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ABSTRACT 

Dummy 

Statistical Convergence of Difference Sequences in Connection with 

Modulus Functions and some Generalizations  
 

 Sarkawt Asaad ABDULSAMAD 

 

Master's Thesis 
 

FIRAT UNIVERSITY 
Graduate School of Natural and Applied Sciences 

Department of Mathematics 

      

January 2020,   Page:  ix  + 35 
 

 

In this thesis by using difference sequences and modulus functions, we give some definitions and 

theorems about f  statistical convergence, f  statistical boundedness, f  strong Cesàro summability 

and f  statistical convergence of order   and strong f Cesàro summability of order   with respect 

to modulus functions. In the beginning we give the relations between the sets of   statistically convergent 

sequences and   statistically bounded sequences and we give some relations between them. Then we 

provide the relations between the sets of f  statistically convergent sequences and f  statistically 

bounded sequences. After that we discuss the relations between  fS   and  gS  ,  fS   and  S  , 

 fBS   and  gBS  ,  fBS   and  BS  ,  fS   and  gBS   for different modulus functions f  

and g  under certain conditions. Finally we give some relations between the sets of f  statistically 

convergent sequences of order   and f  strongly Cesàro summable sequences of order  . 

Kizmaz defined the difference sequence spaces   ( ) : ,ml q q q l       

  ( ) :mc q q q c      and   ( ) :o m oc q q q c      which are Banach spaces, where 

   1m m mq q q q      . 

 

Keywords: Statistical convergence, statistical boundedness, strong Cesàro summability, f  statistical 

convergence, f  statistical boundedness, f  strong Cesàro summability, f  statistical convergence 

of order  , f  strong Cesàro summability of order  .  
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ÖZET 

dummy 

Modulus Fonksiyonları yardımıyla tanımlanmış Fark Dizilerinin İstatistiksel 

Yakınsaklığı ve Bazı Genelleştirmeleri 
 

 Sarkawt Asaad ABDULSAMAD 

 

Yüksek Lisans Tezi 
 

FIRAT ÜNİVERSİTESİ 
Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

      

Ocak 2020,   Sayfa:  ix  + 35 
 

 

Bu tezde, ilk önce reel say dizileri için f-istatistiksel yakınsaklık, f-istatistiksel sınırlılık ve ardından f-

kuvvetli Cesàro toplanabilirlik kavramları verilmekte ve ilişkili bazı kavramlar incelenmektedir. Sonra fark 

dizileri için, f  istatistiksel yakınsaklık olarak adlandırılacak olan f  istatistiksel yakınsaklık, f 

istatistiksel sınırlılık olarak adlandırılacak olan f  istatistiksel sınırlılık ve ardından f  kuvvetli Cesàro 

toplanabilirlik kavramları verilmekte, kavramlar arasındaki ilişkiler ortaya konulmaktadır. Bundan sonra, 

bazı şartlara sahip farklı f  ve g  modülüs fonksiyonları için  fS   ve  ,gS    fBS   ve  ,gBS   

 fw   ve   ,gw    fS   ve  fw   kümeleri arasındaki kapsama bağıntıları elde edilmektedir. Ayrıca 

bazı özel modülüs fonksiyonları için  fw   ve  w  ,  fS   ve  S   sınıfları arasındaki ilişkiler elde 

edilmektedir. Daha sonar 0 1   şartına sahip herhangi bir   için  . dereceden f -istatistiksel 

yakınsaklık ve  . dereceden f -kuvvetli Cesàro toplanabilirlik üzerinde çalışılıp, bu iki kavram arasındaki 

ilişkiler de verilmektedir. 

 

Anahtar Kelimeler: İstatistiksel yakınsaklık, istatistiksel sınırlılık, kuvvetli Cesàro toplanabilirlik, f -

istatistiksel yakınsaklık, f  istatistiksel sınırlılık, 𝛼. dereceden f  istatistiksel yakınsaklık, 𝛼. 

dereceden f  kuvvetli Cesàro toplanabilirlik. 
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1. INTRODUCTION 

The concept of statistical convergence reverts to the monograph of Zygmund [1]. The 

conception of statistical convergence was explicitly presented by Steinhaus in [2] and Fast in [3] 

and reintroduced later by Schoenberg [4]. Statistical convergence also appears as an example of 

density convergence introduced by Buck in [5]. 

To solve series summation problems, statistical convergence was introduced. Many 

researchers provided many statistical convergence results and theories in many spaces and 

statistical convergence has been considered in different setups, and its different speculations, 

expansions, and variations have been concentrated by different creators up until now. For example, 

statistical convergence of order   [6],  -statistical convergence with order   [7], statistical  -

summability [8], lacunary statistical convergence [9], generalized weighted statistical convergence 

[10] have been given. 

Kizmaz introduced the notion of spaces of difference sequences [11], who examined the 

difference sequence spaces ( )l  , ( )c   and 0 ( )c  , and then by introducing the spaces ( )nl  , 

( )nc   and 0 ( ),nc   Et and Çolak further generalized this concept [12]. 

In 1953, Nakano [13] was introduced the concept of a modulus function and subsequently 

Ruckle [14] and Maddox [15] studied on the concept. Later, using a modulus function, many 

mathematicians constructed a lot of sequence spaces. 

Aizpuru et al. in [16] introduced a different but in the same time much more general and new 

concept of density in 2014 by including an unbounded modulus function which is called f-density. 

After then using this concept, they got another non-matrix convergence concept, in other words, 

f  statistical convergence, that is close to ordinary convergence and statistical convergence and it 

coincide with statistical convergence when the modulus function taken as identity mapping. 



2. FUNDAMENTAL DEFINITIONS AND RESULTS 

We will provide this chapter with the basic definitions and results related to the subject. 

Throughout s, ,l c  and oc  symbolize the spaces of all, bounded, convergent and null sequences 

of real numbers. 

2.1. Basic Concepts on Sequences 

Definition 2.1.1 A sequence  mq  is called convergent to l  if for each 0,   there exists an 

integer N  such that mq l    whenever n N . 

Definition 2.1.2 A sequence  mq  is called bounded if there is an 0M   such that mq M  for 

all m . 

