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SUMMARY 

Statistical Convergence of Number Sequences and Some Generalizations With Respect 

to Modulus Functions 

 

In this thesis, we examine and study 𝑓-statistical convergence, 𝑓-statistical boundedness, 

𝑓-strong Cesàro summability, 𝑓-strong lacunary summability and some other notions related 

to these concepts for sequences of real or complex numbers, where 𝑓 is a modulus function. 

At the first, we give 𝑓-statistically convergent and 𝑓-statistically bounded sequences and then 

we study the concepts of 𝑓-strong Cesàro summability of sequences of real or complex 

numbers with some concepts. Then we provide the relations between these concepts. After 

that, we establish the relations between the sets 𝑤𝑓 and 𝑤𝑔, 𝑤𝑓 and 𝑆𝑔, for different modulus 

functions 𝑓 and 𝑔 under some conditions, which is the original part of this thesis. Furthermore, 

for some special modulus functions, we obtain the relations between the sets 𝑤𝑓 and 𝑤, 𝑆𝑓 

and 𝑆. Then we study the concepts of 𝑓-statistical convergence of order 𝛼 such that 0 < 𝛼 ≤ 1 

and 𝑓-strong Cesàro summability of order 𝛼 such that 0 < 𝛼 ≤ 1, and we also give the 

relations between them. Finally, we give and study 𝑓-strong lacunary summability of order 𝛼, 

and we establish the relations between the sets 𝑁𝜃
𝛽(𝑓) and 𝑁𝜃

𝛼(𝑔), 𝑁𝜃
𝛼(𝑓) and 𝑁𝜃

𝛽(𝑔), 𝑁𝜃
𝛼(𝑓) 

and 𝑆𝜃
𝛽(𝑔), ℓ∞ ∩ 𝑆𝜃

𝛼(𝑓) and 𝑁
𝜃′
𝛽 (𝑔), where 𝑓 and 𝑔 are different modulus functions under 

some conditions and  𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽, which is another original part of this thesis. 

Furthermore, for some special modulus functions, we obtain the relations between the sets 

𝑁𝜃(𝑓) and 𝑁𝜃, 𝑁𝜃
𝛼(𝑓) and 𝑁𝜃

𝛼 for 𝛼 ∈ (0, 1]. 

Key Words: 𝑓-statistical convergence, 𝑓-statistical boundedness, 𝑓-strong summability, 

𝑓-statistical convergence of order 𝛼, 𝑓-strong summability of order 𝛼, 𝑓-lacunary statistical 

convergence of order 𝛼, 𝑓-strong lacunary summability of order 𝛼. 
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ÖZET 

Sayı Dizilerinin İstatistiksel Yakınsaklığı ve Modulus Fonksiyonlarına Göre Bazı 

Genelleştirmeleri 

 

Bu tezde 𝑓 bir modülüs fonksiyonu olmak üzere, 𝑓-istatistiksel yakınsaklık, 𝑓-

istatistiksel sınırlılık, 𝑓-kuvvetli Cesàro toplanabilme, kuvvetli 𝑓-lacunary toplanabilme ve bu 

kavramlarla ilgili diğer bazı kavramlar reel sayı dizileri için incelenmektedir. İlk önce reel sayı 

dizileri için 𝑓-istatistiksel yakınsaklık, 𝑓-istatistiksel sınırlılık ve ardından 𝑓-kuvvetli Cesàro 

toplanabilirlik kavramı verilmekte ve ilişkili bazı kavramlar incelenmektedir. Sonra bu 

kavramlar arasındaki ilişkiler ortaya konulmaktadır. Bundan sonra, bazı şartlara sahip farklı 

modülüs fonksiyonları için 𝑤𝑓 ve 𝑤𝑔, 𝑤𝑓 ve 𝑆𝑔 kümeleri arasındaki kapsama bağıntıları elde 

edilmektedir. Ayrıca 𝑓 üzerindeki bazı özel şartlar altında 𝑤𝑓 ve 𝑤, 𝑆𝑓 ve 𝑆 sınıfları arasındaki 

ilişkiler elde edilmektedir. Daha sonra 0 < 𝛼 ≤ 1 şartına sahip herhangi bir 𝛼 için 𝛼. 

dereceden 𝑓-istatistiksel yakınsaklık ve 𝛼. dereceden 𝑓-kuvvetli Cesàro toplanabilirlik 

üzerinde çalışılıp, bu iki kavram arasındaki ilişkiler de verilmektedir. Son olarak, 𝛼. dereceden 

kuvvetli 𝑓-lacunary toplanabilme incelenip, 0 < 𝛼 ≤ 𝛽 ≤ 1, 𝑓 ve 𝑔 modülüs fonksiyonları 

için 𝑁𝜃
𝛽(𝑓) ve 𝑁𝜃

𝛼(𝑔), 𝑁𝜃
𝛼(𝑓) ve 𝑆𝜃

𝛽(𝑔), ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) ve 𝑁

𝜃′
𝛽 (𝑔) kümeleri arasındaki ilişkiler 

ortaya konulmaktadır. Ayrıca, bazı özel modülüs fonksiyonları için 𝑁𝜃(𝑓) ve 𝑁𝜃, 𝑁𝜃
𝛼(𝑓) ve 

𝑁𝜃
𝛼 kümeleri arasındaki ilişkiler elde edilmektedir. 

Anahtar Kelimeler: 𝑓-istatistiksel yakınsaklık, 𝑓-istatistiksel sınırlılık, 𝑓-kuvvetli 

toplanabilirlik, 𝛼. dereceden istatistiksel yakınsaklık, 𝛼. dereceden 𝑓-kuvvetli toplanabilirlik, 

𝛼. dereceden 𝑓-lacunary istatistiksel yakınsaklık, 𝛼. dereceden 𝑓-lacunary kuvvetli 

toplanabilirlik. 
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LIST OF SYMBOLS 

ℕ : Natural numbers.  

ℝ : Real numbers. 

ℂ : Complex numbers. 

𝑠 : All sequences. 

𝑐 : Convergent sequences. 

ℓ∞ : Bounded sequences. 

𝑆 : Statistically convergent sequences. 

𝑆(𝑏) : Statistically bounded sequences. 

𝑆𝑓 : 𝑓-Statistically convergent sequences. 

𝑆0
𝑓
 : 𝑓-Statistically null sequences. 

𝑆𝑓(𝑏) : 𝑓-Statistically bounded sequences. 

𝑤 : Strongly Cesàro summable sequences. 

𝑤𝑓 : 𝑓-Strongly Cesàro summable sequences. 

𝑤0
𝑓
 : 𝑓-Strongly Cesàro summable null sequences. 

𝑤∞
𝑓

 : 𝑓-Strongly Cesàro summable bounded sequences. 

𝑆𝑓
𝛼 : 𝑓-Statistically convergent sequences of order 𝛼. 

𝑤𝛼
𝑓
 : 𝑓-Strongly Cesàro summable sequences of order 𝛼. 

𝑆𝜃 : Lacunary statistically convergent sequences. 

𝑁𝜃 : Strongly lacunary summable sequences. 

𝑆𝜃
𝛼(𝑓) : 𝑓-Lacunary statistically convergent sequences of order 𝛼. 

𝑁𝜃
𝛼(𝑓) : 𝑓-Strongly lacunary summable sequences of order 𝛼. 
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1. INTRODUCTION 

The principle of statistical convergence was performed first in the survey of Fast [1] and 

also severally for number sequences by Buck [2] and Schoenberg [3]. Regarding the 

subsequent work of Fridy [4] and Salát [5], this thinking has arisen as one of the qualified 

fields of research in summability theory. Statistical convergence, as implemented by Buck [2], 

acts as an instance of convergence in density. In recent decades, statistical convergence has 

been mentioned in many several fields and under different names, such as measure theory, 

approximation theory, Banach spaces, hopfield neural network, locally convex spaces, 

trigonometric series, number theory, summability theory, ergodic theory, turnpike theory, 

Fourier analysis and optimization. Further details and applications of this principle are 

available in [6–11]. 

Statistical convergence is a kind of convergence that depends technically on the natural 

density of subsets of the natural numbers. 

Let 𝑈 ⊂ ℕ. Then the number 𝛿(𝑈) is called a natural density of 𝑈 and is identified via 

𝛿(𝑈) = lim
𝑛→∞

1

𝑛
|{𝑢 ≤ 𝑛 ∶ 𝑢 ∈ 𝑈}| 

where |{𝑢 ≤ 𝑛 ∶ 𝑢 ∈ 𝑈}| is the number of elements of 𝑈 which are less than or equal to 𝑛. 

In 1953, Nakano [12] presented the thought of a modulus function for the first time. By 

using a modulus function Bhardwaj and Singh [13], Connor [14], Çolak [15], Gosh and 

Srivastava [16], Maddox [17], Ruckle [18], Altin and Et [19] and others have constructed and 

discussed some sequence spaces. 

In 2014, with the benefit of an unbounded modulus function, Aizpuru et al. [20] 

characterized another density’s idea, as an outcome, a new nonmatrix convergence principle 

was acquired. By using the way of Aizpuru et al. [20], Bhardwaj et al. [21] has recently 

identified and concentrated a new concept of 𝑓-statistical boundedness, which is actually a 

generalization of the statistical convergence’s principle. It has demonstrated that the concept 

of 𝑓-statistical boundedness is intermediate between the ordinary boundedness and the 

statistical boundedness, and it has demonstrated that bounded sequences are definitely those 

sequences which are 𝑓-statistically bounded for every unbounded modulus. 
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2. THE SETS OF 𝒇-STATISTICALLY CONVERGENT SEQUENCES AND 𝑓-

STATISTICALLY BOUNDED SEQUENCES 

2.1.  𝒇-Statistical Convergence 

Since the concepts and results given in this section are known and widely used in the 

literature, their sources, that is references are not given. 

We provide the definition of statistical convergence at the beginning of this section, as 

it will be needed in this study. 

Definition 2.1.1 Let (𝑥𝑘) be any sequence in ℝ (or ℂ). The sequence (𝑥𝑘) is named statistically 

convergent (or 𝑆 −convergent) to the number 𝑙 if  

lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}| = 0 

for every 𝜀 > 0. We write 𝑆 − lim 𝑥𝑘 = 𝑙 or 𝑥𝑘 → 𝑙(𝑆) in this particular instance. The class of 

all 𝑆-convergent sequences will be symbolized by 𝑆 throughout the study. 

Definition 2.1.2 A function 𝑓: [0, ∞) → [0, ∞) is named modulus function, or modulus, if  

1. 𝑓(𝑥) = 0 if and only if 𝑥 = 0, 

2. 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for every 𝑥, 𝑦 ∈ [0, ∞), 

3. 𝑓 is increasing, 

4. 𝑓 is continuous from the right at 0. 

Within these characteristics, it is obvious that wherever on [0, ∞) a modulus 𝑓 is 

continuous. A modulus could be either unbounded or bounded. As an example, 𝑓(𝑥) =

log(𝑥 + 1) is an unbounded modulus, but 𝑓(𝑥) =
𝑥

𝑥+1
 is a bounded modulus. Furthermore, for 

every modulus 𝑓 and each positive integer 𝑛 we have 𝑓(𝑛𝑥) ≤ 𝑛𝑓(𝑥) from condition 2. 

Definition 2.1.3 Let 𝑓 be an unbounded modulus and 𝐴 ⊂ ℕ. The number 𝛿𝑓(𝐴) of a set 𝐴 is 

named the 𝑓 −density of a set 𝐴 and is identified by 

𝛿𝑓(𝐴) = lim
𝑛→∞

𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|)

𝑓(𝑛)
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in the case this limit exists. 

Remark 2.1.1 The 𝑓 −density becomes the natural density if we take 𝑓(𝑥) = 𝑥. It is obvious 

for the case of natural density for any 𝐴 ⊂ ℕ we have 𝛿(𝐴) + 𝛿(ℕ ∖ 𝐴) = 1. But this 

conclusion is different for 𝑓 −density, i.e., 𝛿𝑓(𝐴) + 𝛿𝑓(ℕ ∖ 𝐴) = 1 does not have to be true, 

in general. This fact is shown in the example below. 

Example 2.1.1 Let us take 𝑓(𝑥) = log (𝑥 + 1) and 𝐸 = {2,4,6, … }. Then 𝛿𝑓(𝐸) =

𝛿𝑓(ℕ ∖ 𝐸) = 1. Indeed since 
𝑛

2
− 1 ≤ |{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐸}| ≤

𝑛

2
 for each 𝑛 ∈ ℕ and 𝑓 is a 

modulus, then we may write 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓 (

𝑛

2
− 1) ≤ lim

𝑛→∞

1

𝑓(𝑛)
𝑓|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐸}| ≤ lim

𝑛→∞

1

𝑓(𝑛)
𝑓 (

𝑛

2
)  

and hence  

lim
𝑛→∞

1

log(𝑛 + 1)
log (

𝑛

2
) ≤ lim

𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐸}|) ≤ lim

𝑛→∞

1

log(𝑛 + 1)
log (

𝑛

2
+ 1) 

1 ≤ lim
𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐸}|) ≤ 1. 

Thus, 𝛿𝑓(𝐸) = 1. Furthermore, using the fact 
𝑛+1

2
− 1 ≤ |{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ ℕ ∖ 𝐸}| ≤

𝑛+1

2
 for 

every 𝑛 ∈ ℕ, we have 𝛿𝑓(ℕ ∖ 𝐸) = 1. 

