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SUMMARY

Some characterizations of AW (k)-type curves

In curve theory, we can obtain alot of special curves by using Frenet frame. In this
thesis, we examined AW (k)-type curves, heix and slant helices.

AW (k)-type curves have been studied by many mathematicians. Ozgiir and Gezgin
have studied AW (k)-type curves in E? [7] . Kiilahci, Bektag and Ergiit have studied har-
monic curvatures of null curves of the AW (k)-type curves in Lorentzian space [9] ..Kula
and Et Al gave the characterizations of slant helices in Euclidean 3-space [8]. Yildirim
Yilmaz and Et Al studied slant helix in Riemann-otsuki space [10] . Ahmad gave general
helices in Euclidean 3-space [13].

In this thesis, we studied AW (k)-type curves of Pseudo null and Null cartan curves
in Minkowski 3-space E2. Furthermore, we defined helix and slant helix according to
Bishop frame in E}. Additionally, we gave some necessary and sufficient conditions for
the slant helix and helix in Minkowski 3-space.

Key words: Pseudo null curve, null cartan curve, Bishop frame, helix, slant helix,

Minkowski 3-space.
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OZET

AW (k)-tipinden Egrilerin Baz1 Karakterizasyonlar:

Egriler teoresinde, Frenet c¢atisini kullanarak bircok 6zel egri elde edebiliriz. Bu
tezde, AW (k)-tipinden egriler, helis ve slant helisleri inceledik.

AW (k)-tipinden egriler bircok matematikci tarafindan cahgildi. Ozgiir ve Gezgin
E3 de AW(k)-tipinden egrileri galist1 [7]. Kiilahc1, Bektag ve Ergiit Lorentz uzayinda
AW (3)-tipinden null egrilerin harmonik egriliklerini ¢alist1 [9]. Kula ve digerleri Oklid 3-
uzayinda slant helislerin Karakterizasyonlarim verdiler [8]. Yildirim Yilmaz ve digerleri
Riemann-otsuki uzaymda slant helis cahstilar [10]. Ahmad, Oklid 3-uzaymnda genel
helisleri verdi [13].

Bu tezde, Minkowski 3-uzay1 E? de Bishop gatisina goére Pseudo null ve Null cartan
egrilerin AW (k)-tipinden egrileri ¢alistik. Bundan bagka, E® de Bishop catisina gore
helis ve slant helis tamimladik. Ayrica, Minkowski 3-uzayinda slant helis ve helis icin
gerekli ve yeter sartlari verdik.

Anahtar Kelimeler: Pseudo null egri, null cartan egri, Bishop cati, helis, slant

helis, Minkowski 3-uzay1.

v



1. INTRODUCTION

"walk" along a three-

It would be a great asset for mathematicians to be able to
dimensional space curve and demonstrate the curve’s properties, such as curvature
and torsion. This ability is provided by the classic Serret-Frenet frame. The tangent,
normal and binormal vector fields can be called TNB frame. But at some points, the
curve may not be continuous, which is undefined when the curve’s second derivative
vanishes [1]. In 1975, Richard Lawrence Bishop first presented the parallel frame as a
new frame that is well defined even if the curve has a second derivative disappearing,
then in the research the parallel frame came to be called the Bishop frame [1,2,3].
Bishop frame includes the tangential vector field T and two normal vector fields Ny
and N,, that is found by rotating the Frenet vectors N and B in the normal curve
plane T+ so that they are relatively parallel [3]. The Bishop frames are used in the field
of Biology and Computer Graphics. For instance, data on the shape of DNA sequences
can be determined by applying a curve defined by the Bishop frame. It also provides a
new way of controlling virtual cameras in computer animation [4]. Some Bishop frame
apps can be found in Minkowski spaces [5, 6].

The pseudo null and null Cartan curve in Minkowski 3-space are known as the
curves with two null vector fields in the Frenet and Cartan frames respectively [3].

In differential geometry, a general helix in Euclidean 3-space R? is defined in such
a way that the tangent makes a constant angle with a fixed direction [7,8,9,10]. In
nature, helical structures are found in nano-springs, helices, DNA, carbon nano-tubes,
bacterial flagella in salmonella and escherichia coli, tendrils, stems, screws, helical
staircases, bacterial shape in spirochets, and sea shells [11, 12, 13]. In fractal geometry,
for instance hyper-helices, helical structures are used.

If the principal normal N makes a constant angle with a fixed direction, this curve
can be called a slant helix in Euclidean 3-space [8] Furthermore, Izumiya and Takeuchi
[14] have shown that v is a slant helix in E* necessary and sufficient the geodesic
curvature of the principal normal of v is a constant function.

In curves theory, J. Bertrand examined curves in Euclidean 3-space E3, the principal
normals of which are the principal normals of other curve. Thus, the Bertrand curve
is obtained. These curves have a distinctive feature that first and second curvatures

are in linear relationship [7, 15].



2. THEOREMS AND DEFINITIONS
Definition 2.1

For a given function F' of two real variables z,y. F(z,y) = 0 describes a “level
curve” whenever the gradient of F' does not vanish, that is to say if g—i # 0 or 66—5 #0
at every point satisfying F'(z,y) = 0 [16].
Definition 2.2

For a given function F' of x,y,z the equation F(x,y,z) = 0 describes a “level
surface” whenever the gradient of F' does not vanish, i.e, if g—i # 0 or 2—5 # 0 or
% # 0 at every point satisfying F'(z,y,z) = 0 [16].
Definition 2.3

A regular curve is a continuously differentiable immersion v : I — E™, defined on
a real interval I C R. Thus, v = % # 0 holds everywhere [3].
Definition 2.4

Let ~:I — E" be a curve. v can be called regular if ~' (t) is always non-zero
(|7 (#)| = 0 for all t € I). It can be called unit-speed if |y (t)| =1 for all t € I [17].
Definition 2.5

Euclidean n-space E™ is defined as the set of P = (p,...,p"), where p' € R, for
each i = 1,...,n. Given any two n-tuples P = (p',....,p"), ¢ = (¢, ...,¢") and any real

number ¢, we define two operations

p+q = (P +q'...p"+q")

cp = (cp,...;cp),

as sum and scalar multiplication of vectors respectively, Euclidean space requires the
structure of a vector space of n dimensions [18].
Definition 2.6

The angle between vectors = # 0 and y # 0 is defined to be the number 6 € [0, 7]

for which

o= arceos () 071



Definition 2.7

(A, V, f) is a real affine space where A is a set of points, V is a real vector space
and

f:Ax A—V is amap endorsing:

1. VP € A and Yu € V there is a unique () € A such that

f(P,Q) =u

2. f(P,Q)+ f(Q,R) = f(P,R) for every P,Q,R € A.
Notation We can show (P, Q) = PQ. The elements contained on the set A are called
points of A and we will say that V' is the vector space associated to the affine space
(AV, f) [19].
Definition 2.8

A set of vectors in V' can be called linearly dependent if there exist ay, ..., a, € F,
not all 0, such that a;v;+--+a,,v, =0 [20].
Definition 2.9

A set of vectors is called orthonormal if

(ej,ex) =0 when j # k and (ej,e,) = 1 when j =k (for j k=1,...,m) [20].
Definition 2.10

Let 7y (s) be a regular curve in E”, which is parametrized by arc length and n—times
continuously differentiable. Then ~ is called a Frenet curve, if at every point the vectors
74",/ D are linearly independent. The Frenet n—frame e1, e, ...,en is then
uniquely defined by the following statements:

(i) ei,esq,...,e, are orthonormal and positively oriented.

(ii) For every k = 1,....,n — 1 one has sp( e1,es,....en) = sp(y, 7", ...,7*), where
sp represents the linear span.

