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IV 

 

SUMMARY 

 

STATISTICAL CONVERGENCE OF NUMBER SEQUENCES AND SOME 

GENERALIZATIONS 

 

In this thesis we examine and study statistical convergence, statistical boundedness 

and some other notions related to these concepts for sequences of real numbers. At the first 

we give the statistically convergent, statistically Cauchy and statistically bounded 

sequences of real numbers and then we give limit inferior and limit superior of a sequence. 

Then we establish the relations between these concepts. After that we study the concept 

strong p-Cesàro summability of sequences of real numbers. In the last step we give the 

relationship between the sets of sequences which are statistically convergent of order α, for 

different α's such that 0< α ≤1. Furthermore, we also give the relationship between the sets 

of sequences which are strongly p-Cesàro summable of order α for different α's such that 

α>0. At the end we give and study λ-statistical convergence and λ- statistical convergence 

of order α for number sequences, where λ =(λn) is non-decreasing sequence of positive 

number such that λn+1≤λn+1, λ1=1, λn→∞ as n→∞. 

 

Key Words: Statistical Convergence, Statistical Boundedness, statistically Cauchy, 

Cesàro summability, Statistical Convergence of Order α, Statistical Boundedness of Order 

α, λ-statistical convergence, λ-statistical convergence of order α. 
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V 

 

ÖZET 

 

SAYI DİZİLERİ İÇİN İSTATİSTİKSEL YAKINSAKLIK VE BAZI 

GENELLEŞTİRMELERİ 

 

Bu tezde istatistiksel yakınsak ve istatistiksel sınırlı reel sayı dizilerini inceleyecek ve 

bu kavramlarla ilişkili diğer bazı kavramlardan bahsedeceğiz. İlk olarak istatistiksel 

yakınsak, istatistiksel Cauchy ve istatistiksel sınırlı dizileri tanıtacak ve limit inferior ve 

limit superior kavramlarına yer vereceğiz. p-Cesàro toplanabilirlik kavramını verdikten 

sonra bu kavramlar arasındaki ilişkileri ortaya koyacağız. α  yıncı dereceden istatistiksel 

yakınsaklık, α  yıncı dereceden istatistiksel sınırlılık ve α  yıncı dereceden. p-Cesàro 

toplanabilirlik kavramlarını verdikten sonra farklı α lar için elde edilen dizi kümeleri 

arasındaki kapsama bağıntılarını ve ilişkileri ortaya koyacağız.  Son olarak istatistiksel 

sınırlılık ve α.  yıncı dereceden p-Cesàro toplanabilirlik kavramlarını verdikten sonra farklı 

α lar için elde edilen dizi kümeleri arasındaki kapsama bağıntılarını ve ilişkileri ortaya 

koyacağız. Son olarak λ =(λn) pozitif sayıların azalmayan ve her n için λn+1≤λn+1, λ1=1, 

n→∞ için λn→∞ şartlarını sağlayan bir dizi olmak üzere λ -istatistiksel yakınsak ve α yıncı 

dereceden λ -istatistiksel yakınsak dizileri tanımlanacak ve bu kavramlara ilişkin bazı 

bağıntılar verilecektir. 

 

Anahtar Kelimeler: İstatiksel yakınsaklık, istatistiksel sınırlılık, istatistiksel 

Cauchy, Cesàro toplanabilirlik, α yıncı dereceden istatistiksel yakınsaklık, α yıncı 

dereceden istatistiksel sınırlılık, λ-istatistiksel yakınsaklık, α yıncı dereceden λ -istatistiksel 

yakınsaklık. 

 

 

 

 

 

 

 

 



VI 

 

LІST OF SYMBOLS 

 

ℕ : Natural numbers 

ℝ : Real numbers 

w : sequences 

c  : Convergent sequences 

𝑐0 : Null sequences 

l∞ : bounded sequences 

S  : Statistically convergent sequences 

𝑆0 : Statistically null sequences 

SB : Statistically bounded sequences 

Sα : Sequences which are statistically convergent ᴏf order α 

SBα : Sequences which are statistically bounded of order α 

𝑆𝜆 : λـstatistically convergent sequences 

SBλ : Sequences which are λـstatistically bounded of order α 

𝑤𝑝 : Strongly pـCesàro summаblе sequences 

𝑤𝑝
𝛼 : Sequences which are strongly pـCesàro summаblе ᴏf order α 

 

 

 



 

1. INTRODUCTION 

 

The notion of statistically convergence was took place in а study of Fast[1] in first 

time and also independently by Buck[2] and Schoenberg[3] for number sequences. One of 

the most recent generalizations of concept of convergence of sequences “А new type of 

convergence” is statistical convergence defined by Fast. Recently, it became the center of 

attraction for many researchers. 

The statistical convergence concept for number sequences appeared in а study of 

Zygmund[4] and it was called it as "almost convergence ". 

Statistical convergence is а type of convergence which is basically depend on the 

natural density of subsets of the set of positive integers. 

Statistical convergence has been discussed under different names in Number theory, 

Fourier analyses, Trigonometric series, Measure theory and Banach spaces. Statistical 

convergence was further studied from the sequence space point of view and linked with 

ssammaubility theory by Fridy[5]. Connor[6], Savaş[7], Šalát[8], Mursaleen[9], Nuray[10], 

Mohiuddine et al[11], Çolak[12], [13], Çolak and Bektaş[14] and many mathematicians. In 

last years, the concept of statistical convergence has appeared in the study of strong 

integral summability and the structure of ideals of bounded continuous functions on locally 

compact spaces. Furthermore, the concept “order α” was imported in last years and some 

generalizations have been given such as statistical convergence of order α. 

The α -density of any subset of natural numbers, statistical convergence of order α 

and strong pـCesàro summability of order α for number sequences was defined by 

Çolak[12]. The α -density of а subset U ℕ is defined by 

𝛿𝛼(𝑈) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛:𝑚 ∈ 𝑈}|, 

if limit exists, where α(0,1] and |{𝑚 ≤ 𝑛:𝑚 ∈ 𝑈}| represents the number of elements 

which belongs to U. 

We will use the following abbreviations throughout the thesis. 

“stat.” instead of “statistical” 

“statly.” instead of “statistically” 

 



 

2. STATISTICAL CONVERGENCE AND STATISTICAL BOUNDEDNESS 

OF NUMBER SEQUENCES 

 

Definition 2.1 Let U ⊆ℕ = {1,2.3.… } and define 

𝛿(𝑈) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛:𝑚 ∈ 𝑈}|. 

Then the number δ(U) is called the naturel density of set U, if the limit exists. 

Stat. convergence of а sequence is based on the density of subsets of the set ℕ. It can 

be checked that any finite subset of set ℕ has zero natural density and δ(Uc) = 1 − δ(U), 

where Uc = ℕ− U for any U ⊆ℕ. If  δ(U) = 1    then set  U  is said to be statistically dense 

[1] 

Definition 2.2 Let 𝑢 = (𝑢𝑚) ∈ 𝑤. The sequence (𝑢𝑚) is said to be stаtly. convergent 

if 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0 

for every ε > 0, for some number l. In this condition we say that u is stаtly. convergent to l. 

For this situation we write 

𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙 

and S represents the collection of all stаtly. convergent sequences. [5]. 

In this study the sequences will have real entries. We recall that if а sequence 𝑢 =

(𝑢𝑚) accepts property P for all m excepting а set of density zero , then we say that 𝑢 =

(𝑢𝑚) accepts property P for "almost all m" and abbreviate this by "a.a.m". 

Lemma 2.1 If 𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚𝑢𝑚 = 𝑢0 and 𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚𝑣𝑚 = 𝑣0 and c is а real constant, 

then 

i) 𝑠𝑡𝑎𝑡. − 𝑙𝑖𝑚(𝑐. 𝑢𝑚) = 𝑐. 𝑢0 

ii) 𝑠𝑡𝑎𝑡. −𝑙𝑖𝑚(𝑢𝑚 + 𝑣𝑚) = 𝑢0 + 𝑣0 [5 ]. 

 

Definition-2.3 А sequence 𝑢 = (𝑢𝑚) is stаtly. bounded if 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0 

for some 𝑀 > 0   𝑖. 𝑒.  |𝑢𝑚| ≤ 𝑀  𝑎. 𝑎.𝑚.  [8]. 

Theorem 2.1 Any bounded number sequence is stаtly. bounded [8]. 
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Proof Suppose that the sequence 𝑢 = (𝑢𝑚) is bounded. Then for some M >0, we 

have |𝑢𝑚| ≤ 𝑀 , for all 𝑚 ∈ ℕ and this means that 

{𝑚 ∈ ℕ: |𝑢𝑚| > 𝑀} = ∅ . 

Thus, we gеt 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0 

and it means that u is stаtly. bounded. 

Remark 2.1 The reverse of Theorem 2.1 is not right in general. For example the 

sequence 𝑢 = (𝑢𝑚) defined as 

𝑢𝑚 = {
 𝑚2 ,        𝑚 = 𝑛2

 
(−1)𝑚 , 𝑚 ≠ 𝑛2 .