Remark 2.1.2 From the previous remark, the situation 𝛿𝑓(𝐴) + 𝛿𝑓(ℕ ∖ 𝐴) = 1 is not true for 

every unbounded modulus, in general. But it happens for any unbounded modulus function 

when 𝛿𝑓(𝐴) = 0. Indeed, suppose 𝐴 ⊂ ℕ and 𝛿𝑓(𝐴) = 0. Then for any 𝑛 ∈ ℕ, we have  

𝑓(𝑛) ≤ 𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|) + 𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ ℕ ∖ 𝐴}|) 

and so, 

1 ≤
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|)

𝑓(𝑛)
+

𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ ℕ ∖ 𝐴}|)

𝑓(𝑛)
≤

𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|)

𝑓(𝑛)
+ 1 

By taking limits as 𝑛 → ∞, we get that 𝛿𝑓(ℕ ∖ 𝐴) = 1. 

Remark 2.1.3 𝑓 −density is similar to the natural density for any finite 𝐴 ⊂ ℕ, so 𝛿𝑓(𝐴) = 0 

and 𝛿𝑓(𝐴) + 𝛿𝑓(ℕ ∖ 𝐴) = 1. 
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Remark 2.1.4 For any unbounded modulus 𝑓 and 𝐴 ⊂ ℕ, if 𝛿𝑓(𝐴) = 0, then 𝛿(𝐴) = 0. 

Indeed, if 𝛿𝑓(𝐴) = 0 then lim
𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|) = 0. Now for any 𝑝 ∈ ℕ there exists 

𝑛0 ∈ ℕ such that if 𝑛 ≥ 𝑛0, then we have 

𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|) ≤
1

𝑝
𝑓(𝑛) ≤

1

𝑝
𝑝𝑓 (

1

𝑝
𝑛) = 𝑓 (

1

𝑝
𝑛), 

which implies, 

|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}| ≤
1

𝑝
𝑛. 

Thus 𝛿(𝐴) = 0. But the opposite does not have to be true in general (see [22]). In any case, 

according to Remark 2.1.3, 𝛿(𝐴) = 0 implies 𝛿𝑓(𝐴) = 0 for any finite 𝐴 ⊂ ℕ. 

Definition 2.1.4 Let 𝑓 be an unbounded modulus. A sequence (𝑥𝑘) in ℝ (or ℂ) is called 

𝑓 −statistically convergent (or 𝑆𝑓-convergent) to 𝑙 if the set {𝑘 ∈ ℕ ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀} has 

𝑓 −density zero, for every 𝜀 > 0, i.e., 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|) = 0, 

and we write this as 𝑆𝑓 − lim 𝑥𝑘 = 𝑙 or 𝑥𝑘 → 𝑙(𝑆𝑓). In this study, 𝑆𝑓 denotes the class of all 

𝑆𝑓-convergent sequences. We also symbolize the set of all 𝑓 −statistically null sequences by 

𝑆0
𝑓

. Certainly for any unbounded modulus 𝑓 we have 𝑆0
𝑓

⊂ 𝑆𝑓 . 

According to Remark 2.1.4 and Definition 2.1.4, we have 𝑆𝑓 ⊂ 𝑆 for every unbounded 

modulus 𝑓. But the reverse, in particular, does not need to be true (for detail see [22]). 

Theorem 2.1.1 Every convergent sequence is 𝑓-statistically convergent, that is, 𝑐 ⊂ 𝑆𝑓 for 

any unbounded modulus 𝑓. 

Proof  Suppose (𝑥𝑘) is convergent and lim
𝑘→∞

𝑥𝑘 = 𝑙. Given any 𝜀 > 0, then there is 𝑛0 ∈ ℕ 

such that 

|𝑥𝑘 − 𝑙| < 𝜀 for all 𝑘 ≥ 𝑛0. 

So, the set {𝑘 ∈ ℕ: |𝑥𝑘 − 𝑙| ≥ 𝜀} is finite and thus 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘 − 𝑙| ≥ 𝜀}) = 0, this 

fulfills the proof.  
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Remark 2.1.5 The contrary to Theorem 2.1.1, in general, does not have to be correct as of 

the example below. 

Example 2.1.2 Define the sequence (𝑥𝑘) as 

𝑥𝑘 = {
𝑘,    𝑘 = 𝑛2

 
0,    𝑘 ≠ 𝑛2

       𝑛 = 1,2,3, … 

and take 𝑓(𝑥) = 𝑥𝑝 , 0 < 𝑝 ≤ 1. Apparently (𝑥𝑘) ∉ 𝑐, but for every 𝜀 > 0, we have 

lim
𝑛→∞

𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 0| ≥ 𝜀}|)

𝑓(𝑛)
≤ lim

𝑛→∞

𝑓(√𝑛)

𝑓(𝑛)
= 0. 

Therefore, (𝑥𝑘) is 𝑆𝑓-convergent. 

During this study, we remember [21] that let (𝑥𝑘) be any number sequence and 𝐴 ⊂ ℕ 

with 𝛿𝑓(𝐴) = 0, if for each 𝑘 ∈ ℕ ∖ 𝐴 the member 𝑥𝑘 of (𝑥𝑘) satisfies property P, then we say 

that (𝑥𝑘) satisfies P for “almost all 𝑘 with respect to 𝑓,” where 𝑓 is any unbounded modulus 

and this is often referred to as “a.a. 𝑘 w.r.t. 𝑓.” 

The definition of 𝑓 −statistical convergence can be rewritten using this idea as follows. 

Definition 2.1.5 The sequence (𝑥𝑘) in ℝ (or ℂ) is called 𝑆𝑓-convergent to 𝑙, if for every 𝜀 >

0, 

|𝑥𝑘 − 𝑙| < 𝜀    a.a. 𝑘 w.r.t. 𝑓. 

Theorem 2.1.2 If 𝑥 = (𝑥𝑘) ∈ 𝑆𝑓 and 𝑆𝑓 − lim 𝑥𝑘 = 𝑙, then there is a sequence 𝑦 = (𝑦𝑘) and 

𝑧 = (𝑧𝑘) ∈ 𝑆0
𝑓
 such that lim

𝑘→∞
𝑦𝑘 = 𝑙 and 𝑥 = 𝑦 + 𝑧. Furthermore, if the sequence 𝑥 is bounded 

then the sequence 𝑧 is also bounded and ‖𝑧‖∞ ≤ ‖𝑥‖∞ + |𝑙|. 

Proof  As 𝑥 ∈ 𝑆𝑓 and 𝑆𝑓 − lim 𝑥𝑘 = 𝑙, there is some 𝐴 ⊂ ℕ with 𝛿𝑓(𝐴) = 0 such that 

lim
𝑘∈ℕ∖𝐴

𝑥𝑘 = 𝑙. We define 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as follows: 

𝑦𝑘 = {
𝑥𝑘,         if 𝑘 ∈ ℕ ∖ 𝐴;  

 
 𝑙,           if 𝑘 ∈ 𝐴,           
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𝑧𝑘 = {
0,               if 𝑘 ∈ ℕ ∖ 𝐴;  

 
 𝑥𝑘 − 𝑙,      if 𝑘 ∈ 𝐴.           

           

Obviously from our construction, we have 𝑥 = 𝑦 + 𝑧. Since {𝑘 ∈ ℕ: |𝑧𝑘 − 0| > 𝜀} ⊂ 𝐴 for 

every 𝜀 > 0, then 𝛿𝑓({𝑘 ∈ ℕ: |𝑧𝑘 − 0| > 𝜀}) = 0 for every 𝜀 > 0. Hence 𝑧 = (𝑧𝑘)  ∈ 𝑆0
𝑓
 and 

‖𝑧‖∞ ≤ ‖𝑥‖∞ + |𝑙|, if 𝑥 is bounded. For 𝑘 ∈ ℕ, we have  

‖𝑦𝑘 − 𝑙‖ = {
‖𝑥𝑘 − 𝑙‖,        if 𝑘 ∈ ℕ ∖ 𝐴;  

 
 0,                      if 𝑘 ∈ 𝐴,           

    

and so  

{𝑘 ∈ ℕ: ‖𝑦𝑘 − 𝑙‖ > 𝜀} ⊂ {𝑘 ∈ ℕ: ‖𝑥𝑘 − 𝑙‖ > 𝜀}⋂(ℕ ∖ 𝐴). 

As lim
𝑘∈ℕ∖𝐴

𝑥𝑘 = 𝑙, then the set {𝑘 ∈ ℕ: ‖𝑥𝑘 − 𝑙‖ > 𝜀}⋂(ℕ ∖ 𝐴) is finite for each 𝜀 > 0 and thus 

lim
𝑘→∞

𝑦𝑘 = 𝑙.  

Using the idea of Theorem 2.1.2, we obtain the result below. 

Corollary 2.1.1 If (𝑥𝑘) ∈ 𝑠 and 𝑆𝑓 − lim 𝑥𝑘 = 𝑙, then the sequence (𝑥𝑘) has a subsequence 

𝑦 = (𝑦𝑘) such that lim
𝑘→∞

𝑦𝑘 = 𝑙. 

Remark 2.1.6 We are sure that if a sequence is convergent, then each of its subsequences is 

convergent, but this case does not have to be true for 𝑓 −statistical convergence, this says that 

an 𝑓 −statistically convergent sequence may have a subsequence which is not 𝑓 −statistically 

convergent. For instance, if we take 𝑓(𝑥) = 𝑥, then for the sequence (𝑥𝑘) =

(1,
1

2
,

1

3
, 4,

1

5
,

1

6
,

1

7
,

1

8
, 9, … ) we have 𝑆𝑓 − lim 𝑥𝑘 = 0, although its subsequence (1,4,9, … ) is 

not 𝑆𝑓-convergent. 

Theorem 2.1.3 Suppose 𝑓 is an unbounded modulus and 𝑥 = (𝑥𝑘) ∈ 𝑠. Then (𝑥𝑘) ∈ 𝑆𝑓 if and 

only if there exists 𝑦 = (𝑦𝑘) ∈ 𝑐 such that 𝑥𝑘 = 𝑦𝑘 a.a. 𝑘 w.r.t. 𝑓. 

Proof  Assuming 𝑓 is an unbounded modulus and (𝑥𝑘) ∈ 𝑆𝑓. The technique follows the lines 

held out in Theorem 2.1.2, we get such a convergent sequence (𝑦𝑘) such that 

𝛿𝑓({𝑘 ∈ ℕ ∶ 𝑥𝑘 ≠ 𝑦𝑘}) ≤ 𝛿𝑓(𝐴) = 0. 
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Therefore, 𝑥𝑘 = 𝑦𝑘 a.a. 𝑘 w.r.t. 𝑓.  

Conversely, we have  

{𝑘 ∈ ℕ: |𝑥𝑘 − 𝑙| > 𝜀} ⊂ {𝑘 ∈ ℕ: 𝑥𝑘 ≠ 𝑦𝑘} ∪ {𝑘 ∈ ℕ: |𝑦𝑘 − 𝑙| > 𝜀} 

Since lim
𝑘→∞

𝑦𝑘 = 𝑙, the set {𝑘 ∈ ℕ: |𝑦𝑘 − 𝑙| > 𝜀} is finite. Therefore, 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘 − 𝑙| >

𝜀}) = 0 for any 𝜀 > 0. Hence (𝑥𝑘) is 𝑆𝑓-convergent. 

2.2.  𝒇-Statistical Boundedness 

Definition 2.2.1 Suppose 𝑓 is an unbounded modulus and (𝑥𝑘) is any sequence in ℝ (or ℂ). 

Then (𝑥𝑘) is said to be 𝑓 −statistically bounded (or 𝑆𝑓-bounded) if there is 𝑀 > 0 such that 

𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 0, that is, |𝑥𝑘| ≤ 𝑀 a.a. 𝑘 w.r.t. 𝑓. We write 𝑆𝑓(𝑏) to  symbolize 

the class of all 𝑆𝑓-bounded sequences. 

Theorem 2.2.1 Every bounded sequence is 𝑓-statistically bounded, that is, ℓ∞ ⊂ 𝑆𝑓(𝑏) for 

every unbounded modulus 𝑓, even so, the converse does not have to be true. 

Proof  Suppose 𝑓 is an unbounded modulus and (𝑥𝑘) ∈ ℓ∞. Then there is a number 𝑀 > 0 

such that |𝑥𝑘| ≤ 𝑀, for all 𝑘 ∈ ℕ, that is, 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 𝛿𝑓(∅) = 0. So (𝑥𝑘) is 

𝑓 −statistically bounded. For the opposite part, the sequence of Example 2.2.1 serves the 

purpose if we take 𝑓(𝑥) = 𝑥.  

We will write 𝑆(𝑏) instead of 𝑆𝑓(𝑏) in case 𝑓(𝑥) = 𝑥, where 𝑆(𝑏) denotes the class of 

all statistically bounded sequences. 

Theorem 2.2.2 Every 𝑓-statistically bounded sequence is statistically bounded, that is, 

 𝑆𝑓(𝑏) ⊂ 𝑆(𝑏) for every unbounded modulus 𝑓. 

The proof is due to the assertion that 𝛿𝑓(𝐴) = 0 implies 𝛿(𝐴) = 0 for any 𝐴 ⊂ ℕ and 

any unbounded modulus 𝑓. Using this fact if (𝑥𝑘) is 𝑓 −statistically bounded, then we have 

𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 0 for some enough large number 𝑀 > 0. Now 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| >

𝑀})=0 implies 𝛿({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 0 and this means that (𝑥𝑘) is statistically bounded.  
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Remark 2.2.1 Note that the contrary to the above theorem is not true, in general. The following 

example verifies this. 

Example 2.2.1 Let 𝑓(𝑥) = log(𝑥 + 1) and (𝑥𝑘) = (1,0,0,4,0,0,0,0,9, … ). Then for any 

number 𝑀 > 0, we have {𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀} = {1,4,9, … } ∖ a finite subset of ℕ. 

Since 𝛿𝑓({1,4,9, … }) = 1/2 ≠ 0 and 𝛿({1,4,9, … }) = 0, then (𝑥𝑘) ∉ 𝑆𝑓(𝑏) and (𝑥𝑘) ∈ 𝑆(𝑏). 

