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ABSTRACT

Weak A —Statistical Convergence

Kosrat Osman MOHHAMED
Master Thesis

FIRAT UNIVERSITY
Graduate School of Natural and Applied Sciences

Department of Mathematics
Program: Analysis and Functions Theory
January 2020, Pages: xi + 26

In the first part of this thesis is consisting of three chapters, some basic concepts related to the
subject are given.

In the second part, statistical convergence, weak convergence, weak statistical convergence and
A —statistically convergence and weak A —statistically convergence are investigated and the
relations between each of them are given.

In the last part weakly [V, 1] —summable of order @ and weakly A — statistically convergence
sequence of order a were defined and the relations between these concepts are given.

Keywords: Statistical Convergence, A —Statistically Convergence, Weak Convergence, Weak
Statistical Convergence, Weak 1 —Statistically Convergence of order a.
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OZzET

Zayif A —Istatistiksel Yakimsaklik

Kosrat Osman MOHHAMED
Yiksek Lisans Tezi

FIRAT UNIVERSITESI
Fen Bilimleri Enstitisu

Matematik Anabilim Dali

Ocak 2020, Sayfa: vii+26

Uc boliimden olusan bu tezin ilk boliimiinde konuya iliskin bazi temel kavramlar
verilmistir.
Ikinci boliimde, istatistiksel yakinsaklik, zayif yakinsaklik, zayif istatistiksel yakinsaklik,
A —istatistiksel olarak yakinsaklik ve zayif A —istatistiksel yakinsaklik arastirilmis ve bunlar
arasindaki iligkiler ele alinmustir.
Son bolimde a. dereceden zayif A — istatistiksel yakinsaklik ve a. dereceden zayif
[V, 1] —toplanabilirlik ve bu kavramlar arasindaki iliski verilmistir.

Anahtar kelimeler: Istatistiksel yakinsaklik, A —istatistiksel yakinsaklik, Zay1f yakinsaklik, Zay1f
Istatistiksel yakinsaklik, a. dereceden zayif A — istatistiksel yakinsaklik.
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1. INTRODUCTION

Statistical convergence is the generalization of the ordinary convergence. In 1935 Zygmund [13]
provided the idea of statistical convergence in the first edition published in Warsaw. After that Fast
[6] reintroduced this idea formally, statistical convergence has explored in number theory,
trigonometric series, Fourier analysis, measure theory, Banach spaces. Later It was investigated
further from the viewpoint of linked with summability theory and sequence space by Fridy [7],
Salat[11], Bhardwaj and Bala [2], Mursaleen [10] etc. In fact, statistical convergence is closely
linked to the theory of convergence in probability.The statistical convergence depends on the
density of the subsets of N. Let K € N. Then §(K) denotes the natural density of K which defined

by
1
6(K) = lim —|{k < n:k € K}|.
n-on

whenever the limit exists. |{k < n: k € K}|denotes the number of elements of K not exceeding n

A sequence (ay) is statistically convergent if

1
lim;l{kﬁn:lak—t’l >¢c}=0

n—-oo

for any € > 0 and for some #. Sometimes denotes stat—llim a, = £ (see [7]). After that

Mursaleen [10] introduced the A — density of M < N is defined by
1
6, (M) = lim A—I{k:n—/ln +1<k<nandk € M}|
n—-oo n

and A —statistically convergent as follows:
The sequence a = (ay) of real number is called A —statistically convergent to the number ¢ if
Ve >0

1
lim —|{k €l |lapy—¢|=¢€}|=0.
n—>ooﬂ,n

In this condition we write S; — lim a;, = ¢

n—00
Also Colak and Bektas introduced A - statistical convergence of order o in [4]
Definition 1.1 [3] Let X be a set such that the two operation (vector addition and scalar
multiplication) are defined and K be a field on X. If the following axioms are satisfied for every
x,y and z in X and every scalars , 8 € K, then X is said to be a vector space (linear space).
(x,y) — x+y from X x X into X is called vector addition

(1) x,y € X (Closure under addition)

(2) x +y =y + x (Commutative property)

(3) x+ (¥ + z) = (x + y) + z (Associative property)



(4) X has zero vector 8 such that x + 6 = x forany x € X (Additive identity)
(5) For every x € X, there is a vector (—x) € X such that x + (—x) = 6 (Additive inverse)
(a,x) — a.x from K x X into X is called scalar multiplication

6) ax e X (Closure under scalar multiplication)

(7) a(x+y) = ax + ay (Distributive property)

(8) (@ + B)x = ax + fx (Distributive property)

9) a(fx) = (af)x (Associative property)

(10)1.x =x (Scalar identity)

Elements of X are said to be vectors. If K = R, then X is said to be a real linearspace, and
if K = C, X is said to be a complex linear space.
Definition 1.2 [12] An infinite sequence is a function whose domain is the set of natural numbers.
The function values

aq,0y,03, ..., g, -

are the terms of the sequence. If the domain of the function consists of the first k positive integers,
the sequence is finite sequence. If the range of the sequence is real, we say that it is real sequence.

