
REPUBLIC OF TURKEY

FIRAT UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND

APPLIED SCIENCES INSTITUTE

A PROPOSED APPROACH FOR PREVENTION OF

THE CROSS-SITE SCRIPTING ATTACKS

TWANA ASAAD TAHA

Master Thesis

Department of Software Engineering

Supervisor: Assoc. Prof. Dr. Murat KARABATAK

March 2019

II

DEDICATION

I would like to dedicate this thesis to my lovely family and all my teachers even they

thought a word. A distinct feeling to my loving father and mother, Asaad TAHA and Fatima

RASHED, they supported and encouraged me throughout entire life. My brothers and sisters,

always supported me during MSc studying. Moreover, I dedicate my thesis to my dear

supervisor Assoc. Prof. Dr. Murat KARABATAK, I will always appreciate him for assisting

me on conducting this thesis.

Sincerely

TWANA ASAAD TAHA

Elazığ 2019

III

ACKNOWLEDGEMENT

I would like to thank my grateful teachers in software engineering department at Firat

University for their valuable effort and assistance during achieving master degree, working

on academic research and writing papers, which is guided me to conduct this thesis. Special

thanks to Prof. Asaf VAROL, Head of Department, for his incredibly support and important

lectures.

Finally, I thank my dear friends and classmates for sharing our knowledge through

studying period.

Sincerely

TWANA ASAAD TAHA

Elazığ 2019

IV

TABLE OF CONTENT

 Page No

DEDICATION .. I

ACKNOWLEDGEMENT ... III

TABLE OF CONTENT .. IV

ABSTRACT ... VI

ÖZET .. VII

LIST OF FIGURES .. VIII

LIST OF TABLES ... IX

ABBREVIATIONS ... X

1. INTRODUCTION TO WEB SECURITY ... 1

1.1. Related Works ... 2

1.2. Aim of the Research .. 4

2. COMMON WEB THREATS ... 6

2.1. Open Web Application Security Project .. 6

2.1.1. Injection ... 7

2.1.2. Broken Authentication ... 8

2.1.3. Sensitive Data Exposure .. 8

2.1.4. XML External Entities (XXE) ... 9

2.1.5. Broken Access Control .. 10

2.1.6. Security Misconfiguration ... 10

2.1.7. Cross-Site Scripting (XSS) .. 10

2.1.8. Insecure Deserialization ... 11

2.1.9. Using Components with Known Vulnerabilities ... 11

2.1.10. Insufficient Logging and Monitoring .. 12

3. CROSS-SITE SCRIPTING (XSS) ... 13

3.1. How Cross-site Scripting Works ... 14

3.2. History of Cross-site Scripting .. 15

3.3. World Real Event of XSS Attack .. 15

3.4. XSS Examples ... 15

3.5. XSS Types ... 16

3.5.1. Persistent XSS ... 16

V

3.5.2. Reflected XSS .. 17

3.5.3. DOM-Based XSS ... 18

3.6. Risks and Potential Impact of XSS Threats ... 19

3.6.1. Hijacking the Accounts .. 19

3.6.2. Theft of Credentials ... 20

3.6.3. Access to Sensitive Data .. 20

3.7. Mitigation or Preventing of XSS ... 20

3.7.1. Encoding .. 21

3.7.2. Input Validation ... 21

3.7.3. Session Expiration ... 21

3.7.4. Developing a Web Application Software ... 22

4. METHODOLOGY .. 23

5. A PROPOSED APPROACH FOR PREVENTION OF THE XSS 28

5.1. System Requirements .. 28

5.2. System Interface .. 29

5.3. Testing System and Evaluation ... 30

5.3.1. Scenario 1 .. 30

5.3.2 Scenario 2 .. 31

5.3.3. Scenario 3 .. 31

5.3.4. Scenario 4 .. 32

5.3.5. Scenario 5 .. 33

5.3.6. Scenario 6 .. 33

5.4. Evaluation of Application ... 35

6. CONCLUSION AND FUTURE WORK ... 36

6.1. Conclusion ... 36

6.2. Future Work ... 36

 REFERENCES .. 37

 CURRICULUM VITA .. 42

VI

ABSTRACT

The Internet is becoming an increasingly desired and essential system nowadays. In

many cases, internet users may have poor security against various types of web threats.

Cross-site Scripting (XSS) attack is one of the most dangerous threats that face web users,

due to validation of data that have been entered by user input having security vulnerabilities.

In this thesis, the best-known threat XSS that has an impact on with the web pages is

presented. Because of the impacts of such web threats through developing web sites and web

applications, web developers should be very conscious and have sufficient knowledge about

various types of web attacks and how to check or reduce their risk. Thus, this thesis includes

the specifying detail about recognizing and protecting XSS threats. In addition, the main aim

of this study is to supply both web developers and web users with sufficient knowledge while

developing and using websites to prevent from Cross-site Scripting (XSS) threat. For this

aim, a new approach is proposed for preventing XSS and a web application is developed for

testing this approach. Obtained results from the thesis show that the proposed approach can

be used for preventing XSS threats.

Keywords: Web Application Threats, Injection Threats, Input Validation, XSS.

VII

ÖZET

Cross-Site Script Ataklarının Önlenmesi için Yeni Bir Yaklaşım Önerisi

Günümüzde internet sürekli olarak ihtiyaç duyulan ve gerekli bir sistem haline

gelmiştir. Ancak birçok durumda, çeşitli web tehditlerinden dolayı kullanıcılar güvenlik

tehdidi ile karşı karşıyadır. Cross-Site Script (XSS), kullanıcı tarafından yapılan giriş

verilerinin güvenlik sorunundan dolayı web kullanıcılarının karşılaştığı en tehlikeli

tehditlerden birisidir. Bu tezde, web sayfaları üzerinde olumsuz etkisi olan XSS hakkında

bilgiler sunulmuştur. Web sitesi geliştiricileri, web saldırı çeşitleri ve bu saldırıların

risklerinin nasıl kontrol edilebileceği veya azaltabileceği konusunda yeterli bilgiye sahip

olmalı ve web uygulamaları geliştirerek bu tür tehditlerinin etkilerinden korunmalıdır. Bu

nedenle tez, XSS tehdidinin tanınması ve bu saldırılardan korunmak ile ilgili ayrıntılar

içermektedir. Buna ek olarak, bu tezin ana amacı, bu türdeki web tehditlerini anlamak ve

bunlardan korumak için web sayfası geliştiren internet kullanıcılarına ve programcılara

yeterli düzeyde bilgi sağlamaktır. Bu amaçla tezde XSS tehditlerinden korunak için bir

yöntem önerilmekte ve önerilen yaklaşımın test edilmesi için bir web uygulaması

geliştirilmiştir. Tezden elde edilen sonuçlar önerilen yöntemin XSS tehditlerine karşı

kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Web Uygulama Tehditleri, Enjeksiyon Tehditleri, Giriş

Doğrulama, XSS.