As a result, 𝑆𝑓(𝑏) ⊊ 𝑆(𝑏). 

Theorem 2.2.3 Suppose 𝑓 is an unbounded modulus and (𝑥𝑘) ∈ 𝑠. Then (𝑥𝑘) ∈ 𝑆𝑓(𝑏) if and 

only if there exists a subset 𝐴 ⊂ ℕ such that 𝛿𝑓(𝐴) = 0 and (𝑥𝑘)𝑘∈ℕ∖𝐴 ∈ ℓ∞. 

Proof  Assume that (𝑥𝑘) is 𝑆𝑓-bounded. So we can take a number 𝑀 > 0 such that 

𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 0. Now take 𝐴 = {𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}. Then 𝛿𝑓(𝐴) = 0 and |𝑥𝑘| ≤

𝑀 for 𝑘 ∈ ℕ ∖ 𝐴; that is, (𝑥𝑘)𝑘∈ℕ∖𝐴 ∈ ℓ∞. 

Conversely, since (𝑥𝑘)𝑘∈ℕ∖𝐴 ∈ ℓ∞, then for some enough large number 𝑀 > 0 we have |𝑥𝑘| ≤

𝑀 for all 𝑘 ∈ ℕ ∖ 𝐴. This means that {𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀} ⊂ 𝐴 and so 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) =

0. Therefore, (𝑥𝑘) is 𝑆𝑓-bounded. 

Remark 2.2.2 It is obvious that if a sequence is bounded, then all of its subsequences are 

bounded. Even so, for 𝑓 −statistically boundedness this situation is not true in general; that is, 

an 𝑓 −statistically bounded sequence may have a subsequence which is not 𝑓 −statistically 

bounded. The example below illustrates this. 

Example 2.2.2 Consider (𝑥𝑘) = (1,0,0,4,0,0,0,0,9, … ) and  𝑓(𝑥) = 𝑥𝑝, 0 < 𝑝 ≤ 1. Now we 

have 𝛿𝑓 ({𝑘 ∈ ℕ: |𝑥𝑘| >
1

2
}) = 𝛿𝑓({1,4,9, … }). Since |𝑘 ≤ 𝑛 ∶ 𝑘 ∈ {1,4,9, … }| ≤ √𝑛 for 

every 𝑛 ∈ ℕ, then 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓 ({|𝑘 ≤ 𝑛 ∶ |𝑥𝑘| >

1

2
|}) ≤ lim

𝑛→∞

1

𝑓(𝑛)
𝑓(√𝑛) = 0. 

So, 𝛿𝑓 ({𝑘 ∈ ℕ ∶ |𝑥𝑘| >
1

2
}) = 0. Thus (𝑥𝑘) ∈ 𝑆𝑓(𝑏). However, (1,4,9, … ) is a 

subsequence of (𝑥𝑘) and (1,4,9, … ) ∉ 𝑆𝑓(𝑏). 

Theorem 2.2.4 𝑆𝑓 ⊂ 𝑆𝑓(𝑏) for any unbounded modulus 𝑓, although the converse is not true 

in general. 
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Proof  Suppose (𝑥𝑘) ∈ 𝑆𝑓 and 𝑆𝑓-lim 𝑥𝑘 = 𝑙. Then for every 𝜀 > 0, we have that 

𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘 − 𝑙| > 𝜀}) = 0. As {𝑘 ∈ ℕ: |𝑥𝑘| > |𝑙| + 𝜀} ⊂ {𝑘 ∈ ℕ: |𝑥𝑘 − 𝑙| > 𝜀}, so 

|𝑥𝑘| ≤ |𝑙| + 𝜀  a.a. 𝑘 w.r.t. 𝑓. Thus, (𝑥𝑘) ∈ 𝑆𝑓(𝑏).  

For the converse part, let us take the identity map 𝑓(𝑥) = 𝑥 and (𝑥𝑘) = (1,2,1,2, … ), then 

(𝑥𝑘) ∈ 𝑆𝑓(𝑏), but (𝑥𝑘) ∉ 𝑆𝑓. 

Theorem 2.2.5 A sequence (𝑥𝑘) is 𝑓 −statistically bounded if and only if there exists a 

bounded sequence (𝑦𝑘) such that 𝑥𝑘 = 𝑦𝑘 a.a. 𝑘 w.r.t. 𝑓. 

Proof  Suppose (𝑥𝑘) is 𝑓 −statistically bounded. Then for some enough large number 𝑀 > 0 

we have 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 0. Now take 𝐴 = {𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀} and define (𝑦𝑘) as 

follows: if 𝑘 ∉ 𝐴 we set 𝑦𝑘 = 𝑥𝑘 and otherwise, we set 𝑦𝑘 = 0. Then (𝑦𝑘) ∈ ℓ∞ and we can 

say that 𝑥𝑘 = 𝑦𝑘 a.a. 𝑘 w.r.t. 𝑓. Conversely, since (𝑦𝑘) ∈ ℓ∞ so there is a number 𝑀 > 0 such 

that |𝑦𝑘| ≤ 𝑀 for all 𝑘 ∈ ℕ. Let 𝐻 = {𝑘 ∈ ℕ: 𝑥𝑘 ≠ 𝑦𝑘}. Since 𝑥𝑘 = 𝑦𝑘  a.a. 𝑘 w.r.t. 𝑓, then 

𝛿𝑓(𝐻) = 0. This gives that |𝑥𝑘| ≤ 𝑀 a.a. 𝑘 w.r.t. 𝑓, because {𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀} ⊂ 𝐻. 

Lemma 2.2.1 [20] For every infinite 𝐻 ⊂ ℕ there exists an unbounded modulus function 

𝑓 such that 𝛿𝑓(𝐻) = 1. 

Theorem 2.2.6 If (𝑥𝑘) ∈ 𝑆𝑓(𝑏) for every unbounded modulus 𝑓, then (𝑥𝑘) ∈ ℓ∞. 

Proof  We assume the contrary; that is, we assume that (𝑥𝑘) ∉ ℓ∞. Then the set 

{𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀} is infinite for every number 𝑀 > 0. So by Lemma 2.2.1, there is an 

unbounded modulus 𝑓 such that 𝛿𝑓({𝑘 ∈ ℕ: |𝑥𝑘| > 𝑀}) = 1 which is completely contrary to 

the assumption that (𝑥𝑘) ∈ 𝑆𝑓(𝑏) for every unbounded modulus. 
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3. THE SETS OF 𝒇-STRONGLY CESÀRO SUMMABLE SEQUENCES 

3.1.  𝒇-Strong Cesàro Summability 

Definition 3.1.1 [23] Let (𝑥𝑘) be any sequence in ℝ (or ℂ) and 𝑓 be any modulus. Then the 

sequence (𝑥𝑘) is called 𝑓 −strongly Cesàro summable (or 𝑤𝑓-summable) to 𝑙, if  

lim
𝑛→∞

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0.

𝑛

𝑘=1

 

In this situation, we write 𝑥𝑘 → 𝑙(𝑤𝑓) and the class of all 𝑓 −strongly Cesàro summable 

sequences will be symbolized by 𝑤𝑓. 

Here, the spaces 𝑤0
𝑓

,  𝑤𝑓 and 𝑤∞
𝑓

 are defined as follows: 

           𝑤0
𝑓

= {(𝑥𝑘) ∶ lim
𝑛→∞

1

𝑛
∑ 𝑓(|𝑥𝑘|) = 0

𝑛

𝑘=1

}, 

𝑤𝑓 = {(𝑥𝑘) ∶ lim
𝑛→∞

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0

𝑛

𝑘=1

 for some number 𝑙},                                 

𝑤∞
𝑓

= {(𝑥𝑘) ∶ sup
𝑛

1

𝑛
∑ 𝑓(|𝑥𝑘|) < ∞

𝑛

𝑘=1

}.                                                                               

Remark 3.1.1 In case 𝑓(𝑥) = 𝑥, the 𝑓 −strong Cesàro summability reduces to the strong 

Cesàro summability and the sequence spaces 𝑤0
𝑓

,  𝑤𝑓 and 𝑤∞
𝑓

 becomes 𝑤0, 𝑤 and 𝑤∞ of 

strongly Cesàro summable sequences, respectively. 

Theorem 3.1.1 [22] Suppose 𝑓 is any modulus. Then 

(𝑖) 𝑤0
𝑓

⊂ 𝑤∞
𝑓

, 

(𝑖𝑖) 𝑤𝑓 ⊂ 𝑤∞
𝑓

. 
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Proof  The first inclusion is perfectly clear, we here only prove the second inclusion. Assume 

that (𝑥𝑘) ∈ 𝑤𝑓. Then by the properties of a modulus function 𝑓, we have that 

1

𝑛
∑ 𝑓(|𝑥𝑘|) ≤

𝑛

𝑘=1

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|) + 𝑓(|𝑙|)

1

𝑛

𝑛

𝑘=1

∑ 1.

𝑛

𝑘=1

 

Since (𝑥𝑘) ∈ 𝑤𝑓, we get (𝑥𝑘) ∈ 𝑤∞
𝑓

, this fulfills the proof.  

Theorem 3.1.2 [22] Suppose 𝑓 is any modulus. Then 

(𝑖)  𝑤 ⊂ 𝑤𝑓, 

(𝑖𝑖)  𝑤0 ⊂ 𝑤0
𝑓
, 

(𝑖𝑖𝑖)  𝑤∞ ⊂ 𝑤∞ 
𝑓

. 

Proof  

(𝑖) To prove that 𝑤 ⊂ 𝑤𝑓 . Let 𝑥 = (𝑥𝑘) ∈ 𝑤 so that 

lim
𝑛→∞

1

𝑛
∑|𝑥𝑘 − 𝑙| = 0

𝑛

𝑘=1

 

for some 𝑙. Given 𝜀 > 0 and choose 𝛿 with 0 < 𝛿 < 1 such that 𝑓(𝑡) < 𝜀 for 𝑡 ∈ (0, 𝛿]. 

Let 𝑦𝑘 = |𝑥𝑘 − 𝑙| and consider  

∑ 𝑓(𝑦𝑘)

𝑛

𝑘=1

= ∑ 𝑓(𝑦𝑘)

𝑛

𝑘=1
𝑦𝑘≤𝛿

+ ∑ 𝑓(𝑦𝑘).

𝑛

𝑘=1
𝑦𝑘>𝛿

 

Since 𝑓(𝑦𝑘) < 𝜀 for 𝑦𝑘 ≤ 𝛿, then 

∑ 𝑓(𝑦𝑘) < 𝜀𝑛

𝑛

𝑘=1
𝑦𝑘≤𝛿

, 

and also for 𝑦𝑘 > 𝛿, we have 

𝑦𝑘 <
𝑦𝑘

𝛿
< 1 + [

𝑦𝑘

𝛿
], 

where [𝑡] denotes the integer part of real number t. Since 𝑓 is a modulus, then 
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𝑓(𝑦𝑘) ≤ 𝑓 (1 + [
𝑦𝑘

𝛿
]) ≤ 𝑓(1) (1 + [

𝑦𝑘

𝛿
]) ≤ 2𝑓(1)

𝑦𝑘

𝛿
, 

so, we get 

∑ 𝑓(𝑦𝑘) ≤

𝑛

𝑘=1
𝑦𝑘>𝛿

 
2𝑓(1)

𝛿
∑ 𝑦𝑘.

𝑛

𝑘=1
𝑦𝑘>𝛿

 

Thus, 

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|) ≤ 𝜀 +

2𝑓(1)

𝛿

1

𝑛

𝑛

𝑘=1

∑ |𝑥𝑘 − 𝑙|

𝑛

𝑘=1
|𝑥𝑘−𝑙|>𝛿

 

                          ≤ 𝜀 +
2𝑓(1)

𝛿

1

𝑛
∑|𝑥𝑘 − 𝑙|.

𝑛

𝑘=1

 

Since 𝑥 ∈ 𝑤, then we get 𝑥 ∈ 𝑤𝑓. 

(𝑖𝑖) The proof of this part is similar to the first part when 𝑙 = 0 and therefore is omitted. 

(𝑖𝑖𝑖) Let (𝑥𝑘) ∈ 𝑤∞ so that 

sup
𝑛

1

𝑛
∑|𝑥𝑘| < ∞.

𝑛

𝑘=1

 

Given any 𝜀 > 0 and choose 𝛿 ∈ (0, 1) such that 𝑓(𝑡) < 𝜀 for 𝑡 ∈ (0, 𝛿]. Now let us consider  

∑ 𝑓(|𝑥𝑘|)

𝑛

𝑘=1

= ∑ 𝑓(|𝑥𝑘|)

𝑛

𝑘=1
|𝑥𝑘|≤𝛿 

+ ∑ 𝑓(|𝑥𝑘|)

𝑛

𝑘=1
|𝑥𝑘|>𝛿

. 

Since 𝑓(|𝑥𝑘|) < 𝜀 for |𝑥𝑘| ≤ 𝛿, then we have 

∑ 𝑓(|𝑥𝑘|)

𝑛

𝑘=1
|𝑥𝑘|≤𝛿 

< 𝜀𝑛, 

and also for |𝑥𝑘| > 𝛿 we have 
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|𝑥𝑘| <
|𝑥𝑘|

𝛿
< 1 + [

|𝑥𝑘|

𝛿
]. 

Since 𝑓 is a modulus, for |𝑥𝑘| > 𝛿 we have 

𝑓(|𝑥𝑘|) ≤ 𝑓 (1 + [
|𝑥𝑘|

𝛿
]) ≤ (1 + [

|𝑥𝑘|

𝛿
]) 𝑓(1) ≤ 2𝑓(1)

|𝑥𝑘|

𝛿
. 

