T.C.
FIRAT Üniversitesi
FEN BİLİMLERI ENSTİTÜSÜ

FARKLI AGREGALI BETONLARIN MEKANİK
ÖZELLİKLERİNE YÜKSEK SİCAKLIĞIN ETKİSİ

YÜKSEK LİSANS TEZİ
Serhat AY

Anabilim Dalı: Yapı Eğitimi

ŞUBAT–2010
FARKLI AGREGALI BETONLARIN MEKANİK ÖZELLİKLERİNE YÜKSEK SICAKLIĞIN ETKİSİ

YÜKSEK LİSANS TEZİ
Serhat AY
07125102

Anabilim Dalı: Yapı Eğitimi
Tez Danışmanı: Doç. Dr. Salih YAZICIOĞLU

Tez Danışmanı: Doç. Dr. Salih YAZICIOĞLU
Tezin Enstitüye Verildiği Tarih: Şubat 2010

ŞUBAT–2010
T.C.
FIRAT ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

FARKLI AGREGALI BETONLARIN MEKANİK ÖZELLİKLERİNE YÜKSEK SICAKLIĞIN ETKİSİ

YÜKSEK LİSANS TEZİ

Serhat AY
(07125102)

Tezin Enstitüye Verildiği Tarih : 05.02.2010
Tezin Savunulduğu Tarih :

Tez Danışmanı : Doç. Dr. Salih YAZICIOĞLU (F.Ü)
Diğer Jüri Üyeleri : ..
..
..
..
..

ŞUBAT–2010
ÖNSÖZ

Fırat Üniversitesi Yapı Eğitimi Anabilim Dalında yaptığı çalışmaya kapsamında farklı agrega türleriyle hazırlanıların betona yüksek sıcaklık etkisi araştırılmıştır.

Bu araştırmanın yapılmasında çalışmanın yürütülüğünü üstlenerek, her zaman ilgi ve destekini gördüğüm danışman hocam Sayın Doç. Dr. Salih YAZICIOĞLU’na, laboratuvar imkanlarını sunan Teknik Eğitim Fakültesi Yapı Eğitimi Bölüm Başkanı Sayın Doç. Dr. Ömer KELEŞOĞLU’na, ve çalışmamın aderans deneyinde zamanını bana ayırılan Sayın Yrd. Doç. Dr. İlyas SOMUNKIRAN’a teşekkürlerimi sunmayı bir borç bilirim.

Serhat AY
ELAZIĞ–2010
İÇİNDEKİLER

ÖNSÖZ.. I

İÇİNDEKİLER.. II

ÖZET .. V

SUMMARY .. VI

ŞEKİLLER LİSTESİ.. VII

TABLOLAR LİSTESİ .. IX

FOTOĞRAFLAR LİSTESİ .. VIII

SEMBOLLER LİSTESİ .. X

1. GİRİŞ ... 1

2. LİTERATÜR ARAŞTIRMASI.. 5

3. GENEL BİLGİLER ... 13

3.1. Betonu Oluşturan Malzemeler 13

3.1.1. Agrega.. 13

3.1.1.1. Agrega Çeşitleri ve Özellikleri 14

3.1.1.2. Agreganın Fiziksel Özellikleri 15

3.1.1.2.1. Granülometri .. 15

3.1.1.2.2. İncelik Modülü (I_m) 17

3.1.1.2.3. Birim Ağırlık (d) .. 18

3.1.1.2.4. Özgül Ağırlık (d_o) 18

3.1.1.2.5. Tane Biçimi .. 19

3.1.1.2.6. Rutubet Durumları 19

3.1.1.2.7. Kompasite (k) ... 20

3.1.1.3. Agreganın Mekanik Özellikleri 20

3.1.1.3.1. Tane Dayanımı 20

3.1.2. Çimento .. 22

3.1.3. Karma Suyu ... 23

3.1.4. Kimyasal Katkı Maddeleri 24

3.1.4.1. Betonun İşlenebilir Özelliğini Arttırıcı Katkı Maddeleri 24
<p>	Sayfa No
24	3.1.4.2. Süper Akışkanlaştırmıcılar
25	3.1.4.3. Priz Süresini Değiştiren Katılar
25	3.1.4.4. Hava Sürükleyici Katı Maddeleri
25	3.1.4.5. Antifirizler
25	3.1.4.6. Hiper Akışkanlaştırmıcılar
25	3.1.4.7. Diğer Katılar
25	3.1.5. Mineral Katılar
26	3.1.5.1. Silis Dumanı ve Özellikleri
27	3.1.5.2. Uçucu Kül ve Özellikleri
27	3.2. Betondan Beklenilen Özellikler
28	3.2.1. Betonun İç Yapısı
28	3.2.2. Çimento Hamurunun İç yapısı
29	3.2.3. Agrega Çimento Ara Yüzeyinin İç yapısı
28	3.2.4. Taze Betondan Beklenen Özellikler
31	3.2.5. Sertleme Betondan Beklenilen Özellikler
32	3.2.5.1. Betonun Basınç Dayanımı
33	3.2.5.1.1. Beton Dayanımı Oluşturan Unsurlar
33	3.2.5.1.2. Beton Basınç Dayanımı Etkileyen Faktörler
34	3.2.5.1.3. Betonun Basınç Dayanımının “Standart Deney Yöntemi” ile Belirlenmesi
35	3.2.5.1.4. Ultrasonik Test Cihaza Kullanarak Beton Basınç Dayanımının Elde Edilmesi
37	3.2.5.2. Betonun Çekme ve Eğilme Dayanımı
38	3.2.5.2.1. Doğrudan Çekme Dayanımı
39	3.2.5.2.2. Yarmada Çekme Dayanımı
40	3.2.5.2.3. Eğilmede Çekme Dayanımı
41	3.2.6. Beton Özelliklerini Etkileyen Faktörler
42	3.3. Yüksek Sıcaklığın Betona Etkileri
43	3.3.1. Yüksek Sıcaklığın Betonun Fiziksel Özelliklerine Etkileri
45	3.3.1.1. Isı Yarımım Katsayısı
45	3.3.1.2. Isı İletim Katsayısı
46	3.3.1.3. Genleşme Katsayısı
<table>
<thead>
<tr>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1.4 Özgül İsıl</td>
</tr>
<tr>
<td>3.3.1.5 İş Ölçü Parametresi</td>
</tr>
<tr>
<td>3.3.1.6 Birim Vücut Ağırlığı</td>
</tr>
<tr>
<td>3.3.2 Yüksek Sıcaklığın Betonun Mekanik Özelliklerine Etkileri</td>
</tr>
<tr>
<td>3.3.2.1 Basınç Dayanımı</td>
</tr>
<tr>
<td>3.3.2.2 Çekme Dayanımı</td>
</tr>
<tr>
<td>3.3.2.3 Elastisite Modülü</td>
</tr>
<tr>
<td>4 DENEYSEL ÇALIŞMA</td>
</tr>
<tr>
<td>4.1 Numune Üretiminde Kullanılan Malzemeler</td>
</tr>
<tr>
<td>4.1.1 Agregalar</td>
</tr>
<tr>
<td>4.1.2 Çimento</td>
</tr>
<tr>
<td>4.1.3 Karışım Suyu</td>
</tr>
<tr>
<td>4.1.4 Beton Numunelerin Boyutları, Kür ve Bakımı</td>
</tr>
<tr>
<td>4.2 Yapılan Deneyler</td>
</tr>
<tr>
<td>4.2.1 Yüksek Sıcaklık Deneyi</td>
</tr>
<tr>
<td>4.2.2 Taze Beton Deneyi</td>
</tr>
<tr>
<td>4.2.2.1 Yayılma Tablası Deneyi</td>
</tr>
<tr>
<td>4.2.3 Sertleşmiş Beton Deneyleri</td>
</tr>
<tr>
<td>4.2.3.1 Tek Eksenli Basınç Dayanımı Deneyi</td>
</tr>
<tr>
<td>4.2.3.2 Çekip – Çıkarma (pull-out) Deneyi</td>
</tr>
<tr>
<td>4.2.3.3 Ultrasonik Test</td>
</tr>
<tr>
<td>4.2.3.4 Porozite</td>
</tr>
<tr>
<td>5 DENEYSEL ÇALIŞMALARIN DEĞERLENDİRİLMESİ</td>
</tr>
<tr>
<td>5.1 Ultrasonik Test Değerlerinin Değerlendirilmesi</td>
</tr>
<tr>
<td>5.2 Basınç Dayanınının Değerlendirilmesi</td>
</tr>
<tr>
<td>5.3 Aderans Deneyinin Değerlendirilmesi</td>
</tr>
<tr>
<td>6 SONUÇLAR ve ÖNERİLER</td>
</tr>
<tr>
<td>KAYNAKLAR</td>
</tr>
<tr>
<td>ÖZGEÇMİŞ</td>
</tr>
</tbody>
</table>
ÖZET

Yapılan çalışmaların sonucunda yüksek sıcaklığın etkisinde kalan farklı tip agregalarla hazırlanan betonlarda basınca en dayanıklı olanın bazaltik kırmızı taşı olduğu, en az dayanımında hafif agregatla hazırlanmış olan betonda olduğu görülmüştür. Aynı zamanda hazırlanan beton numunelerinde çekip-çıkarma (pull-out) deneyi yapılmış ve sıcaklık arttıkça beton ile donatı arasındaki aderans kuvvetinin azaldığı görülmüştür.

Anahtar Kelimeler: Basınç Dayanımı, Yüksek Sıcaklık, Beton, Farklı Agrega, Çekip Çıkarma
SUMMARY

EFFECT OF THE TEMPERATURE ON MECHANICAL PROPERTIES OF CONCRETE WHICH IS PREPARED BY DIFFERENT TYPES OF AGGREGATES

Concrete shows different behaviours after the higher temperatures in dispite of it isn’t flammable. Differences in the properties of aggregates which are made up a significant portion of the volume of concrete affect significantly performance of concrete. As cracking and splitting in concrete are being observed due to differences in the properties, it is also made up significant loses in adherence. Because of this reason, it is a factor that may threaten to concrete at high temperature and studies are done to minimize damages to concrete of high temperature.

In this study, the effect of high temperature to the concrete specimens prepared with different types of aggregates are investigated. For this purpose, it is prepared mortars containing Portland cement CEM I 42.5 and four different types of aggregates (basaltic stone crushing, river aggregate, pumice, limestone). The samples in wet determined are respectively subjected to 300° C, 600° C and 900° C temperature. It is investigated to adherence strength, switching speed of ultrasound and compressive strength of concrete specimens exposed to this temperature.

As a result of study done, It has been observed that the basaltic stone crushing is the most resistant to pressure in concretes and the concrete prepared by lightweight aggregate is the minimum resistant to pressure. At the same time, the pull-out of concrete test has been done in the concrete samples prepared and it has been seen decreasing of the adhesion force that is between concrete and matrix with increasing temperature.

Key Words: Compressive Strength, High Temperature, Concrete, Different aggregates, Pull-Out
ŞEKİLLER LİSTESİ

<table>
<thead>
<tr>
<th>Şekil</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 3.1. Maksimum tane büyüklüğü 8 mm olan agrega granülometrisi</td>
<td>16</td>
</tr>
<tr>
<td>Şekil 3.2. Maksimum tane büyüklüğü 16 mm olan agrega granülometrisi</td>
<td>17</td>
</tr>
<tr>
<td>Şekil 3.3. Maksimum tane büyüklüğü 32 mm olan agrega granülometrisi</td>
<td>17</td>
</tr>
<tr>
<td>Şekil 3.4. Agrega – Çimento hamuru geçiş bölgesinde mikro yapısı</td>
<td>29</td>
</tr>
<tr>
<td>Şekil 3.5. Agrega – Çimento hamurunun şematik görünüşü</td>
<td>30</td>
</tr>
<tr>
<td>Şekil 3.6. (380mm) boyutlu kare kolonda sıcaklık dağılımı</td>
<td>43</td>
</tr>
<tr>
<td>Şekil 3.7. Yangında hasar görmüş betonun izotermine bağlı özellikleri</td>
<td>44</td>
</tr>
<tr>
<td>Şekil 3.8. Betonda sıcaklık deformasyon özellikleri</td>
<td>44</td>
</tr>
<tr>
<td>Şekil 3.9. Çeşitli betonlar için ısı yayımı katsayısı</td>
<td>45</td>
</tr>
<tr>
<td>Şekil 3.10. Ağırlık kaybının sıcaklıkla değişimi</td>
<td>47</td>
</tr>
<tr>
<td>Şekil 3.11. Betonun basınç dayanımını yükleme durumuna göre sıcaklıkla değişimi</td>
<td>49</td>
</tr>
<tr>
<td>Şekil 3.12. Basınç dayanımının sıcaklıkda değişimi</td>
<td>49</td>
</tr>
<tr>
<td>Şekil 3.13. Puzolan katkılı ve katkısız betonların çekme dayanımının sıcaklıkla değişimi</td>
<td>50</td>
</tr>
<tr>
<td>Şekil 3.14. Betonun eğilme dayanımını sıcaklıkla değişimi</td>
<td>51</td>
</tr>
<tr>
<td>Şekil 3.15. Betonun elastisite modülünün sıcaklıkla değişimi</td>
<td>51</td>
</tr>
<tr>
<td>Şekil 3.16. Farklı beton numuneler için sıcaklık elastisite modülü ilişkisi</td>
<td>52</td>
</tr>
<tr>
<td>Şekil 4.1. Pomza agregasının granülometrisi</td>
<td>54</td>
</tr>
<tr>
<td>Şekil 4.2. Kireçtaşı agregasının granülometrisi</td>
<td>54</td>
</tr>
<tr>
<td>Şekil 4.3. Kırmatas agregasının granülometrisi</td>
<td>55</td>
</tr>
<tr>
<td>Şekil 4.4. Dere agregasının granülometrisi</td>
<td>55</td>
</tr>
<tr>
<td>Şekil 5.1. 10x10x10 numunelerin ultrases geçiş hızı – sıcaklık grafiği</td>
<td>64</td>
</tr>
<tr>
<td>Şekil 5.2. 15x15x15 numunelerin ultrases geçiş hızı – sıcaklık grafiği</td>
<td>65</td>
</tr>
<tr>
<td>Şekil 5.3. 10x10x10 numunelerin basınç dayanımı - sıcaklık grafiği</td>
<td>66</td>
</tr>
<tr>
<td>Şekil 5.4. 15x15x15 numunelerin basınç dayanımı - sıcaklık grafiği</td>
<td>66</td>
</tr>
<tr>
<td>Şekil 5.5. Pomza agregasi ile üretilen beton numunelerin boya rehberinin karşılaştırılması</td>
<td>67</td>
</tr>
<tr>
<td>Şekil 5.6. Kireçtaşı agregasi ile üretilen beton numunelerin boya rehberinin karşılaştırılması</td>
<td>68</td>
</tr>
<tr>
<td>Şekil 5.7. Dere agregasi ile üretilen beton numunelerin boya rehberinin karşılaştırılması</td>
<td>68</td>
</tr>
<tr>
<td>Şekil 5.8. Kırmıtaş agregasi ile üretilen beton numunelerin boya rehberinin karşılaştırılması</td>
<td>68</td>
</tr>
<tr>
<td>Şekil 5.9. Adırsans dayanımı – sıcaklık grafiği</td>
<td>69</td>
</tr>
</tbody>
</table>
TABLOLAR LİSTESİ

<table>
<thead>
<tr>
<th>Tablo</th>
<th>Adres</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 3.1</td>
<td>Silis Dumanının İncelik Değerinin Karşılaştırılması</td>
<td>26</td>
</tr>
<tr>
<td>Tablo 3.2</td>
<td>Ultrasonik test yöntemi ile beton kalitesinin değerlendirilmesi</td>
<td>37</td>
</tr>
<tr>
<td>Tablo 4.1</td>
<td>Deneyde kullanılan iri agregaların fiziksel özellikleri</td>
<td>53</td>
</tr>
<tr>
<td>Tablo 4.2</td>
<td>Deneyde kullanılan çimentonun kimyasal ve fiziksel özellikleri</td>
<td>56</td>
</tr>
<tr>
<td>Tablo 4.3</td>
<td>Yayılma sınıfları</td>
<td>60</td>
</tr>
<tr>
<td>Tablo 4.4</td>
<td>Sertleşmiş Betonun Bazı Fiziksel Özellikleri</td>
<td>63</td>
</tr>
</tbody>
</table>
FOTOĞRAFLAR LİSTESİ

<table>
<thead>
<tr>
<th>Fotoğraf</th>
<th>Anotasyon</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Deneyde kullanılan agregalar</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Numune Kalıpları</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Numuneler</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Yüksek Sıcaklık Fırını</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Etüv (Kurutma Fırını)</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>Yayılma Tablası Deney Elemanları</td>
<td>59</td>
</tr>
<tr>
<td>4.7</td>
<td>Basınç Dayanımı Test Aleti</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Çekme Makinesi</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>Bazı Numunelerin Deney Sonrası Durumları</td>
<td>62</td>
</tr>
<tr>
<td>4.10</td>
<td>Ultrasonik Test Aleti</td>
<td>62</td>
</tr>
</tbody>
</table>
SEMBOLLER LİSTESİ

