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ABSTRACT 

PLANNING of TRAIN MOVEMENTS OVER RAILWAY LINES 

 

Gökçe AYDIN 

 

Department of Civil Engineering 

PhD Thesis 

 

Adviser: Assoc.Prof. Dr. İsmail ŞAHİN 

 

Railway is known to be the best mode of land transport in terms of energy consumption 

and land use per passenger-km or ton-km transported; and also in terms of economic 

efficiency for freight transportation.  It is also known to be superior to air transport in 

terms energy consumption per passenger-km up to some specific distance of travel. 

Thus, it is of crucial importance to increase the market share of rail transport for 

economic and environmental sustainability. Customer satisfaction through better 

punctuality is one of the possible strategies towards this purpose. In reality, most of the 

railways operate according to a timetable, within which, all trains have predetermined 

departure times from, arrival times at and / or passing times without stopping through 

all the reference points (stations, sidings) in their routes. In daily operation, some of the 

trains may get delayed for various reasons. This creates a knock-on effect, spreading the 

delay to other trains. Thus, the timetable becomes invalid, and rescheduling of the 

traffic becomes necessary. Efficient rescheduling helps the railway system be more 

punctual. In practice, rescheduling is done by human operators (called dispatchers) by 

manual methods. Human brain has a limited computational ability. This puts an upper 

limit on the effectiveness of rescheduling solutions produced manually by humans. 

Fortunately, the computational power of today’s modern computers can provide 

significant improvement. In this thesis, first, a mixed integer programming model for 

solving the rescheduling problem on a single track railway line to optimality is 

developed. The model considers most of the real constraints in a real railway operation 

like deadlock prevention and capacities of stations/sidings and aims to minimize the 

total weighted delay of the trains. Train scheduling is a strongly NP-Complete problem. 

This nature of the problem was clearly observed even in the small sized problems, like 4 

eastbound trains and 3 westbound trains. This is a big drawback in a rescheduling 
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problem, because rescheduling has to be done in a dynamic environment. Trains are 

moving and they can get some additional delays during the computation process, if it 

takes too long. This would make the solution produced worthless. To be specific, any 

algorithm for train rescheduling has to finish its job in at most 5 minutes, but, 

preferably, in 3 minutes. Therefore, a plan mixed-integer programming proved to be 

inadequate for rescheduling. It has to be supported with some additional procedures. We 

call these procedures as “speed-up routines”. In this thesis, three different speed-up 

routines were used. The first was using the “lazy constraint” attribute of AIMMS. This 

attribute enables the user to mark the constraints that are unlikely to be binding. Then, 

the solver excludes them when computing the linear programming relaxation of the 

model and checks to solution of the linear programming relaxation against the 

constraints marked as “lazy”. If it finds that one of the lazy constraints is violated, it 

adds the violated constraint into the constraint pool and re-solves the linear 

programming relaxation. In the model, most of the station / siding capacity constraints 

were marked as lazy. The second speed-up routine was a heuristic solution space 

restriction algorithm. The algorithm first produces a solution by implementing a greedy 

algorithm. This algorithm neglects the station / siding capacity constraints and deadlock 

prevention. Then, it restricts the solution to be not much different from the outcome of 

the greedy heuristic. This eliminates hundreds of binary variables and thousands of 

constraints from the model and provides a radical increase in the model’s computational 

speed. However, the optimality of the solution is no longer guaranteed, although the 

model produces good solutions. The third speed-up routine was adopting a 

multiobjective approach. The objective of the main model is to minimize the total 

weighted delay of all trains. In the multiobjective approach, first, a problem with the 

same variables, parameters and feasible region, but a different objective function is 

defined. The objective function is minimizing the maximum weighted delay of all 

trains. Then, the optimal solution from this model is used as an initial feasible solution 

for the main problem. Also, in the main problem, weighted delay of each train is 

constrained not to exceed the maximum weighted delay computed in the first problem. 

This routine also provided a speed-up. The final model was tested on a hypothetical 

single track railway line with 18 stations. In the worst cases, the final model with all the 

speed up routines managed to solve the problems with 6 eastbound trains and 5 

westbound trains in less than three minutes.  

Key words: Railway traffic control,  train scheduling, rescheduling, exact algorithms, 

integer programming, heuristics 
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ÖZET 

 

TEK HATLI DEMİRYOLLARINDA TREN HAREKETLERİNİN 

PLANLANMASI 

 

Gökçe AYDIN 

 

İnşaat Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Doç. Dr. İsmail ŞAHİN 

 

Demiryolu, kara ulaşım türleri arasında, taşınan yolcu-km veya ton-km başına enerji 

verimiliği en yüksek, arazi kullanımı en düşük tür olarak bilinmektedir. Ayrıca, yük 

taşımacılığındaki ekonomik verimliliği de karayoluna göre daha yüksektir. Yolcu 

taşımacılığında, belirli bir mesafeye kadar olan taşımalarda, havayoluna karşı da, enerji 

verimililiği bakımından üstünlük göstermektedir. Bu nedenlerle, çevresel ve ekonomik 

sürdürülebilirlik adına, taşımacılıkta demiryolunun pazar payının yükseltilmesi büyük 

önem taşımaktadır. Daha iyi bir dakiklik marifetiyle müşteri memnuniyetinin 

arttırılması, bu konuda geliştirilebilecek stratejilerden biridir. Gerçekte, çoğu demiryolu 

sisteminde, trenler, önceden belirlenmiş bir zaman çizelgesine göre hareket etmektedir. 

Bu çizelgede, trenlerin, rotaları üzerinde bulunan tüm referans noktalarına (istasyonlar, 

saydingler) varış, bu noktalardan kalkış ya da bu noktalardan durmadan geçiş zamanları 

kayıtlıdır. Günlük işletimde, trenlerden bazıları, çeşitli sebeplerden dolayı gecikebilir. 

Bu gecikmeler, bir yayılma etkisi yaratarak, diğer trenlere de sirayet etmektedir. Sonuç 

olarak, hazırlanan zaman çizelgesi geçerliliğini yitirmekte, yeniden çizelgeleme 

gereksinimi ortaya çıkmaktadır. Yeniden çizelgelemeyi verimli bir şekilde yapmak, 

sistemin dakiklik performansının artmasını sağlayacaktır. Uygulamada, yeniden 

çizelgeleme, dispeçer adı verilen operatörler tarafından, elle yapılmaktadır. İnsan 

beyninin hesap yeteneği sınırlıdır. Bu durum, insanlar tarafından elle yapılan yeniden 

çizelgemenin kalitesi üzerine sınırlar koymaktadır. Günümüzün modern 

bilgisayarlarının hesap yeteneklerinden yararlanarak, bu verimliliği arttırmak 

mümkündür.  Bu tez çalışmasında, öncelikle, tek hatlı bir demiryolunda yeniden 

çizelgeleme probleminin optimum çözümünü verecek bir matematiksel model 

geliştirilmiştir. Bu model, demiryolu işletimi ile ilgili pek çok kısıtı (örn. istasyon ve 

saydinglerin kapasiteleri) dikkate almakta ve trenlerin ağırlıklandırılmış gecikmelerinin 
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toplamını en küçüklemeyi amaçlamaktadır. Tren çizelgelemesi problemi, güçlü bir NP-

Tam problemdir. Problemin bu doğası, geliştirilen model, 4 adet doğu yönlü ve 3 adet 

batı yönlü tren gibi küçük boyutlu problemler üzerinde denendiğinde bile kendini açık 

olarak göstermiştir. Bu, yeniden çizelgeleme için büyük bir handikaptır. Yeniden 

çizelgeleme problemi, dinamik bir ortamda çözülmek durumundadır. Trenler hareket 

halindedir ve algoritmanın çözüm üretmesi çok uzun sürecek olursa, çözüm süresi 

içinde trenlerde ilave gecikmeler meydana gelebilecektir. Bu durum gerçekleşirse, 

modelin ürettiği çözüm değersiz hale gelecektir. Net olmak gerekirse, bir yeniden 

çizelgeme algoritmasının, işini en fazla 5 ancak tercihen 3 dakika içinde bitirmesi 

gerekmektedir. Düz bir karışık tamsayılı programlama modeli, bu iş için yetersiz 

kalmaktadır. Böyle bir model, mutlaka bazı ilave prosedürler ile desteklenmelidir. Bu 

tezde, bu prosedürlere “hızlandırma rutini” adı verilmiştir. Çalışmada, üç farklı 

hızlandırma rutini kullanılmıştır. Bunlardan ilki, AIMMS’in “lazy constraint” özelliğini 

aktifleştirmektir. AIMMS, kullanıcıya, optimum çözümde bağlayıcı olma olasılığ çok 

düşük olan kısıtları “lazy” olarak işaretleme olanağı sunmaktadır. “Lazy” olarak 

işaretlenen kısıtlar, ilk başta problemin doğrusal programlama gevşetmesine dahil 

edilmemektedir. Bu kısıtlar dahil edilmeden çözülen doğrusal programlama 

gevşetmesinin çözümünün bu kısıtları ihlal edip etmediği kontrol edilmektedir. İhlal 

ettiği kısıt varsa, bu kısıt, kısıt havuzuna yeniden dahil edilmekte ve DP 

gevşetmesiyeniden çözülmektedir. Bu çalışmada, istasyon / sayding kapasitesi 

kısıtlarının büyük çoğunluğu “lazy” olarak işaretlenmiştir. İkinci hjızlandırmarutini, 

sezgisel bir çözüm uzayı kısıtlama algoritmasıdır. Bu algoritma, ilk önce, açgözlü bir 

algoritma kullanarak, problem için bir çözüm üretmektedir. Bu açgözlü algoritma, 

istasyon ve sayding kapasitelerini, hattın kilitlenmesi durumunu dikkate almamaktadır. 

Bu çözüm üretildikten sonra, ana modelin çözümü, açgözlü algoritmanın ürettiği 

çözümden fazla uzaklaşamayacak şekilde kısıtlanmaktadır. Bu algoritma, modelden 

yüzlerce ikili değişkeni ve binlerce kısıtı attığı için, çözüm hızında radikal bir iyileşme 

sağlamaktadır. Ancak, bulunan çözümün optimum olduğu artık garanti 

edilememektedir, lakin, üretilen çözümlerin oldukça iyi olduğu görülmüştür. Üçüncü 

hızlandırma rutini olarak, bir çok amaçlı optimizasyon uygulaması yapılmıştır. Bu 

uygulamada, ana problem ile tamamen aynı karar değişkenleri ve uygun çözümler 

bölgesine sahip, ancak amaç fonksiyonu farklı bir problem çözülmektedir. Bu 

problemin amaç fonksiyonu, tüm trenlerin ağırlıklandırılmış gecikmelerinin 

maksimumunu minimize etmektir. Bu problemin optimum çözümü, ana problem için 

başlangıç uygun çözümü olarak kullanılmaktadır. Ayrıca, ana problemdeki trenlerin 

ağırlıklandırılmış gecikmeleri, ilk problemde bulunan maksimum değeri geçmeyecek 

şekilde kısıtlanmıştır. Nihai model, 18 istasyonu bulunan, hayali bir tek hatlı 

demiryolunda test edilmiştir. En kötü durumda, tüm bu hızlandırma rutinleri ile birlikte, 

model, 6 doğu yönlü ve 5 batı yönlü tren içeren problemleri 3 dakikanın altında bir süre 

içinde çözebilmiştir.  

Anahtar Kelimeler: Demiryolu trafik kontrolü, tren çizelgeleme, yeniden çizelgeleme, 

tam çözüm algoritması, tamsayılı programlama, sezgisel yöntemler 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review 

Since train scheduling problem is basically a scheduling problem, the distribution of 

related literature shows some similarity with the classical scheduling literature. Like any 

NP-Complete (Non-deterministically polynomial-time-complete) scheduling problem, 

there are three main solution approaches for train scheduling problem. These are exact 

solutions, metaheuristic solutions and problem-specific heuristic solutions.  

Exact solutions are those obtained using the integer-programming methods to generate 

the optimal solution. They are difficult to apply in NP-complete problem structures. 

Nevertheless, they have found some application in the operations research literature. 

Billionnet[1], Caprara et al.[2], Dessouky et al. [3] are some examples of the studies 

that use exact solution approaches.   

Metaheuristic methods such as simulated annealing, tabu search, ant colony 

optimization, and genetic algorithms are widely used for solving train scheduling 

problems. These methods, for most of the time, quickly find good but not necessarily 

optimal solutions. Although they are generally known as effective methods, getting 

good results from them requires having a high level of expertise on them. Gorman 

[4]applied both tabu search and genetic algorithms for solving the problem. Salim and 

Xiaogiang  [5] employed a genetic algorithm model which also aims to reduce the iron 

dust emissions due to braking. Törnquist and Persson [6] combined tabu search and 

simulated annealing.  

Problem- specific heuristic solutions (also called tailor-made heuristics) are developed 

exclusively for train scheduling problem. They range from simple rule based heuristics 

to quite complicated branch-and-bound methods. We can further divide this category to 
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two more subcategories: Greedy Heuristics and Heuristics with a look-ahead 

component.  

Greedy Heuristics: These methods focus on the problem only on the local scale. They 

solve the conflicts one-by- one and do not consider the effect of the resolution of the 

current conflict on the later conflicts. These methods focus only on the trains involved 

in the current conflict and try to optimize the selected performance measure based on 

the solution of the current conflict. The biggest advantage of these methods is a very 

short computational time. Since operational scheduling is indeed a real-time scheduling 

problem, it is very important to reach good feasible solutions in a very short time. 

Moreover, sometimes, these heuristics provide surprisingly good solutions. One 

example is the dispatcher’s solution in Şahin [7], which is based on decision behaviours 

of Turkish State Railways' train dispatchers. This greedy heuristic found the optimal 

solution in some of the cases. However, at least theoretically, a greedy heuristic is not 

expected to give very good results in all the instances, because of its myopic nature.  

Heuristics with a Look-Ahead Component: These methods are not just local methods. 

They consider the consequences of the local decisions-or they try to improve the 

solution by trying to choose the alternatives of locally optimal decisions. A good 

example to the former approach is the heuristic developed by Şahin [7] and to the latter 

approach is D’Ariano et al. [8].  

One problem with the non-exact solutions is that, all train scheduling problems are 

unique. Railway operation involves a huge number of different operational constraints, 

related to line topology and physics involved. Up to today, there is no pool of 

benchmark problems to evaluate the performance of these heuristics. So, problems are 

generally selected from real-world applications with real-world traffic data. They are 

then benchmarked with solutions of human planners. If they provide significantly better 

solutions than human planners, the solutions are considered to be “good enough” 

solutions.  

Understanding the literature about train scheduling requires some understanding of the 

train scheduling problem itself. Therefore, the rest of the literature review is skipped for 

now. More comprehensive literature review will be given in Chapter 2, after giving all 

the necessary and basic understanding about the problem.  

 



18 

 

1.2 Objective of the Thesis 

Railway is known to be the best mode of land transport in terms of energy consumption 

and land use per passenger-km or ton-km transported; and also in terms of economic 

efficiency for freight transportation.  It is also known to be superior to air transport in 

terms energy consumption per passenger-km up to some specific distance of travel. 

Thus, it is of crucial importance to increase the market share of rail transport compared 

to road and air transport for economic and environmental sustainability. Unfortunately, 

recent trend is just the opposite: Rail is constantly losing market share against road and 

air. Indeed, every day, more and more people are gaining consciousness about this 

subject. However, sheer reliance on the consciousness of the customers is still by no 

means sufficient to achieve this goal. It is a strict requirement to increase the customer 

satisfaction related to rail transport. This increase is only possible to improve rail 

transport in terms of the classical quality measures related to transportation, such as 

speed, safety, reliability, punctuality, service frequency and price. Developing proper 

strategies to achieve these improvements is very important for the future of railways.  

As the amount of traffic on the rail network increases and approaches to the network’s 

capacity, problems with reliability, punctuality (which also disrupts speed by elongating 

the travel time) and service frequency start to arise. Moreover, these problems cause an  

increase in the operational costs and harm the economic edge of rail transport. These 

problems are serious and it is a must to find a way to solve them. A naive approach is to 

consider building new railway lines, increasing the number of (parallel) tracks in 

existing railway lines, building new stations or sidings for trains to meet / overtake each 

other, adding new tracks to existing stations, etc. Bringing these ideas to reality is, 

however, often very difficult, if not impossible. Land acquisition costs (especially in 

residential areas and business districts), political and economic issues about funding, 

strong opposition by environmental activist groups and some other factors prohibit such 

infrastructure investments.  

When it is impossible or at least very difficult to build new infrastructure, railway 

infrastructure managers and train operating companies seek other solutions; such as 

improving the operational procedures to make better use of the existing capacity and 

thus improving the service quality and cost-effectiveness.  
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Railway, just like any other transportation system, consists of three major components: 

The infrastructure component, the vehicles component and the operation component. 

The operation component includes all the rules, methods and procedures for effective, 

efficient and safe operation of the system. It can be said that infrastructure and vehicle 

components are the hardware of the system; whereas the operation component is the 

software. All these components are in a very close relation and a well-functioning 

system is possible only when all these components are well-designed and well-

functioning. 

One of the most important parts of the operation component of a railway system is train 

scheduling. Train scheduling involves preparing the timetables, to which the train 

operations are expected to conform; and rescheduling the traffic in case of the 

perturbations in real-time operations. Improving the performance of these activities 

would help very much to improve the service quality of rail transport. Hence this thesis 

is about train rescheduling problem, and especially with the design of computer-based 

decision support systems for solving the train rescheduling problem. The main purpose 

and scope of the thesis is rescheduling the train traffic on a single track railway line.  

