T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TÜRKİYE'DE YETİŞEN BAZI *TANACETUM* L. TÜRLERİ ÜZERİNDE FİTOKİMYASAL ARAŞTIRMALAR VE BİYOAKTİVİTE ÇALIŞMALARI

HÜSEYİN SERVİ

DOKTORA TEZİ KİMYA ANABİLİM DALI ORGANİK KİMYA PROGRAMI

DANIŞMAN PROF. DR. NÜKET ÖCAL

İSTANBUL, 2016

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TÜRKİYE'DE YETİŞEN BAZI *TANACETUM* L. TÜRLERİ ÜZERİNDE FİTOKİMYASAL ARAŞTIRMALAR VE BİYOAKTİVİTE ÇALIŞMALARI

Hüseyin SERVİ tarafından hazırlanan tez çalışması 23.11.2016 tarihinde aşağıdaki jüri tarafından Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı'nda **DOKTORA TEZİ** olarak kabul edilmiştir.

Tez Danışmanı

Prof. Dr. Nüket ÖCAL Yıldız Teknik Üniversitesi

Eş Danışman Prof. Dr. Nezhun GÖREN Yıldız Teknik Üniversitesi

Jüri Üyeleri Prof. Dr. Nüket ÖCAL Yıldız Teknik Üniversitesi

Prof. Dr. Belkız BİLGİN ERAN Yıldız Teknik Üniversitesi

Prof. Dr. Gülaçtı TOPÇU Bezmialem Vakıf Üniversitesi

Prof.Dr. Ufuk KOLAK İstanbul Üniversitesi

Prof.Dr. Zuhal TURGUT Yıldız Teknik Üniversitesi

Bu çalışma, TÜBİTAK-BİDEB 2211-Yurt İçi Doktora Burs Programı tarafından desteklenmiştir.

Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü' nün 2014-01-02-DOP04 numaralı projesi ile desteklenmiştir.

Tez çalışması Yıldız Teknik Üniversitesi Moleküler Biyoloji ve Genetik Bölümü Biyotransformasyon ve Mikrobiyoloji laboratuarında gerçekleşmiştir. Laboratuar alt yapısı "Bitkisel Orijinli Pestisitler Araştırma ve Uygulama Merkezi (BOPAM) ve Ünitelerinin Kurulması (2007-2010)" başlıklı ve 27-DPT-01-07-01 numaralı DPT destekli projeyle kurulmuştur.

ÖNSÖZ

"Türkiye'de Yetişen Bazı *Tanacetum* L. Türleri Üzerinde Fitokimyasal ve Biyoaktivite Çalışmaları" başlıklı Doktora tezimin gerçekleştirilmesinde bana her türlü olanağı sağlayan Danışmanım Prof. Dr. Nüket Öcal'a, değerli bilgileriyle bana ışık tutan ve tezin her aşamasında bana yol gösteren Eş danışmanım Prof. Dr. Nezhun Gören'e sonsuz teşekkürlerimi sunarım.

Laboratuvar çalışmalarında ve izole edilen maddelerin NMR spektrumları çekilmesinde yardımcı olan desteğini hiçbir zaman esirgemeyen Uz. Pınar Çağlar Eyol'a, flavonoidlerin UV/VIS kaymalarını birlikte yaptığımız Dr. Ali Şen'e, uçucu yağların araştırılmasını ve aktivite testlerinin yapılmasını sağlayan Yrd. Doç. Dr. Kaan Polatoğlu, Yrd. Doç. Dr. Yasemin Yücel Yücel ve Ayşe Nalbantsoy'a, polarimetre çalışmalarında yardımcı olan Dr. Ömer Tahir Günkara'ya çok teşekkür ederim.

Tezin yazım aşamasında desteğini esirgemeyen ve laboratuvar çalışmalarında yardımcı olan Esra Yıldırım'a, manevi desteklerinden dolayı Nülüfer ve Hüseyin Şahin'e çok teşekkür ederim.

Doktora tezim süresince, yaşadığım tüm zorlukları, engelleri aşmama yardım eden ve bana her zaman destek olan canım aileme çok teşekkür ederim.