<table>
<thead>
<tr>
<th>Simge</th>
<th>Tanım</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_m</td>
<td>İncelik modülü,</td>
</tr>
<tr>
<td>Δ</td>
<td>Birim ağırlığı,</td>
</tr>
<tr>
<td>δ</td>
<td>Özgül Ağırlık,</td>
</tr>
<tr>
<td>σ</td>
<td>Betonun basınç dayanımı,</td>
</tr>
<tr>
<td>P</td>
<td>Numunenin kırılması yolu olan maksimum yük miktarı,</td>
</tr>
<tr>
<td>A</td>
<td>Numunenin kesit alanı,</td>
</tr>
<tr>
<td>W_1</td>
<td>Agrega numune ağırlığı,</td>
</tr>
<tr>
<td>W_2</td>
<td>Su ile dolu ölçü kabı ağırlığı,</td>
</tr>
<tr>
<td>W_3</td>
<td>İçine agrega numunesi konmuş, su dolu kabin ağırlığı,</td>
</tr>
<tr>
<td>k</td>
<td>Komposite,</td>
</tr>
<tr>
<td>p</td>
<td>Porozite,</td>
</tr>
<tr>
<td>H</td>
<td>Hacimsel katsayı</td>
</tr>
<tr>
<td>E</td>
<td>Elastisite Modülü</td>
</tr>
<tr>
<td>D</td>
<td>Yoğunluk</td>
</tr>
<tr>
<td>V</td>
<td>Ses üstü dalga hızı, m/s</td>
</tr>
<tr>
<td>S</td>
<td>Beton bloğun ses üstü dalga gönderilen yüzey ile dalganın aldığı yüzey arasındaki mesafe, metre</td>
</tr>
<tr>
<td>t</td>
<td>Ses üstü dalgaın aldığıdakı beton yüzeyinden, aldığı yüzeye kadar geçen zaman, mikro saniye</td>
</tr>
<tr>
<td>σ_ξ</td>
<td>Betonun çekme dayanımı</td>
</tr>
<tr>
<td>L</td>
<td>Silindir numunenin boyu</td>
</tr>
<tr>
<td>D</td>
<td>Silindir numunenin çapı</td>
</tr>
<tr>
<td>σ_e</td>
<td>Eğilme dayanımı</td>
</tr>
<tr>
<td>M</td>
<td>Maksimum moment</td>
</tr>
<tr>
<td>c</td>
<td>Tarafsız eksen ile kiriş yüksekliğinin en üç noktası arasındaki uzaklık</td>
</tr>
<tr>
<td>d</td>
<td>Kiriş kesitinin yüksekliği</td>
</tr>
<tr>
<td>b</td>
<td>Kiriş kesitinin eni</td>
</tr>
<tr>
<td>I</td>
<td>Atalet momenti</td>
</tr>
<tr>
<td>τ</td>
<td>Aderans dayanımı</td>
</tr>
<tr>
<td>Φ</td>
<td>Donatı çapı</td>
</tr>
<tr>
<td>l</td>
<td>Aderans boyu</td>
</tr>
</tbody>
</table>
1. GİRİŞ

Beton; çimento, agrega, su ve gerekgiğinde katkı maddelerinin homojen olarak karışıtırılmasıyla elde edilen, başlangıçta plastik kıvamında olup zamanla çimentonun hidratasyonu sonucu katılaşan, çimento ve su karışımından oluşan, dayanıklı, organik olmayan, kum, çakıl, kırmızı taş gibi doğal kaynaklı veya yüksek finn çırçır, genleştirilmiş perlit, genleştirilmiş kil gibi yapay kaynaklı olan taneli malzemedir [1]. Betonun yapısını oluşturan malzemelerin sahip oldukları özellikler ile bunların birbirlerine olan oranlar, betonun kalitesi ve verimine etki etmektedir [2,3].

Agrega, beton yapımında çimento ve su karışımından oluşan bağlayıcı madde yardımı ile bir araya getirilen, organik olmayan, kum, çakıl, kırmızı taş gibi doğal kaynaklı veya yüksek finn çırçır, genleştirilmiş perlit, genleştirilmiş kil gibi yapay kaynaklı olan taneli malzemedir [4]. Agreganın beton yapımında ekonomik ve teknik yönünden çok önemli bir konumu bulunmaktadır. Agreganın beton yapımında ekonomik ve teknik yönünden çok önemli bir konumu bulunmaktadır. Agreğa malayuetype çimento veya oldukça düşük olduğundan, agrega betonda kullanılıp kullanılmada olduğu ucuz olan bir dolgu malzemesi olarak kabul edilmeke ise, agregada betonun hacim değişikliğini önlemekte veya azaltmaktadır. Çevre etkilerine karşı betonun dayanıklılığını artırmak ve kendi dayanım gücünün yüksekliğini nedeniyle betonda gerekli dayanımın sağlanması yardımı olabilmektedir. Agrega kaba ve ince agregada olarak iki kısımda incelenebilir. Şantiyelerde kaba aggrega "mıcır" yada "cağıl", ince aggrega "kum" olarak isimlendirilir. Bu iki bileşeni tane büyüklüğü olarak birbirinden ayırmak için kullanılan kriter 4 mm boyutudur. 4 mm den iri boyuttaki tanelerden oluşan kısma kaba aggrega, 4 mm den küçük boyuttaki kısma ince aggrega denir [5].
Beton hacminin % 60-80'ini agreganın % 60-80'iniagleşeneydanda getirdiği için, seçiminde titizlik gösterilmesi gerekmektedir. Agrega, gereken mukavemet sahibi olmalı ve dış etkenlere dayanabilmesi için, seçiminde titizlik gösterilmesi gerekmektedir. Agreganın fiziki ve mekanik özellikleri istenilen şartları karşılayabileceği nitelikte olmalıdır. Asınmaya maruz kalacak bir betonun agregasını yeterli asınma mukavemetine sahip olmalıdır. Don yapan iklimlerde kullanılacak betonun agregasını ise dayanıklılık bakımından don etkisi için konmuş olan standartları karşılamalıdır[6].

Agrega bileseninin uygun bir tane boyunca (granülometri) göstermesi çok önemlidir, iyi bir granülometriye sahip agregada hava boşluğu, daha az olacaktır. Dolayısı ile, yoğunluğuna da artacaktır. Bu şekilde, toplam beton hacmi içinde çimento-su harcı daha ekonomik olarak kullanılabilir ve beton istenilen yerde kolaylıkla, kalitesi bozulmadan yerleştirilebilir.

Betonda agregap kullanılmamasının sağladığı teknik özelliklerin başında; sertleşen betonun "hacim değişikliğini" önlemesi veya azaltması, sertleşmiş betonun "asınmaya karşı" dayanımını artırması, çevre etkilerine karşı "dayanıklılığını" artırması ve kendi dayanım gücünün yüksekliği nedeniyle betonun taş갯ığı yükseklikte karşı gerekli "dayanımı" sağlayabilmesi gelir. İçerisinde agregap bulunmayan bir sistemde iyi bir sıcaklıkla kuruma neden olan agregaların (CaCO₃), CaO ve MgO'ya dönüştüm söz konusudur[8,9]. Bu durum agregaların mineral yapısı ile yorumlanır.

Beton bir bütün olarak düşünülüğünde, genellikle içindeki bileşenlerin termal genleşmelerinin birbirinden farklı olduğu bilinir. Bu nedenle betonda sıcaklık değişimleri, içindeki bileşenlerde birbirinden farklı hacim değişimlerine, çatlak oluşumuna ve beton dayanıklığı azalmasına neden olur. Bu olay “betondaki bileşenlerin termal uyumsuzluğu” olarak bilinmektedir [14,15].

Yapının durabilite (dayanıklılık) problemine yol açan bazı fiziksel etkilerden birisi de yüksek sıcaklıktr. Bu etki, yapılarında kalıcı hasarlar oluşturarak yapının servis dışı kalmasına, can ve mal kayına neden olabilmektedir [16]. Örneğin Danimarkada bulunan Great Belt tünelinde ve Channel tünelinde, 1994 ve 1996 yıllarında çıkan yangınlarda, yüksek sıcaklık etkisi ile betonda meydana gelen patlama ve parça atma nedeni ile beton kesitindeki azalmalar ağır hasarlara neden olmuştur. 2001 yılında Eylül ayında ABD’de New York’ta meydana gelen trajik olayda iki kulenin yıkılışındaki ana sebep yangınlardı. Bu olay, inşaat malzemelerinin ateş olan direncinin ne kadar önemli olduğunu ortaya koydu ve çok sayıda can ve mal kayına yol açmıştır [17,18,19].

Sonuç olarak yükselen sıcaklıklar ve yangın, binaların fonksiyonel ve estetik olarak bozulmalara sebep olur. Estetik zarar, genellikle kolayca tamir olur. Ama fonksiyonel değer kayıpları daha derindir ve şiddetine göre kısmi veya toplam tamir yapmayı gerektiğini kılabilir.
2. LİTERATÜR ARAŞTIRMASI

Gustaferro vd [23]., hafif, yalıtkan betonların yangın dayanımları ile ilgili olarak deneySEL bir ÇalışMA yapmışlardır. Bu ÇalışMada 500-1600 kg/m³ lük birim ağırlığa sahip betonların yangın dayanımı incelenmiş; numunelerin nem içeriği ve bağlı rutubet arasındaki ilişkiler belirtilmiştir. Deney programında boşluklu hafif beton, perlit betonları, vermicülit betonları kullanılmıştır. Döşeme kalınlığı ile yangın dayanımı arasındaki ilişki değişik birim ağırlığa sahip betonlar için incelenmiştir. Çalışmanın en önemli sonucu olarak, birim ağırlıkta artışın her beton türü için yangın dayanımında azalmaya sebep olduğunu göstermiştir.

Ataman [25]., yaptığı çalışmada, yangın etkisinde kalan betonun mekanik özelliklerini belirleyebilmek, yüksek sıcaklığın ve soğutma türlerinin betonun eğilme ve basınç mukavemetleri üzerindeki etkilerini incelenmiştir. Agregaların genleşme, çimentojenin çözülmesi, beton boşluklarındaki ve çimento birleşimindeki suyun dehidratasyonu gibi fiziksel ve kimyasal olaylar sonucu beton mukavemetinin azalığı tespit edilmiştir. Yüksek sıcaklık etkisinde kalan betonun hava ve su ortamlarında soğutulmaları sonucu elde edilen mukavemetlerdeki azalmaların, su ortamında soğutulanlarda daha küçük olduğu ifade edilmiş ve bu durum beton numunelerinin su içerisinde iken yeniden hidratasyon yapabilecek ortamı bulması ve bunun sonucunda mukavemetin bir kısmının geri kazanılmamasıyla açıklanmıştır.

5
Kristensen ve Hansen [26]., yangın etkisi veya ışık şoktan dolayı çimento hamuru ve beton örneklerinde oluşan çatlakları incelediği çalışma iki bölünden oluşmaktadır. İlk bölümde, numunelerde çatlak oluşmasının beklentiği, hesaplanan değerler ile deneysel olarak çatlakların gözle görülebildiği sıcaklık değerleri arasındaki ilişki incelenmiştir, ikinci bölümde ise 0°C - 900°C, 0°C - 800°C, 0°C - 700°C ve 0°C - 500°C'ye kadar ısıtacak ultrasonik dalga hızı ölçümlerinde oluşan değişiklikler belirlenmiştir. Deneysel sonuçlar ve hesaplamalarla dayanarak çimento hamuru numunelerinde 300°C sıcaklıkta çatlaklar gözlemlendiği, beton numunelerinde ise 500°C sıcaklıkta iç çatlakların oluştuğu belirtilmiştir.

Saad vd [27]., normal portland çimentosu yerine ağırlıklıca %10, %20, %30 oranlarında silis dumanı içeren betonların mekanik ve fiziksel özelliklerine yüksek sıcaklıkların etkisini incelemiştir. Numuneler her bir ninceme için 20 - 600°C arası sıcaklıklarda 100°C aralıklarla üç saat fırında bekletilmiştir. Isıtma işlemini tamamladuktan sonra numuneler deneylerin yapılabileceği koşul olan oda sıcaklığına soğutulmuştur. %10 silis dumanı içeren beton numunelerinin bütün sıcaklıklarda daha düşük porozite ve en yüksek basınç mukavemeti değerlerine sahip oldukları, 600°C ye ısıtlan betonda basınç mukavemetlerinin normal betona göre %64,6 daha fazla olduğu belirtilmiştir. Bununla birlikte %20-30 arasında silis dumanı içeren betonların 600°C ye ısıtıldığında normal portland çimentosu ile yapılan betonlara göre mukavemetlerindeki artışın sadece %28 olduğu bildirilmiştir.

Lin vd [28]., tarafından yapılan çalışmada laboratuar şartlarında yüksek sıcaklıklara maruz bırakıklar soğutulan veya arazide yangın görmüş binalardan alınan örnekler üzerinde stereo mikroskop ölçümleri yapılarak ve SEM fotoğrafları kullanılarak, yüksek sıcaklıklara maruz kalmış betonların mikro yapılarını incelenmiştir. Isıtma süresince çatlama ve parçalanmalar ve soğutma esnasındaki dağılmalar yangın esnasında betonda gözlenen yaygın davranışlar olarak ifade edilmiştir. Çalışmada portland çimentosu ve silis agregasi kullanılarak üretilen standart silindir numuneler 20°C, 100°C, 250°C, 400°C, 550°C, 750°C ve 900°C yüksek sıcaklık etkilerine maruz bırakılmıştır. SEM ve polarize ışık mikroskobu deneylerinde, ince çatlaklar hariç, 300°C sıcaklığının altında çatlak gelişimleri gözlenmediği bu sıcaklığın altında betonda bölgesel bağ çatlaklarının belirgin olduğu belirtilmiştir. 300°C-500°C arasındaki sıcaklıklarda agrega parçacıkların bağılar arasında ve ara yüzeylerde çatlaklar gözlemlendiği, 500°C nin üstünde ise çimento hamuru ile agrega parçacıkları arasında çok önemli çatlaklar oluştuğu bildirilmiştir. Yangında zarar görmüş
betonların tamir edilmesinin pratikte bir mühendislik problemi olduğu, bu sebeple tamirde yeni tekniklerin geliştirilmesi için çalışmaları yapılması gerektiğini vurgulamıştır.

Karaca vd [29]., hafif betonun yangın dayanımını incelemek için hazırladıkları prizmatik numuneleri 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C ve 1200 °C sıcaklık etkilerine bırakmışlardır. Çalışmanın neticesinde, yüksek sıcaklık etkisine bırakılan hafif betonların eğilme mukavemetlerinin tank numunelerinkine göre, sıcaklık arttıkça azaldığı ancak bu azalmanın normal betonünkilerden daha az olduğu belirtilmiştir. 600 °C'den sonrası sıcaklıklarda havada soğutulan numunelerin mukavemetlerinin son derece azaldığı, suda soğutulan numunelerin ise aynışarak dağıldığı ve 1000 °C ve daha yüksek sıcaklık etkisinden sonra havada ve suda soğutulan numunelerin basınç mukavemetlerinin son derece düşük olduğu ifade edilmiştir. Betonların yangın dayanımlarına; üretimlerinde kullanılan agrega, petrografik yapısı ve mineralojik birleşimiyile yangın söndürme yönteminden bağımsız olamayacağını vurgulamıştır.

Chang vd [31]., basınç dayanımları 39 MPa, 76 MPa ve 94 MPa olan normal ve yüksek dayanımlı betonları 1200 °C’ye kadar ısıtarken, bu sıcaklıklarda 1 saat süreyle bekletmiş ve oda sıcaklığına kadar soğuttuktan sonra basınç ve çekme mukavemetlerini belirlemişlerdir. Çalışmada ayrıca normal ve yüksek dayanımlı betonların gözenek yapıları da incelenmiştir. Deney sonuçlarında yüksek sıcaklıkların etkisi 20 °C – 400 °C, 400 °C - 800 °C ve 800 °C üzerinde üç aralıktaki belirtilmiştir. İlk aralıktaki normal dayanımlı betonların aksine yüksek dayanımlı betonların mukavemetlerini koruduğu, ikinci aralıktaki özellikle 600 °C’nin üzerinde her iki betonunda da mukavemetlerinin önemli kısmını

Luo vd [33], yaptıkları çalışmada 800°C ve 1100°C sıcaklıklara maruz bırakıldıkları sona kademeli ve ani olarak soğutulmuş yüksek dayanımlı ve normal betonların davranışlarının incelemişlerdir. Hedef sıcaklıkta kadar ısıtılan numuneler bu sıcaklıklarda 1 saat süreyle bekletildikten sonra oda sıcaklığına kadar havada yavaş yavaş ve suda aniden olmak üzere iki farklı şekilde soğutulmuştur. YDB'ların basınç mukavemetlerinde normal betona kıyaslarda daha keskin bir azalma belirlenmiştir. YDB 800°C'de, yavaş yavaş ve ani soğutma için sırasıyla başlangıç mukavemetin %26-34 ve %22-28 ini koruyabiliyor. Bu değerler 1100°C için ise %8-12 ve %8-10 dur. Bununla beraber ani soğutmayla oluşan termal şokun betonun parçalanarak bozulmasında belirgin bir artışa sebep olmadıgı bildirilmştir.

