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ABSTRACT

LIMIT SETS OF BEST-REPLY PROCESSES

Aköz, Kemal Kıvanç

M.A., Department of Economics

Supervisors: Assist. Prof. Dr. Kevin Hasker

July 2007

I analyze limiting behavior of best-reply processes. I find that without inertia

Nash Equilibria are not limit sets. Moreover, even for processes with inertia,

Nash Equilibria are not stable.

I argue that minimal CURB sets are reasonable candidates for limit sets if

best-reply processes are indeterminate or Nash Equilibria satisfy evolutionary

stability (Oechssler 1997). In such cases, limit sets necessarily contain a Nash

Equilibrium. Otherwise limit sets may not be close to any Nash Equilibria

unless they satisfy some support consistency condition.

Keywords: Best-Reply Processes, Limit Sets, Nash Equilibria, Minimal

CURB sets.
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ÖZET

EN-İYİ-TEPKİ SÜREÇLERİNİN LİMİT KÜMELERİ

Aköz, Kemal Kıvanç

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Kevin Hasker

Temmuz 2007

En-iyi-tepki süreçlerinin uzun vadedeki davranışlarını inceliyorum. Bu

çalışmada atalet olmadan Nash Dengelerinin limit kümesi oluşturamayacağını

buldum. Ayrıca, ataletli süreçler için bile Nash Dengeleri istikrarlı değiller.

İndirgenemez CURB kümeleri en-iyi-tepki süreçleri belirsiz olduğunda ya

da Nash Dengeleri saf stratejilerde evrimsel istikrar koşulunu sağladığında

limit kümeleri için makul adaylar oluyorlar.Bu durumlarda limit kümelerinde

mutlaka bir Nash Dengesi bulunuyor. Diğer durumlarda ise, Nash Dengesi

belli bir saf strateji tutarlılığı koşulunu sağlamadığında limit kümeleri hiçbir

Nash Dengesine yakın olmayabiliyorlar.

Anahtar Kelimeler: En-iyi-tepki süreçleri, Limit kümeleri, Nash Dengeleri,

İndirgenemez CURB kümeleri
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CHAPTER 1

Introduction

Nash Equilibrium is an intellectually compelling model for human behavior

in game theory. Nonetheless it requires both rationality and coordination of

beliefs. We will concentrate on whether rational players learn to coordinate

their beliefs. One way to do this is to define a dynamic best-reply process

among rational players and investigate whether coordination of beliefs is an

outcome of a limit point this best-reply process. In a standard repeated game

a natural model for analysis is rational learning, as was done in Kalai and

Lehrer (1993). In a large matching game where a player will probably not

interact with the same person again the intellectual appeal of this approach

is weaker. In this environment a reasonable alternative is to assume some

type of simple social learning rule and analyze the limiting behavior of the

population.

The common approach in this literature is to analyze the mean of the lim-

iting distribution. For example Hopkins (1999) considers mean dynamics for

best-response processes and compares a perturbed version of best-response

processes with mean dynamics in evolutionary game theory. Although this

approach makes it possible to employ methods of differential equations or

inclusions, it can be misleading. The population distribution may not con-

verge when mean converges and so the mean does not summarize the limiting
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behavior of the population. A limiting distribution in mean dynamics may

correspond to a non-singleton absorbing set in distribution dynamics. More-

over, under any payoff monotone mean dynamics Nash Equilibrium is a fixed

point (Friedman 1991, Ritzberger and Weibull 1995), but the mixed equilibria

may either not be in the limit distribution (called limit sets in this paper) or

form a singleton limit set. Therefore in this paper we partially characterize

the limit sets, or the possible limiting distributions of various distributional

best-reply processes.

Oechssler (1997) is one of the rare studies on learning mixed equilibria

using distributions in best-reply processes. He finds conditions under which

the mixed equilibrium is accessible by a best-reply process in finite time in

games with a unique mixed equilibrium. Under the assumption that no one

changes strategies when they are best replying, Oechssler finds sufficient con-

ditions for the mixed equilibrium to be absorbing in two person symmetric

games. We study two basic best-reply processes—the no-worse and all-best—

in general symmetric games. The all-best process is similar to that analyzed

by Oechssler, under this dynamic all Nash equilibria will be singleton limit

sets. Other limit sets may not include a Nash equilibrium at all. With the

no-worse dynamic the only singleton limit sets will be pure strategy strict

equilibria of the stage game.

We also analyze the relationship between Nash Equilibria and best-reply

learning dynamics. As Oechssler (1997) observes for some cases there are

limit sets that are one mutation away from a mixed equilibrium irrespective

of population size. In such cases, it would be artificial to argue that no

one in the population might make a “mistake” or use some alternative best-

reply process. Thus we allow for finite mutations, a finite number that

is fixed irrespective of population size. If each of these “mutations” occurs

with positive and independent probability then as the population size goes to

infinity this finite number of mutations occurs with a probability approaching
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one, thus a reasonable analysis should include this possibility. This allows

us to analyze the proper closure of our limit sets.

We find that the closure of limit sets provide a deeper understanding

than minimal CURB sets (Basu and Weibull (1991). Not all equilibria are in

minimal CURB sets and the support of minimal CURB sets may not be the

support of any equilibrium. However, some of the Nash Equilibria outside

minimal CURB sets are contained in closure of limit sets. We prove that

consistent Nash Equilibria belong to closure of limit set, where consistency is

defined for best-replies of its support. Moreover if a Nash Equilibrium satisfies

evolutionary stability for pure strategies, ESPS (Oechssler 1997), then there

is a limit set contained in the support of the Nash Equilibrium. However, we

do not have a clear characterization for when an equilibrium will be in closure

of a limit set.

The existence of limit sets outside minimal CURB sets means that for

some initial conditions no minimal CURB set is accessible. This might seem

contradictory to affirmative results for accessibility of minimal CURB sets in

the literature (Kosfeld, Drost, and Voorneveld 2002, Young 2001, Sanchirico

1996). However Kosfeld, Drost, and Voorneveld (2002) define CURB sets

in an unconventional way so that any pure strategy best-reply cycle forms

a CURB set. It is easy toobserve that any learning rule that puts positive

weights to best-replies will access to a minimal CURB set and what they

prove is consistent with this observations. When the CURB set is defined as

in Young (2001) , we might not have same results. One needs some form of

indeterminateness in best-reply processes, that is some positive share of the

population should be allowed to play something else from best-reply to the

current distribution to prove accessibility of minimal CURB sets.

Young (Young2001) and Sanchirico (Sanchirico1996) get positive results

concerning accessibility of minimal CURB sets by introducing indeterminate-

ness to the best-reply process. When we translate the belief update proce-
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dures in both models from sampling in time series to cross section over other

players in the population, we see that both models require a form of noisy

sampling, where large noise is possible with small probabilities. Evidently

noisy sampling is not the only way to induce indeterminateness. For exam-

ple, each period a positive share of the population might adopt a different

learning rule or discover that all individuals are learning too and decide to

make use of it like in the clever agents model developed by Saez-Marti and

Weibull (1999). Clearly all these deviations will look like indeterminateness

to an analyst. Under such dynamics we prove that from any initial point

some minimal CURB set is accessible.

