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SUMMARY

STATISTICAL CONVERGENCE OF NUMBER SEQUENCES AND SOME
GENERALIZATIONS

In this thesis we examine and study statistical convergence, statistical boundedness
and some other notions related to these concepts for sequences of real numbers. At the first
we give the statistically convergent, statistically Cauchy and statistically bounded
sequences of real numbers and then we give limit inferior and limit superior of a sequence.
Then we establish the relations between these concepts. After that we study the concept
strong p-Cesaro summability of sequences of real numbers. In the last step we give the
relationship between the sets of sequences which are statistically convergent of order a, for
different o's such that 0< o <1. Furthermore, we also give the relationship between the sets
of sequences which are strongly p-Cesaro summable of order o for different a's such that
a>0. At the end we give and study A-statistical convergence and A- statistical convergence
of order a for number sequences, where A =(An) iS non-decreasing sequence of positive

number such that An+1<Ant+1, M=1, An—>00 as N—o0,

Key Words: Statistical Convergence, Statistical Boundedness, statistically Cauchy,
Cesaro summability, Statistical Convergence of Order o, Statistical Boundedness of Order

a, A-statistical convergence, A-statistical convergence of order a.



OZET

SAYI DIZILERI ICIN ISTATISTIKSEL YAKINSAKLIK VE BAZI
GENELLESTIRMELERI

Bu tezde istatistiksel yakinsak ve istatistiksel sinirli reel say1 dizilerini inceleyecek ve
bu kavramlarla iliskili diger bazi kavramlardan bahsedecegiz. Ilk olarak istatistiksel
yakinsak, istatistiksel Cauchy ve istatistiksel sinirli dizileri tanitacak ve limit inferior ve
limit superior kavramlarina yer verecegiz. p-Cesaro toplanabilirlik kavramini verdikten
sonra bu kavramlar arasindaki iligkileri ortaya koyacagiz. a yinci dereceden istatistiksel
yakinsaklik, o yinci1 dereceden istatistiksel smirlilik ve o ymer dereceden. p-Cesaro
toplanabilirlik kavramlarini verdikten sonra farkli a lar i¢in elde edilen dizi kiimeleri
arasindaki kapsama bagintilarin1 ve iligkileri ortaya koyacagiz. Son olarak istatistiksel
stirlilik ve a. ymci dereceden p-Cesaro toplanabilirlik kavramlarini verdikten sonra farkli
a lar i¢in elde edilen dizi kiimeleri arasindaki kapsama bagintilarim1 ve iligkileri ortaya
koyacagiz. Son olarak A =(An) pozitif sayilarin azalmayan ve her n igin An+1<An+1, A1=1,
N—oo i¢in An— o0 sartlarini saglayan bir dizi olmak iizere A -istatistiksel yakinsak ve a yinci
dereceden A -istatistiksel yakinsak dizileri tanimlanacak ve bu kavramlara iliskin bazi

bagintilar verilecektir.

Anahtar Kelimeler: Istatiksel yakinsaklik, istatistiksel sinirlilik, istatistiksel
Cauchy, Cesaro toplanabilirlik, a yinc1 dereceden istatistiksel yakinsaklik, o ynci
dereceden istatistiksel sinirlilik, A-istatistiksel yakinsaklik, o yinci dereceden A -istatistiksel

yakinsaklik.
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1. INTRODUCTION

The notion of statistically convergence was took place in a study of Fast[1] in first
time and also independently by Buck[2] and Schoenberg[3] for number sequences. One of
the most recent generalizations of concept of convergence of sequences “A new type of
convergence” is statistical convergence defined by Fast. Recently, it became the center of
attraction for many researchers.

The statistical convergence concept for number sequences appeared in a study of
Zygmund[4] and it was called it as "almost convergence ".

Statistical convergence is a type of convergence which is basically depend on the
natural density of subsets of the set of positive integers.

Statistical convergence has been discussed under different names in Number theory,
Fourier analyses, Trigonometric series, Measure theory and Banach spaces. Statistical
convergence was further studied from the sequence space point of view and linked with
ssammaubility theory by Fridy[5]- Connor[6], Savas[7], Salat[8], Mursaleen[9], Nuray[10],
Mohiuddine et al[11], Colak[12], [13], Colak and Bektas[14] and many mathematicians. In
last years, the concept of statistical convergence has appeared in the study of strong
integral summability and the structure of ideals of bounded continuous functions on locally
compact spaces. Furthermore, the concept “order o> was imported in last years and some
generalizations have been given such as statistical convergence of order a.

The o -density of any subset of natural numbers, statistical convergence of order o
and strong p-Cesaro summability of order o for number sequences was defined by

Colak[12]. The a -density of a subset U N is defined by
5,(U) = lim nia|{m <n:meU},
n—-oo

if limit exists, where ae(0,1] and [{m < n:m € U}| represents the number of elements
which belongs to U.

We will use the following abbreviations throughout the thesis.

“stat.” instead of “‘statistical”

“statly.” instead of “statistically”



2. STATISTICAL CONVERGENCE AND STATISTICAL BOUNDEDNESS
OF NUMBER SEQUENCES

Definition 2.1 Let U €N = {1,2.3. ... } and define
1
6(U) = lim—|{m < n:m € U}|.
n-on

Then the number 6(U) is called the naturel density of set U, if the limit exists.

Stat. convergence of a sequence is based on the density of subsets of the set N. It can
be checked that any finite subset of set N has zero natural density and 6(U€) = 1 — §(U),
where U = N — U forany U €N. If §(U) =1 thenset U is said to be statistically dense
[1]

Definition 2.2 Let u = (u,,) € w. The sequence (u,,) is said to be statly. convergent

1

lim—|{m<n:|u,—1l=¢€}|=0

n-oon

for every ¢ > 0, for some number |. In this condition we say that u is statly. convergent to .
For this situation we write

stat — lim u,, =1

m-—oo

and S represents the collection of all statly. convergent sequences. [5].

In this study the sequences will have real entries. We recall that if a sequence u =
(u,,) accepts property P for all m excepting a set of density zero , then we say that u =
(u,,) accepts property P for "almost all m" and abbreviate this by "a.a.m".

Lemma 2.1 If stat — limu,,, = u, and stat — limv,, = v, and c is a real constant,
then

i) stat. — lim(c.u,,) = c.ug

i) stat. —lim(u,, + v,) = uy+ v, [5]

Definition-2.3 A sequence u = (u,,) is statly. bounded if
1
lim—|{m < n:|u,,| >M}| =0
n-oon

forsome M >0 i.e. |[uy,| <M a.a.m. [8].

