	47.16 0.34 8.67 0.03 17.37 0.19 0.19 0.19 0.19 0.19 0.83 0.83 0.83 0.20	53.5 67.0 -
96A Hbi	45.28 0.09 10.30 10.01 11.49 11.49 97.36 97.36	48.9 67.4 -
96A PL Hbl	46.45 0.09 9.36 0.01 18.30 0.34 0.34 0.34 0.34 0.34 0.34 0.32 0.32 0.32 0.32 0.31 0.21 0.21	50.8 65.7 -
96A FL	48.62 0.08 0.08 0.00 17.12 0.29 0.29 0.72 0.13	55.7 67.5 -
96A Fili	50.03 0.06 5.50 0.01 16.50 12.76 11.43 0.57 0.57 0.11	58.0 66.6 -
96A FIJ	48.58 0.20 7.13 0.01 17.01 17.01 12.08 0.30 0.15 0.15 97.46	55.9 67.6 -
96A Hbl	50.29 0.05 5.03 16.21 11.61 11.61 0.29 0.29 0.29	59.5 69.2 -
96A PL Hbl	50.74 0.14 4.91 15.62 13.52 11.59 0.45 0.45 0.45 97.39	60.7 68.1 -
96A PL Hbl	53.50 0.14 1.55 1.55 1.512 1.512 1.458 0.40 0.12 0.12 0.12 0.12 0.12	63.2 65.9 -
96A Hbl	46.33 0.08 9.60 18.16 11.33 0.28 0.28 0.28 97.55	51.0 66.2 -
96A FL Hbl	45.40 0.06 10.42 10.21 10.22 0.94 0.22 97.20	50.1 67.2 -
96A FL Hbl	53.31 0.02 0.02 0.02 0.02 10.80 0.01 97.40	48.6 48.7 -
96A PL Hbl	45.70 0.13 0.13 17.93 10.19 10.19 11.39 0.25 0.25 0.25 0.23	50.3 66.8 -
96A Hbl	53.73 0.06 0.50 0.50 0.50 0.17 0.17 0.17 0.17 0.13 97.42 97.42	53.9 54.1 -
96A FIL	45.24 0.08 10.08 0.32 10.75 0.32 0.36 96.46	51.0 67.2 -
96A PL Hbl	46.51 0.41 8.70 8.70 0.00 11.30 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	53.3 67.8 -
96A FL	50.22 0.07 16.17 11.15 0.26 0.26 0.26 0.26 0.26 0.26	59.4 68.5 -
96A PL Hbl	48.32 0.04 7.50 17.60 17.60 11.20 0.25 0.25 0.25 0.25 0.25 92.05 98.05	55.0 68.6 -
96A Chi	25.84 0.03 20.03 25.38 0.00 0.12 0.12 0.12 0.12 87.12	515 515 -
Chl Chl	29.83 0.72 0.72 0.72 17.15 0.72 14.42 14.42 1.42 0.00 0.04 86.30	52.8 52.8
Ser 1984	29.12 0.70 0.70 0.73 17.32 17.32 14.76 0.19 0.01 0.01 0.01 0.04 86.56	52.9
84 다 87	26.39 0.10 20.59 23.37 23.37 0.31 0.31 0.10 0.10 0.00 87.88	56.5
84 CFI 38	32.29 0.35 0.35 0.00 0.00 0.19 0.19 0.06 88.65 88.65	53.8
26A Cel 1	26.80 0.04 0.04 0.00 0.42 0.42 0.42 0.13 0.04 0.04 0.04 0.04 88.51	49.7
88 다 13	29.71 0.73 0.73 0.03 0.03 14.39 0.21 14.39 0.04 0.04 0.04 0.04	51.4 51.4
Omek Kayaç Mineral	SiO ₂ TTiO ₂ Cr ₂ O ₃ Cr ₂ O ₃ MMO MgO Na ₂ O CaO Na ₂ O Toplam	Mg Değeri Mg# Px Al6/Al4 Cr/Cr+Al

Ta Ta	33.19 1.14 1.25 1.25 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.1	339
SeA 9	2000 000 000 000 000 000 000 000 000 00	33.0
Solum 0	2291 5 2005 0 2010 0	227
A March 1 March 2 Marc	33.05 39.09 0.09 0.03 0.03 0.03 0.03 0.03 0.0	3338
PL 1	52.68 0.17 0.17 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.00	54.6
PL 1	52.77 0.14 1.45 0.00 0.82 0.82 0.82 1.73 0.24 0.02 0.02 0.02	53.8
96A PL Cum	52.75 0.13 1.09 14.77 14.77 0.12 0.01 0.01 0.01 0.01 0.01	52.4
96A PL Cum	52.72 0.13 1.27 1.27 1.5.74 0.02 0.73 0.73 0.73 0.73 0.14 0.14	53.5
96A PL Cum	52.88 0.16 1.45 1.45 1.45 1.45 0.00 0.13 0.13 0.13 0.13	54.1
96A PL Cum	53.32 0.05 1.06 1.06 1.583 0.68 0.71 0.18 0.18 0.18	52.6
96A PL Cum	53.30 0.08 1.01 1.5.52 0.09 0.18 0.18 0.18 0.18	523
96A PL Cum	52.62 0.17 1.54 0.17 1.54 0.01 0.65 0.65 0.65 0.01 0.01 0.01 0.01	53.5
96A PL Cum	52.84 0.12 1.49 0.69 0.69 1.578 0.25 0.25 0.25 0.25 0.25	53.7
96A PL Cum	52.90 0.11 1.11 1.11 1.11 1.12 0.70 0.70 0.15 0.15 0.15 0.15 0.15	53.8
96A Cum	52.90 0.11 1.34 0.00 1.6.01 1.11 0.19 0.00 0.00 0.00	53.0
96A PL Cum	52.78 0.17 1.46 0.00 15.63 0.19 0.19 0.03 97.63	53.3
96A PL Cum	52.96 0.17 0.17 0.02 0.02 0.01 0.01 0.01	54.8
96A PL Cum	52.61 0.09 0.02 0.02 0.02 0.16 0.16 0.16	52.5 54.1 -
96A PL Cum	53.07 0.04 1.00 0.01 0.01 0.07 0.07 0.21 0.21 0.21 0.21 0.20	53.6
96A PL Cum	25285 0.16 1.61 0.03 0.03 0.03 0.15 0.15 0.15 0.15 0.15 0.15 0.15	53.0
10H PL Hol	47.77 0.08 7.98 7.98 0.00 0.00 0.17 0.77 0.19 0.77 0.19	54.1 66.5
96A PL Hbi	9 47.5 0.03 8 01 0.03 0.05 0.17.59 0.17.59 0.17.59 0.18 0.83 0.83 0.18	54.1 68.3 -
96A PL Hbl	9 48.26 0.07 7.22 0.07 0.03 0.03 0.01 0.11 0.11 0.11 0.11 0.11	53.0
96A PL Hbl	6 48.0 0.14 8 03 8 03 8 03 8 03 0.14 0.16 0.16 0.12 0.17 0.82 0.82 0.82 0.82 0.17 0.82 0.82	54.7 65.9
96A PL Hbl	47.9 0.32 7.54 0.32 0.25 0.11 0.25 0.18 0.18 0.18 0.18	54.8 67.2 -
Omek Kayaç Mineral	SiO ₂ TiO ₂ Cr ₂ O ₃ MgO MgO Ki ₂ O Ki ₂ O FeO Ki ₂ O Folam	Mg Değeri Mg# Px Al6/Al4 Cr/Cr+Al

Tablo 3.4: Meta-plajiyogranit ve klinopiroksenite ait minerallerin mineral kimyası sonuçları (Devamı).

월 전 월	54.43 0.08 1.20 1.721 1.721 0.00 0.10 7100.4	91.21 91.21 0.85 0.16
SK 80	53.51 0.09 0.60 0.60 0.07 17.05 0.18 0.18 0.18 0.18 0.18	90.18 92.50 0.35 0.19
g ta g	53.33 0.12 0.12 0.65 0.08 0.08 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	90.25 92.86 0.29 0.20
월 라 달	53.93 0.12 1.73 0.67 0.67 0.14 17.03 17.03 0.16 0.16 0.16	90.08 90.89 0.52 0.21
8 5 5	53.91 0.08 0.68 3.05 0.12 0.12 0.15 0.15 0.15 0.15	90.75 90.75 0.75 0.22
6 K 80	53.73 0.11 1.69 0.61 3.14 0.14 17.21 17.21 0.17 0.17 0.03	90.71 93.70 0.26 0.19
월 37 Se	53.99 0.10 0.10 0.60 3.13 0.09 16.94 0.14 0.14 0.14 0.00	90.61 91.39 0.50 0.21
월 좌 달	53.90 0.10 0.10 0.61 3.23 0.14 17.16 0.14 0.14 0.14 0.10	90.45 91.72 0.44 0.20
월 전 월	54.13 54.13 0.08 0.66 0.12 0.12 0.17 0.17 0.17 0.17 0.00	90.14 90.35 0.68 0.21
PI 18	44.83 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02	0.0
96A Prh	43.89 0.02 0.00 0.31 0.04 0.03 0.03 0.03 0.03 0.01 95.10	13.6 13.6
96A Prh	43.52 0.00 0.16 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0	66 10 10 10 10 10 10 10 10 10 10 10 10 10
96A Prh	46.17 0.00 0.01 0.15 0.02 0.02 0.02 0.03 95.04	0.0
96A Cum	53.32 0.10 0.10 0.02 0.74 16.19 0.02 0.09 0.09 0.00 98.31	53.2 54.7 -
PL 96A	53.76 0.07 1.01 0.00 0.05 13.91 5.91 0.15 0.15 0.15 0.03	52.8 52.8 -
96A PL Cum	52.81 0.14 0.14 0.01 0.01 14.93 14.93 0.28 0.21 0.21 0.02 97.69	51.7 53.3 -
96A PL	52.70 0.13 0.13 1.49 0.04 15.66 15.66 0.23 0.23 0.23 0.23	52.5 54.1 -
96A Cum	53.03 0.07 11.55 0.01 0.01 16.02 16.02 16.02 0.04 98.14 98.14	54.2 56.3 -
96A PL Cum	53.03 0.10 0.10 0.00 15.93 15.93 15.93 0.16 0.16 0.16 0.16	53.0
96A PL	52.76 0.16 1.44 0.02 15.72 15.72 15.72 15.72 0.02 0.18 0.18 0.18	52.7 53.7
96A Cum	52.61 0.10 0.10 0.01 0.72 14.97 14.97 0.21 0.72 0.21 0.21 0.21 0.21	56.8
96A PL Cum	53.13 0.16 1.44 0.03 0.03 16.07 16.07 0.03 0.22 0.01 0.01 97.96	52.9 54.2 -
96A PL Cum	53.51 0.06 0.05 0.05 1.6.27 1.6.27 0.05 0.05 0.15 0.15 0.15 0.15	53.7 55.1
96A Cum	53.24 0.13 0.13 0.11 0.01 0.73 0.73 0.73 0.13 0.02 0.13	52.9 53.6
96A PL Cum	53.37 0.09 1.02 0.064 16.10 0.78 0.11 0.11 0.11 0.11	53.5
Omek Kayaç Mineral	SiO, TiO, Cr ₂ O, MnO MnO MnO MnO MnO Toplam Toplam	Mg Değeri Mg# Px Al6/Al4 Cr/Cr+Al

Tablo 3.4: Meta-plajiyogranit ve klinopiroksenite ait minerallerin mineral kimyası sonuçları (Devamı).

Tablo 3.4: Meta-plajiyogranit ve klinopiroksenite ait minerallerin mineral kimyası sonuçl	arı
(Devamı).	

9	e	101	2.03	61.	117	Ξ	21	50	0.29	2.61	8	10	7.74	9.57	00.00		
6 0	Р	-	5 60	82 0	1.89 6	5.13 1	1.13 4	42 0	47 2	53 1	1	01 0	5.51 9	3.06 8	3.09 1	'	- 19
б 0	M	S	1 <u>5</u> 0.	0.0	60 1/	24 3.	12 41	30	6	0 1	0.1	0	41 96	17 13	31 18	'	8 0
96	N	Sp	0.0	0.2	14 23	5 32	8 35.	0.4	5	0.3	0.0	0.0	1697.	86 21.	14 26	ï	0.4
<u>96</u>	Ŋ	Sp	7.4	0.45	9 12.7	8 30.1	6 40.0	0.5	5.7	3.9	0.0	0.0	1 101	3 20.3	0 25.0	,	0.61
0 6		Sp	0.01	0.34	23.4	35.2	33.0	0.38	5.84	0.18	0.03	0.01	98.6	23.9	28.5	ı	0.50
<u>96D</u>		Sp	0.44	0.25	23.43	32.81	32.50	0.41	6.22	0.77	0.01	00.00	96.83	25.44	30.90	,	0.48
96D	μb	Sp	0.06	0.33	19.47	35.67	36.16	0.39	4.17	0.48	0.04	0.01	96.78	17.06	21.53	,	0.55
96D	KP	Sp	0.62	0.26	18.32	39.51	31.98	0.34	6.25	0.49	0.04	0.00	97.81	25.83	31.01	,	0.59
96D	KP	Cpx	54.91	0.05	0.35	0.06	2.99	0.18	17.53	24.81	0.01	0.02	t100.8	91.28	92.90	0.16	0.10
96D	KP	Cpx	53.72	0.08	1.80	0.58	3.21	0.16	16.80	23.77	0.13	00.00	100.2	90.31	90.44	0.71	0.18
96D	Ŋ	Cpx	53.60	0.11	1.64	0.63	3.26	0.09	17.05	23.31	0.11	0.00	99.80	90.30	90.30	0.65	0.20
96D	КP	Cpx	53.88	0.06	1.15	0.35	3.09	0.12	16.86	24.39	0.09	0.00	76.99	90.68	91.86	0.42	0.17
96D	ΚЪ	Cpx	53.30	0.10	1.76	09.0	3.21	0.07	16.86	23.85	0.17	0.00	16'66'	90.36	92.73	0.35	0.19
96D	KP	Cpx	53.75	0.07	1.75	0.57	3.22	0.10	16.94	23.57	0.16	0.00	100.14	90.35	90.74	0.71	0.18
96D	KP	Cpx	53.12	0.02	0.20	0.21	9.08	0.44	12.64	24.55	0.01	0,00	100.27	71.29	71.37	0.06	0.42
96D	ΚЪ	Cpx	53.96	0.06	1.73	0.63	3.28	0.16	17.05	23.62	0.18	0.01	100.67	90.26	91.37	0.58	0.20
96D	ΚP	Cpx	53.68	0.10	1.72	0.58	3.26	0.12	16.94	23.97	0.15	0.00	100.54	90.25	92.23	0.38	0.18
96D	R	Cpx	53.65	60.0	1.77	0.63	3.20	0.19	16.86	23.68	0.19	0.01	100.27	90.37	91.62	0.53	0.19
<u>96D</u>	Å	Cpx	53.36	0.08	1.61	0.56	3.23	0.12	16.92	23.64	0.12	0.00	99.65	90.32	91.67	0.44	0.19
<u>96D</u>	KΡ	Cpx	53.94	0.11	1.80	09.0	3.37	0.08	17.03	23.29	0.18	0.02	100.41	90.01	90.01	0.81	0.18
<u>96D</u>	КЪ	Cpx	53.91	0.10	1.70	0.61	3.59	0.11	17.41	22.75	0.16	0.01	100.34	89.63	89.92	0.67	0.19
96D	K	Cpx	53.47	0.10	1.88	0.63	3.28	0.09	17.03	23.65	0.17	0.00	100.30	90.25	92.42	0.38	0.18
96D	KP	Cpx	53.53	0.11	1.70	0.65	3.52	0.12	17.65	22.97	0.12	0.00	100.36	89.93	92.56	0.22	0.20
96D	KP	Cpx	53.72	0.11	1.77	0.60	3.30	0.08	16.89	23.74	0.15	0.01	100.37	90.13	90.94	0.56	0.19
96D	KP	Cpx	53.52	0.08	1.63	0.63	3.23	0.14	17.24	23.70	0.13	0.00	100.29	90.49	93.19	0.24	0.20
Omek	Kayaç	Mineral	SiO ₂	Tio	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	Toplam	Mg Değeri	あい	Px Al6/Al4	Cr/Cr+AI

Tablo 3.4: Meta-plajiyogranit ve klinopiroksenite ait minerallerin mineral kimya	ısı sonuçları
(Devamı).	