VIII

LIST OF FIGURES

 Page No

Figure 2.1. Demonstrate SQL Injection Attack .. 8

Figure 2.2. Demonstrate XXE Attack... 9

Figure 3.1. Demonstrate XSS Attack ... 13

Figure 3.2. How Cross-site Scripting Works .. 14

Figure 3.3. Stored or Persistent XSS .. 17

Figure 3.4. Reflected or Non-persistent XSS ... 18

Figure 3.5. DOM-Based XSS ... 19

Figure 4.1. Approach System to Prevent XSS .. 26

Figure 5.1. System Interface ... 29

Figure 5.2. XSS Validation Button ... 29

Figure 5.3. Execution of XSS Code ... 30

Figure 5.4. Detecting Malicious Content .. 31

Figure 5.5. Submitting Real Input Data .. 32

Figure 5.6. Submitting Malicious Code .. 32

Figure 5.7. Submitting CSS Tags ... 33

Figure 5.8. Filled out All Input Filed with Malicious Code ... 34

IX

LIST OF TABLES

 Page No

Table 2.1. OWASP Top 10 2017 Security Risks .. 7

Table 3.1. Example of XSS Malicious Code ... 16

Table 3.2. Types of XSS Attack .. 16

Table 5.1. Malicious Code of Scenario 1 .. 30

Table 5.2. Malicious Code of Scenario 4 .. 32

Table 5.3. Malicious Code of Scenario 5 .. 16

Table 5.4. Malicious Code of Scenario 6 .. 16

X

ABBREVIATIONS

HTML : Hyper Text Markup language

HTTP : Hyper-Text Transfer Protocol

HTTPS : Hyper Text Transfer Protocol Secure

IP : Internet Protocol

URL : Universal Resource Locator

XML : eXtensible Markup Language

1. INTRODUCTION

In 1989, the World Wide Web (shortened to www) was developed by Tim Berners and

is a service by which the Internet provides users the ability to visit or browse documents

(web pages) that are linked by hypertext links. The main purpose of the web is to share and

participate data, such as text, image, video, etc. between web users. HTML (Hyper Text

Markup Language) is the basic file of all web pages. The web uses hyperlinks to visit

between web pages with a program called a web browser, such as Internet Explorer, Mozilla

Firefox and Google Chrome. Early websites were composed with only HTML (Static

websites) and restricted to exchange data. A few years later, the world wide web became

commercialized and many server-side languages, such as PHP, ASP, JSP, Java Script, and

VB Script as a client-side language, were invented and made the web more interactive

(Dynamic websites).

The Internet is a popular and interesting technology, opening a window on the world

by enabling people across the globe to obtain data effectively and rapidly, permitting them

to communicate their thoughts and culture and to get access for research information from

anywhere. Today, the development of web applications presents another security opening

and potential access to your organization's information. Black-hats access information by

sneaking through ports that are clearly hidden behind firewalls [1,2].

There is no real way to make sure that your web application is 100% secure. On the

off chance that it has never been attacked by black-hats, the only reason for that is your

information is not of interest to them; however, there are so many others who would like to

steal that information. Your web safety is particularly decreased if your corporation has

financial properties, such as savings card or identity information, if your website content

material is controversial, your servers, purposes and web page codes are complicated or

ancient and are maintained by means of an underfunded or outsourced IT department. All IT

departments are price range challenged and tight staffing often creates deferred maintenance

problems that play into the hands of any who desire to breach your internet security [2].

Web security is relative and has two parts, one inward and one open. Your relative

security is high on the off chance that you have a few system assets of money-related regard,

your organization and webpage aren't questionable in any capacity, your system is set up

with tight consents, your web server is fixed and fully informed regarding all settings done

2

effectively, your applications on the web server are altogether fixed and refreshed, and your

site code is done to elevated expectations. Web security is addressed by handling eight points

of security weaknesses and vulnerabilities most normally abused by attacks; a percentage of

these assaults will be extremely well- known, but different assaults might be sudden [2].

A web security issue is faced through website visitors as well. A common Internet

website assault includes the silent and hidden installation of code that will exploit the

visitors’ browsers. Your site is no longer the only target in these attacks. There are, currently,

many hundreds of Internet websites out there that have been compromised. The owners have

no concept that anything has been added to their websites and that their visitors are at risk.

In the meantime, site visitors are open to attack and successful assaults are installing bad

code onto the visitor's computer [3].

1.1. Related Works

Many researches and studies have been done over the last couple of years to discover

Cross-site Scripting threat-related issues in web applications or related network applications.

Research work in this regard has produced many solutions but XSS vulnerability still exists

in the web sites. Web sites and web applications at the present time are affected and are

facing different web attacks from hackers using XSS; hackers obtain the victim’s cookies

data or web application source code to use the same traffic for their own desires.

In every technique, which includes security, there should be an application lifecycle.

The application lifecycle is a procedure for the development or deployment to execute

security posture and should be followed by the OWSAP procedure in a very detailed manner.

Sometimes unfamiliarity of application security posture by developers is one of the reasons

of security failure, the majority of vulnerability analysts have explored many security issues

affecting the safety of end users’ credentials over the network. Analysts advise that

programmers should understand the security needs in order to mitigate it at the initial level,

additionally, focusing on the chance evaluation of each and every scenario at the preliminary

stage. [4]

Sanitization procedure is always used to purify and prevent input of the user. It consists

of DOM, Input text filed capture, enter sanitizer, links, textual content section sanitizer and

XSS notification. The structure follows the layered strategy to stop the vulnerable contents

[5].

3

Shar et al. (2012) [6] suggested that any small piece of source code has lots of XSS

vulnerabilities, which supports our observation. Therefore, simple vulnerability

identification techniques are not smart enough to identify XSS vulnerability. The main

source of XSS vulnerability is the invalid user input. They removed the input, output,

validation, and refining code builds with static and dynamic analysis. Moreover, those codes

build in various categories and are used as a feature to build a machine-learning source for

the rectification and identification of vulnerability statements [7].

A few years ago, Scandariato et al. (2014) [8] suggested first-time text mining through

machine-learning models for identification of vulnerable programs in the source code of any

software, also known as deep analysis. What they did was to take a source code as text and

characterize every source code file as a vector of monogram frequency. [9], as compared to

software metrics and text mining features. Due to this text, the mining technique analysts

observed this would be a better way to identify XSS vulnerability.

Saxena et al. [10] built a program to mitigate XSS attacks in ASP .NET that permits a

group of static and dynamic contents in predefined HTML templates. As with our approach,

they fixed the context of content generation. However, did something different from us. For

instance, their approach is to identify a proper sanitization routine for code that generates

dynamic contents, such as URL and JavaScript. On the other hand, we allow context to

identify predictable page response features based on static HTML.

Bisht et al. [11] considered the parse tree of benevolent JavaScript code with runtime

and created JavaScript code to identify assaults. Adapting all generous JavaScript code

requires program change of server-side contents. In addition, the methodology could be

bypassed for particular XSS assaults (e.g., infusing a JavaScript technique call that is

indistinguishable to real code). Our methodology can identify such assaults.

Jim et al. [12] produced hashes for the authentic JavaScript code at the server side and

these were transmitted to programs to get approved. This methodology can be crushed by

infusing authentic JavaScript strategy into website pages. Interestingly, we address this issue

by considering genuine JavaScript code included as a feature for detecting.

Wurzinger et al. [13] programmed all genuine JavaScript work calls as syntactically

invalid code so that aggressor infused code gets executed. Be that as it may, the approach

can be evaded in the event that infused URLs point to harmful code. Corrupted information

flow-based examination has been connected to identify XSS assaults, and the proliferation

of polluted data requires reimplementation of library APIs and server-side script compiler.

4

Possible XSS exposure was distinguished by Lwin and Hee based on the inactive

examination and they designed coordinating procedures of program source code and secured

them with suitable getting away components, which avoids input values from causing any

script execution [14]. Noncespaces method was designed by Matthew and Hao and

empowers web clients to recognize between trusted and untrusted substance to avoid misuse

of XSS vulnerabilities. Utilizing Noncespaces, a web application randomizes the (X) HTML

labels and qualities in each archive some time recently conveying it to the client. As long as

the assailant is incapable to figure the arbitrary mapping, the client can recognize between

trusted substance made by the Internet application and untrusted substance given by a hacker

[15].

A modern method is suggested by Umasankari, Uma, and Kannan; their method

statically expels the XSSVs from the program source code. The proposal comprises of two

strategies: XSSV Location and XSSV Expulsion. XSSV discovery strategy recognizes the

potential XSSVs within the program source code utilizing inactive investigation and design

coordinating methods. XSSV expulsion strategy distinguishes the HTML setting of each

user input referenced within the potential XSSV [16]. An unused dialect BEK is presented

by Hooimeijer that allows the development of sanitizer capacities for web applications and,

more critically, exact thinking around the rightness of sanitizers [17].