Definition 2.1.3 A sequence  mq  is called Cauchy if for each 0,   there exists an integer N  

such that m nq q    whenever ,n m N . 

Theorem 2.1.4 c l . 

Proof Suppose ( )mq c and mq l  as m  . We choose 1  . Then there exists N  such 

that 1mq l   for every m N . Then 

1m m mq q l l q l l l        . 

for every n N . If we choose  1 2max , ,..., ,1NM q q q l   then we have mq M  for every 

m  So  mq l . 

Remark 2.1.5 The reverse of the above theorem does not hold in general, that is, a bounded 

sequence may not be convergent. Indeed the sequence    1 1
n

   is not convergent but it is 

bounded. 

2.2. Basic Concepts on Difference Sequences 

Kizmaz defined the difference sequence spaces ( )l  , ( )c   and 0 ( )c   as  

  ( ) : ,ml q q q l       

  ( ) : ,mc q q q c      
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  ( ) :o m oc q q q c      

and showed that these are Banach spaces with norm 

1q q q


    

where    1m m mq q q q       and q


= sup m
m

q  (see [11]). 

Definition 2.2.1 A sequence  mq  is called   convergent to l  if for each 0,   there is an integer 

N  such that mq l     whenever m N . 

Definition 2.2.2 A sequence  mq  is called   bounded if there is an 0M   such that mq M   

for all m . 

Definition 2.2.3 A sequence  mq  is called  Cauchy if for each 0,   there is an integer N  

such that m nq q      whenever ,n m N . 

Theorem 2.2.4 ( ) ( )c l   . 

We omit the proof, since it is similar to the proof of Theorem 2.1.5. 

Remark 2.2.5 The reverse of the above theorem does not hold in general, that is, a   bounded 

sequence may not be   convergent. Indeed the sequence  ( ) 1,0,1,0,...mq   is   bounded but 

it is not   convergent. 

It is clear that we have the following inclusions: 

     oc c c l      . 



3.  STATISTICAL CONVERGENCE AND  STATISTICAL 

BOUNDEDNESS 

In this chapter we study on the concepts of   statistical convergence and   statistical 

boundedness and we give some relations between these concepts and give the inclusions relations 

between the sets ( )S   and ( )BS  . 

3.1.  Statistical Convergence and  Statistical Boundedness 

Definition 3.1.1 [17] Consider a set H  . Then we define  d H  by 

   
1

lim : ,
n

d H m n m H
n

    

as a natural density of set ,H  where  :m n m H   stands for the number of elements of H

which is less than or equal to n, so it is clear that  :m n m H   n. 

Statistical convergence of sequences relies on the density of subsets of . The natural 

density of any finite subset of N obviously is zero and ( ) 1 ( )cd H d H  . If   1,d H  then the 

set H is said to be statistically dense. 

Definition 3.1.2 [18] A sequence  mq  is called   statistically convergent if there is a complex 

number ,l  such that 

1
lim { : } 0,m
n

m n q l
n




      

for every 0  . We write   mq l S   in this case. ( )S   denotes the class of   statistically 

convergent sequences. 

Definition 3.1.3 [18] A sequence  mq  is called   statistically bounded if there is a number 

0,M   such that 

1
lim { : } 0m
n

m n q M
n

    . 

( )BS   denotes the class of   statistically bounded sequences. 
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Theorem 3.1.4 ( ) ( )c S   . 

Proof Let ( ) ( )mq c   and ( )mq l   as m . Then the set  : mm q l      is finite for 

each 0  . Suppose  : mm q l M     . Then 

 :
lim

lim 0.

m

n

n

m n q l

n

M

n







   

 

 

This means that ( ) ( )mq S  . 

Remark 3.1.5 The reverse of the above theorem does not hold in general. Indeed, define ( )mq q  

as 

2

2

0,

,

1,

m

m r

q r

m r

 


 
 

 

that is, the sequence ( )mq  is   statistically convergent, since 

2

2

1,

1, 1 1,2,3,...

0, otherwise

m

m r

q m r r

 


     



 

is statistically convergent, but it is not   convergent, that is  ( ) ( )mq S c    . 

Theorem 3.1.6 ( ) ( )l BS    . 

Proof  Let ( ) ( )mq l  . Then for some 0,M   we have ,mq M   for all m  and this means 

that 

 : mm q M    . 

Thus, we get 

 
1

lim : 0m
n

m n q M
n

    . 

Hence, ( ) ( )mq BS  . 

Remark 3.1.7 The reverse of the above theorem does not hold in general. Let us define the 

sequence  mq  by 
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2 2 2

1 1 ,  if 1 ,  ,m rq v r r m r r          (3.1)  

where the sequence  rv  defined via 

 
2

1 1 ,  ,r rv v r r     

and 0 0v  . Now we have 

2

2

,

1,2,3,....

0,

m

m m r

q r

m r

 


  
 

 

And so that ( ) (0, 1, 1, 1, 5, 5, 5, 5, 5, 14, 14, 14, 14, 14, 14, 14,...),mq                  and 

( ) (1,0,0,4,0,0,0,0,9,...)mq  . Clearly  mq  is   statistically bounded but it is not a  

bounded sequence. 

Theorem 3.1.8 [19] ( )BS BS  . 

The proof is easy that is why we omit it. 

Remark 3.1.9 The reverse of the above theorem does not hold in general. Indeed the sequence 

 ( ) 1,2,3,... ( )mq BS   , since    1( ) 1, 1, 1,...m m mq q q         is bounded, but ( )mq BS , 

that is  ( )mq BS BS   . 

Theorem 3.1.10 [20] ( ) ( )S BS   . 

Proof Assume that ( ) ( )mq S   and   mq l S  . Then   : 0md m q l       for every 

0  . If we choose 0M   such that M  . Then we have 

 { : } :m mm q l M m q l          , so that 

1 1
{ : } { : }m mm q l M m q l

n n
         . 

Since the sequence ( ) ( )mq S  , then in the above inequality the right side, and so that the left 

side tend to 0  as n   and hence we have that ( ) ( )mq BS  . (Note that for some 1M M  

lim
𝑛→∞

1

𝑛
|{𝑚 ∈ ℕ  :  |𝛥𝑞𝑚 − 𝑙| > 𝑀}| = 0 implies that 1

1lim { : } 0mn
n

m q M


    . 