So, we get 

∑ 𝑓(|𝑥𝑘|)

𝑛

𝑘=1
|𝑥𝑘|>𝛿

≤
2𝑓(1)

𝛿
∑ |𝑥𝑘|

𝑛

𝑘=1
|𝑥𝑘|>𝛿

≤
2𝑓(1)

𝛿
∑|𝑥𝑘|

𝑛

𝑘=1

, 

and therefore, 

1

𝑛
∑ 𝑓(|𝑥𝑘|) ≤

𝑛

𝑘=1

𝜀 +
2𝑓(1)

𝛿

1

𝑛
∑|𝑥𝑘|

𝑛

𝑘=1

. 

Since 𝑥 ∈ 𝑤∞, we have 𝑥 ∈ 𝑤∞
𝑓

 and this fulfills the proof.  

Lemma 3.1.1 [24] The limit lim
𝑡→∞

𝑓(𝑡)

𝑡
= 𝛽 exists for any modulus 𝑓 and lim

𝑡→∞

𝑓(𝑡)

𝑡
= inf { 

𝑓(𝑡)

𝑡
∶

𝑡 > 0 }. 

Theorem 3.1.3 [22] Suppose 𝑓 is any modulus. If lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0, then 𝑤𝑓 ⊂ 𝑤. 

Proof  On the basis of Lemma 3.1.1, we have that 𝛽 = lim
𝑡→∞

𝑓(𝑡)

𝑡
=inf { 

𝑓(𝑡)

𝑡
∶ 𝑡 > 0 } exists and 

from this we have 𝑓(𝑡) ≥ 𝛽𝑡 for all 𝑡 ≥ 0. Since 𝛽 > 0, we also have 𝑡 ≤
1

𝛽
𝑓(𝑡) for all 𝑡 ≥ 0 

and so 

1

𝑛
∑|𝑥𝑘 − 𝑙| ≤

1

𝛽

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|)

𝑛

𝑘=1

𝑛

𝑘=1

 

from where it follows that 𝑥 ∈ 𝑤 whenever 𝑥 ∈ 𝑤𝑓 .  

Through combining Theorem 3.1.3 and Theorem 3.1.2 we obtain the result below. 

Corollary 3.1.1 [22] Let 𝑓 be any modulus. If lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0, then 𝑤𝑓 = 𝑤. 
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3.2.  Some Relations Between the Sets of 𝒇-Strongly Cesàro Summable 

Sequences 

In this study, we establish the relations between 𝑤𝑓 and 𝑤𝑔, 𝑤𝑓 and 𝑆𝑔, for different 

modulus functions 𝑓 and 𝑔 under some conditions on the considered modulus functions. 

However the relations between the sets 𝑤𝑓 and 𝑤, 𝑆𝑓 and 𝑆 are known already for a modulus 

𝑓 (see [22] and [20]). 

Theorem 3.2.1 Suppose 𝑓 and 𝑔 are modulus functions. If 

sup
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
< ∞, 

then we have 𝑤𝑔 ⊂ 𝑤𝑓 and the inclusion may be strict. 

Proof  Suppose that 𝛼 = sup
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
< ∞. Then we have 

𝑓(𝑡)

𝑔(𝑡)
≤ 𝛼 and so that 𝑓(𝑡) ≤ 𝛼𝑔(𝑡) for 

every 𝑡 ∈ [0, ∞). Now it is clear that 𝛼 > 0 and if 𝑥 = (𝑥𝑘) is 𝑔 −strongly Cesàro summable 

to 𝑙, we may write  

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|) ≤

1

𝑛
∑ 𝛼𝑔(|𝑥𝑘 − 𝑙|)

𝑛

𝑘=1

.

𝑛

𝑘=1

 

Taking limit on both sides as 𝑛 → ∞, we obtain that 𝑥 ∈ 𝑤𝑔 implies 𝑥 ∈ 𝑤𝑓. 

The example below shows that the inclusion 𝑤𝑔 ⊂ 𝑤𝑓 is strict at least for some special 

modulus functions 𝑓 and 𝑔.  

Example 3.2.1 Define the sequence 𝑥 = (𝑥𝑘) as 

𝑥𝑘 = {
𝑘, 𝑘 = 𝑚3

 
0, 𝑘 ≠ 𝑚3

   𝑚 ∈ ℕ, 

and the modulus 𝑓(𝑡) =
𝑡

𝑡+1
 and 𝑔(𝑡) = 𝑡. Now sup

𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
= 1 < ∞ and so that 𝑤𝑔 ⊂ 𝑤𝑓 . 

Using the 𝑓(0) = 0 equality, we have 
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1

𝑛
∑ 𝑓(|𝑥𝑘|) =

𝑛

𝑘=1

1

𝑛
∑ 𝑓(𝑘) +

1

𝑛

𝑛

𝑘=1
𝑘=𝑚3

∑ 𝑓(0)

𝑛

𝑘=1
𝑘≠𝑚3

 

                                    =
1

𝑛
∑

𝑘

1 + 𝑘

𝑛

𝑘=1
𝑘=𝑚3

<
1

𝑛
∑ 1 ≤

√𝑛
3

𝑛
.

𝑛

𝑘=1
𝑘=𝑚3

 

Since 
√𝑛

3

𝑛
 tends to 0 as 𝑛 → ∞, we get 𝑥 ∈ 𝑤𝑓 . But since 

1

𝑛
∑ 𝑔(|𝑥𝑘|) =

𝑛

𝑘=1

1

𝑛
∑ 𝑔(𝑥𝑘) =

1

𝑛

𝑛

𝑘=1

∑ 𝑘 +
1

𝑛

𝑛

𝑘=1
𝑘=𝑚3

∑ 𝑔(0)

𝑛

𝑘=1
𝑘≠𝑚3

 

                                                  =
1

𝑛
(13 + 23 + 33 + ⋯ + 𝑖3), max

𝑖∈ℕ
𝑖3 ≤ 𝑛  

=
1

𝑛
[
𝑖(𝑖 + 1)

2
]

2

                      

≥
1

𝑛
[
([√𝑛

3
] − 1)([√𝑛

3
])

2
]

2

  

and right-hand side tends to ∞ as 𝑛 → ∞ we get 𝑥 ∉ 𝑤𝑔, where [𝑟] denotes the integral part 

of the real number 𝑟. Hence 𝑥 ∈ 𝑤𝑓 − 𝑤𝑔 and the inclusion 𝑤𝑔 ⊂ 𝑤𝑓 is strict. 

Theorem 3.2.2 Suppose 𝑓 and 𝑔 are modulus functions. If 

inf
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
> 0, 

then 𝑤𝑓 ⊂ 𝑤𝑔. 

Proof  Suppose that 𝛽 = inf
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
> 0. Then we have 

𝑓(𝑡)

𝑔(𝑡)
≥ 𝛽 and so that 𝛽𝑔(𝑡) ≤ 𝑓(𝑡) for 

every 𝑡 ∈ [0, ∞). Now if 𝑥 = (𝑥𝑘) is 𝑓 −strongly Cesàro summable to 𝑙 we may write 

1

𝑛
∑ 𝑔(|𝑥𝑘 − 𝑙|) ≤

1

𝛽

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|)

𝑛

𝑘=1

.

𝑛

𝑘=1
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Taking limit on both sides as 𝑛 → ∞, we obtain that 𝑥 ∈ 𝑤𝑓 implies 𝑥 ∈ 𝑤𝑔 and this fulfills 

the proof. 

Taking 𝑔(𝑡) = 𝑡 in Theorem 3.2.2 we get Corollary 3.1.1 by Lemma 3.1.1. 

We get the following result from Theorem 3.2.1 and Theorem 3.2.2. 

Corollary 3.2.1 Suppose 𝑓 and 𝑔 are modulus functions. If  

0 < inf
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
≤ sup

𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
< ∞, 

then 𝑤𝑓 = 𝑤𝑔. 

Theorem 3.2.3 Assume that 𝑓 and 𝑔 are unbounded modulus functions. If inf
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
> 0 and 

lim
𝑡→∞

𝑔(𝑡)

𝑡
> 0, then every 𝑓 −strongly Cesàro summable sequence is 𝑔 −statistically 

convergent. 

Proof  Suppose that 𝛽 = inf
𝑡∈(0,∞)

𝑓(𝑡)

𝑔(𝑡)
> 0. Then we have 

𝑓(𝑡)

𝑔(𝑡)
≥ 𝛽 and so that 𝛽𝑔(𝑡) ≤ 𝑓(𝑡) for 

every 𝑡 ∈ [0, ∞). Now if 𝑥 = (𝑥𝑘) is 𝑓 −strongly Cesàro summable to 𝑙, we may write  

1

𝑛
∑ 𝑓(|𝑥𝑘 − 𝑙|) ≥ 𝛽

1

𝑛

𝑛

𝑘=1

∑ 𝑔(|𝑥𝑘 − 𝑙|)

𝑛

𝑘=1

 ≥ 𝛽
1

𝑛
∑ 𝑔(|𝑥𝑘 − 𝑙|)

𝑛

𝑘=1
|𝑥𝑘−𝑙|≥𝜀

 

         ≥ 𝛽
1

𝑛
|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}| 𝑔(𝜀) 

                 ≥ 𝛽
1

𝑛
𝑔(|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|) 

𝑔(𝜀)

𝑔(1)
 

                        =
𝑔(|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|)

𝑔(𝑛)
 
𝑔(𝑛)

𝑛

𝑔(𝜀)

𝑔(1)
𝛽. 

Taking the limit on both sides as 𝑛 → ∞, we obtain that 𝑥 ∈ 𝑤𝑓 implies 𝑥 ∈ 𝑆𝑔, since 

lim
𝑡→∞

𝑔(𝑡)

𝑡
> 0 and 𝛽 > 0. Here is the proof. 

The following result is obtained by taking 𝑔(𝑡) = 𝑓(𝑡) from Theorem 3.2.3. 
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Corollary 3.2.2 Assume that 𝑓 is an unbounded modulus. If lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0, then every 

𝑓 −strongly Cesàro summable sequence is 𝑓 −statistically convergent.  

Remark 3.2.1 Corollary 3.2.2 was given with the extra condition “𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦) for all 

𝑥 ≥ 0, 𝑦 ≥ 0 and some positive number 𝑐” in [22]. It seems that this extra condition is 

unnecessary, so it should be removed from Corollary 4.3 in [22]. 

The following result is obtained by taking 𝑔(𝑡) = 𝑡 from Theorem 3.2.3 (see also in 

[22]). 

Corollary 3.2.3 Assume that 𝑓 is an unbounded modulus function. If inf
𝑡∈(0,∞)

𝑓(𝑡)

𝑡
> 0, then 

every 𝑓 −strongly Cesàro summable sequence is statistically convergent. 

Taking 𝑓(𝑡) = 𝑡 in Corollary 3.2.3, we get the statement below, which is the first part 

of Theorem 2.1 of Connor [25], for the case 𝑞 = 1. 

Corollary 3.2.4 A strongly Cesàro summable sequence is statistically convergent. 

Theorem 3.2.4 For any unbounded modulus functions 𝑓 and 𝑔 we have  

ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤𝑔 

and this inclusion may be strict. 

Proof  Suppose that 𝑓 and 𝑔 are unbounded modulus functions. Since 𝑆𝑓 ⊂ 𝑆 by part 1 of 

Corollary 2.2 of [20], and since ℓ∞ ∩ 𝑆 ⊂ 𝑤 by the second part of Theorem 2.1 of [25], then 

we have ℓ∞ ∩ 𝑆𝑓 ⊂ ℓ∞ ∩ 𝑆 ⊂ 𝑤, that is ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤. On the other hand since 𝑤 ⊂ 𝑤𝑔 for 

any modulus 𝑔 by the first part of Theorem 3.1.2, it follows that ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤𝑔. 

The following example shows that the inclusion ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤𝑔 is strict. 

Example 3.2.2 As an example, let us define the sequence 𝑥 = (𝑥𝑘) as 

𝑥𝑘 = {
1, 𝑘 = 𝑛2

 
0, 𝑘 ≠ 𝑛2

   𝑛 ∈ ℕ, 

and consider the modulus function 𝑔(𝑥) = 𝑓(𝑥) = log(𝑥 + 1). Using the 𝑔(0) = 0 equality, 

we have 
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1

𝑛
∑ 𝑔(|𝑥𝑘 − 0|)

𝑛

𝑘=1

=
1

𝑛
∑ 𝑔(𝑥𝑘) =

𝑛

𝑘=1

1

𝑛
∑ 𝑔(1) +

1

𝑛
∑ 𝑔(0)

𝑛

𝑘=1
𝑘≠𝑛2

𝑛

𝑘=1
𝑘=𝑛2

 

                              =
1

𝑛
∑ log 2 ≤

√𝑛

𝑛
log 2 → 0

𝑛

𝑘=1
𝑘=𝑛2

 as 𝑛 → ∞, 

we get 𝑥 ∈ 𝑤𝑔, but since 

lim
𝑛→∞

1

𝑓(𝑛)
𝑓(|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘| ≥ 𝜀}|) 

                                   ≥  lim
𝑛→∞

1

𝑓(𝑛)
𝑓(√𝑛 − 1) = lim

𝑛→∞

log(√𝑛)

log(𝑛 + 1)
=

1

2
≠ 0, 

we have 𝑥 ∉ 𝑆𝑓. Therefore, the inclusion ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤𝑔 is strict. 

We get the statement below of strict inclusions from Theorem 3.2.4. 

Corollary 3.2.7 For any unbounded modulus function 𝑓 we have  

  (𝑖)  ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤𝑓, 

  (𝑖𝑖)  ℓ∞ ∩ 𝑆𝑓 ⊂ 𝑤, 

  (𝑖𝑖𝑖)  ℓ∞ ∩ 𝑆 ⊂ 𝑤𝑓 . 