In general we use this notation
_a [o'e]
a = (ag)k=1-

Example 1.3 [12] The sequence (ay)y=, such that a; = % is an infinite sequence, this sequence

is a function whose domain N, the value atany k is % The set of values is {1%% }

Example 1.4 [12] The sequence (a)s=, such that a, = (—=2)* is also an infinite sequence, this
sequence is a function whose domain N. The set of values is {2, —2}.

Definition 1.5 [12] Let (ay)x=, be a sequence of real number and y € R be a constant real
number. If a;, =y forevery n € N then (ai)y~, is called constant sequence.

Example 1.6 [12] The sequence (ax)m=q1 = (4)p=, is the constant sequence {4,4,4, ...} whose
set of values is singleton {4}.

Definition 1.7 [12] Given a = (a,) and let k; <k, <+ < k, <--- where k,, € N. Then the

sequence (ay, ,ay, ,---,an, ,---) is called a subsequence of a.
. 11 - 111 1 .
Example 1.8 Given a = (1,5,5, ...), then obviously the sequencea = (as,) = (g'g'g' ...,g), is

a subsequence of a = (a,).
Definition 1.9 [12] We call the sequence (ay)r=; is bounded from above if there exist a real

number m such that it is satisfies the inequality

a, <m forall k € N.



Definition 1.10 [12] We call the sequence (ay)n=; is bounded from below if there exist a real

number m such that it is satisfies the inequality
m < aq;, forall kK € N.

Definition 1.11 [12] We call the sequence (ay )= is bounded sequence if there exist a real number

M such that it is satisfies the inequality
lax| <M forallk € N.

Lemma 1.12 [12] The sequence (ay)x=; is said to be bounded sequence if it is bounded from
above and below.
Definition 1.13 [12] Let (ax)x=, be a sequence of real number, then we say that the sequence

(ax)m=1 converge to areal number ¢ if and only if ¥ & > 0,3 N € N such that
lay —¢|<eVk>=N
in this case we write

lima, =fora, — fask — oo

k—oo

Definition 1.14 [12] A sequence (ay)r=; Of real number converges to zero is said to be null
sequence [3].

Theorem 1.15 [12] Every convergent sequence is bounded.

Remark 1.16 The converse above theorem in general may not be true for example the sequence
(ar)r=; = (—1)**1 is bounded sequence but it is not convergent.

Theorem 1.17 [12] Let a = (a,,) be a convergent sequence, then limit of a is unique.

Definition 1.18 [8] Let X be a real or complex vector space. A || .|| function from X into the set
R™* of non-negative numbers, the pair (X, || . ||) is called normed linear space and || . || is a norm on

X, if the following conditions are satisfied for every elements x, y € X and scalar y
(N1) llx]l = 0,
(N2) ||x|]| = 0 ifand only if x =6,
(N3) llyxll = lyl-lIxll,
(N4) llxx + yll < llxll + Iyl

The condition (N3) is called absolute homogeneity and the condition (N4) is called triangle

inequality.



Remark 1.19 If X is a real linear space, then the scalar y must be real number.
Definition 1.20 [12] Let (aj) be a sequence in a normed linear space (X, || .||, then it is called

convergentto a in X if
lay —all > 0ask — o
Lemma 1.21 [12] Let x and y be two elements in a normed linear space X, then

[l = Myl < llx = yll.

Definition 1.22 [8] Let X and Y be two normed linear spaces over the same field of scalars. Then

a transformation (or map, operator) T : X — Y is said to be linear if
T(x + y)=T(x)+ T(y) and T(ax) = aT(x)

forall x,y € X and for all scalars a.

Definition 1.23 [8] f is a linear functional on X if f : X — R or C is a linear operator. In other
words a linear functional is a real or complex-valued linear operator.

Definition 1.24 [8] Let X and Y be two normed spaces. The set B(X,Y) consisting of all bounded
linear operators from X into Y is a linear space with respect to the addition and scalar multiplication
of operators. If Y = Ror C, then B(X,Y) is called the continuous dual of X and denoted by X*. X*

forms a normed space with the norm

If Il = sup
xXEX
x+6

{—";lgj‘”)'} = sup (£ GO,

llxll=1
Theorem 1.25 [8] (Hahn Banach Theorem ) Let f be a bounded linear functional on a subspace Z
of a normed space X. Then there exist a bounded linear functional f on X which is an extension of

f to X and has the same norm. i.e. ||f||_= IIfllz where

I1l, = sup {IFGol} and lifll, = sup {If OB

lIxll=1 llx]l=1

Theorem 1.26 [8] Let X be a normed space and let x, # 6 be any element of X. Then there exist a

normed linear functional f on X such that
IFl =1 and F(x) = lixoll.
Definition 1.27 [1] (Space w ) The space of all complex sequences defined by

w={z=(z): zz €C,(keEN)}.



