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SUMMARY

Statistical Convergence of Number Sequences and Some Generalizations With Respect

to Modulus Functions

In this thesis, we examine and study f-statistical convergence, f-statistical boundedness,
f-strong Cesaro summability, f-strong lacunary summability and some other notions related
to these concepts for sequences of real or complex numbers, where f is a modulus function.
At the first, we give f-statistically convergent and f-statistically bounded sequences and then
we study the concepts of f-strong Cesaro summability of sequences of real or complex
numbers with some concepts. Then we provide the relations between these concepts. After
that, we establish the relations between the sets w/ and w9, w/ and S9, for different modulus
functions f and g under some conditions, which is the original part of this thesis. Furthermore,
for some special modulus functions, we obtain the relations between the sets w/ and w, S/
and S. Then we study the concepts of f-statistical convergence of order e suchthat 0 < o < 1
and f-strong Cesaro summability of order a such that 0 < @« < 1, and we also give the

relations between them. Finally, we give and study f-strong lacunary summability of order «,
and we establish the relations between the sets Nf (f) and N¢ (g), Ny (f) and Nf (@), N5 (f)

and Sg(g), £ N Sg(f) and Nf, (g), where f and g are different modulus functions under
some conditionsand «, 8 € (0, 1] suchthat « < 8, which is another original part of this thesis.

Furthermore, for some special modulus functions, we obtain the relations between the sets
Ny(f) and Ny, N (f) and Ng for @ € (0, 1].

Key Words: f-statistical convergence, f-statistical boundedness, f-strong summability,
f-statistical convergence of order a, f-strong summability of order a, f-lacunary statistical

convergence of order «, f-strong lacunary summability of order «.



OZET

Say1 Dizilerinin Istatistiksel Yakinsakhgi ve Modulus Fonksiyonlaria Gore Baz

Genellestirmeleri

Bu tezde f bir modiiliis fonksiyonu olmak iizere, f-istatistiksel yakinsaklik, f-
istatistiksel siirlilik, f-kuvvetli Cesaro toplanabilme, kuvvetli f-lacunary toplanabilme ve bu
kavramlarla ilgili diger bazi kavramlar reel say1 dizileri igin incelenmektedir. Ilk &nce reel say1
dizileri icin f-istatistiksel yakinsaklik, f-istatistiksel sinirlilik ve ardindan f-kuvvetli Cesaro
toplanabilirlik kavrami verilmekte ve iligkili bazi kavramlar incelenmektedir. Sonra bu
kavramlar arasindaki iligkiler ortaya konulmaktadir. Bundan sonra, bazi sartlara sahip farkl
modiiliis fonksiyonlar1 i¢in w/ ve w9, w/ ve SY kiimeleri arasindaki kapsama bagintilari elde
edilmektedir. Ayrica f iizerindeki bazi 6zel sartlar altinda w/ ve w, S/ ve S smiflari arasindaki
iligkiler elde edilmektedir. Daha sonra 0 < @ < 1 sartina sahip herhangi bir a igin a.
dereceden f-istatistiksel yakinsaklik ve «. dereceden f-kuvvetli Cesaro toplanabilirlik
tizerinde ¢alisilip, bu iki kavram arasindaki iliskiler de verilmektedir. Son olarak, a. dereceden

kuvvetli f-lacunary toplanabilme incelenip, 0 < a < 8 <1, f ve g modiiliis fonksiyonlari
icin N (f) ve NE(g), NE(f) ve S5 (9), £ N SE(f) Ve Nb (g) kiimeleri arasindaki iliskiler
ortaya konulmaktadir. Ayrica, bazi 6zel modiiliis fonksiyonlart i¢in Ng(f) ve Ny, Ng (f) ve

N§ kiimeleri arasindaki iligkiler elde edilmektedir.

Anahtar Kelimeler: f-istatistiksel yakinsaklik, f-istatistiksel sinirlilik, f-kuvvetli
toplanabilirlik, a. dereceden istatistiksel yakinsaklik, a. dereceden f-kuvvetli toplanabilirlik,
a. dereceden f-lacunary istatistiksel yakinsaklik, «. dereceden f-lacunary kuvvetli

toplanabilirlik.
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1. INTRODUCTION

The principle of statistical convergence was performed first in the survey of Fast [1] and
also severally for number sequences by Buck [2] and Schoenberg [3]. Regarding the
subsequent work of Fridy [4] and Salat [5], this thinking has arisen as one of the qualified
fields of research in summability theory. Statistical convergence, as implemented by Buck [2],
acts as an instance of convergence in density. In recent decades, statistical convergence has
been mentioned in many several fields and under different names, such as measure theory,
approximation theory, Banach spaces, hopfield neural network, locally convex spaces,
trigonometric series, number theory, summability theory, ergodic theory, turnpike theory,
Fourier analysis and optimization. Further details and applications of this principle are
available in [6-11].

Statistical convergence is a kind of convergence that depends technically on the natural
density of subsets of the natural numbers.

Let U < N. Then the number §(U) is called a natural density of U and is identified via

1
SWU) =lim=|{fusn:ueU}
n—-oon

where |{u < n : u € U}| is the number of elements of U which are less than or equal to n.

In 1953, Nakano [12] presented the thought of a modulus function for the first time. By
using a modulus function Bhardwaj and Singh [13], Connor [14], Colak [15], Gosh and
Srivastava [16], Maddox [17], Ruckle [18], Altin and Et [19] and others have constructed and
discussed some sequence spaces.

In 2014, with the benefit of an unbounded modulus function, Aizpuru et al. [20]
characterized another density’s idea, as an outcome, a new nonmatrix convergence principle
was acquired. By using the way of Aizpuru et al. [20], Bhardwaj et al. [21] has recently
identified and concentrated a new concept of f-statistical boundedness, which is actually a
generalization of the statistical convergence’s principle. It has demonstrated that the concept
of f-statistical boundedness is intermediate between the ordinary boundedness and the
statistical boundedness, and it has demonstrated that bounded sequences are definitely those

sequences which are f-statistically bounded for every unbounded modulus.



2. THE SETS OF f-STATISTICALLY CONVERGENT SEQUENCES AND f-
STATISTICALLY BOUNDED SEQUENCES

2.1. f-Statistical Convergence

Since the concepts and results given in this section are known and widely used in the

literature, their sources, that is references are not given.

We provide the definition of statistical convergence at the beginning of this section, as
it will be needed in this study.

Definition 2.1.1 Let (x;) be any sequence in R (or C). The sequence (x; ) is named statistically

convergent (or S —convergent) to the number [ if

1
lim—|{k<n:|x,—1=¢€}=0
n—-oon

for every e > 0. We write S — lim x;, = L or x;, = [(S) in this particular instance. The class of

all S-convergent sequences will be symbolized by S throughout the study.
Definition 2.1.2 A function f: [0, ) — [0, o) is named modulus function, or modulus, if

. f(x) =0ifandonlyif x = 0,

1

2. f(x+y)<f(x)+ f(y) forevery x,y € [0, ),
3. fisincreasing,
4

. f is continuous from the right at 0.

Within these characteristics, it is obvious that wherever on [0,00) a modulus f is

continuous. A modulus could be either unbounded or bounded. As an example, f(x) =
log(x + 1) is an unbounded modulus, but f(x) = xx: is a bounded modulus. Furthermore, for
every modulus f and each positive integer n we have f(nx) < nf(x) from condition 2.

Definition 2.1.3 Let f be an unbounded modulus and A c N. The number 6/ (A) of aset 4 is
named the f —density of a set A and is identified by

ftk<n:keA})
fm

57 (4) = lim
n—-o0o



in the case this limit exists.