Taking 𝑓(𝑡) = 𝑔(𝑡) = 𝑡 in Theorem 3.2.4, we get the statement below, which is 

Theorem 3.1 of [25], for the case 𝑞 = 1. 

Corollary 3.2.8 A bounded and statistically convergent sequence is strongly Cesàro 

summable. 
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4. THE SETS OF 𝒇-STATISTICALLY CONVERGENT SEQUENCES OF 

ORDER 𝜶 AND 𝑓-STRONGLY CESÀRO SUMMABLE SEQUENCES OF ORDER 𝜶 

4.1.  𝒇-Statistical Convergence of Order 𝜶 

Gadjiev and Orhan [26] provided the order of statistical convergence for a sequence of 

operators and then Çolak [27] examined statistical convergence of order 𝛼 for a sequence of 

numbers. 

Definition 4.1.1 [22] Suppose 𝐴 ⊂ ℕ, 𝑓 is an unbounded modulus and 0 < 𝛼 ≤ 1. Then we 

define 𝛿𝛼
𝑓(𝐴) (or the 𝛿𝛼

𝑓
-density of 𝐴) by 

𝛿𝛼
𝑓(𝐴) = lim

𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|), 

in the case this limit exists. 

It can be easily observed that if 𝐴 is a finite subset of ℕ, then 𝛿𝛼
𝑓(𝐴) = 0 but 

𝛿𝛼
𝑓(ℕ − 𝐴) ≠ 1 − 𝛿𝛼

𝑓(𝐴) for 0 < 𝛼 < 1 and any modulus 𝑓, in general. For example, take 

𝑓(𝑥) = 𝑥𝑝, 0 < 𝑝 ≤ 1, 0 < 𝛼 < 1 and 𝐴 = {2𝑛 ∶ 𝑛 ∈ ℕ}, then 𝛿𝛼
𝑓(ℕ − 𝐴) = ∞ =  𝛿𝛼

𝑓(𝐴). 

Remark 4.1.1 For 𝛼 = 1, the 𝛿𝛼
𝑓
-density becomes the 𝑓-density and for 𝑓(𝑥) = 𝑥, the 𝛿𝛼

𝑓
-

density becomes 𝛼-density. For the special case 𝛼 = 1 and 𝑓(𝑥) = 𝑥, the 𝛿𝛼
𝑓
-density becomes 

natural density. 

Remark 4.1.2 Let 𝐴 ⊂ ℕ, 𝑓 be a modulus and 0 < 𝛼 ≤ 1.  If 𝛿𝛼
𝑓(𝐴) = 0, then 𝛿𝛼(𝐴) = 0 and 

hence 𝛿(𝐴) = 0. Indeed, assume that 𝛿𝛼
𝑓(𝐴) = 0, then for each 𝑝 ∈ ℕ, there is 𝑛0 ∈ ℕ such 

that for 𝑛 ≥ 𝑛0, we have 

𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|) ≤
1

𝑝
𝑓(𝑛𝛼) ≤

1

𝑝
𝑝𝑓 (

𝑛𝛼

𝑝
) = 𝑓 (

𝑛𝛼

𝑝
), 

and since 𝑓 is a modulus, then it is obviously increasing, and also since 0 < 𝛼 ≤ 1, then 

1

𝑛
|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}| ≤

1

𝑛𝛼
|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}| ≤

1

𝑝
. 
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Thus 𝛿𝛼(𝐴) = 0 and so 𝛿(𝐴) = 0. 

Remark 4.1.3 The converse of Remark 4.1.2 does not have to be true in general. It could be 

confirmed by the example below. 

Example 4.1.1 Let 𝑓(𝑥) = log(𝑥 + 1) and 𝐴 = {1,4,9, … }. Then 𝛿(𝐴) = 0 and 𝛿𝛼(𝐴) = 0 

for 1/2 < 𝛼 ≤ 1 but 𝛿𝛼
𝑓(𝐴) ≥ 𝛿𝑓(𝐴) = 1/2. Therefore, 𝛿𝛼

𝑓(𝐴) ≠ 0. 

Lemma 4.1.1 [22] Let 𝐴 ⊂ ℕ and 𝑓 be any unbounded modulus. Then 𝛿𝛽
𝑓(𝐴) ≤ 𝛿𝛼

𝑓(𝐴) if 0 <

𝛼 ≤ 𝛽 ≤ 1. 

Proof  Suppose that 0 < 𝛼 ≤ 𝛽 ≤ 1 and 𝑓 is an unbounded modulus. Then 𝑛𝛼 ≤ 𝑛𝛽 and this 

implies that 
1

𝑓(𝑛𝛽)
≤

1

𝑓(𝑛𝛼)
 for every 𝑛 ∈ ℕ, so that 

lim
𝑛→∞

1

𝑓(𝑛𝛽)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|) ≤ lim

𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐴}|). 

So that 𝛿𝛽
𝑓(𝐴) ≤ 𝛿𝛼

𝑓(𝐴). 

Note From above Lemma if 𝛿𝛼
𝑓(𝐴) = 0, then 𝛿𝛽

𝑓(𝐴) = 0 for any 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤

𝛽. 

Definition 4.1.2 [22] Suppose 𝑓 is an unbounded modulus and 0 < 𝛼 ≤ 1. A sequence (𝑥𝑘) 

in ℝ (or ℂ) is called 𝑓-statistically convergent of order 𝛼 to 𝑙 (or 𝑆𝛼
𝑓
-convergent to 𝑙) if the 

following condition is satisfied for every 𝜀 > 0: 

lim
𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑙| ≥ 𝜀}|) = 0. 

In this situation, we write 𝑆𝛼
𝑓

− lim 𝑥𝑘 = 𝑙 or 𝑥𝑘 → (𝑆𝛼
𝑓

). We symbolize the class of all 𝑆𝛼
𝑓
-

convergent sequences by 𝑆𝛼
𝑓
, and the class of all 𝑓-statistically null sequences of order 𝛼 will 

be denoted by 𝑆𝛼,0
𝑓

. That is 

𝑆𝛼
𝑓

= {(𝑥𝑘) ∶ lim
𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑙| ≥ 𝜀}|) = 0  for every ε > 0},             

𝑆𝛼,0
𝑓

= {(𝑥𝑘) ∶ lim
𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘| ≥ 𝜀}|) = 0  for every ε > 0}.                  
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Note that if 𝛼 = 1, then the class 𝑆𝛼
𝑓
 will reduce to the class 𝑆𝑓 and if we take 𝑓(𝑥) = 𝑥, 

then the class 𝑆𝛼
𝑓
 will reduce to the class 𝑆𝛼, and also in the particular case 𝛼 = 1 and 𝑓(𝑥) =

𝑥, the class 𝑆𝛼
𝑓
 will reduce to the class 𝑆. 

Lemma 4.1.2 [22] Let 0 < 𝛼 ≤ 1 be given and 𝑓 be an unbounded modulus. Then 

(𝑖) 𝑆𝛼,0
𝑓

⊂ 𝑆𝛼
𝑓
 and the inclusion is strict. 

(𝑖𝑖) 𝑐 ⊂ 𝑆𝛼
𝑓
 and the inclusion is strict. 

Proof  The first inclusion is clear, so it is omitted. 

(𝑖𝑖) Let 𝑥 = (𝑥𝑘) → 𝑙. Then for every 𝜀 > 0 there exists 𝑁 ∈ ℕ such that |𝑥𝑘 − 𝑙| < 𝜀 for 

all 𝑛 > 𝑁, so that we have 

lim
𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑙| ≥ 𝜀}|) = lim

𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(𝑁) = 0 

and hence 𝑥𝑘 → 𝑙(𝑆𝛼
𝑓

). For strict inclusion, let us define the sequence (𝑥𝑘) as 

𝑥𝑘 = {
1, 𝑘 = 𝑛7

 
0, 𝑘 ≠ 𝑛7

   𝑛 = 1,2,3, …  

and take 𝑓(𝑥) = 𝑥𝑝, 0 < 𝑝 ≤ 1. Then the sequence (𝑥𝑘) ∈ 𝑆𝛼
𝑓
 for 𝛼 ∈ (

1

7
, 1]. But this 

sequence is not convergent. 

Remark 4.1.4 𝑓-statistical convergence of order 𝛼 is not well defined for 𝛼 > 1. To see this 

situation, we may choose the sequence 𝑥 = (𝑥𝑘) as 

𝑥𝑘 = {
𝑎1, 𝑘 = 2𝑛

 
𝑎2, 𝑘 ≠ 2𝑛

   𝑛 = 1,2,3, …  

where 𝑎1, 𝑎2 ∈ ℝ and 𝑎1 ≠ 𝑎2, and take 𝑓(𝑥) = 𝑥. Now if we take any 𝛼 > 1, then we have 

lim
𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑎1| ≥ 𝜀}|) ≤ lim

𝑛→∞

𝑛

2𝑛𝛼
= 0 
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and  

lim
𝑛→∞

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑎2| ≥ 𝜀}|) ≤ lim

𝑛→∞

𝑛

2𝑛𝛼
= 0. 

It means that 𝑥𝑘 → 𝑎1(𝑆𝛼
𝑓

) and 𝑥𝑘 → 𝑎2(𝑆𝛼
𝑓

) if 𝛼 > 1. But this is not possible. 

Theorem 4.1.1 [22] Suppose 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽 and 𝑓 is an unbounded modulus. 

Then 𝑆𝛼
𝑓

⊂ 𝑆𝛽
𝑓
 and this inclusion is strict. 

Proof  Suppose 𝛼 ≤ 𝛽 so that 𝑛𝛼 ≤ 𝑛𝛽 and hence 
1

𝑓(𝑛𝛽)
≤

1

𝑓(𝑛𝛼)
 and let the sequence 𝑥 =

(𝑥𝑘) be 𝑆𝛼
𝑓
-convergent to the number 𝑙, i.e. 𝑥𝑘 → 𝑙(𝑆𝛼

𝑓
). Then 

1

𝑓(𝑛𝛽)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑙| ≥ 𝜀}|) ≤

1

𝑓(𝑛𝛼)
𝑓(|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑙| ≥ 𝜀}|). 

Taking the limit as 𝑛 → ∞, we have 𝑥 ∈ 𝑆𝛼
𝑓
 implies 𝑥 ∈ 𝑆𝛽

𝑓
. In order to prove the inclusion is 

strict, we may consider the sequence 𝑥 = (𝑥𝑘) as 

𝑥𝑘 = {
1, 𝑘 = 𝑛3

 
0, 𝑘 ≠ 𝑛3

   𝑛 = 1,2,3, …  

and take 𝑓(𝑥) = 𝑥𝑝, 0 < 𝑝 ≤ 1. Then 𝑆𝛽
𝑓

− lim 𝑥𝑘 = 0 for 
1

3
< 𝛽 ≤ 1 and so that 𝑥 =

(𝑥𝑘) ∈ 𝑆𝛽
𝑓
, but 𝑥 = (𝑥𝑘) ∉ 𝑆𝛼

𝑓
 for 0 < 𝛼 ≤

1

3
. 

The outcome below is a result of Theorem 4.1.1. 

Corollary 4.1.1 [22] 

(𝑖) 𝑆𝛼
𝑓

⊂ 𝑆𝑓 for every 𝛼 ∈ (0, 1] and modulus 𝑓, 

(𝑖𝑖) 𝑆𝛼 ⊂ 𝑆𝛽 for every 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽, 

(𝑖𝑖𝑖) 𝑆𝛼 ⊂ 𝑆 for every 𝛼 ∈ (0, 1]. 

From Remark 4.1.2 and Definition 4.1.2, we have the following. 

 



23 

 

Corollary 4.1.2 [22] 

(𝑖) 𝑆𝛼
𝑓

⊂ 𝑆𝛼 for every 𝛼 ∈ (0, 1] and modulus 𝑓, 

(𝑖𝑖) 𝑆𝛼
𝑓

⊂ 𝑆 for every 𝛼 ∈ (0, 1] and modulus 𝑓. 

4.2.  𝒇-Strong Cesàro Summability of Order 𝜶 

Definition 4.2.1 [22] Let 𝛼 ∈ (0, 1] and 𝑓 be any modulus. A sequence (𝑥𝑘) in ℝ (or ℂ) is 

called 𝑓-strongly Cesàro summable of order 𝛼 if 

lim
𝑛→∞

1

𝑛𝛼
∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0

𝑛

𝑘=1

 

for some real number 𝑙. In this case, we write 𝑥𝑘 → 𝑙(𝑤𝛼
𝑓

). We write 𝑤𝛼
𝑓
 to symbolize the class 

of all 𝑓-strongly Cesàro summable sequences of order 𝛼, and the class of all 𝑓-strongly Cesàro 

summable null sequences of order 𝛼 is represented by 𝑤𝛼,0
𝑓

 . That is 

𝑤𝛼
𝑓

= {(𝑥𝑘) ∶ lim
𝑛→∞

1

𝑛𝛼
∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0

𝑛

𝑘=1

 for some number 𝑙},                                

           𝑤𝛼,0
𝑓

= {(𝑥𝑘) ∶ lim
𝑛→∞

1

𝑛𝛼
∑ 𝑓(|𝑥𝑘|) = 0

𝑛

𝑘=1

}. 

If we take 𝛼 = 1, then the class 𝑤𝛼
𝑓
 reduces to the class 𝑤𝑓 of all 𝑓-strongly Cesàro 

summable sequences. In the case 𝑓(𝑥) = 𝑥, the class 𝑤𝛼
𝑓
 reduces to the class 𝑤𝛼 of all strongly 

Cesàro summable sequences of order 𝛼, and also in the special case 𝛼 = 1 and 𝑓(𝑥) = 𝑥, then 

then the class 𝑤𝛼
𝑓
 reduces to the class 𝑤 of all strongly Cesàro summable sequences. It is clear 

that 𝑤𝛼,0
𝑓

⊂ 𝑤𝛼
𝑓
 for every 0 < 𝛼 ≤ 1 and modulus 𝑓. 