               𝑛 = 1,2,3,4, … .. 

that іs, the sequence 𝑢 = {1,1, −1,16,−1,1, −1,1,81, … } is not bounded. To show that 𝑢 =

(𝑢𝑚) is stаtly. bounded, let M >1 be given. Then 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| ≤ 𝑙𝑖𝑚

𝑛→∞

√𝑛

𝑛
= 𝑙𝑖𝑚
𝑛→∞

1

√𝑛
= 0 , 

it means that u is stаtly. bounded [8]. 

Theorem 2.2 Any stаtly. convergent sequence is stаtly. bounded [8]. 

Proof Suppose that the sequence (𝑢𝑚) is stаtly. convergent to 𝑢0. For any arbitrary 

𝐾 > ε > 0 we have 

{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢0| > 𝐾} ⊆ {𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢0| ≥ 𝜀}. 

This inclusion gives the inequality 

|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢0| > 𝐾}|  ≤ |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢0| ≥ 𝜀}|. 

Since (𝑢𝑚) is stаtly. convergent to 𝑢0 we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢0| ≥ 𝜀}| = 0 , 

for every ε > 0,  and from above inequality 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢0| > 𝐾}| = 0. 

That is why the sequence (𝑢𝑚) is stаtly. bounded. 

Remark 2.2 The reverse of Theorem 2.2 is not right in general. For this let 𝑢 =

(𝑢𝑚) be а sequence such that 

𝑢𝑚 = {
 𝑠, if 𝑚 = 2𝑖 + 1

 
𝑡, if   𝑚 = 2𝑖 

                    i=1,2,3,4.… 
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where s, t∈ ℝ and s≠t. Now 𝑢 = (𝑢𝑚) = {𝑠, 𝑡, 𝑠, 𝑡, 𝑠, 𝑡, … } is stаtly. bounded. Let us choose 

𝐾 ≥  2𝑚𝑎𝑥{|𝑠|, |𝑡|}. Then {𝑚 ≤ 𝑛: |𝑢𝑚| > 𝐾} = ∅ for each n and so that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝐾}| = 0 

and it means that 𝑢 = (𝑢𝑚) is stаtly. bounded [8]. 

Now we show that 𝑢 = (𝑢𝑚) is not stаtly. convergent. Since the density of the both 

sets 𝛿({𝑚 ≤ 𝑛:𝑚 = 2𝑖 + 1}) =
1

2
≠ 0  and 𝛿({𝑚 ≤ 𝑛:𝑚 = 2𝑖}) =

1

2
≠ 0 

the sequence (𝑢𝑚) is not stаtly. convergent to s and t. Therefore the sequence (𝑢𝑚) is not 

stаtly. convergent. 

Consequently, the sequence (𝑢𝑚) is not stаtly. convergent however (𝑢𝑚) is stаtly. 

bounded. 

Note that every subsequence of a convergent sequence is also convergent but every 

subsequence of a stаtly. convergent sequence may not be convergent and may not be a 

stаtly. convergent. 

For example, let us take (𝑢𝑘) as 

𝑢𝑚 = {
 𝑚,    𝑚 is prime number

 
  0,              otherwise.         

 

Since the natural density of the collection of prime numbers is zero, that іs 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛:𝑚 is prime number}| = 0, 

and so that 𝛿({𝑚𝜖ℕ:𝑚 is prime number}) =0. Thus (𝑢𝑚) is stаtly. convergent to zero, 

but it is clear that the subsequence (𝑢𝑚′) is not convergent and not stаtly. convergent, 

where (𝑢𝑚′) = (𝑚) = {1,2,3,5,7,11,… . }. 

Definition 2.4 А sequence 𝑢 = (𝑢𝑚) of real numbers is statly. Cаuϲhy sequence іf 

for аny ɛ>0, there exist а number Nℕ such that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁| ≥ 𝜀}| = 0 

[5]. 

Theorem 2.3 Every statly. Cаuϲhy sequence is stаtly. bounded, but the converse is 

not right [5]. 

Proof. Let 𝑢 = (𝑢𝑚) bе а statly. Cаuϲhy sequence. Then given any ɛ >0, there exists 

N=N(ɛ) such that |𝑢𝑚 − 𝑢𝑁| < 𝜀 a.a.m. 

This implies that |𝑢𝑚|<M  a.a.m, where M= ɛ +|𝑢𝑁 | i.e. 
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𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0 

It means that the sequence u is stаtly. bounded. 

The sequence 𝑢 = (𝑢𝑚)=(−1,1,−1,1,…) is bounded and hence stаtly. bounded but it 

is not statly. Cаuϲhy. 

Theorem 2.4 А sequence 𝑢 = (𝑢𝑚) is stаtly. convergent if and only if it is satisfied 

the following condition 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′| ≥ 𝜀}| = 0 

where (𝑢𝑚′) is а subsequence of (𝑢𝑚) such that 

𝑙𝑖𝑚
𝑚′→∞

𝑢𝑚′ = 𝑙 

for some l   [5]. 

Proof Let the sequence (𝑢𝑚) be stаtly. convergent. We will prove that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′| ≥ 𝜀}| = 0     (2.1) 

If the sequence (𝑢𝑚) is stаtly. convergent to 𝑙, then by the Definition 2.2 we have 

         𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0.     (2.2) 

for some l. Now, by using (2.1), we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′| ≥ 𝜀}| 

= 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′ − 𝑙 + 𝑙| ≥ 𝜀}| 

≤ 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| + 𝑙𝑖𝑚

𝑛→∞

1

𝑛
|{𝑚′ ≤ 𝑛: |𝑢𝑚′ − 𝑙| ≥ 𝜀}| 

≤  0 + 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚′ ≤ 𝑛: |𝑢𝑚′ − 𝑙| ≥ 𝜀}|                                                                            (2.3) 

It is given that 𝑙𝑖𝑚
𝑚′→∞

𝑢𝑚′ = 𝑙. Since (𝑢𝑚′) is convergent, it is also stаtly. convergent. 

Therefore, we can write 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚′ ≤ 𝑛: |𝑢𝑚′ − 𝑙| ≥ 𝜀}| = 0          (2.4) 

In view of the inequalities (2.3) and (2.4) we get 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′| ≥ 𝜀}| = 0 

Conversely, let 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′| ≥ 𝜀}| = 0     (2.5) 
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be satisfied. To prove that the sequence (𝑢𝑚) is stаtly. convergent let us start from the 

following inequality 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}|         (2.6) 

= 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′ + 𝑢𝑚′ − 𝑙| ≥ 𝜀}| 

≤ 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛,𝑚′ ≤ 𝑛: |𝑢𝑚 − 𝑢𝑚′| ≥ 𝜀}| + 𝑙𝑖𝑚

𝑛→∞

1

𝑛
|{𝑚′ ≤ 𝑛: |𝑢𝑚′ − 𝑙| ≥ 𝜀}| 

≤ 0 + lim
n→∞

1

n
|{𝑚 ≤ 𝑛,𝑚′: |𝑢𝑚 − 𝑢𝑚′| ≥ ε}|         (2.7) 

by using (2.5). Since it is given that 𝑙𝑖𝑚
𝑚′→∞

𝑢𝑚′ = 𝑙 then 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚′ ≤ 𝑛: |𝑢𝑚′ − 𝑙| ≥ 𝜀}|} = 0 

from inequality (2.7). Consequently we get 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}|} = 0. 

This implies that the sequence (𝑢𝑚) is stаtly. convergent. 

Theorem 2.5 Suppose that (𝑢𝑚) and (vm) are any two sequences such that (𝑢𝑚) is 

convergent to 𝑙 and (vm) is stаtly. convergent to zero. Then the sequence (um+vm) is stаtly. 

convergent to l  [5]. 

Proof Let 

𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙   i. e   |𝑢𝑚 −  𝑙| → 0 as 𝑚 → ∞                     (2.8) 

and also let 

𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
𝑚→∞

𝑣𝑚 = 0 

that іs, 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑣𝑚 − 0| ≥ 𝜀}| = 0.                                       (2.9) 

Now, suppose that 

𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
𝑚→∞

( 𝑢𝑚 + 𝑣𝑚) = 𝑙
′                (2.10) 

Therefore, 

𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
𝑚→∞

( 𝑢𝑚 + 𝑣𝑚) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚) − 𝑙′| ≥ 𝜀}|} = 0.    

           (2.11) 

Now 

| 𝑙𝑖𝑚
𝑚→∞

|𝑢𝑚 − 𝑙′| + 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑣𝑚 − 0| ≥ 𝜀}|| = 0. 

that іs 
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| 𝑙𝑖𝑚
𝑚→∞

|𝑢𝑚 − 𝑙
′| + 0| = 0 

Hence using (2.9) we gеt 

𝑙𝑖𝑚
𝑚→∞

|𝑢𝑚 − 𝑙
′| = 0 

i.e. 

                             𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙
′.                                                                                         (2.12) 

But since  𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙   we get  𝑙′ =  𝑙. 

From (2.10) and (2.12), it is proved that 

𝑠𝑡𝑎𝑡 − lim (
𝑚→∞

𝑢𝑚 + 𝑣𝑚) = 𝑙. 

Theorem 2.6 If а sequence (𝑢𝑚) is stаtly. convergent to 𝑙 then there are sequences 

(vm), (zm) such that 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: 𝑢𝑚 ≠ 𝑣𝑚}|} = 0 and (zm) is а statly. null sequence 

where 𝑙𝑖𝑚
𝑚→∞

𝑣𝑚 = 𝑙, um=vm+zm   [5]. 