Offutt et al. [18] explained how to bypass client-side authentication of client input

information by creating tests, which resolve all predefined input imperatives. According to

their paper, to begin with, imperatives on client inputs are recognized. At that point, a few

test cases are produced by tackling the distinguished limitations, hence, attempting to bypass

esteem, parameter and control movement descriptions.

1.2. Aim of the Research

Cross-site Scripting (XSS) vulnerabilities allow the web attackers to insert and execute

malicious client-side codes into a web browser, attackers will be able to obtain the data by

using XSS, getting control of a web user's session and executing malicious code. The

objective of this research is in detecting and preventing risks and threats that will be

implemented by XSS.

The main aim of conducting this study is to supply both web developers and web users

with sufficient knowledge while developing and using websites to prevent from Cross-site

5

Scripting (XSS) threat. XSS is ultimately produced by programming mistakes or security

gaps during filling web forms. By using secure coding techniques, web developers and

operators who write dynamic web pages can prevent XSS exposures.

2. COMMON WEB THREATS

With the increased use of the Internet, the number of web threats has increased and

become more sophisticated. Individuals and organizations are continuously looking for ways

to protect their data and online activities from attackers. Web threats can be defined as

malware applications and code, such as viruses, spyware and worms, that are sneaked into a

target computer without the owners’ knowledge. Attackers propagate these malwares via the

Internet with the intent of stealing important user data and gaining access to the target

computers. The intent of this chapter is to present a comprehensive analysis of the top ten

web threats published by the Open Web Application Security Project (OWASP) in 2017.

2.1. Open Web Application Security Project

The Open Web Application Security Project (OWASP) is a noncommercial group that

helps organizations to maintain, purchase and develop trusted software applications.

Initially, it was built as a venture to assign a methodology of standard testing for industry of

application security through the web. In the main fields, the venture keeps defining security

specifications, explanations and recommendations [19].

The security technician can mix and use OWASP recommendations within their work.

Security salesmen also can base services and goods on the standards of OWASP. Table 2.1

demonstrates the top 10 web security risks; therefore, users can use those standards as a

criterion to test services or applications they use [20].

7

 Table 2.1. OWASP Top 10 2017 Security Risks

Order Threat Type

1 Injection

2 Broken Authentication

3 Sensitive Data Exposure

4 XML External Entities (XXE)

5 Broken Access Control

6 Sensitive Data Exposure

7 Cross-site scripting

8 Insecure Deserialization

9 Using Components with Known Vulnerabilities

10 Insufficient Logging & Monitoring

2.1.1. Injection

Injection is an attack that exploits vulnerabilities in databases used in web applications.

In this attack, a malicious code is injected into a data source through a web request. If the

injected code is successfully processed by the web application, the attacker is able to delete

or modify important data stored in the database (See Figure 2.1). In some cases, the injection

can lead to full control of the server containing the database. Injection attacks, if successful,

can lead to data loss, data access by unauthorized users, denial of service, and data

corruption. Injection attacks are common to web applications whose databases can be

manipulated using SQL, LDAP, NoSQL, and XPath commands. Attackers are able to

discover injection vulnerabilities by running fuzzes and code scanners. Online application

developers can prevent injection attacks by storing data, queries, and commands separately

[21].

https://www.owasp.org/index.php/Top_10_2017-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2017-A6-Sensitive_Data_Exposure

8

 Figure 2.1. Demonstrate SQL Injection Attack [42]

2.1.2. Broken Authentication

A broken authentication is a type of web threat that allows an unauthorized user to

bypass the authentication process and gain access to a web application. This happens when

a user uses a public computer and leaves a session unterminated, or when login credentials

or session IDs are sent over an insecure connection, or when authentication credentials are

written down or easily predictable. The primary intent of the broken authentication attack is

to take over an account and gain privileges of the legitimate user. Broken authentication

threat can be overcome by implementing strict password use policies, educating users on

managing login credentials, and updating online systems to effectively manage sessions.

Broken authentication is the most commonly used online attack method as it gives attackers

full privilege to access the system without the knowledge of the account user [22].

2.1.3. Sensitive Data Exposure

With some organizations leaving their data unencrypted and some organizations using

weak encryption keys, protocols, and algorithms, attackers are directing their attention to

these vulnerabilities. While online users trust web applications to protect their information,

many organizations are unable to effectively encrypt and protected data transmitted using

online platforms. Sensitive data exposure is, therefore, a threat that can be utilized by internal

9

and external attackers. For instance, a disgruntled employee who has access to confidential

business data may destroy data or make it accessible to external attackers. An organization

is prone to sensitive data exposure threat if sensitive data is stored or transmitted in plain

text if cryptography keys are weak, and if access application does not verify the authenticity

of the client. Sensitive data exposure threat can be prevented by encrypting all data in store

or on transit, securing authentication gateways, backing up data, and preventing broken

authentication attacks [23].

2.1.4. XML External Entities (XXE)

XXE is an attack that targets online applications that are developed with an ability to

parse XML code input. An XML parser that is weakly configured is likely to be

compromised by a malicious XML input that has a reference to an external entity (See Figure

2.2) . Many XML processors are conventionally developed to allow reference to external

entities. These flaws are thus exploited by attackers to run malicious XML codes that have

the ability to initiate remote server access and extract data. A successful XXE attack can lead

to data loss, denial of service, and can expose the system to other attacks. An XML-based

web application is vulnerable to XXE attack if it allows direct upload of XML files from an

external entity, if it uses SAML, and if it uses versions of SOAP that are not later than 1.2.

XXE threats can be prevented by the use of less complex data formats, regularly upgrading

XML processors, disabling reference to external entities, and regularly scanning the network

to detect XXE vulnerabilities [24].

 Figure 2.2. Demonstrate XXE Attack [24]

10

2.1.5. Broken Access Control

Broken access control is an online attack that has affected many online applications in

the recent past. This online threat attacks applications and APIs that do not adequately verify

the identity of users requesting access to an online system. Although the attack is easily

detected manually, it is not discovered by dynamic or static testing. If the access control to

an online application, an attacker can compromise the entire system by gaining admin

privileges and manipulating confidential data and editing access privileges. To bypass access

controls, an attacker exploits vulnerability such as an ability to bypass access control system

by editing URL to the application, lack of clear privilege separation in different accounts,

force browsing, and enabling change of primary keys to system user records. This web threat

can be prevented by using security tight access control systems, disabling web server

directory listing, and using IDS to alert administrator in case of unauthorized log activity

[25].

2.1.6. Security Misconfiguration

This is a type of web threat that occurs when a web application of server is

misconfigured. This threat can lead to security flaws such as the use of default account

credentials, enabling of setup pages, and incorrect permissions. Therefore, system

developers must always ensure that the system is correctly configured before going live.

Security misconfiguration exposes a system to data loss and corruption threat. This threat

can be prevented by regularly undertaking system hardening processes, ensuring unusual

features are not implemented, updating system configurations regularly, and regularly

reviewing permission configurations [26].

2.1.7. Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is a web application vulnerability that enables attackers to

inject client-side scripts with the intent of bypassing access control. This is a type of threat

that is affecting many websites that do not validate user inputs. Attackers using JavaScript

scripting codes use social engineering to convince legit system users to click links that lead

to an injected script payload. Using this vulnerability, attackers are able to deliver malware

11

to a user's browser that can facilitate the stealing of login credentials and session data see

figure 2.3. An online system is vulnerable to XXS threat if it allows unauthenticated users

to input code into the system and if the system stores user input for future use. XSS threat

can be prevented by using a framework that automatically escapes XSS and untrusted HTTP

requests [27].