In the next chapter we review the relevant literature in stochastic evolution

and learning. Chapter 3 sets up the basic framework of our model and in

chapter 4 we define and analyze best-reply processes. Succeeding two chapters

capture indeterminate and determinate processes. We investigate stability of

limit sets in chapter 7. In chapter 8 we conclude.
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CHAPTER 2

Literature Review

One can broadly break the learning literature into two classes of learning

dynamics, reduced-form models and models that do not have a reduced-form

formulation. In reduced-form models there is a recursive formulation of be-

haviors and belief update procedures. In contrast, in the other type of models

beliefs are represented as probability measure over all future periods. Corre-

spondingly, behavior rules are responses to such probability measures. One

leading model of this class is Bayesian learning , first formulated by Kalai

and Lehrer (1993). In this model players update their beliefs using Bayes

Rule and are forward-looking. Kalai and Lehrer (1993) consider “absolute

continuity” as a restriction on prior beliefs. This condition requires that if an

event is possible given the realized history, then all players should believe that

this event is possible. Given this condition they show that players learn to

predict the future in the long-run. Their main result that if players optimize

the play converges to a Nash Equilibrium of the infinitely repeated game is

stated as a corollary to this assertion.

Although convergence to Nash Equilibrium is a strong result, this model

has received many critiques due to the necessity of absolute continuity. Fu-

denberg and Levine (1998) point out that since the set of possible future

paths is continuum it is impossible to impose full support property on beliefs.
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Therefore prior beliefs will be consistent with the path that will be realized

but inconsistent with almost all of other possible paths. In this respect, ab-

solute continuity is a weak version of equilibrium beliefs. Kalai and Lehrer

(1993) also show that absolute continuity provides a relation between pre-

diction of play and optimization against learning opponents. Nachbar (1997)

argues that in general this relationship is non-trivial. He proves that when

we require prior beliefs to satisfy some intuitive computability properties, si-

multaneous achievement of prediction and optimization is impossible. Foster

and Young (2001) focus on prediction only and prove that if the stage game is

a perturbed version of matching pennies then no player who employs rational

learning can predict the play at all.

Sanchirico’s (1996) model also does not have a reduced-form formulation,

since there is not an explicitly defined learning procedure. Instead, he assumes

that players’ beliefs satisfy some assumptions which can be justified by various

learning procedures. This paper only has three assumptions. The first is that

there is common knowledge of rationality. The second assumption guarantees

that if the play has stayed in a set long enough then players believe that the

play is in the set. These two assumptions make CURB sets absorbing. The

third assumption requires that it is possible for players to play best-reply

to strategy profiles that are in their memory. Under the second and third

assumptions if the memory is large enough the play converges to a minimal

CURB set.

In reduced-form learning models we do not have to put restrictions on

initial beliefs over infinite paths. Moreover reduced-form models can be a

solution to the computability problem that Nachbar (1997) poses. However,

since a behavioral rule is assumed a-priori, there is no justification of the

behavior rule in these models. A reduced-form model is basically a triple:

initial beliefs over the strategy space of the stage game, a belief update process

and a behavioral rule. The literature on this type of model can be classified
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under two branches, mean dynamics and distributional dynamics.

One leading model of mean dynamics has been borrowed from evolution-

ary biology. Under Replicator Dynamics fitter animals produce more off-

spring. In game theory this corresponds to a dynamic where players switch

to strategies with higher payoffs, or payoff monotonicity. Friedman (1991)

and Ritzberger and Weibull (1995) are two important examples of economic

interpretations of Replicator Dynamics. While Friedman (1991) proves that

Nash Equilibria are absorbing under payoff monotone dynamics, Ritzberger

and Weibull (1995) proves same result for upper semi-continuous behavioral

rules. Borgers and Sarin (1997, 2000) provide a psychological justification for

Replicator Dynamics.

Another leading model of mean dynamices is continuous time best-

response. Hopkins (1999) compares a perturbed best-response with evolu-

tionary models. Berger (2002) adds a role game prior to stage game at each

period. By this way, players first decide their role in the stage game, then

play the game. Thus, it becomes possible to analyze asymmetric interactions

in one population. Benaim and Hirsh (1996) prove that continuous time

best-response models serve as an approximation to fictitious play.

The asymptotical similarity between fictitious play and continuous best-

reply processes is not coincidental, since fictitious play behaves like mean

dynamics asymptotically. Although in fictitious play players play in discrete

time, as beliefs are statistical distributions of strategies over the realized

history the play converges to the mean-dynamics.

Fictitious play is one the most studied models in the theory of learning.

Fudenberg and Levine (1998) presents various versions of fictitious play in

detail. Conditional fictitious play developed by Fudenberg and Levine (1999)

is one of the important versions fictitious play. In this model players are able

to detect patterns in the play.

The other subclass of reduced-form learning models is distribution dy-
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namics. In this type of model the state of the world is the distribution of

strategies over the players in population in the current period and possibly

the past periods. Since it is possible to use Markov Chains to analyze discrete

time reduced-form models, one can find the limiting distributions. However,

for games with multiple equilibria limiting distributions are not unique. Intro-

ducing continual random mutations or experimentation will make the Markov

Chain irreducible and thus imply a unique limiting distribution. This type

of models is classified as Stochastic Evolution models. Kandori, Mailath and

Rob (1993) is one of the seminal papers in the Stochastic Evolution liter-

ature. . They consider uniform matching between two populations. The

learning dynamic is a best-reply process which is perturbed by persistent

mutations. They prove that risk dominant equilibrium survives in the long-

run in 2x2 coordination games. Ellison (2000) generalizes the framework of

Kandori, Mailath and Rob (1993) and prove that 1/2-dominant equilibria

survive in the long-run. Ellison (Ellison1993) addresses the same problem

for local interactions and find same result but that convergence occurs much

faster. Fudenberg and Kreps (1995) focus on extensive form games. Under

the condition that players experiment enough (there is a lower bound for

probability of experimentation), non-Nash Equilibrium profiles are unstable

and Nash Equilibria are weakly stable. As Jordan (1993) points out, mixed

equilibria are hard to justify as a limiting distribution of a learning process.

Thus there are limited studies which consider mixed equilibria. Oechssler

(1997) is one of the rare ones, which characterizes learning mixed-equilibria

in 2x2 and 3x3 games and gives a sufficient condition for general symmetric

two-person games.

Fudenberg and Kreps (1993) adopts an approach similar to Harsanyi

(1973). By assuming uncertain payoffs they purify mixed equilibria and ob-

tain a smooth version of fictitious play. Gorodeisky (2006) proves that unique

mixed equilibrium in many 2x2 games is stable. Stability follows from the
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fact that population distribution is not allowed to make big jumps. Since we

allow big jumps in population distribution, no mixed-equilibria is stable in

our model.