Kalifa vd [34], tarafından yapılan çalışmada; kalker agregasını kullanılarak üretilen C30 ve C100 betonları, patlayarak parçalanmanın görülebileceği aralık olan 450°C, 600°C ve 800°C sıcaklıklara maruz bırakılmış ve numunelerin farklı yüzeylerinde basınç ve sıcaklık ölçümleri yapılmıştır. Her iki beton grubunun da benzer termal özellikler
gösterdiği ve gönderilen basınç eğrilerinin benzer şekilde pik değerler yaptığı belirtilmiştir. Bu pik noktalar C100 de 38 bar C30 da ise 18 bar olarak ölçülmuştur.

Poon vd [35]., silis dumanı, uçucu kül ve yüksek firn çırımı içeren yüksek mukavemetli betonların 800 °C’ye kadar olan yüksek sıcaklıklarda mukavemet ve durabilite performanslarını karşılaştırmışlardır. 600 °C’nin altında sıcaklıklarda uçucu kül ve yüksek firn çırımı içeren betonların sadece çimento ile üretilen kontrol gruplarına kıyasla en iyi sonucu verdiği görülmüştür. Yüksek mukavemetli betonların yüksek sıcaklıklarda normal betonların benzer bir mukavemet azalması gösterdiğini ancak arı kalan mukavemetlerinin göreçeli olarak çok daha fazla olduğu belirtilmiştir.

Jonatka ve Bagel [36]., 800 °C’ye kadar sıcaklıkların betonun mukavemet karakteristikleri, boşluk yapısı ve hesaplanan geçirilme katsayısına etkilerini deneySEL olarak incelemişlerdir. Çalışma sonucunda 400 °C’ye kadar olan sıcaklıkların, test edilen numunelerin elasite modülü, mukavemet, ortalamaya boşluk çapı ve hesaplanan geçirilmelik katsayıları üzerinde çok belirgin deşikliğe sebep olmadığı görülmüştür. 400 °C – 800 °C aralığında boşluk yapısıının ilerlemeyle mukavemet azalmıştır. Betonun yapısı bütünüünün bozulmasını ise 800 °C’de gerçekleştğini belirtmiştir.

Bingöl ve Gül [37]., yaptıkları çalışmada normal agrega yerine %25, %50, %75 ve %100 oranlarında pomza kullanmak yoluya hafif betonlar üreterek 750 °C’ye kadar ısıtmış ve hafif betonların yüksek sıcaklık etkilerinden sonra dayanımını normal betonunki ile karşılaştırılarak incelemişlerdir. Sıcaklık artışıyla beraber bütün beton gruplarının başlangıç mukavemetlerinin bir kısmını kaybettiği ancak kullanılan hafif agrega oranının artmasıyla mukavemetlerdeki kayıp oranlarının azalığı belirtilmiştir. Ayrıca yüksek sıcaklıklarda maruz kalma süresi de çalışmanın parametrelerinden birisi olarak belirlenmiş ancak ısıtma süresinin sıcaklık kaybı üzerinde çok belirgin bir etki göstermediği, ısıtma sıcaklığının mukavemet kayıplarında daha önemli rol oynamadığı belirtilmiştir.

erime noktalı (karbon veya çelik gibi) liflerin düşük erime noktalı (polipropilen gibi) lifler ile karşıtırılarak kullanılmazın YDB’ların yüksek sıcaklık etkilerinden sonra özellikleri üzerinde belirgin iyileştirici katkı sağladı.

Li vd [39]., C40, C60 ve C70 betonlarının yüksek sıcaklık etkilerinden sonra basınç, çekme ve eğilme mukavemetlerini incelemiştir. Üretilen numuneler 200 °C, 400 °C, 600 °C, 800 °C ve 1000 °C sıcaklıklara kadar ıstıtılmış, hedef sıcaklığa ulaşıldığında fırın kapatılarak numuneler oda sıcaklığa soğutulmuştur. Bahsedilen sıcaklıklarda C70 betonu başlangıç basınç mukavemetinin sırasıyla %82,3, %62,3, %58,1 ve %27,3’ünü koruyabiliyor. Numune boyutu arttıkça mukavemetdeki kayıpın daha az olduğunu belirtmiştir. Ayrıca 800 °C üzerinde betonun su içerliğinin basınç mukavemeti üzerinde çok etkisi olmadığı ifade edilmiştir.

Sava vd [40]., farklı oranlarda puzolanik malzeme içeren betonların yüksek sıcaklık etkilerinden sonra mekanik özelliklerini tahribatsız deney metotları ile belirlemiştir. Kireç taşı ve silis agregaları kullanılan numuneler 100 °C, 300 °C, 600 °C ve 750 °C sıcaklıklara maruz bırakılmıştır. Çalışma sonuçları betonun arta kalan özelliklerinin agreg ve binder türü ile çok ilişkili olduğunu ortaya koymuştur. 300 °C’ye kadar olan sıcaklıklarda puzolanik malzeme kullanılarak üretilen betonların sadece portland çimentosu ile üretilenlere oranla daha iyi sonuç verdiği ancak sonraki sıcaklıklarda bu betonların daha hassas olduğu belirtilmiştir. 100 °C – 300 °C arasında bütün karışmalarla başlangıç mukavemetine göre bir miktar artış olduğu ve bu artışın silis agregalı betonalarda daha fazla olduğu, 300 °C-750 °C aralığının ise betonda mukavemet kaybı için kritik değerler olduğu bildirilmiştir. Her sıcaklıkta elasite modülü üzerinde düşüş görülmüş ve bu düşüşün kireç taşı agregaları ile üretilen betonlarda daha fazla olduğunu ifade edilmiştir.

Arıöz [42]., normal portland çimentosu, kırılmış kalker ve dere agregaları ile üretilen farklı beton karışımların 200 °C – 1200 °C arası yüksek sıcaklıklara maruz

Peng vd [44]., 200 °C – 800 °C arasında yüksek sıcaklıklara maruz bırakılmış lifli betonların soğutulması esnasında termal şokun betonların mekanik özelliklerine etkisi üzerine deneyler girilmişlerdir. Doğal soğutma, 5 ile 60 dakika arasında değişen süreleri su püskürme ve su içinde tutma gibi farklı soğutma şekilleri uygulanmıştır. Su içinde tutma ve 30 dakikadan fazla sürelerde su püskürme gibi hızlı soğutma tekniğinin termal şoka sebep olduğu belirlenmiştir. Hızlı soğutma yöntemlerinin daha fazla hasara sebebiyet verdiğini ve betonun basınç mukavemeti, çekme mukavemeti ve kırılma enerjisi özelliklerinde, doğal soğutmaya kıyasla daha fazla kayıplara yol açtığını belirtmiştir. 30 dakika ve üzerinde su püskürmenin suda bekletme ile eșdeğer hasara yol açtığını, ayrıca çelik ve polipropilen lif kullanımının hem mukavemet hem de kırılma enerjisi özelliklerine olumlu etki yaptığı açıklanmıştır.

Demirel ve Gönen [45]., yüksek sıcakliğin karbon lif takviyeli hafif betonda basınç dayanımlarını ve poroziteye etkisini incelemiştirlerdir. Hazırladıkları numuneleri 250, 500, 750 ve 1000°C sıcaklıklara maruz bırakarak betonun fiziksel ve mekanik özelliklerine etkisini
gözlemlemiştir. Çalışmanın sonucunda, silis dumanı içeren serilerde basınç dayanımı kayıpları silis dumanız serilere göre daha yüksek çıkmıştır. Basınç dayanımı ile porozite arasındaki ilişkinin de 500 ve 750 °C dışında yüksek olduğu açıklanmıştır.
3. GENEL BİLGİLER

3.1. Betonu Oluşturulan Malzemeler

Beton; çimento, iri agrega, ince agrega ve suyun, kimyasal ve mineral katkı da ilâve edilerek veya edilmeden karıştırılmasıyla oluşturululan ve çimentonun hidratasyonu ile gerekli olmasını kazanan yapı malzemesidir.

3.1.1. Agrega

Agrega, beton yapımında çimento ve su karışımından oluşan bağlayıcı madde yardımı ile bir araya getirilen, organik olmayan, kum, çakıl, kırmızı taşı gibi doğal kaynaklı veya yüksek fırın çırımı, genelendirilmiş perlit, genelendirilmiş kil gibi yapay kaynaklı olan taneli malzemelerdir[46].

Agreganın beton yapımında ekonomik ve teknik yönden çok önemli bir konumu bulunmaktadır. Agrega maliyeti çimentoya göre oldukça düşük olduğundan, agrega betonda kullanılarak, ucuz olan bir dolgu malzemesi olarak kabul edilmektedir. Betonda agrega kullanılması, sertleşen betonun hacim değişikliğini önlemekte veya azaltmakta, çevre etkilerine karşı betonun dayanıklılığını arttırmakta ve kendi dayanım gücünün yüksekliği nedeniyle betonda gerekli dayanım sağlanmasına yardımcı olabilmektedir. Agrega, iri ve ince agrega olarak iki kısımda incelenebilir. Şantyelerde iri agrega “mıcır” ya da “çakıl”, ince agrega “kum” olarak isimlendirilir. Bu iki bileşeni tane büyüklüğü olarak birbirinden ayırmak için kullanılan kriter 4 mm boyutudur. 4 mm den iri boyuttaki tanelerden oluşan kısma iri agrega, 4mm den küçük boyuttaki kısma ince agrega denir [47].

Agrega bileşeninin uygun bir tane boyu dağılımı (granülometri) göstermesi çok önemlidir. İyi bir granülometriye sahip agrega içindeki hava boşluğu, daha az olacaktır.
Dolayısıyla, yoğunluğu da artacaktır. Bu şekilde, toplam beton hacmi içinde çimento-su harcı daha ekonomik olarak kullanılabilir ve beton istenilen yere kolaylıkla, kalitesi bozulmadan yerleştirilebilir.

Betonda agrega kullanılmasının sağladığı teknik özelliklerin başında; sertleşen betonun “hacim değişikliği” önlenmesi veya azaltılması, sertleşmiş betonun “aşınmaya karşı” dayanımını arttırması, çevre etkilerine karşı “dayanıklılığı” artırması ve kendi dayanım gücünün yüksekliğine nedeniyle betonun taşımakta olduğu yüklerle karşı kalkması “dayanımı” sağlayabilmesine gelir. İçerisinde agrega bulunmayan bir sisteme göre çok daha az hacim değişikliği (büzülme) gösterir. Yani, çimento hamurunun zamanla kuruması nedeniyle yapacağı bazı zorlularda ve meydana gelebilecek çatlamalar agrega tarafından belirli bir ölçüde engellenmiş veya sınırlandırılmış olur [49].

3.1.1.1. Agrega Çeşitleri ve Özellikleri

Agrega (Kum-Çakıl): Doğal, yapay veya her iki cinsi yoğun mineral malzemesinin genellikle 100 mm ye kadar çeşitli büyüklüklerdeki kırılmasına ve/veya kırılsız tanelerinin bir yığımdır.

Aşağıda agrea çeşitleri ve özellikleri hakkında temel tanımlar verilmektedir.

Doğal Agrega: Doğal taş agrega; teraslardan, nehirlerden, denizlerden, taş ocaklardan ve taş ocaklardan elde edilen kırılsız veya kırılsız agregadır.

Yapay Agrega: Yüksek fırın cüruf taşı, izabe cürufu veya yüksek fırın cüruf kumu gibi sanayi ürünü olan kırılsız veya kırılsız agregadır. (Yapay taş veya Yapay kum da denir.)

İri Agrega: 4 mm açıklıklı kare delikli elek üzerinde kalan agregadır.

Çakıl: Kırılsız tanelerden meydana gelen iri agregadır.

Kırma Taş: Kırılsız tanelerden meydana gelen iri agregadır.

Kum: Kırılsız tanelerden meydana gelen ince agregadır.

Kırma Kum: Kırılsız tanelerden meydana gelen ince agregadır. Çakılın kırılması ile elde edilir.
Karışık Agrega: İnce ve iri agrega karışımıdır.

Doğal Karışık Agrega (Tuvenan Agrega): Agrega ocağından, kırcıdan veya sanayiden doğrudan doğruya elde edilen karışık agrega'dır. Maksimum tane büyüklüğünden büyük taneleri ayırmak için elenmiş agrega'lar da doğal karışık agrega denir.

Hazır Karışık Agrega: İnce ve iri agreganın veya birkaç tane sınıfına ayrılmış bu agregaların belirli tane dağılımı (granülometri) sağlayacak şekilde beton yapımı sırasında yerinde birbirine karıştırılması ile meydana gelen agrega'dır.

3.1.1.2. Agreganın Fiziksel Özellikleri

3.1.1.2.1. Granülometri

Maksimum tane boytutunun arttırılmasıyla agrega çimento hamuru arasındaki ara yüzeyi büyür ve daha heterojen bir yapı oluşturur. Bunun sonucunda ise mikro çatlamalar artar.

Çeşitli kayaç çeşitlerinden elde edilen iri agrega'lar, küçük taneler büyük tanelere göre daha sağlamdır. Bunun sebebi tane boytutunun küçülmesiyle birlikte agrega tanesi içindeki büyük boşlukların, mikro çatlamalar gibi iç kusurların, yumuşak mineral içeren
kısımların azalmış olmasıdır. Ayrıca genellikle kırmak agrega kullanıldığı için kırmılma işlemi sırasında iki agregada çatall vb. kusurlar oluşabilir bu ise agregayı zayıflatır [51].

Bir agrega yıguna granülometri tanımlarda belirtilen elelere yardımcıyla elde edilir. Elek analizi TS 3530 EN 933-1’e göre yapılır.

En büyük agrega boyları:
- betonarme yapılarda : 16-32 mm
- yol ve hava meydanlarında : 32-90 mm
- barajlarda : 90-250 mm olarak seçilabilir

Şekil 3.1. Maksimum tane büyüklüğü 8 mm olan agregan granülometri eğrisi[51]
Şekil 3.2. Maksimum tane büyüklüğü 16 mm olan agrega granülometri eğrisi[51]

Şekil 3.3. Maksimum tane büyüklüğü 32 mm olan agrega granülometri eğrisi[51]

Granülometrinin ideal bölgede kalmasıyla, doluluk (komposite) oranı yükselir, boşluklar azalır, böylece boşlukları doldurmak için daha az çimento kullanılarak ekonomik çözüm elde edilir. Ayrıca betonda agrega yüzeylerini ıslatmak için gerekli su da azalmış olur[51].

3.1.1.2. İncelik Modülü (Iₘ)

İncelik modülü (Iₘ), granülometrik bileşim hakkında bilgi veren sadece bir sayıdır. Bu modül, her bir eleğe karşılı kelen ordinatların 100’ den çıkarılıp, toplamının 100’ e bölünmesiyle elde edilir. Böylece incelik modülü aşağıdaki formülden hesaplanır.
\[I_m = \frac{\Sigma (100 - p)}{100} \] (3.1)

Aynı incelik modülüne sahip agregaların granülometri eğrileri farklı olabilir. Diğer bir deyişle farklı granülometri eğrilerine sahip agregaların incelik modülleri aynı çıkabilir. Bu nedenle herhangi bir agreganın granülometrisi hakkında kesin bilgi isteniyorsa, agreganın granülometri eğrisinin bilinmesi gerekmektedir [52].

3.1.1.2.3. Birim Ağırlık (\(\Delta \))

Birim Ağırlık (\(\Delta \)), hacmi belli bir kaba doldurulan agreganın ağırlığının (p) kabın hacmine (V) oranıdır. Bu V hacmine agregataneler arasındaki boşluklar da dahildir. Böylece **birim hacim ağırlığı** aşağıdaki formül'den hesaplanır;

\[\Delta = \frac{p}{V} \] (3.2)

Küp veya küre hacmine yakın aggregalarda birim ağırlık 1600-1800 kg/m\(^3\) ağırlığında olabilir. Kalker kökenli kırmataş agregalardan ise birim ağırlık 1300-1500 kg/m\(^3\) ağırlığında değişebilir. Eğer agregataneler kaba yerleşirilirken bir çubukla şişlenirse sıkışık birim hacim ağırlığı elde edilir. Beton üretiminde agregalar gevşek halde ölçülecekse birim ağırlığa gerek duyulur[52,53,54].