Remark 3.1.11 The reverse of the above theorem does not hold in general. Indeed the sequence 

 ( ) 0,1,0,1,...mq   is in ( )BS  , since    1( ) 1,1, 1,1,...m m mq q q BS       , but ( ) ( )mq S  . 
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Definition 3.1.12 If  1lim { :  does not satisfy } 0,mn
n

m n q P


   then it is said that qm  satisfy 

property P  for almost all m . 

3.2.  Statistically Cauchy Sequences 

Definition 3.2.1 [21] A sequence ( )mq  is named   statistically Cauchy if for any 0  , there is 

 N N    such that 

1
lim { : } 0m N
n

m n q q
n




     . 

Theorem 3.2.2 [22] A sequence is   statistically convergent if and only if it is   statistically 

Cauchy. 

Proof Assume that ( ( ))mq l S  . Then for every 0,   
2mq l     for almost all m . If we 

choose N  such that 
2Nq l    , we may write 

m N m Nq q q l q l           

for almost all m . Hence q  is a   statistically Cauchy sequence. 

Now let ( )mq  be   statistically Cauchy sequence. Then for any 0  , there is N  such 

that 

 { : } 1m Nd m n q q      . 

Hence, we obtain 

 { : } 1,m Nd m n q q        

and 

 { : } 1N md m n q q      . 

We define the following sets: 

  : { : } 1 ,mA a d m n q a       

and 

  : { : } 1 .mB b d m n q b       
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Now  Nq A   ,  Nq B    and we have  { : } 1md m n q a     and 

 { : } 1md m n q b     for a A  and b B . 

Therefore, we get 

 { : } 1md m n b q a     . 

This implies b a . Clearly we have 

sup inf .N Nq B A q         

Since   was an arbitrary positive number, we get sup infB A . Now given 0   there exists 

a A  and b B  such that ,l b a l       if we choose sup infB A l  . From the definition 

of A  and B  we may write 

  : 1,md m n l q l         

and hence we obtain 

   { : } 1 or { : } 0m md m n q l d m n q l           . 

Therefore  mq  is   statistically convergent. 

Theorem 3.2.3 [20] Every   statistically Cauchy sequence is   statistically bounded. 

Proof Assuming that ( )mq  is a   statistically Cauchy sequence. Then for any 0  , there is 

( )N N    such that | |m Nq q      a.a. m . This means that | |mq L   a.a. m , where 

| |NL q   . 

Remark 3.2.4 The reverse of the above theorem does not hold in general. Indeed the sequence 

 ( ) 1,0,1,0,...mq   is   statistically bounded, since  1( )m m mq q q       1, 1,1, 1,...   is 

statistically bounded. However, it is not   statistically Cauchy. 

Theorem 3.2.5 [23] Let ( )mq s . Then ( ) ( )mq S   if and only if the following condition is 

satisfied 

1
lim { , : } 0m r
n

m r n q v
n




      

where  rv  is a subsequence of  mq  such that 

lim r
r

v l


   

for some l . 
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Proof Assuming that ( ) ( )mq S  . We will prove that 

1
lim { , : } 0m r
n

m r n q v
n




     . 

If the sequence ( ) ( )mq S  , then by the definition we have, 

1
lim { : } 0m
n

m n q l
n




     . 

Hence, we obtain 

1
lim { , : }m r
n

m r n q v
n




     

1 1
lim { : } lim { : }m r
n n

m n q l r n v l
n n

 
 

           

1
0 lim { : }r

n
r n v l

n



      . 

Since ( ) ( )rv c  , then ( ) ( )rv S  . So, we may write 

1
lim { : } 0r
n

r n v l
n




     . 

Hence, we obtain 

1
lim { , : } 0m r
n

m r n q v
n




     . 

Conversely, let 1lim { , : } 0m rn
n

m r n q v 


     . In order to prove that ( ) ( )mq S  , we 

begin with the inequality that comes following 

1 1
lim { : } lim { , : }m m r r
n n

m n q l m r n q v v l
n n

 
 

             

1 1
lim { , : } lim { : }m r r
n n

m r n q v r n v l
n n

 
 

           

1
lim { , : } 0m r
n

m r n q v
n
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since it is given that lim r
r

v l


   then 1lim { : } 0rn
n

r n v l 


     . Consequently, we get 

1lim { : } 0mn
n

m n q l 


      

This means that ( ) ( )mq S  . 



4.  f
STATISTICAL CONVERGENCE AND  f

STATISTICAL 

BOUNDEDNESS 

In this chapter we study on the concepts of f  statistical convergence and f  statistical 

boundedness and we give some relations between these concepts and give the inclusions relations 

among the sets ( )fS  , ( )S  , ( )fBS   and ( )BS  . 

4.1.  f
Statistical Convergence and  f

Statistical Boundedness  

Definition 4.1.1 A function f  from [0, )  to [0, )  is called a modulus if 

i) ( ) 0f u   if and only if 0u  , 

ii) 1 2 1 2( ) ( ) ( )f u u f u f u    for every 1 2, 0u u  , 

iii) f  is increasing, 

iv) From the right, f  is continuous at 0 . 

An f  modulus is continuous everywhere on [0, ) . The modulus functions ( ) pf t t  

(0 1)p   and 1
( ) t

t
g t


  are unbounded and bounded functions, respectively. That is why for a 

modulus it is possible to be bounded or unbounded. 

Furthermore given any modulus f, the inequality  ( )f nx nf x , so that  ( ) 1f n nf  is satisfied 

for every positive integer  n and real number x by (ii). 

Lemma 4.1.2 [24] The limit 
 

 

 

0,
lim inf

f t f t

t t
t t  

  exists for any modulus f . 

Definition 4.1.3 [16] Let H  . The f  density of a set H  is defined by 

 
  

 

:
lim ,f
n

f m n m H
d H

f n

 
  

whenever the limit exists, where modulus f  be unbounded. 