An element of w has the form z = (ay + by), where a; and b, are both real sequences. It
is easy that w is a linear space according to the usual coordinative addition and scalar multiplication

of sequences which are defined by
x+vy = (ay)+ (by) = (ay + by) and ca = (cay) = c(ay)

where a = (ay), b = (by) E wand c € C.
Definition 1.28 [8] (Space ¢, ) The space of all bounded sequences is indicated by . and
defined by

o =1{a = (ay) € w: sup|ay| < oo}
KeN

Definition 1.29 [3] (Space ¢ ) The space of all convergent sequences is indicated by ¢ and
defined by

¢ ={a=(a;) € w: gimlak—ll =0, forsomel e C}

Definition 1.30 [3] (Space ¢, ) The vector space of all null sequences is indicated by ¢, and
defined by

c={a=(ay) € w: Ilim a, = 0}.

Theorem 1.31 [1] The following statements are strictly true.
(i) ¢ cc,

(ii) c € 4.



2. WEAK AND STATISTICAL CONVERGENCE

Definition 2.1 [6] Let K S N and define
1
§(K) = lim —|{k < n:k € K}|.
n-oon

The number §(K) is said to be the natural density of the set K, if the limit exist. We can examined
that every finite subset of the set N has §(K) = 0 and §(K¢) = 1 — §(K) where K¢ = N — K for

any K € N. If §(K) = 1, then is called statistically dense.
1
-

Example 2.2 For the set K = {ak + b: k € N} we have §(K) =

Example 2.3 The set K = {k?: k € N} has natural density zero in fact |K(n)| < v/n so we conclude

that lim ¥ = 0.

n-oo N

Definition 2.4 [7] Let a = (a) € w. We say that the sequence (ay) is statistically convergent if

1
lim—|{k <n:lay—¢|=¢€}|=0
n—>oon

for any € > 0 and for some ¢. If the condition satisfied we say that a is statistically convergent to

the number £. Sometimes denotes

stat — ’lim a,= "%

—00

and S delineate the collection all stat-convergent sequence.

Lemma 2.5 [7] If the sequence (ay) is stat-convergent to a and the sequence by, is statistically
convergent to b and ¢ € IR, then

(i) The sequence (cay) is stat-convergent to ca,

(ii) The sequence (ay + by) is stat-convergent to a + b.

Theorem 2.6 [11] Every convergence sequence is statistically convergence sequence. In other

word if Ilim a, = ¢ then stat — gim a, = 4.

Proof: Suppose that ’lim a, = €. Then V&> 0, 3N € N such that

la, — €] <& Vk=N.

Since S(H(s)) = 0where H(¢) ={k € N: |a; — | = €}, we get stat — %im a, = 4.

Note the converse above theorem is not true in general.

Example 2.7 [11] Let (ay) be defined as:



1, if kisasquare
ap =
0, otherwise.

It is clear that ( a;) is not convergent. Because the limit points of (a,) are 0 and 1. But the
sequence (ay) is statistically convergent and statistical limit is 0 . Indeed suppose that € > 0, we

have
1
6({k€eN:|a, — 0] =¢}) = lim El{keN:lak—OI > ¢}.
n—oo

Fixn € N and set |A| = {k?:k? < n}, then |A| < +/n where |A| denotes cardinality of the set 4,
)

1 . n
5({k€N=|ak—0|2€})=7111_{{3101—l|{k€N=|ak—0|2€}|Sllm—-

n—-oo N
Therefore
d({keN:|a,—0|=¢}) =0.
Hence
stat — Ilim a, = 0.
Another difference between ordinary and statistical convergence is the boundedness property of
ordinary convergence because in the sense of ordinary convergence sequences are all bounded but
we may have unbounded and statistical convergence and hence we have some example to illustrate
it.
Example 2.8 Let (a;) be defined as

_{\/k_, if k =m?

a, =
“Tlo , ifk #m?

Then the sequence a, is statistically convergence to 0, but it is not bounded.

Example 2.9 Let (a;) be defined as

. _{kz, if k =m?
7, ifk=m?

Then the sequence a, is statistically convergence to 1, but it is not bounded.



Definition 2.10 [11] A sequence a = (ay) is said to be statistically bounded if there exist M > 0
such that lim = |{k < n:|a;| > e}l = 0ie |a | <M a.a.k.
n—oo
Theorem 2.11 [11] Every bounded number sequences is statistically bounded.
Remark 2.12 The converse of theorem is generally true.
Example 2.13 Let a = (a;) be defined as
(K2, ifk=m?

=Dk, ifk %= m?
then the sequence a = {1,1,—1,16,—1,1, ... } is not bounded. Now we must show that a =
(ay) is statistically bounded, suppose that M > 1 be given. Then

1
lim —|

n
{k <n:lag| > M}| < lim £= 0.
n-oon n

-0 N

Hence a is statistically bounded.

Remark 2.14 Every subsequence of convergence sequences is also convergent. But every
subsequence of statistically convergence may not be convergent and may not be
statistically bounded.

For example, suppose that a = (a;) be defined as

a _{k , if k is prime number
k=10 , otherwise.