Remark 2.1.1 The f —density becomes the natural density if we take f(x) = x. It is obvious
for the case of natural density for any A € N we have 6(A4) + §(N\ A) = 1. But this
conclusion is different for £ —density, i.e., 67 (4) + 6/ (N \ 4) = 1 does not have to be true,

in general. This fact is shown in the example below.
Example 2.1.1 Let us take f(x)=Ilog(x+1) and E ={246,..}. Then &6/ (E) =
8T(N\ E) = 1. Indeed since 2—1 <|{fk<n:ke€E} Sg for each ne€N and f is a

modulus, then we may write

nw%f(—q) r{ﬂ%ﬂ{kﬁn:kem hm%f()

and hence

) n 1 1 n
Ammlog(i) hm mf(l{k<n kEE}D < llmm (—+1)

. 1
< — <n: <
1_7{1_r)gof(n)f(|{k_n ke€eE})<1.

n+1 n+1

Thus, 67 (E) = 1. Furthermore, using the fact — —1<|{k <n:k € N\ E}| < — for
everyn € N, we have /(N \ E) = 1.

Remark 2.1.2 From the previous remark, the situation §/(4) + 6/ (N \ A) = 1 is not true for
every unbounded modulus, in general. But it happens for any unbounded modulus function
when 67 (4) = 0. Indeed, suppose A c N and 67 (4) = 0. Then for any n € N, we have

fM)<f({ksn:keA})+f(tk<n:keN\A})
and so,

1<f(|{kSn=kEA}I)Jrf(I{kSn=kEN\A}I)<f(|{kSn=kEA}|)
B f) f(n) a f()

By taking limits as n — oo, we get that 5/ (N \ 4) = 1.

Remark 2.1.3 f —density is similar to the natural density for any finite A ¢ N, so 6/ (4) = 0
and 67 (A) + 67 (N \ 4) = 1.



Remark 2.1.4 For any unbounded modulus f and A c N, if §/(4) = 0, then §(4) = 0.
Indeed, if 67 (4) = 0 then lim %f(l{k <n:k € A}|) = 0.Now forany p € N there exists
n—-oo

ny € N such that if n > n,, then we have

Ffk<n:ke) < %f(n) < %pf (%n) - f(%n)

which implies,
{k<n:keAl S%n.

Thus 6(A4) = 0. But the opposite does not have to be true in general (see [22]). In any case,
according to Remark 2.1.3, §(4) = 0 implies 57 (A4) = 0 for any finite A c N.

Definition 2.1.4 Let f be an unbounded modulus. A sequence (x;) in R (or C) is called
f —statistically convergent (or S/-convergent) to [ if the set {k € N: |x, — | > €} has

f —density zero, for every € > 0, i.e.,

1
Ai_{{jlomfﬂ{k <n:lx—1l=e})=0,

and we write this as S/ — limx;, = [ or x;, — 1(S7). In this study, S/ denotes the class of all

S/-convergent sequences. We also symbolize the set of all £ —statistically null sequences by

S{. Certainly for any unbounded modulus f we have S({ c s’

According to Remark 2.1.4 and Definition 2.1.4, we have S c S for every unbounded

modulus f. But the reverse, in particular, does not need to be true (for detail see [22]).

Theorem 2.1.1 Every convergent sequence is f-statistically convergent, that is, c ¢ S/ for

any unbounded modulus f.
Proof Suppose (x;) is convergent and Ill_I)Iolo x, = L. Given any € > 0, then there is n, € N
such that

lx, — 1] < eforall k = n,.

So, the set {k € N: |x;,, — | > £} is finite and thus 6/ ({k € N: |x,, — I| = £}) = 0, this
fulfills the proof.



Remark 2.1.5 The contrary to Theorem 2.1.1, in general, does not have to be correct as of
the example below.
Example 2.1.2 Define the sequence (x;) as
k, k=n?
X = n=1273,..

0, k#n?

and take f(x) = xP,0 < p < 1. Apparently (x;) & c, but for every € > 0, we have
fltk < n:lx -0l 2 e} _

lim lim f(\/ﬁ) =

n ) = Fm

Therefore, (x;) is S/-convergent.

During this study, we remember [21] that let (x;) be any number sequence and A ¢ N
with 67 (A) = 0, if for each k € N \ A4 the member x,, of (x,,) satisfies property P, then we say
that (x;) satisfies P for “almost all k with respect to f,” where f is any unbounded modulus

and this is often referred to as “a.a. k w.r.t. f.”
The definition of f —statistical convergence can be rewritten using this idea as follows.

Definition 2.1.5 The sequence (x;) in R (or C) is called S-convergent to [, if for every & >
0,

|x, — 1] <e aa kwrt f.
Theorem 2.1.2 If x = (x;,) € S and S/ — lim x;, = [, then there is a sequence y = (y,) and
z=1(zy) € S{ such that Ilim Yx = land x = y + z. Furthermore, if the sequence x is bounded

then the sequence z is also bounded and ||z]| < llx]le + 1]

Proof As x € S/ and S/ —limx, = I, there is some A c N with 67(4) = 0 such that

klelNrIr\lA x; = L. We define y = (y,) and z = (z;,) as follows:

Xk, lkaN\A;

Y =
[ ifk € 4,



0, ifk e N\ 4;
Zy = {
X — l, if k € A.
Obviously from our construction, we have x = y + z. Since {k € N: |z, — 0| > €} c A for
every € > 0, then 5" ({k € N: |z, — 0] > €}) = 0 forevery e > 0. Hence z = (z;,) € S(’; and
1Z]le < llxlle + |L], if x is bounded. For k € N, we have

e = U, ifk €N\ 4

llyie =Ll ={
0, ifk € 4,

and so
{k eN:|ly, — Ul > &} < {k € N:|[x, — ]| > }N(N\ A).
As klEiI{Ir\lA x, = I, thenthe set {k € N: ||x;,, — I|| > e}N(N\ A) is finite for each € > 0 and thus
A e =L
Using the idea of Theorem 2.1.2, we obtain the result below.

Corollary 2.1.1 If (x;) € s and S/ —lim x;, = [, then the sequence (x,) has a subsequence

¥y = (yx) such that Ilim Vi = L.

Remark 2.1.6 We are sure that if a sequence is convergent, then each of its subsequences is
convergent, but this case does not have to be true for f —statistical convergence, this says that
an f —statistically convergent sequence may have a subsequence which is not f —statistically

convergent. For instance, if we take f(x)=x, then for the sequence (x;) =

(1%;4%%%%9 ) we have S/ — lim x;, = 0, although its subsequence (1,4,9, ...) is

not S/ -convergent.

Theorem 2.1.3 Suppose f is an unbounded modulus and x = (x;) € s. Then (x;) € S/ if and

only if there exists y = (y;) € c such that x;, = y, a.a. k w.r.t. f.

Proof Assuming f is an unbounded modulus and (x;,) € S”. The technique follows the lines

held out in Theorem 2.1.2, we get such a convergent sequence (y;) such that

Sf{keN:x, #y,) <87(4) =0.



Therefore, x;, =y, a.a. k w.rt. f.
Conversely, we have
fkeN:i|x, -1l >e}c{keNix, #y}U{k € Ni|y, — | > €}
Since Ill_r)go yi = I, the set {k € N: |y, — I| > &} is finite. Therefore, §/ ({k € N: |x;, — 1| >

€}) = 0 for any & > 0. Hence (x;) is S/-convergent.
2.2. f-Statistical Boundedness

Definition 2.2.1 Suppose f is an unbounded modulus and (x;) is any sequence in R (or C).
Then (x,) is said to be f —statistically bounded (or S -bounded) if there is M > 0 such that
5/ ({k € N:|x,| > M}) = 0, that is, |x;| < M a.a. k w.r.t. f. We write S/(b) to symbolize

the class of all S/-bounded sequences.