When ( ) ,f t t  the f  density and natural density are same. For the natural density, we 

have ( ) ( ) 1d H d H    for every H  . But this is not true in case of f  density in general, 

that is     1f fd H d H    generally, does not hold. For example, if we take ( ) log( 1)f t t   

and {2 : }H n n  , then  ( ) 1f fd H d H   . However, we can say that in the case of f -

density, if   0fd H   then   1fd H  . Finite sets have zero f  density, as in the case of 

natural density and so that     1f fd H d H    for any finite set H . 
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For any unbounded modulus f  and H  ,   0fd H   implies that ( ) 0d H  . But the 

reverse does not have to be true, in general. For example, taking ( ) log( 1)f t t   and 

{1,4,9,...}H  , then ( ) 0d H   but   1
2fd H  . However, for any finite set ,H   ( ) 0d H   

implies   0fd H   is always true, irrespective of selection of unbounded modulus f . 

Lemma 4.1.4 [16] If H   is infinite then at least for an unbounded modulus f  we have

( ) 1fd H  . 

Definition 4.1.5 [25] Let f  be an unbounded modulus function. A sequence ( )mq  is called f 

statistically convergent to ,l  if for each 0    

  : 0,f md m q l       

i.e., 

  1
lim : 0

( )
m

n
f m n q l

f n



     . 

We write this notation ally as   limf mS q l    or  ( )m fq l S  . ( )fS   denotes the class of 

f  statistically convergent sequences. 

Theorem 4.1.6   ( )fS S    for any unbounded modulus f . 

Proof Assume that  ( )m fq S   and   limf mS q l   . Then   0fd H   if we choose 

 : mH m q l      . Now the proof follows from the fact "for any H   and any 

modulus f ,   0fd H   implies that ( ) 0d H  ". 

Theorem 4.1.7 Let f  be an unbounded modulus. If 
 

lim 0,
f t

t
t

  then  ( ) fS S   . 

Proof Assume that ( ) ( )mq q S    and   lim mS q l   . Then we have 

  :
lim 0

m

n

m n q l

n





   
  

for every   0.  Now we may write 

       : : 1

( ) ( )

m mf m n q l m n q l f n

f n n f n

        
  . 
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Since 
 

lim 0
f t

t
t

  and   lim ,mS q l    the right hand side of the above inequality tends to 0  and 

this implies that the left hand side tends to 0  as n  . Therefore  ( )m fq S  . 

Theorem 4.1.8 Let f  be an unbounded modulus. If 
 

lim 0,
f t

t
t

  then  ( ) fc S   . 

The proof is derived from Theorem 3.1.4 and Theorem 4.1.7. 

Theorem 4.1.9 [25] Let f  be an unbounded modulus and ( )mq q , ( )mv v  be any two 

sequences. Then 

i  If   limf mS q l    and c , then   lim ,f mS cq cl    

ii  If   1limf mS q l    and   2limf mS v l   , then     1 2limf m mS q v l l     . 

Remark 4.1.10 It is clear that if ( )mq c , then every subsequence of ( )mq  belongs to c, but this 

situation is no longer true in case of f  statistical convergence, that is a f  statistically 

convergent sequence may have a subsequence which is not f  statistically convergent. If we 

consider the modulus function ( ) ,pf t t  0 1p   and the sequence ( )mq  defined by (3.1)  in 

Remark 3.1.7 ,  that is 

( ) (0, 1, 1, 1, 5, 5, 5, 5, 5, 14, 14, 14, 14, 14, 14, 14,...),mq                  

then we have that  m fq S  , since ( ) (1,0,0,4,0,0,0,0,9,...)m fq S   . But whereas (1,4,9,...)  

is a subsequence of ( )mq  which is not f  statistically convergent.  

4.2.  f Statistically Cauchy Sequences 

Definition 4.2.1. Let f  be an unbounded modulus. A sequence ( )mq  is called f  statistically 

Cauchy or Cauchy sequence if there exists a positive integer  N N   such that 

  : 0,f m Nd m q q       

i.e., 

  1
lim : 0

( )
m N

n
f m n q q

f n



     . 

for every   0 . 
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Theorem 4.2.2 Given any sequence is f  statistically convergent if and only if it is f 

statistically Cauchy for any unbounded modulus f . 

Proof It is clear to demonstrate that any f  statistically convergent sequence is f  statistically 

Cauchy. 

To prove that a f  statistically Cauchy sequence is f  statistically convergent sequence we 

may use the technique given in the proof of Theorem 3.3 in [16]. 

Definition 4.2.3 Let f  be an unbounded modulus. A sequence ( )mq  of numbers is named f 

statistically bounded if there exists 0M   such that 

  : 0,f md m q M     

i.e., 

 
1

lim { : } 0
( )

m
n

f m n q M
f n

    . 

( )fBS   denotes the class of f  statistically bounded sequences. 

Theorem 4.2.4 ( ) ( )fBS BS    for any unbounded modulus f . 

Proof Let ( ) ( )m fq BS  . Then   0fd H   if we choose  : mH m q M     for an M  

large enough. Now the proof is based on the fact " for any H   and any modulus f ,   0fd H   

implies that ( ) 0"d H  . 

Remark 4.2.5 The reverse of the above theorem does not hold in general. If we consider the 

modulus function ( ) log( 1)f t t   and the sequence ( )mq  defined by  3.1  in Remark 3.1.7 ,  that 

is ( ) (0, 1, 1, 1, 5, 5, 5, 5, 5, 14, 14, 14, 14, 14, 14, 14,...),mq                  then we have that 

( ) ( )mq BS  , since ( ) (1,0,0,4,0,0,0,0,9,...)mq   is statistically bounded, but ( ) ( )m fq BS  . 

Theorem 4.2.6 [19] For every unbounded modulus f  we have ( ) ( )f fS BS   . 

Proof Using the inclusion     : :m mm q l m q l           the proof is 

straightforward. 

Remark 4.2.7 The reverse of the above theorem does not hold in general. Indeed if we consider 

the modulus function ( ) ,f t t  and define qm   as 
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1, 2

,

0, 2

m

m r

q r

m r




 
 

 

then we have that ( ) ( )m fq BS  , since    1( ) 1,1, 1,1,...m m mq q q        is f  statistically 

bounded, but  ( )m fq S  , that is    ( )m f fq BS S    . 

Theorem 4.2.8 [19] Every f  statistically Cauchy sequence is f  statistically bounded for any 

modulus f . 