3.1.1.2.4. Özgül Ağırlık (\(\delta_a \))

Özgül ağırlık, agregatanelerin sahip olduğu mutlak birim hacmin ağırlığıdır. Kaplanan hacme agregataneler arasındaki boşluklar dahil değildir. Deney TS 3526’ a göre yapılır. Özgül ağırlık (\(\delta_a \)) aşağıdaki formül'den hesaplanır;

\[\delta_a = \frac{W_1}{(W_1+W_2+W_3)} \] (3.3)

Burada;
\(\delta_a \) = Agreganın özgül ağırlığı,
\(W_1 \) = Numune ağırlığı,
\(W_2 \) = Su ile dolu ölçü kabı ağırlığı,
\(W_3 \) = İçine numune konmuş, su dolu kabın ağırlığıdır.
Normal beton agregaların özgül ağırlıkları genellikle 2,5 – 2,9 kg/dm³ değerleri arasındadır. Beton karışıım hesabını yapabilmek için üretimde kullanılacak agregaların özgül ağırlıklarını bilmek gerekir. Öte yandan bir agreganın özgül ağırlığı, elde edilen kayanın kökenine bağlıdır[52,53,55].

3.1.1.2.5. Tane Biçimi

Agregaların biçimi küp veya küreye yakın olmalıdır. Böylece agregalar arasındaki boşluklar en aza iner. Disk ve silindirik biçimli agregalar boşluk oluşturacağından sakıncalıdır; bunlar ağırlıkça %15’i aşmamalıdır.

Agrega tanesinde “en büyük boyutun, en büyük boyuta oranı” hacimsel katsayı (H) ise aşağıdaki bağıntıda ve şekilde görüldüğü gibi “n sayıda agreganın hacminin her bir agreganın en büyük boyutunu çap kabul eden kürelerin hacimleri toplamına oranı” olarak tanımlanır[52].

\[
H = \frac{\sum_{i=1}^{n} V_i}{\frac{\pi}{6} \sum_{l=1}^{n} (d_l)^3_{\text{max}}}
\]

(3.4)

3.1.1.2.6. Rutubet Durumları

Normal agregalar genel olarak % 0.5 – 2 oranında su emerler. Agregaların rutubet durumları 4 gruba ayrılır;

- **Tam kuru (fırmın kuruasu)**: Boşluklar tamamen sudan ayrılmıştır.
- **Hava kuru-su**: Boşluklarda kısım su vardır.
- **Yüzey kuru suya doygun**: Bütün boşluklar su ile dolu, yüzey ise kurudur.
- **İslak**: Boşluklar su ile dolu yüzeyde ise serbest su vardır.

İnce agregaların tanesinde suyun hacmi içeriği artışla rutubet miktarına bağlı olarak değişir. Belirli bir rutubet yüzdesi için kumun inceliği arttıkça kumun hacmindeki artış daha fazla olmaktadır. Agrega özelliklerini belirlemek için yapılan deneylerde ve beton karışıım hesaplarında agrganın yukarıdaki hallerden yüzey kuru suya doygun (YKSD) durumu esas alınır. Bir şantiyedeki veya beton santralindeki agregaların mevcut su içeriği dikkate
almak için, YKSD duruma göre bulunan beton bileşimleri için gerekli düzelmeler yapılmalıdır [52].

3.1.1.2.7. Kompassite (k)

Herhangi bir agreganın birim ağrılığı ve özgül ağrılığının bilinmesi ile aynı zamanda bu agreganın kompassesitesi yani birim hacmindeki tanelerin işgal ettiği gerçek hacim belirlenmiş olur. Çünkü agreganın kompassesitesi (k);

\[
k = \frac{\Delta}{\delta}
\]

ifadesiyle hesaplanır. Birim ağrılık daima özgül ağrılıktan küçük olduğuna göre komposite 1’den küçük değer alacaktır. Bu durumda yoğun halindeki agreganın birim hacmindeki boşluk, kompresiyon 1’e tamamlayacak değer olacaktır. Boşluk (porozite) p,

\[
p=1-k
\]

formülü ile hesaplanır [50,52,56].

3.1.1.3. Agreganın Mekanik Özellikleri

3.1.1.3.1. Tane Dayanımı

Yüksek dayanımlı beton elde etmek için mekanik dayanımı belirli değerlere ulaşan agregalara gereksinim vardır. Bu nedenle agregaların tane dayanımlarını da belirlemek gerekir.

Agreganın tane dayanımı, alındığı kayacın cinsi ve mevcut durumunun petrografik yönenden incelenmesi ile yaklaşıklık olarak değerlendirilebilir. Eğer kullanılan agrega, kırmızı taş ise; TS 706 EN 12620’ ye göre taşın suya doygun haldeki küp basınç dayanımı veya çapı yüksekliğe esit silindir basınç dayanımı en az 1000 kgf/cm² (98N/mm²) ise mekanik özellikler ile ilgili başka bir incelenmeye gerek olmaksızın yeterli olduğu kabul edilebilir. Basınç dayanımı 1000 kgf/cm² den küçük olması halinde ve kuşkulu durumlarda agregalarda aşınmaya dayanıklılık deney sonuçlarına bakılmalıdır. Eğer iri agrega olarak
çakıl kullanıldığıorsa, bahsi geçen basınç deneyini yapmak mümkün olmayacağınıından, yine bu agregalar üzerinde aşınmaya dayanıklılık deneyleri uygulanarak çakılarının sağlamlığı hakkında bilgi edininir[52].

3.1.1.3.2. Aşınma Dayanımı

Yol ve hava meydanlarındaki beton çarpma ve aşınma etkisi altındadır. Betonun bu etkilere dayanabilmesi için yapımında kullanılan iri agreganın aşınmaya ve çarpma karşı büyük mukavemeti sahip olması gerekir.

Basınç dayanımının 1000 kgf/cm\(^2\) den az olması halinde, kuşkulu durumlarda veya yapay agregalarda aşınmaya dayanıklılık deneyleri sonuçlarına bakılır. Bilyalı Tanburla (Los angles aşınma cihazı) yapılan aşınmaya dayanıklılık tayini deneyinde 100 devir sonunda %50’den az, darbe ile aşınmaya dayanıklılık tayini deneyinde aşınmaya maruz beton yapımında kullanılan agregalar için %30’dan, diğer agregalar için ağırlıkça %45’en az kayıp bulunmuş ise, agrega yeterli olarak kabul edilebilir[57].

Deneyler sonunda saptanan kayıpların bu değerlerden büyük olması halinde söz konusu agrega ile beton yeterlik deneyleri yapılmalıdır. Camlı agregalar, şistler, marnlı kireçtaşları, iri kristalli taşlar aşınmaya mukavemet gösteremezler. Özgül ağırlığı fazla ve sert olan taşların (bazalt) ise aşınmaya mukavemetleri yüksektir. Aşınmaya karşı mukavemetleri yüksek olan agregaların basınç mukavemetleri de yüksekt olur.

3.1.1.3.3. Çarpma Dayanımı

Betonun çarpma dayanıklı olmasıında, kullanılan agreganın önemli etkisi vardır. Bu nedenle kullanılmadan önce kontrol edilmelidir. Basınç deneyinden pek farklı olmayan çarpma deneyinde agrega çelik bir silindir içine yerleştirilir ve belirli bir mesafeden belirli bir ağırlık belirli saya düştürmek suretiyle malzeme çarpma etkisi altında tutulur. Elekten elenmek suretiyle çarpma etkisi altında agreganın dayanıklılığı hakkında fikir edinilebilir [52].
3.1.2. Çimento

Çimento, su ve agrega ile birlikte betonu oluşturan temel malzemelerden biridir. Çimento su ile reaksiyon sonucu hem havada hem de su altında sertleşir ve sertleştirikleri için bağlayıcılar olarak sınıflandırmaktadır.

Yalnızca Portland çimentosu klinker ve alçı taşının birlikte öğütülmesi sonucu elde edilmektedir. Öğütme sırasında Portland çimentosu ve alçı taşına belirli miktardaki katkı maddeleri eklenirse farklı tiplerde katkıçı çimentolar elde edilmektedir. Bu katkı kullanımını enerji ve hammadde kaynaklarının daha az kullanılması bakımından, ekonomik açıdan önemli olmakla beraber kullanıldığı yerlerde, sülfatlı, klorürlü vs. ortamlardaki zararlı etkileler dayanıklılık açısından önem taşımaktadır. Mesela sülfat etkisine karşı dayanıklı beton yapmak amacıyla yüksek rinç ve puzolanlı ya da sülfata dayanıklı Portland çimento (C3A<5) kullanılmalı, baraj inşaatları gibi kütle betonlarında hidratasyon ısını düşüklüğü ve maruz kalacağı su etkisine karşı dayanıklılık açısından cüruflu ve puzolanık çimentolar gibi katkılı çimentolar tercih edilmelidir [58].

Çimentolarda 4 ana bileşen vardır:
1. Bikalsiyum Silikat - C2S (2 CaO.SiO2),
2. Trikalsiyum Silikat - C3S (3 CaO.SiO2),
3. Trikalsiyum Aluminat - C3A (3 CaO.Al2O3),
4. Tetrikalsiyum Alumino ferrit - C4AF (4 CaO.Al2O3.Fe2O3).

Çimento ve suyun birleşmesiyle ortaya çıkan ve hidratasyon adı verilen kimyasal reaksiyon sonucunda bu bileşenler hidrate bileşimlere dönüşürler. Kalsiyum silikatların hidratasyon reaksiyonları sonucunda C-S-H (Kalsiyum Silikat Hidrate) ve CH (Kalsiyum Hidroksit) oluşur. Çimentoya bağlayıcılık özelliğini kazandıran madde C-S-H'dır [52].

içinde bulunan, hidratasyonla birlikte sayıları ve toplam hacimleri artan boşluklardır. Jel boşluklarının boyutları kapilere boşluklardan çok daha küçüktür [52].

Bunların yanında, büyüklükleri milimetre boyutunda olan hava boşlukları da betonda mevcuttur. Hava boşlukları betonun yetersiz yerleştirilmesinden veya bazı katkılar kullanıp hava sürülenmesinden oluşabilir.

3.1.3 Karma Su

Karışım suyu olarak doğada bulunan her türlü su kullanılabilir. Ancak, karışım suyu altında beton prizini, katılaşmayı engelleyecek, donatı korozyonuna sebep olacak maddeler, bitkisel ve hayvansal yağlar, amino asitler ve diğer zararlı maddeler bulunmamalıdır. Bu nedenle tuzlu, şekerli sular, deniz suları, endüstri atıkları ile kirilenmiş sular, bataklık suları vs. beton yapımında kullanılmamalıdır.

Bir dereceden alınan ve içerisinde çeşitli maddeler bulunan su, ya dinlenme havuzlarında dinlendirilmeli, yada çeşitli metotlara temizlenmelidir. Bu konuda yapılan bazı deneyler göstermiştir ki, %1’e kadar SO₄ ihtiva eden suların betonda tesiri pek fala değildir. %0,5’lik bir SO₄ konsantrasyonu betonda ortalam %4’lük bir mukavemet düşmesine neden olurken, %1’lik bir konsantrasyonda azalma %10’u geçmektedir. %5’lik bir tuz, mukavemeti %30 azaltmaktadır. Az miktarda sülfat ve klorür ihtiva eden yüksek karbonlaşmış minarelli sular, %80 kadar düşük mukavemete neden olmaktadır [46].

Betonda kullanılacak en iyi karma suyu olarak içme suyu tasviri edilir. Önceden denenmiş uygun sonuçlar alınmış sularında kullanabilir. İçerisinde beton dayanımını olumsuz etkileyen amonyum tuzları, serbest klor, organik maddeler ve madeni yağlar gibi maddeler bulunmaması gerekir. Kullanılan su çimentonun katılaşması için gerekli olmasının yanında betonun işlenebilirliğini de sağlamalıdır.

Beton üretiminde kullanıcak suyun iki önemli işlevi vardır;
— Kuru haldeki çimento ve agregatı plastik, işlenebilir bir kütle haline getirmek,
— Çimento ile kimyasal reaksiyon yaparak plastik küttlenin sertleşmesini sağlamaktır.

3.1.4. Kimyasal Katkı Maddeleri

Betonun birtakım özelliklerini iyileştirmek amacıyla beton içerisindeki çimento miktarı baz alarak belli oranlarda katılan organik veya inorganik kökenli kimyasal bileşikler katkı maddesi olarak adlandırılırlar. Katkı maddeleri çimentoyla beton karışım suyu katılır.

Gereğinden fazla kullanıldığında aksi etkiler oluşturabileceği gibi yine gereğinden az kullanıldığını taktirde hiçbir faydasi olmayabilir.

Kurallarına uygun üretilen betonların da качkı Maddeleri ile uyumu önceden yapılan deneylerle belirlenmelidir.

Beton üretiminde kullanılan kimyasal качkı Maddeleri aşağıda belirtildiği şekilde gruplandırılır[56].

3.1.4.1. Betonun İşlenebilir Özelliğini Arttırıcı Katkı Maddeleri

Bu guruba giren katkılar çimento ağırlığının %0.2 -0.5 arası oranlarda kullanılır. Taze betonun işlenebilirliğini arttıran bu katkılar aynı zamanda beton karma suyu ihtiyacını azalttıklarından betonun dayanımını da arttırır[56].

3.1.4.2. Süper Akışkanlaştırıcılar

Daha çok yüksek dayanıklı beton üretiminde kullanılan bu katkılarla betonun su/çimento oranını 0.25'lere düşümek olanağındır. Ancak süper akışkanlaştırıcılar normal akışkanlaştırıcılara kıyaslara %1-%3 gibi çok daha yüksek dozajlarda kullanılır[56].
3.1.4.3. Priz Süresini Değiştiren Katılar

Taze betonun priz adı verilen sertleşme sürecinin bazı koşullarda hızlandırılması veya geciktirilmesi istenir. Özellikle yaz aylarında, uzun taşma mesafelerinde priz geciktiriciler, kiş aylarında ise priz hızlandırıcılar kullanılır[56].

3.1.4.4. Hava Sürükleyici Katkı Maddeleri

Soğuk iklim koşullarında donma-çözülme tehlikesine karşı koruyan bu maddeler, aynı zamanda betonun işlenebilirliğini arttrırlar[56].

3.1.4.5. Antifirizler

Bu tip katkılar beton içindeki suyun donma sıcaklığını düşürecek suyun donmasını ve betonun çatlamasını engeller. Ancak soğuk hava şartlarında betona sadece antifriz katkı ilave edilmesi kesin çözüm olmayıp döküm yerinde betonun korunması için özel önlemlerin alınması gereklidir[56].

3.1.4.6. Hiper Akişkanlaştırıcılar

Yeni nesil akişkanlaştırıcılar[56]. % 20-25 oranlarına kadar su kesme özellikleri vardır. Elektrostatik dağıılma mekanizmasıyla Çimento partiküllerini harekete geçirir. Bu özellikleriyle de büyük ölçüde su içeriği azaltılmış ancak yüksek akışkan bir beton elde edilir[56].

3.1.4.7. Diğer Katılar

Hafif beton, geçirimsiz beton, rötreyi önleyici, aderansı artırıcı, renkendirici vb... değişik katkı maddeleri vardır. Uçucu kül, silis dumanı gibi puzolanik özelliklere sahip mineral malzemeler de bir yerde katkı maddesi sayılabilir [56].
3.1.5. Mineral Katkılar

3.1.5.1. Silis Dumanı ve Özellikleri

Silis dumanı oldukça ince ve küresel bir şekilde sahiptir. Portland çimentosundan 100 kat daha ince bir malzemedir. Ferro silikon gibi silikon metal veya silikon alasımlarının üretiminde atık olarak elde edilir. Bundaki silis miktarı % 85 – 95 arasında değişmektedir. Karbon (geriye kalan yanmış kömür), demir oksit (Fe₂O₃), Alüminyum oksit (Al₂O₃), Magnezyum oksit (MgO) ve alkaliler (Na₂O, K₂O) çok az bulunan miktardardır. Silis dumanı, yoğunlaşmış silis dumanı veya mikro silis dumanı diye adlandırılır [60].

<table>
<thead>
<tr>
<th>Malzeme</th>
<th>İncelik (cm²/gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silis Dumanı</td>
<td>200.000</td>
</tr>
<tr>
<td>Tütün Külü</td>
<td>100.000</td>
</tr>
<tr>
<td>Uçucu Kül</td>
<td>4000-7000</td>
</tr>
<tr>
<td>Portland Çimento</td>
<td>3000</td>
</tr>
</tbody>
</table>

Silis dumanı, katılan betonlarda Portland çimentosuna göre daha az geçirimli olduğu ve bunun sebebi toplam gözenek hacmi hemen hemen aynı kalmakta rağmen iri gözenekliliği düşürdüğünden dolayı olduğu belirtilmektedir[62].

3.1.5.2. Uçucu Kül ve Özellikleri

TS 639’a göre uçucu kül, toz halinde veya öğütülmüş taş kömürü yada linyit kömürüнün yüksek sıcaklıklarda yanması sonucunda oluşan ve baca gazları ile sürüklenen, silis ve aliminosilikli toz halinde bir yanma kalıntı olarak tanımlanır. Uçucu küller içerdikleri SiO₂,Al₂O₃,Fe₂O₃’un yüzde toplamları 70 veya daha fazla ise uçucu kül teknik olarak F sınıfı kül olarak adlandırılır. C sınıfı uçucu küllerde önemli oranda CaO bileşeni bulunduğundan SiO₂,Al₂O₃,Fe₂O₃ bileşenlerinin toplamı %50’den büyük olması gerekmektedir. F sınıfı küllerin esas aktif bileşeni silisli veya Alumina silikatlı cam olup bitümlü kömürden elde edilmektedir. C sınıfı küllerde ise aktif bileşen kalsiyum Alumino Silikattur ve linyit kömürünün yanmasıyla elde edilmektedir[63].