Theorem 2.2.1 Every bounded sequence is f-statistically bounded, that is, €., = S7(b) for

every unbounded modulus f, even so, the converse does not have to be true.

Proof Suppose f is an unbounded modulus and (x;) € €. Then there is a number M > 0
such that |x,| < M, for all k € N, that is, 67 ({k € N: |x,| > M}) = 67 (@) = 0. So (x) is
f —statistically bounded. For the opposite part, the sequence of Example 2.2.1 serves the

purpose if we take f(x) = x.

We will write S(b) instead of S7(b) in case f(x) = x, where S(b) denotes the class of

all statistically bounded sequences.

Theorem 2.2.2 Every f-statistically bounded sequence is statistically bounded, that is,
S/ (b) c S(b) for every unbounded modulus f.

The proof is due to the assertion that §”(4) = 0 implies §(4) = 0 for any A c N and
any unbounded modulus f. Using this fact if (x;) is f —statistically bounded, then we have
57 ({k € N: |x,| > M}) = 0 for some enough large number M > 0. Now 6/ ({k € N: |x;,| >
M})=0 implies 6 ({k € N: |x;| > M}) = 0 and this means that (x;,) is statistically bounded.



Remark 2.2.1 Note that the contrary to the above theorem is not true, in general. The following

example verifies this.

Example 2.2.1 Let f(x) =log(x+ 1) and (x) = (1,0,0,4,0,0,0,0,9,...). Then for any
number M > 0, we have {k € N: [x;| > M} = {1,4,9, ...} \ a finite subset of N.

Since 67 ({1,4,9,...}) = 1/2 # 0 and 6 ({1,4,9, ...}) = 0, then (x;,) & S7(b) and (x;) € S(b).
As a result, S (b) < S(b).

Theorem 2.2.3 Suppose f is an unbounded modulus and (x;) € s. Then (x,) € S/ (b) if and
only if there exists a subset A c N such that §/(4) = 0 and (Xk)kenva € oo

Proof Assume that (x;) is S/-bounded. So we can take a number M > 0 such that
87 ({k € N: |x;| > M}) = 0. Now take A = {k € N: |x;,| > M}. Then 67 (4) = 0 and |x;| <
M for k € N\ A; thatis, (xx)xenya € foo-

Conversely, since (x;)xena € £, then for some enough large number M > 0 we have |x; | <
M forall k € N \ A. Thismeansthat {k € N: |x,| > M} c Aandso 6/ ({k € N: |x,| > M}) =
0. Therefore, (x;) is S”-bounded.

Remark 2.2.2 It is obvious that if a sequence is bounded, then all of its subsequences are
bounded. Even so, for f —statistically boundedness this situation is not true in general; that is,
an f —statistically bounded sequence may have a subsequence which is not f —statistically

bounded. The example below illustrates this.
Example 2.2.2 Consider (x;) = (1,0,0,4,0,0,0,0,9,...) and f(x) = xP,0 <p < 1. Now we
have &7 ({k € N: |x,| > %}) = 67({1,49,..}). Since |k<n:ke {149 ..} <vn for

every n € N, then

lim —f ({|k <n:lxl>3|}) < lim —f(vn) = 0.

n-oo f(n) n-co f(n)
So, & ({k €N : x| > %}) =0. Thus (x) € S7(b). However, (1,49,..) is a
subsequence of (x;) and (1,4,9, ...) & S7(b).

Theorem 2.2.4 S¥ < S/ (b) for any unbounded modulus £, although the converse is not true

in general.



Proof Suppose (x;) € S/ and S”-lim x;,, = L. Then for every € > 0, we have that

SfT{keN:|x, =1 >e})=0. As {keN:|x;|>|l|+e}c{keN:|x,—1]>¢€} so
lxe] < |1l + € aa kw.rt f.Thus, (x;) € S/ (b).

For the converse part, let us take the identity map f(x) = x and (x;) = (1,2,1,2,...), then
(x) € ST (b), but (x;) ¢ S”.

Theorem 2.2.5 A sequence (xi) is f —statistically bounded if and only if there exists a

bounded sequence (y,) such that x;, = y; a.a. k w.r.t. f.

Proof Suppose (xi) is f —statistically bounded. Then for some enough large number M > 0
we have 8/ ({k € N:|x;| > M}) = 0. Now take A = {k € N:|x,| > M} and define (y,) as
follows: if k ¢ A we set y, = x;, and otherwise, we set y, = 0. Then (y;) € £, and we can
say that x;,, = y, a.a. k w.r.t. f. Conversely, since (y;) € £ S0 there is a number M > 0 such
that |y, | < M for all k € N. Let H = {k € N: x;, # y,}. Since x; =y, a.a. k w.r.t. f, then
8/ (H) = 0. This gives that |x,| < M a.a. k w.r.t. f, because {k € N: |x;| > M} c H.

Lemma 2.2.1 [20] For every infinite H c N there exists an unbounded modulus function
f such that 67 (H) = 1.

Theorem 2.2.6 If (x;,) € S/(b) for every unbounded modulus £, then (x;) € 4.

Proof We assume the contrary; that is, we assume that (xj) & £.. Then the set
{k € N: |x;| > M} is infinite for every number M > 0. So by Lemma 2.2.1, there is an
unbounded modulus £ such that 57 ({k € N: |x,| > M}) = 1 which is completely contrary to

the assumption that (x;) € S/ (b) for every unbounded modulus.



3. THE SETS OF f-STRONGLY CESARO SUMMABLE SEQUENCES

3.1. f-Strong Cesaro Summability

Definition 3.1.1 [23] Let (x;) be any sequence in R (or C) and f be any modulus. Then the

sequence (x;,) is called f —strongly Cesaro summable (or w/-summable) to [, if

n

1
lim— ) f(lx,—1])=0.
n—-ocon
k=1

In this situation, we write x, — [(w/) and the class of all f —strongly Cesaro summable

sequences will be symbolized by w/.

Here, the spaces w/, w”/ and w/, are defined as follows:

1 n
wy = {(x,a lim =" f(Ixl) = o},
k=1

n

1
wl = {(xk) : lim HZ f(lxx —1]) = 0 for some number [,
n-oo

k=1

1 n
wl, = {(xk) ssup= > f(lul) < oo].
" e

Remark 3.1.1 In case f(x) = x, the f —strong Cesaro summability reduces to the strong
Cesaro summability and the sequence spaces w{ , w/ and Wo]:z becomes w,, w and w,, of

strongly Cesaro summable sequences, respectively.
Theorem 3.1.1 [22] Suppose f is any modulus. Then
() W({ c WOC,

i) wfcwl.

10



Proof The first inclusion is perfectly clear, we here only prove the second inclusion. Assume

that (x,) € w/. Then by the properties of a modulus function £, we have that

1% 1% 1%
;kmekDs;kaaxk—sz(uD;kZ 1

since (x;) € w/, we get (x;) € wZ, this fulfills the proof.
Theorem 3.1.2 [22] Suppose f is any modulus. Then

i wecw/,

(ii)) wyC W({,

(i) we C Wl .

Proof

(i)  Toprovethatw c w/. Let x = (x;) € w so that

n
1
lim —lek —1l]=0
n—-oon
k=1
for some [. Given € > 0 and choose § with 0 < § < 1 such that f(t) < e fort € (0,6].