2.1.8. Insecure Deserialization

This is a web application threat takes place when an untrusted data is used to interfere

with the logical working of an application leading to a denial of service. This attack cannot

be ignored as it can negatively affect an application and thus it is among the top ten web

threats. This threat affects an application by making it vulnerable to object-related data attack

and data tampering attack. This attack can be a serious problem to an organization as it

targets serialization principle which is widely used in remote communication, caching, file

system, HTTP cookies, and other web services, this threat can be prevented through

implementing digital signatures and other integrity checks, logging deserialization failures

and closely monitoring incoming and outgoing traffic in a network [28].

2.1.9. Using Components with Known Vulnerabilities

Security vulnerabilities are also a factor of development tool and physical devices used

to develop and maintain online applications. While attackers spend much time to find

vulnerabilities in individual systems, they also look for vulnerabilities in hardware and

development tools. In case there are vulnerabilities in these components, they are able to

develop custom exploits to these tools. Therefore, it is important to make use of components

with known vulnerabilities. Known vulnerabilities pose minor threats to organizations as

compared to unknown vulnerabilities. Therefore, it is possible to bypass threats posed by

unknown vulnerabilities by using applications from official vendors, regularly monitoring

libraries with unpatched security bugs, and removing unnecessary components

dependencies, and files [21].

12

2.1.10. Insufficient Logging and Monitoring

This is the security vulnerability that is exploited by attackers to carry out almost all

security threats. The attackers take advantage of irregular monitoring and uncoordinated

response to exploit security vulnerabilities in an online system. Sufficient monitoring of

logs in penetration testing help discovers probing activities that if they go undetected can

lead to exploitation of security vulnerabilities. This threat can be prevented by ensuring all

failed login attempts are logged, ensuring logs are easy to understand, ensuring an

organization has an elaborate response and recovery plan and having a clear

communication channel to report suspicious activities. A proper monitoring and logging

plan, therefore, can ensure other threats are discovered before they are exploited by

attackers[29]

3. CROSS-SITE SCRIPTING

Cross-site Scripting (XSS) is an injection of a malicious code that targets the web

browser on the client side. Here, the attacker executes malicious strings of script, usually

known as malicious payloads, into an authentic web application or website. XSS is one of

the most common threats to web applications. It occurs whenever a web application or a

website utilizes unencoded or unverified user input generated by output — the attacker, in

leveraging XSS, targets the victim indirectly (see Figure 3.1). This is possible by the

exploitation of a security breach within the web application on the website that the victim is

fond of visiting. The web application or website vulnerability serves as the conveyor belt for

the delivery of the malicious string of script to the victim’s browser. XSS can make use of

JavaScript or VBScript. However, the vulnerabilities related to this application are

considered obsolete; therefore, the most common avenue for the execution of the threat is

the use of scripts made using JavaScript. The fundamental reason could be because

JavaScript is common in improving user experience in browsing [30].

Figure 3.1. Demonstrate XSS Attack [43]

It is a mutual weak point in web-based programs. The gap (weak point) lets injection

of inputs comprising HTML tags and client-side scripts code. If these inputs are not clarified

from the server side, the client side might see unwanted result on the response pages such as

14

accessing and transmitting cookie information to third party websites (see figure 3.1). More

than 60% of websites are still weak and having gaps to XSS attacks [31].

3.1. How Cross-Site Scripting Works

The first step is for the attacker to find a way of injecting the malicious payload code

into the webpage that the victim is fond of visiting and run the malicious code on the victim’s

browser. To convince the user to visit the page with a JavaScript payload injection, social

engineering comes in handy. The vulnerable website must include the input of the user on

its pages for the attack to take place (see Figure 3.2), then the attacker inserts a string for

execution within the web page that the victim’s browser will treat as a code [38].

Figure 3.2. How Cross-site Scripting Works [38]

The attacker inserts a malicious string into the victim’s database using one of the input

forms in the website. The victim requests a page from the website injected with the malicious

string. In its response, the website includes the injected malicious string, sending it to the

victim, the victim’s web browser then runs the malicious code script and sends the victim’s

cookies to the server of the attacker [30].

15

3.2. History of Cross-Site Scripting

Cross-site Scripting is decades old. Its history traces back to the late 20th century. First

reports and exploitation of Cross-site Scripting (XSS) surfaced in 1996 after detection in a

web application. XSS code injection was new, and it targeted well-known websites that were

attractive and were using HTML frame and JavaScript as the programming language. Some

of these websites were My Space, Yahoo, and Netscape. Within a short while, it was evident

to hackers that it was possible to force the visitors of these celebrated sites to their websites

using the XSS code injection. They could even steal the cookies of the users and other

sensitive information, such as bank account numbers and passwords. It was as simple as

injecting the malicious code into the websites’ HTML, and any visitor to the webpages could

exploit the malicious code and become a potential victim [32].

David Ross of Microsoft IE popularized XSS by writing a script injection paper in

December 1999 for Microsoft detailing the process of injecting the script into the server and

its working mechanism. After the publication and sharing of the report with CERT, an

internet security center, Microsoft decided to use Cross-site-Scripting (XSS) to refer to

unauthorized site scripting, fraudulent and synthesized scripting [32].

3.3. World Real Event of XSS Attack

In 2014, the eBay auctions site confronted a Cross-site Scripting vulnerability. The

loophole enabled attackers to trap some links and direct eBay users to a phishing page. The

attackers injected malicious JavaScript code into many of the cheap iPhones listings and

every user clicking on the iPhones got a redirect to a fake eBay login page. The hacking did

not materialize because eBay hosts further inspection whenever hackers target user logins

[33].

3.4. XSS Example

In the following simple example of XSS malicious code, we assume that the hacker’s

intent is to steal the cookies information of the victim user via manipulating an XSS

vulnerability in the webpage. This can be accomplished by having the HTML code of

victim’s browser parse.

16

 Table 3.1. Example of XSS Malicious Code

The above code of JavaScript directs the user's browser to a different URL, starting an

HTTP request to the hacker’s web server. The URL comprises the victim's cookies like a

query parameter, which the hacker can get from the request after it reaches to his web server.

As soon as the hacker has obtained the cookie information, he can utilize them to illegally

access the victim and manipulate additional attacks [34].

3.5. XSS Types

Overall, XSS attacks are classified into two classes: stored (or persistent) and reflected

(or non-persistent). In addition, there are other non-famous types of XSS attack called DOM-

based XSS and induced-XSS attacks [30]. The following sub-sections explain the different

classes of XSS. Table 3.2 shows common type of XSS and characters of each type.

 Table 3.2. Types of XSS Attack

XSS Type Server Client

Stored Stored Server Stored Client

Reflected Reflected Server Reflected Server

DOM-Based Subset of Client

3.5.1. Persistent XSS

This is the most common disastrous form of XSS attack vulnerabilities. In this attack

(also known as stored XSS), the attacker introduces a script, often called the payload, with

<a href = “http://www.bank.com/

<SCRIPT>

document.location =‘http://www.attacksite.com/

stealcookie.php?’+document.cookie;

</SCRIPT>”>

Click here to win a million dollars.

17

capabilities of permanent storage in the target application, hence, the term persisted. This

attack can be stored in a database. For instance, an attacker might insert a malicious script

into the field of a comment on an online forum or blog post. Whenever a victim browses or

visits the injected web page in the browser, the database serves the XSS payload as an

authentic part of the web page, as is the case with a real comment (see Figure 3.3). The

implication is that the victim will unintentionally execute the injected malicious code upon

visiting the web page on the browser. In general, stored XSS attacks could be processed on

web applications that need text inputs as an obligation rule from users for continuous use of

that web application and save them in the database of that web application. Here are some

examples: blogs, forums, comments or profile [35].