1.3 Hypothesis 

In this thesis, a mixed integer programming based algorithm that solves the train 

rescheduling problem on a single track railway line is developed. Generally, mixed 

integer programming methods are considered to be incompatible with NP-Complete 

scheduling problems. It is generally thought that, with such a method, it is not possible 

to solve such a scheduling problem in a reasonable amount of time, as the size of the 

problem instance (i.e. number of jobs and/or machines) gets larger and larger. However, 

it can be also claimed that, by making clever use of the know-how in the problem itself, 

it may be indeed possible to solve the problems of practical size with a mixed integer 

programming based algorithm.  This approach is made use of in this thesis. It has been 

inspired by Castillo et al.[9]. Normally, the number of binary variables and constraints 

show a drastic increase, as the number of trains to be scheduled increase. Nevertheless, 

it is possible to slow down this increase by applying clever post-modeling tricks to 

involve only the really required variables and constraints. Therefore, a heuristic-based 

solution space restriction routine was developed to expedite the mixed integer 

programming solution. Details of the routine will be given in Chapter 4. Last but not 
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least, practical size limits come into action. Some problems might be theoretically 

unsolvable in a reasonable amount of time. However, the nature of the problem itself 

can put practical limits on how large the problem instances can be. This perfectly 

applies for train scheduling problems. Railway lines have limited capacities. The 

maximum number of trains can actually run on a single track railway line is much less 

than the number of jobs to be scheduled on a production line of a factory. This also 

raises hope for implementing mixed integer programming algorithms in a reasonable 

amount of time. The latter fact is clearly reflected in the problem instances used for the 

model. The problem instances are run on a hypothetical single track railway line, which 

borrows its topology from the TCDD line between Arifiye-Çukurhisar. This line has 18 

stations. Among those stations, there is one western terminus, one eastern terminus and 

there are 16 intermediate stations. In the problem instances run, trains were introduced 

into this line every 10-20 minutes per direction. This number is already highly unlikely 

to be observed in practice. In practice, if there would be that much of traffic density on a 

railway line, railway infrastructure managing companies prefer to have this line double 

tracked.  
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CHAPTER 2 

GENERAL DEFINITION of the PROBLEM 

In this chapter, a wide explanation and definition of the problem will be given. Some 

basic insight into the railway operations and related complications is an absolute 

necessity to understand and employ algorithms for train scheduling.  

The formal definition of scheduling is “assigning start and end times for certain tasks 

that share the same resources, in an efficient way” and this definition is perfectly 

applicable to train scheduling. However, gaining insight about what the “tasks” are can 

be somewhat tricky. In train scheduling, “tasks” are “train movements over railway 

lines.” These railway lines have some different components.  Therefore, before 

explaining the train scheduling concepts, it will help very much to provide some 

background information about train movements over railway lines and their elements.  

2.1 Train Movements over Railway Lines 

The duty of a train is to travel from one point (origin of the train) to another (destination 

of the train); with, if necessary, some intermediate stops. This duty is called the train’s 

itinerary. Trains perform that duty over railway lines. Railway lines have some different 

elements and trains move over these elements during their travel. Because of this fact, it 

may be helpful to describe those elements first.  

2.1.1 Elements of a Railway Line 

Main elements of a railway line that are relevant to train scheduling are mainline track 

sections, stations and sidings. 
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Mainline Track Sections: Mainline track sections are the sections of railway tracks 

between adjacent stations or sidings. Over these track sections, trains cover the bulk of 

the distance. Mainline tracks generally extend through stations and sidings. A typical 

characterization of railway lines is based on the number of parallel mainline tracks. If 

there is only one mainline track, the railway line is called a “single track” line. 

Similarly, if there are two parallel mainline tracks, the line is called a “double track” 

line, for three or more parallel tracks, it’s called “multiple track” line.  

Mainline tracks may be unidirectional or bidirectional. Over unidirectional tracks, trains 

can only travel in one direction. Unidirectional mainline tracks can be found in railway 

lines having more than one parallel mainline tracks. Except some special cases (like 

closure of one of the tracks due to failures, construction works, etc.), movement of 

trains in the opposite direction is prohibited. An example to unidirectional mainline 

tracks is the Sirkeci-Halkalı suburban (commuter) train line. On this line, there are two 

parallel mainline tracks. One of these tracks is allocated for trains from Halkalı to 

Sirkeci, and the other track is allocated for trains from Sirkeci to Halkalı.  

On bidirectional tracks, trains moving in both directions can operate. In single track 

lines, mainline tracks are always bidirectional. On double or multiple track lines, 

depending on the rules of adopted by the infrastructure manager, they can be 

unidirectional or bidirectional. An example to double track lines with bidirectional 

mainline track sections used to be the Haydarpaşa-Gebze suburban train line, which also 

used to be serving regional, intercity and freight traffic (Now, for years, the line is 

abolished in favor of still unstarted construction works). On this line, one of the tracks 

was mainly allocated for Haydarpaşa bound trains and the other track was mainly 

allocated for Gebze bound trains. However, to allow fast trains to overtake slow trains, 

some fast trains could use the line that is mainly allocated for the trains in opposite 

direction.  

Sidings: Sidings are the sections of railway lines, through which, number of parallel 

tracks is increased for some length of railway line, (say, 1000-2000 meters). Sidings are 

used for meeting and overtaking operations.  

The number of tracks within the siding (including the part of mainline tracks extending 

through the siding) is the capacity of the siding, i.e. the maximum number of trains that 

can be present within the siding in overlapping time intervals. Sometimes, this capacity 
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can be exceeded by means of a special operation: two or more short trains (total length 

of them being well below the length of the siding) bound in the same direction can be 

stopped on the same track. In this case, for departures from the siding, a first-in, first- 

out rule has to be applied. However, for avoiding overcomplicated models, this special 

operation to exceed the station capacity is generally not modeled in train scheduling 

algorithms (More often, station capacity is not modeled at all, for the same purpose).   

Stations: Stations are similar to sidings. Within the stations, number of parallel tracks is 

greater than that in the mainline track sections. Meeting and overtaking operations can 

be done within the stations. The station capacity concept is the same as the siding 

capacity concept. However, stations have an additional duty: passengers board and 

alight the trains there. In addition, freight trains have stations, called yards. In yards, the 

freight cars can be loaded and unloaded. Also, the composition of the freight trains can 

change within the stations (yards), by freight cars added to or removed from them. 

These composition changing operations are part of some movements called shunting. 

Shunting operations are not within the scope of this study. The elements of a railway 

line are illustrated in Figure 2.1. This figure is also an illustration of a single track 

railway.  

 

 

Figure 2.1 Station, siding and mainline track sections 
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2.1.2 Analogies Between the Elements of Railway Lines and the Elements in 

Classical Scheduling Problems 

Trains-jobs: In classical scheduling problems, there are a number of jobs to be 

processed. Trains are like jobs. Each train has an origin, a destination and a specific 

route, which is generally dictated by the alignment of the railway itself. When a train 

departs from its origin, it is as if the job starts to be processed in the first machine of its 

route. When a train arrives at its destination, it is as if the job is finished; i.e. its 

operation on the last machine of its route is finished. The arrival time of the train at its 

destination is analogous to completion time of a job. There is the “scheduled arrival 

time” of a train to its destination. This is analogous to the “due date” of a job. Presence 

of these analogies calls that we can use the same due date and completion time related 

performance measures for the train scheduling problem; like maximum tardiness, total 

tardiness, weighted total tardiness, etc. The names of the measures may differ though.   

Mainline Tracks-Machines: Mainline tracks are analogous to machines in classical 

scheduling problems. Each job has to be processed in a number of machines in a 

particular order. Similarly, each train should pass through a number of mainline track 

sections to travel from its origin to its destination; simply because these mainline track 

sections constitute the only path connecting the origin and the destination. Processing of 

each job in each machine takes some time, called the processing time. Analogously, 

each train covers the length of each mainline track section (remind that mainline track 

sections extend between two adjacent stations-sidings) in a duration, called running 

time. In this study, a minimum running time is used for modeling purposes. In this case, 

running times are not fixed; they can get any value that is greater than or equal to the 

minimum running times.  

Stations and Sidings-intermediate Storage Areas: In classical flow-shop or job-shop 

scheduling; each job is processed in one machine and enters an intermediate storage 

area, then processed in the next machine and enters another intermediate storage area. 

This goes on until the job is finished. The process is nearly the same in train scheduling: 

The train covers one mainline track section and enters a station or siding (note that 

whether it will be stopped in the station or siding for a while or continue without 

stopping may not be not known without constructing the final schedule), and then enters 

another mainline track section, then enters another station or siding. This goes on until 

the train arrives at its destination. The stopping duration of a train in a station or siding 
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is analogous to waiting time of jobs in an intermediate storage area between two 

machines.  

As mentioned earlier, in stations (yards), trains may have to undergo some operations, 

like passenger boarding-alighting, loading- unloading of freight cars, composition 

changing, refueling, etc. These operations take some time. So, if any train is required to 

undergo such operations in a station, trains cannot pass though that station without 

stopping. In such stations, a minimum required stopping time, called the minimum dwell 

time, has to be enforced. Minimum dwell time constitutes a lower bound for minimum 

waiting time of a train in a particular station. Minimum dwell times typically do not 

appear in sidings.  

It was also mentioned earlier that, all stations and sidings have finite capacity values. 

This corresponds to a scheduling problem with limited intermediate storage capacities. 

Station and siding capacities are hard constraints. In order a study to get any positive 

value for application to real world train scheduling/rescheduling, it has to take station 

and siding capacities into account. However, just as scheduling problems with limited 

intermediate storage capacities, train scheduling problems with limited station and 

siding capacities are very special and very difficult problems. Consequently, these 

(actually very important and hard) constraints are relaxed in many studies in the 

literature. However, it is included in the mathematical model developed in this thesis.  

2.2 Analogies Between the Train Scheduling Problem and the General 

Scheduling Problem 

Like the analogies between the elements, some analogies between scheduling problem 

types can be seen. Existence of an analogy does not necessarily mean that two types of 

problems are exactly the same. It is rather like a conceptual similarity. Some differences 

also exist.  

Single Track Scheduling-job Shop Scheduling: Example of a single track railway is 

given in Figure 2.2. Scheduling the trains on a single track railway line is in some sense 

analogous to job- shop scheduling. As explained in the previous parts, there are 

mainline track sections (analogous to machines) and stations- sidings (analogous to 

intermediate storage areas), all connected in series. Since the mainline tracks are 

bidirectional, trains moving in both directions have to be scheduled. In this sense, it is 



26 

 

rather like a scheduling problem where the routings of the jobs may be different from or 

opposite to each other, like a job-shop. To illustrate, let's imagine a single track railway 

line with 5 sidings and 4 mainline track sections connecting them. In Table 2.1 there is 

the one-to-one correspondence between railway line elements and elements of job-shop 

scheduling problem.  

 

Figure 2.2 A single track railway in UK [10] 

As sample explanations, we say that wi1 is the waiting time of train (job) i in siding 

(intermediate storage area) 1, ti12 is the running time of train i on mainline track section 

1 (or the running time from siding 1 to siding 2), ti21 is the running time of train i on 

mainline track section 1 (or the running time from siding 2 to siding 1) and pi1 is the 

processing time of job i in machine 1.  

One difference between job-shop scheduling and single track train scheduling is that, in 

job- shop scheduling, depending on the routing of the job, some jobs may not visit some 

machines at all. That means a routing such as machine 1-machine 4-machine 5 is 

possible. In train scheduling, although trains may start and / or terminate in intermediate 

stations, they cannot skip any station/siding and/or mainline track section between 

origin-destination pairs at all (although they can stop or pass without stopping there). 

That is, a route like siding 2- mainline track section 2- siding 3- mainline track section 

3- siding 4 is possible but a route like siding 2- mainline track section 2-siding 4- 
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mainline track section 4 is not possible. Another difference is hidden within the 

headway concept.  

 

 

Table 2.1 One-to-one correspondences 

 

Train scheduling on a line with double (or more) parallel unidirectional tracks-Flow 

Shop Scheduling: In Figure 2.3, a double track railway is seen, whereas, a multiple track 

railway is shown in Figure 2.4. If a number of parallel unidirectional tracks are under 

consideration, this means all trains on a track are moving in the same direction. Since 

trains moving in opposite directions do not interfere with each other at all (because they 

will not be sharing any resources), they can be scheduled independently on different 

computers. Thus, it is sufficient to consider only one of these parallel lines. This makes 

Railway Element 

Corresponding 

Job-Shop 

Element 

Time 

Parameter in 

Railway 

Corresponding Time 

Parameter in Job-Shop 

Siding 1 Storage Area 1 wi1 wi1 

Mainline Track Section 1 Machine 1 ti12 or ti21 pi1 

Siding 2 Storage Area 2 wi2 wi2 

Mainline Track Section 2 Machine 2 ti23 or ti32 pi2 

Siding 3 Storage Area 3 wi3 wi3 

Mainline Track Section 3 Machine 3 ti34 orti43 pi3 

Siding 4 Storage Area 4 wi4 wi4 

Mainline Track Section 4 Machine 4 ti45 orti54 pi4 

Siding 5 Storage Area 5 wi5 wi5 
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the problem similar to a flow shop problem, where all the jobs flow in the same 

direction, without skipping any machine. All the elements and correspondences in Table 

2.1 are valid in this case, too. The only difference is that all the trains (jobs) move in the 

same direction.  

 

Figure 2.3 A double track line [11] 
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Figure 2.4 A multiple track line from UK [12] 

 

Train scheduling on a line with double (or more) bidirectional tracks-Parallel job shop 

scheduling: In this case, there are more than one parallel mainline track sections, mostly 

extending through stations-sidings. A train in any direction can use any one of the 

parallel tracks, although in general case all mainline tracks have principally allocated 

directions and trains in the opposite directions are allowed to use them only for 

overtaking purposes. At some points in the line (including but not limited to beginning 

and ending points of stations / sidings), parallel tracks are connected to each other 

through some specific devices called switches. Trains can pass from one parallel track 

to another overa switch. This is similar to a case where there is a job- shop with two or 

more parallel lines (of machines), and jobs can switch to other line (of machines)in 

intermediate storage areas.  Parameters in Table 2.1 are also valid for this case. 

However, in the final solution, only the departure and arrival times of trains are not 

sufficient, the decision variables should also include which track they will use.  

2.3 Description of Train Scheduling Activities 

Up to now, we have mentioned about lots of similarities between train scheduling 

activities and classical scheduling activities. Now, it’s time to mention about some 

differences. One of these differences is the representation of schedules. Traditionally, 
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classical machine-based schedules are represented by Gantt diagrams, whereas train 

schedules are represented by time-distance diagrams-called Train Graph. Time-distance 

diagrams show the movement of a train along its path with respect to time.  

There are two different basic orientations in railway time-distance diagrams. In the first 

orientation, the horizontal axis is the time axis and the vertical axis is the distance axis. 

In the other orientation, this scheme is reversed. Both of these orientations are widely 

used among different railway operating companies and infrastructure managers in the 

world. Neither of them has any specific advantage or disadvantage over the other one. 

Selection of one of them is just a matter of tradition. In Figure 2.5 and Figure 2.6, a 

couple of time-distance diagram examples are given.  

At this point, it may be useful to define scheduling at tactical level and scheduling at 

operational level concepts used in train scheduling. Scheduling at tactical level is part 

of preparing timetables, which are valid for a pre-determined period (e.g., seasonal). 

These timetables indicate the arrival, departure and transit times of trains over various 

infrastructure elements, generally stations and sidings. Train operations are conducted 

according to these timetables and required to adhere to them as much as possible. For 

this reason, scheduling at tactical level is also called timetabling. Scheduling at 

operational level, also called rescheduling or traffic control, is a daily scheduling task, 

involving generation of modified schedules in case of deviations from the timetables in 

practical operation. Both types of problems can have completion time based 

performance measures. But, due date based performance measures are specific to 

scheduling at operational level. All operational scheduling activities are based on an 

underlying tactical schedule, because the due dates are input from there. Time-distance 

diagrams generally represent the tactical schedules (timetables). But, because of this 

tradition, operational schedules are plotted in the same format as well. Also, traffic 

control systems plot a diagram called “train graph”, which shows the actual movements 

of trains. This diagram uses the same time-distance format. In Figure 2.5, a sample 

train- graph for a section of railway line with 4 stations and 4 trains is seen. In this train 

graph, the horizontal axis is the time axis and the vertical axis is the distance axis, 

which shows the stations. In this figure, stations are numbered. The general practice is 

writing the name of the stations there.  
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Figure 2.5 A sample railway time-distance train- graph 

In Figure 2.6, the same line and train movements are depicted, but in the reverse form of 

orientation. As there is no rule for the choice between them and it's only a matter of 

preference and tradition, from now on, Turkish State Railways' tradition will be 

adopted; distance for the vertical axis and time for the horizontal axis. Note that, in both 

of the graphs, sometimes the paths of trains become parallel to the time axis, and this 

occurs only when trains are within the stations. This means, train stops at this station for 

some time.   

 

Figure 2.6 The same sample railway time-distance graph as Figure 2.1 in reversed 

orientation 
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2.3.1 Conflict Resolution 

The backbone of train scheduling is conflict resolution. When two trains try to use the 

same infrastructure element in overlapping time intervals, a conflict occurs. Conflict 

means infeasibility and has to be resolved. There are various solutions to conflicts, 

which will be discussed soon, shortly after defining the types of conflicts.  

2.3.1.1 Conflicts Between Trains in the Same Direction 

There are two basic types of conflicts between trains running in the same direction. 

These are headway conflicts and overtaking conflicts. Some background information is 

needed to describe them.   

In railway operations, safety is the primary concern. All the procedures are designed 

with safety in mind. Thanks to this fact, railway is one of the safest modes of transport. 

With safety in mind, a lot of rules and operational procedures are designed to avoid 

collisions between trains.  

The big problem is that trains have much longer braking distances than road vehicles. A 

train travelling at 160 km/h on a flat (zero- gradient) track section can stop within more 

than 1000 meters. This dictates that, unlike the case for road vehicles, visual sight of the 

driver (like he/she sees the other, realizes that the other train is on the same track and 

applies brakes) is not sufficient to avoid collisions between rail vehicles. A minimum 

safety distance should always be maintained between the trains and the requirement for 

a stop to avoid collision should be acknowledged to train driver well before he/she 

actually sees the other train. When a train follows another train in the same direction 

with speed V, the minimum safety distance between these trains is the complete 

stopping (braking) distance of the succeeding (following) train, plus an additional safety 

distance. For succeeding Train 2 to be allowed to get any closer to preceding Train 1, it 

has to reduce its speed. Figure 2.7 illustrates this rule.  
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Figure 2.7 Minimum distance rule [13] 

This rule is useful but, for most of the times, too complicated to apply. Stopping 

distance from V to 0 is dependent upon a number of factors, like the gradient (slope) of 

the line section, braking capability of the train, value of V itself, etc. Moreover, to apply 

this rule, all trains should have on board computer systems, which know the exact 

position of the train itself, exact position of all other (preceding/leading) trains to 

continuously calculate the braking distance. This is applicable in some railway systems 

like urban metro lines, but it's difficult to apply for intercity railways, where a number 

of different train types (passenger, freight) operate. To overcome this difficulty, a 

system called "block signaling system" is used. In this system, mainline track sections 

are divided into "blocks". Length of a block can range from one to several kilometers, 

or even the entire mainline track section (between two adjacent stations / sidings) can 

itself be a block. This choice depends on the conditions and requirements. No matter 

how long it is, the function of the block is the same:  Only one train at a time is allowed 

to occupy the block. In order to allow another train into the block, block should be 

entirely cleared by the preceding train. The word "entirely cleared" means, even one 

axle of the train must not be within the block. All blocks are protected with signals. If 

there is a train within the block, the signal protecting the block will order any other train 

to stop before entering the block. But, because of long stopping distances of trains, this 

order should be given to drivers well before the entrance of the block. It can be given by 

the signal at the entrance of the previous block or by a special signal, called distant 

signal. Distant signal informs the driver about the status of the block signal ahead. 