Aizpuru et al. in [16] proved that lim mf st q l   if and only if there exists H   with 

( ) 0fd H   and limm H mq l   . 

Now we provide an analogous theorem in the same structure for f  statistically bounded 

sequences which includes the f-density of related sets. 

Theorem 4.2.9 A sequence  mq  is f  statistically bounded if and only if there exists H   

such that ( ) 0fd H   and    m m H
q l 

  . 

Proof Assume that  mq  is f  statistically bounded. Then we have an integer 0M   which has 

  : 0f md m q M    . Take  : .mH m q M     Then ( ) 0fd H   and for 

,m H   we have ,mq M   that is,    m m H
q l 

  . 

Conversely, since    m m H
q l 

   there exists 0M   such that for any m H   we 

have .mq M   This implies that  : mm q M H     and so 

  : 0f md m q M    . Hence ( )m mq   is f  statistically bounded. 

Theorem 4.2.10 Let f  be an unbounded modulus and  mq s . If   ( )m fq BS  , then 

  ( )m fq S   in case  mq  is monotone. 

Proof Let the sequence ( )mq  be monotone and   ( )m fq BS  . Now the sequence   ( )m fq BS   

if and only if there exists H   such that ( ) 0fd H   and    m m H
q l 

   by Theorem 30 in 

[26]. So there exists l  such that lim
m H mq l
 

  . By using Theorem 3.1 of [16], we have 

( ) ( )m fq S  . 

Theorem 4.2.11 If    m fq BS  for every unbounded modulus ,f  then  ( )mq l  . 

Proof Suppose   ( )m fq BS   and if possible  ( )mq l  . Then the set 

 :  mH m q M     is infinite for every 0M   and hence by Lemma 4.1.4 there exists an 
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unbounded modulus f  such that ( ) 1fd H  , which contradicts the assumption that   ( )m fq BS   

for every modulus f . 

Remark 4.2.12 We have   ( )fl BS     for every unbounded modulus f . By using this fact 

with the above theorem, we can say that the sequences in  l   are those sequences which are 

f  statistically bounded for every unbounded modulus f . 

Theorem 4.2.13 [26] Let f  be an unbounded modulus and  mq s . Then   ( )m fq BS   if and 

only if there exists  mv v l     such that m mq v    for a.a. m , w.r.t. f . 



5.  f
STRONG CESÀRO SUMMABILITY 

In this chapter, we study on some concepts related f  strong Cesàro summability and  give 

some relations between the sets which were created by using a modulus function. 

5.1.  Strong Cesàro Summability 

Definition 5.1.1 [27] A sequence  mq  is called  Cesàro summable to l  if 

1

1
lim

n

m
n

m

q l
n



  . 

Theorem 5.1.2 Every   convergent sequence is also  Cesàro summable. 

Remark 5.1.3 The reverse of the above theorem does not hold in general. Indeed the sequence 

 ( ) 8,8,7,7,6,6,5,5..., 1, 1, 2, 2,...mq       is  Cesàro summable, since  ( ) 0,1,0,1,0,1,...mq   

is Cesàro summable to 
1

2
. However, ( )mq  is not   convergent. 

Definition 5.1.4 A number sequence  mq  is called   strongly Cesàro summable to l  if 

1

1
lim 0

n

m
n

m

q l
n



   . 

Strongly summable sequence spaces were mentioned and studied by Kuttner [28], Maddox 

([24], [29]) and some others. The renowned spaces ow , w  and w  of strongly Cesàro summable 

sequences are identified by 

 
1

1
:  lim 0 ,

n

o m m
n

m

w q s q
n



 
   
 

  

 
1

1
:  lim 0,  for some number ,

n

m m
n

m

w q s q l l
n



 
    
 

  

   
1

1
: sup

n

m m
n m

w q s f q
n





 
    
 

 . 

Maddox [30] using a modulus function f, he has expanded this definition to introduce much 

more general spaces such as  
f

ow , fw  and 
fw . These spaces of sequences are defined, respectively 

as 
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1

1
: lim 0 ,

n
f

o m m
n

m

w q s f q
n



 
   
 

   

   
1

1
: lim 0,  for some number ,

n
f

m m
n

m

w q s f q l l
n



 
    
 

  

   
1

1
: sup

n
f

m m
n m

w q s f q
n





 
    
 

 . 

Definition 5.1.5 Let  mq  be any number sequence and 0p  . Then the sequence  mq  is called 

  strongly p Cesàro summable to l  if 

1

1
lim 0

n
p

m
n

m

q l
n



   . 

Theorem 5.1.6 Let .p   Then if a sequence is   strongly p Cesàro summable to ,l  then it 

is   statistically convergent to l . 

Proof Assume that the sequence  mq  is   strongly p Cesàro summable to l . Then for each 

0,   we have 

1 1,

{ : } .
m

n n
p p p p

m m m

m m q l

q l q l m n q l


 
    

           . 

and so that 

1

1 1
{ : } .

n
p p p

m m

m

q l m n q l
n n

 


       . 

By taking limit at both sides as n   we get 

1

1 1
lim lim { : } .

n
p p p

m m
n n

m

q l m n q l
n n

 
 



       . 

Since the sequence  mq  is   strongly p Cesàro summable to ,l  then from above inequality 

we get that 

1
lim { : } 0

p

m
n

m n q l
n




     . 

Hence,  mq  is   statistically convergent to l . 
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5.2.  f
Strong Cesàro Summability 

Definition 5.2.1 [31] Let  mq  be any number sequence and let f  be any modulus function. Then 

we say that  mq  is f  strongly Cesàro summable to l  if 

 
1

1
lim 0

n

m
n

m

f q l
n



   . 

We use the following notations 

     0

1

1
: lim 0 ,

n
f

m m
n

m

w q s f q
n



 
     

 
  

     
1

1
: lim 0,  for some number ,

n
f

m m
n

m

w q s f q l l
n



 
      

 
  

     
1

1
: sup

n
f

m m
n m

w q s f q
n





 
      

 
 . 

Theorem 5.2.2 For any modulus f   

i     0

f fw w   . 

ii     f fw w   . 

