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ABSTRACT 
 

DESIGN OF EFFECTIVE CARBONIC ANHYDRASE INHIBITORS BY USING IN 

SILICO PHARMACOPHORE ANALYSIS  

 

Nur GÜREL 

Master of Science Thesis, Department of Bioinformatics and Computational Biology 

Supervisor: Assoc. Prof. Dr. Tuğba TAŞKIN TOK 

July 2019, 35 pages 

.  

Pharmacophore modeling is a successful yet very diverse subfield of computer-aided drug 

design. The concept of the pharmacophore has been widely applied to the rational design of 

novel drugs. In this paper, we review the computational implementation of this concept and 

its common usage in the drug discovery process. Carbonic anhydrases (CAs) are zinc 

containing metalloenzymes including sixteen different isoforms. These enzymes differ in their 

subcellular localization, catalytic activity and susceptibility to different classes of inhibitors. 

The previous studies have also indicated that the CA I and II levels were also higher in several 

cancer types, such as higher cytosolic erythrocte levels in stomach, prostate, lung and ovary 

tumors; also in hematological diseases such as leukemia. In addition, CA II has come to the 

forefront by being expressed in the endothelium of neovessels in some cancer tissues, 

including melanoma, esophageal, renal cancers. Therefore, it is aimed to investigate and 

design reliable and potential carbonic anhydrase inhibitors against to multi target; CA I and II 

by using biological data from our team for treatment of cancer. 

Keywords: Pharmacophore, Carbonic Anhydrase, HipHop, urea; thiourea 
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ÖZET 

 

İN SİLİKO ORTAMDA ERKİN KARBONİK ANHİDRAZ İNHİBİTÖRLERİNİN 

FARMAKOFOR TEKNİĞİ İLE TASARLANMASI 

 

Yüksek Lisans Tezi, Biyoinformatik ve Bilişimsel Biyoloji Anabilim Dalı 

Tez Danışman: Doc. Dr. Tuğba TAŞKIN TOK 

Temmuz 2019, 35 Sayfa 

 

Farmakofor modelleme, bilgisayar destekli ilaç tasarımında başarılı ancak çok çeşitli bir alt 

alandır. Farmakofor kavramı, yeni ilaçların rasyonel tasarımına yaygın olarak uygulanmıştır. 

Bu yazıda, bu kavramın hesaplamalı uygulanmasını ve ilaç keşif sürecinde ortak kullanımını 

gözden geçirdik. Karbonik anhidrazlar (CA), on altı farklı izoformu içeren, çinko içeren 

metaloenzimlerdir. Bu enzimler subselüler lokalizasyonları, katalitik aktiviteleri ve farklı 

inhibitör sınıflarına duyarlılıkları bakımından farklılık gösterir. Önceki çalışmalar, hCA-I ve 

hCA -II seviyelerinin, mide, prostat, akciğer ve yumurtalık tümörlerinde daha yüksek 

sitozolik eritrosit seviyeleri gibi bazı kanser türlerinde daha yüksek olduğunu; ayrıca lösemi 

gibi hematolojik hastalıklarda. Ek olarak, hCA-II, bazı kanser dokularında, melanom, 

özofagus, böbrek kanserleri de dahil olmak üzere bazı kanser dokularındaki endotelyumda 

ifade edilerek ön plana çıkmıştır. Bu nedenle, çoklu hedefe karşı güvenilir ve potansiyel 

karbonik anhidraz inhibitörlerinin araştırılması ve tasarlanması; hCA-I ve hCA-II, kanser 

tedavisi için ekibimizdeki biyolojik verileri kullanarak amacımız olmuştur. 

Anahtar Sözcükler: Farmakofor, Karbonik anhidraz, HipHop, üre;tiyoüre
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1. INTRODUCTION 

Pharmacophore modeling is a successful yet very diverse subfield of computer-aided drug 

design. The pharmacophore definition has been widely performed to the rational drug design. 