When block lengths are carefully selected, block system guarantees that the minimum 

distance between two trains will always be maintained. Figure 2.8 illustrates the block 

system. In the figure, the block signals in the boundaries of the block sections are 
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visible. The warning distance here is either the entire previous block or the distance 

between the distant signal and the block signal.  

 

Figure 2.8 Illustration of a block system [13] 

Up to here, we have seen that there should be a minimum distance between the trains. 

This is quite relevant for scheduling activities. When a train leaves a station / siding 

(i.e., enters the associated mainline track section), any train following it can be 

scheduled to enter the same mainline track section only after the preceding train is at 

least a minimum safety distance apart. However, incorporating this safety distance as a 

variable or a parameter would make the model extremely complicated. For simplicity, it 

is generally assumed that this distance constraint can be converted to a time constraint. 

So, when one train follows another one in the same direction, there should be at least a 

predetermined amount of time between those two trains. This amount of time is called 

minimum headway. Minimum headway is similar to sequence dependent setup time. An 

example of a minimum headway constraint that is expressed verbally is as follows: "If 

eastbound (westbound) train e (w) will enter the mainline section s immediately after 

eastbound (westbound) train f (x), it should enter the section at least hd minutes later 

than this preceding train does." From now on, the word “minimum” will not be used. 

Only headway will be used and this will indeed refer to minimum headway.  

These minimum headway constraints are in action not only when entering the mainline 

track sections. They are in action all the way along the mainline track sections. For 

simplicity, it is assumed that this fact can be simulated using two different headway 

constraints, depart-depart headway and arrive-arrive headway. The former is the 

headway constraint in the entrance of the section, and the latter is the one in the exit of 

the section. The verbal expression that was given in the previous paragraph was for 
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depart-depart headway. Arrive-arrive headway version is as follows: "If eastbound 

(westbound) train e (w) will leave the mainline section s immediately after eastbound 

(westbound) train f (x), it should leave the section at least ha minutes later than this 

preceding train does." Now, we will illustrate some headway conflicts on train graphs. 

In Figure 2.9, a depart-depart headway conflict is shown. Train 1 and Train 3 are trying 

to depart from Station 1 (and thus enter the related mainline track section) at the same 

time. This is an infeasible schedule. At least the depart-depart headway of time should 

pass between the entrance of them.  

 

Figure 2.9 A depart-depart headway conflict between Train 1 and Train 3 at Station 1 

In Figure 2.10, this conflict is resolved. Departure of Train 3 from Station 1 is delayed 

until the minimum depart-depart headway (hd,d) amount of time passes. This schedule is 

feasible. It may or may not be optimal.  
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Figure 2.10 Depart-depart headway conflict resolved between Train 1 and Train 3 at 

Station 1 

In Figure 2.11, an arrive-arrive headway conflict is depicted. Train 1 departs station 1 

and enters the mainline track section 1 after Train 3. Depart-depart headway constraint 

is satisfied for station 1. However, Train 1 is faster than Train 3, and catches it up on the 

way. Two trains try to leave mainline track section 1 and enter Station 2 at the same 

time. This is an infeasible schedule. There is a conflict and this conflict has to be 

resolved.  

 

Figure 2.11 Arrive-arrive headway conflict between Train 1 and Train 3 at Station 2 
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There are two possible solutions to this conflict. Train 1 can be delayed to exit mainline 

track section 1 after Train 3. Figure 2.12 depicts this resolution. This resolution 

considers only the conflict that was in mention, not other conflicts.   

 

Figure 2.12 Resolution of the arrive-arrive headway conflict between Train 1 and Train 

3 at Station 2 by further delaying Train 1 at Station 1 

The other solution is, reversing the order of departure from station 1. In other words, 

allowing Train 1 to overtake Train 3 at station 1. Figure 2.13 depicts this resolution. 

Note that, it can be generally (except the case of double or more parallel bidirectional 

tracks) assumed that a train can overtake another train only at stations-sidings (just like 

order reversing cannot be made within the machines, only in intermediate storage 

areas). The train that will be overtaken has to stop and wait at the station until the 

overtaking train passes and depart-depart headway amount of time passes after the 

overtaking train had passed.  
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Figure 2.13 Conflict resolution by allowing Train 1 to overtake Train 3 at station 1 

Another type of conflict that can arise between two trains in the same direction is the 

overtaking conflict. Figure 2.14 shows an example. Here, arrive-arrive and depart-

depart headway constraints are satisfied at Stations 1-2 and 3. However, Train 1 is faster 

than Train 3. As shown in the figure, Train 1 tries to overtake Train 3 within the 

mainline track section 2. Both trains use the same mainline track, overtaking is not 

possible. Overtaking can only be done at the stations. This schedule is not feasible.  

 

 

Figure 2.14 An overtaking conflict between Train 1 and Train 3 at mainline track 

section 2 
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There are two possible solutions to this overtaking conflict. Train 1 may be allowed to 

overtake Train 3 at Station 2. This is depicted in Figure 2.15. 

 

Figure 2.15Overtaking Conflict Resolution by allowing Train 1 to overtake Train 3 

Alternatively, Train 1 can be forced to follow Train 3 until Station 3, with taking the 

headway constraints into account. This solution is depicted in Figure 2.16. It can be 

observed that, this solution creates another overtaking conflict between the same trains 

ahead in time.  

 

Figure 2.16Overtaking Conflict Resolution by delaying Train 1 at Station 2 so that it 

follows Train 3 with proper headway 
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2.3.1.2 Conflicts Between Trains in Opposite Directions on Bidirectional Mainline 

Tracks 

There are mainly two types of conflicts: Meeting conflicts and arrive-depart headway 

conflicts.  

Meeting Conflicts: Two trains moving in opposite directions on bidirectional tracks 

cannot cross each other within the mainline track sections. This crossing can only occur 

within stations and sidings. Figure 2.17 depicts a violation of this rule. We assume that 

the given train-graph belongs to a single track railway.  

 

 

Figure 2.17Meeting conflict between Train 1 and Train 2 in the mainline track section 

between Stations 2 and 3 

As seen in the figure, two trains try to cross each other on the mainline track section. 

This is an infeasible schedule. The problem is analogous to a job-shop scheduling 

problem with a single production line. The machine cannot process more than one job at 

a time. So, one of the jobs should be given the priority and the other job should wait in 

the intermediate storage area until the first job finishes. In train scheduling, one of the 

trains should be given the priority and the other train has to wait in the station until the 

train with the priority arrives. Figure 2.18 shows the resolution with Train 2 taking the 

priority. Figure 2.19 shows the opposite, Train 2 is forced to stop and wait.  

Now, a difference between train scheduling and classical job- shop scheduling shows 

up. We defined mainline track sections as machines. In job- shop scheduling, one 

machine can process one job at a time. However, more than one train can enter the 
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mainline track sections, provided that they are bound for the same direction and they 

satisfy all the headway constraints. Nevertheless, two trains traveling in opposite 

directions cannot be present on the same mainline track section in overlapping time 

intervals, since there is no possibility for them to cross each other. They can cross only 

at stations/sidings.  

 

Figure 2.18Train 2 takes the priority. 

 

Figure 2.19 Train 1 takes the priority. 

Arrive-depart Headway Constraints: In Figures 2.18 and 2.19, it can be observed that 

waiting trains do not depart just as the arriving trains arrive. This is logical. It takes 

some time to arrange the mainline track section for a change of traffic direction (like 

throwing and locking the switches, clearing the signals, etc.). This imposes an arrive-
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depart headway constraint. Figure 2.20 shows the infeasible solution to the last conflict. 

The solution is the same as the one in Figure 2.18, Train 1 takes the priority. However, 

arrive-depart headway constraint is violated.  

 

Figure 2.20  Violation of arrive-depart headway constraint between Train 1 and Train 2 

at Station 3. 

2.4 Literature Review (Cont’d) 

Train scheduling has been increasingly popular among researchers during the last 

decade. This is partly due to the increasing train traffic and inability to make 

infrastructure investments to meet this demand. This inability is due to several reasons 

such as lack of finance, unavailability of land, opposition from environmentalist groups 

and intense lobbying activities of the shareholders of road transportation. Since it is not 

very possible to build new railway lines or increase the physical capacities of existing 

lines, railway industry now thinks of clever ways to exploit the existing infrastructure in 

a best efficient way. Making dispatching decisions in a better way is one of the possible 

methods to achieve this, thus, researchers show great interest to the subject. It has been 

drawing the attention of not only railway engineers, civil engineers, transportation 

engineers, etc., but also industrial engineers, mathematicians, computer engineers, 

computers scientists, etc. One can find dozens of research articles and theses related to 

the subject.  

In our study, we focus on a hypothetical single track line. Although hypothetical, 

network structure is indeed derived from the TCDD line between Çukurhisar and 
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Arifiye. However, train types are hypothetical and minimum running times between 

adjacent stations are not derived from TCDD data, they are generated randomly. To our 

knowledge, our definition for variables and traffic constraints is unique.  

Jovanovic [14] provided an enumeration scheme, similar to our enumeration scheme for 

station / siding capacities. However, his work included stations with one secondary line. 

Our work includes stations with two secondary lines as well.  

The literature about train scheduling problem can be reviewed regarding a variety of 

classifications: The line topology for which the study is designed (single track line, 

double track line with unidirectional tracks, double track line with bidirectional tracks, 

multiple track line with unidirectional tracks, multiple track line with bidirectional 

tracks), simplifying assumptions for speeding up the solution, the modeling and solution 

approach (exact, metaheuristic, problem-specific heuristic, hybrid), the objective 

function used and other clever methods for speeding up the solution. Also, different 

authors study different aspects of the problem. Some focus on platform assignment in 

stations. Some study on urban railway networks, where no meeting or overtaking 

operations are really taking place, the main focus is modeling the consequences of 

disruptions, where vehicle scheduling is the main problem. Also, passenger connections 

at transfer stations are considered. Some papers concentrate solely on connections, the 

main decision to be made is whether a connecting train will wait for the late running 

train or not. Regarding the line topology and problem type, a simplifying decision is 

made now: Since this study is about the train scheduling problem on a single track line, 

only the studies for a single track line will be included here. These are generally either 

specifically designed for a single track line or for a multiple track line with bidirectional 

tracks. The latter will be included in the review because such algorithms can easily be 

adopted for a single track line by defining the number of parallel bidirectional tracks as 

one.  

The objective function used is a very important consideration evaluating the success of 

the algorithm. The problem considered in our study can be classified as “A special- 

structured job- shop scheduling problem with limited intermediate storage, ready times, 

and sequence-dependent setup times, ‘Total Weighted Tardiness’ being the objective 

function.” Most of the job-shop scheduling problems studied in the literature focus on 

Cmax, the maximum completion time, which makes the problem easier[15]. A similar 

situation could be observed in the train scheduling case, too. There are also some 
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problems in the train scheduling literature that focus on minimizing the maximum delay 

of the trains. Without being able to provide a formal proof, our observation is that, if the 

maximum (weighted) delay is used as the objective function, then, the solver finds the 

optimal solution very quickly, compared to the case with total (weighted) delay as the 

objective function (This observed difference led us the apply a speed- up routine and 

adopt a multiobjective approach to increase the quality of solutions. Please see Chapter 

4). The problem with this objective function is that it will not always provide good 

quality solutions. Table 2.2 provides a good example for this problem. In this problem, 

delays for all the trains are assumed to have equal weights, so that the reader can 

directly compare the delay values.  

Table 2.2 An example of a bad outcome of a solution with maximum delay chosen as 

the objective function 

  
Delays in Solution 1 

(minutes) 

Delays in Solution 2 

(minutes) 

Train 1 9 10 

Train 2 9 1 

Train 3 9 0 

Train 4 9 0 

Train 5 9 1 

Train 6 9 0 

 

In the table, two different (supposed to be) feasible solutions are outlined. Any sensible 

planner would choose Solution 2 over Solution 1.  However, when the objective 

function is Maximum Delay, the algorithm would choose Solution 1 over Solution 2. 

Such an objective function may pay off for the railway companies who pay 

compensation to their passengers if the train gets a large delay. For example, German 

Railways (Deutsche Bahn) reimburses 25% of the ticket price if a train is more than one 

hour late. However, if the compensation limit is not as large (for example, five minutes 

like the Spanish High Speed Rail case), an objective like “number of delayed trains” 

would be better.  
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Yalçınkaya and Bayhan [16] studied a problem very similar to ours, a single track line. 

They considered nearly all operational constraints like acceleration, braking, siding 

capacities and deadlock prevention. However, their study is mainly focused on 

generating a feasible solution in a short time. It does not contain any routines to 

generate a good or optimal solution with respect to a defined objective. To our 

observation, generating a feasible solution quickly is not a very big deal, because, in our 

trial runs, the solver can do this in a reasonable time. Indeed, for most of the cases, it 

finds either the optimal solution or a near- optimal solution in a relatively short amount 

of time. What takes time is, to prove that this solution is optimal or near optimal.  

Törnquist and Persson [17], Acuna-Agost et al. [18], and Krasemann [19] based their 

algorithms on the same MIP formulation. These studies are for multiple bidirectional 

tracks. They divide the railway line into longitudinal segments and at each segment; 

number of parallel tracks is among the input parameters. Thus, which train will use 

which track is to be determined by the values of binary variables. Theoretically, by 

setting the number of parallel tracks in the relevant segments to one, it can directly be 

used for single track lines. These models, along with some other properties that won’t 

be detailed here, generate a huge number of binary variables and it is not possible to 

solve them within a reasonable time. Hence, each team developed their own heuristic to 

solve the problem. Törnquist and Persson [17]classify the solution approaches into track 

swap, order swap and both combined. They then put a heuristically determined upper 

bound on the number of swaps with respect to the original timetable and pathing. This is 

indeed a very clever and applicable approach for problem instances within which the 

disruption is minor. However, in case of major disruptions where a number of trains are 

running well ahead of time, the trade-off between solution quality and computation time 

would get sharper. Acuna-Agost et al. [18] develop three approaches to obtain 

suboptimal solutions: Right-shift rescheduling, MIP based local search method and 

iterative MIP based local search method. MIP based local search method is based on the 

method developed by Törnquist and Persson [17], but they iteratively upgrade the upper 

bound on swaps. Note that, both approaches require an initial timetable with all choices 

of lines and platforms, and they are not applicable to single track railways operating 

without a timetable, like the US freight railways case. Our solution approach can be 

easily adopted to railways operated without a timetable. Törnquist Krasemann  [19] 

utilizes a greedy algorithm to solve the problem.  
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Şahin [7], studying on the same problem (single track),  totally avoids MIP formulations 

and goes with the heuristics. He proposed two algorithms. Both are similar to 

dispatcher’s conflict resolution style. Dispatchers typically solve the conflicts as they 

occur, starting from the first conflict. The computer algorithm behaves similarly: 

Generates trains’ free paths, finds the first conflict in the time axis and solves it. Each 

conflict resolution needs a decision to be solved. He constructed two algorithms for this 

decision making. The first one is the dispatcher’s solution and imitates the Turkish 

Dispatcher’s decision behavior. This solution is totally myopic, considers only the 

current conflict and does not take the future consequences of the current decision into 

account. The other heuristic method contains a look ahead routine, to guess each 

alternative decision’s consequences. It is generally focused on minimizing the total 

delay without any weights imposed on them. This paper assumes that all the 

intermediate stations have infinite capacity.  

Lee and Chen [20] consider “timetabling” and “pathing” together. The study is 

primarily aimed at double track lines, but, to our observation, it can easily be extended 

into single track line. This paper works as a combination of a probabilistic improvement 

heuristic with mathematical programming. It heuristically determines the order of the 

trains in the mainline track sections. This heuristic randomly picks up some mainline 

track sections and swaps the order of the trains over them according to some criteria. 

Then, it determines the assignment of trains to the tracks / platforms in the stations via 

binary integer programming. Making use of the information generated in the first two 

phases, it solves for the order of the trains that are assigned to the same track in the 

stations and finally the timetable itself. It is guaranteed to find a feasible solution in the 

initialization phase, since it allows trains to transverse the network one at a time. 

However, this solution will typically be a very bad one and we are suspicious that it will 

find a better feasible solution within the short time allowed for a rescheduling problem. 

Their objective is to minimize the associated cost with delays.  

Higgins et al.[21] also study on a single track network. They relax the number of 

secondary lines in the formulation of the model and use the classical job- shop based 

MIP models. Then, they comparatively employ different heuristic approaches (local 

search, tabu search, genetic algorithm and hybrid algorithms).  

Zhou and  Zong  [22] worked specifically on single track lines. They produced an MIP 

model of the train timetabling problem. They approach the station / siding capacity 
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issue in a different way than ours. They discretize time into small enough intervals and 

they take all different junctions or segments of the line explicitly. They have binary 

variables which mean “This variable takes value 1 if train i occupies segment j at time 

interval k.” Usual precedence variables also remain in place.  

Şahin [23] considered multiple aspects of a railroad planning problem, such as 

maintenance planning, scheduling from scratch, inserting additional trains into an 

existing schedule, planning new sidings, etc. He also went with discretization of time to 

consider the capacities of the stations / sidings. He modeled the railway network as a 

time- space network, which then translates into an integer programming formulation. He 

then combined a number of heuristic supports to boost the performance of the integer 

programming formulation.  

Dessouky et al. [3] developed an algorithm that is applicable but not limited to single 

track lines. First, they obtain an explicit integer programming formulation of the train 

dispatching problem. Then, they employ a branch-and-bound procedure to solve the 

system. The MIP formulation does not explicitly involve any station / siding capacity. 

However, they employ a sequence fixing approach within the B&B procedure and they 

check the “safety” of the sequences and the resulting schedule against “deadlocks”. Of 

course, deadlock avoidance is not the only infeasibility that can occur due to exceeding 

the station / siding capacity.    