Proof The first being obvious, we establish the second inclusion. Let  fq w  . By using ( )ii  

and ( )iii  in the definition of modulus function, we have 

     
1 1 1

1 1 1
1

n n n

m m

m m m

f q f q l f l
n n n  

       . 

Since  fq w  , we have    f

mq w  . 

Theorem 5.2.3 For any modulus f  

i     fw w   . 

ii     0 0

fw w   . 

iii     fw w    . 

Proof Now we prove the last inclusion, the first two inclusions are omitted. Let     ,mq w   

then at least for a number 0M   
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1

1
,  

n

m

m

q M
n 

   

for all n . Let 0   and choose   with 0 1   such that ( )f h   for 0 h   . Now the 

equality  

1 11

1 1 1
( ) ( ) ( )

q qm m

n n n

m m m

m mm

f q f q f q
n n n

    
 

       

can be written. Then, since ( )mf q    for mq    

1

1 1
( )

qm

n

m

m

n
f q

n n n



 

 


     . 

And also for mq    we have  

1 ,m mq q

mq
 

     
 

 

where [h] denotes the integral part of real number h. Now since f is a modulus, by  ii  and  iii  in 

the definition of modulus function, we can write 

( ) 1 (1) 2 (1)
m m

m

q q
f q f f

 

      
        

    

 

and so that 

1 1

1 2 (1) 1
( ) ( )

u um m

n n

m m

m m

f
f q q

n n
 


   
 

    . 

Now the inequality 

1 1

1 2 (1) 1
( )

n n

m m

m m

f
f q q

n n


 

     . 

can be written. Since    mq w   we have    .f

mq w   

Theorem 5.2.4 Let f  be a modulus such that 
 

lim 0
f t

t
t

 . Then    fw w   . 

Proof For any modulus f, 
    lim inf : 0

f t f t

t t
t

t


    exists by Proposition 1 of Maddox [15]. 

By definition of  , we have ( )f t t  for all 0t  . Since 0  , we have 
1 ( )t f t  for all 

0t   and so  
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 11 1

1 1

n n

m mn n
m m

q l f q l

 

       

from where it follows that    mq w   whenever    f

mq w  . 

From Theorem 5.2.3 and Theorem 5.2.4 we have the next result. 

Corollary 5.2.5 Given a modulus function f  if 
 

lim 0,
f t

t
t

  then    fw w   . 



6. RELATIONS BETWEEN THE SETS OF  f
STATISTICALLY 

CONVERGENT SEQUENCES 

In this chapter we discuss the relations between  fS   and  gS  ,  fS   and  S  , 

 fBS   and  gBS  ,  fBS   and  BS  ,  fS   and  gBS   for different modulus functions 

f  and g  under certain conditions. 

6.1. Relations between the sets  fS  and  fBS  

The relations between f  densities of a set of positive integers for different modulus 

functions is given in the following Theorem given by Çolak [32]. This helps us to establish the 

relations between   statistically convergent and   statistically bounded sequence sets defined 

by modulus functions. 

Theorem 6.1.1 [32] Let f  and g  be two unbounded modulus functions. Then for a set H    

i  if 

                                          
 

 
lim 0
t

f t

g t
                                         (6.1)  

then   0gd H   implies   0fd H   whenever the limit exists, 

ii  if 

                                    
 

 
0 lim

t

f t

g t



                                   (6.2)  

then    0 0g fd H d H    whenever the limit exists. 

Corollary 6.1.2 [33] For any H   and any unbounded modulus f  providing 

                                         
 

lim 0
t

f t

t
                                        (6.3)  

we have    0 0fd H d H   . 

Theorem 6.1.3 Let f  and g  be two unbounded modulus functions. Then  

i  If  6.1  holds, then    g fS S   . 

ii  If  6.2  holds, then    g fS S   . 
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Proof  i  Suppose  mq  is g  statistically convergent to ,l  that is   limg mS q l   . Define 

 : .mH m q l       Then 

 
  

 

:
lim 0

m

g
n

g m n q l
d H

g n





   
   

and this implies  

 
  

 

:
lim 0

m

f
n

f m n q l
d H

f n





   
   

if  6.1  holds by Theorem 6.1.1  i . 

The Proof of  ii  is based on the Theorem 6.1.1  ii . 

Remark 6.1.4 The inclusion in ( )i  of the above Theorem may be strict. It can easily be seen that 

for the modulus functions ( ) log( 1)g t t  , 
1
2( )f t t  and the sequence  mq  defined by  3.1  in 

Remark 3.1.7 we get    ( )m f gq S S     and so that the inclusion    g fS S    is strict. 

Corollary 6.1.5    fS S    if  6.3  holds. 

Proof Let ( )mq  be f  statistically convergent to l . Then   0fd H   if we choose 

 : .mH m q l       Now the proof is based on the fact for any H   and any modulus 

f ,   0fd H   implies that ( ) 0d H  . Thus    fS S   . 

To show that    ,fS S    assume that 
 

lim 0
f t

t
t

  and let  ( )mq S   and

  lim mS q l   . Then for every 0,   we have 

  :
lim 0.

m

n

m n q l

n





   
  

Now, since  : mm n q l      is a positive integer and  f is a modulus we may write  

       : : 1
.

( ) ( )

m mf m n q l m n q l f n

f n n f n

        
   

Since 
 

lim 0
f t

t
t

  and   lim mS q l   , the right side and so the left side tend to 0  as n   in 

above-mentioned inequality. This means that ( )mq  is f  statistically convergent. 
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Theorem 6.1.6 Let f  and g  be two unbounded modulus functions. Then 

i  If the limit exists and  6.1  holds then a g  statistically Cauchy sequence is f  statistically 

Cauchy sequence, 

ii  If the limit exists and  6.2  holds then a sequence  mq  is g  statistically Cauchy sequence 

if  it is f  statistically Cauchy sequence. 

Theorem 6.1.1  i  and  6.1.1 ii  give the proof if we take   :  .m NH m q q       

We may give the following result by using Theorem 40 in [26].  

Theorem 6.1.7 If for every unbounded modulus ,f    ( ),m fq BS   then    .mq l   

Proof Let   ( )m fq BS  . Suppose, if possible,  ( )mq   . Then for any 0,M   we have that 

the set  :  mH m q M     is infinite. Now we have an unbounded modulus f  with 

( ) 1fd H   by Lemma 4.1.4, which contradicts the assumption that ( ) ( )m fq BS   for every 

modulus f . 