In this thesis, we use the computational techniques to investigate potent carbonic anhydrases 

(CAs) inhibitors in the drug discovery process. Carbonic anhydrases are zinc containing 

metalloenzymes. These enzymes have different their subcellular localization, catalytic activity 

and susceptibility. The literatures indicated that the CA I and II levels were also higher in 

several cancer types, such as stomach, prostate, lung and ovary tumors. Additionally, CA II 

causes in some cancer tissues, like melanoma, renal cancers. Because of these, it is aimed to 

elucidate and design rational and lead carbonic anhydrase inhibitors against to each target; CA 

I and II based on the biological data from our team for treatment of cancer. 

Computational methods including pharmacophore mapping, quantitative structure-activity 

relationship (QSAR) modeling, molecular docking and virtual screening (VS) have proven 

their usefulness in pharmaceutical investiation for the determination of new chemical entities 

[1]. The pharmacophore modeling involves ligand-based and structure-based was major areas 

in drug design. 

These applications are useful because they rationalize a lot number of experimental data and 

resent for saving both time and cost in the drug process. Moreover, in silico applications are 

extremely economical than other application experimental and activity investigations.  
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2. GENERAL INFORMATION 

Biological systems are the most complicate sort of systems we know and molecular 

recognition between ligands and their target macromolecules lie at the centre of many of the 

steps talking part in biological environmental. The quick increase in the number of targets 

with known three-dimensional structure has turn on the probability to find the proper binding 

modes of their natural ligands in their bindings, one of the keys towards intelligences the 

proteins function treatment. Protein doing is modulated by binding of a small molecule to 

active regions on the protein and the discomfort of such regulation is mostly a reason for a 

disease [2]. Hence, many medicines try by inhibiting the action of proteins with improved 

activity. Also, the suitable action of malfunctioning or non-functioning proteins causing a 

illness can sometimes be restored by the binding a certain chemical. 

The development of a novel medicine is a highly costly, hard process; this part is named “lead 

detection” and outputs a ligand to be further optimized for an increased interest and particular. 

With increased interest and particular, the nominee medicine should also represent optimal 

pharmacokinetic properties, including its absorption, distribution and metabolism in the alive 

system, along with its extraction and fastener of toxicity. It is after all these canons are met 

that the drug enters diverse process of clinical testing before being confirm and marketed. 

While finding a strong and high-interest lead ligand in a rapid and secure way is already 

defiance quite difficult to handle with as is, the major rise in the number of medicinal targets 

without known small molecule ligands made present in the flow “post-genome era” has made 

the exploration for a lead build even a bigger defiance [3]. In the part, most medicines were 

found either by definition of the real component from classical remedies, variance of native 

ligands or by serendipitous exploration. However, novel discovery touches are based on 

sensibility the molecular and physiological control mechanisms of the illness. In the big 

search for a lead compound, there are two important touches to facilitate these tangles: high-

throughput (experimental) scanning [4] -in vitro testing- and computer aid level desing [5] – 

in silico testing- of big compound bookcases.  

The operate by which a novel drug from identified to marketed is applied as the improving 

bond or “pipeline” and occur of a number of several state (Figure 2.1).  It can be splitted into 

two big states: drug find and drug progress. The first state, drug exploration, can be further 

classified into three diverse steps: target discovery, lead estimation, and lead optimization. In 
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this state, a range of trials and works are planned to implemented initial certificate of a 

biologic target, as well as research for a only molecule to check the action. 

 

Figure 2. 1. Multiple computational drug discovery approaches have been applied in various stages of 

the drug discovery and development pipeline, including target identification, lead discovery and 

optimization, and preclinical tests.  

 

CADD tools have been used in nearly every state, many exchanges the strategy and pipeline 

for drug find (Figure 2.1). Even though the classical practise of CADD is in lead find and 

optimization, today the practise spread in the sense of target certificate and approval, and 

forwards preclinical works, mostly through ADME/T prediction. In the medicine find and 

improving treat, CADD is usually performed for three important purposes: (1) screen great 

molecule bookcase into smaller sets of molecules, for experimentally test only the compounds 

with highest estimated activities; (2) catch up the optimization of lead molecules, in order to 

rise the linking care or optimize medicine metabolism and pharmacokinetic (DMPK) 

properties including ADME/T; (3) purpose new compounds, either by "adding/modifying" 

functional groups in early molecule or by connective together parts into new molecules. 