Gafarov et al. [24] put on a different approach to train scheduling problem. They 

formulated and solved a train scheduling problem on a line with only two stations. In 

this case, there is only one mainline track section. They divided the track section into 

segments (blocks in railway operation) and used the entrance and exit times of trains 

to/from the blocks. This problem has a number of different objective functions. The 

authors describe a formal way of converting the train scheduling problem to a single-

machine scheduling problem and then apply polynomial reductions.  

Dündar and Şahin [25] developed a genetic algorithm to solve train rescheduling 

problem on a single track railway line. They also developed an artificial neural network 

model that imitates the decision procedures of train dispatchers, to benchmark the 

solutions obtained by the genetic algorithm. The genetic algorithm generates good 

feasible solutions in a short time. However, in their study, station / siding capacity 

constraints are neglected.  



48 

 

Espinoza-Aranda and Garcia- Rodenas [26] use the similar formulation of the train 

scheduling problem to that D’Ariano et al. [8] used, which was mainly for a double 

track line. However, they also emphasized the importance of using a proper objective 

function for delays. They also took into account the delays in intermediate stations. 

Their claim is such that their modeling approach can be used for any network 

configuration. This implies that it can be applied for single track lines. However, 

explicit consideration of station / siding capacities for limiting the number of 

simultaneous passing overtaking operations were not included. They employed an 

“Avoid Most Delayed Alternative Arc (AMDAA)” heuristic to obtain good results for 

the total weighted delay problem.  

Albrecht et al. [27]handle the single track railway rescheduling problem with 

maintenance disruptions. In their study, they can close some segments of the railway 

line for maintenance works by introducing pseudo trains.  Their objective function is 

minimizing the sum of train delays and maintenance delays. The heuristic they use for 

solving the problem is the “Problem Space Search” metaheuristic. They generated 

feasible solutions by means of some constructive processes and each movement of the 

constructive process was checked against deadlocks. However, apart from deadlocks, an 

explicit consideration of station/siding capacity is not present in the model.  

Narayanaswami and Rangaraj [28] used a multi-agent system architecture for 

rescheduling on a single track railway line. Along with many publications, their 

algorithm includes a safety mechanism against deadlock situation, but not an explicit 

consideration of station / siding capacities. This model requires an initial feasible 

schedule (i.e. timetable) as an input and therefore not suited for railway lines operated 

without any timetable. Their objective function is to minimize the sum of all train 

durations. Their system architecture detects the conflicts and produces good solutions 

using some kind of auctioning and bidding operations carried out among the agents.  

Li et al. [29] developed a multi-objective optimization model for train scheduling on a 

railway line. Their objectives are minimizing the total passenger times and carbon 

emission. Total passenger time is equivalent to assigning weights to the train delays in 

proportion to the number of passengers on the trains. The model is not particularly 

intended for single track railway lines, but, since it allows the user to define a number of 

different segments between adjacent stations, by setting this number to one, it can be 

adopted for single track lines. They employed a fuzzy mathematical modeling scheme 
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for producing a good solution. No emphasis was put on any way to impose station / 

siding capacity constraints and deadlock avoidance.  

Xu et al.[30] developed a scheduling model, mainly intended for double track lines. 

However, with some adjustments, it can be adopted for a single track line, based on a 

previous work by Mu and Dessouky. It involves a “switchable” procedure, where a fast 

train is allowed to traverse into the line intended for the opposite direction. They then 

developed a rule based solution heuristic, constructed over discrete event simulation 

architecture.  

Narayanaswami and Rangaraj [31] developed an MILP model for rescheduling the 

traffic on a single track line, after one of the mainline track sections is closed to traffic 

for a duration. This model is intended to operate in stations which are in close proximity 

of the disruption location and applicable for small problem instances. Moreover, an 

explicit formulation for station / siding capacity constraints and/or deadlock avoidance 

was not provided.  

Louwerse and Huisman  [32] developed a model formulation for recovery from partial 

or complete blockades of railway lines. This formulation takes vehicle scheduling into 

account and provides cancelling of some trains as decision options. The model can be 

adopted to be used for single track railways, but it does not provide explicit information 

about station / siding capacity constraints and / or deadlock avoidance.  

Fabris et al. [33] developed a tailor-made heuristic for the train timetabling problem 

over a complicated network. It can be adopted for timetabling on a single track railway 

line by defining the network accordingly and properly. Since it also includes platform 

assignment within the stations, it can also be adopted for modeling the station / siding 

capacities and avoiding deadlocks. However, it is a plain heuristic with no provision of 

proving near-optimality.  

Furini [34] provided a fast heuristic for train timetabling on a railway network, which 

can be adopted the single track operation, since all arcs into and out from all nodes are 

defined separately. This study is mainly intended for timetabling, where different rail 

operators set out their desired timetable and the algorithm then tries to reduce the total 

deviation from the ideal timetables. Note that, this algorithm needs a predetermined 

order of running trains.  
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Xu etal. [35] developed a combined algorithm for a single track railway line, taking 

station / siding capacities and deadlocks into account. This algorithm is the combination 

of a tailormade heuristic and the genetic algorithm. Genetic algorithm is used to provide 

an effective velocity profile for the trains to keep up with the schedule. The tailormade 

heuristic, which is a rule based one, is to create a generic timetable for the trains.  

Cacchiani et al. [36] initially work on a classical train scheduling model for a single  

track railway line. They forced the running times of trains between the adjacent stations 

to be constant, claiming that this creates a stronger LP relaxation. However, they are not 

taking station / siding capacities into account and if they are taken into account, solution 

quality, even the feasibility, may be threatened. They developed column generation 

algorithms to solve the LP relaxation of the model quicker than that can be done on a 

traditional solver.   

Shafia et al. [37] worked on a comprehensive version of a timetabling problem on a 

single track railway line. It involves station capacities as well as acceleration and 

deceleration losses. They also paid attention to periodicity and robustness aspects of 

railway timetabling. Since the resulting problem is too different to tackle as an MILP, 

they approached the problem as a Periodic Event Scheduling Problem and used a 

simulated annealing approach to solve the instances.  

Meng and Zhou [38] developed a stochastic programming model to produce efficient 

dispatch plan under different scenarios for capacity breakdowns. They employed a two-

stage stochastic programming model, which is then solved by a branch-and-bound 

procedure. Precautions against exceeding the station / siding capacity and deadlock 

were not explicitly mentioned.  

Burdett and Kozan [39] attacked the problem using a hybrid job- shop scheduling 

formulation. They pointed out the differences between the classical job- shop 

scheduling and  train scheduling, and their approach is to eliminate problems created by 

these differences. They also take into account the station and siding capacity constraints 

by treating them as capacitated buffers in production scheduling. They then employ a 

constructive algorithm to create feasible train schedules in a short time. They state that, 

their algorithm can constitute a base for a metaheuristic or be used as a standalone 

approach. It is important to note that, their algorithm is mainly intended for makespan 

type of objective function.  



51 

 

Kuo et al. [40]proposed a freight train timetabling model with elastic demand, choosing 

total operational cost as the objective function. Their model is at tactical level, but they 

are also taking train movement feasibility into account. Modeling of the effect of station 

/ siding capacities and/or deadlock avoidance were not explicitly mentioned. They used 

construction and improvement heuristics to create efficient train slots, and then a mixed- 

integer programming approach to select slots to operate, which is then solved by a 

column generation algorithm.  

Corman et al. [41]proposed a model based on the alternative graph formulation and 

branch-and-bound algorithm for railway scheduling of D’Ariano [8]. This study is a 

further generalization of the former study by D’Ariano, over multi class train traffic, 

where delays of different trains are of different importance.   

Liu and Kozan [42] focus on a coal carrying railway network, which comprises of 

single and double track sections. They treat double track sections as parallel-machine 

sections as in a job- shop, so they are implicitly considering station / siding capacity 

constraints and also deadlock constraints. They solve the problem using a constructive 

algorithm in conjunction with a best- insertion heuristic and tabu search.  

Arangu et al. [43]developed a general-purpose arc-consistency algorithm for constraint 

satisfaction problems. To test their algorithm, rather than using common benchmark 

problems, they used a train scheduling model. The algorithm can be used for any type of 

network topology.  

Luethi et al. [44] developed a simulation based rescheduling strategy for Swiss 

Railways. They did so, because Swiss Railways believe that, an effective rescheduling 

strategy helps to reduce the buffer times in the timetabling process. This means an 

increase in capacity.  

Caimi et al. [45] proposed a network decomposition approach for a railway scheduling 

problem. They decompose the network into two groups: station areas and mainline track 

sections. By some adjustments, this algorithm can be used for the version of the 

problem in this thesis.   Then, they used different heuristics and formulations (including 

an MILP formulation) to solve the problem.  

Mu and Dessouky [46] proposed an optimization model for the U.S freight network. 

Since this model takes into account all the possible tracks as nodes, theoretically, it can 

be used to model the station and siding capacities. However, apart from a verbal 
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statement like “no deadlock should occur”, they did not mention about such a 

procedure. They generated two different approaches: In the first the path each train will 

take is fixed and in the second it is relaxed. This clearly demonstrates a tradeoff 

between solution quality and solution speed. For the flexible path model, they 

developed several heuristics to overcome the intractability of the problem.  

Cordone and Redaelli [47] proposed a different approach for railway timetabling 

profession. They claimed that there is a reciprocal type relation between the quality of 

the timetable and the actual passenger demand exists and this should be incorporated 

into the model. This makes the model nonlinear and they solve the model with their 

own branch-and-bound algorithm.  

Cacchiani et al. [48] studied a different partial rescheduling problem. In their problem, 

they are not scheduling the trains from scratch. Instead, they are considering the 

problem of adding new freight trains to a line where all of the passenger trains and 

possibly some freight trains have already been scheduled and it is forbidden to alter the 

passenger trains’ timetables. Their model and algorithm is intended for any topology of 

railway line. Their objective function is to minimize the deviation of the additional 

train(s) from their respective ideal timetable(s). They employed a Lagrangian heuristic 

to solve the problem.  

Burdett and Kozan [49] also study on the problem of adding new trains to an existing 

timetable. They compared three approaches to solve this problem: the first one is fixing 

all previously timetabled trains and inserting the new ones by means of constructive 

algorithms, with possible improvement by metaheuristics. The second one is fixing 

some previously timetabled trains and inserting the new ones by means of constructive 

algorithms, with possible improvement by metaheuristics. The third is employing a 

metaheuristics solution with none of the trains fixed. They used makespan as the 

objective function. They used their previously developed hybrid job-shop scheduling 

approach and simulated annealing for modeling and solution.  

Ghoseiri and Morshedsolouk [50] applied ant colony optimization for scheduling trains 

on a single track railway line. The model they worked on was classical train scheduling 

model and no special precaution against exceeding station/siding capacities and/or 

deadlocks was mentioned.  
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Parkes and Ungar [51]studied on a mixed single and double track line with different 

territories of dispatching. Their model is based on the classical train scheduling model, 

where there is not explicit enforcement of station / siding capacity constraints and/or 

deadlock avoidance. They treat trains as agents that are aimed at maximizing their own 

profit and employ an auction based solution procedure to schedule trains across multiple 

dispatching territories.  

Oliveira and Smith [52]also used constraint programming for modeling the feasible 

solutions for single track railway traffic. They then developed their own three- stage 

optimization algorithm. The three stages are simple rule-based dispatching, hill 

climbing and branch-and-bound. No special precaution against exceeding station/siding 

capacities and/or deadlocks was mentioned. Minimizing the total delay was the 

objective function.  

Medanic and Dorfman [53],  along with a few other authors, tackled the scheduling 

problem and energy minimization problem together. Since the resultant problem is too 

complicated to solve, they decomposed the problem into two subproblems: scheduling 

and energy optimization. Scheduling problem is solved by a greedy algorithm called 

“Travel Advance Strategy” and then velocity optimization comes. They assumed that all 

trains will run at constant velocity.  

Higgins et al. [54]started their way with a classical train scheduling model and then they 

coupled it with energy consumption minimization. In this first model, locations of 

sidings were input parameters. They solved the problem with their own branch-and-

bound algorithm. In the second stage, they used this model as a basis for determining 

the locations of the sidings. Then, they employed a decomposition algorithm, where the 

two subproblems were siding locations and detailed schedules. In the second problem, 

they also took siding capacity into account, although without giving details explicitly.  

Carey [55] treated the scheduling and pathing problem as a combined problem and 

developed a model that can also be applied for a single track railway line. Since his 

work included pathing, it also worked fine for station / siding capacity constraints. To 

overcome the intractability of such a complex model, he employed a variety of 

strategies, including scheduling the trains one at a time and/or fixing the paths / 

schedules of already scheduled trains, speed fleeting or direction fleeting of the trains, 

etc.  
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Cai et al.[56] proposed greedy algorithms for train scheduling on a single track railway 

line. They relaxed the station / siding capacity, claiming that feasible solutions may be 

arrived by postsolution repair mechanisms. The greedy heuristics are simulation-based, 

focused on finding locally optimal solutions.  

It is not quite easy to compare the studies in the subject. This is due to two facts: The 

first one is, since train scheduling problem is a strongly NP-Complete one, it is indeed a 

very hard one to solve. Many studies then relax the problem with some (sometimes very 

unrealistic) assumptions. Finding a basis for comparing studies, which have different 

assumptions, is absolutely not an easy task. Because, in principle, any two studies are 

solving two different problems. Also, infrastructure type is a very important factor. The 

type of infrastructure affects the primary structure of the problem. Generally, authors 

are studying on specific networks present in their country and their algorithms are 

developed respecting the special structure of the network that may be irrelevant for 

other networks. 

There are also some additional barriers for benchmarking the solutions obtained. To 

compare to algorithms, it is necessary to compare the difficulties of the instances 

solved. Number of trains and number of stations play an important role in the difficulty 

of an instance, but they are not sufficient. Also, the order and the frequency of the trains 

running in the same directions are very powerful indicators of the difficulty of an 

instance. We clearly show this effect in Chapter 5.2.1. Unfortunately, very few (if any) 

authors share this data explicitly on their numerical experiments part.  

With all the factors above combined, it is not surprising to see that, direct benchmarking 

is not a strong tradition in train scheduling literature. Very few of the authors directly 

benchmark their studies with others. When they do benchmark, this is not still a very 

exhaustive one. They select one or two studies among the previously published one and 

benchmark their studies. However, this is not very meaningful, given the large number 

of studies in the literature. Until some global pool of benchmark problems (like the ones 

for one machine scheduling problems) is created, direct benchmarking will be a deficit 

in the train scheduling literature.  

Since direct benchmarking is not possible, the literature review is provided with an 

indirect benchmarking point of view. When explaining the published work, as the 

reader can observe, an implicit conversion is provided (like what we do and they don’t, 
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what they do and we don’t). In the light of these indirect comparisons, we reckon that, 

this study is unique enough to be classified as a solution methodology in the literature.  
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CHAPTER 3 

THE MATHEMATICAL MODEL 

Here, an MIP (Mixed Integer Programming) model, which considers station / siding 

capacities (i.e. number of parallel tracks within the stations / sidings), will be presented. 

The reason for doing so was an attempt to obtain a more realistic model. Since train 

scheduling is a strongly NP-complete problem, it is most frequently relaxed with some 

assumptions. Some of these assumptions are realistic, but some others are not. 

Neglecting station / siding capacities (i.e. assuming that intermediate stations / sidings 

can hold an infinite number of trains simultaneously) is a very unrealistic one. So, even 

at the cost of increasing complexity and greater sub optimality, we believe that it should 

be incorporated.  

Before presenting the actual model, a generalization of station / siding capacity 

constraints will be given.  

Suppose that a station / siding has n parallel tracks. Clearly, this capacity is exceeded 

when n+1 trains try to be present within the station / siding in overlapping periods. All 

the cases where the number of eastbound and westbound trains add up to n+1 should be 

enumerated for a complete modeling of the station / siding capacities. This will add an 

absolutely intractable amount of computational burden into the process; however, as it 

will be explained in Chapter 4, there is a way of handling them, with cleverly designed 

algorithms.  

In general, station / siding capacity (total of n parallel tracks) can be exceeded when i 

westbound trains (i = 0,….,n+1) and n +1- i eastbound trains try to occupy the station 

within overlapping time periods. We will deal explicitly with two cases: (i = 0) and (i = 

1) and also the general case that arises when n = 2. Afterwards, we will implicitly deal 
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with the general case when n > 2 and i > 1. Note that, the problem is symmetric. The 

case with i westbound trains and n +1- i eastbound trains is the same as the case with i 

eastbound trains and n +1- i westbound trains, the only difference is that the number of 

trains in two directions are swapped, creating a case which is symmetric with the 

former. So, here, we include the cases where i ≤ (n + 1) / 2 into the explanation.  That is, 

there are more eastbound trains than westbound trains in consideration. Of course, the 

symmetric cases are also included when the model is coded into the solver.  

Case 1: i = 0 for any n.  

This means, station / siding capacity can be exceeded by n + 1 eastbound trains. The 

constraint that first comes to mind can be verbally expressed as follows: “Any 

eastbound train cannot overtake n trains at the same station, which has n parallel 

tracks.” This is clearly true, because, if it tries to do so, n tracks will be occupied with n 

trains. The last eastbound train will need an (n+1)
st
 track to overtake all of them, which 

does not exist. However, although true, this is not a sufficient approach. In Table 3.1, an 

example is given. Suppose that Table 3.1 shows the arrival times (Aj) and departure 

times (Dj) of four different trains at (from) station 5, which has 3 parallel tracks (n = 3).  

In this case, these trains are bound for the same direction.  

Table 3.1 Sample arrival and departure times with 

respect to time 0 

Train j Aj(minutes) Dj (minutes) 

Train 1 120 128 

Train 3 122 131 

Train 5 124 134 

Train 7 126 137 

 

It is clearly seen from table that, although there is no overtaking between any two of 

these four trains, between t = 126 and t = 128, all of the four trains are within the 

station. This is an infeasible movement and it must not be given as an output by the 

model.   
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Feasibility can be guaranteed by the disjunctive constraint, whose verbal expression is 

as follows: “If any n + 1 trains in the same direction will use the same station with n 

parallel tracks, then, the last train into the station may enter the station only after the 

departure of first train to leave the station.” Such a constraint may yield the arrival and 

departure times shown in Table 3.2. This is feasible. The values in Table 3.2 are NOT 

related with the values in Table 3.1, they are just sample values.  

Table 3.2 Sample (feasible) arrival and departure times 

with respect to time 0 

Train j Aj(minutes) Dj (minutes) 

Train 1 120 128 

Train 3 122 134 

Train 5 124 137 

Train 7 130 131 

Case 2: i = n for any n.  