Figure 3.3. Stored or Persistent XSS [44]

3.5.2. Reflected XSS

The reflected XSS attacks are the opposite of stored XSS attacks and attacks the

attached malicious code not located on the web server, while another common XSS type of

attack is the reflected XSS vulnerability. The attack features the payload script in the web

server requests. The script is reflected in a manner that the HTTP output constitutes the

payload from web server requests. In many instances, the attacker uses social engineering

techniques, such as the use of phishing emails (see Figure 3.4). The attack involves luring

the victim to make an intentional server request to a web server containing the XSS payload

and, ultimately, the malicious code is executed as part of the feedback as it is reflected within

18

the browser and executed. This requires the attack to send the malicious payload code to

individual target victims. Social networks are the most common avenues that enable

attackers to execute this form of attack. It is easy since it uses features that victims of the

attack are used to [30,35].

Figure 3.4. Reflected or Non-persistent XSS [44]

3.5.3. DOM-Based XSS

This attack is a sophisticated form of XSS. It actualizes through the provision of the

data to DOM (Document Object Model) through a client-side web application script. The

web application reads the data from the DOM and outputs into the browser. Haphazard data

handling leaves a loophole for the attacker to inject a malicious payload script and this will

be stored as part of the DOM. It will then be executed when the client-side script reads the

data from the DOM (see figure 3.5). Since this attack is based on the client-side, it is a

dangerous attack. The client-side script never sends the payload to the server. For changing

the HTML or XML document, the scripting or program will get permission from the DOM;

hackers’ scripting or programs are able to modify the HTML or XML document. The

weakness of this type of XSS is completely different from the stored XSS attack and it does

not inject malicious code into a page. Thus, it counts as a problem to make insecure the

object of DOM that the client-side controls in the web page or application. For this reason,

hackers can attack payload executed in the environment of the DOM to attack the victim

side [36].

19

Figure 3.5. DOM-Based XSS [44]

3.6. Risks and Potential Impact of XSS Threats

XSS can be described as a web-based attack applied on weak applications over the

web; the user is going to be a victim rather than the application and, by manipulating XSS

vulnerabilities, an attacker can run malicious actions, such as:

3.6.1. Hijacking the Accounts

Hijacking the accounts of legitimate users is one of the vectors of XSS attacks. The

attackers are able to hijack the accounts of the victims by stealing information from their

cookie sessions. This information permits the attackers to impersonate their victims’

identity. They can access any information that is sensitive and can execute various functions

on behalf of their victims. Attackers insert a malicious JavaScript code into the vulnerable

input field. However, if the client side has an “HttpOnly" flag, then the cookies have

protection. Such protection informs the browser that the client-side scripts are not accessible

via cookies [37].

20

3.6.2. Theft of Credentials

Attackers can deploy XSS attack to steal their target victims’ credentials. Instead of

using cookies, attackers use JavaScript and HTML to steal the users’ credentials. The

attackers start by cloning the page of the web application that the victims use. They use XSS

vulnerability to send the clone to the victims. Once the victims send their credentials via the

clone page, the attackers can use the collected data to access the accounts of the victims that

use these particular details. This technique is beneficial to attackers because , although the

cookie session may expire, they receive the credentials in plain text thereby making their

attacks easier [37].

3.6.3. Access to Sensitive Data

XSS vector attacks can obtain sensitive data, such as information about a credit card

or other personally identifiable information. Such sensitive data can be used in the

performance of the unauthorized operation, some of which can lead to extraction of funds

from the victims’ bank accounts. XSS makes it possible to use an XMLHttpRequest object

to compel the user to send money to an unintended user over the web application [37].

3.6.4. Drive-by Downloads

An attacker might user XSS vector attacks to gain control over an organization and

can control its computers and pose a significant threat to its business operations. This

presents a dire risk that can threaten the existence and performance of the organization.

Frameworks for exploitation, such as the Browser Exploitation Framework, make such an

attack possible. Some of the modules in this form of attack involve an object that can collect

information, such as social engineering tools, such as in the cloning of a Facebook login

page. Attackers use malicious code to hook the victims’ browsers to their servers [37].

3.7. Mitigation or Preventing of XSS

XSS is ultimately produced by programming mistakes or security gaps during filling

web forms. By using secure coding techniques, web developers and operators who write

21

dynamic web pages can prevent XSS exploits so that the XSS risk can be prevented by the

following techniques.

3.7.1. Encoding

Encoding is also known as escaping. Encoding data on output is a technique that

prevents misinterpretation of data by the currently running interpreter or parser. Some

common escaping data on output constitute the greater-than and less-than signs in HTML

elements. They limit the attacker from introducing new tags that could contain malicious

codes and are executable by the browser; this is the reason for the escape of the tags for the

various HTML elements [30,38].

3.7.2. Input Validation

Input validation is the first line of defense for any web application or website.

Validation limits the characters that the user can type only to defined parameters. For

instance, the web application can require of the user to enter information containing only

numbers and letters and will make it challenging for the attacker to add other characters that

make the code valid for injection through the input fields. Input validation has the limitation

of filtering the data at the entry field and cannot determine rejection or acceptance based on

the final usage. Input validation helps in the prevention of XSS attacks by limiting the user

from entering data of inherent values into the available data inputs. For instance, in the input

that requires a country, parameters can allow a list of countries allowed. Input validation is

also useful in checking out data with defined constraints in their syntax. Although input

validation cannot block all existing or new payloads, it is helpful in preventing attacks

emanating from the most common types of attacks [39].

3.7.3. Session Expiration

Expiring a session when two distinct IP addresses tries to log in using identical data is

also another simple and effective strategy to minimize XSS attacks. It could be possible that

one of the sessions is legit and the other an imposter. For instance, if the attacker tricks a

victim into sending their social media login details to the server, it could mean that the user

is already logged and the attacker could make an attempt to log into the account of the user.

22

Expiring the session could ensure that, even if the attacker has the information from the

victim, it could be difficult to gain access to the accounts of the victim [38].

3.7.4. Developing a Web Application Software

Most of the vulnerabilities that occur in web applications result from errors relating to

the security of the application coding errors and design. Following a security development

lifecycle does not make the web application immune to attacks, but it helps in the

minimization of the errors in coding and design, thereby reducing the intensity of the errors

that might not be detected during the testing and launch of the application. A fundamental

rule to observe in the development phase of the application is that any user input is a threat

or comes from a source that is vulnerable. This rule applies to all data that the website or

web application receives, such as images, files, emails, cookies, or data. The rule should

apply even to users who have logged into their accounts, even if they have authenticated

themselves. Validating the user input concerning the format, the range, the length, and the

type of the data ensures that they adhere to an established standard. Validating user input

ensures that, before reverting to the user, the client side has checked, verified, encoded, and

filtered information [40].

XSS can be eliminated by validation and input sanitization of user-supplied data since

it ensures that the user-supplied data is in the format required for web application; four

methods are proposed for input sanitization [30].

 Replacement searches for dangerous user inputs then substitutes those dangerous

code with correct and true characters.

 Removal also looks for dangerous inputs, but as 584 opposed to replacement, it

removes them.

 Escaping changes (or marks) key characters of the data to avoid them from being

interpreted in a dangerous code.

 Restriction checks the user inputs to limited non.

Last but not least, OWASP’s guide to secure development gives three rules for dealing

with user data [41,30]:

 Accept Only Known Valid Data

 Reject Known Bad Data

 Sanitize Bad Data

4. METHODOLOGY

 Default Client-side (Web Browser) validation cannot be relied upon as this validation

is not a mature and adequate security tool. Security-wise, everything received from a web

user should be revalidated. Any malicious code that has been written by JavaScript or other

web client-side scripts input validation performed on the client side can easily be bypassed

by an attacker by simply disabling JavaScript or Web Proxies on their browsers. Also, it is

very difficult for web browsers to validate rich content submitted by users. Form input

validation is used to detect unauthorized input before it is processed by the application.

However, blacklisting validation in order to detect dangerous or incorrect characters and

patterns is a massively flawed approach, since attackers can bypass these filters.

Additionally, such filters can equally prevent legitimate input and characters.