S I I	37.07 0.02 0.087 0.087 0.087 0.087 0.087 0.04 0.04 0.04 0.04 0.04 0.00	46.13 46.13 -
昭辺	48.13 0.44 5.25 0.07 18.40 11.67 12.34 12.34 0.00 0.00	86.21 100.00 -
NR 20	56.67 0.10 3.67 0.20 0.09 0.29 0.29 0.29 0.29	91.49 94.96 -
ER 80	55.23 0.10 3.41 0.28 3.76 0.05 0.05 0.05 0.00 0.00 0.00	91.08 98.84 -
日本の	51.22 0.29 0.04 19.46 112.57 112.57 0.03 97.00	88.01 100.00
記込め	53.95 0.17 0.17 0.66 0.07 0.07 0.07 0.00 0.00 0.00 0.0	89.50
8 2 2 2	55.84 0.09 3.90 0.07 0.03 0.04 0.03 0.04 0.04 0.04	90.91
S S A	54.91 0.14 0.14 0.02 0.02 0.13 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	00.60
S C C C C C C C C C C C C C C C C C C C	21.35 2.22 2.29 2.75 2.015 2.0	38.57
S B B B B B B B B B B B B B B B B B B B	28.55 2.28 2.28 2.19 5.19 5.19 1.12 5.19 1.12 5.19 5.76 5.19 5.19 5.19 5.19 5.10 5.10 5.10 5.19 5.19 5.19 5.19 5.19 5.19 5.19 5.19	36.62 100.00
6 6 7 1 1 7	1.04 4 27 9 286 10	88.88
6 9 4 6 9 4	3.10 3.10 2.27 1.17 1.17 1.17 1.17 1.17 1.17 1.17	00.00
6 9 8 2 4 4	1.84 5 2.52 1 2.552 1 7.27 9 9.94 2 9.94 2 7.27 9 9.94 2 1 2.552 1 1 2.552 1 1 2.552 1 2 2.552 1 2 2.552 1 2 2.552 1 2 2 2 5 5 2 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	8.27 8
695 895 895 895 895 895 895 895 895 895 8	0.00 5 986 4 117 112 0 757 9 757 9	7.43 8 00.00 1
6 9 4 6 9 4	4,11 5 14,11 5 14,13 10 14,13	0.88 8
E E E	7.123 2.44 2.44 7.12 2.44 7.12 2.44 7.12 2.44 7.12 2.44 7.12	8.57 9
6958 6978	5.34 5 0.88 6 0.88 6 0.42 1 0.42 0 0.42 0 0.04 0 0.05 1 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.72 8 00.00 1
E P B H K 9	619 5 06 19 5 06 0 06 0 06 0 01 0 01 0 01 0 01 0 01 0	1.77.1
695 984	2.65 5 2.65 5 2.17 2 0.64 0 0.66 3 7.79 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0	0.08 9
e n I e n I	2000 0 29 0 29 0 20 0 20 0 20 0 20 0 20	9.04 9
695 988 988	1165 5 21 05 5 21 16 0 21 14 0 234 1 22 64 1 22 64 1 22 64 1 22 64 1 21 9 21 9	9.42 8 00.00 1
60 4 19 19 19 10	5.01 5 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0	0.93 8 9.68 1 -
695 695 74	9.60 5 9.60 5 9.00 2 9.02 2 754 9 754 9	8.02 9 00.00 9 -
6D BH K BH K	826 4 826 4 826 4 826 1 826 1 246 1 724 9 724 9	7.52 8 00.00 1
6D H H H H	445454 11504 11514 114311 114511 115111 1151	0.95 8 00.00 1
6 M H	NOWOWONHOOD	eri 9 114 -
Omek Kayaç Mineral	SiO ₂ TiO ₂ TiO ₂ FeO MhO MhO MhO MhO MhO Na ₂ O Na ₂ O CaO Na ₂ O CaO CaO CaO CaO CaO CaO CaO CaO CaO Ca	Mg Değ Mg# Px Al6// Cr/Cr+A

Tablo 3.4: Meta-plajiyogranit ve klinopiroksenite ait minerallerin mineral kimyası sonuçları (Devamı).

Örnek	96D	96D	96D	96D	96D	96D	96D	96D	96D	96D
Kayaç	KP	KP	KP	KP	KP	KP	KP	KP	KP	KP
Mineral	Srp	Srp	Srp	Srp	Srp	Srp	Srp	Srp	Srp	Srp
SiO_2	40.30	39.89	42.71	42.72	42.22	42.85	39.88	39.28	40.08	42.40
TiO ₂	0.05	0.06	0.03	0.05	0.04	0.05	0.22	0.05	0.06	0.04
Al_2O_3	2.36	2.29	1.58	1.48	1.76	1.77	3.81	2.08	2.93	2.00
Cr ₂ O ₃	1.74	0.17	0.57	0.75	0.59	0.41	0.79	1.79	0.58	0.60
FeO	12.74	15.75	12.39	11.80	11.86	11.08	9.22	14.69	10.37	12.94
MnO	0.22	0.45	0.30	0.33	0.25	0.20	0.25	0.31	0.38	0.22
MgO	29.48	27.91	27.49	28.86	29.72	30.75	4.66	27.53	32.18	27.48
CaO	0.22	0.09	0.38	0.81	0.40	0.26	6.56	0.17	0.08	0.39
Na ₂ O	0.00	0.00	0.01	0.02	0.02	0.03	0.09	0.00	0.00	0.00
K ₂ O	0.00	0.00	0.02	0.02	0.02	0.04	0.11	0.00	0.02	0.02
Toplam	87.11	86.60	85.49	86.84	86.87	87.43	65.61	85.90	86.68	86.08
Mg Değeri	80 48	75 95	79 82	81 34	81 71	83 18	47 40	76 96	84 69	79 11
Mg#	80.48	75.95	79.82	81.34	81.71	83.18	47.40	76.96	84.69	79.11
Px Al6/Al4	-	-	-	-	-	-	-	-	-	-
Cr/Cr+Al	-	-	-	-	-	-	-	-	-	-

(PL: Meta-plajiyogranit, KP: Klinopiroksenit, Chl: Klorit, Cpx: Klinopirokse, Cum: Kümmingtonit, Hbl: Hornblend, Pl: Plajiyoklas, Prh: Prehnit, Sp:Cr-Al Spinel, Srp: Serpantin, Qtz: Kuvars).

Şekil 3.11: Serpantin tarafından ornatılmış klinopiroksen (Cpx) (Kutuplanmış ışık) (Örnek 96D).

Şekil 3.12: Klinopiroksenite ait piroksenlerin Hess (1941)'e göre isimlendirilmesi.

3.1.7. Serpantinit

Serpantinit, % 78 ile 92 arasında değişen oranlarda serpantin minerali içerir. Serpantinleşmenin yoğunluğuna rağmen, çapları 0.25 ile 1.5 mm arasında değişen

Şekil 3.13: Serpantinleşmenin yoğunluğuna bağlı olarak tanınamayacak kadar bozulmuş olan mineraller ve serpantin (Srp) minerallerinin arasında gelişen ikincil elek dokusu (Kutuplanmış ışık) (Örnek 366B).

ortopiroksen, olivin, klinopiroksen ve Cr-Al spinel tanınabilmektedir. Cr-Al spinelin bozuşma ürünü olarak manyetit, klorit ve brusit gelişmiştir. Kayaçlarda ilksel doku tanınamasa da, ikincil olarak gelişen elek doku oldukça belirgindir (Şekil 3.13).

3.1.8. Listvenit

Listvenit tümüyle karbonatlaşmış bir ultramafik kayadır. Kayaç tümüyle kalsit ve kuvars minerallerinden oluşmaktadır (Şekil 3.14). % 1 kadar opak mineral de mevcuttur. Kayaçta belirgin herhangi bir doku gözlenmemektedir.

Şekil 3.14: Listvenit içerisinde yaklaşık 1 mm çapındaki kalsit (Cal) minerali (Kutuplanmış 1şık) (Örnek 258).

3.2.Kurtlutepe Metamorfitleri

Kurtlutepe Metamorfitleri hakim olarak yeşilşist ve mermerden oluşmaktadır. Birim içinde yer yer kalkfillat, meta-gabro, meta-marn, meta-volkanoklastit ve metakumtaşı da bulunmaktadır. Bu kayaç türlerini içeren 20 adet örnekten ince kesit yapılarak incelenmiştir. İçerdikleri minerallerin yaklaşık modal bollukları Tablo 3.5'te verilmektedir. Kayaçların petrografik nitelikleri ise ayrıca özetlenmiştir.

Örnekler	Plg	Ер	Chl	Qtz	Opq	Cal	Ser	Ms	Stp	Hbl	Leu	Tr	Срх
Yesilsist													
99A	48	7	30	10	3	2	-	-	-	-	-	-	-
99B	53	7	35	-	5	-	-	-	-	-	-	-	-
101A	40	10	35	-	5	-	10	-	-	-	-	-	-
104A	50	5	32	-	5	-	5	3	-	-	-	-	-
104B	55	7	30	-	8	-	-	-	-	-	-	-	-
105	52	10	35	-	3	-	-	-	-	-	-	-	-
347B	20	-	20	-	10	50	-	-	-	-	-	-	-
351B	50	15	16	-	7	-	-	-	12	-	-	-	-
354	51	15	17	-	2	-	-	-	15	-	-	-	-
387	35	10	7	-	2	-	-	-	-	-	-	-	-
391	40	17	39	-	1	-	-	-	-	-	-	-	-
392	39	8	50	-	3	-	-	-	-	-	-	-	-
Mermer													
100C	5	-	-	-	-	95	-	-	-	-	-	-	-
365A	10	-	-	-	-	90	-	-	-	-	-	-	-
393A	15	-	-	-	-	85	-	-	-	-	-	-	-
Kalkfillat													
332C	45	-	-	10	5	40	-	-	-	-	-	-	-
Meta-gabro													
363	30	-	20	-	-	10	-	-	-	15	10	3	12
Meta-marn													
334	-	-	45	-	-	55	-	-	-	-	-	-	-
Meta-volkan	oklastit	t											
335A	17	24	46	-	3	10	-	-	-	-	-	-	-
Meta-kumtaş	ş1				-								
355B	40	-	-	55	5	-	-	-	-	-	-	-	-

Tablo 3.5: Kurtlutepe Metamorfitleri'nde bulunan değişik kayaç türlerinin içerdikleri
minerallerin yaklaşık modal bollukları.

3.2.1. Yeşilşist

Yeşilşistler genellikle lepidogranoblastik doku göstermektedir. Plajiyoklasların çapları 0.2'den 1.3 mm'ye kadar değişmektedir. Epidotların çapları ise 0.1 ile 0.2 mm arasında değişmektedir. Ortalama çapı 0.25 mm olan klorit kristallerinde yönlenme belirgindir (Şekil 3.15).

Bu üç hakim mineralin yanında kuvars, muskovit, stilpnomelan, kalsit, serisit ve opak mineraller de farklı örneklerde gözlenmektedir. Plajiyoklaslar çoğunlukla

bozuşmuş olsa da, ikizlenmeleri belirgin, çapları yaklaşık 1 mm olanları da mevcuttur. Epidot mineralleri, birkaç örnek haricinde tamamen birçok küçük tanenin

Şekil 3.15: Plajiyoklas (Pl), epidot (Ep) ve klorit (Chl) kristallerinin oluşturduğu lepidogranoblastik doku (Normal 1ş1k) (Örnek 105).

bir araya gelmesiyle oluşmuş olarak görülür. Bazı durumlarda plajiyoklas içinde kapanım olarak görülen epidotlar da vardır. Klorit uzunlamasına gelişmiş prizmatik kristaller halindedir ve yapraklanmayı belirgin kılan bantlar oluşturur. Bazı

Şekil 3.16: Yeşilşiste ait feldispatların Barth (1962)'ye göre isimlendirilmesi.
örneklerde kloritle beraber gelişmiş stiplomelan görülmektedir. Opak mineraller de çoğunlukla uzunlamasına gelişmiştir.

Tablo 3.6: : Yeşilşiste ait minerallerin bileşim aralığı.