This is the case that n eastbound trains and one westbound train (or vice versa) demand 

to pass through the same station, which has n parallel tracks. However, all of those n + 1 

trains cannot be present within the station simultaneously. Furthermore, if such a 

meeting would occur, one of those n trains have to be the last one to enter the station. 

Figure 3.1 illustrates this situation for n = 2. Two trains already arrived at the station 

and occupied all of the available tracks. Train 2 cannot enter and any of the odd-

numbered trains cannot exit. This is a kind of deadlock situation.  In this situation, the 

only way of getting the traffic flow again is to reverse Train 1 or Train 3, send it out of 

the station, take Train 2 into the vacated line of the station, sending the eastbound train 

that was not reversed, and taking the eastbound train that war reversed into the station. 

This is a big time loss and such case should not be allowed to happen.  

Figure 3.1Train 2 cannot enter the station. 
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 Feasibility can be guaranteed by the disjunctive constraint, whose verbal expression is 

as follows: “If any n eastbound (westbound) trains and one westbound (eastbound) train 

are to meet at station s, then, the last eastbound (westbound) train into station can enter 

only after the departure of the first eastbound (westbound) train from the station.” 

Figure 3.2 illustrates this situation for n = 2.  In this figure, Train 3 is the last eastbound 

train moving into the station. Train 1 itself has to wait for departure until Train 2 

arrives, thanks to the meeting conflict resolution constraints (which will be explained 

shortly). So, after Train 2 arrives, all of the tracks within the stations will be occupied. 

The disjunctive constraint will then keep Train 3 from entering the station until Train 1 

clears the station, so there will be one empty track to accommodate Train 3.   

 

Figure 3.2Feasibility will be guaranteedby forcing Train 3 to wait without entering the 

station until Train 1 leaves the station. 

Now, there will come a proposition, which will define the general case for any n and i = 

1.  

Proposition 1: All station / siding capacity and deadlock conflicts for this case will be 

resolved by one standard and two disjunctive constraint groups. Moreover, these 

constraints do not prohibit any valuable solutions. Below, verbal expressions for these 

constraints are provided.  

1) Any train cannot overtake more than n-1 trains at station s, which has n parallel 

tracks.  

2) If n eastbound trains will pass through station s and if the last train overtakes all of 

the remaining trains at station s, then, it cannot meet with any trains at station s.  

3) If n eastbound trains will pass through station s and if the last train does not overtake 

all of the remaining trains at station s (i.e. at least one of the remaining trains depart s 

before the last train into s), then, the last eastbound train into station s can enter only 

after the departure of the first eastbound train from station s.   

Now, we will explain the proposition, since it will be too simple to call it a proof. The 

first part is very straightforward. Any train cannot overtake n trains at the same station, 
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because n trains to be overtaken will occupy all of the n tracks in the station and the 

overtaking train will not find any track to pass through. The second part can easily be 

understood by examining Figure 3.1. Suppose that, in the figure, Train 1 is trying to 

overtake Train 3 at the station. At the same time, it tries to meet with Train 2. However, 

it cannot depart before Train 2’s arrival into the station and if it is within the station then 

Train 2 has nowhere to arrive. The same situation will arise if Train 2 enters the station 

before Train 3, which can be observed in Figure 3.2. In Figure 3.2, Train 1 cannot 

overtake Train 3, because station does not have an additional track to facilitate this.  

Part 3 is a little trickier. The situation is illustrated in Figure 3.3, again for n = 2. In this 

figure, Train 1 and Train 3 will pass through the same station. If Train 1 will not 

overtake Train 3, then, if it will meet with another train, it should enter the station after 

Train 3 departs. If it will not meet with any train, it may actually be within the station 

simultaneously with Train 3. However, preventing it from doing so will not give any 

harm to the objective function. Since it will not overtake Train 3, it has to wait until 

departure time of Train 3 + depart-depart headway to leave the station. Typically, 

depart-depart headway will not be smaller than arrive-arrive headway, so postponing 

the arrival of Train 1will not cause any additional delay to Train 1.  

 

Figure 3.3Illustration of part 3 of proposition 1. 

Now, we will illustrate how these rules will also prevent deadlocks. In Figure 3.4, a 

typical deadlock situation is illustrated. In this situation, Train 1will not overtake Train 

3, because, if it did, it would not be allowed to meet with Train 2 at this station (This 

follows from part 2 of proposition 1). So, following from part 3, it will have to wait 

until the departure of Train 3 from the station. Conflict resolution constraints dictate 

that, departure of Train 3 from the station requires Train 4 to be held at the adjacent 

station (i.e. previous station in the itinerary of Train 4), so, a situation like in the Figure 

3.4 will never arise.  
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Figure 3.4Illustration of deadlock prevention 

Please note that, the constraints that arise when i  = 1 (i.e. there is only one eastbound 

train in conflict) need the order of entrances of eastbound trains into the station, within 

themselves. However, these do not need the entrance orders of trains in both directions. 

That is, they do not need to know if one eastbound train and one westbound train will 

meet at any station, which one will enter the station first. These constraints only care 

that whether meeting between any particular train couple will occur or not.  

In the general case where i≥ 2,such binary variables are needed:  

1, if eastbound train i and westbound train j meet at station s AND train i 

enters the station before train j,  

s

ijc   

               0, otherwise.  

 

1, if eastbound train i and westbound train j meet at station s AND train j 

enters the station before train i,  

s

ijf   

               0, otherwise.  

These meeting variables explicitly state which train waits which one. Now, we will 

proceed with showing that, such explicit statement is not necessary if n = 2 (i.e. for a 

station that has one through mainline track and one secondary line).  It is quite 

straightforward. We already illustrated that, when i = 0, only eastbound trains are 

included and when i = 1, such an explicit statement is not necessary, because these 

constraints do not care about the precedence of westbound trains with respect to 

eastbound trains. If n = 2, then, i would be either 0 or 1. If i = 2, then it only represents 

the symmetric case where there are 2 westbound and 1 eastbound trains, whereas, if i = 

3, then it only represents the symmetric case where there are 3 westbound and no 
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eastbound trains. Thus, now, the binary variables for stations with 2 parallel tracks are 

reduced to:  

1, if eastbound train i meets with westbound train j at station s,  

s

ijc   

               0, otherwise.  

The former binary variables are still required for stations having strictly greater than 2 

parallel tracks. We will see this shortly.  

If n ≥ 3 and i ≥ 2, situation gets more complicated. Figure 3.5 and Figure 3.6 are 

illustrations of this situation for n = 3 and i = 2. 

 

Figure 3.5An illustration for n = 3 and i = 2 

Here, Train 1 is the last to arrive at the station among these four trains (not only the 

eastbound ones). The following are the valid limitations and possibilities when such an 

instance occurs:  

1) Train 1 cannot overtake Train 3. Indeed, it has to postpone its arrival into the station 

to the time after the departure of Train 3.  

2) Train 2 could have arrived later than Train 4 and in this case it may or may not 

overtake Train 4.  

3) Train 4 could have arrived later than Train 2 and in this case it may or may not 

overtake Train 2.  

In Figure 3.6, another illustration for n ≥ 3 and i ≥ 2 (i.e. there are at least 3 parallel 

tracks in the station/siding and there are at least two trains in each direction) is depicted.  
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Here, Train 2 is the last to arrive at the stations among all the four trains (not only the 

westbound ones). The following are the limitations and possibilities when such an 

instance occurs:  

1) Train 2 cannot overtake Train 4. Indeed, it has to postpone its arrival into the station 

to the time after the departure of Train 4.  

2) Train 1 could have arrived later than Train 3 and in this case it may or may not 

overtake Train 3.  

3) Train 3 could have arrived later than Train 1 and in this case it may or may not 

overtake Train 1.   

 

Figure 3.6Another illustration for n = 3 and i = 2 

As seen in the figures, both instances involve exactly the same trains and exactly the 

same station. However, who is the last to enter the station (among all eastbound and 

westbound trains) affects the limitations and possibilities. This calls for the requirement 

that, binary variables should not only tell where the meeting will occur, but also, they 

should tell which train will arrive at the station last.  

Hence, for stations which have n > 2, the following decision variables should still apply 

(now they are renamed): 

 

1, if eastbound train i and westbound train j meet at station s and train i 

enters the station before train j,  

s

ijc   

               0, otherwise.  
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1, if eastbound train i and westbound train j meet at station s and train j enters 

the station before train i,  

s

ijf   

               0, otherwise.  

 

Also, we revert to the classical train scheduling model for the trains in the same 

direction, regardless of the number of stations and sidings:  

1, if eastbound train i enters the mainline track section between stations s and s 

+ 1 before eastbound train k,  

s

ikb   

               0, otherwise.  

 

1, if westbound train j enters the mainline track section between stations s and 

s-    1 before westbound train l,  

ˆs

jlb   

               0, otherwise.  

In Figure 3.7, and Figure 3.8, related indices are depicted.  

 

 

Figure 3.7Station indices 
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Figure 3.8Station indices on a time-distance graph. 

In Table 3.3, we give the values of decision variables for the situation in Figure 3.5, 

which is replicated in Figure 3.6. In order such a position to arise, the bold values 

should be strictly true. The other ones can have the alternative value, too.   

Table 3.3 Values of the binary variables in the instance shown in Figure 3.5. 

sc 2,1  
sf 2,1  

sc 4,1  
sf 4,1  

sc 2,3  
sf 2,3  

sc 4,3  
sf 4,3  

sb 3,1  
1

3,1

sb  
1

4,2

sb  
sb 4,2  

0 1 0 1 0 1 1 0 0 0 0 1 

In Figure 3.5, there are four meetings in the station. The meeting between Train 1 and 

Train 2, The meeting between Train 1 and Train 4, The meeting between Train 3 and 

Train 2 and The meeting between Train 3 and Train 4. For the meeting between Train 1 

and Train 2, we can observe that, meeting occurs at this station and Train 2 arrived at 

the station before Train 1. So, 02,1 sc and 12,1 sf . Exactly the same applies for Train 1 

and Train 4. However, for the meeting between Train 3 and Train 2 and the meeting 
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between Train 3 and Train 4, we don’t know whether the eastbound or the westbound 

train arrived at the station before the other. So, their respective values are not written in 

bold. 04,3 sc and 14,3 sf may also be true here.  

 

Figure 3.9 Replication of Figure 3.5 

The general rule for such cases is as follows:  

“If i westbound trains and n + 1-ieastbound trains will meet each other at station s, 

which has n parallel tracks, such that 2 ≤ i ≤ n-1 and n ≥ 3, then, the last train to arrive 

at station s should postpone its arrival to the time after the departure of the first train to 

leave the station in the same direction.”   

These constraints have to be written for all combinations of i eastbound and n + 1- i 

westbound trains and for every station having n parallel tracks. Please note that, indeed 

there are two nested if’s within the statement. The less obvious one is related to “the 

first train in the same direction”, which can be deduced from the values of the following 

and overtaking variables. Then, i eastbound and n + 1 – i westbound trains and for 

every combination of first entering and first exiting trains.  

3.1 Formal Mathematical Model for Scheduling Train Movements on a Single 

Track Railway Line 

Before presenting the model, it is necessary to state some definitions and assumptions.  

In practice, some trains may have different itineraries. For example, when the system 

under consideration consists of 20 stations, some trains may traverse all the system. 

Some other may start at (for example) Station 5 within the system and terminate at (for 

example) Station 12 within the system. Some other trains may start outside the system 

and terminate within the system, or vice versa. In this study, it is assumed that all trains 

traverse all stations of the system. This is just to simplify the model’s on- paper 



67 

 

representation and the model can easily be modified to consider different itineraries. It 

is also assumed that, trains in two opposite directions are categorized as “eastbound 

trains” and “westbound trains”. In the indexing scheme, stations are numbered from one 

to the total number of stations (cardinality of the set of stations) and numbers increase in 

eastbound direction. The western terminus (sF) and eastern terminus (sL) are assumed to 

have an infinite number of secondary tracks. In the notations, if a symbol denotes a 

vector, it is written in bold. The model is coded in AIMMS, a commercial software for 

coding optimization problems and feeding them into the solvers.  

S: Set of stations  

S1: Set of stations with n = 2 parallel tracks (one mainline track and one secondary 

track) 

S2: Set of stations with n = 3 parallel tracks (one mainline track and two secondary 

tracks)  

E: Set of eastbound trains 

W: Set of westbound trains 

e,f,g,h: Eastbound train indices 

w,x,v,z: Westbound train indices 

s, t: Station indices  

sF: The first station (western terminus) of the modeled railway line.  

sL: The last station of the (eastern terminus) modeled railway line.  

:e Entrance time of eastbound train e into the system. This is also its minimum 

possible departure time from the first station within the system. It is named as “ready 

time” in AIMMS model.  

:ˆ
w Entrance time of westbound train w into the system. This is also its minimum 

possible departure time from the first station within the system.  It is named as “ready 

time” in AIMMS model.  

Te: Vector of minimum travel times of eastbound train e between consecutive stations.   

Te : (Te
sF

, Te
2
, …, Te

sL-1
), such as Te

s
 = Minimum travel time of train e from station s to 

station s + 1.  e  E ,  s  S \ {sL} 
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Tw: Vector of minimum travel times of westbound train w between consecutive stations.   

Tw : (Tw
sL

, Tw
sL-1

, …,Tw
sF + 1

), such as Tw
s
 = Minimum travel time of westbound  train w 

from station s +1 to station s.  e  E ,  s  S \ {sF} 

s

e : Minimum dwell time of eastbound train e at station s as required by timetable 

(equal to 0 if train e is not required to stop at station s by the timetable or there is no 

timetable at all).  e  E ,  s  S \ {sF, sL} 

s

w̂ : Minimum dwell time of westbound train w at station s as required by timetable 

(equal to 0 if train w is not required to stop at station s by the timetable or there is no 

timetable).  w  W ,  s  S \ {sF, sL} 

s

fe, : Minimum arrive-arrive headway when eastbound train e arrives at station s after 

eastbound train f.  e, f  E e < f ,  s  S \ {sF} 

s

xw,̂ : Minimum arrive-arrive headway when westbound train w arrives at station s after 

eastbound train x w, x  W , w < x, s  S \ {sL} 

s

fe, : Minimum depart-depart headway when eastbound train e departs from station s 

after eastbound train f.  e, f  E , e < f,  s  S \ {sL} 

s

xw,̂ : Minimum depart-depart headway when westbound train w departs from station s 

after eastbound train x.  w, x  W , w < x, s  S \ {sF} 

s

we, : Minimum arrive-depart headway when eastbound train e departs from station s 

after arrival of westbound train w.  e  E, w  W ,  s  S \ {sL} 

s

we,̂ : Minimum arrive-depart headway when westbound train j departs from station s 

after arrival of eastbound train e.  e  E, w  W ,  s  S \ {sF} 

In the AIMMS model, all depart-depart headways, arrive-arrive headways and arrive-

depart headways are assumed to be equal among themselves.  

M: A sufficiently large positive number.  

e : Scheduled arrival time of eastbound train e at station sLas required by the timetable. 

If there is no timetable, minimum possible arrival time may be written here.    

w̂ : Scheduled arrival time of westbound train w at station sF as required by the 

timetable. If there is no timetable, minimum possible arrival time may be written here.    
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F:  A monotonically increasing linear function of its operand. In AIMMS model, the 

total weighted delay (tardiness) is used.  Final delay of every train is multiplied by a 

pre-assigned weight and all the weighted delays are summed up.  

Up to here, all of the presented quantities were constants and parameters. Now, it is 

time to present the decision variables.  

Continuous variables:  

s

ea : Arrival time of eastbound train e at station s. Not defined for s = sF, where train e 

enters the system. Arrival time of train e into sF  is a parameter, not a decision variable.  

s

ed : Departure time of eastbound train e from station s. Not defined for station s = sL, the 

final station of train e within the system. As soon as train e arrives at the final station, 

we are done with it; we do not care what it does afterwards.  

s

wâ : Arrival time of westbound train w at station s. Not defined for station s = sL, where 

train w enters the system. Arrival time of train w into station sL is a parameter, not a 

decision variable.  

s

wd̂ : Departure time of westbound train w from station s. Not defined for station sF, the 

final station of train w within the system. As soon as train w reaches this final station, 

we are done with it; we don’t care what it does afterwards.  

e : Delay (tardiness) of eastbound train e in the final station of its itinerary within the 

system.  

w̂ : Delay (tardiness) of westbound train w in the final station of its itinerary within the 

system.  

Binary variables:  

 

1, if eastbound train e departs from station s before eastbound train f,  

 

s

feb ,      0, otherwise.  

Note that this variable is defined for s ≠ sLand e < f 
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1, if westbound train w departs from station s before westbound train x  

s

xwb ,
ˆ

      
0, otherwise. 

 

Note that this variable is defined for s ≠ sF. and w < x 

Meeting variables defined for stations with one secondary line (sS1):  

 

1, if eastbound train e meets with westbound train w at station s,  

s

wec ,  

               0, otherwise.  

Meeting variables defined for stations with more than one secondary line (s  S2+{sF}):  

1, if eastbound train e and westbound train w meet at station s AND train e 

enters the station before train w,  

s

wec ,  

               0, otherwise.  

  (s  S2 +{sL}):  

1, if eastbound train e and westbound train w meet at station s AND train w 

enters the station before train e,  

s

wec ,
ˆ     0, otherwise.  

 

Objective Function:  

Min 



Ww

w

Ee

e FF )ˆ()(                                                                                              (3.1) 

Objective function (3.1) is a linear combination of delays of each (eastbound and 

westbound) train.  

Minimum Departure and Arrival Time Constraints:  

e

s

e
Fd   e  E                                                         (3.2)                                                                                
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w

s

w
Ld ̂ˆ  w  W                                                                                         (3.3)   

These constraints prevent any train from departing from the first station of its itinerary 

within the system before it actually enters the system (i.e. arrives at the first station).                                       

Delay Definition Constraints:  

e e

s

e
La  ,     e  E                                 (3.4) 

w̂ w

s

w
Fa ̂ˆ  ,    w  W                                (3.5) 

These constraints define the delay. Since the variables representing delay are 

nonnegative, ifany train arrives earlier than its scheduled arrival time, delay takes the 

value 0. By this definition, we are allowing trains to arrive earlier than their scheduled 

arrival times, but an early arriving train does not contribute to the objective function. 

Typically, model will send the trains early if it helps to reduce the delays of other trains.  

Minimum Running Time Constraints:  

s

e

s

e

s

e Tda 1
 e E, s  S\sL                             (3.6) 

s

w

s

w

s

w Tda ˆˆˆ 1  
w W, s  S\sL                                        (3.7) 

These constraints enforce the minimum running times between the adjacent stations.  