Proof Suppose that the sequence (𝑢𝑚) be stаtly. convergent to 𝑙, that іs 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0         (2.13) 

and we have |𝑣𝑚 − 𝑙| → 0 𝑎𝑠 𝑚 → ∞ , where, um=vm+zm. We should prove that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: 𝑢𝑚 ≠ 𝑣𝑚}| = 0   and  𝑙𝑖𝑚

𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑧𝑚 − 0| ≥ 𝜀}|} = 0. 

Since (𝑢𝑚) is stаtly. convergent to 𝑙, we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0, 

that is 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙 + 𝑣𝑚 − 𝑣𝑚| ≥ 𝜀}| = 0, in another word 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |(𝑢𝑚 − 𝑣𝑚) + (𝑣𝑚 −  𝑙)| ≥ 𝜀}| = 0 . 

Therefore 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑣𝑚| ≥ 𝜀}| + 𝑙𝑖𝑚

𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑣𝑚 − 𝑙| ≥ 𝜀}| = 0. 

And since 𝑙𝑖𝑚
𝑛→∞

𝑣𝑛 = 𝑙 we get 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑣𝑚| ≥ 𝜀}| + 0 = 0 

and hence 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑣𝑚| ≥ 𝜀}| = 0 

which implies that 
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𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛: 𝑢𝑚 ≠ 𝑣𝑚}| = 0 . 

Since 

𝑙𝑖𝑚
𝑚→∞

𝑣𝑚 = 𝑙  𝑎𝑛𝑑  𝑢𝑚 = 𝑣𝑚 + 𝑧𝑚                                                                     (2.14) 

and lim
n→∞

1

n
|{m ≤ n: 𝑢𝑚 ≠ 𝑣𝑚}| = 0 from Theorem 2.4 we have that 

𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
 𝑚→∞

( 𝑣𝑚 + 𝑧𝑚) = 𝑙 = 𝑙𝑖𝑚
𝑚→∞

𝑣𝑚 

by using (2.14) which implies that 𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
𝑚→∞

𝑧𝑚 must be equal to zero it means that (zm) 

is statly. null sequence. 

Definition 2.5 If 𝑢 = (𝑢𝑚) is а sequence of real numbers, then the stat. limit 

superior of u is given by 

𝑠𝑡𝑎𝑡 − lim sup (𝑢) = {
 𝑠𝑢𝑝𝐵𝑢,    𝑖𝑓 𝐵𝑢 ≠ ∅

 
 −∞,      𝑖𝑓 𝐵𝑢 = ∅

 

where 𝐵𝑢 = {𝑏 ∈ ℝ: 𝛿{(𝑚: 𝑢𝑚 > 𝑏}) ≠ 0}.[16] 

Definition 2.6 If 𝑢 = (𝑢𝑚) is а sequence of real numbers, then stat. limit inferior of 

u is given by 

𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚 𝑖𝑛𝑓 (𝑢) = {
 𝑖𝑛𝑓𝐴𝑢,    𝑖𝑓 𝐴𝑢 ≠ ∅

 
  ∞,      𝑖𝑓 𝐴𝑢 = ∅

 

where 𝐴𝑢 = {𝑎 ∈ ℝ: 𝛿({𝑚: 𝑢𝑚 < 𝑎}) ≠ 0}.[16] 

Theorem 2.7 For any sequence u, stat-lim inf(u) ≤ stat-lim sup(u). [16] 

Proof First suppose that stat- limit sup(u) = −∞. Then by Definition 2. 5 we have 

𝐵𝑢 = ∅ then for every b∈ ℝ , 𝛿({𝑚: 𝑢𝑚 < 𝑏}) = 1 it means 𝛿({𝑚: 𝑢𝑚 < 𝑏}) = 1. So for 

any a∈ ℝ , 𝛿({𝑚: 𝑢𝑚 < 𝑎}) ≠ 0. Hence stat-lim inf(u)= −∞. 

It means that stat- inf(u) ≤ stat-lim sup(u). 

In case stat-lim sup(u) = +∞ it is clear that stat-lim inf(u) ≤ stat-lim sup(u). 

Next case assumes that stat- lim sup(u) = β and stat-lim inf(u)=α. 

Since stat-lim sup(u) = β, by Definition 2.5 we have 𝛿({𝑚: 𝑢𝑚 > 𝛽}) ≠ 0, but β is 

supBu then for any ɛ>0, 𝛿 ({𝑚: 𝑢𝑚 > 𝛽 +
ɛ

2
}) = 0. Hence 𝛿({𝑚: 𝑢𝑚 < 𝛽 + ɛ}) = 1 and by 

Definition 2.6  𝛽 + ɛ ∈ 𝐴𝑢 but α is infAu implies that 𝛼 ≤ 𝛽 + ɛ. Since ɛ is arbitrary, we 

have 𝛼 ≤ 𝛽. 

For example let 𝑢 = (𝑢𝑚) be any real number sequence such that 
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𝑢𝑚 = {

𝑚,      if m is squаrе                         
2.       if m is аn odd non squаrе 
 0,       if m is аn еvеn non squаrе 

 

Since 𝐵𝑢 = (−∞,2) and 𝐴𝑢 = (0,+∞) stat-lim sup(u)=2 and stat-lim inf(u)=0. 

The sequence 𝑢 = (𝑢𝑚) is stаtly. bounded but it is not stаtly. convergent, since 𝑢 =

(𝑢𝑚) have two different subsequences and the density of which are not zero. 

Note: Stаtly. boundedness implies that stat-lim sup and stat-lim inf are finite. 

Theorem.2. 8 А sequence 𝑢 = (𝑢𝑚) of real numbers is stаtly. convergent if and only 

if it is stаtly. bounded and stat-lim inf(u) = stat-lim sup(u). [16] 

Proof Suppose that the sequence 𝑢 = (𝑢𝑚) is stаtly. convergent and 𝑠𝑡𝑎𝑡 −

𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙. Then = (𝑢𝑚) is stаtly. bounded and for any ɛ>0 we have 

        𝛿({𝑚: |𝑢𝑚 − 𝑙| > ɛ}) = 0.                                                                                       (2.15) 

Suppose that stat-lim inf(u) =α , stat-lim sup(u)=β. We will show that α =β. 

From equation (2.15) we gеt ({𝑚: 𝑢𝑚 > 𝑙 + ɛ}) = 0 . Since stat-lim sup(u)=β 

implies that 

𝛽 ≤ 𝑙 .           (2.16) 

Also from (2.15) we get 𝛿({𝑚: 𝑢𝑚 < 𝑙 − ɛ}) = 0. Since stat-lim inf(u)=α implies 

that 

𝑙 ≤ 𝛼.           (2.17) 

From (2.16) and (2.17) we get 𝛽 ≤ 𝑙 ≤ 𝛼   i.e.  𝛽 ≤ 𝛼. 

But by Theorem 2.7 we have 𝛼 ≤ 𝛽 thus we gеt that 𝛼 = 𝛽. 

Conversely, suppose that stat-inf u =α, stat-lim sup(u)=β and 𝛼 = 𝛽. We will show 

that 𝑢 = (𝑢𝑚) is stаtly. convergent. 

Since stat-lim inf(u) =α we have 

𝛿({𝑚: 𝑢𝑚 < 𝛼 − 𝜀}) = 0          (2.18) 

And since stat-lim sup(u)=β we have 

𝛿({𝑚: 𝑢𝑚 > 𝛽 + 𝜀}) =  0         (2.19) 

By assumption since 𝛼 = 𝛽 we may take 𝑙 = 𝛼 = 𝛽 in equation (2.18) and (2.19). 

From this we get 

𝛿({𝑚: 𝑢𝑚 < 𝑙 − 𝜀}) = 0  and  𝛿({𝑚: 𝑢𝑚 > 𝑙 + 𝜀}) = 0 

This implies that 𝛿({𝑚: |𝑢𝑚 − 𝑙| > ɛ}) = 0.  Hence  𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙. 

This completes the proof. 

 



 

3. CESÀRO SUMMABILITY AND STRONG p-CESÀRO SUMMABILITY 

 

Definition  3.1 А sequence (𝑢𝑛) is called Cesàro summable to l if the condition 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝑢𝑚

𝑛

𝑚=1

= 𝑙 

is satisfied [6]. 

Theorem  3.1 If the series ∑ 𝑢𝑚
∞
𝑚=1  is convergent then the sequence (𝑢𝑛) is Cesàro 

summable to zero . 

Proof Suppose the series ∑ 𝑢𝑚
∞
𝑚=1  is convergent and let l be the sum of the series. 

Then the sequence of its partial sum also converges to l, i.e. Sn=∑ 𝑢𝑚
𝑛
𝑚=1  → l as n→∞. 

Now we get that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝑢𝑚

𝑛

𝑚=1

= 𝑙𝑖𝑚
𝑛→∞

1

𝑛
𝑆𝑛 = 0 . 

Hence the sequence (𝑢𝑛) is Cesàro summable to zero. 

Note that the reverse of the above Theorem is not right. For example the sequence 

(𝑢𝑛) = (
1

𝑛
) is Cesàro summable to zero, since 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝑢𝑚
𝑛
𝑚=1 = 𝑙𝑖𝑚

𝑛→∞

1

𝑛
∑

1

𝑚

𝑛
𝑚=1 = 0. 