An sample of enforce CADD in different states of the dmedicine find procedure is pictorial in 

Figure 2.2. We initiate from applying homology modelling to create a target, pursed by molecular 

dynamics (MD) simulations to optimize the target. Then the protein model is prepared for docking 

of compound bookcase to define possible binders [6]. 
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Once the possible binders are identified, combinatorial chemistry can be used to generate a 

series of derivatives. However, if there is no target structure available, a QSAR 

pharmacophore can be generated based on ligand structure and activity information, where 

key pharmacophore features can be achieved for searching the same classes of binders to the 

target. Further, the DMPK properties of the binders, such as ADME/T can also be predicted 

by CADD tools and used to compare with bio-assay data. If a compound can pass all the steps 

above, then it becomes a drug candidate for the following clinical trials.  

 

Figure 2. 2. CADD is classified into two groups based on the availability of target structure 

information. 

 

2.1 Computer Aided Rational Design  

Virtual screening is a computational method to scan large numbers of small molecules to see 

whether they bind to a target protein and function in the desires manner, using the available 

information about the target, binding mechanism or the known or hypothetical binding mode. 

It is a complementary approach to experimental discovery methods that aims to enhance and 

accelerate the lead discovery process. Drug discovery research for both hit identification and 

lead optimization has shifted towards computational methodologies, which are able to handle 

millions of molecules in a much shorter time compared to experimental 

techniques/approaches. The increase in the number of known protein structures and the 

enormous chemical space of conceivable small molecules has drawn particular attention to 

virtual screening techniques[7]. 

Even though virtual screening is a newly emerging approach, the advances in computer 

technology and methodology promoted its success, and there are already several drugs that 

were developed and optimized fully or partially with rational design techniques (Table 2.1) 
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Table 2. 1. List of drugs  
 

Drug Target Disease or Infection 

Dorzolamide Carbonic Anhydrase Glaucoma 

Imatinib (Gleevec) Tyrosine Kinase  Some types of cancer 

Cimetidine  Histamine H2 Reseptor Peptidic Ulcers 

Zolpidem GABAA Receptor Insomnia, Brain Disorders 

Zanamivir Neuraminidase Prophylaxis of influenza 

Raltegravir HIV Integrase HIV Infection 

Enfuvirtide HIV Transmembrane Protein HIV Infection 

 

Drug discovery is such a difficult problem that every relevant technique has to utilized to its 

best advantage. All computational techniques may provide different strategies, useful insights, 

new suggestions for molecular structures to synthesize and cost-effective virtual analysis prior 

to synthesis. The strategy to be pursued in rational design strictly depends on the availability 

of the three-dimensional structure of the biological target. Therefore, computer-aided drug 

discovery CADD techniques can be grouped in classes: ligand-based and structure-based 

(often also called target or receptor-based) methods [8]. 

2.2 Ligand-Based Methods 

Despite the increase in the number of proteins with known 3-D structure, there are still a fair 

number of drug targets without the structure information. However, if there is at least one 

known active ligand validated thought a cell culture assay for a target, ligand- based 

computational techniques that do not require the target structure and binding site geometry 

can be employed. The main idea followed in ligand-based drug design is that ligand structural 

similarity or similarity of steric and electrostatic features implies similar activity, which 

allows deriving the required properties for active molecules from the analysis of already 

known active ligand(s). While not requiring a target structure can be advantageous for ligand-

based methods., with respect to structure-based methods, it can at the same time be a 

drawback not to be able to integrate ligand-target complementarity information in the drug 

design process[9]. On one hand ligand-based methods have low computational complexity; 

however, on the other hand they do not allow a chemically diverse set of results due to 

restriction by the known ligand(s). The ligand-based techniques range from rather simple 

similarity searches- usually applied if there is only one known active ligand to more 

sophisticated methods like pharmacophore modelling. 
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2.2.1 Ligand-Based Pharmacophore Modeling 