Since the natural density of the collection of prime numbers is zero, therefore

1
lim - |[{k < n:k is prime number}| = 0
n—oo

and hence (ay,) is statistically convergent to zero, but it is obvious that the subsequence (ay) is
not convergence and not statistically convergence such that (a,’) = {1,2,3,5,7,11, ... }.
Theorem 2.15 [7] Let (a,) and (b,) be two sequences such that (a;) is convergentto £ and
(by) is stat-convergent to zero, then the sequence (a, + by) is stat-convergentto £.
Proof: Let (aj) be a convergent sequence. So by definition of convergent sequence

lim a, = ¢,i.e, V¢ >0,3N € Nsuchthat |a, —f|<e, Vk=N.

k—oo

Also since (by,) is stat-convergent to zero so Stat-llim b, =0,i.e,

1
lim —|{k <n:|bp,—0|=¢€}|=0 (D

n-on



Now, let stat - Ilim (ax +by) =*".S0

stat — ’lim (ag + b) = lim %l{k <n:|(ap +by)—*¢'| =€} =0.
—00 n—-oo

Note that
1
lim|a, —¢' |+ lim —|{k <n:|b, — 0| = €}|[ = 0.
k—oo n—-ocon
By using (1) we get
Illlrgolak—f | =0 i.e. Ill_r)gloasz.
So by our assumption we know that ,lim a, = €.So we get £’ = £. Hence we get
stat — ’lim (a + b)) = ¢.

Theorem 2.16 [7] Suppose that the sequence (a;) is stat-convergent to ¢. Then there are

sequences (ay) and (by) such that

1
lim —l{k Sniap # bk}l =0
n-oon

and (zj) is stat-null sequence, where

]llm bk = ‘g, ap = (bk +Zk)

Proof: Consider the sequence (ay) is stat-convergent to £. So by definition of stat-convergent

we have

1
lim—|{k <n:la,—¢|=¢€}|=0

n—-oon

and by assumption we have |b, — €| — 0 as k — oo. We must show that
Tlli_r)gloil{k < n:ay # b}l =0 and T{ijgoil{k <nilz, -2 =¢}| =0.

Since (ay) is stat-convergent to £, so we have rlll_ILlO% {k < n:la, —£| = €}| = 0.
Hence

1
lim —|{k <n:lay — € — by + by| = €}| = 0.

n—-oon

In another word



1
Therefore
1 1
lim —|{k < n:|(ay, — by)| = €}| + lim —|{k < n: |(by — £)| = €}| = 0.
n-oomn n-on

Since zlim b, = £, we have

1
lim El{k <n:|(ap —by)| =€} +0=0.
n—-oo

Hence
1
lim —|{k <n:|(ap — b)) =€} =0
n—-oon
implies that
1
lim —|{k < n:a;, # b, }| =0.
n—oo n
Since
gim b, = fand a, = (b, + z)
and
1
lim —|{k < n:a, # b }| =0,
n—-oon
we get
stat — Ilim (by + z) = llim b,=+¢
and hence

stat — gim (z) = 0.

Therefore we get our results that (z; ) is statistically null sequence.

Let 4 = (4,) be a non- decreasing sequence of positive real numbers such that

hmln = 00, An+1 Sln‘l' 1, Al =1

n—-oo

10



and I, = [n — A, + 1,n] be the closed interval . The set of all sequences satisfying above
conditions will be denoted by A.

Example 2.17 The sequences (1,) = (n) and (1,,) = (In(ne)) are in A.

Lemma 2.18 Let (1,,) = (n) € A. Then for every n, 4, < n.

Proof We will prove it by mathematical induction. If n = 1, it is clearly that
A< 1.
Suppose that the inequality be true for n = k, it means that
A < k.
Then we must show that
Ags1 <k + 1. (2)
Since A = (4,,) € A, so we have
Aks1 S A+ 1, 3)
using (2) and (3) we can write
Aes1 S +1<k+1.

Hence we get our results.
Definition 2.19 [10] Let 1 = (A,,) € A. Also suppose thatI,, = [n — A, + 1,n] and M < N then
the A — density of M is defined by

1
6,1(M)=Tlli_r){)10/1—|{k:n—/1n+1SkSnandkEM}l.
n

Remark 2.20 Obviously in the special case if (1,,) = (n) and then A — density reduce to the
definition of natural density.

Definition 2.21 [4] The sequence a = (ay) of real number is called A —statistically convergent to
the number £ifve >0

1
lim —|{kel;:|a,—¢=¢€}|=0.
An

n—-oo

In this condition we write S; — lim a; = ¢ and we denote the set of all A — statistically convergent

n—-oo
by 5/1.
Remark 2.22 If (1,,) = (n) then S, is same as S.