Theorem 2.1 Any bounded number sequence is statly. bounded [8].



Proof Suppose that the sequence u = (u,,) is bounded. Then for some M >0, we
have |u,,| < M, for all m € N and this means that
fmeN:|u,|>M}=0.

Thus, we get
1
lim—|{m < n:|u,| >M}| =0
n-oon

and it means that u is statly. bounded.
Remark 2.1 The reverse of Theorem 2.1 is not right in general. For example the

sequence u = (u,,) defined as

(—D™,m # n?.
that is, the sequence u = {1,1,—1,16,—1,1,—1,1,81, ... } is not bounded. To show that u =
(u,,) is statly. bounded, let M >1 be given. Then
i 1 _vyn 1
lim—|{m < n:|luy| >M}| < lim—=1lim—=0,
n-on n—oo

n n—oo \/ﬁ

it means that u is statly. bounded [8].

Theorem 2.2 Any statly. convergent sequence is statly. bounded [8].

Proof Suppose that the sequence (u,,) is statly. convergent to u,. For any arbitrary
K > &> 0 we have

{m < n:|u,, —uy| > K} < {m<n:|u, —uy| = ¢}

This inclusion gives the inequality

{m < n: |u,, —uol > K} < |{m < n:|u,, —ugl = €}

Since (u,,) is statly. convergent to u, we have
1
lim—|{m < n:|u,, —uyl =€} =0,
n-oon
for every € > 0, and from above inequality
1
lim El{m < n:|uy, —uyl > K} =0.
n—>oo

That is why the sequence (u,,) is statly. bounded.
Remark 2.2 The reverse of Theorem 2.2 is not right in general. For this let u =
(u,,) be a sequence such that

s, ifm=2i+1
Uy = i=1,2,3,4....
t, if m=2i



where s, t€ R and s#t. Now u = (u,,) = {s,t,s,t,s,t, ... } is statly. bounded. Let us choose

K > 2max{|s|, |t|}. Then {m < n:|u,,| > K} = @ for each n and so that
1
lim—|{m < n:|u,,| > K} =0
n-on

and it means that u = (u,,) is statly. bounded [8].

Now we show that u = (u,,) is not statly. convergent. Since the density of the both
sets S((m <m:m =2i+1}) =-#0 and §(fm < m:m = 2i}) == # 0
the sequence (u,,) is not statly. convergent to s and t. Therefore the sequence (u,,) is not
statly. convergent.

Consequently, the sequence (u,,) is not statly. convergent however (u,,) is statly.
bounded.

Note that every subsequence of a convergent sequence is also convergent but every
subsequence of a statly. convergent sequence may not be convergent and may not be a
statly. convergent.

For example, let us take (uy) as

m, mis prime number

Uy =
0, otherwise.

Since the natural density of the collection of prime numbers is zero, that is

1
lim —|{m < n:m is prime number}| = 0,
n-oon

and so that §({meN: m is prime number}) =0. Thus (u,,) is statly. convergent to zero,
but it is clear that the subsequence (u,,’) is not convergent and not statly. convergent,
where (u,,/) = (m) = {1,2,3,5,7,11, .... }.

Definition 2.4 A sequence u = (u,,) of real numbers is statly. Cauchy sequence if

for any >0, there exist a number NeN such that

1
lim—=|{m < n:|u,, —uy| =€} =0
n-on

[5].

Theorem 2.3 Every statly. Cauchy sequence is statly. bounded, but the converse is
not right [5].

Proof. Let u = (u,,) be a statly. Cauchy sequence. Then given any ¢ >0, there exists
N=N(e) such that |u,, — uy| < € a.a.m.

This implies that |u,,|<M a.a.m, where M= ¢ +|uy]| i.e.



1
lim—|{m < n:|u,| >M}| =0
n-oon

It means that the sequence u is statly. bounded.
The sequence u = (u,,)=(—1,1,-1,1,...) is bounded and hence statly. bounded but it

IS not statly. Cauchy.
Theorem 2.4 A sequence u = (u,,) is statly. convergent if and only if it is satisfied

the following condition

1
lim—|{m<nm <n:|u, —uy,|=>¢€}|=0
n-oon

where (u,,’) is a subsequence of (u,,) such that

lim u,, =1

mr—oo

for some | [5].
Proof Let the sequence (u,,) be statly. convergent. We will prove that

lim %I{mSn,mSn: |lum —u,r| =€} =0 (2.1)

n—->oo

If the sequence (u,,) is statly. convergent to [, then by the Definition 2.2 we have
lim —|{m < n: uy, — 1| 2 €}| = 0. (2.2)
n—-oo

for some |. Now, by using (2.1), we have

1
lim—|{m <nm' <n:|u, —u,| =€}
n-oon

1
= lim—|{m<nm' <n:|u, —u,y —L+1| > ¢}
n-oon

1 1
< lim—=|{m <n:|u, — U = e} + lim=|{m' <n:|u, —1| = &}
n—-oo N n—-ooNn

1
< 0+ lim El{m' <n:lu, =1 =&} (2.3)
n—->oo
It is given that lim wu,, = [. Since (u,,) is convergent, it is also statly. convergent.

mr—oo

Therefore, we can write

lim 2|{m' < n:lu,y — 1| = €} = 0 (2.4)

n—-oon

In view of the inequalities (2.3) and (2.4) we get

1
lim—|im<nm <n:|u, —u,|l=>¢€}|=0
n-on

Conversely, let

lim %I{m Snm' <nilup,—u,|==0 (2.5)

n—->oo



be satisfied. To prove that the sequence (u,,) is statly. convergent let us start from the
following inequality

lim %I{m <nlu, -1 =e} (2.6)
n—-oo

1
= lim—|{m<nm' <n:|u, —u, +u,, —1| = ¢}
n-on

IA

1 1
lim—|{m <n,m' <n:|uy —uy,y| = e} + lim=|{m' <n:|u,,y —1| = &}
n-on n-ocon

<0+ lim %l{m <nm’:|up — Uy | = €} (2.7)
n—->oo

by using (2.5). Since it is given that lim w,,r = [ then

mr—oo
1
lim—=|{m' <n:|lu, -1l =¢€}|}=0
n—-oco N
from inequality (2.7). Consequently we get lim %I{m <nlu, -1l =¢€}}=0.
n—->0oo

This implies that the sequence (u,,) is statly. convergent.
Theorem 2.5 Suppose that (u,,) and (vm) are any two sequences such that (u,,) is
convergent to [ and (vm) is statly. convergent to zero. Then the sequence (Um+Vm) iS statly.

convergentto | [5].