In computer-aided drug design, one approach to distinguish potentially active from inactive 

compounds in a database of small molecules is to use the knowledge of the physical and 

chemical properties of the target binding site or set of known actives. Pharmacophores are 

ensembles of these physical and chemical features that are necessary for optimal interactions 

between a specific biological target and a ligand to enhance or inhibit the target function. The 

most common pharmacophore features include being aromatic, hydrophobic, hydrogen bond 

donor, hydrogen bond acceptor, an anion or a cation [10]. Thus, based on which 

pharmacophoric features are used, pharmacophore modeling approaches can be categorized in 

two, whether the structure properties of the target protein and/or the binding site are known, 

namely structure-based pharmacophore models, or a set of known active ligands which bind 

to the same region in the target protein are known, namely ligand-based pharmacophore 

modeling. 

For ligand-based pharmacophore modeling, the information of the target protein or the 

binding site is to not be needed; the model can be created from a set of known actives. At the 

same time, it is crucial that all the known ligands should bind to the same region of the target 

protein. Ligand-based pharmacophore model creation is basically finding the common 

chemical and physical features of the known ligands to be used as a “quary” to search for 

molecules fitting the model in a small molecule database. 

If there are no data available about binding conformation of the known ligands to the target 

protein, finding the active conformations may be quite challenging. In this instance, all the 

conformers of the ligands should be created and aligned to find the best alignment. The 

alignment can be done first by superimposing the most rigid compounds and then adjusting 

the remaining compounds accordingly with computational tools or manually [11]. 

To prevent any bias, the known molecules should preferably be derivatives of the different 

structures. Once the alignment is completed, the pharmacophore model can be generated via 

determining the features that are present in all the molecules. The model can then be used to 

search a database of molecules, resulting in a qualitative ranking based on how well the 

molecules fit the model. 

2.3. Structure-Based Method 

Structure-based methods (also called target or reseptor-based methods) use structural 

information about the target, e.g., crystal structure derived by NMR, or homology models. 
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The main assumptions of structure-based design is that good inhibitors must possess 

significant structural and chemical complementarity to their target receptor. In cases where 

the information about the target protein structure and/or the binding site is available, 

structure-based virtual screening techniques can be applied without any information about 

known active ligands. 

2.3.1 Structure-Based Pharmacophore Modeling  

The alternative to generating pharmacophore models from known ligands is to generate them 

from the target binding site. This method is preferred if there are not any or enough known 

ligand and also prevents any errors that might arise from the restrictions of a training set of 

known ligands. In structure-based pharmacophore modeling, it is crucial to examine the 

binding site intensively and deduce the interactions that play major roles in ligand binding and 

action mechanism of the target. Since the pharmacophore features are derived from the 

residues of the active site and the compounds whose pharmacophore features match the 

properties of the active target binding site are considered to be more active than the other 

compounds, the matching ligands should have the corresponding pharmacophore features. For 

instance, if a hydrogen bond donor feature is defined on a residue of the target binding site, 

then a corresponding hydrogen bond acceptor feature should be included in the 

pharmacophore model that is used for small molecule database search . 

2.4. Carbonic Anhydrase  

According to the last studies it has been proofed that the solid tumors extracellular pH is more 

acidic than the regular tissue. However, the intracellular pH is like normal cells or even a 

louse more basic. To regulate the Ph gradient between the intracellular and extracellular 

compartments the tumor cells secrete ion transort proteins, like, H+- ATPase, Cl-/HCO3- 

exhanger etc.[12]  

Many tumours also express The CAs, the Zn(II) dependent enzymes catalyzing the hydration 

of carbon dioxide to from bicarbonate and a proton.  

CO2+ H2O H2CO3 H+
+ HCO3

-
 

Carbonic anhydrases are among the most studied members of a large family of 

metalloenzymes.  