Uçucu küller, puzolanik içeriğine göre şu şekilde sınıflandırmaktadır;

Sınıf 0 : Puzolanik içeriği (uçucu külün-portland çimentosuna oranla dayanımı) %70-94 arasındaki külle için özgül yüzeyin düşük olduğu (2500-3500cm²/gr) yani, tanelerin iri olduğu ve cam içeriğinin düşük olduğu (<%60) külledir. Bu külleğin betonun su ihtiyacı arttırdığı belirtilmektedir.

Sınıf I : Puzolanik içeriği %95-114 olan külleğin portland çimentosu ile aynı inceliğe sahib olduğunu ve bu külleğin ya karışım işlenebilirliğini etkilemediği veya biraz artırdığı belirtilmektedir. Bunların özgül yüzeyleri çoğunlukla 4500cm²/gr dan büyük küllelerdir. Bunlardaki cam içeriği en az %65 ‘dir.

Sınıf II : Bunların puzolanık içeriği %115 ‘den büyüktür. Bunların tane şekli küresel ve portland çimentosundan incedir. Özgül yüzeyleri 4500cm²/gr ‘dir.

3.2. Betondan Beklenilen Özellikler

Yapıda istenen şekil ve boyutlarda betondan yapılmış elemanların kullanılması için, öncelikle, o şekil ve boyutlardaki kalıplar hazırlanmakta ve içlerine taze haldeki beton yerleştirilmektedir. Kalıpların içerisindeki beton yereline sertleşip dayanım kazandıktan sonra da, kalıplar sökülmektedir.
Bazen istenilen şekil ve boyutlardaki kalıplar kullanılarak, içerisinde çelik donatı bulunmayan veya çelik donatı ile takviye edilmiş beton elemanlar, yapının bulunduğu yere taşınarak kullanılmaktadır. Beton blokları, direkler, borular, panel duvarlar, kirişler, döşemeler gibi elemanlar, ön yapımli (prefabrike) elemanlara örnek olarak belirtilebilecek elemanlardır [64].

3.2.1. Betonun İç Yapısı

Betonun iç yapısı ile ilgili birçok çalışma yapılmaktadır. Beton özellikleri iç yapısıyla yakından ilgilidir. Malzemelerin iç yapıları daha iyi anlaşılıkça beton özelliklerinde büyük gelişmeler sağlanacaktır. İç yapının beton özelliklerine etkisi, betonu oluşturan malzemelerin iç yapısı nasıl değişirdikleri, bu malzemeler arasındaki aralar yüzeylerin özellikleri anlaşıldığında istenen şartları sağlayacak malzemeler üretmek daha kolay olacaktır ve böylece çimento esaslı malzemelerin kullanım sahaları genişleyecektir.[65].

3.2.2. Çimento Hamurunun İç yapısı

Hidratasyon derecesi arttıkça hidratasyon ürünler boşturklar doldurur ve kapiler boşlukları azalır. Su/çimento oranı arttıkça hidratasyon ürünlerinin bu boşlukları doldurması zorlaşır. Çok yüksek su/çimento oranlarında çimento tamamen hidrate olsa bile bu boşlukların tamamen dolması imkansız olur. Jel boşlukları ise hidratasyon ürünleri içinde bulunan, hidratasyonla birlikte sayları ve toplam hacimleri artan boşluklardır. Jel boşluklarının boşturları kapiler boşluklarından çok daha küçüktür.(66)

Bunların yanında, büyüklükleri milimetre boyutunda olan hava boşlukları da betonda mevcuttur. Hava boşlukları betonun yetersiz yerleştirilmesinden veya bazı katkılar kullanıp hava sürüklenmesinden oluşabilir.
3.2.3. Agrega Çimento Ara Yüzeyinin İç Yapısı

Beton agrega ile çimento hamurundan oluşan iki fazlı bir kompozit malzeme olarak göz önune alındığında malzeme özelliklerini sadece bileşenlerin özelliklerine bağlı değişdir. Heterojen bir malzeme olan betonun dayanımı 3 faktörden etkilenir.

Bunlar:
- matrisin dayanımı (çimento hamurunun dayanımı),
- agreganın dayanımı
- ara yüzeyinin dayanımı

Bu faktörlerin her birinin çeşitli sınıflardaki betonların dayanımlarında etkileri farklıdır. Ancak agrega-çimento arayüzeyi betondaki en zayıf halka olarak kabul edilmektedir. Çimento hamuru ile agrega arasındaki temas yüzeye, çimento hamurundan farklılıklar gösterir. Bu ara yüzeyler betonun mekanik davranışında oldukça etkilidir.

İri agreganın hemen yanındaki hidrate olmuş çimento hamurunun iç yapısı agregadan uzaktaki çimento hamurunun iç yapısından farklıdır[51].

Geçiş bölgesinin iç yapısı şöyledir:
- Agrega yüzeyine dik doğrultuda CH filminin birikmesi
- Saç fırçasını andıran uzamış C-S-H tanelerinden oluşan bir film ile örtülmesi
- Agrega yüzeyinde paralel doğrultuda geniş CH kristallerinin birikmesi
- Temas yüzeyinde CH ile dolu hacim formasyonu (Şekil 3.4).

Şekil 3.4. Geçiş Bölgesinin Mikro Yapısı[51]
Başka bir görüşe göre de ara yüzeyin yapısı şu şekildedir.

Çimento, su ile karışıtıldıktan birkaç dakika sonra agrega yüzeyinde etrenjit iğneleri görülür. Agrega yüzeyine dik doğrultuda CH kristalleri etrenjit iğnelerini kaplar.

Temas bölgesinde ince olduğu halde betonun önemli bir bölümü kaplar. Çimento hamuru hacminin %25-%35'ini bu temas yüzeyi oluşturur. Bu sebepten arayüzün sertleşmiş beton özellikleri üzerinde önemli etkisi olması doğaldır.

Arayüzdeki yüksek porozitenin oluşumuya ilgili olası bir mekanizma da iki faktörün birleşmesiyle ortaya çıkabilir.

\[\text{Şekil 3.5. Çimento hamuru ile agreganın şematik görüntüü[51]}\]

Temas bölgesi ince olduğu halde betonun önemli bir bölümü kaplar. Çimento hamuru hacminin %25-%35'ini bu temas yüzeyi oluşturur. Bu sebepten arayüzün sertleşmiş beton özellikleri üzerinde önemli etkisi olması doğaldır.

Arayüzdeki yüksek porozitenin oluşumuya ilgili olası bir mekanizma da iki faktörün birleşmesiyle ortaya çıkabilir.

30
Bu Faktörler;
- Çeper etkisi: çimento taneleri nispeten büyük agrega tanesi yanında boş bir hacimdeki kadar yakın sıkışamazlar.
- Tek taraflı gelişim etkisi: hidratasyon ürünleri sadece çimento tarafından gelir, agrega tarafından gelmez [67].

3.2.4 Taze Betondan Beklenen Özellikler

Taze beton kolayca karılabilir, taşınabilir, yerleştirilebilir, sıkılaştırılabilir ve yüzeyi düzeltilebilir olmalıdır. Bu işlemler sırasında iri agregalarla çimento harcı arasında ayrışma olmamalıdır.

Yerine yerleştirilen taze betonun içerisinde suyun yüksarya çıkma eğilimi (terleme) mümkün olduğu kadar az olmalıdır. Betonun homojen yapısı bozulmamalıdır.

Ayrıca malzemenin karılmasından hemen sonra plastik duruma sahip bir betonda, plastikliğin kaybolmasına kadar geçen sürenin uzunluğu (priz süresi) gerekenden daha uzun veya daha kısa olmamalıdır [64].

3.2.5. Sertleşmiş Betondan Beklenilen Özellikler

İster yapıdaki kalıbına yerleştirilerek elde edilen beton elemanlarının üretilmesinde, isterse ön yapılmış beton elemanlarının üretilmesinde, üreticinin ve kullanıcıının son hedefi, sertleşmiş durumdaki betonun, kendisinden beklenilen özellikleri gösterebilecek kalitede olmasıdır [64].

Sertleşmiş betondan beklenilen özellikler başlıca şu şekilde belirilebilir.
- 7 günlük, 28 günlük, 90 günlük gibi herhangi bir yaş için hedeflenmiş olan minimum beton dayanımından daha az bir dayanım göstermemelidir.

Çevredeki suyun ve diğer sıvıların içerisinde kolayca girerek olumsuz etki oluşturmasası için, yeterince geçirimsiz olmalıdır.

- Yapida hizmet gördüğü sürede içerisinde çevrede oluştuğu yıpratıcı etkenler karşısında yeterince dayanıklı olmalıdır bir başka ifade ile donma-çözülmeye, ıslanma-kurumaya, aşınmaya, asitlere, sülfatlara ve alkali-agrega reaksiyonu gibi kimyasal reaksiyonlara karşı dayanıklılık gösterebilecek kalitede olmalıdır.
- Yeterli hacim sabitligine sahip olmalıdır; yani, çatlamalara yol açacak ölçüde büzülme (rötre) veya genişleme göstermemelidir.

Basınç dayanımı, eğilme dayanımı, çekme dayanımı, tekrarlı yükler altında yorulma dayanımı, gerilme-birim deformasyon ilişkisi, elastite modülü, poisson oranı, ısısal genişleme katsayısı, büzülme (rötre), sabit yükler altında sünme ve yoğunluk, betonda aranan önemli özelliklerdir [64].

3.2.5.1. Betonun Basınç Dayanımı

Betonun basınç dayanımı “eksenel basınç yükü etkisi altında betonun kırılmaması için gösterebileceği direnme kabiliyeti (eksenel basınç yükü etkisiyle, betondan oluşan maksimum gerilme)” olarak tanımlanmaktadır.

Beton basınç dayanımını ölçebilmek için değişik deney yöntemleri kullanılmaktadır. Basınç dayanımının bulunabilmesi için uygulanan deney yöntemleri arasında en çok kullanılanları şunlardır:

- Taze betondan hazırlanan standart boyutlu numunelerin beton standartlarına belirtilen süre ve koşullarda kür edildikten sonra kırılmaya tabi tutuldukları “standart deney yöntemi”

- Taze betondan hazırlanan numunelerin 1-2 gün gibi kısa süreyle yüksek sıcaklık ve nem içeren bir ortamda kür edildikten sonra kırıldıkları “hızlandırılmış kür tabi tutulan numunelere uygulanan basınç dayanımı yöntemi”

- Sertleşmiş betondan kesilerek çıkarılan karot numunelerin kırılmaya tabi tutuldukları “karot numunelere uygulanan basınç dayanımı yöntemi”

- Beton test çekici denilen bir alet yarım ile sertleşmiş betonun yüzey sertliğini hasarsız olarak ölçerek betonun basınç dayanımı hakkında yaklaşıklık bir bilgi elde edildiği “beton test çekici uygulayarak basınç dayanımının bulunduğunu deney yöntemi”

- Ultrasonik test cihazı olarak adlandırılan bir cihaz vasıtası ile sertleşmiş betonun içerisinde hasarsız olarak geçirenil ses dalgalarının hızının ölçüldüğü ve betonun basınç dayanımı hakkında yaklaşıklık bir bilgi elde edildiği “ultrasonik test cihazı uygulayarak basınç dayanımının bulunduğunu deney yöntemi”

Betonun basınç dayanımının belirlenebilmesi için uygulanan değişik deney yöntemleri sonucunda birbirinden farklı değerler elde edilmektedir. Herhangi bir deney yöntemi özel olarak belirtilmediği takdirde ve betonun basınç dayanımından söz
edildiğinde, böyle bir değerin “standart deney yöntemi” ile elde edilen değer olduğu anlaşılmaktadır[46].

3.2.5.1.1 Beton Dayanımını Oluşturan Unsurlar

Beton yapısı makro ölçeğe ele alınacak olursa; betonun, çimento hamurundan ve bu hamur içerisine gömülü olan agregan tanelerinden oluşan kompozit bir malzeme olduğunu kabul edebilmek mümkündür. Betonun yük altında kırılması, çimento hamuru veya agreganın yeterli direnci göstermemesinden yada çimento hamuru ile agregan taneleri arasındaki aderansın yeterince yüksek olmamasından kaynaklanmaktadır.

Çimento hamuru bağlayıcı özelliğe sahip bir malzemedir. Agregaların yüzeyini kaplamakta, aggregan tanelerinin arasındaki boşlukları doldurmakta, agregan taneleri ile aderans kurarak, betonun tek bir malzeme durumunu alabilmesini sağlamaktadır. Sertleşmiş çimento hamurunun dayanımının yüksek olmadığı takdirde betona uygulanan yükler karşısında, çatlamaların ve kırılmaların oluşması bu malzemeden başlamaktadır.

Beton üretiminde kullanılan agregaların sert, dayanıklı ve temiz olmaları, mümkün olabildiği kadar reaktif silis ve reaktif karbonat içermemeleri gerekmektedir. Normal ağırlıklı beton üretiminde kullanılan agregalar genellikle çimentohamurun dayanımından daha yüksek dayanımı sahiptirler. Ancak, beton yapısında kullanılan agregalar düşük dayanımlı ve kolayca kırılabilir türde iseler, uygulanan yükler altında betonda meydana gelebilecek çatlama ve kırılma, iri aggregan tanelerinin kırılmasıyla başlamaktadır.

Sertleşmiş betondaki kırılmının başladığı en zayıf bölgeler, iri aggregan taneleri ile çimento hamuru arasındaki yüzeylerdir. Yüzey dokusu pütürlü agregalarla yapılan betonların eğilme ve çekme dayanımları, düzgün yüzeyli agregalarla yapılan betonlarınkinden daha fazla olabilmektedir[46,52].

3.2.5.1.2. Beton Basınç Dayanımını Etkileyen Faktörler

Beton üretiminde kullanılan agregaların genellikle yeterli dayanıma sahip olduklarını göz önünde tutulur ise, çimento hamurunun dayanımının beton dayanımı üzerindeki rolünü daha iyi anlayabilmek mümkün olur. Çimento hamurunun yeterli dayanmada olması, bir yandan bu malzemenin yük taşıma kapasitesinin yeterli düzeyde olabilmesini sağlarken,

Jeli boşluklarının dışında çimento hamurun içerisinde yer alabilecek diğer boşluklar olarak, kapiller boşluklar, hapsolmuş hava boşlukları ve hava sürüleyici katkı maddeleri kullanıldığında taktirde çimento hamuru içerisinde oluşan sürüklənmiş hava kabarcıkları kastedilmektedir.

Betonun içerisinde bulunan boşluklar sadece çimento hamurun içerisinde yer almış olan boşluklardan ibaret değildir. Taze betonun üretimi, taşınması ve özellikle yerleşirilmesi esnasında betonun içerisinde bir miktar hava girmektedir. İçerisinde çok büyük boşluklar bulunan beton, o haliyle sertleştiği takdirde, çok düşük dayanımlı bir beton olmaktadır. O bakımdan, yerine yerleşirilen taze betona vibrasyon veya başka yöntemlerle sıkıştırma uygulanarak, taze betonun içerisindeki havanın mümkün olabileceği kadar dışarı çıkartılması gerekmemektedir.

Yeterli dayanıma sahip agregatların kullanılması durumunda elde edilecek olan beton dayanımı, hem hidratasyon sonunda oluşacak jel miktarındaki artışa ve hem de betonun içerisinde yer alan boşlukların miktarındaki azalmaya bağlı olduğuna göre, beton dayanımını etkileyen faktörler;
- Su/çimento oranı,
- Karma suyunun kalitesi,
- Çimento özelliklerı,
- Agrega özellikleri,
- Betona uygulanan karılma, taşma, yerleşirilme ve sıkıştırma işlemler,
- Kür koşulları ve betonun yaşdır[64].

3.2.5.1.3. Betonun Basınç Dayanımının “Standart Deney Yöntemi” ile Belirlenmesi

Standart deney yönteminin uygulanmasında beton standartlarında belirtilen boyutlara sahip standart silindir veya küp numuneler kullanılmaktadır. Bu numuneler beton
taze iken silindir veya küp şekilli kalıplara, beton standartlarının belirttiği tarza, yerleştirilmekte ve bir gün sonra kalıptan çıkarılmaktadır. Kalıptan çıkarılan sertleşmiş beton numuneleri, deney tarihine kadar (betonun yaşısı 28. güne gelinceye kadar) beton standartlarının belirttiği kür ortamında saklandıkları sonra, deney presi olarak adlandırılan bir alet vasıtasıyla uniform basınç yük altında kırılmaya tabi tutulmaktadır[68,69].