Proof Let
limuy,=11ie |u,—l]>0asm - o (2.8)
m—0oo
and also let
stat — limv,, =0
m—0oo
that is,
lim =|{m < n:|v,, — 0] = &}| = 0. (2.9)
n—00

Now, suppose that

stat — lim (U, +vy) =1 (2.10)
m-—-00o
Therefore,
stat — lim (u,, + v,) = lim %I{m <n|(upm+v,) —Ul=¢e}}=0.
m—oo n—»oo
(2.11)
Now
1
lim|u,, = U'| + lim—|{m < n:|v,, — 0| = €}|| = 0.
m—oo n—-ooNn
that is



lim|u, -U'|+0[=0
m—-oo

Hence using (2.9) we get

limlu, =1'| =0
m—-oo

limu, =1. (2.12)
m—oo

Butsince lim u,, =1 weget l' = 1l.
m-—0oo

From (2.10) and (2.12), it is proved that
stat — lim(u,, +v,) =L
m-—oo

Theorem 2.6 If a sequence (u,,) is statly. convergent to [ then there are sequences

(Vm), (zm) such that lim %I{m <niu, # vy,}l} =0 and (zm) is a statly. null sequence
n—->oo

where lim v, = I, Un=Vm+zm [5].

m-oo

Proof Suppose that the sequence (u,,) be statly. convergent to [, that is

lim ~|{m < n: |, — 1| = £}] = 0 (2.13)

n—-oo

and we have |v,,, — l| = 0 as m — o, where, Un=Vm+zm. We should prove that

1 1
lim—|{m <n:uy, # v,}l =0 and lim—|{m <n:|z,, — 0| = €}|} =0.
n-on n-on

Since (u,,) is statly. convergent to [, we have

lim 2[{m < n:lu, — 1| = €}| = 0,
n—-oon

that is lim %I{m <n:|u, —l+v, —v,| = ¢c}| =0, in another word
n—-oo

1
lim ;I{m <n|(Up—vn) +W,— Dl =€} =0.
n—-o0o
Therefore

1 1
lim—|{m < n:|u,, — vyl =&} + lim—-|{m<n:|v,, — | = €}| =0.

And since lim v, = [ we get
n—->oo

1
limgl{mSn: U, — V| =€} +0=0
n—>oo

and hence
1
lim—-|{m<n:lu, —v,l =€} =0
n-oon

which implies that



1
lim—-|{m <n:u, #v,}=0.

n-oon
Since
limv, =1 and u, =v, +z, (2.14)
m—oo

and lim %l{m < n:u,;, # vy} = 0 from Theorem 2.4 we have that

n—oo

stat — lim (v, + z,) =1 = lim v,
m—-0oo

m—oo

by using (2.14) which implies that stat — lim z,, must be equal to zero it means that (zm)

m—oo

is statly. null sequence.
Definition 2.5 If u = (u,,) is a sequence of real numbers, then the stat. limit
superior of u is given by

supB,, if B, #®
stat — lim sup(u) = {
—0o, Lf Bu = ®

where B, = {b € R: §{(m:u,, > b}) # 0}.[16]
Definition 2.6 If u = (u,,) is a sequence of real numbers, then stat. limit inferior of
u is given by

infA,, ifA,+0
stat — liminf(u) = {
o, ifA,=0

where A, = {a € R:§({m: u,,, < a}) # 0}.[16]

Theorem 2.7 For any sequence u, stat-lim inf(u) < stat-lim sup(u). [16]

Proof First suppose that stat- limit sup(u) = —oo. Then by Definition 2. 5 we have
B, = @ then for every be R, §({m:u,, < b}) =1 it means §({m:u,, < b}) = 1. So for
any a€ R, §({m:u,, < a}) # 0. Hence stat-lim inf(u)= —oo.

It means that stat- inf(u) < stat-lim sup(u).

In case stat-lim sup(u) = +oo it is clear that stat-lim inf(u) < stat-lim sup(u).

Next case assumes that stat- lim sup(u) = $ and stat-lim inf(u)=q.

Since stat-lim sup(u) = g, by Definition 2.5 we have §({m:u,, > }) # 0, but g is
supBy, then for any £>0, § ({m: Uy >+ 2}) = 0. Hence §({m:u,, < B +€}) = 1 and by

Definition 2.6 B + € € A, but « is infA, implies that « < 8 + €. Since ¢ is arbitrary, we
have a < 3.

For example let u = (u,,) be any real number sequence such that



m, ifmissquare
Uy, =4 2. ifmisanodd non square
0, if m is an even non square

Since B, = (—,2) and A, = (0, +00) stat-lim sup(u)=2 and stat-lim inf(u)=0.

The sequence u = (u,,) is statly. bounded but it is not statly. convergent, since u =
(u,,) have two different subsequences and the density of which are not zero.

Note: Statly. boundedness implies that stat-lim sup and stat-lim inf are finite.

Theorem.2. 8 A sequence u = (u,,) of real numbers is statly. convergent if and only

if it is statly. bounded and stat-lim inf(u) = stat-lim sup(u). [16]

Proof Suppose that the sequence u = (u,,) is statly. convergent and stat —

lim u,, = l. Then = (u,,) is statly. bounded and for any ¢>0 we have

m—oo

d({m:|u, =l >¢€}) =0. (2.15)
Suppose that stat-lim inf(u) =a , stat-lim sup(u)=4. We will show that « =4.
From equation (2.15) we get ({m:u,, >1+¢€}) =0 . Since stat-lim sup(u)=p

implies that
p<Ll. (2.16)
Also from (2.15) we get §({m:u,, <l —€}) = 0. Since stat-lim inf(u)=a implies
that
| <a. (2.17)

From (2.16) and (2.17) weget B <l < a i.e. B <a.
But by Theorem 2.7 we have a < 8 thus we get that « = .

Conversely, suppose that stat-inf u =a, stat-lim sup(u)=g and @ = . We will show

that u = (u,,) is statly. convergent.

Since stat-lim inf(u) =a we have

d({mu, <a—¢€}) =0 (2.18)
And since stat-lim sup(u)=4 we have
Sd({mu, >B+e}) =0 (2.19)

By assumption since a« = 8 we may take [ = a = f in equation (2.18) and (2.19).

From this we get

d({mu, <l—¢€}) =0 and §({m:u,, >1L+€}) =0

This implies that § ({m: |u,,, — | > €}) = 0. Hence stat — lim u,, = L.

m-—oo

This completes the proof.