(iii) (v*),ex) > 0for k=1,...,n—1 [16].
Definition 2.11

Let v : I — E3 be a regular space curve, let ¢t € I with k(t) # 0, the Frenet frame
at t is the basis {T'(s), N(s), B(s)} of E? defined as



v(t) (tangent) where v(t) =~ (t)

il
_ @
N(t) = 0] (normal)
B(t) = T(t)x N(t) (binormal)

The triple {T'(s), N(s), B(s)} is called the Frenet-Serret Frame of R at the point
v(s) of the curve. The important of this basis over the fixed basis (i, 7, k) is that
the Frenet frame is naturally adapted to the curve. It spreads along with the curve
with the tangent vector always pointing in the direction of motion, and the normal
and binormal vectors pointing in the directions in which the curve is tending to curve
[17,18].

Definition 2.12

Let v be a Frenet curve in E™ with Frenet n-frame ey, ... Then there are

7671‘

functions ki, ..., k,_;1 defined on that curve with kq,...,k,_o > 0, so that every k; is

(n — 1 — i)-times continuously differentiable and

i e, 1 [o % o o o 0] e |
Co ~k 0 ky 0 0 es
0 -k 0 0
=10 0 0
0 0
e 1 0 kn-1| |€na
e | |0 0 0 —kpr 0 || en

k; is called the 1 —th Frenet curvature and the equations are called the Frenet equations

[16] .
Definition 2.13

Let v(s) : I — E™ be an arc-length parametrization of a path v in E™. The

curvature of v is a function k : I — R defined as follows:

(1) For a plane curve v(s) let




and thus
k(s) = £[T'(s)|

(2) For a space curve 7(s)

k() =|T'(s)| >0 [12].

Definition 2.14

Let ¢t € I and assume that k (s) # 0 (non zero curvature) the number

_ det [ ()7 (t).7" (1))
Iy () x 7" @)|]?

7 (s)
is called the torsion of v at ¢ [22].
Definition 2.15
A differential equation is an ordinary differential equation if it involves an unknown
function of only one variable The simplest differential equations are first order equations

of the form

dy

dr f(z)
or, equivalently,

y = f(x),

where f is a defined function of = [23] .
Definition 2.16.

The Minkowski 3-space E? is the real vector space E? which is included with the
standard indefinite flat metric (.,.) defined by

(u,v) = —uyv; + ugvs + ugvs, (2.1)

for any two vectors u = (uy,us, uz) and v = (v1, v2,v3) in E}. Since (.,.) is an indefinite
metric, an arbitrary vector v € F3\{0} can have one of three causal characters:

i) it can be space-like, if (u,u), > 0,

ii) time-like, if (u,u), < 0 or

iii) light-like or isotropic or null vector, if (u,u), = 0, but u # 0.



In particular, the norm (length) of a non lightlike vector v € E? is given by

[ull = v/ [{u, w)].

Given a regular curve v : I — E3 can locally be spacelike, timelike or null (lightlike),

if 7' (t) fulfills (v'(t),~ (t)), >0, (v(t), (t)), <0, or (v(t), (t)), = 0, respectively,
at any tel, where 7/ (t) = 2 [3].
Definition 2.17.

The curve (t) is said to be a geodesic if ky(t) = |7 (¢)| = 0 for all ¢ [24].
Definition 2.18.

A spacelike curve v : I — E? can be called a pseudo null curve if (N, B) = 1 is

satisfied, where N is principal normal vector field and B is binormal vector field and

they are null vector fields. The Frenet formulae is as the following

T’ 0 k 0 T
N|i=10 7 0 N\, (2.2)
B’ -k 0 —7 B

where the torsion 7(s) is an arbitrary parametrized arc-length function of v in s and

the curvature k(s) = 1, satisfying the equations

(N,B) = 1,(T,N)=(T,B) =0, (2.3)
(T,T) = 1,(N,N)=(B,B) =0,

and

TxN=NNxB=T,BxT =B, (2.4)

if det(T, N, B) = [T', N, B] = 1, then the frame is called a positively oriented frame [3] .
Definition 2.19.

Let T be a tangential vector field, N; and N5 be two normal vector fields in Bishop
frame. By rotating N and B in the normal plane T of the curve, Bishop frame can
be obtained, in this way they are relatively parallel. Furthermore, their derivatives N,

and N, with respect to s of the curve are collinear with the tangential vector field [3].



Definition 2.20.

Let {71, N1, N»} be Bishop frame of a pseudo null curve in E?. Bishop frame is
positively oriented pseudo orthonormal frame and 7} is a tangential vector field, N;
and N, are two relatively parallel lightlike normal vector fields. By using the hyperbolic
rotation to the principal normal vector field N, Bishop vector N; can be obtained. In
addition to this, by using the composition of three rotations about two lightlike and
one spacelike axis to the binormal vector B, normal Bishop vector N, can be found
3]

Definition 2.21.

If the tangent vector 4 = T is a null vector, a curve v : I — E3 can be called a
null curve. If null curve v = 7(s) is parametrized by the pseudo-arc function s defined
by t

st = [ VIl (25
a null curve can be called a null cartan curve. {T', N, B} is a unique cartan frame along

a non-geodesic null cartan curve verifying the following cartan equations

T 0o k ol |T
Nl|l=|-7 0 k| [N]|, (2.6)
B’ 0 -7 0| |B

where the curvature k(s) = 1 and the tursion 7(s) is an arbitrary function with pseudo-
arc parameter s. Null cartan curve is said to be null cartan cubic if 7(s) = 0, the

following equations must satisfy the cartan’s frame
(N,N) = 1(I\T)=(B,B) =0,
(I'B) = —1,(T,N)=(N,B)=0 (2.7)
and
TxN=-T, NxB=-B, BxT =N, (2.8)

if det(T,N,B) = [T, N, B] = 1 then the cartan frame is called a positively oriented
frame [3] .
Definition 2.22.

A regular curve v : I C R — E" is said to be a W —curve of rank d , if v is a
Frenet curve of osculating order d, curvatures k; , 1 <7 < d— 1 are non-zero constants.

AW (k) curves of rank 3 is a right circular helix [7].

7



Definition 2.23.

A curve v : I — E? with k; # 0 is said to be cylindrical helix if the tangent lines
of 7 make a constant angle with a fixed direction. The curve v(s) is a cylindrical helix
if and only if (Z—;) (s) =constant. If both k;(s) # 0 and ks (s) are constants, it is of
course a cylindrical helix but it is called circular helix [7].

Definition 2.24.

A curve v with ki(s) # 0 is called a slant helix if the principal normal lines of v
make a constant angle with a fixed direction [7].

Definition 2.25.

For two vector fields X, Y on S, we can define the Levi-Civita covariant derivative
VxY. (This derivation v/ is called the Levi-Civita connection or Levi-Civita covariant

derivative.) [24].