Minimum Dwell Time Constraints:  

s

e

s

e

s

e ad   e  E, s  S\{sF,sL}                                        (3.8) 

s

w

s

w

s

w ad ̂ˆˆ  w  W, s  S\{sF,sL}                            (3.9) 

These constraints enforce the minimum dwell times of the trains as required by the 

timetable. If no dwell is required at a particular station or there is no timetable at all, 

these constraints are still needed. This time, they enforce the train continuities. Any 

train cannot depart from any station before arriving at it. Departure times are not 

defined for the last stations of the respective trains’ itineraries, nor dwell time 

constraints.  

Following and Overtaking Constraints for Eastbound Trains:  

 s

f

s

e dd s

fe, - *M
s

feb ,  e, f  E, e < f, s  S\sL                                                                          (3.10) 
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 s

e

s

f dd s

ef , - *M )1( ,

s

feb  e, f  E, e < f, s  S\sL                                                                (3.11) 

  11 s

f

s

e aa 1

,

s

fe - *M
s

feb ,  e, f  E, e < f s  S\sL                                                                      (3.12) 

  11 s

e

s

f aa 1

,

s

ef - *M )1( ,

s

feb  e, f  E, e < f s  S\sL                                                           (3.13)  

Constraints 3.10 and 3.12 are active if eastbound train f enters the mainline track section 

between stations s and s + 1 before eastbound train e. Constraint 3.10 ensures that there 

is sufficient headway between two trains in departure. Constraint 3.12 ensures that train 

e does not overtake train f in the mainline track section and also there is sufficient 

headway upon arrival to the next station. Constraints 3.11 and 3.13 are active if 

eastbound train e enters the mainline track section between stations s and s + 1 before 

eastbound train f. Constraint 3.11 ensures that there is sufficient headway between two 

trains in departure. Constraint 3.13 ensures that train f does not overtake train e in the 

mainline track section and also there is sufficient headway upon arrival to the next 

station. 

Following and Overtaking Constraints for Westbound Trains:  

 s

x

s

w dd ˆˆ s

xw,̂ - *M s

xwb ,
ˆ w, x  W, w < x, s  S\sF                                                                   (3.14) 

 s

w

s

x dd ˆˆ s

wx,̂ - *M )ˆ1( ,

s

xwb   w, x  W, w < x, s  S\sF                                                       (3.15) 

 s

x

s

w aa ˆˆ
s

xw,̂ - *M 1

,
ˆ s

xwb w, x  W, w < x, s  S\sF                                                                    (3.16) 

 s

w

s

x aa ˆˆ
s

wx,̂ - *M )ˆ1( 1

,

 s

xwb w, x  W, w < x, s  S\sF                                                         (3.17) 

Constraints 3.14 and 3.16 are active if westbound train x enters the mainline track 

section between stations s +1 and s before westbound train w. Constraint 3.14 ensures 

that there is sufficient headway between two trains in departure. Constraint 3.16 ensures 

that train w does not overtake train x in the mainline track section and also there is 

sufficient headway upon arrival to the next station. Constraints 3.15 and 3.17 are active 

if westbound train w enters the mainline track section between stations s + 1 and s 

before westbound train x. Constraint 3.15 ensures that there is sufficient headway 

between two trains in departure. Constraint 3.17 ensures that train x does not overtake 

train w in the mainline track section and also there is sufficient headway upon arrival to 

the next station. 
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Preventing a slow train to overtake a fast train:   

1, s

feb  e, f  E, s  S\sL | e < f & fe                                                               (3.18) 

1ˆ
, s

xwb w, x  W, s  S\sF | w < x & xw  ˆˆ                                                       (3.19) 

In railway operations practice, fast trains have priority over slow trains and thus a slow 

train is not allowed to overtake a faster train. This fact is utilized to reduce the size of 

the solution space. In the model, it is assumed that trains are indexed according to their 

speeds (priorities), faster trains having a smaller index. This constraint tells that, if a 

faster train enters the system before a slower train, than it will always precede the 

slower train.  

Preventing alternate overtakings:  

s

fe

s

fe bb ,

1

, 
 e, f  E, s  S\sL | e < f & fe                                                         (3.20) 

1

,,
ˆˆ  s

xw

s

xw bb w, x  W, s  S\sF | w < x & xw  ˆˆ                                                   (3.21) 

Same principle as preventing a slow train to overtake a fast train: This time, if a fast 

train overtakes a slower train, than it will always precede the slower train afterwards. 

Forcing Meeting Constraints:  

  
  


1 2 2}{ }{

,,, 1ˆ
ss sSs sSs

s

we

s

we

s

we

F L

ccc  e  E, w  W                                                (3.22) 

These constraints ensure that, each train couple will meet once and only once.  

Meeting in sF:  

)1(*ˆ
,,
FFFF s

we

s

we

s

w

s

e cMad    e  E, w  W                                                   (3.23)  

To understand what this constraint does, the reader should remember that, this model 

considers trains that have already arrived at their respective origin in the system (for 

eastbound trains, that is sF) and trains that have not yet arrived at their respective 

destination (for westbound trains, that is sF). Before arriving at the origin (entering the 

system) or after arriving at the destination (leaving the system), the trains simply do not 

exist for the model. So, the only way of a meeting between of eastbound train e and 

westbound train w at Station sF that can be recognized by the model, is the specific case 

where eastbound train e arrives at sF (i.e. enters the system) before westbound train w at 
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sF (i.e. leaves the system). In that case, eastbound train e has to wait until the westbound 

train w arrives at station sF. This constraint is active if such a meeting occurs at sF.  

Meeting in sL:  

)ˆ1(*ˆˆ
,,

|| LLL s

we

s

we

s

e

S

w cMad    e  E, w  W                                                      (3.24)  

This constraint is active if eastbound train e and westbound train w meet at station sL. 

The explanation is similar to that of constraint 3.23.  

Meeting constraints for intermediate stations with one secondary line- 1:   

)1(ˆ
,,

s

we

s

we

s

w

s

e cMad    e  E, w  W, s  S1                                            (3.25)  

These constraints are active if eastbound train e and westbound train w meet at 

intermediate station s, which has one siding. It forces train e to depart at least arrive-

depart headway later than the arrival time of train w.   

Meeting constraints for intermediate stations with one secondary line- 2:   

)1(ˆˆ
,,

s

we

s

we

s

e

s

w cMad    e  E, w  W, s  S1                                           (3.26)  

These constraints are active if eastbound train e and westbound train w meet at 

intermediate station s, which has one siding. It forces train w to depart at least arrive-

depart headway later than the arrival time of train e.   

Meeting constraints for intermediate stations with two secondary lines- 1:   

)]ˆ(1[*ˆ
,,,

s

we

s

we

s

we

s

w

s

e ccMad    e  E, w  W, s  S2                              (3.27)  

These constraints are active if eastbound train e and westbound train w meet at 

intermediate station s, which has one siding. It forces train e to depart at least arrive-

depart headway later than the arrival time of train w. Note that, constraints 3.22 enforce 

that at most one of variables in constraint 3.27 can take the value one.  

Meeting constraints for intermediate stations with two secondary lines- 2:   

)]ˆ(1[*ˆˆ
,,,

s

we

s

we

s

we

s

e

s

w ccMad    e  E, w  W, s  S2                               (3.28)  

These constraints are active if eastbound train e and westbound train w meet at 

intermediate station s, which has one secondary line. It forces train w to depart at least 
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arrive-depart headway later than the arrival time of train e. Note that, constraints 3.22 

enforce that at most one of variables in constraint 3.28 can take the value one.  

Meeting constraints for intermediate stations with two secondary lines- 3:   

)1(*1ˆ
,

s

we

s

e

s

w cMaa   e  E, w  W, s  S2                                                 (3.29)   

Meeting constraints for intermediate stations with two secondary lines- 4:   

)ˆ1(*ˆ
,

s

we

s

w

s

e cMaa   e  E, w  W, s  S2                                                      (3.30)    

Constraints 3.29 and 3.30 enforce the definition of binary meeting variables for the 

stations with two secondary lines. 3.29 is active when 1, s

wec , which means eastbound 

train e arrives at the meeting station before westbound train w. 3.30 is active when 

1ˆ
, s

wec , which means westbound train w arrives at the meeting station before eastbound 

train e. The adopted convention is that, if both trains arrive at the meeting station 

exactly the same time, the case is treated as westbound train arrives first. This is the 

explanation of + 1 present in constraint 3.29. Now, the station/siding capacity 

constraints will be given. These constraints are based on the enumeration of the possible 

situations such that the station / siding capacity is exceeded. At the end of the chapter, a 

general example is given to understand the mechanism of enumeration. 

Capacity constraints for stations with one secondary line-1:  

1)( 1

,

|

,  



 s

fe

feEf

s

fe bb  e  E, s  S1                                                                          (3.31)       

These constraints prevent any eastbound train to overtake more than one eastbound train 

at the same station.  

Capacity constraints for stations with one secondary line-2:  

  1ˆˆ

|,

1

,, 




xwWxw

s

xw

s

xw bb w  W, s  S1                                                                        (3.32)       

These constraints prevent any westbound train to overtake more than one westbound 

train at the same station with one secondary line. 
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Capacity constraints for stations with one secondary line-3:  

  1,

1

,,   s

we

s

fe

s

fe cbb  e,f  E | e < f, w  W, s  S1                                              (3.33)       

These constraints prevent any eastbound train to overtake an eastbound train and meet 

with a westbound train at the same station with one secondary line.  

Capacity constraints for stations with one secondary line-4:  

  1ˆˆ
,

1

,,   s

we

s

xw

s

xw cbb  e  E, w, x  W | w < x, s  S1                                           (3.34)       

The same case with constraint 3.31, this time with 2 westbound and 1 eastbound trains.  

Capacity constraints for stations with one secondary line-5:  

)1(* 1

,,

 s

fe

s

fe

s

e

s

f bMda   e,f  E | e < f, s  S1                                             (3.35)   

This constraint is active when eastbound train f (slower than e) enters station s (with one 

secondary line) after eastbound train e and dictates that train f can enter the station only 

after train e clears the station.  

Capacity constraints for stations with one secondary line-6:  

)ˆ1(*ˆˆˆ 1

,,

 s

xw

s

fe

s

w

s

x bMda  w,x  W | w < x, s  S1                                        (3.36)   

Same as constraint 3.35 for two westbound trains.  

Capacity constraints for stations with one secondary line-7:  

)(* 1

,,,

 s

fe

s

fe

s

fe

s

f

s

e bbMda   e,f  E | e < f, s  S1                                        (3.37)   

This constraint is active if eastbound train e enters station s (with one secondary line 

after (slower) eastbound train f and will not overtake eastbound train f at station s and it 

dictates that eastbound train e can enter the station only after eastbound train f clears the 

station.  

Capacity constraints for stations with one secondary line-8:  

)ˆˆ(*ˆˆˆ 1

,,,

 s

xw

s

xw

s

xw

s

x

s

w bbMda  w,x  W | w < x, s  S1                                 (3.38)   

Same as constraint 3.37 for two westbound trains.  
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Capacity constraints for stations with two secondary lines-1:  

2)( 1

,

|

,  



 s

fe

feEf

s

fe bb  e  E, s  S2                                                                          (3.39)    

Capacity constraints for stations with two secondary lines-2:  

  2ˆˆ

|,

1

,, 




xwWxw

s

xw

s

xw bb w  W, s  S2  (3.40)       

Constraints (3.39) and (3.40) prevent any train to overtake more than two trains at the 

same station with two secondary lines.   

Capacity constraints for stations with two secondary lines-3:  

2ˆˆˆ
,,,  s

ye

s

xe

s

we ccc  e  E, w,x,y  W | w < x < y                                                (3.41)  

These constraints prevent three westbound trains to “wait” one eastbound train at the 

same station. These constraints are not absolutely required, as the general rule for n > 2 

and i = 1 already prevents this. However, these constraints are added to reduce the 

solution space.  

Capacity constraints for stations with two secondary lines-4:  

2,,,  s

wg

s

wf

s

we ccc ,   w  W, e,f,g  E | e < f < g                                            (3.42)  

Same as constraint 3.39, this time for three eastbound trains and one westbound train.  

Capacity constraints for stations with two secondary lines 5-13:  

]3/)(1[* ,,,,

s

gf

s

ge

s

fe

s

ge

s

e

s

g bbbMda    e,f,g  E  | e < f < g                    (3.43)  

]4/)(1[* ,,

1

,

1

,

1

,,

s

ge

s

fe

s

gf

s

ge

s

fe

s

fe

s

e

s

f bbbbbMda    e,f,g  E | e < f < g (3.44)  

]2/)(1[* ,,

1

,

1

,

1

,,

s

gf

s

fe

s

gf

s

ge

s

fe

s

gf

s

g

s

f bbbbbMda    e,f,g  E| e < f < g (3.45)  

]3/)(1[* ,,

1

,

1

,

1

,,

s

ge

s

fe

s

gf

s

ge

s

fe

s

fe

s

e

s

f bbbbbMda    e,f,g  E  | e < f < g     (3.46)  

]5/)(1[* ,,,

1

,

1

,

1

,,

s

gf

s

ge

s

fe

s

gf

s

fe

s

ge

s

ge

s

e

s

g bbbbbbMda    e,f,g |e<f<g    (3.47)  

]4/)(1[* ,,,

1

,

1

,

1

,,

s

gf

s

ge

s

fe

s

gf

s

fe

s

ge

s

gf

s

f

s

g bbbbbbMda    e,f,g  E | e< f < g (3.48)  

]2/)(1[* ,,

1

,

1

,

1

,,

s

fe

s

gf

s

fe

s

ge

s

gf

s

fe

s

f

s

e bbbbbMda    e,f,g  E | e < f < g           (3.49)  
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)(* ,,

1

,

1

,

1

,,

s

gf

s

ge

s

gf

s

ge

s

fe

s

ge

s

g

s

e bbbbbMda     e,f,g  E  | e < f < g                  (3.50)  

)](1[* 1

,

1

,

1

,,,,

  s

fe

s

ge

s

gf

s

fe

s

gf

s

fe

s

f

s

e bbbbbMda   e,f,g  E | e < f < g             (3.51)  

These constraints are related to part 3 of Proposition 1. To implement this rule, it is 

needed to determine who enters the station first and who leaves the station first. Values 

of the binary variables tell that. Any constraint will be active only when the summation 

within the bracket divided by the respective integer number gives either zero or one, 

depending on the case. Then, the constraint enforces that the last train to enter the 

station would depart later than the first departing train.  

Capacity constraints for stations with two secondary lines 14-22:  

]3/)ˆˆˆ(1[*ˆˆˆ
,,,,

s

yx

s

yw

s

xw

s

yw

s

w

s

y bbbMda   w,x,y  W | w < x < y                        (3.52)  

]4/)ˆˆˆˆˆ(1[*ˆˆˆ
,,

1
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1

,

1

,,

s

yw

s

xw

s

yx

s

yw

s

xw

s

xw

s

w

s

x bbbbbMda   w,x,y W  | w < x < y     (3.53)  

]2/)ˆˆˆˆˆ(1[*ˆˆˆ
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1
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1

,,

s

yx

s

xw

s

yx

s

yw

s

xw

s
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s

y

s

x bbbbbMda     w,x,y W  | w < x < y   (3.54)  

]3/)ˆˆˆˆˆ(1[*ˆˆˆ
,,

1
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1

,

1

,,

s

yw

s

xw

s

yx

s

yw
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xw

s

xw

s

w

s

x bbbbbMda      w,x,y W  | w < x < y      (3.55)  

]5/)ˆˆˆˆˆˆ(1[*ˆˆˆ
,,,

1
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1
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1

,,

s

yx

s

yw

s

xw

s

yx

s

xw
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These are exactly the same as constraints (3.43)-(3.51), except being for the 

symmetrical case.  

Capacity constraints for stations with two secondary lines 23-46:  
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These constraints constitute the heaviest part of the model. They are generally the 

enforcement of the following rule: “If i westbound trains and n + 1 – i eastbound trains 

will meet each other at station s, which has n tracks, such that 2 ≤ i ≤ n-1 and n ≥ 3, 

then, the last train to arrive at station s should postpone its arrival to after the departure 

of the first train in the same direction.”  So, we have to determine who enters last and 

who is the departing train in its direction first. It may be useful to explain how these 

constraints work by an example. For constraint 3.84 to be active, 
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we cccc  and 01

, s

feb  hold. The last equality tells that, eastbound 

train e arrives at station s after eastbound train f. The first one tells that westbound train 

w arrives at station s before eastbound train e. The second one tells that westbound train 

x arrives at station s before eastbound train e. The third one tells that westbound train w 

arrives at station s before eastbound train f. The fourth one tells that westbound train x 

arrives at station s before eastbound train f. All these add up to the fact that, train e is 

the last train among those for to arrive at the station. Therefore, it cannot enter the 

station unless eastbound train f clears one track. Of course, it is not possible for this last 

entering train to overtake the other train, so there are some constraints (such as 3.80) to 

prevent this. Also, some constraints were written to make eliminations of combinations 

of binary variables which leads to the inconsistent cases (like e comes before w, w 

comes before x, x comes before e), mainly to reduce search space. In Figure 3.10, the 

situation represented by constraint 3.80 is depicted. Constraint 3.80 holds Train e 

outside the station until train f clears the station. This situation further affects the 

solution. Because, at this point, no westbound train can leave the station until Train e 

enters the station.  
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Figure 3. 10 Situation represented by constraint 3.80. 
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CHAPTER 4 

SPEED-UP METHODS 

Although the proposed mathematical model represents the train movements on a single 

track railway line quite accurately (except neglecting the time losses of a stopping train 

because of braking and acceleration), it has some serious drawbacks. It models the 

meetings at stations with two secondary lines with two binary variables per train couple 

per station. This causes a significant increase in the number of binary variables. Also, 

complete enumeration of all situations in which station / siding capacities are exceeded 

generates a “more than huge” number of constraints. For a system with|S1| intermediate 

stations with one secondary line,|S2| intermediate stations with two secondary lines, |E| 

eastbound trains and |W| westbound trains, the number of such constraints is given by 

the formula written below:  

Number of capacity constraints for stations with two secondary lines =  
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In the formula, the first term refers to constraints 3.43-3.51, the second term refers to 

constraints 3.52-3.60, the third term refers to constraints 3.61-3.84, the fourth term 

refers to constraints 3.41 and the fifth term refers to constraints 3.42. In this formula, the 

constraints written for reducing search space are not included. If |E| = |W| = 15and |S2| = 

16, total number of such constraints is 6,199,680. This makes the problem impossible to 

tackle without any external interferences. However, very few of these constraints will 

actually be binding.  Figure 4.1 depicts an example solution provided by the model. The 

model was coded in AIMMS and solved by CPLEX 12.6.  AIMMS is a commercial 

programming language and interface, specifically designed for coding and solving 

optimization problems. It provides interfaces to several commercial solvers for several 
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types of optimization problems. CPLEX, is a commercial solver for linear 

programming, integer programming, mixed integer programming and quadratic 

programing problems. CPLEX, along with Gurobi, is globally accepted as the state- of 

art solver for such problems. In the considered railway line, stations 4, 6, 8, 11 and 14 

has one secondary line, whereas, the others have two secondary lines. The termini at 

both ends are assumed to have infinite capacity. As mentioned previously, at least three 

trains should be there to exceed the capacity of a station with one secondary line and at 

least four trains should be there to exceed the capacity of a station with two secondary 

lines. In Figure 4.1, it can be seen that, only three of the stations with one secondary line 

(4, 6, 8) were “under threat” of siding capacity violation, each from only one trio of 

trains.  