XSS is a security flaw that occurs when dynamically generated web pages display

input that is not properly validated. Once the display is made, attackers then embed malicious

JavaScript code into the generated page, and execute the script on any machine that views

the site. Since XSS is introduced into a web application through untrusted user input, it is

possible that such threats can be avoided by limiting users’ chances of inputting untrusted

data- including uploads, and ensuring that all user data are strongly validated and checked

before being submitted to the server. Positive whitelist validation is used for all user input

as a control mechanism. It uses in-built optimized platform-specific regular expressions to

dynamically validate user data.

Validation of a default web browser and JS data validation come with predefined rules

that are most likely mastered by XSS injection hackers. Consequently, it is harder for a

hacker to launch an attack on a user’s browser with custom validation because they may not

understand the algorithms used in securing the customized system. A custom system can be

used to prevent XSS injection through a regular expression pattern .Regular expressions are

used to describe a certain amount of text. Based on mathematical theorem, regular

expressions are a powerful time-saving tool that separate patterns from surrounding texts

and punctuations. A match refers to a piece of text, or a sequence of bytes and/or characters

in a pattern that correspond to regex processing engine. While user input can be statically

validated by inspecting each character within the input string to ensure that it matches with

24

required data, regular expressions solves the cumbersome process of static methods by

passing the parsing of input to expression engines that process user inputs.

Basically, regular expressions are used to describe a certain amount of text. Based on

mathematical theorem, regular expressions are a powerful time-saving tool that separate

patterns from surrounding texts and punctuations. A match refers to a piece of text, or a

sequence of bytes and/or characters in a pattern, that corresponds to a regex processing

engine. While user input can be statistically validated by inspecting each character within

the input string to ensure that it matches with required data, regular expressions solve the

cumbersome process of static methods by passing the parsing of input to expression engines

that process user inputs.

A regular expression engine checks that user input data matches predefined

expressions and returns error message if matching fails. Regular expressions are used to

check whether an input falls within some given range, is not null, is certain bytes long, or

contains some special characters. For example, a regular expression “^[A-Z0-9._%+-]

+@[A-Z0-9.-]+\.[A-Z]{2,4}$ ” is used to check if an email address is a combination of upper

and lower cases, digits ranging from 0 to 9, has a dot and an @ symbol that does not come

last in the email; so, user input can be enforced to an alphanumeric set with the proposed

system processing before being used by web applications in any way.

Regular expressions help avoid instances of XSS and control user data by preventing

execution or processing of malicious data. User data must be controlled and encoded

whenever being submitted to the server. So, regular expressions can be used to explore and

replace user input to confirm it is non-malicious. This searching and validation must be

implemented on all user data before passing to another web page or web process.

PHP web programming language provide built-in functions to prevent XSS using

regular expression. By using regular expressions, we can find it easier and also replace and

work with strings. The primary strategy is AllowList regular expression ,as shown in figure

4.1, which validates the input data as trusted while DenyList regular expression includes

checking whether the information contains unsuitable data and evacuates all conceivable

suspicious characters.

Algorithm (1): The Proposed System to prevent XSS Attack

Process

Initialize AllowList_RegExp

[

mailto:+@[A-Z0-9.-]+/.%5bA-Z%5d%7b2,4%7d$

25

Hold only alphabetic latter lower and upper case

Email address reg_exp

URL: Protocol, domain name, page reg_exp

MasterCard reg_exp

Credit card numbers reg_exp

Phone number regex

Currency amount reg_exp

]

Initialize DenyList_RegExp

[

Band JavaScript regex

Band out VBscript regex

Band out HTML tags regex

Band style tags property regex

Clear away ASCII code characters excel regex

Clear away any Unicode code point that is unused in the current Unicode regex

Clear away quotes and backslashes regex

Clear away hex tag regex

Clear away regex

]

While user input not empty do

For each item of AllowList _RegExp do

If user input match item

Return user_input

End if

Next

For each item of DenyList _RegExp do

If user input match item

Remove user_input

Return empty string

End if

Next

Next

End

26

 Figure 4.1. Approach System to Prevent XSS

When a web user fills in and submits a web form, the algorithm analyses and examines

the first and second regular expressions for checking, accepting and validating only expected

input; if there is any malicious code it will be removed and cleared. After clearing user data,

then it can submit data to the database or send to the server. Thus, by implementing this

system, we satisfy and apply the three main OWASP rules for dealing with user data.

In conclusion, cannot be reliable upon web browsers and JavaScript validations for

preventing XSS injection. It has been proven that even though XSS injections can be

associated with Flash, VBScript, and ActiveX, attackers prefer JavaScript because its use is

Filling out web form

by user

Verifying

trusted input

data

Checking for

malicious

input data

Yes

No

Removing

malicious code

Submit

27

predominant in websites. XSS attackers have mastered most of the underlying security

vulnerabilities in JS data validators as well as default web browser validators hence the need

for regular expression patterns to come up with exceptional custom validators to help contain

the XSS injection issue.

5. A PROPOSED APPROACH FOR PREVENTION OF THE XSS

For implementing the mentioned methods, we have designed a web system that

includes a web form that contains a number of fields for receiving different data and which

will be filled by the user. After filling at least one of the fields with the needed data, the user

must submit it to move on for the next step; after the submitting, all the data will be matched

with the AllowList and, if the matched data are recognized by the system, then they will be

treated as the allow-list, informing the user about the safety of the fields and the information

will be safely accepted.

However, if the information and data were unable to be matched with the allow-list

then the system will recognize them as the DenyList, which means they are vulnerable and

risky, and will alert the user about which field contains the risky or unsafe information,

Ultimately, the system won't accept such a procedure to be continued and this leads to

deleting the data.

5.1. System Requirements

 PHP: Server-side web programming language is an excellent tool for developing

dynamic and interactive web pages, it is very common and powerful , the proposed

system will be developed and programmed with PHP. This is executed on the web

server (local or online server) and the PHP language is nested within a web page

with its HTML. When the page is requested, the server calls PHP to execute the

operations.

 HTML: Hypertext Markup Language describes how web content within the HTML

file is designed; this markup informs a web browser how to display the text, image,

video and other file types of multimedia on the web page. Thus, client-side basic

web language is used for creating web forms.

 XAMP server: we need a web server for compiling PHP code on local host.

29

5.2. System Interface

In Figure 5.1, the interface of the system is shown that consists of three input fields:

name, email and messages.

Figure 5.1. System Interface

At the top left within the home page, there is a button that can be used to enable and

disable the XSS validation (see Figure 5.2), so the effectiveness of the system can be easily

observed while, when the XSS validation button is on, then the system will be able to detect

malicious code that is injected into the fields.

Figure 5.2. XSS Validation Button

Initially, the XSS validation button is turned off, and, whenever any malicious XSS

code is being injected into any of the input fields, it will be executed immediately after

submitting the web form.

30

5.3. Testing System and Evaluation

In this section, we applied the proposed algorithm to find the efficiency of the system

and how XSS and malicious code detection were proceeded and then discussed and

evaluated the results throughout by injecting various malicious code, like JavaScript code,

HTML tags, and CSS tags ,into fields, whereby the XSS validation button in disabled only

for example one and enabled for the rest of the examples to show the differences between

the effectiveness of the validation button, and to state the system’s purpose. Example

number one to example number six can briefly give an explanation.

5.3.1. Scenario 1

In this example, as can be seen, there is a simple JavaScript code injected within the

"Name" field; the code's task is to pop up a dialogue box just to make sure that the code runs

while the XSS button is disabled after we click submit button. In this case, any JavaScript

code is able to execute easily, because the XSS validation button isn’t enabled and causes

the proposed algorithm to stop working for detecting and validating data. This means any

kind of submission can be done without going through any validation and any JavaScript

code can be run within the fields (see Figure 5.3). Below is the block of the Java Script code

 Table 5.1. Malicious Code of Scenario 1

<script>

alert ("a JavaScript has been executed!");

</script>

Figure 5.3. Execution of XSS Code

31

5.3.2. Scenario 2

On the other hand, during the enabled mode of the XSS validation button we have

injected the same code of JavaScript into one of the input fields once by clicking on the

submit button. The system will immediately detect the XSS code then pop up a message

informing the user which one of the input fields contain the malicious code of XSS and the

malicious text will be removed by the system (see Figure 5.4).