3. CURVES OF AW (k)-TYPE IN E3

Let v: I C E — E" be a unit speed curve in E". The curve + is called a frenet
curve of osculating order d if its higher derivatives v'(s), 7" (s), ..., 7(¥(s) are linearly
dependent and ~'(s), 7" (s), ..., ¥\**(s) are no longer linearly independent for all
s € I. Each Frenet curve of order d can be related with an orthonormal d-frame vy, vs,
..., vg along 7 (‘such that 7'(s) = v; ) called the Frenet frame and d — 1 functions ki,
ko, ... y kg1 : I — R, called the Frenet curvatures, such that the Frenet formulas are

defined in the usual way

Dy () = ka(s)ua(s)

Dy va(s) = —ki(s)vi(s) + ka(s)vs(s)
D, vi(s) = —ki_1(s)vi1(s) + ki(s)viq
Dy viga(s) = —ki(s)vi(s)

where D is called the Levi-civita connection of E™. After this, we consider Frenet
curves of osculating order 3 of E™. Firstly, let’s use the results in [7].
Proposition 3.1. Suppose that v is a Frenet curve of osculating order 3. The following

can be obtained [7]

v(s) = v,
7'(s) = Doy (s) = ka(s)vs,
7(s) = DuDuyy = (ki(s)v2) = ky(s)va + ki (s)v,
= ky(5)va + ki () (—ka(s)or + ka(s)vs)
= —ki(s)or + ki (s)vs + Ka(s)ka(s)vs,
7 (s) = =3ku(s)ky(s)or + (k) (s) — kn(s)k3(s)
—k(5))va + (2K, (s)ka(s) + ki (s)ky(s))vs.
Notation 3.2. Let us write
Ni(s) = ki(s)v (3.1)
Na(s) = ky(s)va + ky(s)ka(s)vs (3.2)
Na(s) = (ki (s) = ka(s)k3(s) — ki (s))va + (2K (5)ka(s) + Ka(s)ka(s))vs  (3.3)



Corollary 3.3. 7'(s), 7" (s), 7" (s) and ~""(s) are linearly dependent if and only if
Ni(s) , No(s) and Ns(s) are linearly dependent [7].

Theorem 3.4. Let v : I — E3 be a curve with k; # 0, then v is a slant helix if and
only if

@ /

T fk) ) 6), (3.4

o (s) = (
is a constant function [7].
Theorem 3.5. Let v:1 — E? be a curve.
i) Suppose that ks (s) # 0. Then v is a Bertrand curve if and only if there are
non-zero real numbers A | B such that Ak; (s) + Bks (s) = 1 for any s € I . It follows
from the fact that a circular helix is a Bertrand curve.

ii) Suppose that ki (s) # 0 and ko (s) # 0 . Then v is a Bertrand curve if and

only if there exist a non-zero real number A such that

!

A( Ey(8)ka(s) — Ky ()ka(s)) = ky(s) = 0. (3.5)

In this situation, the Bertrand mate of v can be written as

7(s) =7 (s)+ Avz (s) [7]. (3.6)

Theorem 3.6. Let v : I — E3 be a curve with k; # 0, then v is a slant helix if and

only if there is a real number C such that

3
2

ky(s)k1 (5) — Ky (s)ka(s) = C (K (s) + k3 (5))*  [7]. (3.7)

Theorem 3.7. Let v:1 — E? be a Bertrand curve with k; (s) # 0 and ky (s) # 0.
If v is not a cylindrical helix and if there exists a real number C' # 0 such that

3
2

ky(s) = C (k1 (s) + K3 (s)) 7] (3.8)

Definition 3.8. Frenet curves (of osculating order 3) are

i) of type weak AW (2) if
N3 (s) = (Ns (s), N3* ())N3* (s, (3.9)

ii) of type weak AW (3) if

N3 (s) = (Ns (s), N7 ())N3* (s), (3.10)

10



where

* _ M)
NP (s) = EAGIE (3.11)
() = M) = (N () NF N -
| N2 () = (Na (), N ()N (5)|
Definition 3.9. Frenet curves are
i) of type AW (1) if

N3 (s) =0, (3.13)

ii) of type AW (2) if
IN2 (s)]1” Ny (s) = (N (5) , Na (s)) Ve (s), (3.14)

iii) of type AW(3) if
1N (s)]I” N3 (s) = (N3 (s), Ny (8)) N1 (s)  [25], (3.15)

(see [25] for the general case).
By using the above definitions, we have the following theorems.
Theorem 3.10. Suppose that v is a Frenet curve of osculating order 3. Then 7 is

AW (1)—type if and only if

K (5) K ()~ B (i (9) =05 o (8) = s (316

c is a constant [7] .

Theorem 3.11.Suppose that v is a Frenet curve of osculating order 3. Then 7 is

AW (2)—type if and only if
2(ky (5))* + b (5) Ky (5) bz (5)

= ki () k1 () ka (5) = K (5) ko (s) = by () K3 (5) [7]. (3.17)

Theorem 3.12.Suppose that v is a Frenet curve of osculating order 3. Then 7 is
AW (3)—type if and only if
ko (s)k1 () + ky(s)k1(s) = 0 (3.18)

and the solution of this differential equation is ky (s) = 5> ¢ 1s a constant 7]
1

11



Theorem 3.13. Suppose that v is a Frenet curve of osculating order 3. Then ~ is of

weak AW (2) — type if and only if
ki (s) = ki (s) =k (s) k3 (s) =0 [7] (3.19)

Theorem 3.14. Any Bertrand curve v : I — E* of AW(1) — type with k; (s) # 0
and ky (s) # 0 doesn’t exist [7].

Theorem 3.15. Let v : I — E? be a Bertrand curve with k; (s) # 0 and ky (s) # 0,
then v of AW (2)—type if and only if there is a non-zero real number A such that

(ki (5)) ko (5) (2 — Ak (5)) + AK] (5) K, () B (5)
=y () k1 (8) ko (5) = b (5) Ko () = ky () Ry (5) (7). (3.20)

Theorem 3.16. Let v : [ — E3 be a Bertrand curve with k; (s) # 0 and ks (s) # 0,
then v of AW (3) — type if and only if 7 is a right circular helix [7].

Theorem 3.17. Let v : I — E? be a conical geodesic curve with ks, (s) # 0. Then ~y
is of weak AW (2)—type if and only if there is a real number C' such that

ky (s) = K7 (s) ka () — k3 (s) = ok () [7]. (3.21)

Theorem 3.18. Let v: I — E* be a weak AW(2) — type conical geodesic curve, if
ks (s) is a non-zero constant then

ky (s) = tan (M) 1, (3.22)

Co

where ¢, ¢y and ¢ are real constants [7].
Theorem 3.19. Let v : I — E® be a conical geodesic curve. Then 7 is of AW (3)—type

if and only if the curvatures of v are as the following

=

ki(s) = —(as+ca)” (3.23)

ko (s) = c(as+ )3, (3.24)

where ¢, ¢ and ¢ are real constants [7].

12



4. THE BISHOP FRAME IN MINKOWSKI 3-SPACE FE?

4.1. Pseudo null curve according to Bishop frame in E}

Theorem 4.1.1. Let  be a pseudo null curve in F} with the curvature k(s) = 1 and
the torsion 7(s) ( s is arc-length parameter) So, the Bishop frame {77, N1, N, } and the
Frenet frame {7, N, B} of ~ are associated with

T 1 0 0| |T
Ni| =10 & O] [N (4.1)
N, 0 0 kol |B

and the Frenet equations of v according to the Bishop frame is

T 0 ky k| |
N|=1|=k 0 0] |N], (4.2)
N} ~ky 0 0| |Ny

where k;(s) = 0 and ky(s) = coed "% ¢, € RY, satistying the conditions [3].
(T, Th) = 1,(Ny,N;) = (Ny, Ny) =0,
(N1, No) = 1,(Ty,Ns) = (Ty, Ny) = 0.