Kasım, 2016

Hüseyin SERVİ

İÇİNDEKİLER

Sayfa
SİMGE LİSTESİix
KISALTMA LİSTESİ x
ŞEKİL LİSTESİxii
ÇİZELGE LİSTESİxx
RESİM LİSTESİ
ÖZETxxiv
ABSTRACTxxvi
BÖLÜM 1
GİRİS 1
, 1.1 Literatür Özeti
1.2 Tezin Amacı
1.3 Hipotez
GENEL BİLGİLER
2.1 Botanik Bilgiler
2.1.1 Compositate (Asteraceae) Familyasi
2.1.2 <i>Tanacetum</i> L. Türlerinin Halk Arasında Kullanımı ve Biyolojik
Etkileri
2.1.4 Tanacetum balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson
Türü 7
2.1.5 <i>Tanacetum mucroniferum</i> HubMor. & Grierson Türü
2.2 Sekonder Metabolitler
2.2.1 repenier
2.2.1.1 Wohoterpenner
2.2.1.3 Triterpenler

2.2.2	2 Flavonoidler	
2.2.3	3 Kumarinler	
2.3	Tanacetum Cinsindeki Bitkilerden Elde Edilen Seskiterpen Laktonl	lar ve
	Flavonoidler	28
2.3.1	1 Tanacetum balsamita subsp. balsamitoides ve Tanacetum mucroniferum Bitkileri Üzerine Yapılmış Çalışmalar	40
BÖLÜM 3		
DENEYSEL I	BÖLÜM	47
3.1	Bitkisel Materval	
3.2	İzolasyon Yöntemleri	
3.2.1	1 Ekstraksiyon	
3.2.2	2 Kromatografik Yöntemler	
3.	.2.2.1 Kolon kromatografisi (CC)	
3.	.2.2.2 Partisyon Kromatografisi	49
3.	.2.2.3 Moleküler Elek Kromatografisi (Sephadex LH-20)	49
3.	.2.2.4 İnce Tabaka Kromatografisi (İTK)	50
3.	.2.2.5 Preparatif İnce Tabaka Kromatografisi	50
3.	.2.2.6 Orta basınçlı sıvı kromatografisi (MPLC)	51
3.	.2.2.7 Yüksek performanslı ince tabaka kromatografisi (HPTLC)	51
3.	.2.2.8 Asetilleme Reaksiyonu	52
3.3	Spektroskopik Yöntemler	52
3.3.	1 Ultraviyole Spektroskopisi (UV/VIS)	52
3.3.2	2 Infra-Red spektroskopisi (IR)	53
3.3.3	3 Nükleer manyetik rezonans spektroskopisi (NMR)	53
3.3.4	4 Kütle Spektroskopisi (MS)	53
3.4	Kullanılan Kimyasal Materyaller ve Cihazlar	54
3.5	Yapılan Biyolojik Aktivite Çalışmaları	
3.5.1	1 Antikolinesteraz aktivite	56
3.5.2	2 Antioksidan aktivite	
3.5.3	3 Sitotoksik aktivite	57
BÖLÜM 4		
BULGULAR.		58
4.1 <i>Ta</i>	nacetum balsamita subsp. balsamitoides (TBB) bitkisinin EA	
eks	stresinden izole edilen maddeler	
4.1.1	1 Fr4-TBB IIIC fraksivonundan izole edilen maddeler	
4.	.1.1.1 TBB IIIC (184-224) 2 (2+3)=1 α -Asetoksi-11 β (H).13-	
	dihidrodouglanin (1α -acetoxy-11 β (H),13-dihydrodouglanin).	
4.	.1.1.2 TBB IIIC (225-260) 2.2= Taurin	68
4.	.1.1.3 TBB IIIC (184-224) 2.5 = β-Sitosterol	74
4.1.2	2 Fr6-TBB IVB+VA+VB fraksiyonundan izole edilen maddeler	75
4.	.1.2.1 TBB IVB+VA+VB (51-79) (46-52) 2=Santonin	79
4.	.1.2.2 TBB IVB+VA+VB (27-50) 4.3=1α-asetoksi-4α-hidroksi-	
	5α,6β,7α,11β-H-ödesm-2-en-12,6-olide (Chrysanthemolide)	85
4.	.1.2.3 TBB IVB+VA+VB (51-79) (69-77) 2.5=Pallensis	91
4.	.1.2.4 TBB IVB+VA+VB (51-79) (78-127) 4.3=1α-asetoksi-3α-hid	lroksi-
	5α,6β,7α,11β-H-ödesm-4(15)en-12,6-olide (1-Asetilerivanin)) 97