 

Figure 4.1Outcome of an example instance 

Similarly, only two of the stations with two secondary lines (9, 10) were “under threat” 

of capacity violation, each from only one quartet of trains. This clearly indicates that, 

only a handful of these constraints were binding. The others were just there to make the 

model unnecessarily complicated and intractable. Indeed, there is one more fact that 

makes most of these constraints actually unnecessary: Any quartet of trains, unless they 
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are all travelling in the same direction, cannot exceed the capacity of more than one 

station. This is due to the nature of train traffic. Two trains in the opposite directions 

cannot meet more than once.  

4.1 Lazy Constraint Attribute 

AIMMS provides an opportunity to label some of the constraints as “lazy”. If the solver 

recognizes lazy constraints, which CPLEX 12.6 does, it does not directly include them 

in the model. Instead, it solves a “relaxed” model, with these lazy constraints omitted. 

Each time it finds a feasible solution with respect to this “relaxed” model, it checks the 

solution against the lazy constraints. If it finds that one of the lazy constraints is 

violated, it creates a new “relaxed” model by adding the violated row into the constraint 

matrix and repeats the procedure. In the model, all of the station and siding capacity 

constraints except the ones involving only binary variables are defined as lazy 

constraints. 

4.2 Solution Space Restriction Algorithm for Reducing the Number of Binary 

Variables and Constraints 

As previously stated, the model has an unnecessarily large number of binary variables 

and constraints.  The effect of this can be easily felt when the size of the problem 

instance gets larger. However, very few of the constraints for conflict resolution will 

actually be binding in the final solution. Moreover, most of the binary variables defined 

for meetings will simply be zero. This immediately bears the thought: If we can 

eliminate the constraints are very unlikely to be binding and the binary variables which 

are very unlikely to be basic, a significant reduction in the problem size and thus the 

computation time may be provided. Note that, such a progress is already done by 

defining the station / siding capacity constraints as “lazy constraints”, and CPLEX 

eliminates the redundant constraints and binary variables in the presolve stage of the 

algorithm. However, it may still be possible to take this process one step further. 

Therefore, a heuristic solution space restriction algorithm has been developed to aid 

CPLEX in the solution procedure. It involves implementing a very basic greedy 

heuristic that does not take station / siding capacity constraints into account, to see how 

actually a solution may “look like.” Then, the actual solution will be restricted to be 

“not very far away” from the outcome of this greedy heuristic. The greedy heuristic is 
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quite simple: It is a construction heuristic, which starts from scratch, detects all the 

conflicts and resolves them one at a time. Finally, it arrives at a feasible solution when 

there is no conflict left. The heuristic tackles the constraints in a “time order”: It finds 

the first conflict with respect to time, resolves it, then finds the first conflict (among the 

remaining ones), resolves it, until there is no conflict left. Since it does not take the 

station / siding capacity constraints into account, there is no need for it to recognize the 

conflicts within a “group” of trains. It assumes that all constraints are between two 

trains only. Of course, if there are actually more than two trains in the same conflict, the 

heuristic senses all the conflicts between all the train couples as separate conflicts and 

resolves them one by one.  

The decision logic of the heuristic is very simple and myopic; therefore it is a greedy 

heuristic. When it detects the conflict, firstly, it solves the conflict with delaying one of 

the trains. It then computes the total weighted unrecoverable delay of two trains in 

conflict, after the resolution, locally. Then, it reverses the solution, resolves the conflict 

by delaying the other train. After that, again, it computes the total weighted 

unrecoverable delay of two trains in conflict, after the resolution. The alternative that 

gives the lower total weighted unrecoverable delay (locally) will be the selected 

resolution for the current conflict. The heuristic will then update the departure and 

arrival times of the delayed train and find the next conflict. It computes the 

unrecoverable delay for one train according to the following formula:  

UNRECOVERABLE DELAY = CURRENT TIME IN THE TRAIN’S CURRENT 

POSITION-THE EARLIEST TIME THAT THE TRAIN COULD EVER BE IN ITS 

CURRENT POSITION-RECOVERY TIME OF THAT TRAIN.   

The way the heuristic works is outlined below:  

STEP 1-initialization: For all trains, compute the departure times from and arrival times 

at all stations, as if all trains can move freely, without touching each other.  

STEP 2: Find all the (meeting, headway, overtaking, etc.) conflicts in the system. If 

there is no conflict, terminate and report the final solution (All departure and arrival 

times for all trains plus the locations of meetings and overtakings). If there is at least 

one conflict, go to STEP 3.  
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STEP 3: Determine the exact occurrence time of the conflicts. This is done by treating 

the train paths (as seen on a train graph) as lines and making use of formulas to find 

intersection points of two lines in a two-dimensional coordinate axis.  

STEP 4: Take the “earliest” conflict and resolve it.  

STEP 5: Update the departure and arrival times of the train selected to be delayed in the 

conflict resolution, as if it can move freely, without touching any other train after the 

current conflict resolution and go to STEP 2.  

This algorithm is guaranteed to give a feasible solution (for the relaxed problem where 

all the stations are assumed to have infinite capacity).  

4.2.1 Restriction of the Solution Space for Meetings 

Several trial runs were made and it was experienced that, for the meetings, there are 

never radical differences between the outcome of the heuristic and the actual optimal 

solution for the original problem (with station / siding capacities taken into account). 

For a significant number of cases, the meetings between any two trains occurred exactly 

at the same station in the heuristic and the optimal solutions. In some other cases, it 

differed by only one station, i.e. the meeting occurred in some station in the heuristic’s 

outcome and in one of the adjacent stations in the actual optimal solution. In none of the 

trials, it differed by two stations. Of course, this is not a scientific proof and it is indeed 

not possible to provide such a proof. This constitutes the rule of thumb for the solution 

space restriction. Regardless of the total number of stations, meetings between any tuple 

one eastbound- one westbound train were restricted to be happen in one of the five 

stations only: The station in which the meeting occurs in the heuristic and until two 

stations away in each direction. Note that, meeting constraints 3.22 to 3.30 are defined 

in such a way that, feasibility is always guaranteed. Constraint 3.22 forces the meeting 

to happen in one of the stations where meeting variables are defined. The other 

constraints guarantee satisfaction of the arrive-depart headway constraints in that station 

and also prevent meeting on the mainline track section. Thus, after making the finding 

the restricted region for meetings, all remaining constraints and binary variables that 

allow meetings in other stations can be and indeed are simply omitted from the model. 

The heuristic is coded in AIMMS and run as MainInitialization routine. Afterwards, 

through proper index domain definitions of the variables and constraints, the model with 

the constraints eliminated is automatically generated by AIMMS.  
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4.2.2 Restriction of the solution Space for Followings and Overtakings 

When it comes to the following and overtakings, the situation is nowhere as simple as in 

the meeting case. In this case, radical differences may be observed between the heuristic 

outcome and the actual optimal solution. For example, in the heuristic outcome, one 

train may overtake the other in the center region of the route, whereas, in the optimal 

solution, no overtaking may occur between these two trains. The opposite may also 

happen-no overtaking in the heuristic but overtaking in the actual optimal solution. The 

problem is, it is not possible to know where the fast train will “catch” the slow one (if 

will it ever catch) without actually obtaining the solution, because, this depends on the 

solution itself.  If the fast train is delayed in conflict resolutions before catching the 

slow train, the “gap” between them will widen. Alternatively, if the slow train is 

delayed in conflict resolutions before being caught up by the fast train, the “gap” 

between them will tighten. Therefore, it is not possible to reduce the model as much as 

it was done in the meeting case. However, there is still room for improvement.   Both 

the fast train and the slow train may experience conflicts before the fast train catches up 

the slow train. In such conflicts, if the slow train is stopped and forced to wait, the fast 

train can catch it up earlier. On the contrary, if the fast train is stopped and forced to 

wait, it can catch the slow train up later. This is a good clue for determining the earliest 

possible place that a fast train can catch up the slow train. The fast train can catch up the 

slow train in earliest possible place if the fast train is never stopped in the conflicts 

before catching up the slow train, whereas, the slow train is stopped and forced to wait 

in all conflicts before being caught up by the fast train. Such a solution can be obtained 

by temporarily assigning a very high weight on the fast train’s delay (remember that the 

solution takes place over the weighted delays) and very low weight on the slow train’s 

delay. The same can be done on recovery times. If the slow train has a very large 

recovery time, whereas the fast train has a negative and big in magnitude recovery time 

(i.e. this train is already severely delayed when it enters the system), coupled with the 

difference in weights on delays, the heuristic will always give the priority to the fast 

train and never give the priority to the slow train. Thus, it will be possible to determine 

the earliest place that the fast train can catch and overtake the slow train. Table 4.1 

shows an example to this.  



88 

 

 

Table 4.1An example to determine the earliest station that train 1 can overtake train 3 

 
Recovery time (mins) Temporary weight on Delay 

Train 1 -500 5000 

Train 3 500 0,0001 

Train 5 6 3 

Train 7 9 2 

Train 9 9 2 

 

In such a case, the heuristic will always force train 3 to stop and wait in its all conflicts. 

Whereas, train 1 will never stop and wait. This will give us the earliest station that train 

1 can catch train 3. For all train couples, for which the slow one enters the system 

before the fast one, the weights and recovery times are temporarily changed to such 

extreme values and the heuristic is run once. Then, it is assumed that, the overtaking can 

happen in one of the four stations in the upstream (for those trains’ direction) of the 

heuristic outcome or later. All binary variables for the stations upstream of this earliest 

possible station are fixed (not eliminated to be on the safe side for modeling the station / 

siding capacities).  

If any fast train enters the system “well before” a slow train in the same direction, it is 

assumed that the gap will widen and these two trains will never interact, so all the 

related variables and constraints are eliminated.   

4.3 Use of a “Min-Max” Problem for the Initial Feasible Solution 

As previously mentioned, the objective function chosen affects the solution time.   Our 

observation is that, if the maximum (weighted) delay is used as the objective function, 

then, CPLEX finds the optimal solution very quickly, compared to the case with total 

(weighted) delay as the objective function. Optimization engines can accept initial 

feasible solutions and use these solutions to shrink the solution space, i.e. by providing 

good upper bounds. In all of the problems, before solving the actual problem with total 

weighted delay, a problem with the maximum weighted delay objective is solved, 

coupled with the heuristic problem reduction algorithm mentioned above. This 

application provided quite a good boost in the solution speed of the actual model. This 

also provided the opportunity to obtain better- quality solutions (from a railway 
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operation perspective). This is shown in Table 4.2. Among the two alternative solutions 

given in the table, if the objective is total delay, the algorithm would choose solution 2. 

However, from railway operation perspective, solution 1 is better.  

Table 4.2 Sample bad solution obtained from a total delay approach 

  Delays in Solution 1 (min) Delays in Solution 2 (min) 

Train 1 5 29 

Train 2 5 0 

Train 3 5 0 

Train 4 5 0 

Train 5 5 0 

Train 6 5 0 

 

So, a multiobjective optimization approach is adopted. The final objective will still be 

the total weighted delay. But, the maximum weighted delay will be constrained not to 

be higher than the maximum weighted delay obtained in the initial feasible solution 

with the maximum weighted delay objective.  

The reason for the first problem (maximum weighted delay) being quicker to solve than 

the second problem (total weighted delay) is probably that, the first one is a relaxation 

of the second one. To illustrate this, we start with a definition, adopted from Wolsey 

[57].  

Definition: Let P1 be a problem, defined as Min {(f1(x) : x  X1} and P2 be another 

problem, defined as Min {(f2(x) : x  X2}. Then, P2 is a relaxation of P1, if:  

i) 
21 XX   

ii) f2(x) ≤ f1(x) for every x  X1.  

Let P1 be the original problem (with total weighted delay objective) and let P2 be 

another problem, with exactly the same domain of decision variables and constraints, 

but a different objective function (maximum weighted delay).  
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Proposition: P2 is a relaxation of P1 

Proof: Condition i is trivial, since feasible solutions are defined exactly on the same 

variable and constraint domain. For condition ii, definition of the delay comes in. Since 

delay is defined to be nonnegative (trains arriving earlier than their respective 

scheduled arrival times have a delay of zero), total weighted delay cannot be smaller 

than the maximum weighted delay.  
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CHAPTER 5 

NUMERICAL EXPERIMENTS 

In this chapter, the properties of the problem instances solved in the numerical 

experiments and the results will be given.  

5.1 Railway Line 

The hypothetical railway line on which the problem instances are generated is derived 

from a real TCDD line. Its topology is based on the original topology of Arifiye- 

Çukurhisar section of İstanbul-Ankara conventional railway line. Arifiye- Çukurhisar 

section is a single track line. Arifiye is the western terminus and Çukurhisar is the 

eastern terminus of the line. Starting from Çukurhisar, the line is double track until 

Eskişehir. Note that only the topology (names of the stations / sidings and numbers of 

secondary tracks in the stations / sidings) are real. The minimum running times and train 

types (which will be presented soon) are all hypothetical. In Table 5.1, the topology of 

the line is presented. Names of the stations are given only for informative purposes. 

From now on, stations will be denoted by their respective station number. Remember 

that, station numbers increase in the eastbound direction.  

 

 

 

 

 

 



92 

 

Table 5. 1 Topology of the hypothetical railway line 

Station 

name 

Station or 

siding 

Station / siding 

number 

Number of secondary 

lines 

Arifiye Station 1 ∞ 

Doğançay Station 2 2 

Alifuatpaşa Station 3 2 

Pamukova Station 4 2 

Hayrettin Siding 5 1 

Mekece Station 6 2 

Osmaneli Station 7 2 

Sarmaşık Siding 8 1 

Bayırköy Station 9 2 

Vezirhan Station 10 2 

Pelitözü Siding 11 1 

Bilecik Station 12 2 

Yayla Siding 13 1 

Karaköy Station 14 2 

Ayvalı Siding 15 1 

Bozüyük Station 16 2 

İnönü Siding 17 2 

Çukurhisar Siding 18 ∞ 

5.2 Trains 

In the line, three different types of trains are assumed to run. These are named as fast, 

semi-fast and slow. All trains have their respective minimum running times defined in 

each mainline track segment. The problem instances are generally 6 + 5, that is, there 

are 6 eastbound trains and 5 westbound trains in the instance. This is the upper limit of 

the model, under the conditions described below. Trains are numbered from 1 to11. 

Eastbound trains took odd numbers and westbound trains took even numbers. 

Numbering is done according to a priority system. In the system, a smaller number 

stands for a higher priority train. In railway operations, faster trains get higher priorities 

and this practice is also adopted here. If two trains are of the same type (which will 

certainly happen, because there are three types and eleven trains), then, another priority 

scheme has to be used among the trains bound for the same direction. In this case, the 

train that enters the system first, gets the priority, hence the smaller number. Remind 

that, this is a weighted delay problem, so, a weight has to be assigned to each train.  

Unsurprisingly, the trains with a higher priority have a higher weight. Thus, their delays 

worsen the objective function more than the lower priority trains’ delays. Trains are 

summarized in Table 5.2.  
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Table 5. 2 Trains in the problem instances 

Train 

numbers 
Directions 

Train 

types 
Weights 

1 Eastbound Fast 6 

2 Westbound Fast 6 

3 Eastbound Fast 6 

4 Westbound Semi-fast 4 

5 Eastbound Semi-fast 4 

6 Westbound Semi-fast 4 

7 Eastbound Semi-fast 4 

8 Westbound Slow 3 

9 Eastbound Slow 3 

10 Westbound Slow 3 

11 Eastbound Slow 3 

5.2.1 Orders and Frequencies of the Trains 

In the instances, the order of entrance time of the trains has a great effect on the actual 

difficulty of the instance. As previously mentioned, when a faster (higher priority) train 

enters the system before a slower (lower priority) train in the same direction, no 

overtaking will be allowed between those two trains. Thus, all binary variables related 

to following and overtaking of these two trains can be either fixed or omitted from the 

model (see Chapter 4.1). Furthermore, since the gap between these two trains can be 

safely assumed to widen, practically, no headway constraints would be required. This 

leads to the fact that, one can easily “cheat” by selecting the problem instances properly. 

This is not the case for this thesis. Admittedly, some cheating is done by limiting the 

number of different train types by three, but, among these types, no cheating is done. In 

all the instances, trains enter the system from the slowest to the fastest. In Table 5.3, the 

entrance orders are given. The order is from the left to the right. Different instances are 

defined by the entrance times of the trains plus the entrance delays. However, the 

entrances orders do not differ. All of them follow the same scheme. In the table, “s” 

stands for “slow”, “s-f” stands for “semi-fast” and “f” stands for “fast.” 

Table 5.3 Train entrance orders 

Eastbound 9 (s) 11 (s) 5 (s-f) 7 (s-f) 1 (f) 3 (f) 

Westbound 8 (s) 10 (s) 4 (s-f) 6 (s-f) 2 (f) - 

 

Also, entrance times of the trains would produce an effect. If the trains are too 

infrequent, most (if not all) of the following and overtaking constraints would be 

nonbinding. Similar would be valid for the respective binary variables, solution space 
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restriction algorithm will fix most of them. An example of how the train order can affect 

the problem complexity is given in Table 5.4. Note that solution space restriction 

algorithm does not eliminate any continuous variables, this value will not differ. It can 

be clearly seen that, such a “cheating” modifies the combinatorial structure of the 

problem. As the number of trains increases, if that cheating is done, the accompanying 

increase in the real problem size is not that great. So, in the instances, trains are 

introduced into the system in small intervals and from slowest to fastest.  