Carbonic anhydrases (CAs) are ubiquitous zinc-containing metalloenzymes reşated in the 

catalysis of a simple however necessary physiological reaction: the reversible hydration of 

carbon dioxide to bicarbonate ion and proton. These enzymes play a fundamental role in great 

importance physiological processes involved to respiration and acid-base regulation, 
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electrolyte secretion in a variety of tissues/organs, and biosynthetic reactions (e.g. 

gluconeogenesis, lipogenesis and ureagenesis). A few studies have demonstrated that aberrant 

levels or activities of CAs have been often consolidated with different human diseases. As a 

results, CA isozymes have been identified as potential drug targets for the design of inhibitors 

or activators with clinical administrations. 

Inhibition of CAs has emerged as a promising approach for the treatment of a variety of 

disorders such as glaucoma, epilepsy, obesity, and cancer. Recent studies have also pointed 

out the importance of CAs for the design of anti-infective agents with a novel mechanism of 

action. 

Among thiadiazole derivatives, acetazolamide (AAZ) (N-(5-sulfamoyl-1,3,4-thiadiazole-2-yl) 

acetamide), a potent carbonic anhydrase inhibitor, is used in the treatment of glaucoma, acute 

mountain sickness, epileptic seizures.15,24  

On the other hand, furan-based hydrazone derivatives were also reported to exhibit notable 

inhibitory effects on hCA-I. 

Prompted by the afore-mentioned findings and in the continuation of our ongoing research in 

the field of design, synthesis and biological evaluation of thiadiazole derivatives as hCA 

inhibitors,herein we reported the synthesis and inhibitory effects of a new series of N’-(5-

arylfuran-2-yl)methylene-2-[(5-(phenylamino)-1,3,4-thiadiazol-2-yl)thio] acetohydrazide 

derivatives on hCA I and hCA II. Ultimately, all compounds were docked to the active sites 

of hCA-I and hCA-II with AAZ in order to speculate the possible binding modes of these 

molecules in the active sites of these enzymes. 
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Figure 2. 3. The 3-D structure of hCA-I and hCA-II. 

 

It must be noted that using this protocol can generate pharmacophores that are common to a 

set of active ligands and optionally it can add excluded volumes to the pharmacophore model 

by entering a series of inactive compounds. In fact, the purpose of a pharmacophore model is 

to provide a set of steric and electrostatic features that are vital for an optimal interaction with 

specific biological target. 
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3. MATERIALS AND METODS 

In this thesis, we selected twenty five compounds having urea and thiourea framework. These 

compounds were synthesized and their biological activities were examined by our team. 

Beside their biological activity data, pharmacophore analyses were applied to define the 

optimal pharmacophore map to the human carbonic anhydrase I and human carbonic 

anhydrase II active sites. The 3D pharmacophore model was validated using a data set of 25 

CAs (hCA-I and hC -II). The chemical structures of training dataset and dataset compounds 

along with their biological activity are presented in Table 3.1. 

Firstly, binding sites of the targets were examined by using pharmacophore protocol in 

Discovery Studio 3.5. Then the selected ligands were analysed by using common feature 

pharmacophore subprotocol in DS 3.5.  After then, fragment based design was performed to 

occur potential inhibitor(s) against to CAs. The all computational techniques were done with 

help of Discovery Studio 3.5.  

In HipHop, conformational resilience of compounds is addressed by performing 

conformational analysis above pharmacophoric hypothesis generation and considering in turn 

each single conformer of all the compounds. 

For each of the dataset compounds, a database was generated using the ‘best’ option and 

default structure generation parameters were elective.  The HipHop pharmacophore map was 

based on the alignment of common features pharmacophore present in highly effective 

compounds.   

The hypotheses are ranked on the basis of the number of datas fitting the pharmacophore and 

the frequency of its occurrence. The pharmacophore of the mapping between a compound and 

a hypothesis is indicated by the pharmacophoric fit value. 

Present methodology of 3D HipHop pharmacophore model development was sufficient.  

While, in the ligand-based 3D pharmacophore model we could not achieve the bioactive 

conformation of the studied compounds in the absence of the experimental 3D structure of 

human carbonic anhydrases structure. So the structure generation protocol acknowledged by 

us in the existing ligand-based technique as explained above was proved. 