11



Theorem 2.23 [4] Let (ai) and (b;,) be two sequences of real numbers such that S; — Ilim ay =

aand S; — Ill_l)’glo b, = b and c be any real number, then
(i) S, — ’ll_r)rgo ca, = ca,
(ii)SA—]li_{r(}oak+bk =a+b.
Proof (i) Since
l{k < n:|cay —cal = €}| = |{k <n:lag—al = %}|

we have

1
7 |{k < n:|cay —cal| = &} 7

£
k<n:|la,—a 2—}|
{k < nila B

Therefore

1
lim —|{k < n:|cay —cal = €}| = li
A n

n—-oo -

1 £
m—|{k£n:|ak—a|>—} =0,
oo}Ln

el

thatis S; — ’}im ca, = ca.

(ii) Observe that

[{k <n:[Cax + by) — (@ + b)| = e}l = |{k < n:l(ax —a) + (bx — b)| = €}

<|fk < n:lar —al 2§}| + |{k < n:1b, - bl 2§}|

Hence
1
lim —|{k < n:|(ay + by) — (a+ b)| = €}|
n—»ooﬂ_n
< lim —|{k < n: > Wt tim = |{k < n: by — b = &
< Jim 3= [{k < mtlax - al 2 5|+ im 3= |{ke < mi b - b1 2 5]
Therefore

1
lim A—I{kSn:l(ak+bk)—(a+b)| > ¢} =0.
n

n—oo

It means that S; — I}im ax + b, =a+b.

12



Definition 2.24 [2] A sequence (ay) in a normed space X is said to be weakly convergent to the

number a € X, if Ilim @(a, —a) = 0forany ¢ € X*, the continuous dual of X. In this condition
. . w

we write W — ]lim a, = aorsimply a; = a.

Theorem 2.25 [2] If a sequence (aj) € X such that W — Ilim a, = a, then the weak limita € X

is unique.

w w
Proof: Suppose that there exist a, b € X such that a;, — a and a;, — b where a # b. Hence a —
b # 0, so by application of Hahn Banach theorem there exist ¢ € X* such that ¢(a —b) =
lla — bl with [le]| = 1.

i w w
Since a; — a and a;, — b so for every ¢ € X*, we have

w w
@(ax) = ¢(a) and ¢(a) = @(b) ask — o

SO

¢(a) = ¢(b)
implies

@(a—b)=0.
Therefore

lla —bll = 0.

So a = b this is a contradiction with our assumption. Hence we get the weak limit is unique.
Definition 2.26 [2] A sequence (ai) in a normed space X is said to be weakly statistically
convergent to the number a € X, if ve > 0, §({k < n: |p(ay —a)| = €}) = 0forany ¢ € X*, the

ws
continuous dual of X. In this condition we write WS — ;lim a, = a or simply a;,, — a. The set of

all weak statistically convergent sequence is denoted by WS.
Theorem 2.27 [2] Suppose that the sequence (a; ) is weakly convergent in a normed space X and

w — ’lim a, = a. Then (a;) is weakly statistically convergent to a.
Proof: Suppose that W — Ilim a; = a. Then by definition of weak convergence sequence we have,

for any € > 0 and each ¢ € X*, there exists a positive integer N such that

lp(ay —a)| <&

13



for all k > N. Thus the set H(e) = {k € N : |@(a, — a)| = ¢} is finite, therefore §(H(e)) = 0.

It means WS — lim a; = a.
k—o0

Remark 2.28 The converse above theorem is not generally true.
Definition 2.29 [9] A sequence (ay) in a normed space X is said to be weakly A —statistically

convergent to the number a € X, if Ve > 0 and for any ¢ € X™ such that

1
lim —|{k € I;: |p(ay, —a)| = €}| = 0.
n—w A,

. .. . . . WSy
In this condition we write WS, — Illm a, = a or simply a;, — a.
—00

Theorem 2.30 [9] Suppose that (aj) be a sequence in a normed space X. If ay Vﬂa then a
must be unique.

. . WS, WS)
Proof: Consider there exists a, b € X such that a, —>a and a;, —> b . Then for every ¢ € X*

we have

0(a) > p(a) and p(a) = (b).
Now by the uniqueness of S, —limit of a sequence of scalars immediately implies ¢ (a) = @(b);
and so by linearity of ¢ we have ¢(a — b) = 0. Suppose that if possible a # b. Thena —b # 0
and so by application of Hahn Banach theorem there exist ¢ € X* such that ¢(a — b) = |la — b||
with ||| = 1. Since ||a — b|| # 0, therefore ¢ (a — b) # 0 and therefore we obtain a contradiction
as¢@(a—b) =0.Hence a = b.

Theorem 2.31 [9] Let (a;) and (by) be two sequences in X such that WS, — Ilim a, = a and

Sy — ’lim b, =band a,b € X, y be any scalar. Then
() WS, — Ilim ya, =vya,
(ii) WS, —’}im ax +by=a+b.

Theorem 2.32 [9] For every sequence (ay) in X , if W — ;lim a, = a,then WS, — gim a; = a.

But the converse must not be true in general .

Proof: Suppose that W — Ilim a, = a. Then by definition of weak convergence sequence we

have, for any € > 0 and each ¢ € X*, there exists a positive integer N such that

|(,0(ak - a)l <g,

14



forall k > N. Thus the set H(e) = {k € N : |p(a; — a)| = ¢} is finite, therefore §,(H (¢)) = 0.