Theorem 6.1.8 Let f  and g  be two unbounded modulus functions.  

i  If  6.1  holds, then    g fBS BS   , 

ii  If  6.2  holds, then    g fBS BS   . 

Proof Assuming  mq  is g  statistically bounded. Then we have 0M   with 

  : 0.g md m q M    Theorem 6.1.1  i  and  6.1.1 ii  give the proof if we take  

 : mH m q M    . 

Remark 6.1.9 The inclusion in ( )i  of the above Theorem may be strict. It can easily be seen that 

for the modulus functions ( ) log( 1)g t t  , 
1
2( )f t t  and the sequence  mq  defined by  3.1  in 

Remark 3.1.7 we get    ( )m f gq BS BS     and so that the inclusion    g fBS BS    is 

strict. 

Corollary 6.1.10 For any unbounded modulus f  we have    fBS BS    if (6.3)  holds. 

Proof The proof is immediate by Corollary 6.1.2. 

Theorem 6.1.11 If  6.1  holds then    g fS BS   . 

Proof Assume that    m gq S   and   limg mS q l   . Let 0   be given and define 

   : mH n m n q l       and    :  mQ n m n q l M      for a number M   large 
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enough. Now since clearly    H n Q n  for every n  we have that    g gd H d Q  and so 

that   0gd H   implies   0gd Q  . If  1  holds then   0gd Q   implies   0fd Q   by Theorem 

6.1.1  i . This means that  mq  is f  statistically bounded.  
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7.  f
STATISTICAL CONVERGENCE OF ORDER   AND  f

STRONG CESÀRO SUMMABILITY OF ORDER   

In this last chapter of the thesis, we study on the relationships between the sets  fS   and 

 fw   for various , 0,1    and modulus functions f and g.  

7.1. Relationship between the Sets ( )f
S   

Çolak was introduced the class S , for 0 1   in [6]. 

Definition 7.1.1 [6] Let 0 1  . Define the   density of a set H   via 

 
1

( ) lim :
n

d H m n m H
n

 
   . 

Definition 7.1.2 [33] Let f  be an unbounded modulus and 0 1  . Define the f  density of 

a set H   by 

  
1

( ) lim : ,
( )

f

n
d H f m n m H

f n
 

    

in case this limit exists. 

Definition 7.1.3 Let f  be an unbounded modulus and 0 1  . A sequence ( )mq  is called f 

statistically convergent of order   to l  if for every 0,    

  1
lim : 0

( )
m

n
f m n q l

f n



     . 

We write in this case   limf

a mS q l    or  ( )f

mq l S  .  f

aS  denotes the class of f 

statistically convergent sequences of order  . 

Remark 7.1.4 The f  statistical convergence of order   is not well defined in case 1  . 

Indeed assume that f  is an unbounded modulus function such that 
 

lim 0
f t

t
t

 . Define ( )mq  by 

9 , if 2 1 2 ,  1,2,3,...mq r r m r r       

so that 
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1, 2

1,2,3,... .

0, 2

m

m r

q r

m r




  
 

 

Then we have 

  1 1
: 0 ( )

2( ) ( )
m

n
f m n q f

f n f n 
      

and 

  1 1
: 1 ( )

2( ) ( )
m

n
f m n q f

f n f n 
     . 

Since 
 

lim 0,
f t

t
t

  we have 

  1
lim : 0 0

( )
m

n
f m n q

f n



      

and 

  1
lim : 1 0

( )
m

n
f m n q

f n



      

for each 0   if 1  . Because, under the condition 
 

lim 0,
f t

t
t

  

12 2
lim lim lim lim 0

2( ) ( )

2

n n n n

n n
f f

n n

nf n n f n



     

   
   
   

   

if 1  . Hence ( )mq  is ( )fS  convergent to both 1  and 0 , which is impossible. 

It is clear that ( ) ( )fc S    for any an unbounded modulus f  and (0,1] . But the 

reverse is not generally true. It is easy to check that ( ) ( )f

mq S   for 1
2

( ,1]   and modulus

( )f t t , where 

2

2

1,

1,2,3,...

0,

m

m n

q n

m n

 


 
 

. 

Indeed 
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2

2

1,

1, 1 1,2,3,...

0, otherwise

m

m n

q m n n

 


     



 

and, then 

  
1

4

2

1 (2 ) 2
lim : 0 lim lim 2 lim 0

( ) ( )
m

n n n n

f n n n
f m n q

f n f n n n
  


   

         

that is ( ) f

mq S   for 1
2

( ,1]  but the sequence is not   convergent. 

Theorem 7.1.5 Let ( )mq  and ( )mv  be any two sequences, f  be an unbounded modulus and 

0 1  . Then 

i  if   limf

a m
m

S q l    and c , then   lim ,f

a m
m

S cq cl    

ii  if   1limf

a m
m

S q l    and   2lim ,f

a m
m

S v l    then   1 2lim( )f

a m m
m

S q v l l     . 

Theorem 7.1.6 Let f  be an unbounded modulus and 0 1    . Then    f f

aS S    and 

there may be strict inclusion. 

Proof Since f  is a modulus and 0 1,     the inclusion follows easily. For the strict inclusion, 

define the sequence ( )mq q  by 

 
2 210 ,  if 1 ,  1,2,3,...mq r r m r r       

so that 

( ) (9,8,8,8,7,7,7,7,7,6,6,6,6,6,6,6,...)mq  . 

Now 

2

2

1,

1,2,3,...

0,

m

m r

q r

m r

 


  
 

. 

If we consider the modulus function ( ) ,pf t t  0 1p   then  fq S   for 1
2

( ,1],   but 

 f

aq S   for 1
2

(0, ] . Thus    f f

aS S    is strict. 

Corollary 7.1.7 Let 0 1  . Then    f f

aS S    for any unbounded modulus f , and there 

may be strict inclusion. 
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Theorem 7.1.8 Let 0 1  . Then 

i     f

a aS S   , 

ii     f

aS S    

for any unbounded modulus f. The inclusions may be strict. 