3. CESARO SUMMABILITY AND STRONG p-CESARO SUMMABILITY

Definition 3.1 A sequence (u,,) is called Cesaro summable to I if the condition

n

lim — U, =1
n—-ocon m
m=1

is satisfied [6].
Theorem 3.1 If the series Y.,n_; u,, is convergent then the sequence (u,) is Cesaro
summable to zero .
Proof Suppose the series Y.»_; u,, is convergent and let | be the sum of the series.
Then the sequence of its partial sum also converges to I, i.e. S\=X1%_, u,,, — | as n—o0.
Now we get that
lim — Uy = limlSn=O.

n-on n-on
m=1

Hence the sequence (u,) is Cesaro summable to zero.

Note that the reverse of the above Theorem is not right. For example the sequence

1\ . N 4
(u,) = (Z) is Cesaro summable to zero, since

. 1 . 1 1
T{LTZLOZZ?H:I Un = rllg{}O;Z%:l; = 0.
But the series Z%olﬂ% is divergent as known (harmonic series).
Theorem 3.2 Every convergent sequence is also Cesaro summable [6].
Proof. Suppose that (u,) is convergent and #_11)10 u, =u, and let v, = %Z’fn:lum.
We should prove that lim v,, = u,. For this given any &> 0 we should find a number N €
n—->oo
N such that |va- u, |<e for all n > N. Now, since lim u, =u, , we know that for any €1 >0
n—-oo
there exist N1€ N such that |un- uy |< 1 for all n > N1. Choose £=2 1 . Now we may write
n
.
— u —Uu
n m 0

m=1

|V —up | =




Ny

= %Z(um—uo)+% Zn: (Um — uo)

m=1 m=N,+1
1 Ny 1 n
< |- Uy — Ug)| + |— Z Uy — Ug)|.
= = u)|* = > n—up)
m=1 m=N;+1

Then

E(um —up)| < Z it = o

1
1
<- max |u; — up
n 1<1<N
m=
Ny

1
=maxu—u — 1
1<isN | L Olnz

m=1

= max |\u; — Ug| —
jmax Ju; — to| —=.

If we pick n such that

n> max |u; — uy| —
€

1<l<N 1
we get
Ny
1
- z (U, —up)| < &;. (3.1)
m=1

Further we may write

n 1 n
Z (Um — Up) SE Z |um — U
m=N;+1 m=N;+1
n

1
< - Z max |u; — up]
n Ni+1<isn
m=N1+1

n
1
= max Ju—ugl s Y1
Ni+1<isn n
m=N1+1

n—N;
= max |u; —upl
Ni+1<isn n

< max |u; — ul
Ni+1<isn

11



and since u, — u, as n - oo then we may choose Ni such that |u; — uy| < & for all n>
N1 so that

1 n
- Z (U —up)| < & . 3.2)

m=N1+1

Therefore

1 1
[V — o | < | By (i = uo)| + |- Zo a1t — wo)|<ey + &1 = 26, = &
for all n> N1 by using (3.1) and (3.2). Hence lim v, = u,.
n—->oo

Note The invers of the above theorem is not true. For example the sequence um=(-1)"

Is Cesaro summable to zero but it is not convergent.

Definition 3.2 A sequence (u,) is called strongly Cesaro summable if
n
#_zloﬁ lu,, — 1] = 0.
m=1
For this situation, we say that u is strongly Cesaro summable to |. The collection of
all strongly Cesaro summable sequences will be represented by [C,1] [7].
Definition 3.3 Let u = (u,) € w and let p € R . The sequence u = (u,,) is called

strongly p-Cesaro summable if there is a number u, such that

11X p
lim— ) |u,—uy =0 (3.3)
n—->oco n
m=1
In this situation we say that u is strongly p-Cesaro summable to u,. The collection of
all strongly p-Cesaro summable sequences is represented by w;, [7].
Theorem 3.3 Let p € R* . If a sequence is strongly p-Cesaro summable to u,, then it
is statly. convergent to u, [7].

Proof Since for any sequence u = (un) and &> 0, we have

n

z [Um — Up|P = {m < n:|uy, — up|? = €}|. €P.
m=1

We may write

n

1 1
HZ | U, — Up|P = El{m < N Uy, — ugl? = €}. €P.
m=1

By taking limit at both side as n — oo we get

12



1
lim —

n
1
Z U, — Up|P = lim — |{m < n: |uy, — ugl? = €}].€P (3.4)
n-on n-on

m=1
Since the sequence u is strongly p-Cesaro summable to u, then from (3.3) and (3.4)
we get that

1
lim —|{m < n:|u,, —uyl?P = €}/ = 0.
n-on

It means that u is statly. convergent to u,.

Remark 3.1 A statly. convergent sequence may not be strongly Cesaro summable.
For example the sequence (u,,) defined by

vm, m = n?
u, = n=1273,..
0 , otherwise

is statly. converges to zero but since

n
1
rllgﬁloEZIum—Ol #0
m=1

it is not strongly Cesaro summable to zero.

13



4. STATISTICAL CONVERGENCE OF ORDER a AND STATISTICAL
BOUNDEDNESS OF ORDER «

Definition.4.1 LetH € Vand 0 < « < 1 , We define d.(H) by
1
8.(H) = lim —|{m < n:m € H}|. (4.1)
n-on

If the limit exists, then the number J.(H) is called the a-density of set H. It is easy to
observe that if H is a finite subset of N then d.(H)=0 but d.(H*)#1- d.(H) for 0<a<l in
general. The equality d.(H%)=1- d.(H) is satisfied for a=1. A set H is called statistically
dense if o(H)=1 [12].

Lemma.4.1 Let HEN. Then dg(H)< d.(H) if 0<a<p<l [12].

Proof Suppose that 0< a<B<1. Then n* < ¥ implies that niﬁ < nia then for every neN

we have

1 1
lim —ﬁl{m <n:mé€H} < lim—I[{m <n:m € H}|
n—-oo N n-ocon

It is mean that dz(H)<d.(H).

Note that from above Lemma if d.(H)=0 then also dz(H)=0 for any a, B (0,1] such
that o<p.

Definition 4.2 Let a<(0,1]. a sequence u = (u,,) is said to be statly. bounded of

order a if there exists some M>0, such that
1
#_ﬁloﬁl{m < n:|u,| > M}| =0.

The collection of all sequences which are statly. bounded of order o will be
represented by SB<.

Theorem 4.1 Any bounded number sequence is statly. bounded of order o for each
ae(0,1].

Proof Let u = (u,,) be any bounded sequence. Then there is a number M>0 such
that

|lum| < M for any m € N, so we have

fm<nmeN:|u,|>M}=0.

hence,

1
il_ﬁlon_al{m <n:luy| >M} =0



for any a.e(0,1] and it means that u is statly. bounded of order .