It means that WS, — Ilim a, = a.

Theorem 2.33 [9] S, —convergence implies WS; —convergence with the same limit in X.

Proof: Suppose that (aj) be a sequences in X such thatS; — Ilim a, = a. Then for every € >

0
1
lim — [{k € L;:||lay, — al| = &}| = 0.
n—>ooﬂ_n

Now for any € > 0 and each ¢ € X™, the expression

1 1
Zl{k € Ly |lop(ax —a)| 2 €}| < Zl{k € In:llollllax — all = €}

=—|{k € It llag — all = o }I

gives immediately % l{k € I,: lp(ay —a)| = €}| = 0.

Definition 2.34 [9] A sequence (ay) in X is said to be weakly [V, 1] —summable to £ € X, provided
that

lim —ka(ak 0l =0,
n—oo A
™ kel

wiv.A]
for every ¢ € X*. In this case we can write W[V, 1] — hm N = fora, — a.

wi(v, i wS
Theorem 2.35 [9] For any sequence (a) in X, ay [—> ¢ ifand only if a; = e

wlv,A
Proof: Suppose that ay, [—1 £. Then for every ¢ € X* and € > 0, we have

1
N EF e W]

kEIn n kel
lp(ar—1)|ze

€
)l_l{k € In:lp(ar — )| = €}l
wlv,A] B B WS,
so a —— ¢ implies a;, — *.

ws
Conversely suppose that a, —% ¢. Since @ € X", @ is bounded. So there exists some
M > 0 such that |p(ay — )| < M for all k. For € > 0,

15



1 1
T Dle@=nl= > le@-nl+ Y o0

kel ker, ker,
lp(ax—?)|ze lp(ax—ot)l<e

M
< M € Lyslo(ar — O = &}| + ¢
n

e wv.A]
which implies that a;, — *.

16



3. WEAK A-STATISTICAL CONVERGENCE OF ORDER

Definition 3.1 [5] Let A =(41,) € A and 0 < a < 1 be given. The sequence a = (a;) € w is

callled weakly A — statistically convergence of order « if for every € > 0 there is £ € X such that
11m —|{k €l,:lo(a, — )| = €} =0,

where I,, = [n — A,, + 1,n] and for every ¢ € X*. In this case we write
wsg — Jim a) = ¢,

The set of all weakly A — statistically convergence sequence of order a will be represented by W S§.
The weakly A — statistically convergence of order a is the same with weakly 1 — statistically
convergence, it means WS4 = WS; if a = 1.

Definition 3.2 [5] A sequence a = (ay) in X is said to be strongly A — statistically convergence of
order a to £ € X if for every € > 0,

1
m 7 |k € Lyt llag = £l = &} = 0,
n

S(l
where 0 < @ < 1. In this case, we write S§ — ’lim a, =*tora -3 ¢. The set of all strongly A —

statistically convergence sequence of order a will be represented by S .

Theorem 3.3 [5] Let 0 < a < 1 and a = (ay), b = (by) be sequences of complex numbers, then
(i) For every sequence (ai) in X , if WS§ — zli—fgaa" = ¢, then £ must be unique,
(@) Ifwsg — Ilijgoak = ¢, and c being a scalar, then WS¢4 — llij?oca" = cty,

(i) IFWSG — hm N ay = £, and WS§ — 11m bk = {,, then WSG — lim(ay + by) = 41 + £5.

k—oo

Proof The proof of (i) follows similar as in theorem 2.25 so omitted here.

(ii) Since

|k € In: I (cay, — ca)] = e}] = |{k € It o (@ — )] = 5},

we have

1
El{k € I:|lp(cay — ca)| = €}| =

Ala ke, (e —a)l 2 |}|



Therefore

ke tlo@ -z =

1 1
7ll_r)rgo El{k € I,;:|p(cay, —ca)| = €}| = Alm — Tl

—00 A%

thatis WS§ — ’li_r)rolocak = cf,.

(iii) Observe that
[{k € Ly:lp((ax + D) — (61 + £2))| = €}

= |{k € I;: lp((ax — €1 ) + (b — £2))| = €}

<|{k € i lp(ar — 201 = 2} +|{k € L 1o (i — €2)1 = 5}

Hence

1
lim - |{k € In:lo(Cax + by) = (61 + £2))] 2 €}l
n

0

< ,ll“;% |{k € L lp(ar — €)1 = §}| + Am%“k € L: (b — £)] = §}|

Therefore
1
Jim =1k € Iz |Caie + b) = (81 + £2)| 2 €} = 0.
n

It means that WS9 — lim(ay + by) = €1 + £,.

k—oo

Theorem 3.4 [5] Let A = (4,,) and u = (uy,) belong to A such that 4,, < uy, foralln € N, and let

a and B be givensuchthat0 < a < B < 1.

() If
a
lim inf—z >0
n—oo .un

then WS c ws¢.

(i0) If
7 p
lim—z=1and lim—z=1

then WS = ws¢.