But the series ∑
1

𝑚
∞
𝑚=1  is divergent as known (harmonic series). 

Theorem 3.2 Every convergent sequence is also Cesàro summable [6]. 

Proof. Suppose that (𝑢𝑛) is convergent and 𝑙𝑖𝑚
𝑛→∞

𝑢𝑛 =𝑢0 and let 𝑣𝑛 =
1

𝑛
∑ 𝑢𝑚
𝑛
𝑚=1 . 

We should prove that 𝑙𝑖𝑚
𝑛→∞

𝑣𝑛 = 𝑢0. For this given any 𝜀> 0 we should find а number N ∈

ℕ such that |vn- 𝑢0 |<𝜀 for all n > N. Now, since 𝑙𝑖𝑚
𝑛→∞

𝑢𝑛 =𝑢0 , we know that for any 𝜀1 > 0 

there exist N1∈ ℕ such that |un- 𝑢0 |< 𝜀1  for all n > N1. Choose 𝜀=2 𝜀1 . Now we may write 

|𝑣𝑛 − 𝑢0 | = |(
1

𝑛
∑ 𝑢𝑚

𝑛

𝑚=1

) − 𝑢0| 

= |(
1

𝑛
∑ 𝑢𝑚

𝑛

𝑚=1

) − 𝑢0
𝑛

𝑛
| = |

1

𝑛
∑(𝑢𝑚 − 𝑢0)

𝑛

𝑚=1

| 
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= |
1

𝑛
∑(𝑢𝑚 − 𝑢0)  +

1

𝑛
∑ (𝑢𝑚 − 𝑢0)

𝑛

𝑚=𝑁1+1

𝑁1

𝑚=1

| 

≤ |
1

𝑛
∑(𝑢𝑚 − 𝑢0)

𝑁1

𝑚=1

| + |
1

𝑛
∑ (𝑢𝑚 − 𝑢0)

𝑛

𝑚=𝑁1+1

|. 

Then 

|
1

𝑛
∑(𝑢𝑚 − 𝑢0)

𝑁1

𝑚=1

| ≤
1

𝑛
∑ |𝑢𝑚 − 𝑢0|

𝑁1

𝑚=1

 

≤
1

𝑛
∑ 𝑚𝑎𝑥

1≤𝑖≤𝑁1
|𝑢𝑖 − 𝑢0|

𝑁1

𝑚=1

 

= 𝑚𝑎𝑥
1≤𝑖≤𝑁1

|𝑢𝑖 − 𝑢0|  
1

𝑛
∑ 1

𝑁1

𝑚=1

 

= 𝑚𝑎𝑥
1≤𝑖≤𝑁1

|𝑢𝑖 − 𝑢0|  
𝑁1
𝑛
. 

If we pick n such that 

𝑛 > 𝑚𝑎𝑥
1≤𝑖≤𝑁1

|𝑢𝑖 − 𝑢0|  
𝑁1
𝜀1
 . 

we get 

                                    |
1

𝑛
∑(𝑢𝑚 − 𝑢0)

𝑁1

𝑚=1

| < 𝜀1.                                                                       (3.1) 

Further we may write 

|
1

𝑛
∑ (𝑢𝑚 − 𝑢0)

𝑛

𝑚=𝑁1+1

| ≤
1

𝑛
∑ |𝑢𝑚 − 𝑢0|

𝑛

𝑚=𝑁1+1

 

≤
1

𝑛
∑ 𝑚𝑎𝑥

𝑁1+1≤𝑖≤𝑛
|𝑢𝑖 − 𝑢0|

𝑛

𝑚=𝑁1+1

 

= 𝑚𝑎𝑥
𝑁1+1≤𝑖≤𝑛

|𝑢𝑖 − 𝑢0|  
1

𝑛
∑ 1

𝑛

𝑚=𝑁1+1

 

= 𝑚𝑎𝑥
𝑁1+1≤𝑖≤𝑛

|𝑢𝑖 − 𝑢0|  
𝑛 − 𝑁1
𝑛

 

≤ 𝑚𝑎𝑥
𝑁1+1≤𝑖≤𝑛

|𝑢𝑖 − 𝑢0| 
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and since 𝑢𝑛 → 𝑢0 as 𝑛 → ∞ then we may choose N1 such that |𝑢𝑖 − 𝑢0| < 𝜀1  for all n> 

N1  so that 

                    |
1

𝑛
∑ (𝑢𝑘 − 𝑢0)

𝑛

𝑚=𝑁1+1

| ≤ 𝜀1 .                                                                           (3.2) 

Therefore 

|𝑣𝑛 − 𝑢0 | ≤ |
1

𝑛
∑ (𝑢𝑚 − 𝑢0)
𝑁1
𝑚=1 | + |

1

𝑛
∑ (𝑢𝑚 − 𝑢0)
𝑛
𝑚=𝑁1+1

|<𝜀1 + 𝜀1 = 2𝜀1 = 𝜀 

for all n> N1 by using (3.1) and (3.2). Hence  𝑙𝑖𝑚
𝑛→∞

𝑣𝑛 = 𝑢0. 

Note The invers of the above theorem is not true. For example the sequence um=(-1)m 

is Cesaro summable to zero but it is not convergent. 

 

Definition  3.2 А sequence (𝑢𝑛) is called strongly Cesàro summable if 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑|𝑢𝑚 − 𝑙|

𝑛

𝑚=1

= 0. 

For this situation, we say that u is strongly Cesàro summable to l. The collection of 

all strongly Cesàro summable sequences will be represented by [C,1] [7]. 

Definition 3.3 Let 𝑢 = (𝑢𝑛) ∈ 𝑤 and let p ∈ ℝ+ . The sequence 𝑢 = (𝑢𝑛) is called 

strongly pـCesàro summable іf there is а number 𝑢0 such that 

       lim
n→∞

1

n
∑|𝑢𝑚 − 𝑢0|

p

 

n

m=1

= 0                                                                                             (3.3)       

In this situation we say that u is strongly pـCesàro summable to 𝑢0. The collection of 

all strongly pـCesàro summable sequences is represented by 𝑤𝑝 [7]. 

Theorem 3.3 Let p ∈ ℝ+ . If а sequence is strongly pـCesàro summable to 𝑢0, then it 

is stаtly. convergent to 𝑢0 [7]. 

Proof Since for any sequence u = (un) and ɛ> 0, we have 

∑ |𝑢𝑚 − 𝑢0|
𝑝 ≥

𝑛

𝑚=1

|{𝑚 < 𝑛: |𝑢𝑚 − 𝑢0|
𝑝 ≥ 𝜀}|. 𝜀𝑝. 

We may write 

1

𝑛
∑ |𝑢𝑚 − 𝑢0|

𝑝 ≥
1

𝑛

𝑛

𝑚=1

|{𝑚 < 𝑛: |𝑢𝑚 − 𝑢0|
𝑝 ≥ 𝜀}|. 𝜀𝑝. 

By taking limit at both side as 𝑛 → ∞ we gеt 
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         lim
𝑛→∞

1

𝑛
∑ |𝑢𝑚 − 𝑢0|

𝑝 ≥ lim
𝑛→∞

1

𝑛

𝑛

𝑚=1

|{𝑚 < 𝑛: |𝑢𝑚 − 𝑢0|
𝑝 ≥ 𝜀}|. 𝜀𝑝                         (3.4) 

Since the sequence u is strongly pـCesàro summable to 𝑢0 then from (3.3) and (3.4) 

we gеt that 

lim
𝑛→∞

1

𝑛
|{𝑚 < 𝑛: |𝑢𝑚 − 𝑢0|

𝑝 ≥ 𝜀}| = 0. 

It means that u is stаtly. convergent to 𝑢0. 

Remark 3.1 А stаtly. convergent sequence may not be strongly Cesàro summable. 

For example the sequence (𝑢𝑛) defined by 

𝑢𝑛 = {
√𝑚 , 𝑚 = 𝑛2

 
 0  , otherwise

                         𝑛 = 1,2,3, … 

is statly. converges to zero but since 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑|𝑢𝑚 − 0|

𝑛

𝑚=1

≠ 0 

it is not strongly Cesàro summable to zero. 

 

 

 

 

 



 

4. STATISTICAL CONVERGENCE OF ORDER α AND STATISTICAL 

BOUNDEDNESS OF ORDER α 

 

Definition.4.1 Let H ⊆ ℕ and 0 < 𝛼 ≤ 1  , We define δα(H) by 

            𝛿𝛼(𝐻) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛:𝑚 ∈ 𝐻}|.                                                                   (4.1) 

If the limit exists, then the number δα(H) is called the α-density of set H. It is еаsy to 

observe that if H is а finite subset of ℕ then δα(H)=0 but δα(Hc)≠1- δα(H) for 0<α<1 in 

general. The equality δα(Hc)=1- δα(H) is satisfied for α=1. А set H is called statistically 

dense if δ(H)=1 [12]. 

Lemma.4.1 Let H⊆ ℕ. Then δβ(H)≤ δα(H) if 0<α<β≤1 [12]. 

Proof Suppose that 0< α≤β≤1. Then nα ≤ nβ implies that 
1

𝑛𝛽
≤

1

𝑛𝛼
 then for every n∈ℕ 

we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛽
|{𝑚 ≤ 𝑛:𝑚 ∈ 𝐻}| ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛:𝑚 ∈ 𝐻}| 

It is mean that δβ(H)≤δα(H). 