The obtained results were shown and evaluated in Results and Discussion part of the thesis. 
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Table 3. 1. The chemical structure of different CAs along with its IC50 

 

Yayında verilen kod Açık Formülü Kapalı Formülü 

hCA-I 

Inhibition
a 

IC50 (nM) 

hCA-II 

Inhibition
b 

IC50 (nM) 

1 

NH

O

NH

S

O

O

NH

N

S

N

Cl

 

C16H14ClN5O3S2 40.9 21.2 

2 

NH

O

NH

S

O

O
NH

N

S

N

F

 

C16H14FN5O3S2 6.16 3.4 

3 

NH

O

NH

S

O

O
NH

N

S

N

 

C17H17N5O3S2 7.02 4.32 

4 

NH

O

NH

S

O

O
NH

N

S

N

Cl

 

C17H16ClN5O3S2 2.19 - 

5 NH

O

NH
S

O

O

NH

N

S

N

 
 

C14H19N5O3S2 10.25 1.65 
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6 
NH

O

NH S

O

O

NH

N
S

N

 

C14H19N5O3S2 6.08 1.696 

7 
NH

O

NH

S

O

O

NH

N

S

N

 

C17H17N5O3S2 2.88 0.45 

8 

O

NH

NH

S

O

O
NH

NS

N

CH3

N
+O

-

O

 

C16H14N6O5S2 2.37 6.71 

9 

O

NH

NH

S

O

O
NH

NS

N

CH3

ClCl

 

C16H13Cl2N5O3S2 3.48 11.17 

10 

O

NH

NH

S

O

O
NH

NS

N

CH3

Cl

Cl

 

C16H13Cl2N5O3S2 4.99 9.34 
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11 

O

NH

NH

S

O

O
NH

NS

N

CH3

Cl

Cl

Cl

 

C16H12Cl3N5O3S2 15.65 13.36 

12 

O

NH

NH

S

O

O
NH

NS

N

CH3

F

F

F

 

C17H14F3N5O3S2 6.44 17.95 

13 

O

NH

NH

S

O

O
NH

NS

N

CH3  

   

14 

NH

S

NH

S

O

O
NH

N

S

N

O

 

C17H17N5O3S3 0,172 0,147 

15 

NH

S

NH

S

O

O

NH

N

S

N

 

C17H17N5O2S3 0,144 0,109 



14 

 

16 

NH

S

NH

S

O

O
NH

N

S

N

 

C17H17N5O2S3 - - 

17 

NH

S

NH

S

O

O
NH

N

S

N

 

C11H13N5O2S3 0,259 0,175 

18 

S

NH

NH

S

O

O
NH

NS

N

CH3

CH3

 

C19H21N5O2S3 0.142 0.124 

19 

S

NH

NH

S

O

O
NH

NS

N

CH3

N
+O

-

O

 

C16H14N6O4S3 3.14 5.6 

20 

S

NH

NH

S

O

O
NH

NS

N

CH3

CH3

 

C18H19N5O2S3 2.53 7.61 
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21 

S

NH

NH

S

O

O
NH

NS

N

CH3

Cl

 

C16H14ClN5O2S3 3.74 4.01 

22 

S

NH

NH

S

O

O
NH

NS

N

CH3

Br

 

C16H14BrN5O2S3 2.42 1.52 

23 

S

NH

NH

S

O

O
NH

NS

N

CH3

F

F

F

 

C17H14F3N5O2S3 0.095 0.057 

24 

S

NH

NH

S

O

O
NH

NS

N

CH3

F

F

 

C16H13F2N5O2S3 8.78 2.33 

25 

S

NH

NH

S

O

O
NH

NS

N

CH3

Cl

Cl

 

C16H13Cl2N5O2S3 6.68 8.37 
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4. RESULTS AND DISCUSSION  
 

In order to determine the pharmacophore properties in the active regions of the target 

structures, the result of the pharmacophore model protocol was obtained as Figure 4.1. 