18
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Proof: (i) Let 4, < u,, n € N, and let (4) be satisfied. Since I, c J,, for given € > 0 we have

[{k € Jn:l@(ax — )| = e}| 2 [{k € Lz lop(a, — €)| = &}

and so

a
n

1 i 1
gk € ntlp(ax — O 2 e}l 2 5.7 |tk € Intlp(a — £)] 2 €}
n

n ‘un

)

for all n € N, , where J,, = [n — u, + 1,n]. By taking limit as n — oo in the last inequality and

using (4) we get WSﬁ c wss.

(it) Suppose that (ay) € WS$ and (5) be satisfied. Since I,,  J,,, for given & > 0 we may write

1 1
_ﬂl{k € In:lo(ax — )| = €} =—B|{n—lln+ 1<k <n—2A.|e(a, — )| = €}
Hyp Hn

1
+— 1k € Iyt o (a, — £)] = &)
u

Up — A 1
< n—ﬁn + —ﬁ|{k € In:lp(ax — €)| = &}
tin 7
U, — A% 1
< n—ﬁn + —ﬁ|{k € In:lp(ay — £)| = €}
tin 7
U, 1% 1
S_Z__Z-I_,l_“l{k € In:lp(ax — )| = &}
Un Hp n
n € Ny, . Since lim % =1 and lim ”—Z =1 by (5), therefore the right hand side of latest
n—-oo un n—>ooun
inequality tends to 0 as n — oo ”—Z—’l—i >0 for n € N, ). Hence WSS9 c WSﬁ. Since (5)
Hn  Hn

implies (4) so we get our results WSﬁ = WSs§.

Corollary 3.5 [5] Let 2 = (4,,) and . = (uy,) belong to A such that 4, < u,, foralln € N, and
let (4) be satisfied. Then the following statements hold:

(i) Ifa = B, then WS4 c WS% forevery a € (0,1],

(i)) If p = 1, then WS, € WS forevery a € (0,1]

Corollary 3.6 [5] Let 2 = (4,) and u = (uy,) belong to A such that 4, < pu,, Vn € N,, and let (5)

be satisfied. Then the following statements hold:
(i) Ifa = B, then WSG € WS¢ forevery a € (0,1],
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(i) If p = 1, then WS € WS, for every a € (0,1].
Theorem 3.7 [5] S§ —convergence implies WS¢ —convergence with the same limit in X, but the

converse is not true true in general.

SD(
Proof: Suppose that (a;) in X, be a sequence such that a, — €. Then for every £ > 0 we have
1
lim 7 [{k € Iy la = €1 = &}] = 0.
Now, for any € > 0 and every ¢ € X*, the expression

1 1
A—al{k € In:lp(ax — )| = e}| < 7 l{k € In:llollllay — 21| = &}
n

=7

L {kel la, — 2| = — }|
A% - loll

It means S§ —convergence implies W S%-convergence with the same limit.
Theorem 3.8 [5] Suppose that 0 < a < 8 < 1. Then the inclusion WS9 < WSﬁ for some a and

B is strict such that @ < .
Proof: Suppose that 0 < o < < 1. Then we may write

IA
>J|H

SK

:>i’m| i

and so that
1 1
A_Bl{k € In:lp(ay — )| 2 e}| < T I{k € I,: |p(ax — £)| = €}l
n n

By taking limit in both sides this equation as n goes to infinity we get results

1 1
lim —|{k € I;:|p(a, — £)| = €}| < lim — [{k € I;: |p(a, — €)| = &}
n—)oolg n—>ool%

Therefore WS% < WSﬁ.
Corollary 3.9 [5] Suppose that 0 < a < 1 be given. Then WS € WS,
Corollary 3.10

O WSS =wsk = a=p,

() WSS =WS; @ a = 1.
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Definition 3.11 [5] A sequence (ay) in X is called weakly [V, 1] —summable of order a to £ € X if

lim — Z lp(ax — )1 =0,

" kel

for every ¢ € X* where 0 < a < 1. In this case we can write W*[V, 1] —Ilim a, =4 and

W[V, 7] represents the collection of all weakly [V, 2] —summable of order a sequences.
Theorem 3.12 [5] Let 2 = (4,) and u = (uy,) belong to A such that 4, < u,, for all n € N, and

0 < a < B < 1. Then the following statements holds:

(i) If lim inf2& > 0, then WA [V, u] € W[V, ],
n—-oo l,l,n

(i6) If lim 2& = 1 and lim “2 = 1, then W[V, u] = W[V, A].

n—oo py, n—-oo p,

Proof: (i) Let 4,, < u,, Yn € N. Since I,, c J,, so that we may write

= > ot~ Dl 25 Y ot~ D)

'“n KEJn n KEL,

and so

1 2%
DN CEIEL YW
I i,

™ kel

for n € N,, . By taking limit in both sides this equation as n goes to infinity we get results and
using (4) we get WE[V,u] € W[V, Al.