Young (1993) develops a learning model related to fictitious play. He

assumes that players play best-reply to a statistical distribution derived from

past plays. However players have a finite memory length and each period they

draw a sample from the past plays remains in the memory. He proves that

the learning process converges to a convention, which is a repetition of pure

strategy equilibrium for games that there is no pure strategy best-response

cycle. He then switches to a perturbed dynamics, which leads to the concept

of stochastically stable limit sets. Stochastic stability is risk dominance in

2x2 coordination games but this result does not generalize.
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CHAPTER 3

The Model

Let G = 〈I, A, u〉 be a finite symmetric game, where I is the finite set

of players, A is the finite set of strategies, and u : A|I| → Q is the payoff

function.

Suppose there is a single population with cardinality N . At each period

t ∈ {0, 1, ...} players in the population uniformly match in |I|-groups to play

the game G. If N is finite, one can assume N ≡ 0 (mod |I|) to guarantee that

everyone plays the game every period.

Let ∆ = ∆ (A) be the set of population distributions over strategies;

that is, ∀µ ∈ ∆ µ = (µ (a))a∈A, such that ∀a ∈ A µ (a) is the share

of the population that plays a. For any subset C of A the set of popu-

lation distributions over C is ∆ (C) = {µ ∈ ∆ : ∀a ∈ A\C µ (a) = 0}. The

support of a distribution µ is Supp (µ) = {a ∈ A : µ (a) > 0} and ∀X ⊆ ∆

Supp (X) = ∪µ∈XSupp (µ). ∀a ∈ A the population distribution that all play-

ers play a is denoted by δa. For any subset C of A let δC = ∪a∈Cδa. Let µ1, µ2

∈ ∆, then the line between µ1 and µ2 is

[µ1, µ2] = {µ′ ∈ ∆ : ∃α ∈ (0, 1) such that µ′ = αµ1 + (1− α) µ2} .

Each player plays a strategy in A against the population distribution, so

each player’s strategy is independent. We assume that each player ignores
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her contribution to the population distribution, essentially N is large enough

that a given player’s impact is negligible. Let ū : A × ∆ (A) → R be the

expected payoff function for mixed strategies. For any player, expected payoff

of playing a ∈ A against µ ∈ ∆ is

ū (a, µ) =
∑

â∈A|I|−1

(
Π
|I|−1
i=1 µ (âi)

)
u (a, â).

Then the best reply correspondence is given by

∀µ ∈ ∆ BR (µ) = arg max
a∈A

ū (a, µ) ,

and correspondingly the best response region is given by ∀ a ∈ A BR−1 (a) =

{µ ∈ ∆ : a ∈ BR (µ)}. We have two non-degeneracy assumptions regarding

best-reply regions:

Assumption 1 1. ∀a ∈ A |BR (a) | = 1

2. ∀a, ∀C ⊆ A, BR−1 (a) ∩∆ (C) = ∅ or
◦

(BR−1 (a) ∩∆ (C)) 6= ∅ where

the interior is taken with respect to relative topology defined over ∆ (C).}

We will be considering various best-reply learning dynamics of how players

choose their strategies. Each process will imply that given the population

distribution µ = µt there is a certain set of distributions that can occur in

period t + 1. We will call this set as the successor set of µ.

Definition 1 Let {Xt}t≥0 be a Markov process with state space ∆ and for

any period t, the transition function of Xt is F |Xt−1. The successor set of

µ ∈ ∆ is S (µ), where S : ∆ ⇒ ∆ maps µ to the set of distributions that can

occur in t + 1 given Xt = µ; that is,

S (µ) = S (Xt) = Supp (F |Xt=µ) = {µ′ ∈ ∆ : F |Xt=µ (µ′) > 0} .

For any best-reply process if [∀µ ∈ ∆ µ ∈ S (µ)] does not hold, then

we cannot talk about singleton successor sets. However, we expect that
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successors pure strategy strict equilibria are themselves. Thus we assume

this here. Define ∀X ⊆ ∆ S (X) = ∪µ∈XS (µ), S0 (µ) = µ, ∀k ≥ 1

Sk (µ) = S
(
Sk−1 (µ)

)
, and S∞ (µ) =

{
µ̄ ∈ ∆ : ∃k < ∞ µ̄ ∈ Sk (µ)

}
.

We will analyze ergodic sets of the Markov Processes derived by the best-

reply processes, which we call limit sets after proving that they are same.

Definition 2 Let X ⊆ ∆ be non-empty. X is a limit set if ∀µ ∈ X S∞ (µ)

= X.

Note that this definition is different than usual definition of ergodic sets.

The defining properties of ergodic sets are that they are absorbing, one can

easily show that limit sets are minimal absorbing sets.

Definition 3 Let X ⊆ ∆ be non-empty. X is absorbing if S∞ (X) ⊆ X. X

is called a minimal absorbing set if there ’s no X ′ ⊂ X such that X ′ is an

absorbing set.

Notice that:

Remark 1 Let X ⊆ ∆ (A) be non-empty. X is absorbing if and only if

S (X) ⊆ X.

Proof Suppose X is absorbing, then S (X) ⊆ S∞ (X) ⊆ X. Suppose

S (X) ⊆ X, then by induction over the degree of successor, S∞ (X) ⊆ X. �

Lemma 1 Let X ⊆ ∆ (A) be non-empty. X is a limit set if and only if X

is a minimal absorbing set.

Proof Suppose X is a limit set, then S (X) ⊆ S∞ (X) = X, which implies

that X is absorbing. ∀X ′ ⊆ X S∞ (X ′) = X, which follows directly from the

definition of limit sets, implies that X is minimal.

Suppose X is a minimal absorbing set. Then ∀µ ∈ X S∞ (µ) ⊆ X.

Suppose ∃µ ∈ X such that S∞ (µ) 6= X. However, this is a contradiction

with that X is minimal since S∞ (µ) is absorbing. �
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Before passing to best-reply processes, we need following two important

concepts from Game Theory; minimal CURB sets and Nash Equilibria.

Definition 4 A set Ă ⊆ A is a CURB set iff ∀µ ∈ ∆
(
Ă

)
BR (µ) ∈ Ă. Ă

is a minimal CURB set if it contains no other CURB set.

Definition 5 µ∗ ∈ ∆ is a Nash Equilibrium iff Supp (µ∗) ⊆ BR (µ∗). µ∗ is

called a strict Nash Equilibrium if µ∗ is a Nash Equilibrium and |BR (µ∗) | =

|Supp (µ∗) | = 1.
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CHAPTER 4

Best-Reply Processes

We have two basic best-reply processes, which are no-worse and all-best pro-

cesses. For the no-worse process, successor set is defined as follows:

∀µ ∈ ∆ Snw (µ) = {µ′ ∈ ∆ : ∀a 6∈ BR (µ) , µ′ (a) ≤ µ (a)} .

For the all-best process we put the additional restriction that best-replies

cannot decrease; that is,

∀µ ∈ ∆ Sab (µ) = {µ̄ ∈ ∆ : ∀a ∈ BR (µ) , µ̄ (a) ≥ µ (a)} ∩ Snw (µ) .