104A Phe	52.44 0.07 0.07 0.01 0.04 0.04 0.04 0.04 0.04 0.04	46.30
104A Phe	51.31 0.02 0.01 0.01 0.00 0.04 0.04 0.04 0.04	50.64
104A Phe	51.73 0.05 2.35.75 0.07 3.36 0.04 0.04 0.04 0.04 0.04	45.90
104A Phe	50.55 0.04 0.04 0.00 0.00 0.01 0.01 0.09 0.09 0.09 0.09	43.85
104A Phe	50.17 0.08 0.08 0.00 7.74 0.10 0.21 0.21 0.77 0.21 0.77 0.21 0.77 0.77 0.77	41.08 41.08 -
104A Phe	51.14 0.07 24.83 0.02 0.03 3.14 0.14 0.14 0.14 0.04 9.77 96.65	42.84
104A Chi	26.43 0.02 0.01 0.01 0.05 0.16 0.02 0.00 0.00 0.00	52.86
104A Chi	26.81 0.03 18.64 0.01 0.04 0.04 0.04 0.05 0.05 87.07	53.77
104A Chi	26.34 0.02 18.47 0.00 0.00 0.19 0.19 0.00 0.00 0.00	52.95
104A Chi	27.25 0.07 0.00 0.00 0.00 0.11 0.25 0.00 0.11 0.11	52.60
104A Chi	27.12 0.03 0.01 0.01 0.06 0.06 0.06 0.08 0.08 0.08 0.08	53.75 53.75
104A Chi	26.79 0.02 0.02 0.00 0.46 15.87 0.10 0.00 0.02 86.85	52.68 52.68 -
104A Chi	26.99 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.06 0.06	53.07 53.07 -
104A Chi	26.33 0.02 18.82 0.00 0.00 0.02 0.02 0.04 87.02	53.25 53.25 -
104A Chi	26.61 0.04 18.35 0.00 0.54 16.23 0.25.08 0.25 0.00 0.01 0.01 0.01	53.58 53.58 -
104A Chi	27.23 0.04 18.42 0.01 15.77 15.77 15.77 0.29 0.18 0.18	53.03 53.03 -
104A Fds	69.44 0.02 19.91 0.01 0.02 0.04 11.80 0.04 0.06	0.16
104A Fds	69.30 0.01 0.05 0.05 0.06 0.06 0.06 0.06	0.17
104A Fds	68.72 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03	- 0.14
104A Fds	69.15 0.02 0.00 0.01 0.03 0.04 11.68 0.04 0.04	0.17
104A Fds	70.03 0.00 0.02 0.02 0.02 0.02 0.02 0.02	- 0.19 -
104A Fds	68.36 0.00 0.00 0.00 0.05 0.06 0.06 0.06 0.0	0.27
104A Fds	68.33 0.00 0.00 0.02 0.05 0.05 0.15 0.15 0.15	- - 0.21
104A Fds	68.63 0.01 0.00 0.02 0.03 0.03 0.03 0.07 0.07 0.07 0.07	- 0.15 -
104A Fds	67.37 2.44 19.77 0.04 0.17 0.17 0.17 0.11 0.11 0.11 10.21	- 0.53 -
Omek Mineral	SiO ₂ TiO ₂ Cr ₂ O ₃ FreO MgO CaO CaO CaO CaO Toplam	Mg-Value Mg# An (Fsp) Cr/Cr+Al

104A 104A 104A Cal Cal Cal	0.04 0.01 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.08 0.35 0.58 0.10 0.53 0.05 0.00 0.00 0.16 0.08 0.35 0.05 0.00 0.00 53.89 54.30 54.49 53.89 54.30 54.49 0.01 0.01 0.02 0.01 0.01 0.02 0.04 54.53 55.58	34.70 0.00 32.20 100.00? 100.0
A 104A Cal	0 0.02 0 0.00) 38.88 00100.00 -
104 Rt	9412 9412 9412 9412 9412 9412 986	100
. 104A Mgt	1.95 0.84 0.46 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0000
. 104A Mgt	0.60 0.62 0.06 0.00 0.01 0.01 0.01 0.03 0.05 0.05	0.00
. 104A Mgt	111 0.27 0.03 0.03 0.03 0.03 0.01 0.01 0.08 0.08	0.11 0.031
104A Sp	0.05 0.01 0.01 0.01 0.10 0.10 0.00 0.00	34.47 100.0 0.00
104A Sp	8.10 0.80 0.05 0.05 0.05 0.05 0.03 0.00 0.03 0.03	0.00
104A Phe	52.49 0.05 0.05 0.05 0.05 0.00 0.07 0.07 0.07	47.41 47.41 - - Spinel).
104A Phe	51.51 0.07 7.45 0.00 3.34 0.07 0.07 0.04 9.95 96.57	44.39 44.39 - -
104A Phe	50.60 0.10 0.00 0.04 3.10 0.03 0.03 0.03 0.03	40.74 40.74 - - til, Sp:
104A Phe	51.56 0.02 0.04 7.25 0.04 0.03 0.03 0.03 0.03 0.03	47.92 47.92 - Rt: Run
104A Phe	52.04 0.07 7.23.88 0.00 7.23.88 0.04 0.04 0.04 0.04 0.04	45.91 45.91 - - Fengit,
104A Phe	51.36 0.06 0.01 7.32 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.01	43.83 43.83 - - -
104A Phe	50.67 0.09 0.01 7.22 0.02 0.05 0.05 0.05 0.05	43.72 43.72 - -
104A Phe	51.88 0.12 0.12 0.12 0.01 0.01 0.06 0.04 0.04 0.04	45.51 45.51 - - <i>Mg</i> t: N
104A Phe	52.65 0.16 0.00 0.02 3.26 9.65 98.04 98.04	45.68 45.68 - <i>-</i> <i>dispat</i> ,
104A Phe	51.05 0.08 0.09 0.07 0.07 0.03 0.03 0.03 0.03	44.75 44.75 - ds: Fel
104A Phe	53.01 0.05 0.00 0.02 0.04 0.04 0.04 0.04 0.04	48.88 48.88 - - Iorit, F
104A Phe	50.60 0.07 0.07 0.00 8.02 0.03 3.18 0.00 95.85	41.39 41.39 - - <i>Chi: Ki</i>
Omek Mineral	SiO ₂ TiO ₂ MnO MnO MgO Na ₂ O Na ₂ O Na ₂ O Toplam	Mg-Value Mg# An (Fsp) Cr/Cr+Al (Cal: Kalsit,

Tablo 3.6: : Yeşilşiste ait minerallerin bileşim aralığı (Devam).

104A numaralı yeşilşistten yapılan analiz sonucu elde edilen mineral kimyası sonuçları Tablo 3.6'da verilmiştir. Yeşilşistte bulunan feldspatların anortit oranı 0.14 ile 0.53 arasında değişmektedir ve hepsi albit bileşimindedir (Şekil 3.16). Kloritlerin Mg/(Mg+Fe⁺²) oranı ise 52 ile 54 arasında değişmektedir.

3.2.2. Mermer

Mermer tamamen kalsitten oluşan mikrogranoblastik doku göstermektedir (Şekil 3.17). Fakat plajiyoklas seviyeleri ile kalsitler arasında bantlar vardır.

Şekil 3.17: Oldukça küçk tanelerden oluşan mermer (Normal ışık) (Örnek 100C).

3.2.3. Kalkfillat

Kalkfillat yönlü doku göstermektedir. Hakim olarak plajiyoklas, kalsit ve kuvars minerallerinden meydana gelen kalkfillat'ta tali oranda opak mineral de bulunmaktadır. Kuvars'ta dalgalı sönme görülmektedir (Şekil 3.18). Bu da kayanın gerilme etkisinde olduğunu gösterir. Yönlü basıncın etkisi altında kalsit mineralleri ve opak mineraller uzamışlardır.

Şekil 3.18: Tamamen bozuşmuş plajiyoklasların (Pl) etrafını sardığı kuvarslar (Qtz) (Kutuplanmış ışık) (Örnek 332C).

3.2.4. Meta-gabro

Meta-gabro yönsüz porfirogranoblastik doku göstermektedir. Başlıca plajiyoklas, klorit, hornblend ve klinopiroksen minerallerinin görüldüğü meta-gabro içinde ikincil olarak lökoksen, tremolit ve kalsit de gelişmiştir (Şekil 3.19). İlksel kayaca ait mağmatik doku korunmuştur. Plajiyoklas bozuşmuş olarak gözükmektedir. Alterasyon sonucu lökoksen ve kalsit oluşmuştur. Hornblend üzerinde oluşan çatlaklar tremolit tarafından işgal edilmiştir.

3.2.5. Meta-marn

Meta-marn belirgin yapraklanmalıdır. Dokusal olarak, lepidoblastik bir dokuya sahiptir. Uzunlamasına kristallenmiş klorit bantları ile kalsit bantları ardalanmalıdır (Şekil 3.20).

3.2.6. Meta-volkanoklastit

Meta-volkanoklastitler yönlü porfiroblastik doku göstermektedir. Bu doku

Şekil 3.19: Meta-gabro içinde hornblend (Hbl) ve klinopiroksen (Cpx) mineralleri (Kutuplanmış ışık) (Örnek 363).

Şekil 3.20: Meta-marn içinde ardışık olarak gelişmiş klorit (Chl) ve kalsit (Cal) bantları (Normal ışık) (Örnek 334).

uzunlamasına klorit mineralleri arasında bulunan plajiyoklas ve epidot mineralleri arasında oluşmuştur (Şekil 3.21). Bu üç mineralin dışında opak mineraller ve kalsitleşme sonucu gelişmiş kalsit mineralleri de kayaç içinde mevcuttur. İnce taneli birçok epidot minerali olduğu gibi, plajiyoklas ve kloritten oluşan bir hamur içinde görülen epidotlar da vardır.

Şekil 3.21: Uzunlamasına gelişmiş klorit (Chl) mineralleri arasında görülen plajiyoklas (Pl) ve epidot (Ep) minerallerinin oluşturduğu porfiroblastik doku (Kutuplanmış ışık) (Örnek 335A).

3.2.7. Meta-kumtaşı

Meta-kumtaşı, kuvars ve plajiyoklas mineralleri tarafından temsil edilen yönsüz porfiroblastik doku gösterir. Kuvars minerallerinin çapları yaklaşık 0.5 ile 1.5 mm arasındadır (Şekil 3.22). Kuvars içinde alt tane gelişimi ve tane sınırı ihlali görülmektedir.

Şekil 3.22: Meta-kumtaşı içindeki kuvars (Qtz) mineralleri (Kutuplanmış ışık) (Örnek 355B).

BÖLÜM 4. JEOKİMYA

Çalışma alanında bulunan farklı türdeki kayaçların jeokimyasal karakterlerini belirlemek amacıyla, 33 tane örnekten toplam kayaç analizi yapılmıştır. Bu analizler sonucunda, örneklerin ana ve iz element içerikleri belirlenmiştir. Örneklerin ana ve iz element verileri incelenerek ve bu veriler çeşitli diyagramlara yansıtılarak, örneklerin oluşum yerleri ve jeokimyasal karakterleri belirlenmiştir. Örneklere ait ana ve iz element içeriklerin belirlenmiştir.

4.1. Refahiye Meta-ofiyoliti

Refahiye Meta-ofiyoliti'ne ait 20 örneğin ve Onarı Formasyonu'na ait bir örneğin ana ve iz element içerikleri Tablo 4.1'de sunulmaktadır. Refahiye Meta-ofiyoliti'ne ait örnekler, polarizan mikroskop altında incelenerek serpantinize peridotit, meta-gabro, gabro pegmatit, meta-plajiyogranit ve klinopiroksenit olmak üzere beş farklı kayaç tipi olarak gruplandırılmış ve toplam kayaç analizine gönderilmiştir. Toplam kayaç analizinden gelen meta-gabroların ana ve iz analiz sonuçları incelendikten sonra, meta-gabroların magnezyum numaraları hesaplanmış ve magnezyum değerleri % 85'in üzerinde değerler gösteren iki meta-gabro, Tip II Gabro olarak diğer meta-gabrolardan ayrılmıştır.

4.1.1. Serpantinleşmiş peridotitler ve klinoprioksenit

Serpantinleşmiş peridotitler ve klinopiroksenit, manto kökenli kayaçlar olmaları nedeniyle birlikte yorumlanmıştır.

Serpantinleşmiş peridotitlerin ateşte kayıp oranları % 8 ile 11 arasında değişmektedir. Bu serpantinleşmenin önemli ölçüde olduğuna işaret etmektedir. Serpantinleşmiş peridotitlerin SiO₂ içeriği % 36 ile 40 arasında, Fe₂O₃ içeriği % 8 ile 9 arasında, MgO içeriği % 39 ile 43 arasında, Al₂O₃ içeriği % 0.5 ile 0.7 arasında ve Cr içeriği 66200 ppm ile 83500 ppm arasında değişmektedir.

Örnek	219	91	93	96D	96B	252	270	272	343A	358A	358B
Kava tini	SP	SP	SP	KP	GI	GI	GI	GI	GI	GI	GI
	51	51	51		01	01	01	01	01	01	01
0:0	27.20	20.00	25.50	40.02	50 74	51 50	40.77	51 50	40.04	10 (2	50.00
SiO_2	37.30	39.90	35.59	49.03	50.74	51.58	49.77	51.73	48.04	49.63	50.89
110 ₂	< 0.01	< 0.01	< 0.01	0.08	1.65	1.55	1.26	1.59	1.87	1.96	2.03
Al_2O_3	0.68	0.60	0.53	1.68	15.11	14.88	15.77	16.48	15.19	15.10	13.87
Fe_2O_3	8.87	7.92	8.51	4.94	12.09	12.4	11.01	11.55	15.13	13.41	13.81
MnO	0.12	0.12	0.12	0.14	0.2	0.2	0.18	0.18	0.23	0.19	0.21
MgO	42.83	39.49	41.87	20.99	5.56	5.46	6.15	4.47	5.37	4.45	4.4
CaO	0.28	0.70	0.20	18.25	8.90	9.53	9.95	8.50	9.06	9.06	8.55
Na_2O	< 0.01	< 0.01	< 0.01	0.11	3.92	3.14	3.18	3.83	3.87	4.20	4.54
K_2O	< 0.01	< 0.01	< 0.01	< 0.01	0.54	0.26	0.58	0.67	0.18	0.31	0.21
P_2O_5	0.01	< 0.01	< 0.01	< 0.01	0.16	0.13	0.11	0.14	0.16	0.12	0.17
Cr ₂ O ₃ (ppn	n)83500	40300	66200	51400	2100	600	1600	300	<200	<200	300
LOI	8.00	9.90	11.40	3.80	0.90	0.70	1.80	0.70	0.70	1.20	1.10
TOP/C	0.25	0.1	0.33	0.05	0.03	0.04	0.07	0.03	< 0.02	< 0.02	< 0.02
TOP/S	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.07	0.05	< 0.02
Toplam	99.29	99.35	99.31	99.62	99.8	99.82	99.8	99.83	99.79	99.63	99.82
Sc	5	9	4	52	35	37	38	31	42	42	36
Ni	3003	2278	2965	270 2	24 7	283	23.6	13 3	83	43	86
Co	122.7	102.8	110.5	36.9	34.4	33.1	33.7	30.6	42.4	40.5	34.4
V	25	30	20	167	313	366	326	3/3	510	5/1	/33
Cu	0.4	27	0.6	200.7	54.4	22 8	16	30.8	06.0	130/	66 1
Zn	20	2.7	25	200.7	27.7	16	40	10	30	26	22
	<01	<01	<01	<01	<01	<01	<01	<01	0.2	<01	<01
CS Ph	<0.1	<0.1	<0.1	<0.1	<0.1 7.5	~0.1	<0.1 7	<0.1 8.6	2.2	~0.1	<0.1 1.6
Ro	<0.1 <1	<0.1	<0.1	<0.1 5	106	2.2 54	72	8.0	2.3	2.0	1.0
Ба	<01	<01	<01	-0 1	0.2	-0 1	/ J	0.2	40 <0.1	0.1	43
U Th	<0.1	< 0.1	<0.1	<0.1	0.2	<0.1 0.6	<0.1 0.5	0.2	<0.1	0.1	0.2
Dh	<0.2	<0.2	<0.2	<0.2 0.1	0.0	0.0	0.5	0.8	~0.2 0.2	0.2	0.5
Sr Sr	<0.1 0.6	~0.1 2 8	<0.1	5.2	234.3	1/3 1	2267	220.4	206	308.7	170.1
Nh	0.0	2.0	<0.5	-0.1	254.5	145.1	220.7	220.4	200	308.7 2	170.1
To	-0.1	<0.1	<0.1	<0.1	2.7	2.2	0 1	2.2	2.5	0 1	0.2
1a 7r	~0.1	<u>\0.1</u>	<u>\</u> 0.1	<u>\0.1</u>	110.2	0.1	70.1	0.2	0.2	0.1	116.2
	5.2 <0.1	0.8	1	2.0	2 1	2 1	/0.4	90.5	07.7	00.5 2.4	2.4
	<0.1 1 2	<0.1 0.6	\0.1 0.9	NO.1	5.1 10.4	5.1 17.0	2.2 17.5	2.0	2.3	2.4 17.1	5.4 17.0
Ga	1.2	0.0	0.0	1.0	10.4	17.0	17.5	19.2	17.0	1/.1	17.0
La	<0.1	<0.1	<0.1	<0.1	5.0	5.0	4.2	4.0	4	3.9	3.3
Ce	< 0.1	<0.1	< 0.1	0.2	15.6	14.6	11.0	13.2	12.3	10.4	16.4
Pr	< 0.02	< 0.02	< 0.02	< 0.02	2.43	2.26	1.83	11.1	2.09	1.0/	2.48
Nd	< 0.3	< 0.3	< 0.3	< 0.3	12.5	11.2	9.4	11.1	10.7	8.6	13.4
Sm	< 0.05	< 0.05	< 0.05	0.17	3.88	3.44	2.82	3.42	3.7	2.92	4.28
Eu	< 0.02	< 0.02	< 0.02	0.06	1.36	1.26	1.06	1.23	1.31	1.2	1.5
Ga	< 0.05	< 0.05	< 0.05	0.32	5.13	4.88	3.94	4.61	5.38	4.24	6.17
Tb	< 0.01	< 0.01	< 0.01	0.07	1.02	0.95	0.77	0.89	0.99	0.79	1.14
Dy	< 0.05	< 0.05	< 0.05	0.49	6	5.79	4.43	5.4	6.58	4.98	/
Но	< 0.02	< 0.02	< 0.02	0.11	1.34	1.22	0.97	1.2	1.36	1.1	1.57
Er	< 0.03	< 0.03	< 0.03	0.35	4.15	3.66	3.17	3.6	4.05	3.21	4.72
Tm	< 0.01	< 0.01	< 0.01	0.04	0.6	0.57	0.47	0.54	0.62	0.51	0.7
Yb	< 0.05	< 0.05	< 0.05	0.28	3.88	3.52	2.85	3.63	3.94	3.12	4.44
Lu	< 0.01	< 0.01	< 0.01	0.04	0.59	0.54	0.43	0.52	0.59	0.48	0.68
Y	< 0.1	<0.1	<0.1	2.9	37.6	34.4	28.3	33.8	37.9	29.5	40.9
Eu/Eu*	?	?	?	0.63	0.93	0.94	0.97	0.95	0.90	1.04	0.89
La/Yb	?	?	?	?	0.97	1.07	0.99	0.85	0.68	0.84	0.84
$X_{M^{\alpha}}$	0.91	0.91	0.91	0.89	0.48	0.47	0.53	0.43	0.41	0.40	0.39
ASĬ	-	-	-	-	0.65	0.65	0.66	0.73	0.66	0.64	0.60