4.1.2.5 TBB IVB+VA+VB (51-79) (69-77) 2.6.1 = 1,10-Epoksispiciformi	n
(1,10-Epoxyspiciformin)10)2
4.1.2.6 TBB IVB+VA+VB (51-79) (62-68) $9 = 8\alpha$ -Hidroksisantamarin (86)	α-
Hydroxysantamarin) 10)8
4.1.2.7 TBB IVB+VA+VB (51-79) (69-77) 3.4.2=Tamirin	4
4.1.2.8 TBB IVB+VA+VB (51-79) (68-77) 3.4.1=1α-Asetoksi-3β-	
hidroksi, 5 α , 6 β , 7 α , 11 β (H)-ödesm-4(15)-en-6,12-olide (1 α -	
Asetoksi-3- <i>epi</i> -erivanin)12	21
4.1.2.9 TBB IVB+VA+VB (27-50) 4.1=5-Hidroksi-3',4',6,7-	
tetrametoksiflavon	29
4.1.2.10 TBB IVB+VA+VB (51-79) (62-68) $2.3 = 5,4'$ -Dihidroksi-6,7,3'-	
trimetoksiflavon (Cirsilineol)	32
4.1.2.11 TBB IVB+VA+VB (51-79) (62-68) $2.4 = 5.3'$ -Dihidroksi-6, 7, 4'	,
5' tetrametoksitlavon	35
4.1.3 Fr5-1BB IIID+IVA traksiyonundan izole edilen maddeler	58
4.1.3.1 IBB IIID+IVA (50-59) 4.2=Artemin)9 1 4
4.1.3.2 IBB IIID+IVA (28-35) 4.3.2=Artesin	14
4.1.5.5 IBD IIID+IVA (26-55) 4.4.5=Germacranonide with an 1,5-ether	50
A 1 3 4 TBB IIID IVA (28 35) 4 4 7–7 hidrokojkumarin (Umbelliferone))0
4.1.5.4 TBD IIID+IVA (28-55) 4.4.7–7-IIIdIOKSIKullialiii (Olioeliiieloile) 15	56
4 1 4 Fr7-TBB IVC fraksivonundan izole edilen maddeler	58
$4.1.4.1$ TBB IVC (76-175) (30-33) 6=1 α -Hidroksi-deasetilirinol-4 α 5β-	/0
epoksit (1 α -Hydroxy-desacetylirinol-4 α 5 β -epoxide) 16	51
4.1.4.2 TBB IVC (76-175) (30-33) $4.2=1$ α . 8 α -Dihidroksi-10- <i>eni</i> -arbusculi	in
A $(1\alpha.8\alpha$ -Dihydroxy-10- <i>epi</i> -arbusculin A)	57
4.1.4.3 TBB IVC (12-75) 29 (4.2) = Tavulin	73
4.2 Tanacetum balsamita subsp. balsamitoides (TBB) bitkisinin MeOH	
ekstresinden izole edilen maddeler 17	79
4.2.1 TBB MeOH/CH ₂ CI ₂ (60-89) 2.4.2=1α-Hidroksi-1-desoksotamirin	
(Tanachin)18	34
4.2.2 TBB MeOH/EA (27-46) 7.2=Desasetil-β-siklopyrethrosin (Desacetyl-β	}-
cyclopyrethrosin)19) ()
4.2.3 TBB MeOH/CH ₂ CI ₂ (15-20) 2.5.2.2=5,4'-Dihidroksi-6,7-	
dimetoksiflavon (Cirsimaritin)) 7
4.2.4 TBB MeOH/CH ₂ Cl ₂ (15-20) 2.5.3. $3=5,7,3'$ -Trihidroksi-	
6,4',5'trimetoksitlavon)]
4.2.5 TBB MeOH/CH ₂ Cl ₂ (15-20) 1.4.1.1.1=Isofraxidin	15
4.2.6 IBB MeOH/CH ₂ Cl ₂ (2-9) $3=7$ -Metoksikumarin (Herniarin))/
4.2.7 IBB MeOH/CH ₂ Cl ₂ (15-20) 2.2=Scopoletin	19
4.5 <i>Tanacetum mucroniferum</i> (TM) bitkisinin EA ekstresinden izole edilen	11
1 2 1 Er7 TM VD VE fraksivonundan izola adilan maddalar	11
4.3.11771 VD+VE (66.85) 5.3.2-Arconin 21	15
+.5.1.1 IVI VDTVE (00-03) $5.5.2$ -Alballii	5
$\pi \cdot 3 \cdot 1 \cdot 2 \operatorname{TW} * D + * D (00 - 03) 3 \cdot 4 - 20 \cdot A SCIONSIGLICCALLIE (20 - 20)$)1
4313 TM VD+VF (51-65) 5 1=18-Hidroksi-38-seetoksi-47 10(14)-dian	-1
68.7α 11 α (H)-6 12-olide (Mucronolide) 27	,)7
4314 TM VD+VE (27-33) 4=Salvigenin 24	- ' 18
-5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	.0