Theorem 4.2.1 [22] Suppose 𝑓 is any modulus and 0 < 𝛼 ≤ 𝛽 ≤ 1. Then 𝑤𝛼
𝑓

⊂ 𝑤𝛽
𝑓
 and the 

inclusion may remain strict for some 𝛼 < 𝛽. 
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Proof  Suppose 𝑓 is a modulus and 𝑥 = (𝑥𝑘) ∈ 𝑤𝛼
𝑓

. Since 𝛼 ≤ 𝛽, then we may write 
1

𝑛𝛽 ≤
1

𝑛𝛼 

which implies that  

1

𝑛𝛽
∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0

𝑛

𝑘=1

≤
1

𝑛𝛼
∑ 𝑓(|𝑥𝑘 − 𝑙|).

𝑛

𝑘=1

 

It means that 𝑤𝛼
𝑓

⊂ 𝑤𝛽
𝑓

. To prove that 𝑤𝛼
𝑓

⊂ 𝑤𝛽
𝑓
 is a strict inclusion, consider the sequence 

𝑥 = (𝑥𝑘) as follows: 

𝑥𝑘 = {
1, 𝑘 = 𝑛2

 
0, 𝑘 ≠ 𝑛2

   𝑛 = 1,2,3, …  

and take 𝑓(𝑥) = 𝑥. Since 

1

𝑛𝛽
∑ 𝑓(|𝑥𝑘 − 0|) =

1

𝑛𝛽
∑ 𝑓(𝑥𝑘)

𝑛

𝑘=1

𝑛

𝑘=1

=
1

𝑛𝛽
∑ 𝑓(1)

𝑛

𝑘=1
𝑘=𝑛2

+
1

𝑛𝛽
∑ 𝑓(0)

𝑛

𝑘=1
𝑘≠𝑛2

 

         =
1

𝑛𝛽
∑ 1 ≤

√𝑛

𝑛𝛽

𝑛

𝑘=1
𝑘=𝑛2

→ 0 

as 𝑛 → ∞ for 
1

2
< 𝛽, then 𝑥𝑘 → 0 (𝑤𝛽

𝑓
) i.e. 𝑥 ∈ 𝑤𝛽

𝑓
. But since 

√𝑛 − 1

𝑛𝛼
≤

1

𝑛𝛼
∑ 𝑓(|𝑥𝑘 − 0|)

𝑛

𝑘=1

 

and 
√𝑛−1

𝑛𝛼
→ ∞ as 𝑛 → ∞ for 𝛼 <

1

2
, then 𝑥 ∉ 𝑤𝛼

𝑓
. Therefore, the inclusion 𝑤𝛼

𝑓
⊂ 𝑤𝛽

𝑓
 is strict. 

Taking 𝛽 = 1 in Theorem 4.2.1, we get the statement below. 

Corollary 4.2.1 [22] 𝑤𝛼
𝑓

⊂ 𝑤𝑓 for every modulus 𝑓 and every 𝛼 such that 0 < 𝛼 ≤ 1. 

Taking 𝑓(𝑥) = 𝑥 in Corollary 4.2.1, we get the statement below. 

Corollary 4.2.2 [27] 𝑤𝛼 ⊂ 𝑤 for every 0 < 𝛼 ≤ 1. 
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The following theorem was given in [22] with the extra condition “𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦) 

for all 𝑥 ≥ 0, 𝑦 ≥ 0 and some positive number 𝑐” but we will prove it without using this extra 

condition as follows. 

Theorem 4.2.2 Assume that 𝑓 is an unbounded modulus and 0 < 𝛼 ≤ 1. If lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0, then 

𝑤𝛼
𝑓

⊂ 𝑆𝛼
𝑓
. 

Proof  Suppose that 𝛽 = lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0. Then by Lemma 3.1.1, we have 𝛽 = inf

𝑡∈(0,∞)

𝑓(𝑡)

𝑡
> 0 

and so that 𝛽𝑡 ≤ 𝑓(𝑡) for every 𝑡 ∈ [0, ∞). Now if 𝑥 = (𝑥𝑘) ∈ 𝑤𝛼
𝑓
, then we may write  

1

𝑛𝛼
∑ 𝑓(|𝑥𝑘 − 𝑙|) ≥ 𝛽

1

𝑛𝛼

𝑛

𝑘=1

∑|𝑥𝑘 − 𝑙|

𝑛

𝑘=1

 ≥ 𝛽
1

𝑛𝛼
∑ |𝑥𝑘 − 𝑙|

𝑛

𝑘=1
|𝑥𝑘−𝑙|≥𝜀

 

                  ≥ 𝛽
1

𝑛𝛼
|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}| 𝜀 

                               ≥ 𝛽
1

𝑛𝛼
𝑓(|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|) 

𝜀

𝑓(1)
 

                                       =
𝑓(|{𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|)

𝑓(𝑛𝛼)
 
𝑓(𝑛𝛼)

𝑛𝛼

𝜀

𝑓(1)
𝛽. 

Taking the limit on both sides as 𝑛 → ∞, we obtain that 𝑥 ∈ 𝑤𝛼
𝑓
 implies 𝑥 ∈ 𝑆𝛼

𝑓
, since 

lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0. Here is the proof. 

Taking 𝛼 = 1 in Theorem 4.2.2, we get the statement below. 

Corollary 4.2.3 [22] Assume that 𝑓 is an unbounded modulus. If lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0, then 𝑤𝑓 ⊂ 𝑆𝑓. 

Taking 𝑓(𝑥) = 𝑥 in Theorem 4.2.2, we get the statement below. 

Corollary 4.2.4 [27] 𝑤𝛼 ⊂ 𝑆𝛼 for every 𝛼 such that 0 < 𝛼 ≤ 1. 
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5. ON STRONG LACUNARY SUMMABILITY OF ORDER 𝜶 WITH RESPECT 

TO MODULUS FUNCTIONS 

In this section, we establish the relations between 𝑁𝜃
𝛽(𝑓) and 𝑁𝜃

𝛼(𝑔), 𝑁𝜃
𝛼(𝑓) and 𝑁𝜃

𝛽(𝑔), 

𝑁𝜃
𝛽(𝑓) and 𝑆𝜃

𝛼(𝑔), ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) and 𝑁

𝜃′
𝛽 (𝑔), where 𝑓 and 𝑔 are different modulus functions 

under some conditions on the considered modulus functions and 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤

𝛽. Furthermore, for some special modulus functions, we obtain the relations between the sets 

𝑁𝜃(𝑓) and 𝑁𝜃, 𝑁𝜃
𝛼(𝑓) and 𝑁𝜃

𝛼 for 𝛼 ∈ (0, 1]. However the relations between the sets 𝑁𝜃 and 

𝑆𝜃, 𝑆𝜃 and 𝑆 are known already (see [28]). 

5.1.  𝒇-Lacunary Statistical Convergence of Order 𝜶 

We imply an increasing sequence 𝜃 = (𝑘𝑟) of nonnegative integer numbers with 𝑘0 =

0 by a lacunary sequence such that ℎ𝑟 = 𝑘𝑟 − 𝑘𝑟−1 → ∞ as 𝑟 → ∞. The intervals put by 𝜃 

shall be represented by 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟] and the ratio 
𝑘𝑟

𝑘𝑟−1
 can be shortened by 𝑞𝑟 (see [28]). 

Fridy and Orhan [28] have defined lacunary statistical convergence as the following 

expression. 

Definition 5.1.1 [28] Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence. A sequence (𝑥𝑘) in ℝ (or ℂ) 

is called lacunary statistically convergent to 𝑙, or simply 𝑆𝜃-convergent to 𝑙, if 

lim
𝑟→∞

1

ℎ𝑟

|{𝑘 ∈ 𝐼𝑟: |𝑥𝑘 − 𝑙| ≥ 𝜀}| = 0 

for each 𝜀 > 0. For this situation, we write 𝑆𝜃 − lim 𝑥𝑘 = 𝑙. Throughout the paper, the class 

of 𝑆𝜃-convergent sequences would be symbolized by 𝑆𝜃. 

Definition 5.1.2 [29] Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, 0 < 𝛼 ≤ 1 and 𝑓 is an 

unbounded modulus. Then the sequence (𝑥𝑘) in ℝ (or ℂ) is called 𝑓-lacunary statistically 

convergent of order 𝛼 to 𝑙, or simply 𝑆𝜃
𝛼(𝑓)-convergent to 𝑙, if 

lim
𝑟→∞

1

𝑓(ℎ𝑟
𝛼)

𝑓(|{𝑘 ∈ 𝐼𝑟 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|) = 0 



27 

 

for every 𝜀 > 0. We write 𝑆𝜃
𝛼(𝑓) −lim 𝑥𝑘 = 𝑙 if (𝑥𝑘) is 𝑆𝜃

𝛼(𝑓)-convergent to 𝑙. Throughout 

this study, 𝑆𝜃
𝛼(𝑓) represents the class of 𝑆𝜃

𝛼(𝑓)-convergent sequences. That is, 

𝑆𝜃
𝛼(𝑓) = {(𝑥𝑘): lim

𝑟→∞

1

𝑓(ℎ𝑟
𝛼)

𝑓(|{𝑘 ∈ 𝐼𝑟 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|) = 0 for every 𝜀 > 0 }.         

We write 𝑆𝜃
𝛼 instead of 𝑆𝜃

𝛼(𝑓) in case 𝑓(𝑥) = 𝑥. For 𝛼 = 1, we write 𝑆𝜃(𝑓) instead of 

𝑆𝜃
𝛼(𝑓) and also in the particular case 𝛼 = 1 and 𝑓(𝑥) = 𝑥, we write 𝑆𝜃 instead of 𝑆𝜃

𝛼(𝑓). 

Remark 5.1.1 It is easy to illustrate that the 𝑓-lacunary statistical convergence of order 𝛼 is 

not well defined for 𝛼 > 1. 

Lemma 5.1.1 The 𝑆𝜃
𝛼(𝑓) −limit of an 𝑆𝜃

𝛼(𝑓)-convergent sequence is unique. 

Theorem 5.1.1 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence and 0 < 𝛼 ≤ 1. Then  

(𝑖) 𝑆𝜃
𝛼(𝑓) ⊂ 𝑆𝜃(𝑓) for every unbounded modulus 𝑓, 

(𝑖𝑖) 𝑆𝜃
𝛼 ⊂ 𝑆𝜃. 

The proof is clear, so it is omitted. 

5.2.  𝒇-Strong Lacunary Summability of Order 𝜶 

Definition 5.2.1 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, 𝛼 ∈ (0, 1], and suppose 𝑓 is a 

modulus function. Then a sequence (𝑥𝑘) in ℝ (or ℂ) is called 𝑓-strongly lacunary summable 

of order 𝛼 to 𝑙, or simply strongly 𝑁𝜃
𝛼(𝑓)-summable to 𝑙, if 

lim
𝑟→∞

1

ℎ𝑟
𝛼 ∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0

𝑘∈𝐼𝑟

. 

If the sequence (𝑥𝑘) is strongly 𝑁𝜃
𝛼(𝑓)-summable to 𝑙, we write 𝑁𝜃

𝛼(𝑓)-lim 𝑥𝑘 = 𝑙. The 

class of strongly 𝑁𝜃
𝛼(𝑓)-summable sequences will be symbolized by 𝑁𝜃

𝛼(𝑓). That is, 

𝑁𝜃
𝛼(𝑓) = {(𝑥𝑘) ∶ lim

𝑟→∞

1

ℎ𝑟
𝛼 ∑ 𝑓(|𝑥𝑘 − 𝑙|) = 0

𝑘∈𝐼𝑟

 for some number 𝑙}. 

Note that this definition does not require the modulus function 𝑓 to be unbounded. 
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The strong 𝑁𝜃
𝛼(𝑓)-summability will reduce to the strong 𝑁𝜃

𝛼-summability if we take 

𝑓(𝑥) = 𝑥, and in the particular case 𝛼 = 1 and 𝑓(𝑥) = 𝑥, the strong 𝑁𝜃
𝛼(𝑓)-summability will 

reduce to the strongly 𝑁𝜃-summability.  

Theorem 5.2.1 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence and suppose 𝑓 and 𝑔 are modulus 

functions. If 

sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
< ∞, 

then 𝑁𝜃
𝛼(𝑔) ⊂ 𝑁𝜃

𝛽(𝑓) for 0 < 𝛼 ≤ 𝛽 ≤ 1 and the inclusion may be strict.  

Proof  Suppose 𝑝 = sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
< ∞. Then we get 0 <

𝑓(𝑥)

𝑔(𝑥)
≤ 𝑝 and so that 𝑓(𝑥) ≤ 𝑝𝑔(𝑥) for 

every 𝑥 ∈ [0, ∞). Now it is clear that if (𝑥𝑘) is strongly 𝑁𝜃
𝛼(𝑔)-summable to 𝑙, we may write  

1

ℎ𝑟
𝛼 ∑ 𝑓(|𝑥𝑘 − 𝑙|) ≤

𝑘∈𝐼𝑟

1

ℎ𝑟
𝛼 ∑ 𝑝𝑔(|𝑥𝑘 − 𝑙|).

𝑘∈𝐼𝑟

 

Since 𝛼 ≤ 𝛽, then  

1

ℎ𝑟
𝛽

∑ 𝑓(|𝑥𝑘 − 𝑙|) ≤ 𝑝

𝑘∈𝐼𝑟

1

ℎ𝑟
𝛼 ∑ 𝑔(|𝑥𝑘 − 𝑙|).