Basınç dayanımı şu şekilde hesaplanmaktadır;

\[
\sigma = \frac{P}{A}
\]

(3.7)

Burada;

\(\sigma\) = Basınç Dayanımı

\(P\) = Numunenin kırılmasına yol açan maksimum yük miktarı

\(A\) = Numunenin kesit alanı

3.2.5.1.4. Ultrasonik Test Cihazı Kullanarak Beton Basınç Dayanımının Elde Edilmesi

Ultrasonik test cihazının kullanılması ile herhangi bir beton bloğun bir yüzüne ultasonik pulse (nabız atışı gibi ritmik sesüstü vuruş) uygulanarak, beton içerisinde basınç dalgaları oluşturulmaktadır. Beton içerisinde ilerleyen sesüstü dalgalar, beton bloğun bir başka yüzeyinden geri alınmaktadır. Ultrasonik ses cihazı, ses üstü dalga, betona gönderildiği yüzey ile geri alınıldığı yüzey arasındaki bir mesafeyi ne kadar zaman süresinde geçtiğini ölçmektedir[64]. Ultrasonik cihazın kullanılmasıyla, betonun içerisinde gönderilen ses üstü dalgaların betonun bir yüzeyinden diğerine geçme süresini ölçmek ve dalga hızını hesaplamaktadır. Hesaplanan ses üstü dalga hızı ile betonun basınç dayanımı ve diğer özellikler arasındaki ilişki yaklaşılmaktadır[64].

Ultrasonik cihazın üzerinde bulunan bir anahtar, elektronik devrenin açılmasına veya kapanmasına kumanda etmektedir. Cihaz çalışır durumdayken, sesüstü dalgalar üretebilmektedir.

Ultrasonik cihaza kablolara bağlı olan, birisi “dalga gönderici” diğeri “dalga kaydedici” iki adet transdüser başlık bulunmaktadır.

Cihaz çalışır durumdayken, dalga gönderici başlık, ölçüm yapmak istenen beton bloğun bir yüzüne tamamen temas edecek tarzda elle bastırılmaktadır. Beton bloğun diğer yüzüne de, dalga alıcı başlık tamamen temas edecek tarzda elle bastırılmaktadır. Gönderici başlık vasitasıyla betonun bir yüzünden içeriye gönderilen dalgalar, betonun diğer yüzünden alıcı başlık vasitasıyla kaydedilmekte ve zaman ölçücü devreye nakledilmektedir.

Ultrasonik test cihazı, ses üstü dalgaların dalga gönderici ve alıcı başlıklar arasındaki bir mesafeyi ne kadar zamanda geçtiğini mikrosaniye birimiyle otomatik olarak belirlemekte vecihazın üzerindeki ekranında gösterilmektedir.

Katı bir malzemenin içerisinde geçen ses üstü dalgaların hızı (V), sesüsütü dalganın geçtiği malzemenin elastik modülü (E) ve malzemenin yoğunluğu (D) ile ilişkilidir. Bu ilişki \(V^2 = \frac{E}{D} \) olarak gösterilmektedir.

Beton bloğun bir yüzeyinden içeriye gönderilen ses üstü dalganın, bloktaki diğer bir yüzeye ne kadar zamanda geçtiği ölçüldükten sonra, dalga hızı aşağıdaki gibi hesaplanır:

\[
S \quad V = \frac{S}{t} \quad 10^6 \quad \text{(3.8)}
\]

Burada;

\(V \) = Ses üstü dalga hızı (metre/saniye)

\(S \) = Beton bloğun ses üstü dalga gönderilen yüzeyi ile dalganan aldığı yüzey arasındaki mesafe (metre)

\(t \) = Ses üstü dalganan gönderilmiş olduğu beton yüzeyinden, aldığı yüzeye kadar geçen zaman (mikrosaniye).

Ultrasonik test yöntemi ile herhangi bir betonun basınç dayanımını yeterince hassas olarak bulabilmek zor olmakla birlikte, herhangi bir beton içerisinde geçen ses üstü dalganın hızı, o betonun içerdği boşluk miktarı ve yoğunluğu ile yakından ilgili olduğu için, elde edilen ses üstü hız ile betonun kalitesi hakkında genel bir ilişi kurabilmek
mümkün olabilmektedir. Whitehurst tarafından yoğunluğu yaklaşık 2400 kg/m³ olan betonlar üzerinde yapılan deneySEL çALıŞMalar sonunda, ses üstü dalga hızı bilindiği takdirde beton kalitesinin ne olabileceğine dair önerilen sonuçlar tablo 3.2'de gösterilmektedir[70].

Tablo 3.2. Ultrasonik Test Yöntemi İle Beton Kalitesinin Değerlendirilmesi

<table>
<thead>
<tr>
<th>Dalga Hızı m/sn</th>
<th>Beton Kalitesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>>450</td>
<td>Mükemmel</td>
</tr>
<tr>
<td>3500-4500</td>
<td>İyi</td>
</tr>
<tr>
<td>3000-3500</td>
<td>Şüpheli</td>
</tr>
<tr>
<td>2000-3000</td>
<td>Zayıf</td>
</tr>
<tr>
<td><2000</td>
<td>Çok Zayıf</td>
</tr>
</tbody>
</table>

3.2.5.2. Betonun Çekme ve Eğilme Dayanımı

Betonun çekme dayanımı, betonda çekme etkisi oluşturacak kuvvetlerin neden olacağı şekil değiştirmelere ve kırılmalara karşı, betonun gösterebileceği direnme kabiliyeti olarak tanımlanmaktadır. Genellikle, yapıdaki betonu doğrudan çekme dayanımı uygulanmamaktadır. Ancak, beton elemanlarının üzerine gelen basınç ve/veya eğilme kuvvetleri betonun içerisinde dolaylı olarak çekme kuvvetlerinin oluşmasına neden olmaktadır.

Betonda büzülme olması durumunda yer alacak şekil değiştirmelerin agrega taneleri ve betondaki donatı tarafından engellenerek serbestçe yer almaması nedeniylede betonun içerisinde çekme kuvvetleri oluşmaktadır.

Basit bir kirişin üzerindeki eğilme yükleri kiriş kesitinde kesme kuvveti ve eğilme momenti oluşturmaktadır. Eğilme momenti, kirişteki tarafta eksenin üstünde kalan bölgede basınç gerilmesi, altında kalan bölgede ise çekme gerilmesi meydana getirmektedir. Buna göre, tarafta eksenin hemen alt kısmında hem çekme hem de kayma gerilmeleri oluşmaktadır. Kayma gerilmelerine diyagonal olan düzleme (eğik düzleme) dik
olarak “eğik çekme ” kuvveti oluşmaktadır. Eğik çekme kuvveti, eğik düzlem üzerinde “eğik çatlak” olarak adlandırılan çatlakların yer almasına neden olmaktadır.

Betonda oluşan çekme kuvvetleri, betonun çatlamasına ve kırılmasına yol açan en önemli neden olarak kabul edilmektedir[71,72,73]. Betondaki basınç ve çekme dayanımları birbirleriyle yakından ilgilidir. Genel olarak, betonun çekme dayanımı, basınç dayanımının %9 - %10 u kadardır. Betonun kalitesine ve yaşa bağlı olarak, bu oran %7 ile %17 arasında değişmektedir.

Betonun kırılmasına yol açabilecek kadar büyük çatlakların oluşmadığı durumlarda da, çatlaklaşacak sorunlar ortadan kalkmamaktadır. Çatlakların oluşması ile, betonun içerisinde dışardan su veya su sularla birlikte sülfat, asit, klor gibi maddelerin girebilmesi daha kolay olmaktadır; betonarme elemanlardaki demir donatı korozyon göstermektedir.

Betonun çekme dayanımının bilinmesi, çatlakların ve yapıyla ilgili analizlerin yapılmasının bakımından büyük önem taşımaktadır[64].

3.2.5.2.1. Doğrudan Çekme Dayanımı

Betonun doğrudan çekmem yükleri altında dayanımını bulabilmek için standart bir deney yöntemi yoktur. O nedenle, böyle bir deneye kullanılmak üzere standart boyutlu ve şekilli numuneler de bulunmamaktadır.

Doğrudan çekme yükleri, değişik boyutlardaki silindir, prizma ve özel boyutlu numuneler üzerinde uygulanabilmektedir. Ancak, beton numuneye doğrudan çekme yükleri uygulanabilmek için, kullanılabilecek numunenin uçlarına özel olarak hazırlanmış metal başlıkların yapıştırılması ve bu başlıkların ortasına 90° açıyla dik olarak tarzda metal çubukların bağlı olması gerekmektedir.

Özel başlık düzeni taklan beton numunelerin uçlarındaki metal çubuklar, normal demir çubukların çekme deneyinde olduğu gibi, deney makinesinin çeneleri tarafından sıkıca kavrancak tarzda deney makinesine yerleştirilmektedir. Deney makinesi çalıştırıldığında, makinenin çeneleri birbirinden uzaklaşamakta ve böylece çubuklara ve
metal başlıklara sıkıca bağlanmış olan beton numuneye doğrudan çekme yükleri uygulanmış olmaktadır. Yük uygulaması, beton numune kırılınca kadar devam etmektedir[64].

Betonun çekme dayanımı (σ_c) kırılma oluşturacak yükün, numune boyunun ortasındaki numune kesit alanına bölünerek hesaplanır. Yani;

\[\sigma_c = \frac{P}{A} \]

olarak hesaplanmakta ve kgf/cm² veya MPa birimiyle ifade edilmektedir.

3.2.5.2.2. Yarmada Çekme Dayanımı

Dolaylı çekme yükleri betonun çekme dayanımının elde edilmesini belirleyen deney yöntemi bütün ülke standartlarında yer almaktadır. Bu konudaki Türk standardı, TS 3129 dur[71].

Silindir şekilli beton numuneye bu şekilde basınç yükünün uygulanmasını durumunda, beton, yük ekseninde kısalma ve yük eksenine dik olan yatay eksen ise uzamaya maruz kalmaktadır. Betondaki çekme gerilimleri bulunmaktadır.

\[\text{Çekme Gerilmesi} = \frac{2P}{\pi LD} \]

Yukarıdaki formlerde;

P = Kırılmaya neden olan basınç yükü,
L = Silindir numunenin boyu,
D = Silindir numunenin çapıdır.
Beton içerisinde oluşan basınç gerilmesinin değeri çekme gerilmesinden daha yüksektir. Beton kesitin ortasında yani D/2 noktasında, betonda oluşan basınç gerilmesi, çekme gerilmesinden 3 kat daha fazladır. Ancak, betonun çekme yüklerine karşı gösterebileceği direnç yüksek olmadığından, betondaki kırlma, çekme yükleri nedeni ile yer almış olmaktadır.

Şayet silindir numune yerine boyutları a x a x a olan küp numuneler kullanılsa;

\[\sigma_c = \frac{2P}{\pi a^2} \] \hspace{1cm} (3.11)

formülden hesaplanır.

Dolaylı çekme dayanımı yönteminin uygulanması sonucunda beton numune yarılara iki parça ayrıldığı için, bu yöntem genellikle yarma deneyi yöntemi olarak adlandırılmaktadır[71].

3.2.5.2.3. Eğilmede Çekme Dayanımı

Betonun eğilme dayanımının bulunabilmesi ile ilgili Türk standartları TS 3284 ve TS 3285 dir. Betonun eğilme dayanımının bulunması için kiriş numuneler hazırlanmakta ve eğilme yükü altında kırlıma tabi tutulmaktadır[72,73].

Eğilme dayanımı deneylerinde genellikle kare kesitli kirişler kullanılmaktadır. Numunelerin hazırlanması için kalıplarla yerleştirilen taze beton sıkıtılmakta ve deney gününe kadar 23 ± 2 °C sıcaklıkta ıslak küre tabi tutulmaktadır[72,73].

Beton kiriş numunelerde kırlıma neden olan yük deneysel presinin göstergesinde okunduktan sonra eğilme dayanımının hesaplanabilmesi için aşağıdaki formül kullanılmaktadır.

\[\sigma_e = \frac{Mc}{I} \] \hspace{1cm} (3.12)

Burada ;
\[\sigma_e = \text{Eğilme dayanımı}, \]
\[M = \text{Maksimum moment}, \]
\[c = \text{Tarafsız eksen ile kiriş yüksekliğinin en uç noktası arasındaki uzaklık}, \]
d = Kiriş kesitinin yüksekliği,
b = Kiriş kesitinin eni,
l = Atalet momentidir.

Orta noktadan yüklenen dkidörtgen kesitli beton kiriş numunelerde \((\sigma_e = \frac{Mc}{l})\) eğilme dayanımı aşağıdaki gibi hesaplanır.

\[
\sigma_e = \frac{3PL}{2bd^2} \tag{3.13}
\]

Mesnetlerden L/3 uzaklıktaki iki noktadan yüklenen dikdörtgen kesitli beton kiriş numunelerde ise eğilme dayanımının hesaplanması için aşağıdaki formül kullanılmaktadır.

\[
\sigma_e = \frac{PL}{bd^2} \tag{3.14}
\]

Eğilme yüküne maruz kalan beton kirişte yer alan kırılmaya, betonun tarafı eksenin altında oluşan çekme gerilimleri neden olmaktadır. Bunun nedeni ise betonun oldukça düşük çekme dayanımına sahip olmasıdır. O bakımdan beton kirişlerde elde edilen eğilme dayanımı değeri aslında betonun çekme dayanımını işaret etmektedir[72,73,74,75].

3.2.6. Beton Özelliklerini Etkileyen Faktörler

Gerek taze betonun ve gerekse sertleşmiş betonun tüm özellikleri, beton karışımının oluşturulmasında kullanılan çimentonun, agreganı, suyun ve katkı maddelerinin özellikleri ve karışım içerisinde yer almış oldukları oranlar tarafından etkilenmektedir. Sertleşmiş beton, taze betonun katılması sonrası safhadaki durumu olarak tanımlandığı için, sertleşmiş betondan beklenilen performans, önemli ölçüde taze betonun özelliklerine bağlı olmaktadır [64].

Sertleşmiş betonun özelliklerini çok büyük ölçüde etkileyen başka faktörlerde bulunmaktadır. Bunlar, taze betonun uygun tarzda taşınması, yerine yerleştirilmesi, sıkıştırılması, yüzeyinin düzgünleştirilmesi v hidratasyonun sağlıklı şekilde yer alabilmesi için kür edilmesi işlemleridir. Sertleşmiş betondan beklenilen özelliklerin elde edilebilmesi için bu işlemlerin uygun tarzda yerine getirilmiş olmaları gerekmektedir [64].
3.3. Yüksek Sıcaklığın Betona Etkileri

Betonun diğer yapı malzemelerine göre en önemli bazı avantajları sıralandığında, istenilen şekil ve boyutlarda üretililebilmesi, yüksek basınç dayanımına sahip olması, çelik donatı ile iyi aderansa sahip olması, diğer taşıyıcı malzemelere kıyasla yüksek sıcaklık ve yangın etkisine daha dayanıklı bir malzeme olması gibi özellikleri söylenebilir [64]. Beton, yanmayan madde olusu, belirli bir süre için önemli bir zarar görmemesi ve zehirli duman çıkarmaması ile yangın direnci yüksek bir malzemedir [76]. Ancak bu dayanıklılık, sınırlı süre ve belirli sıcaklıklar için geçerlidir [20].

Yüksek sıcaklık etkisinde oluşan parça atmalar, yapı elemanının yük taşıma kapasitesini ve bütünlüğünü kaybetmesine neden olur. Parça atmalar sonucu donatılar yüksek sıcaklığa maruz kalırlar. Polipropilen lif ve hava sürükleyici kullanılarak parça atma riskini azaltır. Hava sürükleyicileri nem içeriğini ve boşlukların miktarını artırarak boşluk basınçını düşürür. Parça atmaları azaltmak için termal bariyerler, polipropilen lifler, hava sürükleyici, büyük boyutlu elemanlar ve düşük termal genleşme sahip agregalar kullanmak gerekir [77].

Şekil 3.3.1. Yüksek Sıcaklığın Betonun Fiziksel Özelliklerine Etkileri

Şekil 3.6. (380 mm) boyutlu kare kolonda sıcaklık dağılımı (78)
Şekil 3.7. Yangında hasar görmüş betonun izotermine bağlı özellikleri (79)

Papayianni vd. (2005) tarafından Şekil 3.8'de görüldüğü üzere 150 mm çapında 300 mm yüksekliğindeki silindir beton numunelerde yüksek sıcaklık etkisi esnasında yapılan ölçümlerde yüzüzdür durumda 400 °C'ye kadar büzülme daha sonra genleşme gözlenmiştir[80].