Tablo 4.1: Refahiye Meta-ofiyoliti'ne ait 20 örneğin ve Onarı Formasyonu'na ait 1 örneğin ana ve iz element içerikleri.

Örnek	618	317C	322	348B	350	358E	96A	342	343B	375
Kaya tipi	GI	GII	GII	GP	GP	GP	PL	PL	PL	В
SiO2	46.03	45 59	43.4	45 34	45 31	53 97	75.61	54 83	51 19	46 69
TiO2	1 63	0.08	0.07	013	0.63	0.27	0.1	0.17	0.26	15
Al ₂ O ₂	14 49	16.26	17 99	22.73	18 77	19.27	14 13	26.54	23.86	15.9
Fe ₂ O ₂	14.74	4.35	3.68	4.17	6.34	3.11	0.93	20.01	2.14	8.73
MnO	0.23	0.09	0.07	0.08	0.12	0.09	0.02	0.02	0.03	0.14
MgO	7.58	12.05	13.24	8.04	10.1	5.82	0.54	0.55	1.53	8.45
CaO	11.64	16.28	14.68	15.17	14.57	9.93	3.49	9.71	11.69	10.16
Na ₂ O	2.48	1.32	1.23	1.19	1.3	4.92	4.54	6.05	5.39	3.11
K_2O	0.08	0.06	0.06	0.12	0.13	0.11	0.1	0.13	0.06	1.53
P_2O_5	0.16	0.01	0.01	< 0.01	< 0.01	0.07	0.02	< 0.01	0.05	0.42
Cr ₂ O ₃ (ppr	n) 1600	9400	26100	<200	8500	1300	<200	<200	<200	400
LOI	0.70	3.60	5.00	2.80	2.30	2.30	0.50	1.00	3.80	3.00
TOP/C	< 0.02	0.04	0.04	< 0.02	0.02	< 0.02	0.03	< 0.02	0.04	0.12
TOP/S	0.09	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Toplam	99.77	99.76	99.72	99.82	99.72	99.85	99.99	99.96	99.95	99.68
Sc	50	43	24	23	29	13	2	2	3	25
Ni	20.2	126.9	245.3	4	59.1	10.6	25.9	3.7	4.9	115.2
Co	46.9	37.6	36.3	31.9	33.3	15.2	2.6	3	6.2	37.8
V	447	112	64	86	247	92	24	26	51	204
Cu	99.8	156	108.6	1.9	3.1	2.1	3.4	0.4	2.6	52.9
Zn	23	7	6	6	4	2	4	4	6	50
Cs	0.1	< 0.1	0.5	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	0.2	1
Rb	0.6	0.7	2	1.3	0.9	0.9	0.8	1.2	1.7	22.9
Ba	19	10	44	61	55	98	124	27	27	246
U	< 0.1	<0.1	< 0.1	<0.1	<0.1	0.1	0.9	<0.1	<0.1	1.2
Th	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.6	1.4	< 0.2	< 0.2	3.8
Pb	0.2	< 0.1	0.1	0.6	1.1	1.1	1.6	0.4	0.3	1.2
Sr	127.8	106.4	439	571	758.3	478.5	190.1	387.3	313.5	858.6
Nb	2.2	0.4	< 0.1	0.3	6.7	2.8	1.8	0.3	0.5	21.9
Та	0.2	< 0.1	< 0.1	< 0.1	0.4	0.1	< 0.1	<0.1	<0.1	1.2
Zr	66.3	5.1	1.3	5.3	29.8	93.7	127.7	145.8	73.2	151.2
Ht	2.3	<0.1	<0.1	0.2	1.4	2.3	3.4	3.1	1.9	3.3
Ga	16.8	8.6	8	14.1	14.9	13.8	11.7	20.5	18.6	15.4
La	3.3	0.3	<0.1	1.5	6. I	/.6	4.9	1.5	1./	23
Ce Dr	12.3	0.8	0.2	2.6	16.4	14.9	0.8	2.1	3.1	4/.6
PI NJ	2.19	0.09	< 0.02	0.30	2.32	1.03	0.04	0.23	0.4	5.42 21.7
Nu Sm	13.3	0.5	<0.5	1.5	11.2	0.5	1.0	0.22	1.0	21.7
SIII	4.22	0.18	0.11	0.42	2.08	1.55	0.25	0.22	0.41	4.2
Eu Gd	6.25	0.12	0.1	0.54	2 2 2	1.8	0.03	0.77	0.78	1.4
Th	1.15	0.29	0.23	0.51	0.52	0.31	0.22	0.25	0.51	4.5
Dv	7 24	0.00	0.03	0.1	3 45	1 97	0.07	0.05	0.1	3 79
Но	1.57	0.09	0.05	0.02	0.73	0.4	0.20	0.08	0.50	0.72
Fr	4 56	0.07	0.00	0.12	2 11	1 23	0.32	0.08	0.14	202
Tm	4.50 0.7	0.03	0.17	0.4	0.31	0.2	0.02	0.25	0.42	0.3
Yh	4 33	0.05	0.02	0.00	1 94	1 28	0.00	0.00	0.00	1 75
Lu	0.65	0.03	0.02	0.06	0.28	0.21	0.12	0.08	0.00	0.28
Y	44.2	2.3	1.8	3.7	20.9	11.7	2.5	2.5	4.1	20.7
E11/E1.*	0.02	1 6 1	101	2.25	0.00	1 10	0 56	10.47	5 22	1.60
Eu/Eu La/Vh	0.60	1.01	1.04	2.23	0.90	1.10	0.30	2 50	5.22 2.12	2 14
La/10 X	0.51	0.85	؛ ۶۹ ۵	2.39	2.12	4.00	0.53	2.39 0.52	2.10	5.44 0.66
	0.50	0.05	0.00	0.79	0.70	0.73	1.01	0.52	0.39	0.00
101	0.57	0.51	0.05	0.77	0.05	0.75	1.01	0.90	0.19	0.05

Tablo 4.1: Refahiye Meta-ofiyoliti'ne ait 20 örneğin ve Onarı Formasyonu'na ait 1 örneğin ana ve iz element içerikleri (Devam).

(SP: Serpantinleşmiş peridotit, GI: Tip I Gabro, GII: Tip II Gabro, GP: Gabroik pegmatit, PL: Meta-plajiyogranit, KP: Klinopiroksenit, B: Bazalt).

Serpantinleşmiş peridotitlere ait TiO_2 ve K_2O içerikleri ölçüm sınırlarının altında kalmıştır. Serpantinleşmiş peridotitlerin SiO_2 oranlarındaki düşüklük kayaçlardaki serpantinit minerallerinin varlığıyla açıklanmaktadır. Serpantinleşmiş peridotit örneklerinin hepsinin magnezyum numarası 91'dir.

Klinopiroksenitin ateşte kayıp oranı % 4'tür. Klinopiroksenitin SiO₂ içeriği % 49, TiO₂ içeriği % 0.1, Fe₂O₃ içeriği % 5, MgO içeriği % 21, Al₂O₃ içeriği % 2 ve Cr içeriği 51400 ppm'dir. Klinopiroksenitin magnezyum numarası 89'dur.

4.1.2. Tip I gabro, gabroik pegmatit ve meta-plajiyogranit

Tip I Gabro, gabroik pegmatit ve meta-plajiyogranit grubuna ait örnekler bir arada yorumlanmıştır. Bu üç tipe ait örnekler arazi çalışmaları sırasında da birbirleriyle ilişkili olarak gözlenmiştir.

Tip I Gabro grubuna ait 8 adet meta-gabronun SiO₂ içeriği % 46 ile 52 arasında, TiO₂ içeriği % 1 ile 2 arasında, Fe₂O₃ içeriği % 11 ile 15 arasında, MgO içeriği % 5 ile 8 arasında, Al₂O₃ içeriği % 14 ile 16 arasında, Na₂O içeriği % 2 ile 4 arasında, K₂O içeriği % 0.1 ile 0.7 arasında ve CaO içeriği % 8.5 ile 12 arasında değişmektedir. Tip I Gabro grubuna ait meta-gabroların magnezyum numaraları 39 ile 53 arasındadır. Ateşte kayıp oranları ise % 1 ile 2 arasında değişmektedir.

Tip I Gabro grubuna ait meta-gabroların kimyasal kökenini belirlemek için kullanılan diyagramlar Şekil 4.1'dedir. Üç diyagramdan da çıkan ortak sonuç Tip I Gabro grubuna ait meta-gabroların toleyitik olduklarıdır.

Tip I Gabro grubuna ait meta-gabrolar 6 farklı tektonomagmatik diyagrama iz düşürülerek, meta-gabroların oluşum alanları belirlenmiştir (Şekil 4.2). Buna göre, Tip I Gabro grubuna ait meta-gabroların yitim bileşeninden etkilendikleri dolayısıyla yitim ile ilgili oldukları söylenebilir.

Şekil 4.1: Tip I Gabro grubuna ait meta-gabroların 3 farklı diyagrama iz düşürülmesi sonucu elde edilen kimyasal köken ayrımı: a) SiO₂'e karşılık K₂O diyagramı (LeMaitre ve diğ, 1989; Rickwood, 1989); b) AFM diyagramı (Irvine ve Baragar, 1971); c) Nb/Y'a karşılık Ti/Y diyagramı (Pearce, 1982).

Gabro pegmatit grubuna ait üç adet gabronun SiO₂ içeriği % 45 ile 54 arasında, TiO₂ içeriği % 0.1 ile 0.6 arasında, Fe₂O₃ içeriği % 3 ile 6 arasında, MgO içeriği % 6 ile 10 arasında, Al₂O₃ içeriği % 19 ile 23 arasında, Na₂O içeriği % 1 ile 5 arasında, K₂O içeriği % 0.11 ile 0.13 arasında ve CaO içeriği % 10 ile 15 arasında değişmektedir. Gabro pegmatit grubuna ait gabroların magnezyum numaraları % 76 ile 79 arasındadır. Ateşte kayıp oranları ise % 2 ile 3 arasında değişmektedir.

Tip I Gabro grubuna ait meta-gabroların kimyasal kökenini ve oluştuğu ortamı belirlemek için kullanılan diyagramlar, gabro pegmatit grubuna ait gabrolar ile güvenilir sonuçlar vermemektedir. Bunun nedeni, gabro pegmatit grubuna ait gabroların pegmatitik minerolojik yapısıdır.

Şekil 4.2: Tip I Gabro grubuna ait meta-gabrolar için tektonomagmatik diyagramlar: a) Zr-Nb-Th üçgen diyagramı (Wood, 1980), A: Yay ile ilişkili bazalt, B: Normal tip okyanus ortası sırt bazalt, C: Zenginleşmiş tip okyanus ortası sırt bazalt, D: Okyanus adası bazaltı; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus ortası bazaltı; d) Ti'ye karşılık V diyagramı (Shervais,1982); e) Zr/Y'a karşılık Zr ayrım diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip okyanus ortası sırt bazalt; f) Th/Yb'a karşılık Nb/Yb diyagramı (Pearce,2008).

Meta-plajiyogranit grubuna ait üç adet örneğin SiO₂ içeriği % 51 ile 76 arasında, TiO₂ içeriği % 0.1 ile 0.3 arasında, Fe₂O₃ içeriği % 1 ile 2 arasında, MgO içeriği % 0.5 ile 1.5 arasında, Al₂O₃ içeriği % 14 ile 27 arasında, Na₂O içeriği % 4.5 ile 5 arasında, K₂O içeriği % 0.05 ile 0.15 arasında ve CaO içeriği % 3 ile 12 arasında değişmektedir. Meta-plajiyogranit grubuna ait örneklerin magnezyum numaraları % 52 ile 59 arasındadır. Ateşte kayıp oranları ise % 0.5 ile 3.8 arasında değişmektedir.

Plajiyogranitler, oluşurken içlerinde bulunan silisyumca zengin sıvı kayacı terk ederek, geride plajiyoklasca yoğun ve silisyumca fakir bir bileşik bırakmıştır. Bu yüzden Tip I Gabro grubuna ait meta-gabroların kimyasal kökenini ve oluştuğu ortamı belirlemek için kullanılan diyagramlar, meta-plajiyogranitler için güvenilir sonuçlar vermemektedir.

Tip I Gabro grubuna ait meta-gabroların, gabro pegmatitlerin ve metaplajiyogranitlerin nadir toprak element analiz sonuçları kondrit'e göre normalleştirilmiş ve Şekil 4.3'te verilmiştir. Tip I Gabroya ait olan nadir toprak element grafiklerinde her hangi bir kesirlenme görülmemektedir fakat değerler normal okyanus ortası sırt bazalt değerlerinden 10 kat fazladır. Normalleştirilmiş La/Yb oranı bire yakındır.

Gabro pegmatite ait nadir toprak element grafiklerinde, ağır toprak elementlerinde bir örnekte belirgin diğer örneklerde hafif pozitif anamoli görülmektedir. Bunun yanı sıra, 348B örneğinde pozitif Eu anomalisi dikkat çekmektedir.