Following this, 25 new synthesized compounds have been assigned a common 

pharmacophore map. The results obtained for each target are given in Figures 4.2 and 4.3. To 

prove the accuracy of the pharmacophore models found, the reliability of the reference 

compound was proven by the best matching. 

The correct representation of the 3D-chemical features and the appropriate sampling of the 

conformational space for the 3D pharmacophore mapping were performed. These include, 

hydrogen bond donors/acceptors, hydrophobic, hydrophobic aliphatic/aromatic, and charged 

centers, with the default definitions of the chemical features being customizable. 

 A maximum of five types of chemical features can be specified for 3D HipHop 

pharmacophore map generation. The number of appearances of a particular chemical feature 

was customizable for a minimum of zero and maximum of three respectively. In the HipHop 

pharmacophore map, the chemical features that have directionality (hydrogen bond donor and 

hydrogen bond acceptor) are described using two points. On the other hand, nondirectional 

features such as charged centers, ring aromatic features tures and aliphatic hydrophobic 

regions are represented by single points respectively. A maximum of five types of chemical 

features can be specified for 3D HipHop pharmacophore map generation. The number of 

appearances of a particular chemical feature was customizable for a minimum of zero and 

maximum of three respectively. In the HipHop pharmacophore map, the chemical features 

that have directionality (hydrogen bond donor and hydrogen bond acceptor) are described 

using two points. On the other hand, nondirectional features such as charged centers, ring 

aromatic features tures and aliphatic hydrophobic regions are represented by single points 

respectively. 

 

Structures 1–25 were investigate for their in vitro inhibitory effects on human CA-I and 

human CA-II and IC50 values were calculated for all datas by Marmamara University 

departmen of Pharmacology studies team. (Table 3.1). The reference compound was selected 

AAZ. 
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All training dataset compounds (CAs) were taken as the reference compound (AAZ) by 

allotting each of them ‘‘Principal” value of 2 and ‘‘MaxOmitFeat” value of 0. This was to 

ensure that all chemical features present in them will be captured while generating 3D 

pharmacophoric hypotheses, and is presented in Table 4.1. 

 

 

 

 

 

 

 

Figure 4. 1. Pharmacophore features of active sites for hCA-I andhCA-II. 
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Table 4. 1. The 3D pharmacophore modeling results in hCA-I 

 

Name Fitvalue Principal MaxOmitFeat HB_Acceptor HB_Acceptor2 HB_Donor25 HB_Donor27 Pharmprint 

AAZ 3.9870 2 0 1 1 1 1 '1111' 

6 2.4537 2 0 1 1 1 1 '1111' 

12 2.4533 2 0 1 1 1 1 '1111' 

9 2.4530 1 1 1 1 1 1 '1111' 

2 2.4529 2 0 1 1 1 1 '1111' 

13 2.4527 0 2 1 1 1 1 '1111' 

5 2.4526 0 2 1 1 1 1 '1111' 

1 2.4525 0 2 1 1 1 1 '1111' 

24 2.4525 0 2 1 1 1 1 '1111' 

16 2.4523 0 2 1 1 1 1 '1111' 

18 2.4523 0 2 1 1 1 1 '1111' 

4 2.4523 1 1 1 1 1 1 '1111' 

10 2.4523 1 1 1 1 1 1 '1111' 

11 2.4522 0 2 1 1 1 1 '1111' 

7 2.4521 1 1 1 1 1 1 '1111' 

20 2.4520 1 1 1 1 1 1 '1111' 

17 2.4520 0 2 1 1 1 1 '1111' 

8 2.4516 1 1 1 1 1 1 '1111' 

19 2.4515 1 1 1 1 1 1 '1111' 

3 2.4514 0 2 1 1 1 1 '1111' 

14 2.4504 0 2 1 1 1 1 '1111' 

15 2.4499 0 2 1 1 1 1 '1111' 

21 2.4334 1 1 1 1 1 1 '1111' 

22 2.4135 1 1 1 1 1 1 '1111' 

23 2.3860 0 2 1 1 1 1 '1111' 

25 2.3641 2 0 1 1 1 1 '1111' 
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Table 4. 2. The 3D pharmacophore modeling results in hCA-II. 