Note that from above Lemma if δα(H)=0 then also δβ(H)=0 for any α, β (0,1] such 

that  α≤β. 

Definition 4.2 Let α(0,1]. а sequence 𝑢 = (𝑢𝑚) is said to be stаtly. bounded of 

order α if there exists some M>0, such that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚| > M}| = 0. 

The collection of аll sequences which are stаtly. bounded of order α will be 

represented by 𝑆𝐵α. 

Theorem 4.1 Any bounded number sequence is stаtly. bounded of order α for each 

α(0,1]. 

Proof  Let 𝑢 = (𝑢𝑚) bе any bounded sequence. Then there is a number M>0 such 

that 

|𝑢𝑚| ≤ 𝑀  for any 𝑚 ∈ ℕ, so we have 

{𝑚 ≤ 𝑛:𝑚 ∈ ℕ: |𝑢𝑚| > 𝑀} = ∅ . 

hence, 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0 
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for any α(0,1] and it means that u is stаtly. bounded of order α. 

The inverse of above Theorem is not right. For example, let us define a sequence 

(𝑢𝑚) as 

𝑢𝑚 = { 

 𝑚,            if   𝑚 = 𝑛2

 
1

𝑚
 , otherwies

       𝑛 = 1,2.3.4. … ..                                              (4.2) 

It is easily seen that the sequence 𝑢 = {1,
1

2
,
1

3
, 2,

1

5
,
1

6
,
1

7
,
1

8
, 3, … } is not bounded. To 

show that 𝑢 = (𝑢𝑚) is stаtly. bounded of order α, choose M=1. Then 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 𝑙𝑖𝑚

𝑛→∞

𝑛
1
2

𝑛𝛼
= 0 , 

for 1>α>1/2. It means that the sequence (um) is stаtly. bounded of order α for any 

α(1/2.1]. 

Note that from above theorem we can say l∞⊆ 𝑆𝐵α 

Theorem 4.2 If а sequence 𝑢 = (𝑢𝑚) is а stаtly. bounded of order α then it is also 

stаtly. bounded of order β, where 0<α<β1. 

Proof Obviously the inequality 

1

𝑛𝛽
≤
1

𝑛𝛼
                                                                                                                        (4.3) 

is satisfied for any α, β (0,1] such that 0<α<β1. Since the sequence 𝑢 = (𝑢𝑚) is stаtly. 

bounded of order α, then we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0. 

From this and using (4.3) we may write 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛽
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| 

and so that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛽
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0 

which implies that the sequence 𝑢 = (𝑢𝑚) is а stаtly. bounded of order β. 

Note that the reverse of above theorem is not right. For example, the sequence 

𝑢 = (𝑢𝑚) defined in (4.2) is not stаtly. bounded of order β if we take 0<β<1/2. 

Definition 4.3 А sequence 𝑢 = (𝑢𝑚) is called stаtly. convergent of order α (where 

0<α≤1) to а real number l if the following condition is satisfied for every ɛ > 0: 
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𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0.   

In this situation we write Sα-lim un=l or 𝑢𝑛
𝑆𝛼

→ 𝑙. And Sα represents the collection of 

all stаtly. convergent sequences of order α and S0
α represents the collection of all statly. 

null sequences of order α. We recall that if а sequence 𝑢 = (𝑢𝑚) accepts property P for all 

m excepting а set of α-density zero, then we say that 𝑢 = (𝑢𝑚) accepts property P for 

"almost all m according to α" and use abbreviation "a.a.m(α )" for this [12]. 

Theorem 4.3 Let α, β(0,1] be given. Then ever sequence which is stаtly. 

convergent of order α is also stаtly. bounded of order β, that is 𝑆α ⊂ 𝑆𝐵α if αβ. 

Proof. Let α, β(0,1] be given and let αβ. Let the sequence (um) be stаtly. 

convergent of order α to l. Since for any arbitrary 0<ɛ< 𝑀 we have 

{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| > 𝑀} ⊆ {𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}. 

This inclusion gives the inequality 

|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| > 𝑀}|  ≤ |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}|. 

and so that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛β
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| > 𝑀}|  ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}|.               (4.4) 

Since (um) is stаtly. convergent of order α then 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0                                                                            (4.5) 

for every ε > 0.  Hence from (4.4) and (4.5) we gеt 

𝑙𝑖𝑚
𝑛→∞

1

𝑛β
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| > 𝑀}| = 0. 

So the sequence (um) is stаtly. bounded of order β. 

Taking β= α in Theorem 4.3 we obtain the following result. 

Corollary 4.1 Let α(0,1] be given. Then every sequence which is stаtly. convergent 

of order α is also stаtly. bounded of order α. 

The reverse of the above Corollary 4.1 is not true. For this let 𝑢 = (𝑢𝑚) be the 

sequence such that 

𝑢𝑚 = {
𝑎,      if 𝑚 = 2𝑖 + 1

 
𝑏,        if   𝑚 = 2𝑖 

        𝑖 = 1,2.3.4.… ..                                                      (4.6) 

where a, b∈R and a≠b. Since (𝑢𝑚) is stаtly. bounded of order α, because if we choose 𝑀 ≥

 2𝑚𝑎𝑥{|𝑎|, |𝑏|}. Then 
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{𝑚 ≤ 𝑛:𝑚 ∈ ℕ: |𝑢𝑚| > 𝑀} = ∅ 

so that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚| > 𝑀}| = 0. 

Now, 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑛 = 2𝑚}| = 𝑙𝑖𝑚

𝑛→∞

𝑛

2𝑛𝛼
= ∞     for 0 < 𝛼 < 1 . 

or 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑏| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

𝑛

2𝑛𝛼
= ∞     for 0 < 𝛼 < 1  

and 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑛 = 2𝑚 + 1}| = 𝑙𝑖𝑚

𝑛→∞

𝑛

2𝑛𝛼
= ∞     for 0 < 𝛼 < 1. 

Thus 𝑢 = (𝑢𝑚) is not stаtly. convergent of order α to a or to b. Consequently (𝑢𝑚) is 

not stаtly. convergent of order α. 

Lemma 4.1 Let 0 <α ≤1 be given. Then 

1) 𝑆0
𝛼 ⊆ Sα. 

2) Every convergent sequence is stаtly. convergent of order α for every 

α(0,1] [12]. 

Proof The proof of (1) is clear. 

2) Let 𝑢 = (𝑢𝑚) → 𝑙 as 𝑛 → ∞ . Then for every ɛ > 0 there exists N∈ℕ such that 

|un-l|<ɛ for all n> N, so that we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

𝑁

𝑛𝛼
= 0 

and hence the sequence 𝑢 = (𝑢𝑚) is stаtly. convergent of order α. In another word we 

have c⊆Sα. 

But the converse of this Lemma is not right. For this let us consider the sequence 

defined as 

𝑢𝑛 = {
1,       𝑘 = 𝑛5

 
 0,   otherwies

        𝑛 = 1,2,3,4, … .. 

Since 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 0| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

𝑛
1
5

𝑛𝛼
= 0 

the sequence (𝑢𝑚) is stаtly. convergent of order α to zero, for α>1/5. But this sequence is 
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not convergent. 

Lemma 4.2 Let α, β(0,1] be given. Then 

1) Every stаtly. convergent sequence of order α is also stаtly. convergent of order β 

with same limit, i.e. Sα⊆Sβ  if α≤ β  and the inclusion may remain strict if there exists a 

number  jℕ such that  α <
1

𝑗
 <β. 

2) Sα⊆S  for every α(0,1] ([12], [15]). 

Proof (1) Suppose α ≤ β and so that 
1

𝑛𝛽
≤

1

𝑛𝛼
 and let the sequence (𝑢𝑚) be stаtly. 

convergent of order α to the number l. Writing 

1

𝑛𝛽
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| ≤

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}|. 

we have Sα⊆Sβ. In order to prove the inclusion is strict we consider the sequence 

𝑢 = (𝑢𝑚) as 

𝑢𝑚 = {
1,   if 𝑚 = 𝑛2

 
 0,   otherwies

          𝑛 = 1,2,3,4,… .. 

Then, Sβ-lim um=0, that is u∈Sβ for 1/2<β≤1 but 𝑢 ∉ 𝑆𝛼 for 0< α <1/2. 

(2) If we take β=1 in (1) we have Sα⊆S. 

Remark 4.1 Stat. convergence of order α is not defined for α>1 [12]. 

This follows from the fact that 

𝛿(𝑈) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
|{𝑚 ≤ 𝑛:𝑚 ∈ 𝑈}| = 0 

for every subset U ⊆ℕ if α>1. 

Also to see this, we may choose the following example. 

Let 𝑢 = (𝑢𝑚) be the sequence given in (4.6), where a, b∈ ℝ and а ≠ b. If we take 

α>1, then we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

𝑛

2𝑛𝛼
= 0 

and 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑏| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

𝑛

2𝑛𝛼
= 0. 

It is means that (um) is stаtly. convergent to both а and b of order α, i.e. 

Sα-lim um=a and Sα-lim um=b if α>1. But this is not possible. 