𝑘∈𝐼𝑟

 

Taking limit on both sides as 𝑟 → ∞, we obtain that (𝑥𝑘) ∈ 𝑁𝜃
𝛼(𝑔) implies (𝑥𝑘) ∈ 𝑁𝜃

𝛽(𝑓). The 

following example shows that the inclusion 𝑁𝜃
𝛼(𝑔) ⊂ 𝑁𝜃

𝛽(𝑓) is strict at least for some 𝛼, 𝛽 ∈

(0, 1] such that 𝛼 ≤ 𝛽 and special modulus functions 𝑓 and 𝑔. 

Example 5.2.1 Let the lacunary sequence 𝜃 = (𝑘𝑟) be given and choose 𝛼 = 𝛽 = 1  and also 

consider the sequence (𝑥𝑘) such that 𝑥𝑘 to be [√ℎ𝑟] at the first [√ℎ𝑟] integers in 𝐼𝑟, and 𝑥𝑘 =

0 otherwise. Now if we take the modulus functions 𝑓(𝑥) =
𝑥

𝑥+1
 and 𝑔(𝑥) = 𝑥, then 

sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
= 1 < ∞. By using the 𝑓(0) = 0 equality, we have 

1

ℎ𝑟
𝛽

∑ 𝑓(|𝑥𝑘|)

𝑘∈𝐼𝑟

=
1

ℎ𝑟
[√ℎ𝑟]𝑓([√ℎ𝑟]) =

[√ℎ𝑟][√ℎ𝑟]

ℎ𝑟([√ℎ𝑟] + 1)
. 
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By taking limits as 𝑟 → ∞ we get that 𝑁𝜃
𝛽(𝑓)-lim 𝑥𝑘 = 0, so (𝑥𝑘) ∈ 𝑁𝜃

𝛽(𝑓). But since 

1

ℎ𝑟
𝛼 ∑ 𝑔(|𝑥𝑘|)

𝑘∈𝐼𝑟

=
1

ℎ𝑟
[√ℎ𝑟]𝑔([√ℎ𝑟]) =

[√ℎ𝑟][√ℎ𝑟]

ℎ𝑟
 

and since 
[√ℎ𝑟][√ℎ𝑟]

ℎ𝑟
→ 1 as 𝑟 → ∞, we get (𝑥𝑘) ∉ 𝑁𝜃

𝛼(𝑔). Hence (𝑥𝑘) ∈ 𝑁𝜃
𝛽(𝑓) − 𝑁𝜃

𝛼(𝑔) and 

the inclusion 𝑁𝜃
𝛼(𝑔) ⊂ 𝑁𝜃

𝛽(𝑓) is being strict. 

The outcome below of inclusions is obtained from Theorem 5.2.1. 

Corollary 5.2.1 Suppose 𝑓 and 𝑔 are modulus functions, 𝜃 = (𝑘𝑟) is a lacunary sequence and 

0 < 𝛼 ≤ 𝛽 ≤ 1. 

(𝑖) If sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
< ∞, then 𝑁𝜃

𝛼(𝑔) ⊂ 𝑁𝜃
𝛼(𝑓). 

(𝑖𝑖) If sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
< ∞, then 𝑁𝜃(𝑔) ⊂ 𝑁𝜃(𝑓). 

(𝑖𝑖𝑖) 𝑁𝜃
𝛼(𝑓) ⊂ 𝑁𝜃

𝛽(𝑓). 

(𝑖𝑣) 𝑁𝜃
𝛼 ⊂ 𝑁𝜃

𝛽
. 

Theorem 5.2.2 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, and suppose 𝑓 and 𝑔 are modulus 

functions. If 

inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0, 

then 𝑁𝜃
𝛼(𝑓) ⊂ 𝑁𝜃

𝛽(𝑔) for 0 < 𝛼 ≤ 𝛽 ≤ 1 and the inclusion may be strict. 

Proof  Assuming that 𝑞 = inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0. Then 

𝑓(𝑥)

𝑔(𝑥)
≥ 𝑞 and so that 𝑞𝑔(𝑥) ≤ 𝑓(𝑥) for every 

𝑥 ∈ [0, ∞). Now if (𝑥𝑘) is strongly 𝑁𝜃
𝛼(𝑓)-summable to 𝑙, we may write 

1

ℎ𝑟
𝛼 ∑ 𝑔(|𝑥𝑘 − 𝑙|) ≤

𝑘∈𝐼𝑟

1

ℎ𝑟
𝛼 ∑

1

𝑞
𝑓(|𝑥𝑘 − 𝑙|).

𝑘∈𝐼𝑟

 

Since 𝛼 ≤ 𝛽, then 
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1

ℎ𝑟
𝛽

∑ 𝑔(|𝑥𝑘 − 𝑙|) ≤

𝑘∈𝐼𝑟

1

ℎ𝑟
𝛼 ∑

1

𝑞
𝑓(|𝑥𝑘 − 𝑙|).

𝑘∈𝐼𝑟

 

Taking limit on both sides as 𝑟 → ∞, we obtain that (𝑥𝑘) ∈ 𝑁𝜃
𝛼(𝑓) implies (𝑥𝑘) ∈ 𝑁𝜃

𝛽(𝑔). For 

the strict inclusion, the sequence of Example 5.2.1 with modulus functions 𝑔(𝑥) =
𝑥

𝑥+1
 and 

𝑓(𝑥) = 𝑥 serve the purpose in the case 𝛼 = 𝛽 = 1. 

The outcome below of strict inclusions is a result of Theorem 5.2.2. 

Corollary 5.2.2 Suppose 𝑓 and 𝑔 are modulus functions, 𝜃 = (𝑘𝑟) is a lacunary sequence and 

0 < 𝛼 ≤ 𝛽 ≤ 1. 

(𝑖) If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0, then 𝑁𝜃

𝛼(𝑓) ⊂ 𝑁𝜃
𝛼(𝑔). 

(𝑖𝑖) If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0, then 𝑁𝜃(𝑓) ⊂ 𝑁𝜃(𝑔). 

(𝑖𝑖𝑖) 𝑁𝜃
𝛼(𝑓) ⊂ 𝑁𝜃

𝛽(𝑓). 

The following result is obtained from Theorem 5.2.1 and Theorem 5.2.2. 

Corollary 5.2.3 Suppose 𝑓 and 𝑔 are modulus functions, 𝜃 = (𝑘𝑟) is a lacunary sequence and 

0 < 𝛼 ≤ 𝛽 ≤ 1. If  

0 < inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
≤ sup

𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
< ∞, 

then 𝑁𝜃
𝛼(𝑓) = 𝑁𝜃

𝛽(𝑔). 

Corollary 5.2.4 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, and suppose 𝑓 is any modulus 

function. If sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
< ∞, then 𝑁𝜃

𝛼 ⊂ 𝑁𝜃
𝛽(𝑓) for any 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽. 

Since sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
< ∞, taking 𝑔(𝑥) = 𝑥 in Theorem 5.2.1 the proof follows directly. 

The following result is obtained by taking 𝛽 = 𝛼 in the above corollary. 

Corollary 5.2.5 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, and suppose 𝑓 is any modulus 

function. If sup
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
< ∞, then 𝑁𝜃

𝛼 ⊂ 𝑁𝜃
𝛼(𝑓) for any 𝛼 ∈ (0, 1]. 
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Corollary 5.2.6 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, and suppose 𝑓 is any modulus 

function. If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0, then 𝑁𝜃

𝛼(𝑓) ⊂ 𝑁𝜃
𝛽

 for any 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽. 

Since inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0, taking 𝑔(𝑥) = 𝑥 in Theorem 5.2.2 the proof follows directly. 

The following result is obtained by taking 𝛽 = 𝛼 in the above corollary. 

Corollary 5.2.7 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence, and suppose 𝑓 is any modulus 

function. If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0, then 𝑁𝜃

𝛼(𝑓) ⊂ 𝑁𝜃
𝛼 for any 𝛼 ∈ (0, 1]. 

From Corollary 5.2.5 and Corollary 5.2.7 we get the following result. 

Corollary 5.2.8 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence and 𝑓 is a modulus function. If 0 <

inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
≤ sup

𝑥∈(0,∞)

𝑓(𝑥)

𝑥
< ∞, then 𝑁𝜃

𝛼(𝑓) = 𝑁𝜃
𝛼 for any 𝛼 ∈ (0, 1]. 

Theorem 5.2.3 For any modulus function 𝑓 we have 𝑁𝜃 ⊂ 𝑁𝜃(𝑓). 

Proof  Assume that (𝑥𝑘) ∈ 𝑁𝜃 so that 

lim
𝑟→∞

1

ℎ𝑟
∑|𝑥𝑘 − 𝑙| = 0

𝑘∈𝐼𝑟

 

for some 𝑙. Given 𝜀 > 0 and choose 𝛿 with 0 < 𝛿 < 1 such that 𝑓(𝑡) < 𝜀 for 𝑡 ∈ (0, 𝛿]. Now 

consider  

∑ 𝑓(|𝑥𝑘 − 𝑙|) = ∑ 𝑓(|𝑥𝑘 − 𝑙|) + ∑ 𝑓(|𝑥𝑘 − 𝑙|)
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|>𝛿

𝑘∈𝐼𝑟
|𝑥𝑘−𝑙|≤𝛿

𝑘∈𝐼𝑟

 

Since 𝑓(|𝑥𝑘 − 𝑙|) < 𝜀 for |𝑥𝑘 − 𝑙| ≤ 𝛿, then 

∑ 𝑓(|𝑥𝑘 − 𝑙|) < 𝜀ℎ𝑟

𝑘∈𝐼𝑟
|𝑥𝑘−𝑙|≤𝛿

, 

and also for |𝑥𝑘 − 𝑙| > 𝛿, we have 

|𝑥𝑘 − 𝑙| <
|𝑥𝑘 − 𝑙|

𝛿
< 1 + [

|𝑥𝑘 − 𝑙|

𝛿
]. 
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Since 𝑓 is a modulus, so that 

𝑓(|𝑥𝑘 − 𝑙|) ≤ 𝑓 (1 + [
|𝑥𝑘 − 𝑙|

𝛿
]) ≤ 𝑓(1) (1 + [

|𝑥𝑘 − 𝑙|

𝛿
]) ≤ 2𝑓(1)

|𝑥𝑘 − 𝑙|

𝛿
.      

So,  

∑ 𝑓(|𝑥𝑘 − 𝑙|)
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|>𝛿

≤  
2𝑓(1)

𝛿
∑ |𝑥𝑘 − 𝑙|            
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|>𝛿

 

Thus, 

1

ℎ𝑟
∑ 𝑓(|𝑥𝑘 − 𝑙|)

𝑘∈𝐼𝑟

≤ 𝜀 +
2𝑓(1)

𝛿

1

ℎ𝑟
∑ |𝑥𝑘 − 𝑙|
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|>𝛿

 

                            ≤ 𝜀 +
2𝑓(1)

𝛿

1

ℎ𝑟
∑|𝑥𝑘 − 𝑙|.

𝑘∈𝐼𝑟

 

Since (𝑥𝑘) ∈ 𝑁𝜃, then we get (𝑥𝑘) ∈ 𝑁𝜃(𝑓). 

Corollary 5.2.9 Suppose 𝜃 = (𝑘𝑟) is a lacunary sequence and 𝑓 is a modulus function. If 

inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0, then 𝑁𝜃(𝑓) = 𝑁𝜃. 

Since 𝑁𝜃 ⊂ 𝑁𝜃(𝑓) for any modulus 𝑓 by Theorem 5.2.3, taking 𝑔(𝑥) = 𝑥 and 𝛼 = 𝛽 =

1 in Theorem 5.2.2 we get 𝑁𝜃(𝑓) ⊂ 𝑁𝜃. Therefore 𝑁𝜃(𝑓) = 𝑁𝜃 if inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0. 

Theorem 5.2.4 Assume that 𝑓 and 𝑔 are unbounded modulus functions, 𝜃 = (𝑘𝑟) is a lacunary 

sequence and 0 < 𝛼 ≤ 𝛽 ≤ 1. If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0 and lim

𝑥→∞

𝑔(𝑥)

𝑥
> 0, then every strongly 

𝑁𝜃
𝛼(𝑓)-summable sequence is 𝑆𝜃

𝛽(𝑔)-statistically convergent. 

Proof  Suppose that 𝑞 = inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0. Then 

𝑓(𝑥)

𝑔(𝑥)
≥ 𝑞 and so 𝑞𝑔(𝑥) ≤ 𝑓(𝑥) for every 𝑥 ∈

[0, ∞). Now if (𝑥𝑘) is strongly 𝑁𝜃
𝛽(𝑓)-summable to 𝑙 and 0 < 𝛼 ≤ 𝛽 ≤ 1, we may write 

1

ℎ𝑟
𝛼 ∑ 𝑓(|𝑥𝑘 − 𝑙|) ≥ 𝑞

1

ℎ𝑟
𝛼 ∑ 𝑔(|𝑥𝑘 − 𝑙|)

𝑘∈𝐼𝑟𝑘∈𝐼𝑟
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≥ 𝑞
1

ℎ𝑟
𝛽

∑ 𝑔(|𝑥𝑘 − 𝑙|)

𝑘∈𝐼𝑟

                                              

                                   = 𝑞
1

ℎ𝑟
𝛽

∑ 𝑔(|𝑥𝑘 − 𝑙|)
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|≥𝜀

+ 𝑞
1

ℎ𝑟
𝛽

∑ 𝑔(|𝑥𝑘 − 𝑙|)
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|<𝜀

 

                                   ≥ 𝑞
1

ℎ𝑟
𝛽

∑ 𝑔(|𝑥𝑘 − 𝑙|)
𝑘∈𝐼𝑟

|𝑥𝑘−𝑙|≥𝜀

 

                                   ≥ 𝑞
1

ℎ𝑟
𝛽

|{𝑘 ∈ 𝐼𝑟 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}| 𝑔(𝜀). 