Let y, = |xx — L| and consider

Zn:f(yk) = Zn: f) + Zn: f V).
k=1 k=1 k=1

ykS6 yk>é‘

Since f(yx) < € for y, < 6, then

> foo<en,
k=1

Yi<6
and also for y, > &, we have

Yk Yk
where [t] denotes the integer part of real number t. Since f is a modulus, then

11



foo < f(1+[]) = ro (1+ 5] s 273

S0, we get
n n
2f(1)
Z f) < 5 2 Vi
k=1 k=1
Yi>6 Vi>6
Thus,

1 1\
1N - = e+ LB Ny
k=1

ka—l|>6

2f(D 1%
< €+TEZ|xk — 1.

Since x € w, then we get x € w/.
(ii)  The proof of this part is similar to the first part when [ = 0 and therefore is omitted.

(iii)  Let (x) € wy SO that

n
1
sup — x| < oo,
npn2| Kl
k=1

Given any € > 0 and choose 6 € (0,1) such that f(t) < e fort € (0,5]. Now let us consider

imxu): Z Fllxel) + Z F(lxeD.
k=1 k=1 k=1

[xk|<6 |xg|>6

Since f(|xx]) < € for |x;| < &, then we have

> fllnd <en

[xk|<d

and also for |x;| > & we have

12



| <M [' "']

Since f is a modulus, for |x;| > & we have

fxel) < f<1 + [%D < (1 + [lj;—klb (1) < zf(l)ﬂ

So, we get

D b <TG D s%kzlm

[xg|>6 |xk|>5

and therefore,

1% 1
IS b <o+ L2 Z| .
k=1

Since x € w,, We have x € wcf, and this fulfills the proof.

1O _ing {10,

Lemma 3.1.1 [24] The limit 11m = [ exists for any modulus f and lim "

t—oo
>0}
Theorem 3.1.3 [22] Suppose f is any modulus. If hm " ) > 0, thenw’ < w.

Proof On the basis of Lemma 3.1.1, we have that § = 11m f(:) —|nf{f(t) t>0 } exists and

from this we have f(t) = Bt forall t > 0. Since f > 0, we also have t < Ef(t) forallt > 0

and so

n n
S-S50y flx 1D
n Xk =B8n f(lxg

k=1 k=1

from where it follows that x € w whenever x € w/.

Through combining Theorem 3.1.3 and Theorem 3.1.2 we obtain the result below.

Corollary 3.1.1 [22] Let f be any modulus. If hm ) > 0, thenw/ =

13



3.2. Some Relations Between the Sets of f-Strongly Cesaro Summable

Sequences

In this study, we establish the relations between w/ and w9, w/ and S9, for different
modulus functions f and g under some conditions on the considered modulus functions.
However the relations between the sets w/ and w, S/ and S are known already for a modulus
f (see [22] and [20]).

Theorem 3.2.1 Suppose f and g are modulus functions. If

f(t)
sup —= <
t€(0,00) 9 (t)

)

then we have w9 < w/ and the inclusion may be strict.

Proof Supposethata = sup IO ~ . Then we have L2 <

n h < for
te(000) 9O 0= a and sothat f(t) < ag(t) fo

every t € [0, ). Now it is clear that « > 0 and if x = (x;) is g —strongly Cesaro summable

to [, we may write

BN BN
=D flrc— ) <> aglxe— 1.
k=1 k

=1
Taking limit on both sides as n — oo, we obtain that x € w9 implies x € w/.

The example below shows that the inclusion w9 c w/ is strict at least for some special

modulus functions f and g.
Example 3.2.1 Define the sequence x = (x;) as

k, k =m3
X = mEN,
0, k =m3

and the modulus f(t) = HLl and g(t) =t. Now sup I® _ 1 < o and so that w9 c w.

te(0,00) 9O

Using the f(0) = 0 equality, we have

14



k m3 k¢m3
1 i k1 Z”: L Vm
n 1+4k n ~n
k=1 k=1
k=m3 k=m3

3
Since T" tends to 0 as n — oo, we get x € w/. But since

Zguxkn— Zg(m— Z ket 2 9(0)

k= 3 k¢m3

=113 +23 433+ +i% maxi®<n
n ieEN

1[i(i + DT
e
2 1[(¥n] - 1)([3%])]2
T n| 2

and right-hand side tends to co as n — o we get x € w9, where [r] denotes the integral part

of the real number r. Hence x € Wr — Wy and the inclusion w9 c w/ is strict.

Theorem 3.2.2 Suppose f and g are modulus functions. If

f()>0

tE(O oo) g(t)
then w/ c w9.

f f@

Proof Suppose that § = s

> 0. Then we have > B and so that Bg(t) < f(t) for

every t € [0, ). Now if x = (x;) is f —strongly Cesaro summable to [ we may write

1 n
= gl — 1) < ——Z Flle = 1D.
k=1

15



Taking limit on both sides as n — oo, we obtain that x € w/ implies x € w9 and this fulfills

the proof.
Taking g(t) = t in Theorem 3.2.2 we get Corollary 3.1.1 by Lemma 3.1.1.
We get the following result from Theorem 3.2.1 and Theorem 3.2.2.

Corollary 3.2.1 Suppose f and g are modulus functions. If

¢ fO f@®

< S < ®
te(o oo) g(t) tE(OIZO) g(t)

then w/ = w9,

f@)

Theorem 3.2.3 Assume that f and g are unbounded modulus functions. If 1nf )90 > 0 and
tli 90 o, 0, then every f —strongly Cesaro summable sequence is g —statistically
convergent.

f f@®

y 90 > 0. Then we have f() > [ and so that Bg(t) < f(t) for

Proof Suppose that § = 1(n

every t € [0, ). Now if x = (x) is f —strongly Cesaro summable to [, we may write

1% 1% 1 %
=D flme=D= > g(lxe—1) =~ kz gl = 11
k=1 k=1 =1

|xp—1]ze

ﬁ I{k<n lxx — 1 = €}| g(e)

1
> gtk < n b - 12 ) £
_9(lksn:lx 1 =e) g(n)g(E)ﬁ
9t n g

Taking the limit on both sides as n — oo, we obtain that x € w/ implies x € $9, since
lim 9()

t—oo

> 0and B > 0. Here is the proof.

The following result is obtained by taking g(t) = f(t) from Theorem 3.2.3.

16



Corollary 3.2.2 Assume that f is an unbounded modulus. If tlim%t)> 0, then every
f —strongly Cesaro summable sequence is f —statistically convergent.

Remark 3.2.1 Corollary 3.2.2 was given with the extra condition “f (xy) = cf (x)f(y) for all
x>0, y >0 and some positive number ¢” in [22]. It seems that this extra condition is

unnecessary, so it should be removed from Corollary 4.3 in [22].

The following result is obtained by taking g(t) = t from Theorem 3.2.3 (see also in
[22]).

Corollary 3.2.3 Assume that f is an unbounded modulus function. If tei(ro1f )@ > 0, then
every f —strongly Cesaro summable sequence is statistically convergent.

Taking f(t) =t in Corollary 3.2.3, we get the statement below, which is the first part
of Theorem 2.1 of Connor [25], for the case g = 1.

Corollary 3.2.4 A strongly Cesaro summable sequence is statistically convergent.
Theorem 3.2.4 For any unbounded modulus functions f and g we have

2oNSH cwd
and this inclusion may be strict.