Meta-plajiyogranite ait nadir toprak element grafiklerinde, hafif nadir toprak elementlerinde zenginleşme görülmektedir. Pozitif Eu anomalisi tüm örnekler için belirgindir ve Eu/Eu* oranı ortalama 8.08'dir.

Tip I Gabro grubuna ait meta-gabroların normal MORB'a göre normalleştirilmiş çoklu element diyagramları Şekil 4.4'te verilmiştir. Genel olarak Nb, Ta ve Pb elementlerinde negatif anomali görülürken, K elementinde pozitif anomali vardır. Th'un Nb ve Ta'a göre zenginleşmesi yitim ile alakalıdır.

Şekil 4.3: Refahiye Meta-ofiyolitine ait Tip I Gabro, gabro pegmatit ve metaplajiyogranitlerin kondrite göre normalleştirilmiş nadir toprak elementleri diyagramı (Normalleştirilmiş değerler Boynton 1984'e göredir).

4.1.3. Tip II gabro

Tip II Gabro grubuna ait meta-gabrolar, kümülatif karakterde olmaları nedeniyle diyagramlara aktarıldıklarında yanıltıcı sonuçlar vermektedirler. Bu bakımdan Tip II Gabro grubuna ait kümülat meta-gabrolar, sadece kondrite göre normalleştirilmiş nadir toprak element diyagramlarına aktarılabilmiştir (Şekil 4.5). Tip II Gabroya ait

olan nadir toprak element grafiklerinde her hangi bir kesirlenme görülmemektedir. La/Yb oranları ve Eu/Eu* oranları bire yakındır. Tip II Gabroya ait olan kayaçların

Şekil 4.4: Refahiye Meta-ofiyolitine ait Tip I Gabro grubunda bulunan kayaçların normal tip okyanus ortası sırt bazalta göre normalleştirilmiş çoklu element diyagramları (Normalleştirilmiş değerler Sun ve McDonough, 1989'a göredir).

magnezyum numaraları (%85 ve 88) Tip I Gabroya ait olan kayaçların magnezyum numaralarından (%39 ile 53 arasında) oldukça yüksektir.

Tip II Gabro, 2 adet kümülat meta-gabro ile temsil edilmektedir. Tip II Gabro grubuna ait 2 adet kümülat meta-gabronun SiO₂ içerikleri % 43 ve 45, TiO₂ içerikleri % 0.07 ve 0.08, Fe₂O₃ içerikleri % 4 ve 5, MgO içerikleri % 12 ve 13, Al₂O₃ içerikleri % 16 ve 18, Na₂O içerikleri %1.2 ve 1.3, CaO içerikleri % 15 ve 16, K₂O içerikleri % 0.06'dır. Ateşte kayıp oranları ise % 4 ve 5'tir.

4.1.4. Bazalt

Onarı formasyonu içinde yüzeyleyen bir bazalt örneğinin jeokimyasal analizi yapılmıştır. Bazaltın SiO₂ içeriği % 47, TiO₂ içeriği % 1.5, Fe₂O₃ içeriği % 9, MgO içeriği % 9, Al₂O₃ içeriği % 16, Na₂O içeriği % 3 ve CaO içeriği % 10'dur. Bazaltın magnezyum numarası % 66, ateşte kayıp oranı ise % 3'tür.

Bazalta ait jeokimyasal analiz sonuçları, kayacın kimyasal kökenini belirlemek için kullanılan AFM ve Nb/Y'a karşılık Ti/Y diyagramlarına iz düşürülmüştür (Şekil 4.6). AFM diyagramından bazaltın kalkalkalen nitelikli olduğu görülebilmektedir.

Şekil 4.5: Refahiye Meta-ofiyolitine ait Tip II kümülat meta-gabrolarının kondrite göre normalleştirilmiş nadir toprak elementleri diyagramı (Normalleştirilmiş değerler Boynton 1984'e göredir).

ancak Nb/Y'a karşılık Ti/Y diyagramında bazalt örneği toleyitik ile alkalen arasındaki geçiş alanına karşılık gelmektedir.

Şekil 4.6: Onarı formasyonuna ait bazaltın 2 farklı diyagrama iz düşürülmesi sonucu elde edilen kimyasal köken ayrımı: a) AFM diyagramı (Irvine ve Baragar, 1971); b) Nb/Y'a karşılık Ti/Y diyagramı (Pearce, 1982).

Bazalta ait jeokimyasal analiz sonuçları üç farklı tektonomagmatik ayırım diyagrama iz düşürülerek, bazaltın oluşum alanı belirlenmiştir (Şekil 4.7). Buna göre, Onarı formasyonuna ait bazalt kıtasal kökenli alkali bazalttır.

Şekil 4.7: Onarı formasyonuna ait bazalt için tektonomagmatik diyagramlar: a) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus adası bazaltı, 3B ve 3C: Zenginleşmiş tip okyanus ortası bazalt, 3D: Normal tip okyanus ortası bazalt; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Zr/Y'a karşılık Zr ayrım diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip okyanus ortası sırt bazalt.

Bazaltın, kondrite göre normalleştirilmiş nadir toprak element diyagramları Şekil 4.8'de verilmiştir. Bazaltta genel olarak ağır nadir toprak elementlerden, hafif nadir toprak elementlere doğru bir kesirlenme görülürken, K ve Sr elementinlerine pozitif anomali vardır (Şekil 4.9).

Şekil 4.8. Onarı formasyonuna ait bazaltın normal tip okyanus ortası sırt bazalta göre normalleştirilmiş nadir toprak element diyagramı (Normalleştirilmiş değerler Sun ve McDonough, 1989'a göredir).

Şekil 4.9: Onarı formasyonuna ait bazaltın normal tip okyanus ortası sırt bazalta göre normalleştirilmiş çoklu element diyagramı (Normalleştirilmiş değerler Sun ve McDonough, 1989'a göredir).

4.2. Kurtlutepe Metamorfitleri ve Ofiyolitik Melanj

Kurtlutepe Metamorfitlerine ait 10 adet kayaçtan ve Ofiyolitik Melanja ait 2 adet kayaçtan yapılan toplam kayaç analizlerine ait sonuçlar Tablo 4.2'de sunulmaktadır.

<u> </u>		0.0 D	1011	10.15	105				201		6.10.1	
Ornek	99A	99B	101A	104B	105	351A	354	387	391	392	640A	640B
Kaya tipi	KM	KM	KM	KM	KM	KM	KM	KM	KM	KM	MM	MM
<u></u>	51.41	57.72	57 (0	40.06	40.20	50 (1	52.00	(0.(0	50.15	(0.55	47.50	47 (1
$S1O_2$	51.41	57.73	57.60	49.36	49.30	52.61	53.08	60.62	52.15	60.55	47.52	47.61
11O ₂	0.63	0.80	0.63	1.27	1.02	1.09	1.14	0.62	0.62	0.83	0.93	1.65
Al_2O_3	17.87	17.73	15.65	17.85	19.00	16.18	14.22	16.59	17.63	14.18	15.72	12.03
Fe_2O_3	10.33	8.47	8.29	13.83	11.88	11.72	12.46	6.72	9.02	8.83	11.20	10.97
MnO	0.10	0.13	0.12	0.18	0.22	0.15	0.21	0.11	0.16	0.13	0.19	0.19
MgO	6.05	4.06	4.45	5.46	4.11	4.58	4.27	2.50	3.94	3.78	8.12	9.51
CaO	4.58	1.19	6.54	1.73	4.90	6.32	5.60	4.42	9.06	4.87	6.14	10.06
Na ₂ O	3.72	6.08	2.79	5.68	5.85	4.00	5.88	4.43	2.80	2.86	3.44	3.45
K ₂ Õ	0.37	0.75	0.11	0.89	0.10	0.04	0.53	1.22	0.12	0.42	0.93	0.20
$P_2 O_5$	0.03	0.13	0.14	0.10	0.15	0.13	0.10	0.13	0.12	0.12	0.08	0.29
$Cr_2O_2(nnr)$	n) < 200	<200	400	<200	<200	<200	<200	<200	<200	<200	4200	7200
TOP/C	0.060	0.040	0.030	<0.02	0.000	<0.02	0 100	0.040	0.130	<0.02	0.020	0 140
TOP/S	<0.000	<0.040	<0.030	<0.02	<0.070	<0.02	<0.100	<0.040	<0.130	<0.02	<0.020	<0.02
	<0.02 4 70	~0.02	~0.02	~0.02	~0.02	~0.02	~0.02	~0.02	<0.02	~0.02	~0.02	~0.02
LOI	4.70	2.80	3.50	3.30	3.30	3.00	2.30	2.50	4.20	3.30	5.50	3.70
Toplam	99.80	99.86	99.84	99.82	99.85	99.83	99.79	99.85	99.84	99.86	99.78	99.73
Sc	30	34	26	41	30	38	41	25	36	34	47	31
Ni	7 40	3 40	12 80	8 50	5 50	7 40	22 50	2.60	630	2 50	61 10	177 60
Co	27.60	18.60	22.60	26.20	27.60	27 10	35.60	11.40	10.30	15.40	<i>A</i> 1 <i>A</i> 0	16.90
V	27.00	10.00	22.00	20.20	27.00	27.10	120	120	202	13.40	260	10.00
V Cu	150.2	192	230	52.0	500	222	420	120	202	1//	200	70.0
Cu	138.3	43.4	108.2	52.9	39.1	/4.9	128.9	24.8	80.7	44.5	88.7	/9.9
Zn	/0	88	6/	105	103	9/	/5	/6	/8	93	4/	58
Cs	0.50	0.50	< 0.10	0.30	< 0.10	0.10	3.10	0.80	< 0.10	0.40	0.30	0.50
Rb	5.70	10.70	1.90	17.40	1.10	2.30	9.40	18.00	1.60	7.20	18.90	6.40
Ba	104	192	79	128	63	34	335	286	157	116	77	58
U	0.20	0.10	0.90	0.30	0.20	0.40	0.80	0.70	0.30	0.40	0.10	1.10
Th	0.70	0.40	3.30	1.00	0.30	1.40	0.50	2.40	1.00	0.90	< 0.20	2.90
Pb	1.10	0.50	1.40	1.80	0.20	0.60	4.40	1.80	0.80	1.40	0.70	3.10
Sr	69.1	150.0	224.7	93.5	99.4	119.3	85.0	435.4	280.2	204.9	103.8	219.7
Nb	0.80	0.50	2.40	2.20	0.40	1.30	1.40	1.40	0.60	1.10	2.20	30.20
Та	0.30	< 0.10	0.20	0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.00
Zr	23 20	25 50	62.30	54 10	19.80	55 20	52.30	58 40	29.80	48 90	48 90	123 40
Hf	0.70	0.90	2.40	1.80	0.80	2.10	1.50	2.20	1 10	1 60	1 30	3 20
Ga	17 10	13.90	16.40	19.20	15.80	17 50	15.80	15.20	17 10	12.90	16.90	14 70
La	3 50	3.60	11 70	3.60	1 00	5 90	3 /0	0.30	/ 30	12.90	3 /0	23 /0
La	6.80	2.00	22 40	0.10	1.90	14 10	0.20	20.60	10.20	12 20	7.40	40.50
Dr.	1.00	0.00	201	9.10	4.90	2.02	9.50	20.00	1 42	1 72	1.10	5 20
PI NJ	1.09	1.45	3.01	1.54	0.77	2.02	1.41	2.34	1.45	1.72	1.19	3.30
Na	5.40	7.00	12.80	6.40	4.10	10.10	/.60	11.60	/.60	8.00	5.90	22.50
Sm	1.68	2.49	2.85	2.09	1.42	2.87	2.36	3.03	2.28	2.78	2.02	4.13
Eu	0.60	0.71	0.90	0.82	0.64	1.03	0.91	1.04	0.78	0.90	0.92	1.21
Gd	2.04	2.99	2.99	2.77	2.20	3.99	2.95	3.47	3.15	3.79	3.21	4.17
Tb	0.39	0.59	0.49	0.53	0.43	0.74	0.60	0.66	0.55	0.73	0.61	0.67
Dy	2.31	3.40	2.82	3.17	2.61	4.49	3.77	4.16	3.53	4.32	4.07	3.75
Но	0.56	0.70	0.62	0.72	0.60	1.03	0.83	0.84	0.78	0.96	0.81	0.70
Er	1.67	2.35	1.91	2.17	1.84	2.97	2.57	2.68	2.53	3.12	2.64	2.03
Tm	0.24	0.32	0.29	0.36	0.26	0.44	0.38	0.42	0.39	0.45	0.37	0.30
Yb	1 66	2.12	1 93	2.15	1 70	2.94	2.46	2.77	2.42	3 18	2.25	1 67
Lu	0.25	0.33	0.30	0.36	0.26	0.45	0.39	0.42	0.40	0.47	0.36	0.26
V	15 50	20.50	18 10	19.00	16.90	28 20	22.90	25.70	23 30	27.80	24.10	10.20
1	15.50	20.50	10.10	17.00	10.70	20.20	22.90	23.10	25.50	27.00	∠ - T .10	17.70
Eu/Eu*	1.03	0.89	1.19	1.06	1.05	0.95	1.07	1.06	0.89	0.82	1.08	1.45
La/Yb	1.31	0.91	2.58	1.08	0.84	1.29	0.91	1.93	1.19	1.11	1.06	3.56
X _{Ma}	0.72	0.68	0.70	0.63	0.60	0.63	0.60	0.62	0.66	0.65	0.76	0 79
ASI	1 20	1 37	0.94	1 33	1.02	0.89	0.70	1.00	0.83	1 01	0.88	0.50
	1.20	1.07	0.71	1.55	1.02	0.07	0.70	1.00	0.00	1.01	0.00	0.00

Tablo 4.2: Kurtlutepe Metamorfitleri'ne ait 10 adet kayacın ve Ofiyolitik Melanja ait 2 adet kayacın toplam kayaç analiz sonuçları.

(KM: Kurtlutepe Metamorfitlerine ait yeşilşistler, MM: Ofiyolitik Melanj'a ait yeşilşistler).

4.2.1. Kurtlutepe metamorfitleri

Kurtlutepe Metamorfitlerine ait 10 adet yeşilşistin SiO₂ içeriği % 49 ile 61 arasında, TiO₂ içeriği % 0.6 ile 1.2 arasında, Fe₂O₃ içeriği % 7 ile 14 arasında, MgO içeriği % 2.5 ile 6 arasında, Al₂O₃ içeriği %14 ile 19 arasında, Na₂O içeriği % 3 ile 6 arasında ve CaO içeriği % 1 ile 9 arasında değişmektedir. Kurtlutepe

Şekil 4.10: Kurtlutepe Metamorfitlerine ait yeşilşistlerin 3 farklı diyagrama iz düşürülmesi sonucu elde edilen kimyasal köken ayrımı: a) SiO₂'e karşılık K₂O diyagramı (LeMaitre ve diğ, 1989; Rickwood, 1989); b) AFM diyagramı (Irvine ve Baragar, 1971); c) FeO*MgO'e karşılık SiO₂ diyagramı (Miyashiro, 1974).