Şekil 3.8. Betonda sıcaklık deformasyon ilişkişi (81)
3.3.1.1. Isı Yayım Katsayısı

Yüksek sıcaklık etkisinin nedenlerinden biri olan yangınlardan, ısı enerjisinin bir kısımı emilir. Emilen ısı sıcaklığının yükselmesine neden olur. Bu olayda ısı yayım katsayısı (a), (mm²/san) etkili olur. Isı yayım katsayısı, malzemenin ısı iletim katsayısına (λ), (W/mºC), özgül ısısına (c), (KJ/kgºC) ve birim ağırlığına (β), (kg/m³) bağlı olarak aşağıdaki formül ile hesaplanır [81].

\[a = \frac{\lambda}{c \beta} \]

(3.15)

İsi yayım katsayısı, Şekil 3.9’da de görüldüğü gibi, sıcaklık artışça azalmaktadır. Bu azalma özellikle 100 ºC civarında buynedeki suyun buharlaşması nedeniyle daha belirgin olmaktadır.

![Şekil 3.9. Çeşitli betonlar için a ısı yayım katsayısı (81)](image.png)

3.3.1.2. Isı İletim Katsayısı

Yapılan araştırmalar, betonun ısı iletimine etki eden temel unsurun agrega türü olduğunu göstermektedir. Betonun kalker ve dolomit esaslı agregalarla üretilmesi durumında λ büyük değerler almadır. Buna karşın silis esaslı aggreganın kullanıldığı betonda λ’nın %15-20 daha büyük olduğu kabul edilir. Isı iletim katsayısına etki eden diğer iki
önenli unsur, boşluk oranı ve boşluk yapısı ile su içeriğidir. Suyun ısıyı havaya göre daha fazla iletmesinden dolayı kuru haldeki bir cisimde genişeklerin fazla olması λ’nin düşmesine yol açar. Yüksek sıcaklık etkisinde kalan betonun, genişeklerinden su kaybettiği, çimentoonun dehidratasyonu ile boşluk bir yaprıl dönüstüüğü ve ısı iletim katsayısının azaldığı bilinir [82].

3.3.1.3 Genleşme Katsayısı

Malzemelerin şekillenmesini de etkileyen ısıya ilişkin bir diğer özelliği de ısı genleştirmesidir. Betonun genişme katsayısı (α), (1/ºC), üretimde kullanılan agregaların genişmesine bağlıdır. Çimento hamurunun α’sı (11.10$^{-6}$ - 20.10$^{-6}$ 1/ºC) ile aggrega rının düştükter. Genleşme katsayısı en düşük olan doğal taş kalkerdir. Sıcaklık arttıkça α artmaktadır. Yüksek sıcaklıklarda termik genişlemelerdeki farklılıklardan dolayı oluşan gerilmeler çimento hamuru ile agrega ara yüzünde çatlamalara neden olur [81,83].

3.3.1.4 Özgül İsi

Betonun özgül ısısi, diğer bir deyişle bir gramın sıcaklığını 1 ºC artırmak için gerekli olan ısı enerjisi, sıcaklıkla çok az değişir. Bu büyükliğe agreganın önemli etkisi yoktur [83].

3.3.1.5. Isı Şoku Parametresi

Gevrek malzemelerde sıcaklık değişimleri hızlı ve sıcaklık gradyanı yüksek ise büyük ısıl gerilmeler ve dolayısıyla çatlamalar oluşabilir. “Isı şoku” denilen bu olay ısı iletimine ve ısı genişmeye büyük ölçüde bağlıdır. Isı iletimi yüksek ve ısı genişmesi küçük malzemelerde ısı enerji hızla çevreve yarılır bu nedenle sıcaklık gradyanı düşük, boyut değişimleri az, dolayısıyla gerilmeler küçük olur. Malzemelerin ısı şoku dayanıklılığını belirtmek için ısı şoku parametresi kullanılır. Isı şoka dayanıklılık yüksek ısı iletimli ve yüksek çekme mukavemetlilerde büyük, ısı genişmesi ve elastisitesi büyük olanlarda ise küçük olur. Bu etkenlere bağlı olarak ısı şoku parametresi λ ısı iletim katsayısına, α ısı genişme katsayısına, σ malzemenin çekme mukavemetine ve E elastisite modülüne bağlı olarak aşağıdaki bağıntı ile hesaplanır [84].
\[
P = \frac{\lambda \sigma_v}{E\alpha}
\]

(3.16)

3.3.1.6. Birim Hacim Ağırlığı

Anderberg-Thelanderson[86] adlı araştırmacı, sıcaklığın etkisi ile birim ağırlığın azalmasına sebep olan ağırlık kaybını silis esaslı agrega ile üretim betonda artışını, bu çalışma sonucunda ağırlık kaybının sıcaklıkla değişimi şekil 3.10'de verilmiştir.

![Şekil 3.10. Ağırlık kaybının sıcaklıkla değişimi [86]](image)

Silis dumanı ve uçucu kül mineral katkıları kullanılarak yapılan başka bir çalışmada, suda soğutma etkisi havada soğuttaya nazaran daha az boşluk kalamıştır. Suda soğutma, mikro yapının yoğunluğunun artmasına yardımcı olur. Bunu
yüksek sıcaklık etkisinden sonra dehidrate olmuş çimento hamuru bileşenlerinin tekrar hidrate olmasını sağlayarak yapar [85].

3.3.2. Yüksek Sıcaklığın Betonun Mekanik Özelliklerine Etkileri

Betonarme yapılar, yangın, termal şok, endüstriyel uygulamaları vb. durumlarda yüksek sıcaklığa maruz kalmaktadır. Çoğu durumda yüksek sıcaklık beton elemanlarında ve taşıtçı duvarlarda önemli hasarlarla yol açmaktadır [87]. Betonarme yapılarada ana taşıtçının beton olduğunu düşündüğünüz, betonun yüksek sıcaklıklardaki mekanik özelliklerinin iyi bilinmesi gerekmektedir.

3.3.2.1. Basınç Dayanımı

Yüksek sıcaklığa maruz kalan betonun basınç dayanımına, çimento tipi, agregat türü, su/çimento oranı gibi kullanılan malzeme özellikleri ve sıcaklığa maruz kalan süre, nem durumu, ısınma ve soğuma hızı, yükleme durumu gibi çevresel faktörler etken olmaktadır [76]. Yükleme durumuna göre basınç dayanımındaki değişim şekil 3.11’de verilmiştir. Şekilde verilen A grubu numuneler herhangi bir yüklemeye maruz kalmadan ısıtılan, B grubu numuneler, basınç dayanımlarının %40’ı kadar bir gerilme altında iken ısıtılan, C grubu numuneler ise ısıtılıp 7 gün 21ºC’de bekletilen numunelerin basınç deneyi sonuçlarını temsil etmektedir. Şekilden de görüldüğü üzere yükülü numunelerde 600 ºC’de basınç dayanımı kaybı görülmemiş, yüksüz numunelerde %25, ısıtından 7 gün sonra basınç deneyi yapılan grupta ise %60 dayanım kaybı olmuştur [76]. Şekil 3.11’deki basınç deneyi sonuçları, C grubu numunelerin temsil ettiği, yüksüz durumda ısıtır�sogutulduktan sonra basınç dayanımlarının belirlenmesi yönteminin daha güvenli bölgede kaldığını göstermektedir.
Şekil 3.11 Betonun basınç dayanımının yükleme durumuna göre sıcaklıkla değişimi [76]

Soğutma türünün de yüksek sıcaklıkta maruz betonun basınç dayanımına etkisi vardır. Su ile soğutulan numunelerin basınç dayanımlarındaki azalma (Şekil 3.12) havada soğutulan numunelere nazaran daha fazladır [76].

Şekil 3.12. Basınç dayanımının soğutma şekline göre sıcaklıkla değişimi [76]

Shoaib vd. [88] tarafından agrega olarak ayrı ayrı kum ve iki farklı çıruf kullanılan farklı su/çimento oranlarına sahip 7.5x15 cm boyutlu silindir numuneler 600 °C’ye kadar ıstil olmuştur ve bu sıcaklıkta iki saat bekletilmiştir. Numunelerde havada soğutulan grupların basınç dayanımlarındaki azalmanın suda ve firında soğutulanlardan daha fazla olduğu görülmüştür. Bunun nedeni atmosferik ortama maruz
kalan betonda CaO’nun CaCO₃’e dönüşmesiyle ve bunun hacim değişimine ve çatlaklara neden olmasıyla açıklanmıştır.

Lea ve Straaling[40] betonda 300 ºC’ye kadar olan dayanım artısına dikkat çekmişlerdir. Dayanımdaki artış silis esaslı agrega ile üretilen betonlarda daha fazladır ve bunun nedeni çimento ile agrega arasındaki aderansın silisli agregalarda daha yüksek olmasıdır.

3.3.2.2. Çekme Dayanımı

Betonun çekme dayanımı, eğilmede çekme ve yarma deneyi sonuçları ile araştırılır. Silindir numunelerde değişik sıcaklık etkisinde iken ve soğutulduktan sonra yapılan yarma deneyi ile elde edilen çekme dayanımlarında 100 ºC’den itibaren önemli düşüşler olmakta ve 600 ºC’de kayıp %70’e varmaktadır [81].

Guise vd. [89] tarafından yapılan deneySEL çalışma sonucu yüksek sıcaklık etkisiyle, uçucu kül ve yüksek fırın çırımı katkılı ve katkıız beton numunelerinde, 200 ve 300 ºC’de eğilmede çekme dayanımında önemli ölçüde azalma olduğu şekil 3.13 görülmuştur.

Şekil 3.13. Puzolan katkılı ve katkıız betonların çekme dayanımının sıcaklıkla değişimi[89]

Yüksek sıcaklık etkisinin artırıldığı silis dumanı katkılı ve katkıız harçlar üzerinde yapılan diğer bir deneySEL çalışmada, harçların eğilme dayanımı (Şekil 3.14) 100 ºC’den itibaren bütün gruplarda azalmaya başlamış, suda soğutulanlardaki kayıp, 300 ºC’de yaklaşık %40’a varmuştur [82].
3.3.2.3. Elastisite Modülü

Savva vd. [90] tarafından yapılan deneysel çalışmada farklı tür ve oranda puzolan katkılı silis esaslı ve kalker esaslı agreg ile üretilen betonlarda tüm sıcaklıklarda elastisite modülünde devamlı bir azalma gözlenmiştir. Bu azalma kalker esaslı agreg ile

Şekil 3.16. Farklı beton numuneleri için sıcaklık- elastisite modülü ilişkisi [90]
4. DENEYSEL ÇALIŞMA

4.1. Numune Üretiminde Kullanılan Malzemeler

Beton üretiminde özellikleri aşağıda verilen agregalar ve çimento kullanılmıştır.

4.1.1. Agregalar

Beton üretiminde, tablo 4.1 de, fiziksel özellikleri verilmiş, tane çapı 16 mm olan ve Elazığ bölgesinde temin edilen doğal agrega, pomza, kırınataş ve kireçtaşı kullanılmıştır(Fotoğraf 4.1).

Tablo 4.1.Deneysel kullanılan iri agregaların fiziksel özellikleri

<table>
<thead>
<tr>
<th>Agrega Tipi</th>
<th>Özgül Ağırlık (gr/cm³)</th>
<th>Su Emme (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomza</td>
<td>1,91</td>
<td>22,33</td>
</tr>
<tr>
<td>Kireçtaşı</td>
<td>2,66</td>
<td>1,33</td>
</tr>
<tr>
<td>Kırınataş</td>
<td>2,70</td>
<td>1,12</td>
</tr>
<tr>
<td>Dere</td>
<td>2,79</td>
<td>0,93</td>
</tr>
</tbody>
</table>
Eleme işlemine tabi tutulacak agrega numunesi önceden etüvde 100±5°C kurutulmuştur. Elek serisi paslanmaz çelikten üretilen 16 mm, 8 mm, 4 mm, 2 mm, 1 mm, 0,5 mm ve 0,25 mm olmak üzere 7 adet elekten oluşmuştur. Her elek üzerinde kalan malzemeler alınarak hassas bir şekilde tartılmıştır. Bu işlem sonrasında her elek üzerinde ağırlıkça yüzde ne kadar agrega geçtiği hesaplanarak tane boyutuna göre gerekli granülometrik eğriler çizilerek tane dağılımı bulunmuştur. Agregalara ait granülometri eğrileri şekil 4.1, 4.2, 4.3 ve 4.4’de verilmiştir.

Şekil 4.1. Pomza Granülometrisi

Şekil 4.2. Kireçtaş Granülometrisi
4.1.2. Çimento

Numunelerin hazırlanmasında Elazığ Çimento Fabrikası A.Ş.’nin üretmiş olduğu CEM I 42,5 kullanılmıştır. Çimento Fabrikadan alındıktan sonra deney süresi boyunca uygun koşullarda saklanarak tüm seriler için aynı koşullarda kullanılmıştır. Tez çalışmasında kullanılan çimentonun dozajı 400 kg/m³’tür. Bu çimentoya ait fiziksel ve kimyasal özellikler tablo 4.2’de verilmiştir.
<table>
<thead>
<tr>
<th>Çimento</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>SO₃</th>
<th>K.K.</th>
<th>Blaine</th>
<th>Özg.Ağ.</th>
<th>Fce</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÇ.42,5</td>
<td>21,12</td>
<td>5,62</td>
<td>3,24</td>
<td>62,94</td>
<td>2,73</td>
<td>1,79</td>
<td>1,78</td>
<td>3382</td>
<td>3,07</td>
<td>51,7</td>
</tr>
</tbody>
</table>

4.1.3. Karışım Suyu

Beton numunelerinin hazırlanmasında kullanılan karışım suyu Elazığ şehir şebekesinden (içme suyu) temin edilmiştir.

4.1.4. Beton Numunelerin Boyutları, Kür ve Bakımı

Çalışmada kullanılabilecek betonların fiziksel ve mekanik özelliklerini belirlemek amacı ile 100x100x100 mm ve 150x150x150 mm boyuttarında küp numuneler üretilmiştir(Fotoğraf 4.2).

Dökülen numuneler bir gün süre ile kalıplarda bekletilikten sonra, özellikle numune köşe ve kenarları zarar görmeyecek şekilde özenle kalıplardan sökülerek kür tankına yerleştirilmiştir. Kür tankının sıcaklığı 23±2 °C’de sabit tutulmuştur.
4.2. Yapılan Deneyler

Betonun mekanik özelliklerini belirlemek amacı ile hazırlanan beton numunelere hasarlı ve hasarsız bazı deneyler yapılmıştır. Ayrıca numunelerin üretim aşamasında taze beton deneyi de yapılmıştır. Taze betonlarda yapılan deney yayılma tablası deneyidir. Sertleşmiş betonlara uygulanan hasarsız deney, ultrasons geçiş hızı deneyidir. Hasarlı deney olarak da, basınç deneyi ve aderans dayanımını belirlemek çünkü çekip çıkarma (pull-out) deneyi yapılmıştır. Farklı türde agregalarla hazırlanan beton numuneleri, oda sıcaklığı, 300\(^0\)C, 600\(^0\)C ve 900\(^0\)C maruz kaldılan sonra yukarıda belirtilen hasarlı ve hasarsız deneylere tabi tutulmuşlardır.

4.2.1. Yüksek Sıcaklık Deneyi

Beton numunelere yüksek sıcaklık uygulaması, Fırat Üniversitesi Yapı Laboratuvarında bulunan ışınma hızı 6\(^0\)C/dk. olan 1200\(^0\)C kapasiteli Protherm HLF 150 markalı laboratuvar tipi fırında yapılmıştır.
Bu fırında sırasıyla 300\(^{\circ}\) C, 600\(^{\circ}\) C, 900\(^{\circ}\) C’lik sıcaklıklar uygulanmıştır. Her bir numune sıcaklık deneyinde önce 1 gün süreyle 100 ±5 \(^{\circ}\)C etüv sıcaklığında bekletilmiş ve bu işlem sonucunda kurutulan beton numuneler yüksek sıcaklıklara tabi tutulmuşlardır. Yüksek sıcaklık gören beton numuneler hasarlı ve hasarsız deneylere alınmışlar bulunan sonuçlar grafiğe taşınmış ve daha sonra karşılaştırılmışlardır.

Fotoğraf 4.4 Yüksek Sıcaklık Fırını

Fotoğraf 4.5 Etüv (Kurutma Fırını)
4.2.2. Taze Beton Deneyi

4.2.2.1. Yayılma Tablası Deneyi

Yayılma tablası deneyi TS EN 12350-5 standartlarına uygun olarak taze betonun işlenebilirliğinin, bir tabla üzerinde düşme hareketi yapılarak üzerindeki betonun yayılmasını ölçme yoluyla taze betonun kıvamını belirlemektir. Çalışmada yayılma deneyi için, üzerine betonun konulabileceği 700±2 mm ölçüleriinde kare yüzey alanı hareketli düz plaka ve bu plakanın üzerine belirli yükseklikten düşürüleceği üstteki plakanın menteşeyle bağlı olduğu sert alt tabakadan meydana gelen tabla, taban çapı 200±2 mm üst yüz çapı 130±2 mm olan çökme hunisi ve yaklaşık 200±2 uzunluğunda 40±1 mm kare kesitli sıkıştırma çubu kullanılır. Taze beton çökme hunisine iki eşit tabaka halinde kepçe kullanılarak doldurulur. Her tabaka sıkıştırma çubu ile 10 defa şişlenerek yerleşirilir.