The inverse of above Theorem is not right. For example, let us define a sequence
(u,,) as
m, if m =n?
Uy =

n=123.4.....
, otherwies
m

(4.2)

It is easily seen that the sequence u = {1,

N |-
Wl

)

1
I2F F_I )
6

; ,3, } is not bounded. To
show that u = (u,;,) is statly. bounded of order a, choose M=1. Then

ul |-
|+

1

. . n2
7il_r)gon—al{mSn: |Uy, | > M} =1£l_t?on_a=0'

for 1>0>1/2. It means that the sequence (uy,) is statly. bounded of order o for any

ae(1/2.1].

Note that from above theorem we can say l..€ SB“

Theorem 4.2 If a sequence u = (u,,) is a statly. bounded of order a then it is also
statly. bounded of order 3, where 0<a<p<1.

Proof Obviously the inequality
1 < 1
nf = ne

(4.3)
is satisfied for any o, B €(0,1] such that O<a<p<1. Since the sequence u = (u,,) is statly
bounded of order a, then we have

Tllil?on_al{m < n:lu,| > M}| =0.
From this and using (4.3) we may write

1
lim —Bl{m < nlup| > M} < lim —|{m < n: [up,| > M}|
n-oon n-on
and so that

Tllil?on_ﬁl{m <nluy|l >M} =0
which implies that the sequence u = (u,,) is a statly. bounded of order .
Note that the reverse of above theorem is not right. For example, the sequence
u = (u,y,) defined in (4.2) is not statly. bounded of order B if we take 0<p<1/2.

Definition 4.3 A sequence u = (u,,) is called statly. convergent of order o (where
0<a<1) to a real number | if the following condition is satisfied for every € > 0:
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1
,ﬁl_tgn—ﬂ{mgm'um—” >} =0.

In this situation we write S*lim u,=I or u, i(: [. And S* represents the collection of
all statly. convergent sequences of order o and S§ represents the collection of all statly.
null sequences of order a. We recall that if a sequence u = (u,,) accepts property P for all
m excepting a set of a-density zero, then we say that u = (u,,) accepts property P for
"almost all m according to o™ and use abbreviation "a.a.m(a. )" for this [12].

Theorem 4.3 Let o, pe(0,1] be given. Then ever sequence which is statly.
convergent of order a is also statly. bounded of order B, that is S c SB“ if a<p.

Proof. Let a, Be(0,1] be given and let a<p. Let the sequence (um) be statly.
convergent of order a to I. Since for any arbitrary 0<e< M we have

fm<n|u,—-1ll>M}c{m<n:|u, -1l = e}

This inclusion gives the inequality

{m <n:|lu, — 1| >M}| <|{m<n:|u, -1 =&}.

and so that
1 1
lim 3 [{m < n:|up, =l > M}| < lim —|{m < n:|u, — 1| = &}|. (4.4)
n—-oon n—-oon
Since (um) is statly. convergent of order o then
1
lim—|{m <n:|lu, —1l|=¢}| =0 (4.5)
n-on
for every € > 0. Hence from (4.4) and (4.5) we get
1
lim —Bl{m <n:lu, -1 >M}| =0.
n-on
So the sequence (um) is statly. bounded of order .
Taking p= a in Theorem 4.3 we obtain the following result.
Corollary 4.1 Let a(0,1] be given. Then every sequence which is statly. convergent
of order a is also statly. bounded of order a.
The reverse of the above Corollary 4.1 is not true. For this let u = (u,,) be the

sequence such that

a, ifm=2i+1
Uy = i=1,234..... (4.6)
b, if m=2i

where a, beR and a#b. Since (u,,) is statly. bounded of order a, because if we choose M >
2max{|al|, |b|}. Then

16



m<nmeN:|u,|>M}=

so that
1
Tlll_”)r{)lon—al{m < n:|u,| > M}| = 0.
Now,

1 n
lim—|fm<nn=2m}|=lim—=0 for0<a<l.
n—»oon n—>002n

or
1 n
llmn—l{m<n |u,, — b| = €}| = llmz—a—oo for0<a<1
and

1 n
lim—|{m<nn=2m+1}=lim-—=0 for0<a<l.
n-oo né n-oo 2n%

Thus u = (u,,) is not statly. convergent of order a to a or to b. Consequently (u,,) is
not statly. convergent of order a.

Lemma 4.1 Let 0 <a <1 be given. Then

1) S§ < Ss*

2) Every convergent sequence is statly. convergent of order o for every
ae(0,1] [12].

Proof The proof of (1) is clear.

2) Letu = (u,,) » L as n —» oo. Then for every € > 0 there exists NEN such that
|un-l|<e for all n> N, so that we have

llrgonil{m<n U, — 1| = €} = ll_TLlon—ZO

and hence the sequence u = (u,,) is statly. convergent of order a. In another word we
have c<S*.

But the converse of this Lemma is not right. For this let us consider the sequence
defined as

u, = n=1234,...
0, otherwies

Since
1

1 n
llm—l{m<n lu,, — 0| = €}| = llmn—azo

the sequence (u,,) is statly. convergent of order a to zero, for a>1/5. But this sequence is

17



not convergent.
Lemma 4.2 Let a, f€(0,1] be given. Then
1) Every statly. convergent sequence of order o is also statly. convergent of order S

with same limit, i.e. S*cS” if a< f and the inclusion may remain strict if there exists a

number jeN such that o <§ <p.

2) S*cS for every ae(0,1] ([12], [15]).

Proof (1) Suppose a < 8 and so that niﬁ < nia and let the sequence (u,,) be statly.
convergent of order a to the number I. Writing

niﬁl{ms n:|u, — | = €} Snial{m < n:lu, — 1| = &}.
we have S*<SP. In order to prove the inclusion is strict we consider the sequence

u = (u,,) as

1, ifm =n?
Uy = n=1234,...
0, otherwies

Then, $P-lim un=0, that is u&s” for 1/2<f<1 but u & S* for 0< a <1/2.
(2) If we take =1 in (1) we have S*<S.
Remark 4.1 Stat. convergence of order o is not defined for a>1 [12].

This follows from the fact that

1
6(U) = lim ;I{m <nmeU} =0
n—-oo
for every subset U N if o>1.
Also to see this, we may choose the following example.

Letu = (u,,) be the sequence given in (4.6), where a, be R and a # b. If we take

o>1, then we have

1
lim —|{m < n:|uy, —al = }| = lim =0
n-ooNn n—oo

2n¢%
and

limial{m < n:luy — bl = €}| = lim — = 0.
n—oon n

—o0 2n%
It is means that (um) is statly. convergent to both a and b of order a, i.e.
S*lim un=a and S*-lim um=b if «>1. But this is not possible.
Lemma 4.3 Let (um), (vm ) be any sequences such that S*lim un=a, S*-lim vm=b and

¢ be any real number. Then.
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1. S*limcum=ca.
2. S*lim (um+vm )=a+b [12].