Figure 5.4. Detecting Malicious Content

5.3.3. Scenario 3

In the case of no malicious content being injected into the input fields, the system will,

therefore, consider them as the AllowList_RegExp and allow them to be submitted (see

Figure 5.5). The data of input fields are as follows:

name: User Name

email: user@maildomain.com

message: this is a message

mailto:user@maildomain.com

32

Figure 5.5. Submitting Real Input Data

5.3.4. Scenario 4

A JavaScript code has been injected in this example and works by obtaining cookies

from the browser, in the same way; the system will stop the procedure of showing the user’s

cookies within the browser (see Figure 5.6).

 Table 5.2. Malicious Code of Scenario 4

<script>

var current_cookie_value = document.cookie;

window.alert(current_cookie_value);

</script>

Figure 5.6. Submitting Malicious Code

33

5.3.5. Scenario 5

In this example, a tag of cascading style sheets “CSS” is entered in the Message field

whereby the system can recognize it as a DenyList by alerting the user about finding unusual

data in the message field. It will subsequently remove it permanently (see Figure 5.7).

 Table 5.3. Malicious Code of Scenario 5

body{

background-image:url(“paper.gif”);

background-color:Red;

}

Figure 5.7. Submitting CSS Tags

5.3.6. Scenario 6

Finally, in this example we have tried something different, which is injecting malicious

code within all the fields at the same time and, as usual, after clicking the submit button the

system was able to detect each one of the injected malicious codes from all the input fields,

then remove them all (see Figure 5.8). The following input data is an example for the

JavaScript malicious code that been injected in the fields.

34

Table 5.4. Malicious Code of Scenario 6

Field Type Malicious code

Name <script>

alert ("a JavaScript has been executed!");

</script>

Email <script>

function (data)

{

var image = new Image();

image.src = "data:image/jpg;base64";

document.body.appendChild(image);

}

<script>

Message <script>

function myFunction() {

var myWindow = window.open("", "MsgWindow", "width=200,height=100");

myWindow.document.write("<p>This is 'MsgWindow'. I am 200px wide

 and 100px tall!</p>");

}

</script>

Figure 5.8. Filled out All Input Filed with Malicious Code

35

5.4. Evaluation of Application

The existing methodologies of detecting an XSS attack require both modification from

both server and client-side environments, and exchanging of sensitive information from

server to client. Shahriar and Zulkernine mentioned in their research that they have used

JavaScript validation for user input, and designed a JavaScript signature tool for recognizing

valid data. The designed system transfers a unique token for client request through

communication. Their system is based on two different tasks: preventing malicious code and

the sanitization method for cleaning up HTML text.

Jim et al. developed hashes for legitimate JavaScript code at the client- side and sent

them to browsers to obtain validated data. This approach can be defeated by injecting

legitimate JavaScript method call in the web pages.

Our research proposes a server side XSS attack detection approach based on Pattern

Regular Expression algorithm. The system specifies and recognizes malicious data after

submitting the webpage, then, for detecting the XSS attack, the code will be checked from

server-side while generating the response to the web server.

Shahraiar and Zulkernine’s research is based on using JavaScript for validating data

from XSS attacks, which is counted as one of the worst points for any validation system that

been controlled by JavaScript because its code is processed on the client’s computer;

therefore, it can be exploited for malicious purposes. This is one of the reasons that some

people decide to disable JavaScript in their web browser, or, in some cases, users might

disable the JavaScript unintentionally. In comparison with our system, the processing of

validation is running on the server-Side; therefore, the client is unable to disable the

validation system, intentionally or unintentionally

Our suggested system is implemented by PHP; therefore, the client doesn’t have access

to view the codes. Thus, the client is unable to obtain an idea of how the algorithms are

running and how the system is working, while both systems in the researches by Shahriar

and Zulkernine and Jim et al. were implemented by JavaScript, which is vulnerable because

the codes and their functionality of system are processed on the user side and always visible

to the user.

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

XSS is a flexible and robust attack that expands the scope of client-side and it is

counted as one of the prime threats for web applications. This attack can steal vital and

sensitive information, such as session tokens.

Default client-side validation cannot be relied upon and everything received from a

web user should be revalidated. In our work, we proposed a method to detect and identify

XSS attack by using regular expression. The algorithm works in a way that, when any

information been submitted by the user, it matches the data with two different lists. First, is

the AllowList, which gives permission for all the data that aren’t malicious code, and the

second is the DenyList that holds all the data that include malicious code. Any submitted

data will be matched with both mentioned lists in a way that the system recognizes the data

and deals with it as one of the lists. Once a malicious code been recognized within the data,

the system will clean it up and then alert the user about the action. The important point that

distinguishes this from earlier mentioned researches is that our implementation is server-

sided, and the user has no access to disable it, watch over how the system works, run the

algorithms or edit the codes. In the other mentioned studies, however, the user has the ability

to access the codes and is able to disable them, intentionally or unintentionally.

6.2. Future Work

In the first step, the (XSS) Cross-site scripting explained the level of risk and the main

aspects for preventing and detecting this common threat and we approached a system to

protect web pages when any attacker tries to run malicious code in the victim’s browser. For

the next step, we will try to develop a tool or browser extension to auto detect and prevent

running malicious code while a user is filling a web form.

37

REFERENCES

[1] “History of the Web” , Retrieved from

https://webfoundation.org/about/vision/history-of-the-web/ (Accessed:

November 28, 2018).

[2] B.Rosborough ,”web security basics

”https://www.beyondsecurity.com/blog/web-security-basics (Accessed:

November 28, 2018).

[3] Huang, Y.W., Huang, S.K., Lin, T.P. and Tsai, C.H., 2003, May. Web

application security assessment by fault injection and behavior monitoring.

In Proceedings of the 12th international conference on World Wide Web , pp.

148-159.

[4] M. Almorsy, J. Grundy and A. S. Ibrahim, "Supporting automated vulnerability

analysis using formalized vulnerability signatures," 2012 Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering,

Essen, 2012, pp. 100-109.

[5] D. Patil and K. Patil, “Client-side automated sanitizer for cross-sitescripting

vulnerabilities,” International Journal of Computer Applications, vol. 121, 2015.

[6] Lwin Khin Shar and Hee Beng Kuan Tan. Predicting common web application

vulnerabilities from input validation and sanitization code patterns. Proceedings

of the 27th IEEE/ACM International Conference on Automated Software

Engineering, pages 310–313, 2012.

[7] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. Mining sql

injection and cross site scripting vulnerabilities using hybrid program analysis.

Proceedings of the 2013 International Conference on Software Engineering,

pages 642–651, 2013.

[8] J. Walden, J. Stuckman, and R. Scandariato. Predicting vulnerable

components: Software metrics vs text mining. IEEE 25th International

Symposium on Software Reliability Engineering (ISSRE), pages 23–33, Nov

2014.

https://webfoundation.org/about/vision/history-of-the-web/

38

[9] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting

vulnerable software components via text mining. IEEE Transactions on Software

Engineering, 40(10):993–1006, Oct 2014.

[10] P. Saxena, D. Molnar, and B. Livshits, SCRIPTGARD: Preventing Script

Injection Attacks in Legacy Web Applications with Automatic Sanitization,

MSR-TR-2010- 128, Sept. 2010.

[11] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: Precise Dynamic Prevention

of Cross-Site Scripting Attacks,” Proc. of the 5th DIMVA, Paris, July, 2008,

pp.23-43.