Proof Suppose that f and g are unbounded modulus functions. Since S/ c S by part 1 of
Corollary 2.2 of [20], and since ¢, NS © w by the second part of Theorem 2.1 of [25], then
we have ¢, NS c ¢, NS cw,thatis £, NS’ < w. On the other hand since w c w9 for
any modulus g by the first part of Theorem 3.1.2, it follows that £, N S/ c w9.
The following example shows that the inclusion £, N S/ c w9 is strict.
Example 3.2.2 As an example, let us define the sequence x = (x) as

1, k =n?

X = n €N,

0, k # n?

and consider the modulus function g(x) = f(x) = log(x + 1). Using the g(0) = 0 equality,

we have

17



1% 1% 1Y 1Y
;;g(|xk—0|>=;;g<xk>=5;g<1)+5kzlg<0)

k=n? k#n?

n
1 Vn
:Ez log2£710g2—>0 asn — oo,

k=1
k=n2
we get x € w9, but since
lim mf(l{k n: x| = e}
1 r log(vn) 1
4 rggomf(\/—_ 1= l—>oolog(n+ 1) =27 0'

we have x ¢ S7. Therefore, the inclusion £, N S© < w9 is strict.
We get the statement below of strict inclusions from Theorem 3.2.4.
Corollary 3.2.7 For any unbounded modulus function f we have
(i) NS cw,
(ii) 2, N ST cw,
(iii) £, NS cw/.

Taking f(t) = g(t) =t in Theorem 3.2.4, we get the statement below, which is
Theorem 3.1 of [25], for the case g = 1.

Corollary 3.2.8 A bounded and statistically convergent sequence is strongly Cesaro

summable.

18



4. THE SETS OF f-STATISTICALLY CONVERGENT SEQUENCES OF
ORDER a AND f-STRONGLY CESARO SUMMABLE SEQUENCES OF ORDER a

4.1. f-Statistical Convergence of Order a

Gadjiev and Orhan [26] provided the order of statistical convergence for a sequence of
operators and then Colak [27] examined statistical convergence of order a for a sequence of

numbers.

Definition 4.1.1 [22] Suppose A c N, f is an unbounded modulus and 0 < @ < 1. Then we

define 65 (A) (or the 60’;-density of A) by

5%(4) = lim fl{k<n:ke A},

1
o f(n%)
in the case this limit exists.

It can be easily observed that if A is a finite subset of N, then 6£(A) =0 but

60{(1\1 —A)+1- 6£(A) for 0 < @ < 1 and any modulus f, in general. For example, take

f(x)=xp,0<ps1,0<a<1andA={2n:n€N},then6§(N—A)=00= 6£(A).

Remark 4.1.1 For @ = 1, the 6£-density becomes the f-density and for f(x) = x, the 65-
density becomes a-density. For the special case « = 1 and f(x) = x, the 6({ -density becomes
natural density.

Remark 4.1.2 Let A c N, f beamodulusand 0 < & < 1. If 6 (4) = 0, then 8,(4) = 0 and

hence 6(4) = 0. Indeed, assume that 60’;(/1) = 0, then for each p € N, there is n, € N such

that for n > n,, we have

ffk<n:kea < %f(n“) < %pf (%) - f(%)

and since f is a modulus, then it is obviously increasing, and also since 0 < a < 1, then

1 1 1
“lk<n:keAl<—|tk<n:ked} <=
n n p

19



Thus 6,(A) = 0and so 6(4) = 0.

Remark 4.1.3 The converse of Remark 4.1.2 does not have to be true in general. It could be
confirmed by the example below.

Example 4.1.1 Let f(x) =log(x +1) and A = {1,4,9,...}. Then 6(4A) =0 and §,(4) =0
for 1/2 < a < 1but §1(4) = 67 (4) = 1/2. Therefore, 51 (4) # 0.

Lemma4.1.1[22] Let A € N and f be any unbounded modulus. Then dg(A) < 6£(A) if0 <

a<p<1

Proof Suppose that 0 < @ < f < 1 and £ is an unbounded modulus. Then n* < n# and this

implies that — < ——for every n € N, so that

(ﬁ) f( @)

llm f({k<n: kEA}|)<11m ! )f(l{k<n k € A}]).

f(nﬁ)

So that 5} (4) < 51 (4).

o f(n®

Note From above Lemma if 6£(A) = 0, then Slf(A) =0 forany a, 8 € (0, 1] such that a <
B.
Definition 4.1.2 [22] Suppose f is an unbounded modulus and 0 < a < 1. A sequence (xy)

in R (or C) is called f-statistically convergent of order « to [ (or S(f-convergent to 1) if the

following condition is satisfied for every € > 0:

f{k <m:lx, =1l = }) = 0.

l 1
1m

o f(n%)
In this situation, we write S({: —limx, =1 or x;, - (SZ;) We symbolize the class of all S(f-

convergent sequences by 5({ , and the class of all f-statistically null sequences of order a will

be denoted by S/ . That is

{(xk) —f({k < n:|x;, — l] = €}|) = 0 for every e > 0}

1
S £ (%)

Sio = {(xk) 11m f({k < n:|x,| = €}|) = 0 for every € > 0}.

1
° f(n%)
20



Note that if @ = 1, then the class 50{ will reduce to the class S/ and if we take f(x) = x,
then the class S,f will reduce to the class S,, and also in the particular case « = 1 and f(x) =

x, the class So’; will reduce to the class S.

Lemma4.1.2 [22] Let 0 < @ < 1 be given and f be an unbounded modulus. Then

() Sf ch and the inclusion is strict.

(i) c c So’; and the inclusion is strict.
Proof The first inclusion is clear, so it is omitted.

(ii) Letx = (x;) — L. Then for every € > 0 there exists N € N such that |x; — | < € for

all n > N, so that we have

fUfk < nilx — U = €}]) = lim

f(N) =0

1
A F ) f( )

and hence x; — l(Sof). For strict inclusion, let us define the sequence (x;,) as

1, k=n’
Xk = n=123,..
0, k+n’
and take f(x) = xP, 0 < p < 1. Then the sequence (x;) € SO’: fora € (% 1]. But this

sequence is not convergent.
Remark 4.1.4 f-statistical convergence of order « is not well defined for « > 1. To see this

situation, we may choose the sequence x = (x) as

aq, k =2n
Xp = n=123,..
a,, k # 2n

where a,,a, € Rand a,; # a,, and take f(x) = x. Now if we take any @ > 1, then we have

n
fUk < nilxy —ag|l =2 €}]) < hmm=0

f( “)

21



and

n
llm f({k <n:|x, —ay| = €}]) < hm—=0.

f(“) o 2n®

It means that x;, — a,(S)) and x,, — a,(S)) if @ > 1. But this is not possible.

Theorem 4.1.1 [22] Suppose «, 8 € (0, 1] such that « < g and f is an unbounded modulus.

Then Sof (- Sg and this inclusion is strict.

Proof Suppose a < B so that n* < n# and hence —— < —— and let the sequence x =

f( ﬁ) f( @)

(x,) be S/ -convergent to the number L, i.e. x, — [(SZ). Then

ok sn:fx =1l 2 €}]) <

< n:lxg — 1] = €})).

f(n ﬁ) f( “)

Taking the limit as n — oo, we have x € SO’: implies x € S[ff. In order to prove the inclusion is

strict, we may consider the sequence x = (x;) as
1, k =n3
X = n= 1,2,3,
0, k #=n3
and take f(x) = xP,0 <p < 1. Then S[’; —limx, = Ofor§ < B < 1andsothat x =

(xx) €S butx = (x) € S/ foro < a <

W=

The outcome below is a result of Theorem 4.1.1.

Corollary 4.1.1 [22]

) Sg: c S/ for every a € (0,1] and modulus f,
(ii) Sq < Spforeverya,p € (0,1] suchthat a <,
(iii) S, < S forevery a € (0,1].