Metamorfitlerine ait yeşilşistlerin magnezyum numaraları % 60 ile 72 arasındadır. Ateşte kayıp oranları ise % 2 ile 5 arasında değişmektedir. Kurtlutepe Metamorfitlerine ait yeşilşistlerin bir kısmı toleyitik, bir kısmı da kalkalkalen kökenlidir. Kurtlutepe Metamorfitlerine ait 10 adet yeşilşistin kimyasal kökenini belirlemek için üç farklı diyagram kullanıldı (Şekil 4.10). Üç diyagramda da görüldüğü gibi Kurtlutepe Metamorfitlerine ait yeşilşistlerin bir kısmı toleyitik, bir kısmı da kalkalkalen karakterlidir.

Kurtlutepe Metamorfitlerine ait 10 adet yeşilşist 6 farklı tektonomagmatik diyagrama iz düşürülerek, yeşilşistlerin köken kayaçlarının oluşum ortamları belirlenmiştir (Şekil 4.12). Buna göre, Kurtlutepe Metamorfitlerine ait yeşilşistler yay ile ilişkili volkaniklerden türemiştir. Ayrıca, Şekil 4.12.f'ye bakıldığında, yeşilşistlerin Th/Yb oranlarının yüksek olması yitim etkisini göstermektedir.

Kurtlutepe Metamorfitlerine ait yeşilşistlerin, kondrite göre normalleştirilmiş nadir toprak elementleri diyagramları Şekil 4.11'de verilmiştir. Kurtlutepe Metamorfitlerine ait yeşilşistlerin nadir toprak element grafiklerinde 3 farklı desen vardır. Bu desenlerden birinde La'dan Yb'a doğru pozitif kesirlenme görülürken, bir başkasında La'dan Yb'a doğru negatif kesirlenme görülmektedir. Bu iki desenden başka, bir üçüncü desen de ise hiç kesirlenme görülmemektedir. La/Yb oranları 0.8 ile 2.6 arasında değişmektedir. Ayrıca Eu/Eu* oranı da 0.8 ile 1.2 arasında değişmektedir. Kurtlutepe Metamorfitlerine ait yeşilşistlerin kesirlenmeli veya kesirlenmesiz tüm desenleri, kondrite göre 10 kat zenginleşmiştir.

Şekil 4.11: Kurtlutepe Metamorfitlerine ait yeşilşistlerin kondrite göre normalleştirilmiş nadir toprak elementleri diyagramı (Normalleştirilmiş değerler Boynton 1984'e göredir).

Şekil 4.12: Kurtlutepe Metamorfitlerine ait yeşilşistlerin için tektonomagmatik diyagramlar: a) Zr-Nb-Th üçgen diyagramı (Wood, 1980), A: Yay ile ilişkili bazalt, B: Normal tip okyanus ortası sırt bazalt, C: Zenginleşmiş tip okyanus ortası sırt bazalt, D: Okyanus adası bazaltı; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus adası bazaltı, 3B ve 3C: Zenginleşmiş tip okyanus ortası bazalt, 3D: Normal tip okyanus ortası bazalt; d) Ti'ye karşılık V diyagramı (Shervais,1982); e) Zr/Y'a karşılık Zr ayrım diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip okyanus ortası sırt bazalt; f) Th/Yb'a kaşılık Nb/Yb diyagramı (Pearce, 2008). Kurtlutepe Metamorfitlerine ait yeşilşistlerin normal okyanus ortası sırtı bazaltlarına göre normalleştirilmiş çoklu element diyagramları Şekil 4.13'te verilmiştir. Kurtlutepe Metamorfitlerine ait yeşilşistlerde K ve Y tüketilmiştir, Nb'un, Th'a göre tüketilmiş olması ise yitimi işaret etmektedir.

Şekil 4.13: Kurtlutepe Metamorfitlerine ait yeşilşistlerin normal tip okyanus ortası sırt bazalta göre normalleştirilmiş çoklu element diyagramları (Normalleştirilmiş değerler Sun ve McDonough, 1989'a göredir).

4.2.2. Ofiyolitik melanj

Ofiyolitik Melanj'a ait iki adet yeşilşistin SiO₂ içerikleri % 47.5 ve 47.6, TiO₂ içerikleri % 0.9 ve 1.7, Fe₂O₃ içerikleri % 11 ve 11.2, MgO içerikleri % 8 ve 9.5, Al_2O_3 içerikleri % 12 ve 16, Na₂O içerikleri % 3.44 ve 3.45, CaO içerikleri % 6 ve 10'dur. Ofiyolitik Melanj'a ait iki adet yeşilşistin magnezyum numaraları % 60 ve 72'dir. Ateşte kayıp oranları ise % 4 ve 5'tir.

Ofiyolitik Melanj'a ait iki adet yeşilşistin kimyasal kökenini belirlemek için üç farklı diyagram kullanıldı (Şekil 4.14). Üç diyagramda da görüldüğü gibi Ofiyolitik Melanj'a ait yeşilşistler toleyitiktir.

Şekil 4.14: Ofiyolitik Melanj'a ait yeşilşistlerin üç farklı diyagrama iz düşürülmesi sonucu elde edilen kimyasal köken ayrımı: a) SiO2'e karşılık K2O diyagramı (LeMaitre ve diğ, 1989; Rickwood, 1989); b) AFM diyagramı (Irvine ve Baragar, 1971); c) FeO*MgO'e karşılık SiO2 diyagramı (Miyashiro, 1974).

Ofiyolitik Melanj'a ait iki adet yeşilşist 6 farklı tektonomagmatik ortam ayrımı diyagramına iz düşürülerek, yeşilşistlerin oluşum alanları belirlendi (Şekil 4.16). Ofiyolitik Melanj'a ait iki yeşilşistten, 640A numaralı örneğin Th oranı hesaplanabilme sınırının altında olduğundan, bu nedenle Şekil 4.16.a'daki ve Şekil 4.15.f'deki 2 diyagramda 640A numaralı örnek görülmemektedir. Bu iki diyagramda görülen desenler yalnızca 640B numaralı örneğe aittir. Tüm diyagramlar değerlendirildiğinde 640A numaralı örneğin yay ile ilişkili volkanik, 640B numaralı örneğin ise okyanus adası bazaltı kökenlidir.

Ofiyolitik Melanj'a ait yeşilşistlerin, kondrite göre normalleştirilmiş nadir toprak elementleri diyagramları Şekil 4.15'de verilmiştir. Ofiyolitik Melanj'a ait yeşilşistlerin nadir toprak element grafiklerinde iki farklı desen vardır. 640A numaralı örneğe ait desende La'dan Yb'a doğru negatif kesirlenme görülürken, 640B numaralı örneğe ait desende La'dan Yb'a kesirlenme görülmemektedir. La/Yb oranları, 640A numaralı örnek için 1.06 iken, 640B numaralı örnek için 3.56'dır. Ayrıca Eu/Eu* 640A numaralı örnek için 1.08 iken, 640B numaralı örnek için 1.45'tir. Ofiyolitik Melanj'a ait yeşilşistlerin her ikisi de, normal tip okyanus ortası bazaltlarına göre zenginleşmiştir.

Ofiyolitik Melanj'a ait yeşilşistlerin normal okyanus ortası sırtı bazaltlarına göre normalleştirilmiş çoklu element diyagramları Şekil 4.17'de verilmiştir. Genel olarak ağır nadir toprak elementlerine doğru negatif bir kesirlenme görülmektedir ve K elementinde belirgin bir negatif anomali vardır.

Şekil 4.15: Ofiyolitik Melanj'a ait yeşilşistlerin kondrite göre normalleştirilmiş nadir toprak elementleri diyagramı (Normalleştirilmiş değerler Boynton 1984'e göredir).

Şekil 4.16: Ofiyolitik Melanj'a ait yeşilşistlerin için tektonomagmatik diyagramlar: a) Zr-Nb-Th üçgen diyagramı (Wood, 1980), A: Yay ile ilişkili bazalt, B: Normal tip okyanus ortası sırt bazalt, C: Zenginleşmiş tip okyanus ortası sırt bazalt, D: Okyanus adası bazaltı; b) Nb-Y-Zr üçgen diyagramı (Meschede, 1986), AI: Kıtaiçi alkali bazalt, AII: Kıtaiçi alkali bazalt ve kıtaiçi toleyit, B: Zenginleşmiş tip okyanus ortası sırt bazalt, C: Kıtaiçi toleyit ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı, D: Normal tip okyanus ortası sırt bazalt ve volkanik yay bazaltı; c) Y-Nb-La üçgen diyagramı (Cabanis ve Lecolle, 1989), 1a: Volkanik yay (kalkalkalen), 1b: Volkanik yay (geçiş), 1c: Volkanik yay (toleyit), 2A: Kıtasal bazalt, 2B: Yayardı bazalt, 3A: Kıtasal rift ve okyanus ortası bazalt; d) Ti'ye karşılık V diyagramı (Shervais,1982); e) Zr/Y'a karşılık Zr ayrım diyagramı (Pearce ve Norry, 1979), A: Kıtaiçi bazalt, B: Adayayı bazaltı, C: Normal tip okyanus ortası sırt bazalt; f) Th/Yb'a karşılık Nb/Yb diyagramı (Pearce,

2008).

Şekil 4.17: Ofiyolitik Melanj'a ait yeşilşistlerin normal tip okyanus ortası sırt bazalta göre normalleştirilmiş iz element diyagramları (Normalleştirilmiş değerler Sun ve McDonough, 1989'a göredir).

BÖLÜM 5. JEOKRONOLOJİ

Refahiye Meta-ofiyolitine ait bir meta-plajiyogranitten (96A) ve iki amfibolitten (96B ve 252) yaş tayini yapılarak, Refahiye Meta-ofiyolitinin hem oluşum hem de soğuma yaşı tespit edilmiştir.

96B numaralı amfibolit örneğinin hornblend minerallerinden yapılan yaş tayininin plato yaşı 175.5 ± 4.3 My, toplam füzyon yaşı 174.3 ± 4.4 My, normal izokron yaşı 179.7 ± 6.0 My, ters izokron yaşı 179.1 ± 4.1 My. Hesaplamalarda kullanılan ağırlıklı standart sapmanın karesi (MSWD: Mean Square Weighted Deviate) 1.27, J değeri ise 0.00411220 ± 0.00004112'dir (Şekil 5.1).

252 numaralı amfibolit örneğinin hornblend minerallerinden yapılan yaş tayininin plato yaşı 173.2 ± 4.0 My, toplam füzyon yaşı 170.9 ± 4.0 My, normal izokron yaşı 176.5 ± 19.5 My, ters izokron yaşı 174.3 ± 10.3 My. Hesaplamalarda kullanılan ağırlıklı standart sapmanın karesi (MSWD: Mean Square Weighted Deviate) 0.46, J değeri ise 0.00411310 ± 0.00004113'tür (Şekil 5.2).

Adın	n No Atm.	Kirlenme (%)	³⁹ Ar (%)	$^{40}\text{Ar}^{r}/^{39}\text{Ar}^{k}$	Age (Ma) $\pm 2\sigma$
96B	(Hornblend)	. ,	. ,		•
1	450.00 Ŵ	7.283	1.800	158.835	213.28 ± 159.42
2	550.00 W	3.999	2.618	232.183	96.27 ± 68.09
3	650.00 W	1.912	3.734	157.648	162.29 ± 69.90
4	764.00 W	6.818	41.474	9.736	173.51 ± 6.91
5	810.00 W	3.928	44.875	9.061	179.54 ± 4.47
7	915.00 W	6.185	56.716	7.761	172.48 ± 4.85
8	1000.00 W	5.989	56.888	8.872	176.90 ± 5.87
9	1200.00 W	8.406	57.996	7.067	172.87 ± 5.82
252 ((Hornblend)				
1	650.00 W	1.355	9.476	10.800	85.24 ± 36.13
2	760.00 W	0.251	6.869	49.144	170.03 ± 33.08
3	816.00 W	0.251	9.647	38.261	158.81 ± 13.16
4	860.00 W	0.156	13.402	32.662	176.28 ± 11.35
5	923.00 W	0.809	73.842	5.971	172.57 ± 4.42
6	1021.00 W	0.827	74.698	5.897	175.45 ± 4.71
7	1193.00 W	1.983	159.257	2.718	171.66 ± 4.21
8	1500.00 W	1.490	123.336	3.530	173.18 ± 4.70

Tablo 5.1: Detaylı ⁴⁰Ar/³⁹Ar analiz verileri.

Şekil 5.1: 96B numaralı amfibolit örneğine ait hornblendlerden yapılan ⁴⁰Ar/³⁹Ar yaşları.

Şekil 5.2: 252 numaralı amfibolit örneğine ait hornblendlerden yapılan ⁴⁰Ar/³⁹Ar yaşları.

Analysis	Ъ	đ	U/dT	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²³² Th	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	rho	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁵ Pb/ ²³² Th Yaş (My)	²⁰⁷ Pb ₀ / ²³⁵ U Yaş (My)	²⁰⁶ Pb/ ²³⁸ U Yaş (My)
1# 10	500	658	0.65	784	101120100	0 406/37)	0.0307/17	540	0.0058/71)	205 + 23	10 + 945	105 + 11
2# 4	146	166	0.37	589	0.0087(03)	0.181(08)	0.0271(06)	0.45	0.0485(19)	1760 ± 6	169 ± 7	1721 ± 4
3# 14	102	1222	0.83	1163	0.0091(02)	0.214(07)	0.0311(07)	0.61	0.0498(14)	183 ± 4	197 ± 6	198 ± 5
4#	305	214	0.27	1371	0.0089(03)	0.206(12)	0.0295(16)	0.48	0.0506(28)	180 ± 7	190 ± 10	187 ± 10
5# 18	108	1251	0.66	1515	0.0094(08)	0.207(11)	0.0298(14)	0.58	0.0508(23)	190 ± 15	191 ± 9	189 ± 9
64 11	160	577	0.50	3097	0.0091(08)	0.213(09)	0.0287(11)	0.61	0.0545(20)	184 ± 17	196 ± 8	182 ± 7
7# 19	090	2111	1.08	3897	0.0096(04)	0.218(08)	0.0312(08)	0.62	0.0507(15)	192 ± 8	200 ± 7	198 ± 5
5 #8	066	226	0.23	>1'300	0.0170(20)	0.281(21)	0.0290(19)	0.54	0.0703(47)	341 ± 39	251 ± 17	184 ± 12
9# 10	724	555	0.54	>1'481	0.0086(06)	0.199(14)	0.0291(19)	0.57	0.0496(31)	173 ± 12	185 ± 12	185 ± 12
10# 12	286	981	0.76	>1753	0.0089(06)	0.201(05)	0.0292(05)	0.61	0.0504(11)	178 ± 12	186 ± 5	185 ± 3
11# 14	168 1	1141	0.78	>1'810	0.0089(03)	0.211(08)	0.0306(08)	0.57	0.0499(16)	179 ± 5	194 ± 7	195 ± 5
12# 13	360	1110	0.82	>1'998	0.0086(06)	0.195(06)	0.0291(06)	0.50	0.0491(13)	173 ± 12	181 ± 5	185 ± 4
13# 4	143	179	0.40	>572	0.0093(06)	0.179(06)	0.0279(05)	0.53	0.0471(14)	186 ± 13	167 ± 6	177 ± 3
14# 7	122	324	0.45	>739	0.0096(08)	0.179(12)	0.0262(13)	0.48	0.0500(30)	194 ± 17	167 ± 10	167 ± 8

Tablo 5.2: Meta-plajiyogranitten elde edilen zirkonlardan hesaplanan yaşlar ve LA-ICP-MS U-Th-Pb izotopik verileri.