(i) Suppose that (a,) € W*[V, A] and lim 2 =% =1land lim &2 = 1. Since ¢ € X*, ¢ is bounded.

n-oo uy, n—)ooy

So there exists some M > 0 such that |@(a, — £)| < M for all k. Since 1,, < u,, and so that iﬁ <

n

and I,, c J, forall n € N, we have

BZWR Ol= = > o0l +5 Y lo—0)

/1“’

Hn key, n KEJn—1,, n kEl,
-2 1
< (B )M+ = ) lo@ - o)
B B
Hn n kely,
Un — A%
< M+ oG~ )l
B B
Hn n kel
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U, A% 1
S(_Z_1>M+Ezl(p(ak_[)l

B
n Hn kel

foraln € N, . Hence W*[V,u] WE[V, A]. Since (5) implies (4) therefore we get the equality
WAV, u]l = we[v,Al.

Corollary 3.13 [5] Let A = (4,,) and u = (u,,) belong to A such that A,, < u,, forall n € N and let
(4) be satisfied. Then the following statements hold:

() Ifa = B, then W[V, u] € W*[V, 2] for every a € (0,1],
(i) If B = 1,then W[V,u] € W[V, A] for every a € (0,1].

Corollary 3.14 [5] Let 2 = (4,,) and u = (u,) belong to A such that 4,, < w,, for all n € N, ;and
let (4) be satisfied. Then the following statements hold:

() Ifa = B, then W[V, A] € W[V, u] forevery a € (0,1],
(i) If B = 1, then W[V, A] € W]V, u] for every a € (0,1].

Theorem 3.15 [5] Suppose that a, 8 € (0,1] be real numbers such that « < 8, and 1 = (4,,) and
1 = (un) belong to A such that 4, < u,, foralln € N,, .

(i) Suppose that (4) holds, then if a sequence is WA[V, 2] —summable of order 8 to £, then it is
WS4 — statistically convergent of order a to 2,

(it) Suppose that (5) holds, if a sequence WS4 — statistically convergent of order « to ¢, then it is
WA[V, 2] —summable of order g to 2.

Proof For every sequence a = (a,) and € > 0, we have

Dloa-ol= > @ -0+ ) lpa— )

k€n kejn k€jn

lp(ar—0)|ze lp(ar—0)I<e

> ) lel@-dl+ ) lea -9l
ke, keT,

lp(ar—*)Ize lp(ar—t)l<e

> > lo(a -0

ke,

lp(ax—b)|ze

2 |{k € In:|p(ax — D) 2 €}].€

and so that
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1 1
= > 9@ = O = |k € Ly lgp(a — )] = &)l.e
& T

i
Hn

)

1
A—al{k €l lp(a, — )| = €}l.e.
n

Since (4) holds so if a = (ay) is WP[V,A] —summable of order B to ¢, then it is WS% —
statistically convergent of order « to £.

(ii) Let WS%—Ilim a, =7%. Since ¢ is bounded. So there exists some M > 0 such that

lo(a, — )| < M for all k, for every € > 0 we have

1 1 1
S )o@ =0l == > lpa—dl+— ) o — o)

Hn rer, Hn ke, Hn ket,
-1 1
< (B M+ = > loa - o)
B B
Hn n kely,
— 1% 1
< (B2 )M+ = ) lo@ - o)
B B
Hn n kely,
and hence
1
= D lo@ —0)
Hn ke€jn

n An 1 1
S(%——B)M‘F—B z lp(ax — O +— Z lp(ax — 0|

Hn Hn Hn keI, Hn keI,
lp(ar—0)|ze lp(ar—bt)I<e
pY: M A
< (B Vs Dtk e L loCa, — 0)] = e} 22 e
B B 14 B
‘Lln I'Ln n n

for all n € N. Now by using (5) we obtain that WA[V, ] — Ili—{}oloak = ¢, whenever WS% —
Ao = £

Corollary 3.16 [5] Let A = (4,,) and u = (u,,) belong to A such that A,, < u,, forall n € N and let
(4) be satisfied. Then the following statements hold:

() Ifa =B, then W[V, u] c WS4 forevery a € (0,1],

(i) If p =1, then W[V,u] c WS forevery a € (0,1].
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Corollary 3.17 [5] Let A = (4,,) and u = (u,,) belong to A such that 4,, < u,, Vn € N and let (5)
be satisfied. Then the following statements hold:

() Ifa = B, then WS§ c W[V, u] forevery a € (0,1],

(i) If p = 1, then WSG c W[V, u] for every a € (0,1].
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4. CONCLUSION

Weak A —statistical convergence is studied in this thesis. First, the definitions of natural
density, weak convergent and sequence are studied in order to discuss the concept of statistical
convergence. Then, a brief summary of A-statistical convergence, weak statistical and weakly A-
statistical convergences is given. In the last chapter the concept of weak A — statistical convergence
of order @ where a € (0,1], which is the main interest of this thesis has been considered. These
concepts are much more general than the ideas of statistical convergence and weak statistical

convergence which include these ideas in the special case a = 1.
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