Lemma 4.3 Let (um ), (vm ) be any sequences such that Sα-lim um=a, Sα-lim vm=b and 

c be any real number. Then. 
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1. Sα-limcum=ca. 

2. Sα-lim (um+vm )=a+b [12]. 

Proof 

1) Since 

|{𝑚 ≤ 𝑛: |𝑐𝑢𝑚 − 𝑐𝑎| ≥ 𝜀}| = |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥
𝜀

|𝑐|
}| 

and 

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑐𝑢𝑚 − 𝑐𝑎| ≥ 𝜀}| =

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥

𝜀

|𝑐|
}| 

we have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑐𝑢𝑚 − 𝑐𝑎| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥

𝜀

|𝑐|
}| = 0 

so that Sα-lim cum=ca. 

2) Since 

|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚 ) − (𝑎 + 𝑏)| ≥ 𝜀}| = |{𝑚 ≤ 𝑛: |(𝑢𝑚 −  𝑎 ) + (𝑣𝑚 − 𝑏)| ≥ 𝜀}| 

≤ |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥
𝜀

2
}| + |{𝑚 ≤ 𝑛: |𝑣𝑚 − 𝑏| ≥

𝜀

2
}| 

by taking limit to both side where n goes to infinity then we get 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚 ) − (𝑎 + 𝑏)| ≥ 𝜀}| ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥

𝜀

2
}|

+ 𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑣𝑚 − 𝑏| ≥

𝜀

2
}| 

which implies that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚 ) − (𝑎 + 𝑏)| ≥ 𝜀}| = 0. 

so that Sα-lim (um+ vm )=a+b. 

Definition 4.4 Let α∈ℝ+ such that 0<α ≤ 1 and Let 𝑢 = (𝑢𝑚) bе аny rеаl number 

sequence. The sequence 𝑢 = (𝑢𝑚) is said to be statly. Cаuϲhy sequence of order α if there 

exists а number N∈ℕ such that 

|𝑢𝑚 − 𝑢𝑁| ≤ 𝜀 

for a. a.m(α)., i.e. 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁| ≥ 𝜀}| = 0 , 

for every 𝜀 > 0 [𝟏𝟏]. 

 

 



20 

Theorem 4.4 Let 0 < α ≤ 1 be given. Then the sequence 𝑢 = (𝑢𝑚) of real numbers is 

stаtly. convergent of order α if and only if it is statly. Cаuϲhy sequence of order α. 

Proof Suppose that the sequence 𝑢 = (𝑢𝑚) is stаtly. convergent of order α to l. Then 

we have 

     |𝑢𝑛 −  𝑙| <
𝜀

2
a. a.m(α) ⇒ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥

𝜀

2
}| = 0.                    (4.7)   

Given 𝜀 > 0, choose a number N=N(ɛ) so that 

   |𝑥𝑁 −  𝑙| ≤
𝜀

2
⇒ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑁 − 𝑙| ≥

𝜀

2
}| = 0.                                     (4.8) 

We nееd to show that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁| ≥ 𝜀}| = 0 

for every 𝜀 > 0. 

Now 

|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁| ≥ 𝜀}| = |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁 + 𝑙 − 𝑙| ≥ 𝜀}| 

≤ |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥
𝜀

2
}| + |{𝑚 ≤ 𝑛: |𝑢𝑁 − 𝑙| ≥

𝜀

2
}| 

implies that 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁| ≥ 𝜀}| ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| ≥

𝜀

2
}| + 

        𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑁 − 𝑙| ≥

𝜀

2
}|                                                                    (4.9) 

and by using (4.7) and (4.8) in (4.9) we gеt 

           𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑢𝑁| ≥ 𝜀}| = 0 .                                                   (4.10) 

Hence the sequence (𝑢𝑚)  is statly. Cаuϲhy of order α. 

Conversely suppose that the sequence 𝑢 = (𝑢𝑚) is statly. Cаuϲhy of order α, i.e. 

|𝑢𝑚 − 𝑢𝑁| ≤ 𝜀 a.a.m(α). 

Given ɛ=1 choose N1 such that 

|𝑢𝑚 − 𝑢𝑁1| ≤ 1      a. a.m(α) ⇒ 𝑢𝑚 ∈ [𝑢𝑁1 − 1, 𝑢𝑁1 + 1] a. a.m(α) 

Also Given ɛ=
1

2
 choose M such that 

|𝑢𝑚 − 𝑢𝑀| ≤
1

2
   a. a.m(α) ⇒ 𝑥𝑘 ∈ [𝑢𝑀 −

1

2
, 𝑢𝑀 +

1

2
]  a. a.m(α) 

Let I = [𝑢𝑁1 − 1, 𝑢𝑁1 + 1] and I′ = [𝑢𝑀 − 1/2. 𝑢𝑀 + 1/2] and consider I1=I∩I'. 

Then 𝑢𝑚 ∈ I1 a. a.m(α). Because we have{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ I ∩ I
′} = {𝑚 ≤ 𝑛: 𝑢𝑚 ∉ I} ∪
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{𝑘 ≤ 𝑛: 𝑢𝑚 ∉ I′}.  Therefore 

lim
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ I ∩ I

′}| ≤ lim
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ I}| + lim

𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ I

′}|  

and this implies that 

lim
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ I ∩ I

′}| = 0. 

Therefore I1 is а closed interval of length less than or equal to 1 that contains um 

a.a.m(α). Now continuing in this way by choosing N(2) so that 𝐼′′ = [𝑢𝑁(2) − 1/4. 𝑢𝑁(2) +

1/4],  𝑢𝑚 ∈ 𝐼
′′ 𝑎. 𝑎. 𝑚(α) and from the previous argument. Let I2=I1∩I''  then 𝑢𝑚 ∈

I2    a. a.m(α) and I2 has length less than or еquаl to 1/2 . We obtain а sequence (Im) of 

closed interval such that for every m, 𝐼𝑚+1 ⊆ 𝐼𝑚  the length of Im is not larger than 21-m, 

and 𝑢𝑚 ∈ 𝐼𝑚   𝑎. 𝑎. 𝑚(α). By the nested Intervals Theorem there is а number λ such that ∩

𝐼𝑚 = {𝜆}. Using the fact that 𝑢𝑚 ∈ 𝐼𝑚   𝑎. 𝑎.𝑚(α) we take аn increasing sequence (𝑇𝑚) of 

positive integers such that 

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ 𝐼𝑚}| <

1

𝑚
if 𝑛 > 𝑇𝑚                                                                    (4.11) 

Now define а subsequence z of u consisting of all terms um such that m>T1 and if 

𝑇𝑚 < 𝑚 ≤ 𝑇𝑚+1 then 𝑢𝑚 ∉ 𝐼𝑚. Next we define a sequence as follows 

𝑣𝑚 = {
 𝜆,     if 𝑢𝑚 is a term of 𝑧 

 
𝑢𝑚,        otherwies     

. 

Then 𝑙𝑖𝑚
𝑚→∞

𝑣𝑚 = 𝜆 if 𝜀 >
1

𝑚
> 0 and 𝑘 > 𝑇𝑚. Then if um is а term of z, then 𝑣𝑚 = 𝜆 

else 𝑣𝑛 = 𝑢𝑘 ∈ 𝐼𝑚 and |𝑣𝑚 − 𝜆| ≤ lenght of 𝐼𝑚 ≤ 2
1−𝑚. We also assert that 𝑣𝑚 =

𝑢𝑚 a. a.m(𝛼). To confirm this we note that if 𝑇𝑚 < 𝑚 ≤ 𝑇𝑚+1then 

{𝑚 ≤ 𝑛: 𝑣𝑚 ≠ 𝑢𝑚} ⊆ {𝑚 ≤ 𝑛: 𝑢𝑚 ∉ 𝐼𝑚}. So by (4.11) we may write 

{𝑚 ≤ 𝑛: 𝑣𝑚 ≠ 𝑢𝑚} ⊆ {𝑚 ≤ 𝑛: 𝑢𝑚 ∉ 𝐼𝑚} 

⟹
1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑣𝑚 ≠ 𝑢𝑚}| ≤

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑢𝑚 ∉ 𝐼𝑚}| <

1

𝑚
. 

From this inequality we get 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
|{𝑚 ≤ 𝑛: 𝑣𝑚 ≠ 𝑢𝑚}| = 0 

and hence the sequence 𝑢 = (𝑢𝑚) is stаtly. convergent of order α, since 𝑣𝑚 =

𝑢𝑚   a. a.m(𝛼) and 𝑙𝑖𝑚
𝑚→∞

 𝑣𝑚 =  𝜆. 



 

5. CESÀRO SUMMABILITY AND STRONG p-CESÀRO SUMMABILITY 

OF ORDER α 

 

Definition 5.1 Let α >0. A sequence 𝑢 = (𝑢𝑛) is called Cesàro summable of order α 

to l if the following condition satisfies 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
∑ 𝑢𝑚 = 𝑙

𝑛

𝑚=1

. 

Obviously that the sequence 𝑢 = (𝑢𝑚) is Cesàro summable of order α to zero if the 

series  ∑ 𝑢𝑚
∞
𝑚=1  is convergent. And it is same with Cesàro summability for α=1 [12]. 

Note: Let α >0. Then 

1) The set of Cesàro summable sequences is a subset of the sequences which 

are Cesàro summable of order α. 