From Remark 4.1.2 and Definition 4.1.2, we have the following.
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Corollary 4.1.2 [22]

) S(f c S, forevery a € (0,1] and modulus f,

(ii) S(f c S forevery @ € (0, 1] and modulus f.
4.2. f-Strong Cesaro Summability of Order a

Definition 4.2.1 [22] Let « € (0,1] and f be any modulus. A sequence (x;) in R (or C) is
called f-strongly Cesaro summable of order « if

n

o1
lim > flm = 1) =0
k=1

for some real number L. In this case, we write x;, — l(w(f). We write w(f to symbolize the class

of all f-strongly Cesaro summable sequences of order «, and the class of all f-strongly Cesaro

summable null sequences of order « is represented by W(£O . That is

n
1
wl = {(xk) : %L‘{Ln_az f(xx —1]) = 0 for some number [,
k=1

1 n
Wo{.o = {(Xk) : rllggon_“z flxel) = 0}-
k=1

If we take @ = 1, then the class w(f reduces to the class w/ of all f-strongly Cesaro

summable sequences. In the case f(x) = x, the class ng reduces to the class w,, of all strongly

Cesaro summable sequences of order a, and also in the special case @ = 1 and f(x) = x, then
then the class w(f reduces to the class w of all strongly Cesaro summable sequences. It is clear

that w/ , < w/ for every 0 < a < 1 and modulus f.

Theorem 4.2.1 [22] Suppose f is any modulus and 0 < @ < f < 1. Then w(f c w[{ and the

inclusion may remain strict for some a < .
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Ql“

Proof Suppose f isa modulus and x = (x;) € wof. Since a < B, then we may write niﬁ

which implies that

D e~ =0 < —Z Fll = 1.
k=1

It means that w c w . To prove that w c wéc is a strict inclusion, consider the sequence

x = (x;) as follows:

and take f(x) = x. Since

1 n
=l =0 =
k=1

TTM:
ml
b4
/‘\
\a
+
b4
\'ﬁ
~
c

k kin2
n
1 vV
- E 1< 50
nh n
k=1
k=n?

Wﬁ)le wa . But since

— 1 n
—kZ F(lxe — O]
f f

-1 1 . . . .
and % —wasn — oo fora <-, then x & w(f. Therefore, the inclusion w; < wj is strict.

asn—>oofor%<[3,thenxk -0

Taking f = 1 in Theorem 4.2.1, we get the statement below.

Corollary 4.2.1 [22] WC{ c w/ for every modulus f and every a such that 0 < a < 1.
Taking f(x) = x in Corollary 4.2.1, we get the statement below.

Corollary 4.2.2 [27]w, c wforevery0 < a < 1.
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The following theorem was given in [22] with the extra condition “f (xy) = cf (x) f ()
forall x > 0, y > 0 and some positive number ¢ but we will prove it without using this extra

condition as follows.

Theorem 4.2.2 Assume that f is an unbounded modulusand 0 < a < 1. If lim — f®

t—oo

> 0, then
W(f (- 55.

( ()

9 < 0. Then by Lemma 3.1.1, we have § = 1nf )fT

and so that Bt < f(¢) for every t € [0, ). Now if x = (x;,) € w, then we may write

Proof Suppose that § = hm >0

n

1\ 1 1
=D Flue =2 = =l 2fz > lxe—1l
k=1 k=1

k=1
|xp—1]ze

1
Z,Bn—al{kSn:ka—lIZe}Ie

1
2 fozftk<n: =12 D) 55
_fUksniln—lzah fa9) e
f () e F"

Taking the limit on both sides as n — oo, we obtain that x € w implies x € S , since
lim f(®)

t—oo

> 0. Here is the proof.
Taking @ = 1 in Theorem 4.2.2, we get the statement below.
Corollary 4.2.3 [22] Assume that f is an unbounded modulus. If hm " ) > 0,thenw/ c §7.

Taking f(x) = x in Theorem 4.2.2, we get the statement below.

Corollary 4.2.4 [27] w, c S, for every a suchthat 0 < a < 1.
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5. ON STRONG LACUNARY SUMMABILITY OF ORDER a WITH RESPECT
TO MODULUS FUNCTIONS

In this section, we establish the relations between N(f (f)and Ng (g), Ng (f) and N{f (9),

N(f(f) and S5(g9), - N S§(f) and N(f, (g), where f and g are different modulus functions

under some conditions on the considered modulus functions and «, 8 € (0, 1] such that a <
B. Furthermore, for some special modulus functions, we obtain the relations between the sets
Ny (f) and Ng, Ng' (f) and Ng for a € (0, 1]. However the relations between the sets Ny and
Sg, Sg and S are known already (see [28]).

5.1. f-Lacunary Statistical Convergence of Order a

We imply an increasing sequence 8 = (k,.) of nonnegative integer numbers with k, =

0 by a lacunary sequence such that h, = k, — kr_1 — o0 as r = oo. The intervals put by 6

shall be represented by I,. = (k,_4, k,-] and the ratio can be shortened by g, (see [28]).

T 1

Fridy and Orhan [28] have defined lacunary statistical convergence as the following

expression.
Definition 5.1.1 [28] Suppose 8 = (k,.) is a lacunary sequence. A sequence (xi) in R (or C)
is called lacunary statistically convergent to [, or simply Sg-convergent to [, if

llm—I{kEIr lx, — 1] =€} =0

T—00

for each € > 0. For this situation, we write Sy — lim x;, = [. Throughout the paper, the class

of Sg-convergent sequences would be symbolized by Sg.

Definition 5.1.2 [29] Suppose 6 = (k,) is a lacunary sequence, 0 < a <1 and f is an
unbounded modulus. Then the sequence (x;) in R (or C) is called f-lacunary statistically

convergent of order « to [, or simply Sg (f)-convergent to [, if

f(ha)f(l{kEI | k_l|2€}|)=0
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for every € > 0. We write S5 (f) —limx; = Lif (x;) is Sg (f)-convergent to I. Throughout

this study, Sg (f) represents the class of Sg (f)-convergent sequences. That is,

S§(F) = {Ga: lim —

im e f(Itk € I =[x, — U] 2 €}]) = 0 for every e > 0 }

We write Sg instead of S5 (f) in case f(x) = x. For a = 1, we write Sg(f) instead of
Sg(f) and also in the particular case @ = 1 and f(x) = x, we write Sy instead of S§' (f).

Remark 5.1.1 It is easy to illustrate that the f-lacunary statistical convergence of order « is

not well defined for & > 1.

Lemma5.1.1 The Sg'(f) —limit of an Sg (f)-convergent sequence is unique.
Theorem 5.1.1 Suppose 8 = (k,.) is a lacunary sequence and 0 < a < 1. Then
) Sg(f) c Sg(f) for every unbounded modulus f,

(i) SZcS,.

The proof is clear, so it is omitted.
5.2. f-Strong Lacunary Summability of Order a

Definition 5.2.1 Suppose 6 = (k,-) is a lacunary sequence, a € (0,1], and suppose f is a
modulus function. Then a sequence (x;) in R (or C) is called f-strongly lacunary summable

of order « to L, or simply strongly N§' (f)-summable to [, if
1
lim— » f(|xx—1]) =0.
r—00 hg

kel

If the sequence (x;) is strongly N§ (f)-summable to [, we write N5 (f)-lim x; = L. The

class of strongly Ng' (f)-summable sequences will be symbolized by N§ (f). That is,

1
Ng (f) =4 (xg) = lim na f(lx, — 1) = 0 for some number [ ;.
T—00 r

kel,

Note that this definition does not require the modulus function f to be unbounded.