4.2. Pseudo null curves of AW (k)- type in E}

Theorem 4.2.1. Suppose that « is a Frenet curve of osculating order 3 in E?, so we
get
v (s) = Ti(s)
v (s) = kaNy+ ki Ny
V' (s) = (kaNy+ ki No) = kyNy + ko Ny + ki Ny + ki N,
= kyNy + ko (k1Y) + Ky Ny + by (—koTY)
= kyNy — kokiTh + Ky Ny — kyko T
= 2k ko Ty + koyNy + Ky N,
V" (s) = (—lekQTl RN+ k/lNg)/
= 2k ko Ty — 2k ky Ty — 2k1 ks Ty + ky Ny + ky Ny + ky Ny + ki N,
= 2k ko Ty — 2k by Ty — 2krkey (ko Ny + k1 Ny)
thy Ny + Ky (—kyT1) + Ky Ny + ky (—koTY)
= (= 3kiks — 3haky ) Th+ (K — 2kakd) Ny + (K] — 202k ) N,



Notation 4.2.2. Let us write :

Ml (S) = kle + klNQ, (43)
My (s) = kyNy + kN, (4.4)
My (s) = <k2 - lekg) N+ (/f;/ - Qksz) No. (4.5)

Corollary 4.2.3. 7 (s), 7" (s), 7" (s) and 4" (s) are linearly dependent if and only
if My (s), M (s) and Mj (s) are linearly dependent.
Theorem 4.2.4. Suppose that 7 is a Frenet curve of osculating order 3 in E?, so v is

AW (1)—type if and only if

el
H
I

252 ky (4.6)
ky = 2kik2. (4.7)
Proof Since v is a curve of type AW (1), then v must satisfy (3.13)
My (s) = <k2 . 2k1k§> N+ (k;/ . Qksz) N,
0 = (K —2mk3) Ny + (K = 288k ) I
Since N; and N, are linearly independent , then we have

ky —2kik2 = 0

"

ky = 2kk2
and
ki —2k2ky = 0
ki = 2Kk,
which completes the proof of the theorem.
Theorem 4.2.5. Suppose that 7 is a Frenet curve of osculating order 3 in E?, so v is
AW (2)-type if and only if

key by — 2K2koky = Ky ky — 2k by k2 (4.8)

Proof Assume that 7 is a Frenet curve of order 3. From (3.2) and (3.3),the following

equations can be obtained

Msy(s) = [(s)Ny+a(s)Ns,
M;(s) = 0(s)Ni+n(s)Na,
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where [ (s), a(s), 0 (s) and 7 (s) are differential functions. Since M, (s) and M3 (s)
are linearly dependent , determinant of the coefficients is equal to zero and so we can

have

—0 (4.9)

where

n(s) = k, —2k*k, (4.10)

B(s)n(s)—a(s)d(s) = 0
k) (/f;/ b Qksz) s <k2 - 2k1k§> ~ 0
K, (/f;/ —Qksz) _— <k2 —lekg)

11 290 ! "

kyky — 2k2koky = kyky — 2kiki k2,

equation (4.8) is proved.
Theorem 4.2.6. Suppose that 7 is a Frenet curve of osculating order 3 in E?, so v is
AW (3)-type if and only if

key kg = kiky. (4.11)

Proof Assume that « is a Frenet curve of order 3. We can write

Mi(s) = B(s)Ny+a(s)Ns,

Ms(s) = 06(s) Ni+n(s)No,

where [ (s), a(s), 0 (s) and 7 (s) are differential functions. Since M; (s) and Mj (s)
are linearly dependent , determinant of the coefficients is equal to zero and hence one

can write

() as)| _
5(5)
Bn(s) —als)o(s) = 0 (1.12)
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where

B(s) = ke a(s)=k
6(s) = ky — 2k k2,
n(s) = ki —2k%k,

B(s)n(s)—a(s)d(s) = 0
ko (/5{ . Qkfkg) s <k2 . lekg) ~ 0
key by — 2k2k2 — kyky, +2K2k2 = 0
kiks = Kk,
equation (4.11) is proved..

Theorem 4.2.7. Suppose that 7 is a Frenet curve of osculating order 3 in E?, so v is

of weak AW (2)—type if and only if

(k; . lekg) = 5 ﬁ = [(/fQ r 2k1k§) g+ (/f;/ - Qksz) p} (4.13)
(/5{ . Qkfkg) - j’r 4 [(kz . lekg) g+ (/f;/ b Qkfkg) p} L (414)

where

p = (kg + k%) k/z — (klkz)/ kz and

g = (K+k)E — (kaks) ko

Proof Since v is of weak AW (2)—type, by using (3.9), (3.11) and (3.12)

% . Ml (S) . kle + klNQ
A 7 e (415
Vi) = M) = (M (). M () M3 9

# Oy (5) (0 51, M 5)) M )T

by simplifying the numerator
ko Ny + ki No
2 N1+k1 Ny

* * — ! ! ka Ny 4k No
My (s) = (Ma (s) , M (s)) M (s) = <kzN1+k1N2’ NG >
koN1+k1 No
T\ R24E2
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therefore

/ / / / k N k N
BNy KNy — (K Ny + K No, ko + b N ) 222 E 022
K2+ k2

, ’ ’ ’ kQNl + klNZ
kN, + KN —(kk +kk)—

S N )

(ky N1 + kyNo) (k3 + k3) — (kiky + kyko) (ko Ny + ki N3)

(k3 + k3)

(K3 + kD) ky Ny + (k3 + k1) k) N
— (knky + kyko) kaNy — (knky + kyka) ki No
(k3 + k)

((k3 4+ k) ky — (kiky + kyks) ko) N
+ ((k3 + k) Ky — (kaky + Kyko) k1) N
(k3 + k1)
K2+ k) iy — (/ﬁk; + k;/@) /@) N,

(k2 + k2) <(
1 ! ! !
s ((k§ +R2) K, — (/ﬁkQ + klkg) kl) N

1 / |
BRCERD) (Uf% +kT) ky — (kiks) kz) N,

i

1 / /
m ((k% + k%) kl - (klkz) kl) Nz,

—~

iy (054 kDK, = (kaka) k) Ny

Tl (Uf% + k) k) — (klkz)/kl) N,
(

k2 4 k2) K — (Kuks) kz) N

g (084 KK — k) b2)
[ (e k) 1) N
G | 4 (084 KK, — () 1) N

(k3443 ) by —(k1k2) k2 2+ (K3+82 )by — (ki k2) 2
(k3+K3) (k3+k2)

) (062 + B3 Ky — (ko) ho) Ny
) | (03K, — () )

2 2\ 1./ ! 2
L ((kz + ki) ky — (kik2) ]fz)
K2+E2 / , 2
(k) ((kg R K, — (k) kl)
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((/f2 + 2V Ky — (kyks) kz) N
+ k2 2K, — (k) kl) N,

k2 2Ky — (k) kg)
, 2
k2 YK — (ki) kl)

Let
p o= (B4 ky— (kiks) Ky,
g = (K24 Kk — (kiks) ki,
therefore
* pN1+qN2
M; (s) = —F——=
VP + ¢

Since 7 is of weak AW (2)—type, then it must satisfy

Ms(s) = (Ms(s M3 (s)

k2—2k1k2 M pN1+ gNa \ pNy + gNs
(K =22 Ny | VPR PP

P+
PN+ gy
P+

pN1 + qN,

_ [(/fQ _ lekz) g+ (/5{ _ Qkfkg) p}

Ms(s) = ﬁ (K — 2613 ) g + () — 263k ) | My

+ﬁ (K5 = 2813) g + (K] — 263k ) p| Mo,

but from (4.5) we know that
M (s) = <k2 P )N1 n (k pY /@) No,

so by using the relation (4.5) and (4.17)

" 2 p " 2 " 2

() —2kuk2) = e (k5 —2k0k3) g+ (K] — 262k ) o]
" q " "

(K —262k) = PR (k5 = 2k0k3) g+ (K] — 262k ) o]

which completes the proof of the theorem.
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Theorem 4.2.8. Suppose that 7 is a Frenet curve of osculating order 3 in E?, so v is

of weak AW (3)—type if and only if

ky — 2k k2 = kiky + ki ky — 4K 2| 4.18
2 2

e
K+ k2
" k "
K22k, = R [/ﬁl@ K ky — 4/@%1{3} . (4.19)
Proof Since 7 is of weak AW (3)—type, by using (4.2), (4.5), (3.10), (3.11) and (4.15)