 

Name Fitvalue Principal MaxOmitFeat HB_Acceptor3 HB_Donor25 HB_Donor27 Ring_Aromatic28 Pharmprint 

AAZ 3.9870 2 0 1 1 1 1 '1111' 

8 3.7880 2 0 1 1 1 1 '1111' 

2 3.7853 0 2 1 1 1 1 '1111' 

4 3.7631 0 2 1 1 1 1 '1111' 

1 3.7618 0 2 1 1 1 1 '1111' 

5 3.7602 0 2 1 1 1 1 '1111' 

17 3.7569 0 2 1 1 1 1 '1111' 

20 3.7552 2 0 1 1 1 1 '1111' 

14 3.7531 0 2 1 1 1 1 '1111' 

18 3.7503 0 2 1 1 1 1 '1111' 

9 3.7488 0 2 1 1 1 1 '1111' 

6 3.7481 0 2 1 1 1 1 '1111' 

3 3.7469 1 1 1 1 1 1 '1111' 

13 3.7455 0 2 1 1 1 1 '1111' 

11 3.7423 0 2 1 1 1 1 '1111' 

10 3.7339 1 1 1 1 1 1 '1111' 

7 3.7301 0 2 1 1 1 1 '1111' 

12 3.7284 0 2 1 1 1 1 '1111' 

16 3.7169 0 2 1 1 1 1 '1111' 

15 3.7072 0 2 1 1 1 1 '1111' 

24 3.7067 0 2 1 1 1 1 '1111' 

19 3.6974 2 0 1 1 1 1 '1111' 

21 3.6914 1 1 1 1 1 1 '1111' 

22 3.6711 0 2 1 1 1 1 '1111' 

23 3.5451 0 2 1 1 1 1 '1111' 

25 3.4370 2 0 1 1 1 1 '1111' 
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Figure 4.1. The best pharmacophore model fo 

 

(a)                                                                          (b) 

 

 

 

(a)                                                                          (b) 

 

Figure 4. 3.The best pharmacophore model for hCA-II. 

In this study, we generated 10 hypotheses from 25 ligands to obtain the best common feature 

for carbonic anhydrases inhibitors. The best pharmacophore model for hCA-I is composed of 

the feature which are 2 hyrogen bond acceptor, 2 hyrogen donor. The other human CAs the 

obtained pharmacophore model including 1 hyrogen bond acceptor, 2 hyrogen donor and 1 

ring aromatic, [Figure 4.2(a) and Figure 4.3(a)]. In the meantime, these data were validated by 

using ligand pharmacophore mapping subprotocol of DS. Additionally, referance ligans, AAZ 

Figure 4. 2. The best pharmacophore model for hCA-I. 



21 

 

(5-acetamido-1,3,4-thiadiazole-2-sulfonamide) is used to evaluate the calculated results, as 

given in Figure 4.2(b) and Figure 4.3(b) 
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5. CONCLUSIONS  

The obtained pharmacophore models for each human CAs is going to be illuminated and help 

for future done experimental and clinical studies. To design of potent human CAs inhibitors 

will be done and applied by using in this pharmacophore analysis. 

3D Pharmacophore model development of CAs was developed using a HipHop module in 

Discovery software [15]. In silico techniques offer attractive advantages over experimental 

methods, especially for membrane/channel receptors. These are difficult to purify/ crystallize 

for solving the 3D structure of T-type channel receptor using either X-ray or NMR 

techniques.  

So, instead of structure-based modeling study, ligand-based pharmacophore modeling 

approach was adopted in the present study.  

3D model should be robust and significant enough to distinguish between selective and non-

selective CAs.In the present study, various ligand-based 3D pharmacophoric strategies were 

adopted by us to develop HipHop pharmacophore models using different CAs. Multi-target 

inhibitors for CA I and II enzymes are going to be experimentally designed and studied to 

treatment of cancer. 
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