Note that the all-best process can be regarded as no-worse process with

inertia. In the all-best process, the share of any strategy which is a best-reply

should not decrease. Thus when players do not switch strategies when they

are playing a best-reply we will realize all-best process.

These processes are determinate processes, that is, the population moves

to the direction of best replies. We will have an extension to indetermi-

nate processes, in which a (small) portion of the population might move

in some other direction.The following definition characterizes indeterminate

best-reply processes.
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Definition 6 A best-reply process is called as ε−indeterminate with respect

to C (·) if and only if it is defined by the following successor relation

∀µ ∈ ∆ S (µ, ε) = S
(
B∆(C(µ))

ε (µ)
)

where B
∆(C(µ))
ε (µ) = Bε (µ) ∩∆ (C (µ)), and Supp (µ) ⊆ C (µ).

Here Bε (µ) is the usual open ball around µ when N is continuum. If N

is finite, Bε (·) can be defined as

∀µ ∈ ∆ Bε (µ) =

{
µ′ ∈ ∆ :

∑
a∈A

|µ′ (a)− µ (a)| < ε

}
.

The first assertion in the following proposition indicates the importance

of the inertia. The second assertion can be regarded as an existence result

for limit sets as there always exists a CURB set.

Proposition 1 The following hold:

1. Let µ∗ be a Nash Equilibrium. If µ∗is a strict Nash Equilibrium, µ∗

is absorbing both in all-best and no-worse processes. Otherwise, µ∗ is

absorbing in all-best, but not in no-worse.

2. Let C ⊆ A. C is a CURB set then ∆ (C) is absorbing and contains a

limit set.

Proof µ∗being a strict Nash Equilibrium implies that BR (µ∗) = µ∗, this

makes {µ∗} absorbing for no-worse processes so for all-best processes. Oth-

erwise Supp (µ∗) ⊆ BR (µ∗) implies that Sab (µ∗) = {µ∗} but Snw (µ∗) =

∆ (BR (µ∗)). For the second assertion; clearly, ∆ (C) is absorbing since

BR (∆ (C)) ⊆ ∆ (C) so S (∆ (C)) ⊆ ∆ (C) . This implies by well-ordering

principle that there exists a minimal absorbing set X in ∆ (C). By the lemma

above, X is a limit set. �
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From now on, unless otherwise is stated, we will mean no-worse processes

whenever we refer to a best-reply processes.

The next proposition gives a useful characterization of equivalence be-

tween limit sets and population distributions over a minimal CURB set.

However to prove the proposition, following lemma will be needed.

Lemma 2 Let L ⊆ ∆ (A) be a limit set for the no-worse process. Then

δSupp(L) ⊂ L and there exists unique limit set in ∆ (Supp (L)).

Proof Since ∀µ ∈ L δBR(µ) ⊂ L. Assuming ∃a ∈ Supp (L) such that δa 6∈ L

implies that /∃µ ∈ L such that a ∈ BR (µ). But this requires that

∀µ′ ∈ L ∩ (∆ (Supp (L) \ {a})) S (µ′) ⊆ L ∩ (∆ (Supp (L) \ {a}))

contradicting with a ∈ Supp (L). The second assertion directly follows from

the first. �

Proposition 2 Let L ⊆ ∆ (A) be a limit set for no-worse process. Then L

is convex if and only if there exists a minimal CURB set C ⊆ A such that L

= ∆ (C).

Proof Assume L is convex. Then by the lemma 2 L = ∆ (Supp (L)). But

this implies ∀µ ∈ ∆ (Supp (L)) BR (µ) ⊆ Supp (L) ⇒ Supp (L) is a CURB

set. If Supp (L) is not minimal, ∃ a limit set L′ ⊂
6=

L, which is impossible.

Thus Supp (L) is a minimal CURB set. The converse is true by definition. �

In Proposition 1, we assert that if C is a minimal CURB set, then ∆ (C) is

a good place to look for a limit set. If all limit sets are convex, then population

distributions of minimal CURB sets are the only places to look for a limit set.

In the next chapter, we prove that all limit sets of indeterminate processes

are convex.
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CHAPTER 5

Indeterminate Processes

Note that both Young (2001) and Sanchirico (1996) proved convergence to

minimal CURB sets. They assume some form of indeterminacy in their mod-

els, which makes limit sets convex. Then by the proposition 2, the limit sets

correspond to minimal CURB sets.

Note that ∀µ ∀ε > 0 S (µ) ⊆ S (µ, ε), thus proposition 2 applies for

indeterminate processes.

We will now consider some examples of indeterminate processes to see the

scope of this definition.

Example 1 Suppose C (µ) = Supp (µ). This process might be implied by

following individual behavior rule. In each period, a given portion of the

population imitates instead of best-replying. Some people in the population

choose a strategy by imitating some individual, and others best-reply to the

current distribution of the population.

It is easy to formulate social learning models by successor correspondences.

This method allows to generalize various learning processes by small varia-

tions on the defining successor correspondence.

Noisy beliefs is common way to assume indeterminacy. Young’s dynamics

(1993) is a best-reply process with noisy beliefs. However, he defined this

noise in beliefs by a sampling process, which allows high noise in beliefs.
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Similarly, Sanchirico’s (1996) assumption of best-reply entropy is also a form

of indeterminacy. Following example illustrates that learning processes in

both models are forms of ε−indeterminate processes.

For all succeeding examples,

∀C ⊆ A β0 (C) = C, βi+1 (C) = BR (C) ∪ βi (C) ,

and

β∞ (C) =
{
a ∈ A : ∃k s.t a ∈ βk (C)

}
.

Example 2 Suppose C (µ) = β1 (Supp (µ)). The corresponding process

might be implied by a noisy belief process. For noise large enough, a por-

tion of the population have wrong beliefs about the current distribution, thus

it is possible that they play a best-reply to any strategy in the support of the

population. When we put a restriction for each period on number of players

who can switch, this process will be Young’s dynamics (1993). For ε large,

this process will be equivalent to the one in Sanchirico (1996).

Example 3 A learning process with clever individuals is also an element

of indeterminate processes. Saez-Marti and Weibull (1999) studies such a

behavior in bargaining games. Suppose C (µ) = β2 (Supp (µ)). In this case,

a portion of the population understands that people in the population play

best-reply to current distribution. Thus they anticipate the distribution after

everyone played their best reply with a large noise, like in Young (2001), and

play best-reply to that.

Example 4 Suppose C (µ) = A. The process correspond to this case is a

best-reply process with continual mutations. In this case, a portion of the

population choose their strategy randomly from the whole strategy set. This

modification switches a learning process to a stochastic evolution process. We

will not analyze this case, but it is possible to characterize stochastically stable
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limit sets, which might be defined as an extension of stochastically stable states

in Kandori Mailath and Rob (1993) and Young (1993).