Ms(s) = (Ms(s), M (s)) M (s)

Ny + kN,
M (s) = ko Ny + k1 Ny
V2 + k3
M; (s) <(%—%W3M+®}J%MNz kaNy + ki Ny
38 - kaN1+k1No 2 2
ViR ViR
] (ky = 2k1k3) Ny + (K — 2k7ka) Na, \ Koy 4 Ky N,
kaN + k1 Ny k3 + ki
i " " kZNl + klNQ
- _(k2 . 2k1k§> ko + (kl A Qkfkg) kz} A e
i " " kQNl + klNQ
I " " kQNl + klNZ
= kaky + Kz 4/&/@} e
ko
My () = [lﬁkz ok — 4/@%1{3} N+ (4.20)
b )
ER [Fuky + Ky — 48385 N,

but
Ms (5) = <k2 . lekg) N+ (/5{ . Qkfkg) N,

so by using the relation (4.5) and (5.20) we get
" 2 k " 2 2
b=kl = ol [/ﬁl@ K ke —4/@/{2}
" k
=2k = kzhm-+k@ 133

the theorem is proved.
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4.3. Null cartan curve according to Bishop frame in E}

Theorem 4.3.1. Let v be a null Cartan curve in E} with the curvature k(s) = 1 and
the torsion 7(s) ( s is arc-length parameter) So, the Bishop frame {77, N1, N2} and the
Frenet frame {7, N, B} of ~ are associated with

T, 10 of|T
N, Nk 1| |B

and the Cartan equations of according to the Bishop frame get

Tll kz kl 0 Tl
NI|l=10 0 k| |N], (4.22)
N} 0 0 —ks| [N

where the first Bishop curvature k;(s) = 1 and the second Bishop curvature satisfies

Riccati differential equations

) 1
Ky (s) = —5H(5) = 7 (s).
which satisfies the conditions

(NL,N)) = 1,(Ty,T1) = (Na, No) = 0,
(T, Ny) = —1,(Ty,N)) = (N, No) =0 [3].

4.4 Null Cartan Curves of AW(k)- type in E?
Theorem 4.4.1. Let v be a Frenet curve of osculating order 3 in E2, by using the

cartan equations of v according to the Bishop frame (2.7), then we have

v (s) = Ti(s)

V' (s) = Ty(s)=koTi + ki Ny

V' (s) = (kaTy + k1Ny) = kyTy + kT, + ky Ny + Ky N,
= ko Ty + kg (koTy 4 ki NY) + kL Ny + Ky (ki N

— (k; + kg) T, + (k; + klkg) Ny + k2N,
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A (5) = (k;Tl FRETY KNG+ Eka Ny - k%Nz)
= kyTy + kyT, + 2koky Ty + k2T, + ky N,
+k Ny + kyko Ny + kyky Ny 4 kyko Ny + 2k, k) Ny + k2N,
= Ky Ty + ky (ko Ty + k1 Ny ) + 2kokey Ty + k2 (koTy + ky Ny
ke Ny + Ky (ki No) + K ko Ny + kg Ny
+hrks (ki No) + 21k Na + k3 (—kaNa)
- <k2 4 3ok, + kg) T,
+ (k;/ + ey + K + klkg) Ny + 3k kN,

Notation 4.4.2 Let us write

Ml (S) = klNla (423)
MQ (S) = (k/l + klkg) N1 als k%NQ, (424)
My (s) = (k;/ + 2k Ky + K ks + klk;) Ny + 3k K, Ny (4.25)

Corollary 4.4.3. 7' (s), 7" (s),~" (s) and 7*") (s) are linearly dependent if and only
if My (s), M (s) and Mj (s) are linearly dependent.
Theorem 4.4.4. Suppose that « is a Frenet curve of osculating order 3 in E¥, so 7 is
AW (1)—type if and only if

i) k; is a constant function, and

i)

ki + 2kiksy + ki ko + kyky = 0. (4.26)
Proof Since v is a curve of type AW (1), then v must satisfy (3.13)
M (s) = (/f;/ + ekl + Ky + mi) Ny + 3k k. No

0 = (/c;/ + ek + Ky + klk;) Ny + 3k kN,

Since N; and N, are linearly independent , the coefficients of the vectors should be
zero. Therefore

3kyky = 0,
ki, is a constant function
ky + 2kiky + ki kg + kyky = 0.
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Thus the equation (4.26) is obtained.
Theorem 4.4.5. Suppose that « is a Frenet curve of osculating order 3 in E¥, so 7 is
AW (2)—type if and only if
! 2 ! " ! ! 2
3 (kl) 43K kky = Kkt 2K2k, 4 K ks + k2K, (4.27)
Proof Assume that 7 is a Frenet curve of order 3. From (4.24) and (4.25) we can

write
My (s) = B(s) Ni+a(s)N;
M;(s) = 0(s) N1 +n(s) Nz,

where [ (s), a(s), 0 (s) and 7 (s) are differential functions. Since M, (s) and Mj3 (s)

are linearly dependent , determinant of the coefficients is equal to zero, so we can get
=0 (4.28)

where
B(s) = ky+kiks, afs)=Kk
§(s) = ki + 2kiky + ks + kiks,

n(s) = 3kk,. (4.29)

0 = B(s)n(s) —al(s)i(s),
0 = 3k, (k; + klkz) e (k;/ + 2k + Kk + klk;)
3k k. (k; n klkz) — K2 (/f;/ + 2herky + K ks + klk;)
3k (k; n /ﬁ/@) — & (/f;/ V Okks + Kok + mi)
/ 2 / " ! ! 2
3 (kl) 3K kike = Kk 2k2k, + Ko ks + k2K,
Thus the equation (4.26) is obtained.
Theorem 4.4.6. Suppose that v is a Frenet curve of osculating order 3 in Ef’, SO 7 is
AW (3)—type if and only if k; (s) is a constant function
Proof Suppose that v is a Frenet curve of order 3. From (4.23) and (4.25) we can
write
My (s) = [(s) N1+ a(s) Ny
My(s) = 6(s)Ni+n(s) Mo,
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where [ (s), a(s), 0 (s) and 7 (s) are differential functions. Since M; (s) and M3 (s)

are linearly dependent , hence one can write
=0 (4.30)

where

B(s) = ki, «a(s)=0
5(s) = K +2kiky+ kiko + kks,
n(s) = 3kik,. (4.31)

B(s)n(s)—a(s)d(s) = 0,
ko (3k1k;> —0 (k;/ + 2kiky + kyks + klki) =0
Kk, = 0.

For k?k; to be zero, ki (s) has to be a constant function.
Theorem 4.4.7. Suppose that « is a Frenet curve of order 3 in E3, so v is of weak
AW (2)—type if and only if

i) k1 (s) is a constant function,

ii)

ky + 2k1ky + kykg + kiky = 0. (4.32)

Proof Since 7 is of weak AW (2)—type , it must satisfy (3.9), by using (3.11), (3.12)
and (4.23)

% . M1 (S) . klNl .