Now since |{𝑘 ∈ 𝐼𝑟 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}| is a positive integer, then we have 

1

ℎ𝑟
𝛼 ∑ 𝑓(|𝑥𝑘 − 𝑙|)

𝑘∈𝐼𝑟

≥
1

ℎ𝑟
𝛽

𝑔(|{𝑘 ∈ 𝐼𝑟 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|) 
𝑔(𝜀)

𝑔(1)
𝑞 

       =
𝑔(|{𝑘 ∈ 𝐼𝑟 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀}|)

𝑔(ℎ𝑟
𝛽

)
 
𝑔(ℎ𝑟

𝛽
)

ℎ𝑟
𝛽

𝑔(𝜀)

𝑔(1)
𝑞. 

Taking the limit on both sides as 𝑟 → ∞, we obtain that (𝑥𝑘) ∈ 𝑁𝜃
𝛼(𝑓) implies (𝑥𝑘) ∈ 𝑆𝜃

𝛽(𝑔) 

since lim
𝑥→∞

𝑔(𝑥)

𝑥
> 0. Here is the proof. 

Remark 5.2.1 In general, contrary to the above theorem could not be possible. This fact can 

be seen in the illustration below. 

Example 5.2.2 Let 𝜃 be given and select the sequence (𝑥𝑘) as in Example 5.2.1 and also 

consider the modulus functions 𝑓(𝑥) = 𝑥 = 𝑔(𝑥). Then, inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0 and lim

𝑥→∞

𝑔(𝑥)

𝑥
> 0. 

Now if we take 0 < 𝛼 ≤
1

2
< 𝛽 ≤ 1, then for every 𝜀 > 0, we have  

lim
𝑟→∞

1

𝑔(ℎ𝑟
𝛽

)
𝑔(|{𝑘 ∈ 𝐼𝑟: |𝑥𝑘 − 0| ≥ 𝜀}|) = lim

𝑟→∞

[√ℎ𝑟]

ℎ𝑟
𝛽

= 0. 

So, (𝑥𝑘) ∈ 𝑆𝜃
𝛽(𝑔). On the other hand, we have 
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lim
𝑟→∞

1

ℎ𝑟
𝛼 ∑ 𝑓(|𝑥𝑘 − 0|) = lim

𝑟→∞

[√ℎ𝑟][√ℎ𝑟]

ℎ𝑟
𝛼 = ∞ .

𝑘∈𝐼𝑟

 

So, (𝑥𝑘) ∉ 𝑁𝜃
𝛼(𝑓). 

The following result is obtained by taking 𝑔(𝑥) = 𝑓(𝑥) in Theorem 5.2.4. 

Corollary 5.2.10 Assume that 𝑓 is an unbounded modulus function, 𝜃 = (𝑘𝑟) is a lacunary 

sequence and 0 < 𝛼 ≤ 𝛽 ≤ 1. If lim
𝑥→∞

𝑓(𝑥)

𝑥
> 0, every strongly 𝑁𝜃

𝛼(𝑓)-summable sequence is 

𝑆𝜃
𝛽(𝑓)-statistically convergent. 

The following result is obtained by taking 𝛽 = 𝛼 in Theorem 5.2.4. 

Corollary 5.2.11 Assume that 𝑓 and 𝑔 are unbounded modulus functions, 𝜃 = (𝑘𝑟) is a 

lacunary sequence and 0 < 𝛼 ≤ 1. If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑔(𝑥)
> 0 and lim

𝑥→∞

𝑔(𝑥)

𝑥
> 0, every strongly 𝑁𝜃

𝛼(𝑓)-

summable sequence is 𝑆𝜃
𝛼(𝑔)-statistically convergent. 

The following result is obtained by taking 𝑔(𝑥) = 𝑥 in Corollary 5.2.11, which is also 

Theorem 2.9 of [30], for the case 𝑝 = 1. 

Corollary 5.2.12 Assume that 𝑓 is an unbounded modulus function and 𝜃 = (𝑘𝑟) is a lacunary 

sequence. If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0, then every strongly 𝑁𝜃

𝛼(𝑓)-summable sequence is 𝑆𝜃
𝛼-statistically 

convergent. 

We obtain the result below by taking 𝛼 = 1 in Corollary 5.2.12. 

Corollary 5.2.13 Assume that 𝑓 is an unbounded modulus function and 𝜃 = (𝑘𝑟) is a lacunary 

sequence. If inf
𝑥∈(0,∞)

𝑓(𝑥)

𝑥
> 0, then every strongly 𝑁𝜃(𝑓)-summable sequence is 𝑆𝜃-statistically 

convergent. 

The following result is obtained by taking 𝑓(𝑥) = 𝑥 in Corollary 5.2.13, which is also 

the first part of Theorem 1 of [28]. 

Corollary 5.2.14 𝑁𝜃 ⊂ 𝑆𝜃 for any lacunary sequence 𝜃 = (𝑘𝑟). 



35 

 

Theorem 5.2.5 Suppose 𝑓 and 𝑔 are any unbounded modulus functions, 0 < 𝛼 ≤ 𝛽 ≤ 1, and 

suppose 𝜃 = (𝑘𝑟) and 𝜃′ = (𝑠𝑟) are lacunary sequences such that 𝐼𝑟 ⊂ 𝐽𝑟 for each 𝑟 ∈ ℕ. If 

lim
𝑟→∞

𝑣𝑟

ℎ𝑟
𝛽 = 1 and sup

𝑥∈(0,∞)

𝑔(𝑥)

𝑥
< ∞, then every bounded and 𝑆𝜃

𝛼(𝑓)-convergent sequence is 

strongly 𝑁
𝜃′
𝛽 (𝑔)-summable, i.e. 

ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) ⊂ 𝑁

𝜃′
𝛽 (𝑔) 

and the inclusion may be strict. 

Proof  Let 𝑓 and 𝑔 be unbounded modulus functions, 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟], 𝐽𝑟 = (𝑠𝑟−1, 𝑠𝑟], ℎ𝑟 =

𝑘𝑟 − 𝑘𝑟−1, 𝑣𝑟 = 𝑠𝑟 − 𝑠𝑟−1 and 0 < 𝛼 ≤ 𝛽 ≤ 1. Suppose that (𝑥𝑘) ∈ ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) and 𝑆𝜃

𝛼(𝑓)-

lim 𝑥𝑘 = 𝑙. In order to verify that (𝑥𝑘) ∈ 𝑁
𝜃′
𝛽 (𝑔), we shall first prove that 𝑆𝜃

𝛼(𝑓) ⊂ 𝑆𝜃
𝛼. Since 

𝑓 is a modulus and 𝑆𝜃
𝛼(𝑓)-lim 𝑥𝑘 = 𝑙, then for each 𝑝 ∈ ℕ, there exists 𝑟0 ∈ ℕ such that, if 

𝑟 > 𝑟0, we have 

𝑓(|{𝑘 ∈ 𝐼𝑟: |𝑥𝑘 − 𝑙| ≥ 𝜀}|) ≤
1

𝑝
𝑓(ℎ𝑟

𝛼) ≤
1

𝑝
𝑝𝑓 (

ℎ𝑟
𝛼

𝑝
) = 𝑓 (

ℎ𝑟
𝛼

𝑝
) 

for every 𝜀 > 0. So, 

1

ℎ𝑟
𝛼 |{𝑘 ∈ 𝐼𝑟: |𝑥𝑘 − 𝑙| ≥ 𝜀}| ≤

1

𝑝
. 

It follows that 𝑆𝜃
𝛼(𝑓) ⊂ 𝑆𝜃

𝛼 and so that ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) ⊂ ℓ∞ ∩ 𝑆𝜃

𝛼. Since lim
𝑟→∞

𝑣𝑟

ℎ𝑟
𝛽 = 1, so we have 

ℓ∞ ∩ 𝑆𝜃
𝛼 ⊂ 𝑁

𝜃′
𝛽

 by the second part of Theorem 2.14 of [31]. On the other hand, since 

sup
𝑥∈(0,∞)

𝑔(𝑥)

𝑥
< ∞, we have 𝑁

𝜃′
𝛽

⊂ 𝑁
𝜃′
𝛽 (𝑔) by Corollary 5.2.5. Thus, ℓ∞ ∩ 𝑆𝜃

𝛼(𝑓) ⊂ 𝑁
𝜃′
𝛽 (𝑔). 

The following example shows that the inclusion ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) ⊂ 𝑁𝜃

𝛽(𝑔) is strict at least for 

some 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽 and some special modulus functions 𝑓 and 𝑔. 

Example 5.2.3 As an example, let the lacunary sequence 𝜃 = (𝑘𝑟) be provided and 𝜃′ = 𝜃. 

Consider the sequence (𝑥𝑘) such that 𝑥𝑘 to be [√ℎ𝑟
3

] at the first [√ℎ𝑟] integers in 𝐼𝑟, and 𝑥𝑘 =

0 otherwise and also consider the modulus functions 𝑓(𝑥) = 𝑔(𝑥) = 𝑥. Now if we take         
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0 < 𝛼 ≤
1

2
 and 𝛽 = 1, then lim

𝑟→∞

𝑣𝑟

ℎ𝑟
𝛽 = lim

𝑟→∞

ℎ𝑟

ℎ𝑟
= 1 and sup

𝑥∈(0,∞)

𝑔(𝑥)

𝑥
= 1 < ∞. Also for every 𝑟 ∈

ℕ, we have 

1

ℎ𝑟
𝛽

∑ 𝑔(|𝑥𝑘 − 0|) =

𝑘∈𝐼𝑟

1

ℎ𝑟
𝛽

∑ 𝑔([√ℎ𝑟
3

]) =

𝑘∈𝐼𝑟

[√ℎ𝑟][√ℎ𝑟
3

]

ℎ𝑟
. 

Since 
[√ℎ𝑟][ √ℎ𝑟

3 ]

ℎ𝑟
→ 0 as 𝑟 → ∞, then (𝑥𝑘) ∈ 𝑁

𝜃′
𝛽 (𝑔). But for every 𝜀 > 0, we have 

1

ℎ𝑟
𝛼 𝑓(|{𝑘 ∈ 𝐼𝑟: |𝑥𝑘 − 0| ≥ 𝜀}|) =

1

ℎ𝑟
𝛼 𝑓([√ℎ𝑟]) =

[√ℎ𝑟]

ℎ𝑟
𝛼 . 

So, (𝑥𝑘)  ∉ 𝑆𝜃
𝛼(𝑓) since 

[√ℎ𝑟]

ℎ𝑟
𝛼 → ∞ as 𝑟 → ∞ for 0 < 𝛼 <

1

2
 and 

[√ℎ𝑟]

ℎ𝑟
𝛼 → 1 as 𝑟 → ∞ for 𝛼 =

1

2
. Therefore, the inclusion ℓ∞ ∩ 𝑆𝜃

𝛼(𝑓) ⊂ 𝑁
𝜃′
𝛽 (𝑔) is strict. 

The outcome below of inclusions is a result of Theorem 5.2.5. 

Corollary 5.2.15 Suppose 𝜃 = (𝑘𝑟) and 𝜃′ = (𝑠𝑟) are lacunary sequences, 0 < 𝛼 ≤ 𝛽 ≤ 1, 

and suppose 𝑓 is any unbounded modulus function. If lim
𝑟→∞

𝑣𝑟

ℎ𝑟
𝛽 = 1 and sup

𝑥∈(0,∞)

𝑓(𝑥)

𝑥
< ∞, then 

(𝑖) ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) ⊂ 𝑁

𝜃′
𝛽 (𝑓), 

(𝑖𝑖) ℓ∞ ∩ 𝑆𝜃
𝛼(𝑓) ⊂ 𝑁𝜃′

𝛼 (𝑓), 

(𝑖𝑖𝑖) ℓ∞ ∩ 𝑆𝜃
𝛼 ⊂ 𝑁𝜃′

𝛼 (𝑓). 
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CONCLUSION 

In this study, by using a modulus function 𝑓, we have given 𝑓-statistical convergence, 

𝑓-statistical boundedness, 𝑓-strong Cesàro summability, 𝑓-statistical convergence of order 𝛼 

for 0 < 𝛼 ≤ 1 and 𝑓-strong Cesàro summability of order 𝛼 for 0 < 𝛼 ≤ 1. We have also given 

some relations between the sets of 𝑓-statistically convergent sequences and 𝑓-statistically 

bounded sequences, 𝑓-statistically convergent sequences and 𝑓-strongly Cesàro summable 

sequences. 

Furthermore, we have established the relations between 𝑤𝑓 and 𝑤𝑔, 𝑤𝑓 and 𝑆𝑔, for 

different modulus functions 𝑓 and 𝑔 under some conditions on the considered modulus 

functions. Also for some special modulus functions, we have obtained the relations between 

the sets 𝑤𝑓 and 𝑤, 𝑆𝑓 and 𝑆. 

Finally, we have established the relations between 𝑁𝜃
𝛽(𝑓) and 𝑁𝜃

𝛼(𝑔), 𝑁𝜃
𝛼(𝑓) and 

𝑁𝜃
𝛽(𝑔), 𝑁𝜃

𝛽(𝑓) and 𝑆𝜃
𝛼(𝑔), ℓ∞ ∩ 𝑆𝜃

𝛼(𝑓) and 𝑁
𝜃′
𝛽 (𝑔), where 𝑓 and 𝑔 are different modulus 

functions under some conditions and 𝛼, 𝛽 ∈ (0, 1] such that 𝛼 ≤ 𝛽. Also, for some special 

modulus functions, we have obtained the relations between the sets 𝑁𝜃(𝑓) and 𝑁𝜃, 𝑁𝜃
𝛼(𝑓) and 

𝑁𝜃
𝛼 for 𝛼 ∈ (0, 1].  
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