As the last example illustrates the class of processes that is defined above

contains stochastic evolutionary processes. However, we will restrict our at-

tention to learning processes so we assume ∀µ ∈ ∆ (A) C (µ) ⊆ β∞ (Supp (µ))

throughout the analysis. Following lemma states that there is an interior

point in the limit set.

Lemma 3 ∃µ ∈ L such that Supp (µ) = Supp (L)

Proof If |Supp (L) | = 1, L itself a Nash Equilibrium, and we are done.

Now suppose |Supp (L) | > 1. We will use induction for this proof. Let a ∈

Supp (L) be arbitrary. Then ∃ a1 ∈ Supp (L) such that {a1} = BR (δa), then

by the first non-degeneracy assumption, ∃µ1 ∈ S (δa) such that BR (µ1) =

BR (δa1), µ1 (a) > 0 and µ1 (a1) > 0. Assume the inductive hypothesis:

∃µi ∈ L such that Supp (µi) = {a, a1, . . . , ai}. If {a, a1, . . . , ai} = Supp (L),

we are done. So suppose not. Then since {a, a1, . . . , ai} is not a CURB set,

∃ai+1 ∈ Supp (L) \ {a, a1, . . . , ai} s.t.
◦(

BR−1 (ai+1)
)
∩∆ ({a, a1, . . . , ai}) 6= ∅

and ∃l < ∞ such that

Sl (µi) ∩
(
BR−1 (ai+1)

)
∩∆ ({a, a1, . . . , ai}) 6= ∅.

By repeated use of the non-degeneracy assumption, ∃ {µi1, . . . , µil−1} such

that

∀j ∈ {1, . . . , l}Supp (µij) = {a, a1, . . . , ai} ,

∀j ∈ {1, . . . , l − 1}µj+1 ∈ S (µj) , µil ∈
◦(

BR−1
(
δai+1

))
.

Then ∃µi+1 such that Supp (µi+1) = {a, a1, . . . , ai, ai+1} and BR (µi+1) =

BR
(
δai+1

)
⇒ ∃µn−1 ∈

◦
∆ (Supp (L)). �
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From an interior point an indeterminate process can reach any point with

same support as the limit set. Thus the limit set should be convex.

Lemma 4 Let Lε be any limit set of an ε- indeterminate process. Then Lε is

convex.

Proof Let µ, µ′ ∈ ∆ (Supp (µ)) be any pair of population distributions such

that Supp (µ) = Supp (Lε) and µ ∈ Lε. Take a finite sequence {µ0, . . . , µT}

for some T such that ∀i ∈ {0, . . . , T} µi ∈ [µ, µ′], µ0 = µ, µT = µ′ and ∀i ∈

{1, . . . , T} d (µi−1, µi) = ε
2
. Note that µi ∈ Si (µ0, ε) then µT ∈ ST (µ0, ε) ⊆

S∞ (µ, ε) = Lε. Then as µ′ is arbitrary ∆ (Supp (L)) = Lε. �

Following theorem characterizes limit sets of indeterminate processes.

Theorem 1 Let X ⊆ ∆ (A) be a limit set for ε−indeterminate process where

ε > 0. Then there exists a minimal CURB set C ⊆ A s.t X = ∆ (C).

Proof This trivially follows from lemma 4 and proposition 2. �

In next chapter, we consider the case where the population distribution

evolves in the direction of best-replies.
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CHAPTER 6

Determinate Processes

We have argued that minimal CURB sets are natural sets to start the analysis

with. However, minimal CURB sets are not perfect candidates for limit sets

of determinate bets-reply processes. Kalai and Samet (1984) consider Nash

Retracts, which could be regarded as a generalization of limit sets except that

they require Nash Retracts to be convex, effectively they considered only

minimal CURB sets by Proposition 2. However, as the following example

illustrates, there may be limit sets outside minimal CURB sets.

Example 5 Consider the following game:

1\2 a b c d e

a 8 1 2 10 0

b 10 8 1 2 0

c 2 10 8 1 0

d 1 2 10 8 0

e 1 6 1 6 1

.

This game has two limit sets. First one is a minimal CURB set and

consists of {e}. The second one is in ∆ ({a, b, c, d}). The set of points in

∆ ({a, b, c, d}) to which e is best response is not contained in the limit set, so

is not accessible from any pure strategy. The triangles are faces of the simplex
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∆ ({a, b, c, d}). The grey region represents the limit set in ∆ ({a, b, c, d}). The

small black triangle is the region that e is a best-response.

As the example and proposition 1 suggests there may be more limit sets

than minimal CURB sets in a given game. Since minimal CURB sets are not

places to look for a limit set, we have to find another set-valued solution con-

cept. Kosfeld, Drost, and Voorneveld (2002)’s definition of CURB sets gives

an insight about which sets we should consider. We will define pre-CURB

sets which is basically a slightly stronger pure-strategy best-reply cycle.

Definition 7 Let C be a subset of A. C is called a pre-CURB set if and

only if for any strategy a in C BR
([

δa, δBR(δa)

])
⊆ C. C is called minimal

pre-CURB set iff there is not proper subset C ′ of C such that C ′ is also a

pre-CURB set.

As the following remark indicates, there is a relationship between pre-

CURB set and limit sets.
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Remark 2 Let L ⊆ ∆ be a limit set. Then Supp (L) is a pre-CURB set.

The proof follows from the absorbing property of limit sets. We can now

find an upper and lower bound for number of limit sets.

Proposition 3 Let PC be the set of minimal pre-CURB sets, C be the set of

minimal CURB sets, and L be the set of limit sets. Then |PC| ≥ |L| ≥ |C|.

The proof of the proposition follows directly from remark 2 and proposi-

tion 1.

To apply some of the results below one has to be able to find the limit sets

of a given game. Limit sets are minimal absorbing sets, but that does not help

much. By using the lemma above one can eliminate pure strategies that are

not elements of any minimal pre-CURB sets. Then one calculates S∞ (δa) for

any pure strategy a in any minimal pre-CURB set C. The following algorithm

will be helpful in finding limit sets.

Algorithm 1 Start with µ0 = δa for any a ∈ C where C is a minimal

pre-CURB set. We will calculate a branching path strating from µ0, so ∀i ∈

{1, 2, . . .} µi is a set of points in R|A|. Now ∀b ∈ BR (µ0), ∀c ∈ A\ {b} such

that BR−1 (c) ∩ S (µ0) 6= ∅. Let µ0
bc ∈ R|A| be defined as

µ0
bc (c) := min µ (c)

µ∈BR−1(c)∩S(µ0)

and ∀d ∈ A\ {c} µ0
bc (d) := max µ (d)

µ∈BR−1(c)∩S(µ0)

.

Notice that µ0
bc may not belong to ∆. Define

S
(
µ0

bc

)
:=

{
µ ∈ ∆ : ∀d ∈ A\ {b} µ (d) ≤ µ0

bc (d)
}

.

Then (
BR−1 (c) ∩ S

(
µ0

))
⊂ S

(
BR−1 (c) ∩ S

(
µ0

))
⊆ S

(
µ0

bc

)
.