Meta-plajiyogranitten elde edilen zirkonlardan hesaplanan yaşlar ve LA-ICP-MS U-Th-Pb izotopik verileri Tablo 5.2'de verildi. U ve Th konsantrasyonları, GJ zirkondan hesaplanan duyarlılık faktörlerinden tahmin edilmektedir (Mainz kristalinde 322 ppm U ve 10.7 ppm Th vardır). ²⁰⁴Pb üzerinde 204Hg etkileşimleri, 1.918'lik ²⁰¹Hg/ ²⁰⁴Hg oranı kullanılarak azaltıldı. ²³⁵U, ²³⁸U'dan, 137.88'lik ²³⁸U/²³⁵U oranı kullanılarak hesaplandı. 96A numaralı meta-plajiyogranite ait yaş tayini diyagramı Şekil 5.3'te sunulmaktadır.

Şekil 5.3: 96A numaralı meta-plajiyogranite ait yaş tayini diyagramı.

96A numaralı meta-plajiyogranitten yapılan yaş tayini sonucunda Refahiye Metaofiyolitinin oluşum yaşı 181 My olarak tespit edilmiştir. 96B ve 252 numaralı amfibolitlerden yapılan yaş tayinleri ise, Refahiye Meta-ofiyolitinin soğuma yaşının yaklaşık 174 My olduğunu göstermiştir.

BÖLÜM 6. JEOLOJİK EVRİM

Eski okyanusal litosferik parça/parçaların kıtasal levhalar arasında, orojenik süreçlerde, bir kısmının tüketilmesi ve bir kısmının da yüzeylemesiyle kenet kuşakları meydana gelir (ör. Moores, 1981). Dolayısıyla kenet kuşakları, bir zamanlar var olan okyanusal havzaların evrim süreçlerini anlamamızı sağlayan ve geçmişin jeolojik kayıtlarını bünyelerinde barındıran en önemli hedef alanlardır. Türkiye, ofiyolitik kayaçların yaygın olarak gözlemlenebildiği en önemli coğrafik alanlardan birisidir. Bu nedenle Türkiye, ofiyolitler ve global tektonik konularında çalışan yerli ve yabancı bilim insanlarının her zaman ilgi odağında olmuştur. Juteau (1980) 'Türkiye ofiyolit kuşakları' başlığını verdiği makalesiyle, Türkiye ofiyolitlerini Mesozoyik yaşlı Neo-Tetis okyanusunun kalıntıları olarak değerlendirip, Kuzey Kuşak, Orta Kuşak ve Güney Kuşak olarak kabaca üç bölüme ayırmıştır. Bu ofiyolitik kuşaklardan Kuzey kuşak ofiyolitleri, İzmir-Ankara-Erzincan kenedine de karşılık gelmekte olup bu kenet Gondwana ve Lavrasya süper kıtaları arasında uzanan ve Paleo-Tetis / Neo-Tetis okyanusal alanlarının kalıntılarını bünyesinde barındıran bir zondur (ör. Şengör ve Yılmaz, 1981; Okay ve Tüysüz, 1999). Paleo-Tetis, Karakaya Karmaşığı ile tanımlanmaktadır (Okay, 2008). Karakaya Karmaşığı, Pontidler'in deformasyon ve kısmi başkalaşım geçirmiş bir kayaç topluluğu olup Paleozoyik'ten Triyas'a kadar aktif olan Paleo-Tetis Okyanusu'nun yığışım karmaşığı olarak yorumlanmıştır (Tekeli, 1981, Pickett ve Robertson, 1996, Okay, 2000). Karakaya Karmaşığı, Karbonifer ve Permiyen yaşlı radyolaritler, yaşlandırılmamış ofiyolit dilimleri ve Triyas yaşlı eklojitler ve mavişistlerden oluşmaktadır (Okay ve Göncüoğlu, 2004). Neo-Tetis okyanusu, Paleo-Tetis okyanusu'nun kapanma sürecinde Geç Triyas'ta riftleşmeye başlamış ve Geç Kretase sürecinde Afro-Arab ve Avrasya plakaları arasında okyanus içi yitim ve devamında ofiyolit yerleşmeleriyle kapanmıştır (ör. Şengör ve Yılmaz, 1981; Robertson ve Dixon, 1984; Dilek ve Moores, 1990; Çelik ve diğ. 2006; Marcoux, 1976; Robertson ve Woodcock, 1981). Permo-Triyas yaşlı Karakaya Karmaşığı ve Kretase yaşlı ofiyolitik karmaşığın ardalanmalı dilimler halinde İzmir-AnkaraErzincan Kenet'i boyunca gözlendiği farklı araştırmacılar tarafından rapor edilmiştir (örn: Okay ve diğ., 2002). İzmir-Ankara-Erzincan zonunun hem Paleo-Tetis'e hem de Neo-Tetis'e ait kalıntılara sahip olması, Paleo-Tetis ve Neo-Tetis arasında herhangi bir kıtasal dilim olmadığı şeklinde yorumlanmıştır (Konak ve diğ., 2009). İzmir-Ankara-Erzincan kenedi dışında tespit edilmiş diğer kenet kuşakları: İstanbul

İzmir-Ankara-Erzincan kenedi dışında tespit edilmiş diğer kenet kuşakları; İstanbul ve Sakarya zonları arasında olduğu düşünülen İç Pontid Keneti, Orta Anadolu Kristalin Masifinin batısından (Tavşanlı Zonu) başlayarak güneye, Bolkardağları'na kadar inen ve oradan da yaklaşık Kuzey'e Munzur Dağları'na uzanan İç Toros Keneti ve Güney-Doğu Anadolu bölgesinde yaklaşık Hatay'dan başlayarak Doğu'ya uzanan Güney-Doğu Türkiye Keneti veya Bitlis Zagros Keneti olarak sayılabilir (ör. Şengör ve Yılmaz, 1981; Okay ve Tüysüz, 1999; Okay, 2002; Okay ve diğ. 2006; Sherlock ve diğ. 1999; Robertson ve diğ. 2007). Bahsi geçen bu kenet kuşakları ve bu kuşaklarla ilgili okyanusal ve kıtasal kökenli kayaç topluluklarının ait olduğu okyanusal havzalar günümüzde de araştırılıyor olsa da jeolojik evrim konusunda fikir birliği tam olarak sağlanamamıştır (ör. Şengör ve Yılmaz 1981; Okay and Tüysüz, 1999; Moix ve diğ. 2008; Stampfli ve Borel, 2002; Çelik et al. 2011). Türkiye Jeolojisinin evrimi konusunda farklı yorumlamaların, dolayısıyla karmaşıklıkların oluşmasındaki en önemli nedenlerden birisi jeolojik yaşlandırmaların yetersizliği olarak düşünülebilir. Bununla birlikte Güney'de Toros kuşağı üzerinde yer alan ofiyolitik kayaçlar doğrudan ve dolaylı olarak yaşlandırılabilmiştir. Mesozoyik Toros platform karbonatları üzerinde yer alan ve batıda Marmaris'ten başlayarak kabaca Munzur Dağları'na kadar olan bölümdeki ofiyolitler (ör. Likya, Antalya, Beyşehir, Mersin, Pozanti-Karsanti, Pinarbaşı) Neo-Tetis Kretase ofiyolitleri (91-93 My) olarak değerlendirilmiştir (ör. Parlak and Delaloye, 1999; Dilek et al. 1999; Çelik et al. 2006). Güney Kuşak'a (Peri-Arabik Kuşak) ait olan Hatay ya da Kızıldağ ofiyolitinden elde edilen yaş verisi de Kretase olarak tespit edilmiştir (Dilek and Thy, 2009). Kuzey'de İzmir-Ankara-Erzincan Kenet'i boyunca yer alan okyanusal yığışım karmaşaları Triyas, Jura ve Kretase yaşlı radyolaryalı çörtlerle beraber (Bragin ve Tekin, 1996, Tekin ve diğ., 2002; Tüysüz ve Tekin, 2007), Jura ve Kretase yaşlı ofiyolitik kayaçlardan (ör. Önen, 2003; Dilek ve Thy, 2006) oluşmaktadır. Bu nedenle, Türkiye'deki ofiyolitler ve yığışım karmaşaları, Triyas ve daha genç yaşlı okyanusların kalıntılarıdır (Okay, 2008).

Önen (2003), İzmir-Ankara-Erzincan zonunun batı bölümünde Kınık ofiyolitinin ofiyolit tabanı metamorfitlerinden 93 My'a karşılık gelen yaş elde etmiştir. Buna karşılık Dilek ve Thy (2006), İzmir-Ankara-Erzincan zonu içinde yer alan ofiyolitik karmaşığın plajiyogranit örneklerini U-Pb yöntemi ile yaşlandırmış ve Jura yaşı elde edilmiştir. Çelik ve diğ. (2011) aynı zon içerisinde (Eldivan yakınlarında) ofiyolit tabanı metamorfitlerinin amfibolitlerinden 40Ar/39Ar yas tayiniyle Jura yaşları elde etmiş ve Jura sürecinde okyanusal levhanın yitime uğradığını ve dolayısıyla bu süreçte İzmir-Ankara-Erzincan okyanusal alanının açılma değil, kapanma sürecinde olduğunu vurgulamıştır. Refahiye Meta-Ofiyoliti, Pontidler ile Anatolid-Torid Bloğu'nu birbirinden ayıran Neo-Tetis'in kapanması sonucu gelişen İzmir-Ankara-Erzincan Keneti üzerinde bulunmaktadır. Tez konusu çalışmayla, İzmir-Ankara-Erzincan zonunda yer alan Refahiye Meta-Ofiyoliti doğrudan yaşlandırılmıştır. Refahiye Meta-Ofiyoliti içinde tespit edilen meta-plajiyogranite ait olan zirkonlar U-Pb yas tayini yöntemiyle yaslandırılımış ve oluşum yaşına karşılık gelen Jura yaşı elde edilmiştir. Mevcut bilgiler ve elde edilen yeni verilere göre, İzmir-Ankara-Erzincan okyanus alanı Jura sürecinde okyanus içi yitime uğrayarak tüketilmeye başlamış ve bu süreçte Refahiye Ofiyoliti yitim zonu üstü ofiyolitleri karakterinde oluşmuştur. Aynı sürecin devamında ise Jura yaşlı ofiyolitik kayaçlar Pontid alanına eklenmiş ve devam eden sıkışmalı rejim altında metamorfizmaya maruz kalmıştır.

BÖLÜM 7. SONUÇLAR

Refahiye Meta-ofiyoliti başlıca dünit ve harzburjitlerden oluşmaktadır. Refahiye Meta-ofiyoliti'ni oluşturan peridotitlerin yaklaşık % 70'i serpantinitleşmiştir. Metagabro, meta-plajiyogranit, klinopiroksenit ve kökeni gabroik olan amfibolit sokulumları hem peridotitleri hem de birbirlerini kesmektedir. Refahiye Metaofiyoliti'ni kesen meta-plajiyogranit sokulumunun mineral kimyası analizlerinde kümmingtonit mineraline rastlanılmış olması plajiyogranitin ve dolayısıyla Refahiye Ofiyoliti'nin başkalaşıma uğradığını göstermektedir.

Refahiye Meta-ofiyoliti, çoğunlukla yeşilşistlerden oluşan Kurtlutepe Metamorfikleri ve Ofiyolitik Melanj ile tektonik olarak sınırlandırılmıştır. Refahiye Meta-ofiyoliti ve Kurtlutepe Metamorfitleri'nin sınır ilişkileri incelendiğinde, Kurtlutepe Metamorfitleri'nin Refahiye Meta-ofiyoliti ile birbirine eklenmiş dilimler oldukları gözlemlenmiştir. Eosen ve daha genç yaşlı çökel birimler ise, Refahiye Meta-ofiyoliti'nin üzerine uyumsuzlukla gelmektedir. Çalışma alanının Güneyinde Ofiyolitik Melanj, Onarı Formasyonu üzerine tektonik olarak gelmektedir, dolayısıyla bölgede sıkışmalı rejim Alt Miyosen'den sonra devam etmektedir.

Tüm kaya jeokimyasal analiz sonuçlarına göre, Refahiye Meta-ofiyoliti'ni oluşturan amfibolitlerin ilksel kayaçlarının toleyitik bazalt kökenli oldukları belirlenmiştir. Aynı amfibolitlerdeki yüksek Th oranlarına karşılık Nb ve Ta elementlerindeki tüketilme, yitim etkisini işaret ederek, Refahiye Meta-ofiyoliti'nin yitim üstü zonu ofiyoliti özelliğinde olduğunu göstermektedir. Ayrıca bölgede Refahiye Metaofiyolitiyle tektonik ilişkili olan Kurtlutepe Metamorfitleri'nin jeokimyasal özellikleri, Kurtlutepe Metamorfitleri'nin köken kayaçlarının yitim ile ilgili olduklarını göstermiştir.

Türkiye geneline bakıldığında, Toros kuşağı üzerinde bulunan (Ör. Likya, Pozantı-Karsantı Ofiyolitleri) ve Neo-Tetis'in Güney koluna ait ofiyolitler (Ör. Kızıldağ
Ofiyoliti) yaklaşık 90 ile 93 milyon yıl arasında soğuma/oluşum yaşları vermektedir (Dilek ve diğ., 1999, Çelik ve diğ., 2006, Dilek ve Thy, 2009). Buna karşılık, son yapılan çalışmalarda İzmir-Ankara-Erzincan Zonu'nda Kretase yaşlarından farklı oluşum/başkalaşım yaşları elde edilmiştir. Örneğin; Dilek ve Thy (2006), ofiyolitik melanj içerisindeki meta-plajiyogranit örneklerinden U-Pb zirkon yaşlandırmasıyla 179 ± 15 milyon yıllık Jura yaşı elde etmiştir. Bu tez çalışmasında, Refahiye Metaofiyoliti'nin peridotitlerini kesen meta-plajiyogranitten U-Pb zirkon yaş tayiniyle 181 milyon yıllık oluşum yaşı elde edilmiştir. Bu yaş verisi, İzmir-Ankara-Erzincan Zonu içerisinde, ofiyolitlerden elde edilmiş ilk Jura yaş verisidir.

Refahiye Meta-ofiyoliti'nde bulunan iki adet amfibolit örneğinden ayıklanan hornblendlerden ⁴⁰Ar/³⁹Ar analizi yapılarak, Refahiye Meta-ofiyoliti'nin başkalaşımıyla ilgili soğuma yaşı yaklaşık 174 milyon yıl olarak bulunmuştur. 109Y059 numaralı Tübitak projesi kapsamında, Kurtlutepe Metamorfitleri'nin fillatlarında elde edilen fengit minerallerinden de radyometrik yaş tayiniyle (⁴⁰Ar/³⁹Ar) yaklaşık 170 milyon yıllık yaş elde edilmiştir. Bu sonuçlar, Refahiye Meta-ofiyoliti'nin ve Kurtlutepe Metamorfitleri'nin birlikte başkalaşım geçirdiklerini düşündürmektedir.