Proof
1) Since
{m < n:|cu,, —ca| = €}| = |{m <nlu, —al = |8?|}|
and
1 1 €
ﬁl{mSn:lcum—caI > e} =n—a|{mSn: Uy — al Zm}
we have

1 1 £
] R <n: —_ > = /i e <n: - = =
Jim o < e = cal > e)| = fim 2 [{m < i — al 2 5 =

so that S*lim cum=ca.
2) Since

{im < n:|(up + vm) —(a+b)| 2 e}| = [Im < n: [(up, — a) + (v — b)| 2 €}

S|{m3n;|um—a|2§}|+|{mSn:|vm—b|2§}|

by taking limit to both side where n goes to infinity then we get

o1 1 €
7ill(rfon—aI{mSn:I(um+ V) — (a+ b)| = €} S,gl_f?on_aHmSn'lum_al ZEH

+7£l_)72,nia {mSn:Wm_blZ;”

which implies that
1
lim —|{m < n:|(um + v ) —(@+b)| = e} = 0.
n-oon

so that S*lim (um+ vm )=a+b.

Definition 4.4 Let aeR" such that 0<a < 1 and Let u = (u,,) be any real number
sequence. The sequence u = (u,,) is said to be statly. Cauchy sequence of order a if there
exists a number NeN such that

lu, — uy| <e¢

for a.a.m(a)., i.e.
1
lim—|{m < n:|u, — uy| =€}/ =0,
n—-oon

forevery e > 0 [11].
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Theorem 4.4 Let 0 < o <1 be given. Then the sequence u = (u,,) of real numbers is
statly. convergent of order a if and only if it is statly. Cauchy sequence of order a.

Proof Suppose that the sequence u = (u,,,) is statly. convergent of order a to |. Then

we have
€ 1 £
fun = Ul < za.am(e) = gi_tgoﬁﬂm <nlu, -1 = E}| = 0. (4.7)
Given € > 0, choose a number N=N(¢) so that
€ 1 £
lxy — l|Szﬁiilgon—aHmSn:luN—lIZEH=0. (4.8)

We need to show that
1
rlll_ﬁlon—al{mSn: Uy, — uy|l =€}l =0

for every € > 0.
Now

I{m<ni|u, —uyl=e}l=I{m<n:|u, — uy+1—-1 = ¢}

S|{m§n;|um—l|2§}|+|{mﬁn:|u1\,—l|Zg}l

implies that
limil{m<n:|u —u |>e}|<limi|{m<n:|u —l|>£}|+
n-oo n% - m N = T nooon® - m -2
lim L {m <nluy—1 = £}| (4.9)
n—co N& - -2

and by using (4.7) and (4.8) in (4.9) we get
rlli_)rgnial{mSn: U, — uyl =€}l =0. (4.10)
Hence the sequence (u,,) is statly. Cauchy of order a.
Conversely suppose that the sequence u = (u,,,) is statly. Cauchy of order o, i.e.
luym — uyl < € aam(a).
Given e=1 choose N1 such that
|um — uN1| <1 aam(a)=>u,c€ [uN1 - Luy, + 1] a.a.m(a)

Also Given s=% choose M such that

1 1 1
|uy, — upyl SE a.a.m(a) = x; € [uM_E'uM+§] a.a.m(a)

Letl = [uy, — Luy, +1] and I' = [uy — 1/2.uy + 1/2] and consider L=INT.

Then u,, €I; a.a.m(a). Because we havefm <n:u, €¢Inl'}={m<n:u,, €1} U
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{k <n:u,, ¢ I'}. Therefore

lim nl—al{mSn:um gInI'} < lim nial{mgn:umé I}| + lim n%|{m£n:um€ I'}
n—-oo n—-oo

n—-oo

and this implies that

r{i_{rgonial{m <nu, ¢Inl'} =0.

Therefore 11 is a closed interval of length less than or equal to 1 that contains um
a.a.m(a). Now continuing in this way by choosing N(2) so that I' = [uN(z) —1/4.uyp) +
1/4], upy €1"a.a.m(a) and from the previous argument. Let I=11NI" then u,, €
I, a.a.m(a) and I has length less than or equal to 1/2 . We obtain a sequence (Im) of
closed interval such that for every m, I,,, S I,,, the length of In is not larger than 2™,
and u,, € I, a.a.m(a). By the nested Intervals Theorem there is a number A such that N
I, = {A}. Using the fact that u,, € I, a.a.m(a) we take an increasing sequence (T,,) of

positive integers such that
1 1
FI{mSn:umelm}l <E1fn>Tm (4.11)

Now define a subsequence z of u consisting of all terms um such that m>T and if
T <m < Tppyq thenu,, € I,,,. Next we define a sequence as follows

A, ifu,, isatermofz

Uy =
U, otherwies

Then limv,, = Aife > % > 0 and k > T,,. Then if un is a term of z, then v,, = 4

m—oo

else v, = uy € I, and |v,,, — 1| < lenght of I, < 21™™. We also assert that v, =
U, a.a. m(a). To confirm this we note that if T,, < m < T,,,,,then
{m < n:v, #uy,} € {m<n:u, € I,}. Soby (4.11) we may write
fm<nv, #uy} < {m<nu, ¢I,}
1 1 1
=>n—a|{m S nivy, #F Uyt < n—al{m <n:u, € L, <E'
From this inequality we get
lim ial{m SNV, F Uyl =0

n-oon

and hence the sequence u = (u,,) is statly. convergent of order a, since v, =

Uy, a.a.m(a)and lim v, = A
m—0oo
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5. CESARO SUMMABILITY AND STRONG p-CESARO SUMMABILITY
OF ORDER a

Definition 5.1 Let « >0. A sequence u = (u,,) is called Cesaro summable of order a

to | if the following condition satisfies

n

1
lim ), m = L

m=1

Obviously that the sequence u = (u,,) is Cesaro summable of order o to zero if the
series Y.m—q Uy, is convergent. And it is same with Cesaro summability for a=1 [12].

Note: Let « >0. Then

1) The set of Cesaro summable sequences is a subset of the sequences which
are Cesaro summable of order a.