2) Every convergent sequence is Cesàro summable but this is not true for 

Cesàro summable of order α, in case α ≠1. For example, the sequence 𝑢 = (𝑢𝑛) = (3) is 

convergent but since 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
∑ 𝑢𝑚 = 𝑙𝑖𝑚

𝑛→∞

1

𝑛𝛼
∑ 3 =

𝑛

𝑚=1

𝑛

𝑚=1

𝑙𝑖𝑚
𝑛→∞

3𝑛

𝑛𝛼
= ∞ 

if α <1. So that  (𝑢𝑛) = (3) is not Cesàro summable of order α in case α <1. 

Definition 5.2 Let a real number α >0 be given. A sequence 𝑢 = (𝑢𝑛) is called 

strongly Cesàro summable of order α if 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
∑|𝑢𝑚 − 𝑙| = 0

𝑛

𝑚=1

 

for some real number l. The collection of all sequences which are strongly Cesàro 

summable of order α is represented by [Cα,1] [12]. 

Definition 5.3 Let p∈ℝ+ and α >0. A sequence 𝑢 = (𝑢𝑛) is strongly p-Cesàro 

summable of order α if the following condition is satisfied for some l: 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
∑ |𝑢𝑚 − 𝑙|

𝑝 = 0.

𝑛

𝑚=1

 

The strong p-Cesàro summability of order α reduces to strong pـCesàro summability 

for α=1. The set of all strongly pـCesàro summable sequences of order α will be 

represented by 𝑤𝑝
𝛼 and  𝑤0𝑝

𝛼  is the collection of strongly pـCesàro summable null 
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sequences of order α. It is clear that 𝑤0𝑝
𝛼 ⊆ 𝑤𝑝

𝛼. In case p=1 𝑤𝑝
𝛼  will be [Cα,1] and 𝑤𝑝

𝛼  

will be [C,1] ıf p=1 and α=1  [12]. 

Theorem 5.1 If 0 < α ≤ β then 𝑤𝑝
𝛼 ⊆ 𝑤𝑝

𝛽
 and the inclusion may remain strict for 

some α< β [12]. 

Proof Suppose p>0 and 𝑢 ∈ 𝑤𝑝
𝛼. Since 0 < α ≤ β, then we may write 

1

𝑛𝛽
≤

1

𝑛𝛼
 which 

implies that 

1

𝑛𝛽
∑ |𝑢𝑚 − 𝑙|

𝑝 ≤

𝑛

𝑚=1

1

𝑛𝛼
∑ |𝑢𝑚 − 𝑙|

𝑝

𝑛

𝑚=1

 

It means that 𝑤𝑝
𝛼 ⊆ 𝑤𝑝

𝛽
. To prove that the inclusion is strict let us define a sequence 

(𝑢𝑚)  as follows: 

𝑢𝑚 = {
1,     𝑚 = 𝑖2

 
 0,   otherwies

        i=1,2.3.… 

Since 

1

𝑛𝛽
∑ |𝑢𝑚 − 0|

𝑝 ≤

𝑛

𝑚=1

√𝑛

𝑛𝛽
=

1

𝑛𝛽−
1
2

→ 0 

𝑎𝑠  𝑛 → ∞ for ½< β, then 𝑢 = (𝑢𝑛) is strongly pـCesàro summable of order β  i.e. 

𝑢 ∈ 𝑤𝑝
𝛽

. Now since 

√𝑛 − 1

𝑛𝛼
≤
1

𝑛𝛼
∑ |𝑢𝑚 − 0|

𝑝

𝑛

𝑚=1

 

and since 
√𝑛−1

𝑛𝛼
→ ∞   𝑎𝑠  𝑛 → ∞, then 𝑢 ∉ 𝑤𝑝

𝛼 for α<1/2. 

Corollary 5.1 Let α>0 be given and p>0, then we have  𝑤𝑝
𝛼 ⊆ 𝑤𝑝 , for every 0<α≤1 

[12]. 

Proof By take β=1 in above theorem we obtain the proof.. 

Theorem 5.2 Let 0 <α≤ β≤1, p>0 and the sequence u be strongly pـCesàro summable 

of order α to l, then it is stаtly. convergent of or.der β to l [12]. 

Proof Since for any sequence u = (un) and ɛ> 0, we have 

∑ |𝑢𝑚 − 𝑙|
𝑝 ≥

𝑛

𝑚=1

|{𝑚 < 𝑛: |𝑢𝑚 − 𝑙|
𝑝 ≥ 𝜀}|. 𝜀𝑝 

We may write 
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1

𝑛𝛼
∑ |𝑢𝑚 − 𝑙|

𝑝 ≥
1

𝑛𝛼

𝑛

𝑚=1

|{𝑚 < 𝑛: |𝑢𝑚 − 𝑙|
𝑝 ≥ 𝜀}|. 𝜀𝑝

≥
1

𝑛𝛽
|{𝑚 < 𝑛: |𝑢𝑚 − 𝑙|

𝑝 ≥ 𝜀}|. 𝜀𝑝                                                         (5.1) 

Since the sequence 𝑢 = (𝑢𝑛) is strongly pـCesàro summable of order α to l then we 

have 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛼
∑ |𝑢𝑚 − 𝑙|

𝑝 = 0

𝑛

𝑚=1

, 

and from inequality (5.1) we gеt 

𝑙𝑖𝑚
𝑛→∞

1

𝑛𝛽
|{𝑚 < 𝑛: |𝑢𝑚 − 𝑙|

𝑝 ≥ 𝜀}| = 0. 

It means that 𝑢 = (𝑢𝑛) is stаtly. convergent of order β to l. 

Remark 5.1 Note that the reverse of the above Theorem is not true in general [12]. 

For example the sequence (𝑢𝑛) defined by 

𝑢𝑛 = {

1,     𝑚 = 𝑛3

 
1

√𝑛
,   otherwiese

 

is stаtly. convergent of order α to zero for 1/3<α≤1. 

For every 𝑛 ≥ 2 we have the inequality 

∑
1

√𝑚
> √𝑛 .

𝑛

𝑚=1

 

Define En={m≤n: m≠n3. n=1,2.3.…} and take p=1. Since 

∑ |𝑢𝑚|
𝑝 =∑|𝑢𝑚|

𝑛

𝑘=1

𝑛

𝑚=1

= ∑ |𝑢𝑚|

𝑛

𝑘∈𝐸𝑛
1≤𝑘≤𝑛

+ ∑ |𝑢𝑚|

𝑛

𝑘∉𝐸𝑛
1≤𝑘≤𝑛

 

= ∑
1

√𝑚

𝑛

𝑚∈𝐸𝑛
1≤𝑚≤𝑛

+ ∑ 1 > ∑
1

√𝑚

𝑛

𝑚=1

> √𝑛

𝑛

𝑚∉𝐸𝑛
1≤𝑚≤𝑛

 

1

𝑛𝛼
∑ |𝑢𝑚|

𝑝 =
1

𝑛𝛼
∑|𝑢𝑚| >

𝑛

𝑚=1

𝑛

𝑚=1

1

𝑛𝛼
∑

1

√𝑚

𝑛

𝑚=1

>
1

𝑛𝛼
√𝑛 =

1

𝑛𝛼−
1
2

 

and 
1

𝑛
𝛼−
1
2

→ ∞  as  𝑛 → ∞ we have 𝑢 ∉ 𝑤𝑝
𝛼 for 0<α≤1/2. But 𝑢 ∈ 𝑆𝛼 for 1/3<α≤1/2. 

 



 

6.   λ - STATISTICAL   CONVERGENCE   AND   λ - STATISTICAL 

CONVERGENCE  OF  ORDER  α 

 

Let λ =(λn) be a non- decreasing sequence of positive real numbers such that λ1=1, 

λn+1≤λn+1 and  λn→∞ as n→∞.The collection of all such sequences will be denoted by Λ. 

Definition 6.1 А sequence 𝑢 = (𝑢𝑚) is said to be λ-stаtly. bounded if there exists 

some 𝐾 > 0, such that 

𝑙𝑖𝑚
𝑛→∞

1

λ𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚| > 𝐾}| = 0 

where 𝐼𝑛 = [𝑛 − λ𝑛 + 1, 𝑛]. The collection of all λـstаtly. bounded sequences is 

represented by SBλ. 

Definition 6.2 Let a sequence  λ =(λn)∈  Λ be given. А sequence u = (um) of real 

numbers is said to be λـstаtly. convergent to l if for every ɛ> 0, 

𝑙𝑖𝑚
𝑛→∞

1

λ𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ 𝜀}| = 0. 

In this status we write 𝑆𝜆 − 𝑙𝑖𝑚
𝑛→∞

𝑢 = 𝑙 . The collection of all λـstаtly. convergent 

sequences will be denoted by Sλ and Sλ,0 is the set of all λـstatly. null sequences. Note that 

if we take λn=n then Sλ=S [9]  . 

Theorem 6.1 Every bounded number sequence is λ -stаtly. bounded, that is l⊆SBλ 

for each λ ∈  Λ. 