M (s) = T, ()] = k% =N (4.33)
o My(s) — (My(s), M () M; (s)

Ma(s) = T3k, (5) = (M (), My () M; (9)]
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(ky + kiko) Ni + E2N,
— {(ky + kik2) Ny + k3Ny, Ni) N,

M; (s) =
(ky + kika) Ny + K2N,
H —{(ky + kik2) Ny + k3No, Ni) N
M (s) = (k:l + kika) Ny + kZN, — (kil + kiks) Ny
| (k1 + kako) Ny + k2No — (Ky + kiks) V1|
R k3N, k3N,
Mz (s) [ Na | (k%)Q
My (s) = N (4.34)

Since 7 is of weak AW (2)—type, then it must satisfy
Ms(s) = (Ms(s),M;(s)) M; (s)

- <<k1 + ey + Koy + klk;) Ny + 3k k. Ny, N2> N,

Therefore
(/5{ + ek + Ky + klk;) Ny + 3kik. Ny = 0,
then
ki 4 2kiky 4 kiky + Kk, = 0,
3kik; = 0.
For k2k; to be zero, ki (s) has to be a constant function. Hence the theorem is proved.
Theorem 4.4.8. Let v be a Frenet curve of order 3 in E?, then v is of weak

AW (3)—type if and only if & (s) is a constant function.
Proof Since v is of weak AW (3)—type , by using (4.25) and (4.33)

Ms(s) = (Ms(s), M (s)) M7 (s)
- <<k1 + ey + Koy + klk;) Ny + 3k kN, N1> N
- (k;/ 4 ek + Kk + klk;) N
Therefore
(K + 2kl + Kok + k) Ny + 3kak Ny = (K + 2kakiy + Ky + k) Vo
ik, =

For k2K to be zero, ki (s) has to be a constant function. Hence the theorem is proved.
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5. HELIX AND SLANT HELICES ACCORDING TO BISHOP FRAME
IN MINKOWSKI 3-SPACE E?

5.1 Slant helices of pseudo null curve in Minkowski 3-space F}

Definition 5.1.1. A unit speed curve 7 is called a slant helix if there exists a non-zero
constant vector field UeE? such that the function (N (s),U) is constant [26].

It is important to point out, in contrast to what happens in E? , we cannot define
the angle between two vectors ( except that both vectors are of time-like ). For this
reason we avoid to say about the angle between the normal vector field N (s) and U
26] .

Theorem 5.1.2. Let v be a pseudo null curve in E3 , then v is a general helix if and
only if Z—; is constant.
Proof Let v be a general helix. The slope axis of the curve 7 is shown as sp{U}.
Note that

(T,U) = constant. (5.1)

If we differentiate both sides of the equation (5.1), then we have

<T/,U>+<T,U/> — 0.

<T/, U> — 0. (5.2)
By using (5.2) and (4.2)

<l€2N1+]€1N2,U> — 0
k2<N1,U>+]€1<N2,U> - 0
kocosO + kysinf = 0

k
k_l = — cot = constant , (5.3)
2

as desired.

Theorem 5.1.3. Let v be a pseudo null curve in E3 , then v is a slant helix if and

k1
ko

Proof Let v be a slant helix in E} and (N (s),U) is constant. Then v a slant helix,

only if 2 is constant.

from the definition we have

(N (s),U) = constant, (5.4)



where U is a constant vector in E?. By differentiating (5.4), and use (4.2)

(N (s),U) = constant,

(M ,0)+(¥@).0) = 0
< U> _ 0,
(kT U) = 0
B (TLU) = 0, ki #0
Hence
(Ty,U) = 0 (5.5)

uesp { N1, N2} , therefore u=cos § Ny +sin ON,. U is a linear combination of N; and Ns.
By differentiating (5.5), and use (4.2)

(T} 4
(kaN1 4+ k1 Np, U) = 0
ko (N1, U) + k1 (No, U) = 0
kocos® + kysind = 0
lli_: = — cot 6 = constant,

as desired.
Theorem 5.1.4. Let v be a pseudo null curve in E3 | then « is a slant helix if and
only if
det(N], N, , N;") = 0. (5.6)
Proof (=) Suppose that Z—; be constant. We have equalities as
N = —kT
N!' = —k\T — kT = —k,T — ky (kaNy 4 k1 No)
= —k\T — kyko Ny — k2N,
N = (—k;T ko Ny — kaz)/ — KT — KT — KkN,
—kyky Ny — kyko Ny — 2k1 Kk Ny — k2N,
= —K,T — K, (kaNy + kyNy) — ko Ny — kyky Ny
—kko (—kyTy) — 2kyky Ny — k2 (—ko 1)

— (Qksz - k;/) T+ (—Qk;kz ok ) Ny — 3k k. Ny
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So we get
—ky 0 0
det(N!, N, ,N;') = —K — ke ks —k?
(2k2ky — ki)  — (2kyks + kiky)  —3kiky
=y [ 3kak, (—kiky) — K2 (Qk;kz + klk;)}
— ey 32K ks — 282K Ky — ki’k;}
= 13 K — klk;}

(K ky — ki,
- _kil” %} k%
L 2
k)
—kik3 (E) :
Since 7 is a slant helix, and Z—; is constant. Hence, we have

"

det(N], N, ,N,") =0, but ky # 0.

(«<=) Suppose that det(V], Nf, Nlm) = 0, then it is clear that the ’Z—; is constant, since

(Z—;) is zero. Hence the theorem is proved.

Theorem 5.1.5. Let v be a pseudo null curve in E3 , then v is a slant helix if and

only if

"

det(N}, Ny , N, ) = 0. (5.7)

Proof (=) Suppose that Z—; be constant. From (4.2) we have

Ny = —k»T,
therefore
N = —kyT — kT = —kyT — ky (ko Ny 4 k1 No)
— —k/zT — k%Nl — k1koNo
N, = (—k;T — k3N, — klkzNz)

= —kyT — k)T — 2kokyNy — k2Ny — kykaNy — kyky Ny — kyks N,
= —kyT — ky (kaNy + ky Ny) — 2koky Ny — k2 (—kyT1)
—k ko Ny — kg Ny — ko (—koTY)

— <2k1k§ - kz) T+ (—kg - kak;) N+ (—klkz Kk — klk;) N,
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So we get

&y 0 0
—ky —k2 —kyky
det(Né,N;,N;/) = F1 ko
i k2 2 /
" - ! - +k1k2
K] S+ 2kokl, /
ko,
det(NL, NS NY) = —ks kg (k1k2 Yk klk;) ~ ks (kg + 21{2/{;)}

= k2 [kik2 K2 1 kikoky — kyk2 — 21{1/{2/{2}
_— klkzk;}
. klk;}

[ k1 ko — klk;} 2
2 2
ks

e\
= —k(—].
2(’*?2)

k1

Since v is a slant helix, and % is constant. Hence, we have

"

det(Ny, Ny, Ny ) =0, but ky # 0.

(«<=) Suppose that det(N}, N, ,N,') = 0, then it is clear that the Z—; is constant, since

(Z—;) is zero. Hence the theorem is proved.

Theorem 5.1.6. Let v : I — E? be a unit speed pseudo null curve on M; is a

general slant helix if and only if

" ! / " 1 !
N £ 36T = (kl - Qkfkg) N}, (5.8)

1

Proof (=) Assume that 7 is a general slant helix. Then, from (4.2), we have
N = —kT
N/ = (=k/Tv) = —K,Ty — kT,
= —kTy — ky (ko Ny + Ky Ny)
N, = —kT — kikaNy — 2N, (5.9)
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"

!