KAYNAKLAR

Akıncı, Ö., T., "The Eastern Pontide volcano-sedimentary belt and associated massive sulphide deposits", in: Dixon, J., E., Robertson, A., H., F., (eds.), *The Geological Evolution of the Eastern Mediterranean*, Geological Society Special Publication, 17, 415-428, (1984).

Barth, T.,F.,W., "Theoretical Petrology", *John Wiley and Sons*, New York, 416 (1962).

Black, L.,P., Gulson, B.,L., "The age of the Mud Tank carbonatite, Strangways Range, Northern Territory", *BMR Journal of Australian Geology and Geophysics*, 3, 227–232, (1978).

Boynton, W.,V., "Geochemistry of the rare earth elements: meteorite studies", In: Henderson, P., (ed.), *Rare earth element geochemistry*, 63-114, (1984).

Bragin, N.,Y., Tekin, U.,K., Age of radiolarian chert from the Senonian ophiolitic mélange (Ankara, Turkey), *The Island Arc*, 5, 114-122, (1996).

Buisson, G., Leblanc, M., "Gold in carbonatized ultramafic rocks from ophiolite complexes", *Economic Geology*, 80, 2026–2029. (1985).

Cabanis, B., Lecolle, M., "Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale", *Comptes rendus de l'Académie des sciences*, Série 2, 309/20, 2023-2029, (1989).

Çelik, Ö.,F., Delaloye, M., Feraud, G., "Precise ⁴⁰Ar-³⁹Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications fort he rapid cooling history", *Geological Magazine*, 143 (2), 213-227, (2006).

Çelik, Ö., F., Marzoli, A., Marschik, R., Chiaradia, M., Neubauer, F., Öz, İ., "Early– Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey", *Tectonophysics*, doi:10.1016/j.tecto.2011.06.007, (2011).

Dilek, Y., Moore, E., M., "Regional tectonics of the Eastern Mediterranean ophiolites", In: Malpas, J., Moores, E., M., Panayiotou, A., Xenophontos, C., (eds.), Ophiolites, Oceanic Crustal Analogues, Proceedings of the Symposium "Troodos 1987", *Geological Survey Department*, Nicosia, 295-309, (1990).

Dilek, Y., Thy, P., "Age and petrogenesis of plagiogranite intrusions in the Ankara, mélange, central Turkey", *Island Arc*, 15, 44–57 (2006).

Dilek, Y., Thy, P., "Island arc tholeiite to boninitic melt evolution of the Cretaceous Kızıldağ (Turkey) Ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories", *Lithos*, 113, 68-87, (2009).

Dilek, Y., Thy, P., Hacker, B., Grundvig, S., "Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): Implications for the Neotethyan ocean", *Geological Society of America Bulletin*, 111, 1192–1216, (1999).

Gedikoğlu, A., Pelin, S., Özsayar, T., "The main lines of geotectonic development of the east Pontides in the Mesozoic era", *Proceedings of the first Geological Congress of the Middle East (GEOCOME)*, 555-580, (1979).

Hess, H.,H., "Pyroxenes of common mafic magmas", *American Minerology*, 26, 515-535, (1962).

Irvine, T.,N., Baragar, W.,R.,A., "A guide to the chemical classification of common volcanic rocks", *Canadian Journal of Earth Sciences*, 8: 523–548, (1971).

Jackson, S.,E., Pearson, N.,J., Griffin, W.,L., Belousova, E.,A., "The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology", *Chemical Geology*, 211, 47–69, (2004).

Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A.,B., Tshoso, G., Le Gall, B., Tiercelin, J.,J., Capiez, P., "The Karoo triple junction questioned: evidence for Jurassic and Proterozoic ⁴⁰Ar/³⁹Ar ages and geochemistry of the giant Okavango dyke swarn (Botswana)", *Earth Planetary Science Letterrs*, 222, 989–2006, (2004).

Juteau, T., "Ophiolites of Turkey", *Ofioliti*, 2, 199–238, (1980).

Ketin, İ., "Tectonic units of Anatolia", *Maden Tetkik ve Arama Bulletin*, 66, 23-24, (1966).

Khain, V.,E., "Structure and main stages in the tectono-magmatic development of the Caucasus: An attempt at geodynamic interpretation", *American Journal of Science*, 275-A, 131-156, (1975).

Konak, N., Hakyemez, H.,Y., "Tectonic units of the easternmost part of the Pontides: Stratigraphical and structural implications", *Proceedings of the second International Symposium on the Petroleum Geology and Hydrocarbon Potential of the Black Sea*, Turkish Association of Petroleum Geogists, Special Publication, 4, 93-103, (2001).

Konak, N., Okay, A.,I., Hakyemez, Y., "Tectonics and stratigraphy of Eastern Pontides", *2nd International Symposium on the GEology of The Black Sea Region*, MTA, (2009).

Kretz, R., "Symbols for rock-forming minerals", *American Mineralogist*, 68, 277-279, (1983).

Leake, B.,E., Woolley, A.,R., Arps, C.,E.,S., Birch, W.,D., Gilbert, M.,C., Grice, J.,D., Hawthorne, F.,C., Kato, A., Kisch, H.,J., Kricvovichev, V.,G., Linthout, K., Laird, J., Mandarina, J.,A., Maresh, W., V., Nickel, E., H., Rock, N.,M.,S., Schumacher, J.,C., Smith, D.,C., Stephenson, N.,C.,N., Ungaretti, L., Whittaker, E.,J.,W., Youzhi, G., "Nomanclature of amfibolites: Report of the subcommittee on amfiboles of the international mineralogical association, commission on new minerals and mineral names", *The Canadian Mineralogist*, 35, 219-246, (1997).

LeMaitre, R., W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M., J., Sabine, P., A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A., R., Zanettin, B., "A classification of igneous rocks and glossary of terms", *Blackwell*, Oxford, (1989).

Marcoux, J., "Les series triasiques des nappes a radiolarites et ophiolites d'Antalya (Turquie): homologies et signification probable", *Bulletin de la Societe Geologique de France*, 18, 511-512, (1976).

Meschede, M., "A method of discriminating between different types of mid-oceanic ridge basalts and continental tholeiites with the Nb–Zr–Y diagram", *Chemical Geology*, 56, 207–218, (1986).

Miyashiro, A., "Volcanic rock series in island arcs and active continental margins", *American Journal of Science*, 274, 321-355, (1974).

Moix, P., Beccaletto, L., Kozur, H., W., Hochard, C., Rosselet, F., Stampfli, G., M., "A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region", *Tectonophysics*, 451, 7-39, (2008).

Moores, E.M., "Ancient suture zones within continents", *Science*, 213, 41–46, (1981).

Okay, A.,I., "Tectonic units and structures in the Pontides, northern Turkey", in Şengör, A.,M.,C., ed., *Tectonic evolution of the Tethyan region: NATO ASI Series* **C259**, Kluwer, Dordrecht, 109-116, (1989).

Okay, A.,I., "Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau?", In: Bozkurt, E., Winchester, J.,A., Piper, J.,A.,D., (eds.), *Tectonics and Magmatism in Turkey and Surrounding Area*, Geological Society, London, Special Publication, 173, 25-41, (2000).

Okay, A., I., "Geology of Turkey: A synopsis", Anschnitt, 21, 19-42, (2008).

Okay, A.,I., Göncüoğlu, M.,C., "Karakaya Complex: a review of data and consepts", *Turkish Journal of Earth Sciences*, 13, 77-95, (2004).

Okay, A.,I., Monod, O., Moiné, P., "Triassic bluechists and eclogites from northwest Turkey: vestiges of the Paleo-Tethyan subduction", *Lithos*, 64, 155-178, (2002).

Okay, A., I., Satir, M., Siebel, W., "Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region", *Geological Society*, London, Memoirs, 32, 389-405, (2006).

Okay, A.,I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R., Akyüz, S., "Paleo- nad Neo-Tethyan events in northwest Turkey", in: Yin, A., Harrison, M., eds., *Tectonics of Asia*, Cambridge University Press, 420-441, (1996).

Okay, A.,I., Tüysüz, O., "Tethyan sutures of northern Turkey", In Durand, B., Jolivet, L., Horvath, F., And Séranne, M. (eds.), *The Mediterranean Basins: Tertiary Extesion Within the Alpine Orogen*, Geological Society of London Special Publication, 156, 475-515, (1999).

Önen, P., "Neotethyan ophiolitic rocks of the Anatolides of NW Turkey and comparison with Tauride ophiolites", *Journal of the Geological Society*, 160, 947-962, (2003).

Özsayar, T., Pelin, S., Gedikoğlu, A., "Cretaceous in the eastern Pontides (in Turkish)", *Karadeniz Teknik Üniversitesi Yerbilimleri Dergisi Jeoloji*, 1, 65-114, (1981).

Parlak, O., Delaloye, M., "Precise ⁴⁰Ar–³⁹Ar ages from the metamorphic sole of the Mersin ophiolite (Southern Turkey)", *Tectonophysics*, 301, 145–158, (1999).

Pearce, J.,A., "Geochemical fingerprinting of oceanic basalts with applications toophiolite classification and the search for Archean oceanic crust", *Lithos*, 100, 14-48, (2008).

Pearce, J.,A., "Trace element characteristics of lavas from destructive plate boundaries", *Orogenic Andesites and Related Rocks*, Chichester: Wiley, 525-548, (1982).

Pearce, J.,A., Norry, M.,J., "Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks", *Contributions to Mineralogy and Petrology*, 69, 33–47, (1979).

Pickett, E.,A., Robertson, A.,H.,F., "Formation of the Late Paleozoic-Early Mesozoic Karakaya Complex and related ophiolites in NW Turkey by Paleotethyan subduction accretion", *Journal of the Geological Society London*, 153, 995-1009, (1996).

Pouchou, J.,L., Pichoir, F., "A new model for quantitative analyses. I. Application to the analysis of homogenous samples", *La Recherche Aérospatiale*, 3, 13–38, (1984).

Pouchou, J.,L., Pichoir, F., "PAP (ϕ – ρ –Z) correction procedure for improved quantitative microanalysis", In: Armstrong, J.,T. (Ed.), Microbeam Analysis, *San Francisco Pres*, 104–106, (1985).

Rickwood, P.,C., "Boundry lines within petrologic diagrams which use oxides of major and minor elements", *Lithos*, 22, 247-263, (1989).

Robertson, A., H., F., Dixon, J., E., "Introduction: aspects of the geological evolution of the Eastern Mediterranean", *Geological Society*, London, 17, 1-74, (1984).

Robertson, A., H., F., Parlak, O., Rizaoğlu, Ü., Ünlügenç, Ü., İnan, N., Taşlı, K., Ustaömer, T., "Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey)", *Geological Society*, London, Special Publications, 272, 231-270, (2007).

Robertson, A., H., F., Woodcock, N., H., "Alakır Çay Group, Antalya Complex, SW Turkey: A deformed Mesozoic carbonate margin", *Sedimentary Geology*, 30, 95-131, (1981).

Sherlock, S., Kelley, S., Harris, S., I., N., Okay, A., I., "⁴⁰Ar-³⁹Ar and Rb-Sr geochronology of high-pressure metamorphism and exhumation history of the Tavşanlı Zone, NW Turkey", *Contributions to Minerlogy and Petrology*, 137, 46-58, (1999).

Shervais, J.,W., "Ti-V plots and the petrogenesis of modern and ophiolitic lavas", *Earth Planetary Science Letters*, 59, 101-118, (1982).

Sláma, J., Košler, J., Condon, D.,J., Crowley, J.,L., Gerdes, A., Hanchar, J.,M., Horstwood, M.,S.,A., Morris, G.,A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.,N., Whitehouse, M.,J., "Plešovice zircon - a new natural referencematerial for U–Pb and Hf isotopic microanalysis", *Chemical Geology*, 249, 1–35, (2008).

Stampfli, G., M., Borel, G., D., "A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons", *Earth and Planetary Science Letters*, 196, 17-33, (2002).

Sun, S.,S., McDonough, W.,F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes", In: Saunders A.,D., and Norry M.,J., (ed.), *Magmatism in ocean basins*, Geological Society of London Special Publications, 42, 313-345, (1989).

Steiger, R.,H., Jäger, E., "Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology", *Earth and Planetary Science Letters*, 36, 359–362, (1977).

Şengör, A.M.C., Yılmaz, Y., "Tethyan evolution of Turkey, a plate tectonic approach", *Tectonophysics*, 75, 181-241, (1981).

Tekeli, O., "Subduction complex of pre-Jurassic age, northern Anatolia, Turkey", *Geology*, 9, 68-72, (1981).

Tekin, U.,K., Göncüoğlu, M.,C., Turhan, N., "First evidence of Late Carnian radiolarians from the Izmir-Ankara suture complex, central Sakarya, Turkey: implications for the opening age of the Izmir-Ankara branch of Neo-Tethys", *Geobios*, 35, 127-135, (2002).

Turner, G., Huneke, J.,C., Podose, F.,A., Wasserburg, G.,J., "⁴⁰Ar/³⁹Ar ages and cosmic ray exposure ages of Apollo 14 samples", *Earth Planetary Science Letterrs*, 12, 15–19, (1971).

Tüysüz, O., Tekin, U., K., "Timing of imbrication of an active continental margin facing the northern branch of Neotethys, Kargı Massif, Northern Turkey", *Cretaceous Research*, 28, 754-764, (2007).

Yılmaz, A., Okay, A.,I., Bilgiç, T., "Yukarı Kelkit Çayı ve Güneyinin temel jeoloji özellikleri ve sonuçları", *MTA Genel Müdürlüğü Rapor no.* 7777, Ankara, 207, (1985).

Yılmaz, A., Adamia, S., Chabukiani, A., Chkhotua, T., Erdoğan, K., Tuzcu, S., Karabıyıkoğlu, M., "Structural correlation of the southern Transcaucasus (Georgia)eastern Pontides (Turkey)", Bozkurt, E., Winchester, J., A., Piper, J., A., D., *Tectonics and magmatism in Turkey and Surrounding Area*, Geological Society, London, Special Publication, 173, 171-182, (1999).

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.,L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.,C., Spiegel, W., "Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses", *Geostandards Newsletter*, 19, 1–23, (1995).

Winter, J.,D., "An introduction to igneous and metamorphic petrology", *Prentice Hall*, (2001)

Wood, D.,A., "The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province", *Earth Planetary Science Letters*, 42, 77-97, (1980).

EKLER

EK 1: Refahiye (Erzincan) ve çevresinin jeoloji haritası (Altıntaş, 2011)

ÖZGEÇMİŞ

1984 yılında İstanbul'da doğdu. İlköğrenimini Öğretmen Harun Reşit İlkokulu'nda, orta ve lise öğrenimini Özel Saint-Michel Fransız Lisesi'nde tamamladı. 2003 yılında girdiği Kocaeli Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü'nden 2009 yılında Jeoloji Mühendisi olarak mezun oldu. 2009 yılının Ağustos ayında "Doğu Pontidlerin Liyas Öncesi Jeolojik Evriminin Sınırlandırılması: Ağvanis, Dereli ve Refahiye Metamorfitlerinin Basınç-Sıcaklık-Zaman Gelişimi" isimli, 109Y059 numaralı TÜBİTAK projesinde bursiyer öğrenci olarak çalışmaya başladı. Aynı yılın Eylül ayında Kocaeli Üniversitesi Fen Bilimleri Enstitüsü'nde Jeoloji Mühendisliği Bölümü'nde yüksek lisans öğrenimine başladı.