Fotoğraf 4.6. Yayılma Tablası Deney Elemanları

Çökme hunisinin üst yüzeyinin siyrlaşmasından sonra, çökme hunisi el tutamaklarından tutularak düşey şekilde yukarıya çekilerek alınır. Üst plaka, alt durdurucular üzerine serbestçe düşürülür. Bu düşürülme işlemi 15 kez yapılırak tamamlanır. Düşürülme işlemi tamamlandıktan sonra üst plakaya yayılan beton tabakasının en büyük boyutları, plaka kenarlarına paralel iki doğrultuda cetvelle \(d_1 \) ve \(d_2 \) mm olarak ölçülür[64].

59
Tablo 4.3. Yayılma Sınıfları

<table>
<thead>
<tr>
<th>Sınıf</th>
<th>Yayılma çapı (mm)</th>
<th>Tolerans</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₂</td>
<td>350 - 410</td>
<td>± 30</td>
</tr>
<tr>
<td>F₃</td>
<td>420 - 480</td>
<td></td>
</tr>
<tr>
<td>F₄</td>
<td>490 - 550</td>
<td></td>
</tr>
<tr>
<td>F₅</td>
<td>560 - 620</td>
<td></td>
</tr>
<tr>
<td>F₆</td>
<td>≥ 630</td>
<td></td>
</tr>
</tbody>
</table>

Bu çalışmada, bütün taze beton numunelerinde tablo 4.3’deki yayılma sınıflarından F₃ deki yayılma çapı (420-480 mm) esas alınmıştır.

4.2.3. Sertleşmiş Beton Deneyleri

4.2.3.1. Tek Eksenli Basınç Dayanımı Deneyi

Basınç dayanımı deneyi, 100x100x100 mm ve 150x150x150 mm Küp numuneler üzerine gerçekleştirilmiştir. Basınç dayanım deneyi, TS EN 12390-3 standardına uygunca ve 3000 kN kapasiteli otomatik konsol pres kullanılarak uygulanmıştır.

[Fotoğraf 4.7 Tek Eksenli Basınç Dayanımı Test Aleti]
Basınç dayanımı aşağıdaki formülle hesaplanmıştır;

\[
\sigma = \frac{P}{A}
\]

(4.1)

Burada;

\(\sigma\): Beton deney numunesi basınç dayanımı (N/mm\(^2\))

P: Kırılma yükü (N)

A: Kesit alanı (mm\(^2\))

Basınç dayanım deneyi, farklı sıcaklıklara maruz kalmış her üç numune için gerçekleştirilmiştir. Basınç dayanımı bu numunelerin ortalamaları alınarak belirlenmiştir.

4.2.3.2. Çekip – Çıkarma (pull-out) Deneyi

Çekip-çıkarma deneyi, 150x150x150 mm küp numuneler üzerinde yapılmıştır. Bütün deney numuneleri belirlenen yaşa (28 gün) geldiklerinde sonra ASTM C 234-9 standardı uyarınca yapılmıştır. Çekip - çıkarma deneyi için INSTRON 8503 çekme makinesi kullanılmıştır. Deneylerde çekme makinesinin hızı 2 mm/dk. olarak şekilde sabit tutulmuştur.

Fotograf 4.8 Çekme Makinesi
Çekip - çıkarma deneyi aşağıdaki formülle hesaplanmıştır;

\[
\tau = \frac{\text{Aderans Kuvveti}}{\pi \cdot \Phi \cdot l}
\]

(4.2)

Burada;

\(\tau \) = Aderans gerilmesi

\(\Phi \) = Donatı çapı

\(l \) = Aderans boyu (betona gömülü donatı uzunluğu) alınmıştır.

Fotograf 4.9 Bazı numunelerin deney sonrası durumları

4.2.3.3. Ultrasonik Test

Ultrasonik test için 10x10x10 mm ve 15x15x15 mm boyutlarında küp numuneler kullanılmıştır. Beton numuneler ASTM C 597 standartına uygun 0,1µs duyarlılığı ultrases aleti ile ölçülmiştir. Bu deney için hazırlanı numunelerin 4 yüzeyinden karşılıklı olarak 2 okuma gerçekleştirmiştir ortalama değerler alınmıştır.

Fotograf 4.10 Ultrasonik Test Aleti
Ultrases geçiş hızı aşağıdaki bağıntıdan yararlanılarak hesaplanmıştır,

\[v = \frac{S}{t} \times 10^6 \]

(4.3)

Burada;
\(V \) = Ses üstü dalga hızı (metre/saniye)
\(S \) = Beton bloğun ses üstü dalga gönderilen yüzeyi ile dalgaın aldığını yüzey arasındaki mesafe (metre)
\(t \) = Ses üstü dalgaın gönderilmiş olduğu beton yüzeyinden, aldığını yüzeye kadar geçen zaman (mikrosaniye).

4.2.3.4. Porozite

28 gün sonra kür tankından çıkarılan numuneler yüksek sıcaklık öncesi porozite değerleri kaydedilmiştir. Porozite değerini bulmak için aşağıdaki formülden faydalanılmıştır,

\[\frac{\text{W}_{\text{dyk}} - \text{W}_{\text{kuru}}}{\text{W}_{\text{su}}} \times 100 \]

(4.4)

Burada;
\(\text{W}_{\text{dyk}} \) = Numunenin doygun yüzey kuru ağırlığı (kg)
\(\text{W}_{\text{kuru}} \) = Numunenin etüvde kurutulduktan sonraki ağırlığı (kg)
\(\text{W}_{\text{su}} \) = Numunenin su altı ağırlığı (kg)

<table>
<thead>
<tr>
<th>Malzeme</th>
<th>Porozite (%)</th>
<th>Birim Ağırlık (gr/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomza</td>
<td>17,6</td>
<td>1,56</td>
</tr>
<tr>
<td>Kireçtaşı</td>
<td>10,6</td>
<td>2,06</td>
</tr>
<tr>
<td>Dere</td>
<td>5,98</td>
<td>2,19</td>
</tr>
<tr>
<td>Kırmatasğ</td>
<td>4,82</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Tablo 4.4 Sertleşmiş Betonun Bazı Fiziksel Özellikleri
5. DENEYSEL ÇALIŞMALARIN DEĞERLENDİRİLMESİ

5.1. Ultrasonik Test Değerlerinin Değerlendirilmesi

Boyuna ses geçiş dalgalarının değerlendirilmesi esasına dayanan ultrases metodu, basit ve ucuz olması nedeni ile betonun tahribatı deneyleri için çok kabul gören yöntemlerden biridir. Ultrasonik dalga bir ortamda yayılma hızı o ortamın boşluk yapısına dolayısıyla yoğunluğuna ve elastik özelliklerine bağlıdır. Bu bölümde yapılan ultrases ölçümleri ile yüksek sıcaklığın betonun boşluk yapısına etkileri değerlendirilmiştir.

Ultrasonik test için 10x10x10 cm ve 15x15x15 cm boyutlarında küp numuneler kullanılmıştır. Ses geçiş sürelerinin ölçülmesinde mala yüzeyindeki pürüzleri doldurmak amacı ile numunenin yanal yüzlerine vazelin sürülmüş, 55 kHz ‘lik ses dalgaları gönderen ve alan iki pulslar numunenin düzgün yüzeylerine erleştirilmiş ve ses geçiş süreleri okunmuştur. Bu şekilde deney için hazırlanan numunelerin 4 yan yüzeyinden karşılıklı olarak 2 okuma gerçekleştirilen ortalama değerler kaydedilmiştir. Çalışmada elde edilen sonuçlar şekil 5.1 ve 5.2 de gösterilmiştir.

Şekil 5.1. 10x10x10 Numunelerin Ultrases Geçiş Hızı – Sıcaklık Grafiği
Boşluk miktarı çok olan bir betondan sesüstü dalga hızının geçiş süresi daha uzundur. Betonun boşluk yapısı, yoğunluğu ve agregalarla yakından ilişkilidir. Bundan dolayı test sonuçlarının kontrol numuneleri incelendiğinde doğal agregali ve kırmataş agregali betonlar birbirine yakın özellik gösterirken kireçtaş aggregalı ve hafif agregalı betonlar da ses üstü dalga hızı geçişsi daha düşüktür.

Kontrol numunelerinden en düşük ses geçiş hızını 3,4 mm/µs ile hafif agregalı betonlar verirken en yüksek ses geçiş hızını 4,83 mm/µs ile kırmataş agregalı betonlar vermiştir.

Tüm numunelerin ultrases deneyi sonuçlarına göre ses geçiş hızlarında 300 °C’de yaklaşık %21, 600 °C’de %65, 900 °C de %85 düşüş olmuştur. Bu durum sıcaklığun etkisiyle betondaki agrega ile çimento hamuru arasındaki termal uyumsuzluğun toplam boşluk oranının arttırması ile açıklanabilir.

5.2. Basınç Dayanımının Değerlendirmesi

Basınç dayanım deneyi için 10x10x10 cm ve 15x15x15 cm boyutlarındaki küp numuneler kullanılmıştır. 300 °C, 600 °C, ve 900 °C sıcaklıklara maruz kalan numuneler havada soğutulup, standartlarda belirtilen hususlara da dikkat edilerek deney presine yerleştirilmiş ve kırm gerçekleştirilmiştir. Çalışmada elde edilen sonuçlar şekil 5.3 ve 5.4 gösterilmiştir.
Tüm beton serilerinin uygulanan sıcaklıklara göre dayanım ilişkileri incelediğinde sıcaklık artışça basınç dayanımında azalmalar gözlenmiştir. Tüm kontrol numunelerinden elde edilen değerler çerçevesinde en yüksek dayanımı kırmataş agregali beton elde ederken en düşük dayanına sahip olan hafif agregali beton olduğu gözlenmiştir.

Tüm numunelerinin basınç dayanımları sonuçlarına göre 300 °C de yaklaşık %5, 600 °C de yaklaşık %45, 900 °C de ise yaklaşık %70 dayanım kaybına uğramışlardır. Bunun nedeni olarak çimento hamurunda jel yapıştıran kalsiyum silikat hidratenin (CSH) katı öğeleri, adsorpsiyon suyu yardımcıla birbirine bağlanır. Jeldeki adsorpsiyon suyu ve hidratlardaki kimyasal bağlı su, 300 °C’den itibaren buharlaşmaya başlarken kılıcal
boşluklardaki serbest su 100 °C civarında buharlaşabilir. Buharlaşan su, betonda büzülmeye (rötreye) neden olur. Üretimdeki suçimento oranına bağlı olarak serbest su, beton hacminin yaklaşık %4’üne kadar varabilir. Bu su kaybının neden olduğu büzülme ve beton içinde oluşan buhar basıncı betonun çatlamasına ve parça atmasına neden olur.

Çimento hamurundaki bir diğer önemli bileşen kalsiyum hidroksittir. Ca(OH)₂ 530 °C civarında sönmemiş kirece dönüşür. Bu dönüşümde yaklaşık %33’e varan bir büzülme meydana gelir. Bu büzülme ve hacim değişikliği sonucu bunyede çatlaklar oluşur, beton ufalanır, boşturlu bir yapıya dönüşür[91].

Agregaların yüksek sıcaklıkta betona etkisi mineral yaplarına bağlıdır. Silisli agregalarda kuvartz, 570 °C'de polimorfik değişime uğrar, α kuvartzdan β kuvartza dönüşür. Bu olay hacim artışına ve hasara neden olur [92]. Kalkerli ve dolomitli agregalarda ise karbonatlar 800-900 °C de CaO veya MgO ya dönüşür. Sıcaklık yükseldikçe kalker veya dolomit genleşir, CO₂’nin ayrıılması ve CaO nun veya MgO nun meydana gelmesi ile büzülme başlar. Bu olaydaki hacim değişikliği hasara neden olur[93].

Yapılan deneySEL çALIŞMADA yüksek sıcaklıkım numunenin boyutuna etkisi de araştırılmıştır. DeneySEL sonuçlar aşağıdaki şekil 5.5, 5.6, 5.7 ve 5.8 de verilmiştir.

![Şekil 5.5 Pomza agregası ile üretilen beton numunelerin boyutlarını karşılaştırılması](image-url)

Şekil 5.6. Kireçtaşı agregasi ile üretilen beton numunelerin boyutlarının karşılaştırılması

Şekil 5.7. Dere agregasi ile üretilen beton numunelerin boyutlarının karşılaştırılması

Şekil 5.8. Kırmateş agregasi ile üretilen beton numunelerin boyutlarının karşılaştırılması
Basınç dayanım kayıpları 15x15x15 cm lik numunelerde 10x10x10 cm lik numunelere nazaran daha azdır. Bunun nedeni, sıcaklığın büyük numunelerin merkezine etkisini daha zor olduğu halide sıcak etkisinin sadece yüzeyde kaldıgı olarak açıklanabilir. Bu durum 10x10x10 cm lik numunelerde ise tam tersidir. Sıcaklık, küçük numunelerde betonun merkezine kadar etkileyerek dayanım kaybının artmasını sağlamıştır.

5.3. Aderans Deneyinin Değerlendirmesi

Yüksek sıcaklığın betonun aderans dayanımına etkisini araştırmak için 15x15x15 cm lik beton numunelere çekip çıkarma (pull - out) deneyi uygulanmıştır. Bu deneyden elde edilen sonuçlar şekil 5.9 da verilmiştir.

6. SONUÇLAR ve ÖNERİLER

Yapılan bu tez çalışmasında farklı agregalı betonların mekanik özelliklerine yüksek sıcaklığın etkisi araştırılmıştır. Deneysel çalışmalardan elde edilen veriler ışığında aşağıdaki sonuçlar elde edilmiştir.

- Kontrol numuneleri incelendiğinde ses üstü dalga hızı geçiş, doğal agregalı ve kırmıtaş agregalı betonlarda birbirine yakın özellik gösterirken kireçtaşı agregalı ve hafif agregalı betonlar da daha düşüktür.
- Sıcaklığın artması agregalar ile çimento hamuru arasında termal uyumsuzluğa neden olduğundan betondaki toplam boşluk hacmi artar bunun sonucu olarak ta ses geçiş hızlarında düşüşler gözlemiştir.
- Farklı agregalı betonların basınç dayanımları incelendiğinde en yüksek dayanımı kırmıtaş agregalı betonlar gösterirken, en düşük dayanımı hafif agregalı betonlar göstermiştir.
- 10x10x10 cm ile 15x15x15 cm lik numunelerin basınç dayanımları arasındaki oran 0,90-0,93 arasında değişmektedir.
- Sıcaklık artış agregaların değişik özelliklerinden dolayı betonlarda farklı dayanım kayıplarına neden olduğu gözlenmiştir. Hafif agregalı betonların agregap yapısından dolayı dayanım kayıplarındaki azalmalar diğer agregalarla hazırlanılanlara nazaran daha azdır.
- Beton numunelerin boyut farklılıkları sıcaklığın etkilediği derinlik bakımında değişiklik göstermiştir. 10x10x10 cm lik beton numunelerinin basınç dayanımı kayıpları sıcaklıkta fazla etkilenirken 15x15x15 cm lik beton numuneleri daha az etkilenmiştir. Bunun sebebi olarak da sıcaklık küçük numunelerin içerisine kadar etki ederken büyük numunelerde bu etki daha azdır.
- Çekip-çıkarma deneyi sonucunda sıcaklık artış, beton ile donatı arasındaki aderans kuvvetini zayıflatmıştır.
- Yapılan literatür taramasında yüksek sıcaklığın betonun mekanik özelliklerine etkisi hakkında hazırlanan bir çok makaleye rastlanmıştır. Ancak beton hacminin %60-80 oranında kaplayan agregaların yüksek sıcaklık altında davranış üzerine hazırlanan makale sayısı azdır. Agregaların yüksek sıcaklık altında
davranışları daha iyi Değerlendirmeleri ve bu konu üzerinde daha fazla durulması önerilir.

KAYNAKLAR

[54] TS 3529, 1980 Beton Agregaların Birim Ağırlıkları Tayini, TSE, Ankara

[58] TS 19, 1994, Portland Çimentoları, TSE Ankara

[68] TS 3323, 1979, Beton Basınç Deney Numunelerinin Hazırlanması Hızlandırılmış Kürü ve Basinç Dayanım Deneyi, TSE Ankara

[69] TS 3114, 1980, Beton Başınıç Mukavemeti Deney Metodu, TSE Ankara

[71] TS 3129, 1978, Betonda Yarma Çekme Dayanımı Tayini Deneyi, TSE Ankara

[72] TS 3284, 1979, Betonda Eğilmede Çekme Dayanımı Tayini Deneyi, (1/3 Noktalarında yüklenmiş basit kiriş metodu ile) TSE Ankara

[73] TS 3285, 1979, Betonda Eğilmede Çekme Dayanımı Tayini Deneyi, (Orta naktasından yüklenmiş basit kiriş metodu) TSE Ankara

[74] TS 3068, 1978, Laboratuarda Beton Deney Numunelerinin Hazırlanması ve Bakımı, TSE Ankara

ÖZGEÇMİŞ