N = (—k;Tl ~ kN, — kaz)
= —k Ty — KT, — kyka Ny — ko Ny
—k1ko Ny — 2k ky Ny — k2N,
= —k Ty — kyT, — kyko Ny — kyky Ny
—kyka Ny — 2kyky Ny — K2 (—koT1)
N = (k%kz - k{) T — KT — (/{1/@ n klk;) N
— k1 ko Ny — 2kyky Ny (5.10)
Since 7 is a general helix
k
—L — ¢ cis constant. (5.11)
ko
By differentiating (5.11)
ky ks —2 k1 ks _ 0
k3
kiky —kiky = 0
kike = kik,
ks +kiky = Kok, + kiks
(kiks) = 2Kkiks, (5.12)
but
N, = — kT,
1
T =——N;. (5.13)
1
By substituting (5.12) and (5.13) in (5.10)
N = (k%kz . k{) T, — KT — (k;/@ + klk;) Ny — kika N, — 2k K, Ny,
N, = (k%kz ( N{) — 2k, ko Ny — ko N, — 2k1 K, N,
— (/51/ — 2K%ky ( N{) — 2k, (ko Ny — ki Ny)
_ (k;/ — 22k, ( N{) KT
n 1 !
N = (k - kakz) (k—Nl) _ KT (5.14)
" ! / 1 !
N £ 36T = (k Qksz) (k—lNl) .



(«<=) We will show that pseudo null curve + is a slant helix. By differentianting (5.13)

covariantly
T———iM
k1
, 1\
7 = (=N
' ( ki 1)
/ k/l / 1 ”
" k 1 ” /
T, = (k;N khAg)
" kl kl kl 1 11
T = (k2> Af4—k2A7—+k2A7 et
" k / ! Qk 1 "
i — (k—%) N, + k; N, - klNl : (5.16)
By substituting (5.14) in (5.16)
1 k:/l / ! le 1 " 1 ! ! !
W (/?%) Ny + 2 N Y [(/@1 —Qkfkg) (k—lNl) < 3/{1T1}
. KN\ 2k Bk
T = (k—%) Ny + 2 N (kl 2/{%) R
, K1 o, 3k
T (%%) —z?<k Qk%a) N+ leTDTAG le‘ (5.17)
by substituting (4.2) and (5.9) in (5.17)
T = L (% %%ﬁjﬁ
2) R
2k, / 3k,
%thn—m@M—ﬁm) T (ka4 o)
1 ! / 1 " ! !
o= (B —7(m—a@@)Ag—251 T+ﬁ@M+wm5cu&
kl kl ]fl kl

From (5.8)

Tl = kle + klNQ
ko Ny 4 ko N, 4 ky Ny + ky N,

T = kN, + kN, + K, Ny — kikoTh. (5.19)
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By comparing (5.18) and (5.19)

klkz /
= k
ky 2
K, ks
- = = 5.20
by integrating (5.20)
ki k;

dkq 1 dky 1
L _ds = | =2.—=d
/ds o /ds 7y

—ds = [ —d
/kls /kzs

Ink; = Inky,+c

— = ¢° constant.

Hence v is a general slant helix.
Theorem 5.1.7. Let v : I — E? be a unit speed pseudo null curve on M; is a

general slant helix if and only if

mn ! ! k//
2

Proof (=) Suppose that v is a general slant helix. Then, from (4.2), we have

Ny, = —koTy
N, = (~kTh)
= k1) — kT
= —kyTy — kg (ko Ny + k1 N,)
N, = —kyTy —kiNy — kikoN, (5.22)

31



"

"

N,

!

(—k;Tl 2N, — klkzNz)

—ky Ty — ky T — 2koky Ny — k2N, — kykoNoy — kikyNo — kiko N,

—ky Ty — ky T} — 2koky Ny — k2 (—=kyT)

—kykaNy — kykyNy — kiko N,

(kgkl s ) Ty — kT — 2kaky Ny — (k;kz + klk;) Ny — kikaN,. (5.23)

Since 7 is a general helix

k1 :
— = ¢ ¢ 18 constant,

ko

we can differentiate the above equation

but

ki ky — kyk,
k3
kiky —kiky = 0

= 0

kiky = kiky
kiks + knky = kiky + Kok,

(kiks) = 2kks, (5.24)
Ny = —k,T,
1,

T=— N, (5.25)

By substituting (5.24) and (5.25) in (5.23)

(kgkl s ) Ty — k)T — 2kyks Ny — (k;kz + klk;) Ny — kyks N,

" 1 ! ! ! ! !
(kgkl . kz) (—k—zNZ) BT — 2kaky Ny — 2k1kyNy — kika N,

k ! ! !
(/?2 — lekz) N,y — koT] — 2ky (ko Ny + ki N)
2
k// ! ! !
(/?2 — lekz) N, — k,T] — 2k, T}
2
" k” , ,
N, = (k—z - lekz) N, — 3k, T} (5.26)
" , k// ,
N, +3k,T] = (/?2 - lekg) N,.
2
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(«<=) We will show that pseudo null curve + is a slant helix. By (5.25) differentianting

covariantly
1 .
T = ——N,
ko 2
1\
k/ / 1 "
T, = k—gNz k—QN2
2
1" k/Z ’ 1 " /
T (k—%Nz k_QNZ)
, K\ K K, 1
T, = (k—%) J\ferk—%J\ferk—%J\f2 kzNQ
: KN\ 2k, 1
Tl = (k—%) N2+k—%N2 k_zNz

By substituting (5.26) in(5.28)

. AN 2k2 1[(k .
2 BN L ok 2 1., 3k

T, = (-2) Ny+ 2N 2 iky | — N, + 2T
! (k?) k2 (kz 2 ) ks hy 1

. 1 ok, w3k
T = 2 _9kyky ) —| Ny + 2N, + =277,
' [( ) ( ' 2) k2] k2 ]fz

by substituting (4.2) and (5.22) in (5.29)

(
1 1 !
T, = — 2k1ko T N,
2k! 3k,
+ 2( BTy = 3Ny = kikaN ) + 2 (ko Vi + by M)
2
1 k k 1 !
T, = 2 22 —| N
' [(’fg) (kz klkz) kz] ’

/ 2
k , ey ke
—2 (—2) Ty + kyNy + ]16 2N,

!

From (4.2)

Tll - kle + klNQ
T, = kyNy+ kN, + k; Ny + kN,

T, = kyNy + kaN; + kyNo — ky ko Ty
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By comparing (5.30) and (5.31)

kl kz /
= k
ko !
Kok
- = = 5.32
kq ky’ (5:32)
by integrating (5.32)
% %

dkq 1 dky 1
L _ds = | =2.—=d
/ds o /ds 7y

—ds = [ —d
/kls /kzs

Ink; = Inky,+c

— = ¢° constant.

ko
Hence v is a general slant helix. Hence the theorem is proved.
5.2. The helices of null Cartan curve in Minkowski 3-space E?
Theorem 5.2.1 Let 7y be a null Cartan curve in E? | then ~ is a general helix if and
only if ; is constant.
Proof Let v be a general helix in E? and (T, U) = constant, then 7 is a general helix,
from the definition we have

(T,U) = constant, (5.33)

by differentiating the above equation

(T0)+(1.0")
< U>: 0

(koT + kN1, U)

ko (T, U + ky (N1, U)

b

ko cos 6 + kq sin
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— = —cot # = constant , (5.34)

as desired.
Theorem 5.2.2. Let v be a null Cartan curve in E2, so v is a general helix if and

only if

"

det(T!, T\ T") = &2 (klkg - kzk{) . (5.35)

Proof (=) Suppose that Z—; be constant. We have equalities as

T (s) = koTi + ky Ny
T, (s) = (koTh+ kiNy) = kyTy + koT + KNy + ki N,
= kyTy + kp (koTh + k1 Ny) 4 ky Ny + Ky (k1 N,)
T (5) = (k; + kg) T+ (k; + /ﬁ/@) Ny + E2N,,
T, (s) = kyTy+ kyT, + 2kokey Ty + k2T, + ky N,
kN, + k ko Ny + kyky Ny + kyko Ny + 2k kN, + k2N,
= ko Ty + Ky (koTy + kiNy) + 2koky Ty + K2 (KoTh + Ky Ny
-k, Ny + ky (k1Ny) + ky ko Ny + ki kg Ny
+hyks (kyNy) + 2k ky Ny + k2 (—ky N,)
T (5) = <k2 + 3kokty + kg) T,
+ (k;/ + ek + K + mi) Ny + 3k1k. No