[12] T. Jim, N. Swamy, and M. Hicks, “Defeating Script Injection Attacks with

Browser-Enforced Embedded Policies,” Proc. of the WWW, Banff, Alberta, May

2007, pp. 601-610.

[13] H. Shahriar, M. Zulkernine, “S2XS2: A Server Side Approach to

Automatically Detect XSS Attacks,” 2011 IEEE Ninth International Conference

on Dependable, Autonomic and Secure Computing, Sydney, NSW, 2011, PP. 7-

14 .

[14] Lwin Khin and Hee Beng, ” Automated removal of cross sites cripting

vulnerabilities in web applications”, Nanyang Technological University, 2012.

[15] MatthewVan and Hao Chen, “Noncespaces: Using randomization to defeat

cross-site scripting attacks”, University of California, 2012.

[16] P. Umasankari, E.Uma and A. Kannan, “Dynamic Removal of Cross Site

Scripting Vulnerabilities in Web Application”, Anna University, 2011

[17] Xiaoweili and Yuanxue, “A Survey on Server-side Approaches to Securing Web

Applications”, Vanderbilt University, 2013

[18] J. Offutt, Y. Wu, X. Du, and H. Huang, “Bypass testing of web applications,”

in Proceedings of the 15th International Symposium on Software Reliability

Engineering (ISSRE’04), 2004.

[19] M. Rouse, “OWASP (Open Web Application Security Project)” Retrieved form

http://searchsoftwarequality.techtarget.com/definition/OWASP last

accessed25/11/2017

[20] “About The Open Web Application Security Project “, Retrieved form

https://www.owasp.org/index.php/About_The_Open_Web_Application_Securit

y_Project last accessed 12/12/2017

39

[21] OWASP, T., 2013. 10 2017: The Ten Most Critical Web Application Security

Risks. Sl: The OWASP Foundation.

[22] Hassan, M.M., Nipa, S.S., Akter, M., Haque, R., Deepa, F.N., Rahman, M.,

Siddiqui, M.A. and Sharif, M.H., 2018. Broken Authentication and Session

Management Vulnerability: A Case Study Of Web Application. International

Journal of Simulation Systems, Science & Technology, 19(2), p. 63

[23] Doshi, J. and Trivedi, B., 2014. Sensitive data exposure prevention using

dynamic database security policy. International Journal of Computer

Applications, 106(15), pp.18600-9869.

[24] Hogue, R., 2015. A Guide to XML eXternal Entity Processing.

[25] Konecki, M., Hutinski, Ž. and Orehovački, T., 2007, January. Secure web

applications?. In 30th Jubilee International Convention on Information and

Communication Technology, Electronics and Microelectronics.

[26] Eshete, B., Villafiorita, A. and Weldemariam, K., 2011, August. Early

detection of security misconfiguration vulnerabilities in web applications.

In Availability, Reliability and Security (ARES), 2011 Sixth International

Conference on (pp. 169-174). IEEE.

[27] Gupta, S. and Gupta, B.B., 2017. Cross-Site Scripting (XSS) attacks and

defense mechanisms: classification and state-of-the-art. International Journal of

System Assurance Engineering and Management, 8(1), pp.512-530.

[28] Seacord, R., 2017. Combating Java Deserialization Vulnerabilities with Look-

Ahead Object Input Streams (LAOIS).

[29] Dehalwar, V., Kalam, A., Kolhe, M.L. and Zayegh, A., 2017, December.

Review of web-based information security threats in smart grid. In 2017 7th

International Conference on Power Systems (ICPS) (pp. 849-853). IEEE.

[30] V. K. Malviya, S. Saurav and A. Gupta, "On Security Issues in Web

Applications through Cross Site Scripting (XSS)," 2013 20th Asia-Pacific

Software Engineering Conference (APSEC), Bangkok, 2013, pp. 583-588

[31] H. Shahriar and M. Zulkernine, "S2XS2: A Server-Side Approach to

Automatically Detect XSS Attacks," 2011 IEEE Ninth International

Conference on Dependable, Autonomic and Secure Computing, Sydney, NSW,

2011, pp. 7-14.

40

[32] Cross-Site-Scripting (XSS) -Attacking and Defending (no date). Available at:

https://www.theseus.fi/bitstream/handle/10024/13013/Li_Yonghao.pdf?sequenc

e=1 (Accessed: November 28, 2018).

[33] Muncaster, P., 2014. eBay Under Fire After Cross-Site Scripting

Attack, Infosecurity Magazine. Infosecurity Magazine. Available at:

https://www.infosecurity-magazine.com/news/ebay-under-fire-after-cross-site/

Accessed: (November 28, 2018).

[34] Excess-xss.com. (2016). Excess XSS: A comprehensive tutorial on cross-site

scripting. Available at: https://excess-xss.com/ (Accessed 28 Nov. 2018).

[35] Bojinov, H., Bursztein, E. and Boneh, D., 2009, November. XCS: cross-

channel scripting and its impact on web applications. In Proceedings of the 16th

ACM conference on Computer and communications security , pp. 420-431.

[36] Mehdi. E and Rasha, H., 2016, “Preventing Cross Site Scripting Attacks in

Websites” , Asian Journal of Information Technology, P.15.

[37] The Real Impact of Cross-Site Scripting (2016) Dionach. Available at:

https://www.dionach.com/blog/the-real-impact-of-cross-site-scripting

(Accessed: November 28, 2018).

[38] Cross-site scripting explained: How to prevent XSS attacks

(2017) ComputerWeekly.com. Available at:

https://www.computerweekly.com/tip/Cross-site-scripting-explained-How-to-

prevent-XSS-attacks (Accessed: November 28, 2018).

[39] Ter Louw, M. and Venkatakrishnan, V.N., 2009, May. Blueprint: Robust

prevention of cross-site scripting attacks for existing browsers. In Security and

Privacy, 2009 30th IEEE Symposium on (pp. 331-346). IEEE.

[40] Shalini, S. and Usha, S., 2011. Prevention Of cross-site scripting attacks (XSS)

on web applications in the client side. International Journal of Computer Science

Issues (IJCSI), 8(4), p.650.

[41] https://searchsoftwarequality.techtarget.com/news/1156594/Data-validation-

Chapter-12-OWASP-Guide-to-Building-Secure-Web-Applications-and-Web-

Services (Accessed: November 28, 2018).

[42] https://dzone.com/articles/exploiting-sql-injection-a-hands-on-example

(Accessed: November 28, 2018).

41

[43] https://medium.com/@vishwaraj101/next-xss-gonna-cost-you-some-cpu-

65e3b3cb998d (Accessed: November 28, 2018).

[44] https://secure.wphackedhelp.com/blog/wordpress-xss-attack/ (Accessed:

November 28, 2018).

42

CURRICULUM VITA

Twana Asaad TAHA

E-mail: twana.assad@gmail.com

Nationality: Iraq

Place of birth: As Erbil

Date of birth: 8 / 8 / 1989

Marital status: Single

EDUCATION

- 2017 – 2019 Master Degree, Software Engineering department, Technology

Faculty, Fırat University, Elazığ, Turkey.

- 2007 – 2011 Bachelor Degree, Computer Science department, College of Science,

Salahaddin University-Erbil, Iraq.

OTHER CERTIFICATES

- Network Association (Certificate) , Ministry of Higher Education 2014 , Erbil, Iraq.

WORK EXPERIENCE

- Teacher at Hawler Private Institute for Computer, for five years , 2011 -2016.

- IT Trainer at European Technology& Training Center, (ETTC), 2011-2013

- IT Manager at Green Company , 2015-2016.

PUBLICATIONS

T. A. Taha and M. Karabatak, "A proposed approach for preventing cross-site

scripting," 2018 6th International Symposium on Digital Forensic and Security (ISDFS),

Antalya, 2018, pp. 1-4.