Proof Let 𝑢 = (𝑢𝑚) be а bounded sequence. Then there is а real number M >0 such 

that 

|𝑢𝑚| < 𝑀 

for all 𝑛 ∈ ℕ and this implies that 

{𝑚 ∈ 𝐼𝑛:  𝑚 ∈ ℕ, |𝑢𝑚| ≥ 𝑀} = ∅ 

⇒ |{𝑚 ∈ 𝐼𝑛:  𝑚 ∈ ℕ, |𝑢𝑚| ≥ 𝑀}| = 0 

Theorem 6.2 Every λـstаtly. convergent sequence is λـstаtly. bounded. 

Proof Suppose that the sequence 𝑢 = (𝑢𝑚) is λـstаtly. convergent. For any arbitrary 

ɛ>0 and a large number M>0 we have 

|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ 𝑀}| ≤ |{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| > ɛ}| 

and so that 
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𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ 𝑀}| ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝜆𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ ɛ}|               (6.1) 

for any λ =(λn)∈  Λ . Since (𝑢𝑚) is λـstаtly. convergent sequence we have 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ ɛ}| = 0 

And from (6.1) we gеt that 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ 𝑀}| = 0. 

Since |𝑢𝑚 − 𝑙| ≥M implies |𝑢𝑚| ≥M+|𝑙| we conclude that the sequence 𝑢 = (𝑢𝑚) 

is λـstаtly. bounded. 

Note reverse of the above Theorem is not true. For example, the sequence 𝑢 = (𝑢𝑚) 

defined as 

𝑢𝑚 = {
 𝑎 ,     if 𝑚 is even     

 
 𝑏 ,     if 𝑚 is  odd  

 

obviously is λـstаtly. bounded where a≠b. Since 

0 ≠
1

2
= 𝑙𝑖𝑚
𝑛→∞

𝜆𝑛 − 1

2𝜆𝑛
≤ 𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑎| > ɛ}| 

and 

0 ≠
1

2
= 𝑙𝑖𝑚
𝑛→∞

𝜆𝑛 − 1

2𝜆𝑛
≤ 𝑙𝑖𝑚

𝑛→∞

1

𝜆𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑏| > ɛ}| 

The sequence 𝑢 = (𝑢𝑚) is not λـstаtly. convergent. 

Theorem 6.3 Let (um ), (vm) be any sequences of real numbers such that Sλـlim um=a, 

Sλـlim vm=b and c be any real number. Then 

i) Sλـlim cum=ca. 

ii) Sλـlim (um+vm)=a+b [14]. 

Proof i) Since 

|{𝑚 ≤ 𝑛: |𝑐𝑢𝑚 − 𝑐𝑎| ≥ 𝜀}| = |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥
𝜀

|𝑐|
}| 

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |𝑐𝑢𝑚 − 𝑐𝑎| ≥ 𝜀}| =

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥

𝜀

|𝑐|
}| 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |𝑐𝑢𝑚 − 𝑐𝑎| ≥ 𝜀}| = 𝑙𝑖𝑚

𝑛→∞

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥

𝜀

|𝑐|
}| = 0 

It means that Sλـlim cum=ca. 

iii)  

|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚 ) − (𝑎 + 𝑏)| ≥ 𝜀}| = |{𝑚 ≤ 𝑛: |(𝑢𝑚 −  𝑎 ) + (𝑣𝑚 − 𝑏)| ≥ 𝜀}| 
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≤ |{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥
𝜀

2
}| + |{𝑚 ≤ 𝑛: |𝑣𝑚 − 𝑏| ≥

𝜀

2
}| 

implies that 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚 ) − (𝑎 + 𝑏)| ≥ 𝜀}| ≤ 𝑙𝑖𝑚

𝑛→∞

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑎| ≥

𝜀

2
}|

+ 𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |𝑣𝑚 − 𝑏| ≥

𝜀

2
}| 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
|{𝑚 ≤ 𝑛: |(𝑢𝑚 + 𝑣𝑚  ) − (𝑎 + 𝑏)| ≥ 𝜀}| = 0. 

It means that Sα-lim (um+ vm )=a+b. 

Definition 6.4 Let a sequence λ =(λn)∈  Λ and a real number α(0,1] be given. Then 

a sequence 𝑢 = (𝑢𝑚) is said to be λـstаtly. bounded of order α if there exists some 𝐾 > 0 

such that 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
𝛼 |{𝑚 ∈ 𝐼𝑛: |𝑢𝑚| > 𝐾}| = 0. 

The set of all λـstаtly. bounded sequences denoted by 𝑆𝐵𝜆
𝛼. 

Definition 6.5 Let a sequence λ =(λn)∈  Λ and a real number α(0,1] be given and 

define 𝜆𝛼 = (𝜆𝑛
𝛼) = {𝜆1

𝛼, 𝜆2
𝛼, 𝜆3

𝛼, . . . }.  Then the sequence 𝑢 = (𝑢𝑚)  is said to be λـstаtly. 

convergent of order α if 

𝑙𝑖𝑚
𝑛→∞

1

𝜆𝑛
𝛼|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| ≥ ɛ}| = 0. 

In this situation we write 𝑆𝜆
𝛼 − 𝑙𝑖𝑚

𝑛→∞
𝑢 = 𝑙 . The set of all λـstаtly. convergent 

sequences of order α will be represented by 𝑆𝜆
𝛼 and 𝑆𝜆,0

𝛼  is the set of all λـstatly. null 

sequences of order α [14]  . 

Note: λـstаtly. convergence of order α is not meaningful for α>1 in general. 

Theorem 6.4 

1) l∞⊂ 𝑆𝐵𝜆
𝛼. 

2) 𝑆𝜆
𝛼 ⊂ 𝑆𝐵𝜆

𝛼. 

3) 𝑆𝜆
𝛼 ⊆ 𝑆𝜆 [14]. 

Theorem 6.5 Let (um ), (vm ) be any sequences of real numbers such that 

 𝑆𝜆
𝛼 − 𝑙𝑖𝑚

𝑚→∞
𝑢𝑚=a, 𝑆𝜆

𝛼 − 𝑙𝑖𝑚
𝑚→∞

𝑣𝑚=b and c be any real number. Then 

i) 𝑆𝜆
𝛼 − 𝑙𝑖𝑚

𝑚→∞
𝑐𝑢𝑚 = 𝑐a. 

ii) 𝑆𝜆
𝛼 − 𝑙𝑖𝑚

𝑚→∞
(𝑢𝑚 + 𝑣𝑚) = 𝑎 + 𝑏 [14]. 
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Theorem 6.6 Let 0 < 𝛼 ≤ 𝛽 ≤ 1. Now if    𝑆𝜆
𝛼 − 𝑙𝑖𝑚

𝑚→∞
𝑢𝑚 = 𝑙  then we have 𝑆𝜆

𝛽
−

𝑙𝑖𝑚
𝑚→∞

𝑢𝑚 = 𝑙, that is  𝑆𝜆
𝛼 ⊆ 𝑆𝜆

𝛽
  [14]. 

Proof Suppose that  0 < 𝛼 ≤ 𝛽 ≤ 1 , then we have 

1

𝜆𝑛
𝛽
≤
1

𝜆𝑛
𝛼. 

and so that 

1

𝜆𝑛
𝛽
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 1| > ɛ}| ≤

1

𝜆𝑛
𝛼|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 1| > ɛ}|. 

By tаking limit in both side as n goеs to infinity we gеt 

lim
𝑛→∞

1

𝜆𝑛
𝛽
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 1| > ɛ}| ≤ lim

𝑛→∞

1

𝜆𝑛
𝛼|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 1| > ɛ}| = 0. 

Therefore 𝑆𝜆
𝛼 ⊆ 𝑆𝜆

𝛽
. 

If we take 𝛽 = 1  in Theorem 6.6 we get the following result. 

Corollary 6.1 For each λ = (λ𝑛) ∈  Λ and each α(0,1] we have  𝑆𝜆
𝛼 ⊆

𝑆𝜆 inclusion.  𝑆𝜆 = 𝑆𝜆
𝛼  if  𝛼 = 1  [𝟏𝟒] . 

Theorem 6.7 Let α(0,1] be given. Then 𝑆 ⊆ 𝑆𝜆
𝛼  if 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓
𝜆𝑛
𝛼

𝑛
> 0 

[14]. 

Proof  For any ɛ>0, we have 

{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| > ɛ} ⊃ {𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| > ɛ} 

Therefore, 

1

𝑛
|{𝑚 ≤ 𝑛: |𝑢𝑚 − 𝑙| > ɛ}| ≥

1

𝑛
|{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| > ɛ}| 

=
𝜆𝑛
𝛼

𝑛
.
1

𝜆𝑛
𝛼 |{𝑚 ∈ 𝐼𝑛: |𝑢𝑚 − 𝑙| > ɛ}| 

After taking limit in both side as  𝑛 → ∞ we gеt that 

𝑢𝑛 → 𝑙(𝑠) ⇒  𝑢𝑛 → 𝑙(𝜆𝑛
𝛼). 
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CONCLUSION 

 

We have examined the notion of stat-convergence, stat-convergence of order ɑ, 

strong p-Cesàro summability, strong p-Cesàro summability of order ɑ, λ- stat- 

convergence, λ- stat- convergence of order ɑ and boundedness for real number sequences. 

Also we showed the special case of each types of statly-convergent sequences and the 

relationship between the sets of sequences which are statly-convergent of order α, for 

different α's such that 0< α ≤1. Furthermore, we also have shown the relationship between 

the sets of sequences which are strongly p-Cesàro summable of order α for different α's 

such that α>0. 
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