4.3.1.5 TM VD+VE (34-50) 2.3.1=Scoparone	. 252
4.3.2 Fr6-TM VB+VC fraksiyonundan izole edilen maddeler	. 255
4.3.2.1 TM VB+VC (16-145) 3.2.2=3β-Asetoksi-1β,10α-epoksi-6β(H)-	-
7,11α(H)-germakra-4Z-en-6,12-olide (Ajanolide 1β,10α-epoxic	de)
	. 257
4.3.2.3 TM VB+VC (16-145) 6.2 Çöken=5,7,4'-Trihidroksi-6,3'-	
dimetoksiflavon (Jaceosidin)	. 263
4.3.2.4 TM VB+VC (16-145) 4.2.1= 5,3',4'-Trihidroksi-3,6,7,5'-	
tetrametoksiflavon	. 266
4.3.3 Fr5-TM IVB+IVC+IVD ve Fr4-TM IIID+IVA fraksiyonlarından ize	ole
edilen maddeler	. 270
4.3.3.1 TM IVB+IVC+IVD (115-124) 2.5=α-Amirin	. 271
4.4 Tanacetum mucroniferum (TM) bitkisinin MeOH ekstresinden izole edil	en
maddeler	. 273
4.4.1 TM MeOH/CH ₂ CI ₂ (15-22) 7.2.3=1α,3β,10α-Trihidroksi-7α,11αH-	
germakra-4-en-12-6α-olide (1α,3β,10α-Trihydroxy-7α,11αH-germa	cra-
4-en-12-6α-olide)	. 275
4.5 Biyolojik Aktivite	. 283
BÖLÜM 5	
BOLOM 5	
SONUC VE ÖNERİLER	. 285
	200
	. 298
ÖZGEÇMİŞ	. 316

SIMGE LISTESI

°C	Derece
cm^{-1}	Frekans
g	Gram
Hz	Hertz
J	Etkileşim sabiti
\mathbf{M}^+	Moleküler iyon piki
mg	Miligram
MHz	Megahertz
mL	Mililitre
<i>m/z</i> ,	Kütle/yük
nm	Nanometre
ppm	Milyonda bir parçacık
δ	Kimyasal kayma değeri
λ	Dalga boyu
%	Yüzde