27



The strong N (f)-summability will reduce to the strong Ng-summability if we take
f(x) = x, and in the particular case @ = 1 and f(x) = x, the strong N§' (f)-summability will

reduce to the strongly Ngy-summability.

Theorem 5.2.1 Suppose 6 = (k,.) is a lacunary sequence and suppose f and g are modulus
functions. If

& _

sup 0,
x€(0,00) 9 (X)

then N§'(g) c Ng(f) for 0 < a < f < 1 and the inclusion may be strict.

JACI

Proof Supposep = sup T 00 =

< oo. Thenwe get 0 < —=
x€(0,00) 9 900

< pandsothat f(x) < pg(x) for

every x € [0,00). Now it is clear that if (x;) is strongly Ng (g)-summable to [, we may write
2z 2 fCl =1 <7 > pCl I,
kel kel
Since a < 3, then

P OWICEIDET TSI

hy kEl, kel

Taking limit on both sides as r — oo, we obtain that (x;) € Ng (g) implies (x;) € N(f (f). The

following example shows that the inclusion Ny (g) c Nf (f) is strict at least for some a, § €

(0,1] such that @ < B and special modulus functions f and g.

Example 5.2.1 Let the lacunary sequence 6 = (k,) be given and choose « = f = 1 and also
consider the sequence (x;) such that x, to be [\/h,] at the first [\/h,.] integers in I, and x; =
0 otherwise. Now if we take the modulus functions f(x) = ﬁ and g(x) = x, then

e}

=1 < oo. By using the £(0) = 0 equality, we have
x€(0,00) gx)

1 [Vh ][V
E,Z,f('x’")‘ VR WD) = s s
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By taking limits as r — oo we get that N(f(f)-lim x, = 0,50 (x;) € N(f(f). But since

e 2 90D = = [Virlg (]) - N_]N_]

kel

and since PP 1 a5 o0, we get (xy) & NEF(9). Hence (xi) € N£ () — N (g) and

the inclusion N§(g) < N2 (f) is being strict.
The outcome below of inclusions is obtained from Theorem 5.2.1.
Corollary 5.2.1 Suppose f and g are modulus functions, 8 = (k,-) is a lacunary sequence and

0<a<p<l.

(@) If sup L2 < oo, then NZ(g) < NE(F).
xE(Ooo) e[€9)

@) If sup L2 < oo, then Ny(g) < Ny(f).
xE(Ooo) g(x)

(iiD) NE(f) < Nj(f).
(iv) N§ c Nég.

Theorem 5.2.2 Suppose 8 = (k,.) is a lacunary sequence, and suppose f and g are modulus

functions. If

inf ()
x€(0,%0) g(x)

>0,

then Ny (f) c Nf(g) for 0 < a < B < 1 and the inclusion may be strict.

Proof Assumingthat q = f )QEX; > 0. Then L& ( ) > q and so that gg(x) < f(x) for every

€ [0, 00). Now if (x) is strongly N§ (f)-summable to [, we may write

2z 2 90— 1) Sz > =l 1.

kel, kEIT

Since ¢ < 3, then
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1 1 1
5, 90~ 1D <5z " = fllxc~ 1D

T kel, kel,

Taking limit on both sides as r — oo, we obtain that (x;) € Ng (f) implies (x;) € Nf (g). For
the strict inclusion, the sequence of Example 5.2.1 with modulus functions g(x) = ﬁ and
f(x) = x serve the purpose in the case « = § = 1.

The outcome below of strict inclusions is a result of Theorem 5.2.2.
Corollary 5.2.2 Suppose f and g are modulus functions, 8 = (k,-) is a lacunary sequence and

0<a<sp<l.

. s fx) a a
) Ifxel(r&foo)g(x) > 0, then N5 (f) € N5 (g).

(i) Ifxel(r(}&)g(x) > 0, then Ng(f) < Ng(g).

(i) N§(F) € N§ ().
The following result is obtained from Theorem 5.2.1 and Theorem 5.2.2.

Corollary 5.2.3 Suppose f and g are modulus functions, & = (k,.) is a lacunary sequence and
0<a<p<l1lIf

o< gt LD gy 1)

< su < oo,
x€(0,%0) g(x) xemﬁo)g(x)

then N (f) = NJ (9).

Corollary 5.2.4 Suppose 8 = (k,) is a lacunary sequence, and suppose f is any modulus

function. If sup % < oo, then N§ c Nf(f) forany a, 8 € (0,1] such that a < 8.
x€(0,0)
Since sup % < oo, taking g(x) = x in Theorem 5.2.1 the proof follows directly.
x€(0,0)

The following result is obtained by taking 8 = «a in the above corollary.

Corollary 5.2.5 Suppose 8 = (k,) is a lacunary sequence, and suppose f is any modulus

function. If sup [ o oo, then N  Ng'(f) forany a € (0,1].

x€(0,0) x
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Corollary 5.2.6 Suppose 8 = (k,) is a lacunary sequence, and suppose f is any modulus

function. If i(nfoo GRS 0, then Ng'(f) c Nﬁ forany a, B € (0,1] such that a < B.

x€(0

Since inf f( ) > 0, taking g(x) = x in Theorem 5.2.2 the proof follows directly.

x€(0,00)
The following result is obtained by taking 8 = a in the above corollary.

Corollary 5.2.7 Suppose 8 = (k,) is a lacunary sequence, and suppose f is any modulus

function. If f f(x)
xe

> 0, then Ny’ (f) c N forany a € (0,1].

From Corollary 5.2.5 and Corollary 5.2.7 we get the following result.

Corollary 5.2.8 Suppose 8 = (k,) is a lacunary sequence and f is a modulus function. If 0 <

inf 19 < sup M<oo,thenN6‘{‘(f)=N(§’foranyae(0,1].

xE(OOO) x x€(0,00) *

Theorem 5.2.3 For any modulus function f we have Ny € Ng(f).

Proof Assume that (x;) € Ny so that

r—o h,
kel,

for some [. Given € > 0 and choose § with 0 < § < 1 such that f(t) < ¢ for t € (0, §]. Now

D fUm== > flm—D+ > flxn—D

kel k€l kel
|xp—1|<8 [xp—1|>68

consider

Since f(|x; — 1) < e for |x;, — | < 6, then

fx = 1) < ehy,

kel
Ixk—1]<8

and also for |x; — I| > &, we have

ka—ll <

|xk_l| |xk_l|
1 .
R
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Since f is a modulus, so that

Fllxe—1) < f<1 + ['xk6‘ ] ) < <1 . llxk6— ! ) sl

So,
2f(1)
Y flne-s = Y -l
kEL, k€L,
|xk—l|>é' |xk—l|>6
Thus,

1
o> fn- e+ Z2L N -y

" kel, icel,
[xp—1|>6

S8+L(1)l2|xk—l|.

Since (xi) € Ny, then we get (x;) € No(f).
Corollary 5.2.9 Suppose 68 = (k,) is a lacunary sequence and f is a modulus function. If

inf f()>0 thenNg(f)—Ng

xE(O )

Since Ny © Ny (f) for any modulus f by Theorem 5.2.3, taking g(x) = xanda = 8 =

f&x)

1 in Theorem 5.2.2 we get Ny (f) < Ng. Therefore Ny(f) = Ny if Ei(l(‘)lf > 0.
X y

Theorem 5.2.4 Assume that f and g are unbounded modulus functions, 8 = (k,.) is a lacunary

0 5 0 and lim 42

x€(0,00) 9(%) Jm == > 0, then every strongly

sequence and 0 <a<p <1 If
N§ (f)-summable sequence is Sg (g)-statistically convergent.