Proof To demonstrate that the inclusions are strict, consider the modulus function ( ) log( 1)f t t   

and the sequence  mq q  defined by  3.1  in Remark 3.1.7, that is 

( ) (0, 1, 1, 1, 5, 5, 5, 5, 5, 14, 14, 14, 14, 14, 14, 14,...),mq                  

then  aq S   and  q S   for 0 1  . But  f

aq S  , since as  

     
1

: 0 : 0 0
2

f f

m md k q d m q             . 

Now we provide the generalizations of the spaces of f  strong Cesàro summability of order .  

7.2. Relationship between the Sets ( )f
w  

Definition 7.2.1 Let f  be a modulus and 0 1  . We define 

     , 0

1

1
:  lim 0 ,

n
f

m m
n

m

w q s f q
n

 


 
     

 
   

     
1

1
:  lim 0,  for some number ,

n
f

m m
n

m

w q s f q l l
n

 


 
      

 
  

     ,

1

1
: sup

n
f

m m
n m

w q s f q
n

 



 
      

 
 . 

By specializing f  and  , some well-known spaces are obtained. These spaces become 

     0 , , ,f f fw w w    respectively if 1  . If we take ( )f t t  and 1  , we obtain the 

familiar spaces      0 , , ,w w w    respectively. 

Now by using the spaces      ,0 ,, , ,f f fw w w       we establish some inclusion relations. 

Theorem 7.2.2 Let f  be a modulus and 0 1  . Then    ,0 ,

f fw w     . 

Theorem 7.2.3 Let f  be a modulus and 0 1  . If 
 

lim 0,
f t

t
t

  then    fw w    . 
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Proof By Proposition 1  of Maddox [25] we have     lim inf , 0
f t f t

t t
t

t


   . By definition of 

 , we have ( )f t t  for all 0t  . Since 0  , we have 
1 ( )t f t  for all 0t   and so 

 1

1 1

1 1n n

m m

m m

q l f q l
n n 



 

       

from where it follows that  q w   whenever  fq w  . 

Theorem 7.2.4 Let f  be any modulus and 0 1    . Then    f fw w     and there may 

be strict inclusion. 

Proof To prove    f fw w     is straightforward since   . In order to show that the 

inclusion is strict, let us take account of sequence ( )mq q  defined by 

 
2 210 ,  if 1 ,  1,2,3,...mq r r m r r       

so that 

2

2

1,

1,2,3,...

0,

m

m r

q r

m r

 


  
 

 . 

Since (0) 0f  ,  

 
1

1
0 (1) 

n

m

m

n
f q f

n n 


    

for every n . (1) 0 
n

f
n

 as n   for 1
2
,   so  fq w  . Also 

 
1

1 1
0 (1) 

n

m

m

n
f q f

n n 



    

for every n . Since 1 (1)n

n
f

   as n   for 1
2

0 ,   we get  fq w  . 

7.3. Relationship between the Sets  f
S  and  f

w  

Çolak in [6] was shown that the strong Cesàro summability of order   implies statistical 

convergence of order   with preserving limit, that is lim limm mS q w q    for a number 
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sequence ( )mq  in [6]. In this section some relationship between ( )fS   and ( )fw  , are obtained 

and established.  

Theorem 7.3.1 Let f  be an unbounded modulus such that 
 

lim 0
f t

t
t

  and 0 1    . Then if 

a sequence is f  strongly Cesàro summable of order   to l , then it is f  statistically 

convergent of order   to l . 

Proof Suppose that 
 

lim 0
f t

t
t

 . Then by Corollary 3.1.1, we have 
 

 

0,
inf 0

f t

t
t


 

   and so that 

 t f t   for every  0,t  . Now if ( ) ( )f

mq q w   , then since  : mm n q l      is a 

positive integer we may write 

1 1 1,

1 1 1
( )

m

n n n

m m m

m m m q l

f q l q l q l
n n n  



 
     

           

 
1

: mm n q l
n

        

  
 

1
:

1
mf m n q l

fn


       

  
 

1
:

1
mf m n q l

fn


       

  
 

: ( ) ( )

1( )

mf m n q l f f n

ff n n



 

  


   
 . 

Since ( )fq w   and 
 

lim 0
f t

t
t

 , then taking limit on both sides it follows that ( )fq S  . 

If we take    in above Theorem, then we get the next outcome. 

Corollary 7.3.2 Let f  be an unbounded modulus such that 
 

lim 0
f t

t
t

 . Then if a sequence is f 

strongly Cesàro summable of order   to l , then it is f  statistically convergent of order   to 

l  for any  0,1  . 

Taking 1  , we get the next outcome from above Corollary . 

Corollary 7.3.3 Let f  be an unbounded modulus such that 
 

lim 0
f t

t
t

 . Then if a sequence is f 

strongly Cesàro summable to l , then it is f  statistically convergent to l . 
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Theorem 7.3.4 Let f  be a modulus function such that 
 

lim 0
f t

t
t

  and (0,1] . If a sequence is 

  strongly Cesàro summable of order   with respect f  to l , then it is   statistically 

convergent of order   to l . 

Taking 1   in above Theorem we get the next outcome. 

Corollary 7.3.5 Let f  be an unbounded modulus function such that 
 

lim 0
f t

t
t

 . If a sequence is 

  strongly Cesàro summable with respect f  to l , then it is   statistically convergent to .l  

If we take ( )f t t  and 1   in Theorem 7.3.4, then we get the next outcome. 

Corollary 7.3.6 If a sequence is   strongly Cesàro summable to l , then it is   statistically 

convergent to l



8. CONCLUSIONS 

We observed the notion  Statistical convergence,  Statistical boundedness, f 

Statistical convergence, f  Statistical boundedness, f  strong Cesàro summability and f 

statistical convergence of order   and strong  Cesàro summability of order   with respect to 

modulus functions. Also we provided the relationships between these conceptions. 

Moreover, we also established some inclusion relation between  fS   and  gS  ,  fS   and 

 S  ,  fBS   and  gBS  ,  fBS   and  BS  ,  fS   and  gBS   for different modulus 

functions f  and g  under certain conditions, that is an original part in this thesis. Also we have 

given some relations between the sets of f  statistically convergent sequences of order   and 

f  strongly Cesàro summable sequences of order  .
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