23



And define

µ1 :=

 µ0
bc ∈ R|A| : ∀b ∈ BR (µ0) and ∀c ∈ A\ {b}

such that BR−1 (c) ∩ S (µ0) 6= ∅

 .

∀i ∈ {2, 3, . . .} calculate µi
bc as in µ1

bc, however define µi as follows

µ1 :=

 µ0
bc ∈ R|A| : ∀b ∈ A such that BR−1 (a) ∩ S (µi−1) ∩ S (µi−2) 6= ∅

and ∀c ∈ A\ {b} such that BR−1 (c) ∩ S (µ0) 6= ∅

 .

Note that this algorithm is sufficient but not necessary as ∀i S (µi
bc) might

be larger than S (BR−1 (c) ∩ S (µi−1)). To make algorithm necessary one has

to calculate (S (µi
bc) ∩ S (µi−1)) \ (BR−1 (c) ∩ S (µi−1)). If this set is empty

there is no problem; if not, excluding successor of this set will do the job.

Both pre-CURB sets and CURB sets are set valued solution concepts. We

have found relationships betweenlimit sets with these solution concepts. One

natural question at this point that what is the relation between limit sets and

singleton solution concepts. The first natural candidate is Nash Equilibria.

We will prove that some Nash Equilibria are “close” to a limit set. Before

stating and proving this result we need to formalize the concept of closeness

in best-reply processes.

By the closure of a limit set we mean the set of distributions that can be

reached from the limit set with “zero cost”; that is, the set of points such that

the minimum prabability that is needed for reaching to any point in this set

with mutations is zero. We will call this set limit set with finite mutations.

If N is infinite, this set corresponds to the usual closure of the limit set.

If N is finite, we will define a discrete probability distribution on the pos-

sible number of individuals who may mutate. We will keep the maximum

number limited such that even in the extreme case that all possible muta-

tions occur, only a small part of the population will mutate. The probability
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distribution is

η : {0, 1, . . . , m} −→ [0, 1] s.t
∑m

i=0 η (i) = 1 and η (i) > 0

∀i ∈ {0, 1, . . . ,m} where m > 0 is fixed for all population sizes N . Then the

successors with mutations of any µ is:

S̃ (µ, N) = S
(
Bm

N
(µ)

)
.1

Then given any limit set L a m-transitional limit set is defined as:

L̃N =
⋃
µ∈L

S̃ (µ, N)

and a finite transitional limit set is defined as:

L+
∞ = lim

N→∞
L̃N

any point in L+
∞∩∆N can always be reached with a finite number of mutations

as N →∞, and this set is unique. Thus our transitional limit set is

L̄ = L+
∞ ∩∆N .

Note that analyzing the closure L̄ of a limit set is equivalent to analyzing

transitional limit set, since each point in the boundary of the limit set is one

mutation away from the limit set. Let µ∗ be Nash Equilibrium whose support

is contained in the support of limit set. We will show that if best-reply of

any element in the support of µ∗ is an element of the set of best-replies of µ∗,

then µ∗ belongs to the closure of the limit set.

Theorem 2 Let µ∗ be a Nash Equilibrium such that Supp (µ∗) ⊆ Supp (L).

Then if ∀a ∈ Supp (µ∗) BR (δa) ∈ BR (µ∗) then µ∗ ∈ L̄.

Before proving the theorem, we will need following two lemmas.

1this is not the exact definition, but for large N the difference will not affect any result.
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Lemma 5 ∀a ∈ Supp (L), ∀µ1,µ2 ∈ [δa, µ
∗]

d (µ2, µ
∗) < d (µ1, µ

∗) ⇒ inf
µ∈S(µ2)∩[δb,µ∗]

d (µ, µ∗) < inf
µ∈S(µ1)∩[δb,µ∗]

d (µ, µ∗)

where d (·, ·) is the usual metric defined over R|A|.

Proof ∀a ∈ Supp (L), ∀µ1, µ2 ∈ [δa, µ
∗] we will first show that

d (µ2, µ
∗) < d (µ1, µ

∗) ⇔ µ2 (a) < µ1 (a) .

For each i = 1, 2 ∃λi ∈ [0, 1] µi = λiδa + (1− λi) µ∗. Thus d (µ2, µ
∗) <

d (µ1, µ
∗) ⇒

λ2 < λ1 ⇒ µ2 (a) = λ2 + (1− λ2) µ∗ (a) < λ1 + (1− λ1) µ∗ (a) = µ1 (a) .

Following the steps in reverse order proves the converse.

Let µ̄1, µ̄2 ∈ [δb, µ
∗] be such that d (µ̄i, µ

∗) = infµ∈S(µi)∩[δb,µ∗] d (µ, µ∗). Note

that ∀i ∈ {1, 2} µ̄i exists and unique since both and S (µi) and [δb, µ
∗] are

compact and [δb, µ
∗] is a line. Then

µ̄i (b) = inf
µ∈S(µi)∩[δb,µ∗]

µ (b) .

This requires that we will choose µ̄i such that µ̄i (b) is minimum in S (µi) ∩

[δb, µ
∗]. Since BR (µ1) = BR (µ2) = b, share of b must increase while passing

from µi to µ̄i. So we will keep this increase at minimum.

Let µ′i ∈ [δb, µ
∗] be such that

∀c ∈ A\ {a, b} µ′i (c) = µi (c) , µ′i (a) = µi (b) andµ′i (b) = µi (a) .

Note that µ′i is uniquely defined for each i ∈ {1, 2}. Since ∀µ ∈ [δb, µ
∗] ∀c, c′

∈ Supp (L) \ {b} µ (c) = µ (c′), ∀µ ∈ [δb, µ
∗] such that d (µ, µ∗) < d

(
µ′i , µ∗

)
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⇒ µ (b) < µ′i (b) ⇒

∀c ∈ Supp (L) \ {b} µ (c) > µ′i (c) .

Then µ′i = µ̄i. But then µ2 (a) < µ1 (a) ⇒ µ̄2 (b) < µ1 (b) ⇒ d (µ̄2, µ
∗) <

d (µ̄1, µ
∗). �

Before proceeding to the next lemma, we have to define the following;

given Supp (µ∗) ⊆ Supp (L) ∀a ∈ Supp (L), let µ̄a ∈ [δa, µ
∗] be such that

d (µ̄a, µ
∗) = infµ∈L∩[δa,µ∗] d (µ, µ∗). The next lemma states that there is no

such a maximal point in the limit set that is not equal to µ∗.

Lemma 6 Either for any a ∈ Supp (L) BR (δa) ∈ BR (µ̄a) or for any a ∈

Supp (L) µ̄a 6= µ∗.