2) Every convergent sequence is Cesaro summable but this is not true for
Cesaro summable of order a, in case a #1. For example, the sequence u = (u,) = (3) is

convergent but since

1w 1w  3n
llm—az Uy = llm—az 3=1lim—=o0
n-on n-oon n-on
m=1 m=1
if a <1. So that (u,) = (3) is not Cesaro summable of order o in case a <1.
Definition 5.2 Let a real number a >0 be given. A sequence u = (u,) is called

strongly Cesaro summable of order a if

n

1
fim 2 D um =11 =0

m=1
for some real number I. The collection of all sequences which are strongly Cesaro
summable of order a is represented by [C* 1] [12].
Definition 5.3 Let peR™ and a >0. A sequence u = (u,) is strongly p-Cesaro

summable of order a if the following condition is satisfied for some I:

n

1
T{L’ﬁn_az I, — I|P = 0.

m=1
The strong p-Cesaro summability of order a reduces to strong p-Cesaro summability
for a=1. The set of all strongly p-Cesaro summable sequences of order a will be

represented by wy and wg, is the collection of strongly p-Cesaro summable null



sequences of order o. It is clear that wg, € wy'. In case p=1 wy will be [C%1] and wy
will be [C,1] 1f p=1 and a=1 [12].

Theorem 5.1 If 0 < a < g thenwy € wf and the inclusion may remain strict for
some a< f [12].

Proof Suppose p>0 and u € wy;. Since 0 < a < 8, then we may write niﬁ < n—la which

implies that

n n
1 1
=5 D Mm = UP S > ity — 1P
m=1 m=1

It means that wy’ < wf. To prove that the inclusion is strict let us define a sequence

(u,,) as follows:

1, m=i?
w, = { i=1,2.3....

0, otherwies

Since

Y

as n — oo for %< f, then u = (u,,) is strongly p-Cesaro summable of order 5 i.e.

ue€ wf. Now since

Vi—1 1w
< —

n« n%
m=

|um - Olp
1

. -1
and since % - as n— o, thenu & wy for a<l/2.

Corollary 5.1 Let a>0 be given and p>0, then we have wy < w,, , for every 0<a<l
[12].

Proof By take =1 in above theorem we obtain the proof..

Theorem 5.2 Let 0 <a< <1, p>0 and the sequence u be strongly p-Cesaro summable
of order a to I, then it is statly. convergent of or.der g to | [12].

Proof Since for any sequence u = (un) and &> 0, we have

n
Z |um — P = [{m < n:|u,, — l|P > €}]. €P

m=1

We may write
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n

1 1

— |um—l|p2n—a|{m<n: |u,, — [P = €}|.€P
1

na
(5.1

m=
> L [P > p
> n_ﬁl{m <n:lu, —IlP = ¢e}|.¢

Since the sequence u = (u,) is strongly p-Cesaro summable of order a to | then we

have

n
o1
m=1

and from inequality (5.1) we get
1
1 _ e _
ill?onﬁ {m < n:|u,, — l|P = €}| = 0.

It means that u = (u,,) is statly. convergent of order f to I.
Remark 5.1 Note that the reverse of the above Theorem is not true in general [12].

For example the sequence (u,,) defined by

1, m=n3
u, = 1
\/—_, otherwiese
n

is statly. convergent of order o to zero for 1/3<a<I.

For every n > 2 we have the inequality
=1
— > +/n.
2.

m=1

Define Ex={m<n: m#n® n=1,2.3....} and take p=1. Since

1<smsn 1smsn
1 v - 1w 101 1
_ P — _ I el
=Dl == Yl 32 Y —> VA= —
n m=1 m= n m=1\/_ 2
and — 1 — 0 as n — oo We have u € wy’ for 0<a<//2. But u € S¢ for 1/3<a<1/2.
n“z
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6. A-STATISTICAL CONVERGENCE AND A-STATISTICAL
CONVERGENCE OF ORDER a

Let A =(An) be a non- decreasing sequence of positive real numbers such that A1=1,
M+1<Antl and An—o0 as n—oo.The collection of all such sequences will be denoted by A.
Definition 6.1 A sequence u = (u,,) is said to be A-statly. bounded if there exists

some K > 0, such that

1
lim—|{melL;:|u,l >K} =0
n—>00)\n

where I, =[n—2A, +1,n]. The collection of all A-statly. bounded sequences is
represented by SB,.
Definition 6.2 Let a sequence A =(An)€ A be given. A sequence u = (um) of real

numbers is said to be A-statly. convergent to | if for every > 0,
lim = |{m € L: lu,, — 1| = €}| = 0.
n—-oo }\n

In this status we write S; — limu =1 . The collection of all A-statly. convergent

n—-oo

sequences will be denoted by S; and Sy is the set of all A-statly. null sequences. Note that
if we take An=nthen $,=S [9] .

Theorem 6.1 Every bounded number sequence is A -statly. bounded, that is l.SSBy
foreach A € A.

Proof Let u = (u,,) be a bounded sequence. Then there is a real number M >0 such
that

Uy, < M
for all n € N and this implies that
fmel,: meN,|u,|l =M} =0
> |{mel;: meN,|u,| =M} =0

Theorem 6.2 Every A-statly. convergent sequence is A-statly. bounded.

Proof Suppose that the sequence u = (u,,) is A-statly. convergent. For any arbitrary
€>0 and a large number M>0 we have

{m e L;: |uy,, — U = M}| < |{m € L;: |u,, — 1| > €}

and so that



1 1
lim /,l—l{m €L;:|u, -1 =M} <lim /,l—l{m € L;:|uy,—1| = ¢} (6.1)
n—-oo

n—-oo n n

for any A =(An)€ A . Since (u,,) is A-statly. convergent sequence we have

1
lim—|{mel,:|u,—1l>=¢c}]=0
n—>00/1n

And from (6.1) we get that

1
lim—|{m € I,:|u,, — | = M}| = 0.

n—-oo n
Since |u,, — l| =M implies |u,,| =M+|l| we conclude that the sequence u = (u,,)
is A-statly. bounded.
Note reverse of the above Theorem is not true. For example, the sequence u = (u,,)

defined as
a, ifmiseven
Uy =
b, ifmis odd
obviously is A-statly. bounded where a#b. Since
1 . /1n - q 1
0+ 5= 151_7)210 2 < rlll_{(r)lozl{m € L;: luy, —al > €}
and
-1 1
0#—==1lim < lim—|{m € I,;: |u,, — b| > €}|
2 n—oo Zﬂn n-oo A,

The sequence u = (u,,) is not A-statly. convergent.

Theorem 6.3 Let (um), (vm) be any sequences of real numbers such that S;lim un=a,
S, lim vm=Db and c be any real number. Then

1) S.lim cun=ca.

i) S, lim (Um+vm)=a+b [14].