KISALTMA LİSTESİ

AlCl3Alūminyum klorūrAsetil CoAAsetil koenzim ACCKolon KromatografisiCDCl3Dötöro kloroformCc(SO4)2,4H2OSeryum sülfat tetrahidratCHCl3Kloroform1 ³ C NMRKarbon Nükleer Manyetik RezonansCOSYKorelasyon SpektroskopisidDubletddDublet dubletD20Döteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3B03Borik asitHCIHidroklorik asitHMBCHeteronükleer Coklu Bağ KorelasyonuHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRInfrared SpektroskopisiMMCMultipletMeOHMetanolMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspTKKPreperatif İnce Tabaka KromatografisiMBCHetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiNMRNükleer Manyetik RezonanspTKPreperatif İnce Tabaka KromatografisiNARNükleer Manyetik RezonansPTKPreperatif İnce Tabaka Kromatografisi	APT	Bağlı Proton Testi
Asetil Koenzim ACCKolon KromatografisiCDCl3Dötöro kloroformCe(SQ4)2, 4H2OSeryum sülfat tetrahidratCHCl3Kloroform13C NMRKarbon Nükleer Manyetik RezonansCOSYKorelasyon SpektroskopisidDubletddDublet dubletD2ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH3BO3Borik asitHCIHidroklorik asitHMBCHeteronükleer Coklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performansli Incc Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEIstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiITKİnce Tabaka KromatografisiMBOHMetanolMeOHMetanolMeDH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	AlCl ₃	Alüminyum klorür
CCKolon KromatografisiCDC13Dötöro kloroformCe(SO4)2, 4H2OSeryum sülfat tetrahidratCHC13Kloroform13°C NMRKarbon Nükleer Manyetik RezonansCOSYKorelasyon SpektroskopisidDubletddDublet dubletD2ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGCMSGaz Kromatografisi/Kütle SpektroskopisiH3BO3Borik asitH3BO3Borik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisimMultipletMeOHMetanolMeOHMetanolMeDH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	Asetil CoA	Asetil koenzim A
CDCl3Dötöro kloroformCe(SO ₄) ₂ .4H ₂ OSeryum sülfat tetrahidratCHCl3Kloroform ¹³ C NMRKarbon Nükleer Manyetik RezonansCOSYKorelasyon SpektroskopisidDubletddDublet dubletD ₂ ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO ₄ Sülfirik asitH3BO ₃ Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiITKİnce Tabaka KromatografisimMultipletMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPAPAAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	CC	Kolon Kromatografisi
Ce(SO ₄)2. 4H ₂ OSeryum sülfat tetrahidratCHCl3Kloroform ¹³ C NMRKarbon Nükleer Manyetik RezonansCOSYKorelasyon SpektroskopisidDubletdDublet dubletD ₂ ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH ₂ SO ₄ Sülfirik asitH ₃ BO ₃ Borik asitHClHidroklorik asitHMRCHeteronükleer Çoklu Bağ Korelasyonu ¹⁴ NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiITKİnce Tabaka KromatografisiMEOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiMSKütle SpektroskopisiMARNükleer Manyetik RezonansPITKPreperatif İnce Tabaka Kromatografisi	CDCl ₃	Dötöro kloroform
CHCl3Kloroform ¹³ C NMRKarbon Nükleer Manyetik RezonansCOSYKorelasyon SpektroskopisidDubletddDublet dubletD2ODöteryum oksitEAEtil asetatEl/MSElektron Impakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMRCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisiMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNAOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	$Ce(SO_4)_2$.4H ₂ O	Seryum sülfat tetrahidrat
 ¹³C NMR Karbon Nükleer Manyetik Rezonans COSY Korelasyon Spektroskopisi Dublet Dublet dublet D2O Döteryum oksit EA Etil asetat Elektron İmpakt/Kütle Spektroskopisi GC/MS Gaz Kromatografisi/Kütle Spektroskopisi GC/MS Gaz Kromatografisi/Kütle Spektroskopisi H2SO4 Sülfirik asit H3BO3 Borik asit HCI Hidroklorik asit HMBC Heteronükleer Çoklu Bağ Korelasyonu ¹H NMR Proton Nükleer Manyetik Rezonans HPTLC Yüksek Performanslı İnce Tabaka Kromatografisi HSQC Heteronükleer Tek Bağ Kuantum Korelasyonu ISTE İstanbul Üniversitesi Eczacılık Fakültesi Herbaryumu IPP İzopentil difosfat IR İnfrared Spektroskopisi İTK İnce Tabaka Kromatografisi MeOH Metanol MeOH Metanol MeOH Metanol MeOH Metanol Masınçlı Svı Kromatografisi MS Kütle Spektroskopisi NaOAc Sodyum asetat NMR Nükleer Manyetik Rezonans PITK Preperatif İnce Tabaka Kromatografisi PRAP Antioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum 	CHCl3	Kloroform
COSYKorelasyon SpektroskopisidDubletddDublet dubletD2ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiITKİnce Tabaka KromatografisiMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNAOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	¹³ C NMR	Karbon Nükleer Manyetik Rezonans