Proof Assume

[[∀a ∈ Supp (L) BR (δa) ∈ BR (µ̄a)] ∧ [∀a ∈ Supp (L) µ̄a 6= µ∗]] ,

and let a ∈ Supp (L) be arbitrary. For µ̄a ∃λ ∈ [0, 1] such that ∀b ∈

Supp (L) \ {a} µ̄a (b) = λµ∗ (b). Then let µλ
b ∈ [δb, µ

∗] be such that ∀c ∈

Supp (L) \ {b} µλ
b (c) = λµ∗ (c). Now we will consider

Co
{
µλ

b : b ∈ Supp (L)
}

as our new simplex. Note that µ∗ ∈ Co
{
µλ

b : b ∈ Supp (L)
}

and

∀µ ∈ ∂ (∆ (Supp (L)))∃µλ ∈ ∂
(
Co

{
µλ

b : b ∈ Supp (L)
})

such that µλ = λµ∗ + (1− λ) µ. If BR
(
µλ

)
∩ Supp (L) = ∅ for some µλ

∈ S∞ (µ̄a) ∃µ̂ ∈ L close enough to µ̄a such that ∃µ̂λ ∈ S∞ (µ̂) such that

BR
(
µ̂λ

)
∩ Supp (L) = ∅ by lemma 5, which is a contradiction. Moreover
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let µ ∈ ∂ (∆ (Supp (L))) such that |BR (µ) | = 1, then |BR
(
µλ

)
| = 1. Since

otherwise

∃
{
µλ

i

}
i≥1

⊂ Co
{
µλ

b : b ∈ Supp (L)
}

such that BR
(
µλ

i

)
6= BR

(
µλ

)
and µλ

i → µλ as i → ∞. But by convex-

ity of best-reply regions and by hypothesis µ∗, ∃ {µi}i≥1 ⊂ ∂ (∆ (Supp (L)))

such that BR (µi) 6= BR (µ) and µi → µ as i → ∞, which is impossible by

2nd non-degeneracy assumption. Then we can extend the proof in lemma

3 to Co
{
µλ

b : b ∈ Supp (L)
}
. Then ∃µ ∈ Co

{
µλ

b : b ∈ Supp (L)
}

such that

∀b ∈ Supp (L) µ
(
µλ

b

)
> 0 . But by again repeated use of the second non-

degeneracy assumption ∃ε > 0 such that

(Bε (µ̄a) ∩∆ (Supp (L))) ⊆ S (µ′)

for some µ′ ∈ Co
{
µλ

b : b ∈ Supp (L)
}
⇒

∃µ̄′a ∈ [δa, µ
∗] ∩ L such that d (µ̄′a, µ

∗) < d (µ̄a, µ
∗) ,

which is a contradiction with the definition of µ̄a. �

With these two lemmas, the proof of the Theorem is immediate.

Proof [Proof of Theorem] Supp (µ∗) = Supp (L) ⇒ u (δa, µ
∗) =

u (δb, µ
∗) ∀a, b ∈ Supp (L). Now since

[[∀a ∈ Supp (L) BR (δa) ⊆ BR (µ̄a)] ∧ [∀a ∈ Supp (L) µ̄a 6= µ∗]]

leads to a contradiction, either ∃a ∈ Supp (L) such that µ̄a = µ∗, in which

case we are done, or ∃a ∈ Supp (L) such that BR (µ̄a) ∩ Supp (L) = ∅, which

is a contradiction since in that case ∃µ ∈ L close enough to µ̄a such that

BR (µ) ∩ Supp (L) = ∅ by lemma 5. Thus if µ∗ is not a Nash Equilibrium,

then we will have a contradiction by second lemma above. Moreover, µ∗ is a
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Nash Equilibrium ⇒ [∀a ∈ Supp (L) µ̄a 6= µ∗] is wrong so µ∗ ∈ L̄. �

The condition in the theorem is sufficient; however, as the following ex-

ample shows this condition is not necessary:

Example 6 Consider the following game:

1\2 a b c

a 5 10 10

b 10 5 5

c 11 3 3

The only Nash Equilibrium in this game
(

1
2
, 1

2
, 0

)
lies in the interior of the

limit set.

Although the requirement in the theorem is not necessery, it is critical.

When we relax the condition we can find limit sets such that there is no Nash

Equilibrium near the limit set. Following is an example to this observation.

Example 7 Consider the following game:

1\2 a b c d

a 9 10 3 1

b 3 9 10 9

c 8 5 9 10

d 10 1 1 9

.

In this game the unique limit set lies in the set of distributions over the unique

minimal CURB set {a, b, c, d}. Here there are three Nash Equilibria, which

are
(

1
3
, 1

3
, 1

3
, 0

)
, (0.858, 0, 0.142, 0),

(
64
174

, 8
25

, 0, 11
35

)
, and none of them belongs

to the closure of the limit set. At this stage one can ask whether there exists

a Nash Equilibrium in ∆ (Supp (L)) necessarily for any limit set L. Answer

to that question will be negative. A modification of the example above will
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provide a counter-example to this assertion:

1\2 a b c d e1 e2 e3

a 9 10 3 1 0 0 0

b 3 9 10 9 0 0 0

c 8 5 9 10 0 0 0

d 10 1 1 9 0 0 0

e1 7 7 7 0 0 0 0

e2 7 7 0 7 0 0 0

e3 7 + ε 0 7 + ε 0 1 1 1

where ε > 0. In this game there are two limit sets one in ∆ ({a, b, c, d}) and

the other is {e3}. However, there is a unique Nash Equilibrium e3. Thus

there is no Nash Equilibrium in ∆ ({a, b, c, d}).

The theorem 2 provides a sufficient condition for a Nash Equilibrium to be

included in closure of a limit set. Oechssler (1997) gives a sufficient condition

which he calls evolutionary stability for pure strategies (ESPS) for a Nash

Equilibrium to be in the limit set. However he defines ESPS for the unique,

full support Nash Equilibrium. Thus ESPS is not a natural restriction for the

general case we analyze. We will modify that condition in the next definition.

Before that we have to define the most overrepresented strategies. let C be

a nonempty subset of A. For any µ, µ∗ ∈ ∆ (C) O (µ, µ∗) represents the set

of strategies that are the most overrepresented ones with respect to µ∗at µ;

that is,

∀µ ∈ ∆ O (µ, µ∗) = {a ∈ A : µ (a)− µ∗ (a) ≥ µ (b)− µ∗ (b) ∀b ∈ A} .

Definition 8 µ∗ satisfies evolutionary stability for pure strategies (ESPS) if

for any µ ∈ ∆ (Supp (µ∗)) \ {µ∗} there exists a ∈ O (µ, µ∗) and b ∈ Supp (µ∗) \

O (µ, µ∗) such that a /∈ BR (µ) and b ∈ BR (µ).
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Note that this means that µ∗ does not have any Nash Equilibrium that

have support on subset of µ∗.

Let µ∗ be a Nash Equilibrium that satisfies ESPS, then it does not

necessarily follow that there is a limit set in ∆ (Supp (µ∗)). The follow-

ing proposition gives a characterization regarding existence of a limit set in

∆ (Supp (µ∗)). The proof follows from a modification of the proof in Oechssler

(1997).

Proposition 4 Let µ∗ be a Nash Equilibrium that satisfies ESPS. Then the

set of population distributions over Supp (µ∗) is a limit set if and only if

Supp (µ∗) is a minimal CURB set.