Proof Suppose that ¢ = inf IO 5 0, Then L2 > q and so gqg(x) < f(x) for every x €

x€(0,00) g(x) g(x)

[0, ). Now if (x;) is strongly Nf(f)-summable toland 0 < a < f < 1, we may write

W EY - SWICRND

k€L, K€L,
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= q—z g(lxx = 1)

hy kel

1 1
== Y. glx-D+a— > glx—1)
% h

kel r k€l
[xp—1lze |xp—ll<e

1
>q— D g(lx— 1D

hr k€I,
[xp—1lze

1
> qh—,gl{k €L : |xx — 1| = &}| ge).

r

Now since |{k € I, : |x; — l| = €}| is a positive integer, then we have

g()

hazf(|xk—z|)>—g<|{ke1 v =112 ) o5

kel

CgUtker -1 = e 9(h) g
- g(rf) TAION

Taking the limit on both sides as r — oo, we obtain that (x;) € Ng' (f) implies (x;) € Sf (9)

since lim 2%

x—-o0o X

> 0. Here is the proof.

Remark 5.2.1 In general, contrary to the above theorem could not be possible. This fact can
be seen in the illustration below.

Example 5.2.2 Let 8 be given and select the sequence (x;) as in Example 5.2.1 and also

consider the modulus functions f(x) = x = g(x). Then, mf & - 0 and lim 22 > o,

)() x—>oo X

Now if we take 0 < a < % < B < 1, then for every € > 0, we have

lim

1
g (h)

So, (x) € Sg (g). On the other hand, we have

g({k € I:|x, — 0| = €}]) = llrg [\/—] =0.
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11m —Z f(x, —0]) = hm

WAdIVA]
hy
kel,
So, (x) & NE(f).
The following result is obtained by taking g(x) = f(x) in Theorem 5.2.4.
Corollary 5.2.10 Assume that f is an unbounded modulus function, 8 = (k,.) is a lacunary

sequenceand 0 < a < B < 1. If lim —= )

x—-o0o X

> 0, every strongly Ng (f)-summable sequence is
55 (f)-statistically convergent.
The following result is obtained by taking 8 = a in Theorem 5.2.4.

Corollary 5.2.11 Assume that f and g are unbounded modulus functions, 6 = (k,.) is a

lacunary sequenceand 0 < a < 1. If inf 22> 0and lim <2
x€(0,00) g(x) x>0 X

> 0, every strongly Ng' (f)-
summable sequence is Sg (g)-statistically convergent.

The following result is obtained by taking g(x) = x in Corollary 5.2.11, which is also
Theorem 2.9 of [30], for the case p = 1.

Corollary 5.2.12 Assume that f is an unbounded modulus functionand 8 = (k,.) is a lacunary

sequence. If E f f()

> 0, then every strongly N¢ (f)-summable sequence is Sg -statistically
convergent.
We obtain the result below by taking « = 1 in Corollary 5.2.12.

Corollary 5.2.13 Assume that f is an unbounded modulus functionand 8 = (k,.) is a lacunary

sequence. If E f f()

> 0, then every strongly Ny (f)-summable sequence is Sg-statistically
convergent.

The following result is obtained by taking f(x) = x in Corollary 5.2.13, which is also
the first part of Theorem 1 of [28].

Corollary 5.2.14 Ny c S, for any lacunary sequence 6 = (k,.).
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Theorem 5.2.5 Suppose f and g are any unbounded modulus functions, 0 < a < f < 1, and

suppose 6 = (k,) and 8’ = (s,.) are lacunary sequences such that I,. c J,. for each r € N. If

lim= =1 and sup 90 - oo, then every bounded and S5 (f)-convergent sequence is

r—o hf x€(0,00) *

strongly Nf, (g)-summable, i.e.

2. N SE(f) © Njyi(g)
and the inclusion may be strict.
Proof Let f and g be unbounded modulus functions, I, = (k,_1, k], Jr = (Sy—1, -], Ay =
ky —k,_1,v, =5, —5s,_;and 0 < a < B < 1. Suppose that (x;) € £, N S5 (f) and S5 (f)-
lim x;, = L. In order to verify that (x;) € Ng, (9), we shall first prove that S5 (f) < Sg. Since
f is a modulus and S§ (f)-lim x;, = [, then for each p € N, there exists ry, € N such that, if

r > 1y, We have

fl{k € L:|x =1l 2 €}]) < %f(hﬁ‘) < %pf (%) _ f(%)

for every € > 0. So,

1 1
1tk € hibae =1l 2 e}l < -

R

It follows that Sg'(f) < Sg and so that £, N Sg'(f) € £ N Sg. Since lim :—; = 1, so we have
T—00 r

£ NSy C Neﬁ, by the second part of Theorem 2.14 of [31]. On the other hand, since

sup 909 - oo, we have Nf, c Nf,(g) by Corollary 5.2.5. Thus, £, N S§(f) c Nf,(g).

x€(0,00) *

The following example shows that the inclusion £, N Sg'(f) c Nf(g) is strict at least for

some a, B € (0,1] such that « < B and some special modulus functions f and g.

Example 5.2.3 As an example, let the lacunary sequence 6 = (k,.) be provided and 6’ = 6.

Consider the sequence (x;) such that x,, to be [3/h,] at the first [\/h, | integers in I,,, and x; =

0 otherwise and also consider the modulus functions f(x) = g(x) = x. Now if we take
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9

0<ac<-= andﬁ—lthen 11m ﬁ_hmh =1land sup =1 < . Also foreveryr €

r—00 fir x€(0,00)
N, we have
> gl = 0D == 3 g([VAr]) - N_]N—]
T kel T KEI,
Since *¥—/——~=X [/ ][Vrr] — 0asr — o, then (x;) € (f,(g). But for every € > 0, we have

T

e 06 € 1 b =012 ) = £ ([VAe]) = W_ ]

So, (xx) € S§(f) since N_]—>ooasr—>oofor0<a< and [@]—Aasr—moforaz
5. Therefore, the inclusion £, N S§(f) c Ngﬁ, (g) is strict.

The outcome below of inclusions is a result of Theorem 5.2.5.

Corollary 5.2.15 Suppose 8 = (k,) and 8’ = (s,) are lacunary sequences, 0 < a < 8 <1,

and suppose f is any unbounded modulus function. If lim —ﬁ =1land sup fi)
r—00 hy x€(0,00)

< oo, then

(D) 4o NS c NEW),
(i) e NSES) S NG,

(ii)) Lo NSE < NE(F).
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CONCLUSION

In this study, by using a modulus function f, we have given f-statistical convergence,
f-statistical boundedness, f-strong Cesaro summability, f-statistical convergence of order «
for 0 < @ < 1 and f-strong Cesaro summability of order « for 0 < a < 1. We have also given
some relations between the sets of f-statistically convergent sequences and f-statistically
bounded sequences, f-statistically convergent sequences and f-strongly Cesaro summable

sequences.

Furthermore, we have established the relations between w/ and w9, w/ and §9, for
different modulus functions f and g under some conditions on the considered modulus
functions. Also for some special modulus functions, we have obtained the relations between

the sets w/ and w, S/ and S.

Finally, we have established the relations between Nf(f) and N§(g), N§(f) and

Nf(g), N(f(f) and S5 (g), £ N S5(f) and Nf,(g), where f and g are different modulus

functions under some conditions and «, 8 € (0, 1] such that « < B. Also, for some special
modulus functions, we have obtained the relations between the sets Ny (f) and Ny, N5 (f) and
Ng for a € (0,1].
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