So we get
ko k1 0
P ko + K3 ky + kik 2
a7 10y = |, Vet s+ bk 1
ko, + 3kok ky + 2k k ,
2 2/vg 1/ 1o ) 3]€1]€1
+k3 +hyko + kiky
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det(T, T/ T = ks [3k1k; (k; + klkg) e (k;/ + ek + K + klkz)}
—k [3k1k; (k; + kg) e <k2 + 3ok, + k%)}
= 2K, + K3 kok) + 3kiks (/f;)z
K2kok, — 32Kk + Kok
T (/@k; - klk;) 43k, (/@k; - klk;)
k2 (klkg - kzk{)

kok': — kik. okt — ki k!
= ik, (72 s - 2) k3 + 3kiky (72 e - 2) k2
2

2

k2 (/flkg - /@k{)
" k / ! / 1" "
det(T, T/ Ty = —k2k3 (k> + 3l 2 (—1> 4R (/m2 —kzkl)
2

Since 7 is a general helix, and ; is constant. Hence, we have

111

det(T!, T/, T)") = k? (/ﬁk;/ - kzk{) , but ky # 0.

(«<=) Suppose that det(Tl’, T, 1) =k (klkg — kzk/l/) , then it is clear that the Z—; is

k1

k2) is zero. Hence the theorem is proved.

constant, since (
Theorem 5.2.3. Let v be a null cartan curve in E3 , then 7 is a general helix if and
only if

det(N!, N, ,N,') = 0. (5.36)

Proof (=) Suppose that Z—; be constant. We have equalities as

N = kN,

N’ = (kiNa) = kyNy + k1 N,

1"

(k

(e

— (/f;/ Kk — klkz) No+ (k - /ﬁ/@) N,
(K} = ks — kaky ) No + (K, — bk ) (—kaDVa)
(kl ey — Kk klkz) No.
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So we get

00 ky
det(N],N,,N,) = 10 0 —k2

0 0 (ky — 2k ko — kiky + kik2)
det(N/,N,,N,') = 0

(«<=) Suppose that det(N], N, , N;") = 0, then it is clear that the

!

(Z—;) is zero. Hence the equation (5.37) is obtained.

Z—; is constant, since

Theorem 5.2.4. Let v be a null Cartan curve in E? | so 7 is a general helix if and

only if

"

det(Ny, Ny, Ny ) = 0. (5.37)

Proof (=) Suppose that ]’:—; be constant. We have equalities as

Né = _kQNQ

NI = (=kyNy) = —kyNy — kN,

= (-K+R) N,

N = [(-K+8) NQ}/
— (K o+ 2haky) Ny + (=K + KE) N,
_ (_kg + kak;) N, + (—k; + k%) (—k2NN2)
= (K + 3ok — ) o,

So we get
0 0 —ky
det(Ny, Ny, Ny ) = 10 0 (—ky +k2)

0 0 (—ky+ 3koky— k3)
det(Ny, Ny, N, ) = 0

<) Suppose that det(N,, N, , N,') = 0, then it is clear that the £ is constant, since
2, 1V, Vg k2

!

(Z—;) is zero. Hence the theorem is proved.

Theorem 5.2.5. Letv: 1 — Ei’ be a unit speed null cartan curve on M; is a general

helix if and only if
" ! " ! 1 !
N 4 ik Ny = (kl - 3k1k2) ;. (5.38)

1
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Proof (=) Suppose that 7 is a general helix. Then, from (4.22), we have

!

N, = kN

1"

N = (kiNs) = kN + ki N,
= KNy +ky (—koNs)

1"

N, = ki Ny —kikoN, (5.39)

N = (/f;NQ . kleNQ) ,

= & Ny + K N, — KkaNy — knko Ny — ki ko N,
N = Kk Ny— (k;/@ + klk;) Ny — K. kaNy — kyky Ny, (5.40)
Since 7 is a general helix

ki

— = ¢ c is constant. (5-41)
ko

we can differentiate (5.41)

kiky — knky
k3
kiky —kiky = 0

= 0

kiks = kik,
keyky + kiky = Kk, + kiks

(kiks) = 2Kkiks, (5.42)
but
N, k1 Na,
1.
Ny —N;. (5.43)
k1

By substituting (5.42) and (5.43) in (5.40)

N = kN, — (k;kz n klk;) Ny — K. ks Ny — kiks N,
" 1 ’ ’ ’ ’
= kK (_Nl) — 2k ko Ny — kyka Ny — k1ko Ny,
! ! 1 ! !
= ﬁ]\fl - 3]€1]€2 (k_Nl) - k1k2N27
1
" ! 1 ! !
_ (kl - 3k1k2) (k—Nl) ~ krko N,
1
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"

Ny

NW + klkzN

" ! 1 ! !
(kl - 3k1k2) (k—Nl) ~ kko NG,
1

(/{ - 3k;k2) (

(5.44)

1
—N, ).
ke 1)

(«<=) We will show that null cartan curve 7 is a general helix. By differentiating (5.43)

covariantly

’ k 1 "
N, k; N, + s —N, (5.45)
" k 1\
N, = ( k;N+klN)
4 kl / / kl kl 1 "
’ KN\ 2k, | -
N, = (_k_%) N, — k;N klNl : (5.46)

By substituting (5.39) and (5.44) in (5.46)

k; 2k,

’ - RN /
N, = (—k—%) N k;N o l(kl ~ 3Kk k—lNl—klngQ]
" k/ / / Qk
N, = (—k—%) N - k;N n (kl 3k /@) kQN ks N,
" [ k/ / / 1 ] / Qk/ ” /
N, = ——1)+<k —3kk2)— N - AN N
2 _( k% 1 k%_ 1 k% 1 2
’ KN s N1 2k /
N, = (—k—;) n (kl - 3k1k2) 7| M- (k Ny + klN) — kN,
- 1 1_
B ’ ! 7] N\ 2
” k ” / 1 / 2 k Qk /
N, = (—k—;) + (kl 3k1k2)ﬁ N — (k2) Ny — (k—1+k2) N, (5.47)
i 1 i 1
From (4.22)
N, = —kyN,
Ny, = (—ky]Ny) (5.48)
= —kyN, — kN,
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By comparing (5.47) and (5.48)

2k,
(v k) = -k
(/ﬁ + 2) 2

2k,
e | 0
kq
1 dk /
kl ds
1 dk;
—Mas = | od
/kl ds ° / iy
Ink, = 0

eln k1 0

But k; = 1, therefore

which means k- is a constant function.

1.
— 1S constant..
2

Hence v is a general slant helix.
Theorem 5.2.6. Let v : I — FE3 be a unit speed null Cartan curve on M; is a

general helix if and only if

n ” ! 1 !
N, = <k2 — 3koky + kg) (k—NZ) (5.49)
2

Proof Suppose that v is a general helix. Then, from (3.9), we have

!

N, = —kyN,
N, = (~koNo)
= —kyNy — kyN,

= —kyNy — ko (—koNy)

N, = —kyNy+ kN, (5.50)
N = (K )N
= (ks + 20k ) N+ (< + K3 NG,
NS = (—k; n 3k2k;) N, + k2N, (5.51)

40



but

N2 — _k2N27
1,
Ny = ——Nj. (5.52)
ko
By substituting (5.52) in (5.51)
Vo= ( ky + 3kok )N2+k2N2,
" 1 ! !
NS = ( k +3k2k2) (—k—NZ) 42N,
2
" 1 !
NS = <k2 — Sk + k3) (k N) (5.53)
2
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