Proof Suppose ∃ a limit set L = ∆ (Supp (µ∗)). If there exists µ ∈

∆ (Supp (µ∗)) such that BR (µ) 6⊆ Supp (µ∗) then L = ∆ (Supp (µ∗)) would

be wrong.

Suppose Supp (µ∗) is a minimal CURB set. Then there is a limit set such

that

L ⊆ ∆ (Supp (µ∗)) .

Let a1 ∈ Supp (L) be arbitrary and µ0 := δa1 . If δa1 = L, we are

done.Otherwise O (µ0, µ∗) = {a1}. Then ∃a2 ∈ Supp (L) such that a2 =

BR (µ0). If {a1, a2} = Supp (L), we are done. Otherwise let µ1 be such that

µ1 (a1) = µ∗ (a1) andµ1 (a2) = 1− µ∗ (a2) ⇒ O
(
µ1, µ∗

)
= {a2} .

So we have two cases. In the first case, a1 ∈ BR (µ1) ⇒ ∃µ̄1 ∈ [δa1 , µ
1] such

that O (µ̄1, µ∗) = {a1, a2} or {a1, a2} ⊆ BR (µ̄1) ⇒ µ̄1 = µ∗ in which case we

are done. Thus suppose O (µ̄1, µ∗) = {a1, a2} ⇒ ∃a3 ∈ Supp (L) \ {a1, a2}

such that a3 ∈ BR (µ̄1), then proceed. In the second case a1 /∈ BR (µ1) then

proceed.
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Let µ2 = (µ∗ (a1) , µ∗ (a2) , 1 − µ∗ (a1) − µ∗ (a2) , 0, . . . , 0). If

{a1, a2, a3} = Supp (µ∗) then we are done. Otherwise

O
(
µ2, µ∗

)
= {a3} ⇒ a3 6∈ BR

(
µ2

)
.

If {a1, a2} ⊂ BR (µ2) ⇒ ∃µ̄2 such that

µ̄2 (ai)− µ∗ (ai) = µ̄2 (aj)− µ∗ (aj) ∀i, j ∈ {1, 2, 3}

⇒ ∃ a4 ∈ Supp (L) \ {a1, a2, a3} such that a4 ∈ BR (µ̄2) then proceed.

If {a1, a2} 6⊆ BR (µ2), and if a1,a2 /∈ BR (µ2) then proceed. Otherwise

WLOG assume that a1 ∈ BR (µ2) but a2 6∈ BR (µ2). Then

∃µ̂2 ∈ S
(
µ2

)
such that O

(
µ̂2, µ∗

)
= {a1, a2} .

If a1,a3 /∈ BR (µ̂2) then proceed. Otherwise WLOG assume that a1 ∈ BR (µ̂2)

but a3 6∈ BR (µ̂2). We have two cases here. In the first case a2 ∈ BR (µ̂2) ⇒

µ̄2 ∈ S (µ̂2) then proceed. In the second case

a2 /∈ BR
(
µ̂2

)
⇒ ∃a4 ∈ Supp (L) \ {a1, a2, a3}

such that a4 ∈ BR (µ̄2) then proceed. Continuing in this fashion we get µ∗ ∈

L. But this implies that L = ∆ (Supp (µ∗)). �
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CHAPTER 7

Stability

We have proved that in remark that limit sets are minimal absorbing sets.

This result can be interpreted as that limit sets are stable in the sense that

once the population enters a limit set then it does not leave the set. However,

as in the notion of “perfectness” in game theory, a common understanding of

stability in economic theory is such that stability is a stronger condition than

being absorbing. We will call a limit set stable if and only if “small” deviations

from the limit set does not lead to large deviations in the long-run. But before

giving the rigorious definition of stability, we have to formalize what “small”

is.

If N is continuum, small deviations from limit set L is just for small ε > 0

Bε (L) := ∪µ∈LBε (µ). If N is finite, we will be playing with population size

N , since for small populations no deviation is small. Then ∀ (ε, N) ∈ R× N

such that ε > 1
N

Bε (L) :=

{
µ ∈ ∆ : ∃µ′ ∈ L such that

∑
a∈A

|µ (a)− µ′ (a) | < ε

}
.

Now we can define stability as follows:

Definition 9 Let L be a limit set. Then L is stable if and only if limε→0

S∞ (Bε (L)) = S∞ (
L̄

)
where L̄ is closure of the limit set L.
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In the proposition 1, we claimed that inertia matters in terms of limit sets.

However, for stable limit sets inertia does not induce any difference; stable

all-best limit sets are also stable no-worse limit sets.

Lemma 7 No non-strict Nash Equilibrium constitutes a stable all-best limit

set.

Proof of this lemma follows directly from definition of a non-strict Nash

Equilibrium. This lemma proves following proposition

Proposition 5 Assume that Lab ⊆ Lnw then Lab is stable if and only if Lnw

is stable.

This proposition is a necessary condition for limit set for being stable.

Following proposition gives a useful sufficient condition for a no-worse limit

set to be stable.

Proposition 6 If L is a non-singleton convex limit set, then L is stable.

Proof By proposition 2 ∃ a minimal CURB set C such that L = ∆ (C).

But then ∃ε > 0 such that ∀ε′ ∈ (0, ε) BR (Bε′ (∆ (C))) ⊆ C. Then

S (Bε′ (∆ (C))) ⊆ Bε′ (∆ (C)), which proves the result after applying induc-

tion over degrees of the successor correspondence. �
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CHAPTER 8

Conclusion

We have analyzed limit sets of no-worse and all-best processes. We have found

that limit sets of these two processes differ. Then for no-worse processes,

we showed that minimal CURB sets are not perfect candidates of limit

sets for determinate processes. However, indeterminateness and ESPS may

justify minimal CURB sets as limit sets under some circumstances. Moreover,

we proves that full support Nash Equilibria are close to limit sets, but a

characterization of this relation remains to be an interesting open problem.

As we note in the chapter 5, one can define and study stochastically stable

limit sets within this framework. Such a study will be a generalization of

Kandori Mailath and Rob (1993) and Young (1993). However, we conjecture

that this generalization will be costly in the sense that many results in those

studies will not hold. Such a study will be a considerable contribution to the

literature of learning in games.

As an application of this paper, one can study dynamic general equilibrium

models in the theory of economic growth. This framework can be regarded as

an alternative approach to representative-agent framework for such models.

One can ask under which conditions limit sets coincide competitive equilibria.

Moreoever, it would be interesting to know that when they do not concide,

whether cylic behavior in non-singleton limit sets could explain business cycles
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as deterministic movements.

We have considered best-reply processes in this paper. As Josephson et

al. showed that different behavior types lead to different minimal closed sets.

However, limit sets of processes that are generated from a behavior type might

not coincide with the corresponding minimal closed sets. Understanding when

these two sets coincide for different learning processes is crucial for forming

a general theory of distributional learning dynamics. However, there is so

much to do compared to things that have been done in this literature, as

many fields in game theory.
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