Table 5.4Effect of train order and number of trains on problem size 

Problem type # of trains 
# of binary 

variables 

# of 

constraints 

Fastest to slowest, big intervals 3 + 3 63 662 

Fastest to slowest, big intervals 6 + 5 167 3667 

Slowest to fastest, small 

intervals 
3 + 3 119 1571 

Slowest to fastest, small 

intervals 
6 + 5 462 >= 41000 
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To further demonstrate the effect of train order and frequency on difficulty, a special 

instance with 8 eastbound and 8 westbound trains is prepared. In this instance, trains are 

introduced into the system from the fastest to the slowest. Also, the intervals between 

train entrances are one hour. The unsolved state of this special instance is given in 

Figure 5.1.  

 

Figure 5.1 Unsolved state of special 8 + 8 instance 

Even from the unsolved state, it can be observed that this is not a difficult problem. 

Gaps between the trains in the same direction are never shrinking, but sometimes 

enlarging. Even in their smallest form, the gap is 60 minutes. This implies that, no 

overtaking constraints and no following constraints will be active. Moreover, station 

capacity constraints will not be active at all. Lastly, some trains will never meet within 

the system. Problem space restriction algorithm and lazy constraints attributes will 

recognize such special structures and make the instance even easier to solve. These are 

all forecasts at this stage, but, in Figure 5.2, it can be seen that they indeed held. This 

special is instance is solved within only 7 seconds. Therefore, despite having more 

trains, this special instance is much easier than the 6 + 5 instances that will be presented 

very soon.  

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

S
T

A
T

IO
N

S
 

 

TIME (MIN) 
 



96 

 

 

Figure 5.2 The solved state of special 8 + 8 instance 

Encouraged by the success in solving the 8 + 8 special instance, we even tried a 13 + 

13problem, formed with the same logic. Even the 12 + 12 problem is solved in 80 

seconds. This implies that, a 13 + 13 instance can be as easy as a 6 + 5 instance if it is 

specially formed. We again argue that, number of trains and stations are not powerful 

enough indicators of the difficulty of the problem instance. The frequency and order of 

the trains are also required to define this.   

5.2.2 Minimum Running Times of the Trains 

A single minimum running time scheme is used for all the ten instances. It is given in 

Table 5.5. In the table, the number in the row of station s corresponds to minimum 

running time between stations s and s + 1. Hence, the row of station 18 is empty.  
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Table 5.5 Minimum running times (minutes) 

  TRAIN TYPE 

Station 

number 
Fast Semi-fast Slow 

1 12 15 18 

2 11 14 17 

3 9 11 14 

4 8 10 12 

5 6 8 10 

6 7 9 11 

7 9 11 14 

8 7 9 11 

9 10 12 15 

10 8 10 12 

11 8 10 12 

12 9 11 14 

13 6 8 10 

14 11 14 17 

15 11 14 17 

16 5 6 8 

17 9 11 14 

18 - - - 

5.2.3 Recovery Times and Entrance Delays of the Trains 

In daily operational practice, when a train enters the system, it comes either with some 

recovery time or with some already experienced delay. Therefore, the generic model 

accepts recovery times and initial delays as inputs, either explicitly or implicitly, hidden 

within the relation between the scheduled arrival time and the earliest possible arrival 

time. Earliest possible arrival time of a train is simply the sum of all minimum running 

times and the minimum dwell times of that train added into the entrance time of that 

train. However, generating consistent data for entrance delays and / or recovery times 

requires the existence of a timetable. Since the model is run on a hypothetical railway 

line, no timetable is in hand and generation of one would be outside the scope of this 

study.  

At this point, it is useful to provide some information about the way rescheduling 

works. In this rescheduling model, the only objective is minimizing the total weighted 

delay. Timetable fidelity is not an objective (There are some studies in the literature, 

which have such objectives). Timetables have all the conflicts resolved in the planning 

stage. When, even one of the trains deviate from the timetable, these conflict resolutions 

are no longer entirely valid. Some of them can be kept fixed. However, if no timetable 

fidelity objective is present, minimizing delay is the only objective, when even one of 

the trains get a delay, it is practical to cancel all the conflict resolutions in the timetable 

and solve the conflict resolution problem from scratch. Therefore, without loss of 

generalization, we can assume that, all trains have zero entrance delays and zero 

recovery times. This is similar to the cases in the railway lines operated without a 
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timetable. These lines do not have a timetable at all, and our line’s timetable is no 

longer valid because of a delay train disrupting the previous conflict resolutions. When 

all trains have zero recovery times and zero entrance delays, their scheduled arrival 

times are assumed to be equal to their earliest possible arrival times and their delays are 

calculated accordingly. In this case, no train could arrive earlier than its scheduled 

arrival time.  

5.2.4 Entrance Times of the Trains 

Trains are introduced into the system at randomly generated times. However, the same 

order given in Table 5.3 are always respected. The entrance times are given in Table 

5.6.  

Table 5.6 Entrance times of the trains into the system, with respect to time 0 (minutes) 

  
Train 

1 

Train 

2 

Train 

3 

Train 

4 

Train 

5 

Train 

6 

Train 

7 

Train 

8 

Train 

9 

Train 

10 

Train 

11 

Instance 1 79 60 95 39 40 49 59 6 9 23 26 

Instance 2 82 57 92 42 43 46 56 9 12 26 23 

Instance 3 46 66 56 37 22 56 33 7 2 19 12 

Instance 4 67 72 81 34 33 54 51 1 4 16 19 

Instance 5 73 70 85 41 43 56 56 9 5 26 25 

Instance 6 72 54 88 33 39 44 58 1 9 14 19 

Instance 7 76 67 91 37 37 48 57 2 8 18 27 

Instance 8 59 69 75 38 31 54 44 9 1 27 19 

Instance 9 82 72 100 41 44 53 62 9 1 23 26 

Instance 10 67 54 83 28 33 44 53 5 2 16 13 

5.2.5 Minimum Headways of the Trains 

As mentioned before, one set of parameters that define the problem instance is the 

headways. There are three different headways required: Arrive-arrive headway, depart-

depart headway and arrive-depart headway. In reality, these take different values for 

each train couple and each station. However, for simplicity, they are assumed to be 

constant in all the instances. In Table 5.7, headway values are provided.  

Table 5. 7 Headways 

Arrive-arrive headway 

(min) 

Depart-depart headway 

(min) 

Arrive-depart headway 

(min) 

2 3 2 

5.3 Numerical Results of the Runs 

The constructed instances are run on a computer, with Intel Core i5- 2400 processor, 3.1 

GHz processor speed and 6.0 GB RAM. In Figure 5.1, the initial state of Instance 1 is 



99 

 

given. In order to make the figure large enough, legend is given in a separate figure 

(Figure 5.2). The figure is a picture of what happens if the trains try to run with their 

maximum speeds (minimum running times). There are 6 x 5 = 30 unresolved meeting 

conflicts. Also, there are an unknown number of following and overtaking conflicts. It 

is unknown, because, if a fast train catches up a slow train, if it is not allowed to 

overtake, the conflict will occur repeatedly. This is not the case for meeting conflicts. 

Once the meeting conflict between an eastbound train and a westbound train is resolved, 

it will not occur again. Hence, the number of meeting conflicts is known, but the 

number of following- overtaking conflicts is not. Long story short, with its initial state, 

the system is a real mess. Reader is strongly encouraged to compare this situation with 

the one given in Figure 5.1.  

 

Figure 5.3 Initial (unsolved) state of instance 1 
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Figure 5.4 Legend of Figure 5.1 

In Figure 5.3, the final solution generated by the algorithm is presented.  

 

Figure 5.5Final solution of instance 1 
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Figure 5.6 Legend of Figure 5.3 

As seen in the figure, all conflicts are resolved. In this instance, there is a congested area 

between stations 7- 10. None of the station / siding capacities are violated in the 

solution, but, it is not clearly visible in Figure 5.3. In Figure 5.5, we zoom into this 

congested area. In the figure, the numbers of secondary lines in the stations are also 

given. This is clearly a feasible solution, no station capacity is violated.  

 

 

Figure 5.7 Congested area of Instance 1 is zoomed in. 

In Table 5.8, the summary of the solution of Instance 1 is provided.  

Graphical solution outcomes of the other instances are not provided here, to avoid 

excessive crowd in the document. The results of all other instances (together with 

instance 1) are summarized in Table 5.8. It can be observed that, there are slight 

differences in the number of binary variables. This is due to the solution space 

restriction algorithm, described in Chapter 4.2. Once a decision variable is fixed, 

AIMMS treats that variable as a parameter and does not count it towards the total 
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number of variables.  Lastly, the really huge level of the number of constraints should 

not fool the reader. Very few of these constraints are indeed effective at any iteration of 

the algorithm. Most of them are lazy constraints as defined in Chapter 4.1. They are 

explicitly considered only if they are violated in the LP relaxation.  

Table 5.8 Summary of the optimal solution of instance 1 

Train 

Number 

Entrance 

time (min) 

Arrival 

time (min) 

Desired 

arrival time 

(min) 

Arrival 

Delay 

(min) 

Weight 
Weighted 

delay (min) 

1 79 248 225 23 6 138 

2 60 232 206 26 6 156 

3 95 273 241 32 6 192 

4 39 245 222 23 4 92 

5 40 240 223 17 4 68 

6 49 248 232 16 4 64 

7 59 289 242 47 4 188 

8 6 287 232 55 3 165 

9 9 271 235 36 3 108 

10 23 305 249 56 3 168 

11 26 305 252 53 3 159 

 

Table 5.9 Summary of all runs 

Instance 

Number 

# of 

Binary 

Variables 

# of 

Continuous 

Variables 

# of 

Constraints 

Max. 

Weighted 

Delay 

(min) 

Total 

Weighted 

Delay 

(min) 

Solution 

time (s) 

1 457 387 38501 192 1498 84 

2 463 387 38462 192 1383 96 

3 501 387 38694 198 1562 101 

4 445 387 37828 195 1593 87 

5 493 387 38694 204 1384 108 

6 498 387 39052 198 1496 116 

7 461 387 38069 198 1408 119 

8 515 387 39049 201 1466 164 

9 462 387 38349 192 1453 130 

10 467 387 38479 204 1370 105 
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5.4 Experiments on a Small Sized Problem Instance to Demonstrate the Effects 

of Speed- Up Methods 

Bigger sized problem instances, such as the ones solved in the previous parts of this 

chapter, cannot be solved in a reasonable time without applying speed- up routines. 

Because of this fact, it is not possible to observe the effects of the individual speed- up 

routines. For this purpose, a smaller (4 + 4) problem instance was set up. In this 

instance, the train entrance orders and frequencies follow the same schemes as the 

experimental runs in this chapter. Minimum running times, weights and headways are 

also the same.  

Table 5.10 Train orders in the 4 + 4 instance 

Train 

numbers 
Directions 

Train 

types 
Weights 

1 Eastbound Fast 6 

2 Westbound Fast 6 

3 Eastbound Semi-fast 6 

4 Westbound Semi-fast 4 

5 Eastbound Slow 4 

6 Westbound Slow 4 

7 Eastbound Slow 4 

8 Westbound Slow 3 

 

Table 5.11 Entrance times of the trains into the system in the 4 + 4 instance with respect 

to time 0 

  
Train 

1 

Train 

2 

Train 

3 

Train 

4 

Train 

5 

Train 

6 

Train 

7 

Train 

8 

Entrance 

times 

(min) 

50 70 35 30 5 50 20 30 

 

The instance is run using the same hardware and software as the previous instances. The 

same instance is solved with four different approaches: No speed- up (base), using only 

lazy constraint attributes (Lazy), using lazy constraint attributes with the solution space 

restriction algorithm (Lazy + Restr) and finally the multiobjective added onto the top of 

them (Lazy + Restr + Multi). At every minute, the optimality gap values are recorded 

and the results are plotted in Figure 5.8. The performance difference is clearly visible in 

the figure.  
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Figure 5.8 Comparison of optimality gaps within five minutes of running 

In Table 5.12, the reader can see what happens if the solution is not interrupted until the 

end. This table also demonstrates the effect of the speed- up routines. Also, for this 

instance, it can be seen that, the solution restriction algorithm did not harm optimality of 

the solution. Although this is not a proof, depending on our personal knowledge in 

railway operations, this algorithm will find the optimal solution for most of the times. In 

Table 5.13, the arrival time and delay data of trains in the final solution is given. The 

versions with and without the solution space restriction algorithm produced exactly the 

same solution as each other. Of course, the last one produced a different objective value 

for the total weighted delay, because it is practically a multiobjective problem. It also 

aims to reduce the maximum weighted delay.  

Table 5.12 Outcomes of the instance with different approaches 

Instance label 

# of 

Binary 

Variables 

# of 

Continuous 

Variables 

# of 

Constraints 

Total 

Weighted 

Delay 

(min) 

Computation 

time (s) 

Base 634 281 12164 707 1156 

Lazy 634 281 12164 707 711 

Lazy + Restr.  298 281 11073 707 93 

Lazy + restr + multi 298 281 11081 797 3 
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Table 5.13 Summary of the optimal solution of the 4 + 4 instance 

Train 

Number 

Entrance 

time 

(min) 

Arrival 

time 

(min) 

Desired 

arrival time 

(min) 

Arrival 

Delay 

(min) 

Weight 

Weighted 

delay 

(min) 

1 50 208 188 20 6 120 

2 10 228 211 17 6 102 

3 35 252 213 39 4 156 

4 30 245 231 14 4 56 

5 5 248 229 19 3 57 

6 50 263 235 28 3 84 

7 20 278 245 33 3 99 

8 70 266 255 11 3 33 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The aim of this study is to develop a mathematical model for rescheduling the traffic on 

a single track rail line. The proposed model is a mixed integer linear programming 

(MILP) model. This model takes into account the station / siding capacity constraints by 

enumeration. Train scheduling problem is an NP complete problem, analogous to some 

extend to job shop scheduling problem, albeit an even more difficult one. The 

combinatorial structure of this NP complete problem clearly demonstrated itself in all of 

the trial runs. Without any heuristic improvement, all it could solve was a 3 + 3 problem 

(3 eastbound plus 3 westbound trains). However, the heuristic improvements proposed 

increased this number to, for now, 6 + 5. The algorithm can solve a 6 + 5 problem 

within a duration of less than three minutes. This is very important. In real operations, 

rescheduling problem has to be solved in a very short time, because it has to be solved 

in a dynamic environment. Trains are not at a static state as the model runs, they are 

moving. Note that, we did not “cheat” while choosing the instances in the trial runs. 

Normally, railway authorities tend to “speed-fleet” the trains in timetabling. In this 

scheme, trains in the same direction enter the system in the order of decreasing speed, 

thus minimizing the number of potential following and overtaking conflicts. However, 

in our instances, the scheme is just the opposite. In order to observe the reaction of 

the model in the worst cases, trains are introduced into the system in the order of 

increasing speed, thus maximizing the potential following and overtaking conflicts. 

Trains are introduced into the system in the intervals of 10 to 20 min / train / direction, 

which is indeed an unrealistically high train frequency for such a long (18 stations, 

approximately 160 km) single track line. This unrealistically high frequency of trains 
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is again (like the difficulty created in choosing the order of trains) chosen for 

observing some kind of worst case performance. 

The proposed speed- up methods are heuristics for solution space restriction,, using lazy 

constraint attribute to reduce the effect of enumerated constraints and adopting a 

multiobjective approach to first find the Maximum Weighted Delay and then Total 

Weighted Delay, using the feasible solution from the former. All of these algorithms 

provided significant improvements of computation time for the specific instances.  

The solution space restriction algorithm shortened the solution time of the model quite 

radically, as shown in Chapter 5.4. Indeed, in its presolve stage, CPLEX applies its own 

algorithms to eliminate some of the constraints and variables. However, we can be 

somewhat more aggressive in elimination, because, our algorithm is indeed based on a 

solution of the problem, albeit a relaxed version (station / siding capacities). Since this 

algorithm is restricting the places of meetings, it is not possible to provide a formal 

proof of the optimality of the solutions. However, based on our own knowledge and 

experience in railway operations, we can argue that, in the optimal solution, it is highly 

unlikely that the meeting will need to be outside the region defined by this restriction 

algorithm. The region is assumed to contain five stations. Carrying the meeting point 

outside this region creates an excessive waiting time for one of the trains and this most 

probably contradicts with the maximum weighted delay objective.  

The multiobjective approach provided a surprisingly good boost for solution speed. It 

provided in the order of 90% improvement in the computation time. In the trial runs, it 

was observed that, the majority of time is consumed by the first problem, 

Minimum_Maximum_Weighted_Delay. After the first problem is solved, the second 

and major problem is indeed very quickly solved, in only a few seconds. This is most 

probably due to the properties and capabilities of CPLEX. Both problems have the same 

feasibility domains, thus, any combinations of decision variables feasible for one will be 

feasible for the other. Most probably, CPLEX can improve the solution with simple left- 

shifts and quickly arrives at the optimum solution. Since the problem is solved in a 

heuristically restricted solution space, it is not possible to present a formal proof of 

optimality. However, at least the modeling approach is designed towards obtaining a 

pareto- optimal solution, because the problem is now a multi- objective one. However, 

it is not a very typical multi- objective problem. There is a slight contradiction between 
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the objectives (see Table 4.2), but, also, a positive correlation exists. The positive 

correlation between two objectives may also help for increase in the solution speed.  

6 + 5 trains may seem to be a small problem instance, and from timetabling point of 

view, it indeed is. However, this is not a timetabling problem. This is a rescheduling 

problem. Rescheduling algorithms have to be run in dynamic environments. Trains are 

moving and they can always gain additional primary delays. This necessitates the model 

to be rerun. This puts a practical limit to the time window of a rescheduling problem. 

Time window is a preset limit to the scope of the rescheduling problem. Two hours is 

quite a reasonable limit, because, the larger the time window is, the more likely the 

solution generated by the model is to become invalid soon. 6 + 5 is quite a high number 

of trains to be scheduled on a single track railway line. In most of the single track 

railways, such a big traffic is not expected. It can be observed in exceptional emergency 

cases.  

Future work on this model will include adopting clever decomposition algorithms. In 

this model, meetings in stations with more than one secondary line are defined with two 

decision variables per station per train couple. This puts a huge computational workload 

onto the model and it is unnecessary for most of the cases. Such variables are needed 

only when siding capacity constraints for more than one eastbound trains and more than 

one westbound trains will be binding at a particular station. Lazy constraint attribute 

prevents some of the workload generated, but, in this case, the variables are also “lazy.” 

Thus, future work will include such decomposition algorithms.  
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