Proof i) Since

£
{m < n:|cu,, —cal = &}| = |{m <n:|uy,—al = ﬁ}|
c

1 1
Zl{m < n:l|cu,, — cal| = €} :Z

&€
m<n|u, —a 2—}|

£
{mSn:Ium—a|>—}|=O

1 1
lim /,L—I{m <n:|cu,, —cal| = €}| = Tllng/l— =

n—o0o n - n
It means that S,lim cun=ca.
iii)

{im < n:|(up + vm) —(a+b)| 2 e}| = [Im < n:|(uy — a) + (v — b)| 2 €}
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< [fm < sl = a1 2 3]+ [fm < o — 1 2 3]

implies that

1 1 £
lim—|m<n:|(up+ v,)—(a+b)|=¢} < lim—|{m <n:|u,, —al 2—}|

+1l1l—>72>% {msn:lvm—b|2§}|

1
lim—|{m<n:|(up+ vy) —(@a+b)| =} =0.
n—>00/1n

It means that S*lim (Um+ vm )=a+b.

Definition 6.4 Let a sequence A =(An)€ A and a real number a(0,1] be given. Then
a sequence u = (u,,) is said to be A-statly. bounded of order a if there exists some K > 0
such that

1
lim —|{m € I,,: |u,,| > K}| = 0.

n-oo A%
The set of all A-statly. bounded sequences denoted by SB.
Definition 6.5 Let a sequence A =(An)€ A and a real number a<(0,1] be given and
define A% = (A%) = {1{,45,15,...}. Then the sequence u = (u,,) is said to be A-statly.

convergent of order o if

1
lim —|{m € I;: |luy, — | = €}| = 0.
nosen 12

In this situation we write Sy — limu =1 . The set of all A-statly. convergent

n—-oo

sequences of order o will be represented by S} and Sy, is the set of all A-statly. null
sequences of order a [14] .

Note: A-statly. convergence of order a is not meaningful for a>1 in general.

Theorem 6.4

1) l.c SBY.

2) S5t c SBy.

3) S5 c S, [14].

Theorem 6.5 Let (um), (vm ) be any sequences of real numbers such that

Sy — ,flif,@o”m:a’ Sy — Tfl%vm:b and c be any real number. Then

i) Sy — Tglilrgocum = ca.

i) S — lim (w,, + v,) = a + b [14].
m-—-oo
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Theorem 6.6 Let 0 < a < B < 1.Now if S§ — limu,, =1 then we have Sf —

m—oo

limw,, = 1, thatis S§ <SP [14].

m—oo

Proof Suppose that 0 < a < < 1, then we have
1 1

< —.
AT
and so that

1
fmel,;:|u, -1 >¢}| < A—al{m € L;: luy — 1| > €}
n

)
o
By taking limit in both side as n goes to infinity we get

1 1
lim —|{m € I;: lu,, — 1| > €}| < lim —|{m € I;: lu,, — 1| > €}| = 0.

n
Therefore S5 < Sf ;
If we take § = 1 in Theorem 6.6 we get the following result.
Corollary 6.1 For each A =(A,) € A and each ae(0,1] we have
Spinclusion. S; =S if a =1 [14].
Theorem 6.7 Let ae(0,1] be given. Then S € Sy if

a
rlli_{&inf?n >0
[14].
Proof For any >0, we have
fm<niu,—-1ll>c>{mel,;:|u, -1 >c¢}
Therefore,
1
EI{mSn: luy, — U > €} ZEI{mEIn: luy, — U > €}

a
n

1
= 7.E|{m € L: |u,, — 1| > €}
After taking limit in both side as n — oo we get that

u, - l(s) = u, » 1(19).
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CONCLUSION

We have examined the notion of stat-convergence, stat-convergence of order a,
strong p-Cesaro summability, strong p-Cesaro summability of order a, A- stat-
convergence, A- stat- convergence of order a and boundedness for real number sequences.
Also we showed the special case of each types of statly-convergent sequences and the
relationship between the sets of sequences which are statly-convergent of order a, for
different a's such that 0< a <1. Furthermore, we also have shown the relationship between
the sets of sequences which are strongly p-Cesaro summable of order a for different a's

such that o>0.

29



REFERENCES

[1]
[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

Fast H. (1951) Sur la convergence statistique. Collog. Math., 2: 241-243.

Buck R. C. (1953) Generalized asymptotic density, Amer. J. Math., 75 335-
346.

Schoenberg 1. J. (1959) The integrability of certain functions and related
summability methods. Amer. Math. Monthly, 66, 361-375.

Zygmund A. (1979) Trigonometric Series. Cambridge University Press,
Cambridge, UK.

Fridy J (1985) On statistical convergence. Analysis, 5: 301-313..

Connor J.S. (1988) The Statistical and Strong p-Cesaro Convergence of
Sequences. Analysis, 8: 47-63

Savas E. (2000) Strong almost convergence and almost A-statistical
convergence. Hokkaido Mathematical Journal 29(3): 531-536.

Salat T. (1980) On statistically convergent sequences of real numbers, Math.
Slovaca. 30, 139-150.

Mursaleen, (2000) M: Z-statistical convergence. Math. Slovaca 50(1), 111-115
Nuray, F: (2010) A-strongly summable and A-statistically convergent functions.
Iran. J. Sci. Technol., Trans. A, Sci. 34(4),335-338

Et M., Mohiuddine S. A. and Alotaibi A. (2013) On A-statistical convergence
and strongly A-summable functions of order a. J. Inequal. Appl. Article 1D 469.
Colak R. (2010) Statistical convergence of order a; Modern Methods in
Analysis and Its Applications, New Delhi, India: Anamaya Pub, 121-129.
Colak R. (2011 On A-statistical convergence; Conference on Summability and
Applications, May 12-13. Istanbul Turkey.

Colak, R., Bektas, C.A. (2011) A-statistical convergence of order o, Acta Math.
Sci.31B(3) 953-959.

Bhunia, S., Das P. and Pal, S. K. (2012) Restricting statistical convergence,
Acta Math. Hungar. 134 no. 1-2. 153-161.

Fridy J. A., Orhan C. (1997) Statistical limit superior and limit inferior, Proc.
Amer. Math. Soc. VVol.125. No. 12. 3625-3631.

30



CURRICULUM VITAE

Name: Sardar Shemhammed Rasheed

Date of Birth: 18/10/1978

Place of Birth: Irag-Erbil

Contact Number: +9647804888748

E-mail Address: sardar.tr@gmail.com

Education: Bsc. Degree from University of Salahaddin.

College of Science — Department of Mathematics (2000-2001)

Work Place: Ministry of Education- General Directorate Education in Erbil

31


mailto:sardar.tr@gmail.com