dDubletddDublet dubletD2ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMRProton Nükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisiMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	COSY	Korelasyon Spektroskopisi
ddDublet dubletD2ODöteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHC1Hidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRInfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNAQAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka Kromatografisi	d	Dublet
D20Döteryum oksitEAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2S04Sülfirik asitH3B03Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ KorelasyonuI ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka Kromatografisi	dd	Dublet dublet
EAEtil asetatEI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ KorelasyonuI ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka Kromatografisi	D_2O	Döteryum oksit
EI/MSElektron İmpakt/Kütle SpektroskopisiGC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonansPITKPreperatif İnce Tabaka Kromatografisi	EA	Etil asetat
GC/MSGaz Kromatografisi/Kütle SpektroskopisiH2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka Kromatografisi	EI/MS	Elektron İmpakt/Kütle Spektroskopisi
H2SO4Sülfirik asitH3BO3Borik asitHCIHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNARNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	GC/MS	Gaz Kromatografisi/Kütle Spektroskopisi
H3BO3Borik asitHClHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNARNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	H_2SO_4	Sülfirik asit
HClHidroklorik asitHMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNARNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	H_3BO_3	Borik asit
HMBCHeteronükleer Çoklu Bağ Korelasyonu ¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNAQAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	HCl	Hidroklorik asit
¹ H NMRProton Nükleer Manyetik RezonansHPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	HMBC	Heteronükleer Çoklu Bağ Korelasyonu
HPTLCYüksek Performanslı İnce Tabaka KromatografisiHSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	¹ H NMR	Proton Nükleer Manyetik Rezonans
HSQCHeteronükleer Tek Bağ Kuantum KorelasyonuISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	HPTLC	Yüksek Performanslı İnce Tabaka Kromatografisi
ISTEİstanbul Üniversitesi Eczacılık Fakültesi HerbaryumuIPPİzopentil difosfatIRİnfrared SpektroskopisiITKİnce Tabaka KromatografisimMultipletMeOHMetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	HSQC	Heteronükleer Tek Bağ Kuantum Korelasyonu
IPPİzopentil difosfatIRİnfrared SpektroskopisiITKİnce Tabaka KromatografisimMultipletMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	ISTE	İstanbul Üniversitesi Eczacılık Fakültesi Herbaryumu
IRİnfrared SpektroskopisiİTKİnce Tabaka KromatografisimMultipletMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	IPP	İzopentil difosfat
İTKİnce Tabaka KromatografisimMultipletMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	IR	İnfrared Spektroskopisi
mMultipletMeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	İTK	İnce Tabaka Kromatografisi
MeOHMetanolMeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	m	Multiplet
MeOH-d4Dötöro MetanolMPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	MeOH	Metanol
MPLCOrta Basınçlı Sıvı KromatografisiMSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	MeOH-d ₄	Dötöro Metanol
MSKütle SpektroskopisiNaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	MPLC	Orta Basınçlı Sıvı Kromatografisi
NaOAcSodyum asetatNMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum)	MS	Kütle Spektroskopisi
NMRNükleer Manyetik RezonanspITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	NaOAc	Sodyum asetat
pITKPreperatif İnce Tabaka KromatografisiPRAPAntioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	NMR	Nükleer Manyetik Rezonans
PRAP Antioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum	pITK	Preperatif İnce Tabaka Kromatografisi
	PRAP	Antioksidan gücünü azaltan fosfomolibden (Phosphomolybdenum

	Reducing Antioxidant Power)
SD	Spin-spin Etkileşmesi
Т.	Tanacetum
t	Triplet
UV	Mor Ötesi
UV/VIS.	Mor Ötesi/Görünür Alan Spektroskopisi

ŞEKİL LİSTESİ

Sayfa

	7
Şekil 2.1 Tanacetum balsamita subsp. balsamitoides bitkisinin Turkiye de yayılışı.	/
Şekil 2.2 İzonron (2 motil 1.2 bütadion)	9 10
Şekil 2.3 izopren (2-metil-1,5-butadien)	10 11
Şekil 2.4 izopren birimlerinin bağlanma şekilleri	11
Şekil 2.5 Sekonder metabolitlerin oluşumu.	12
Şekil 2.6 Mevalonik asıt-5-pirolosial oluşumu	13
Şekil 2.7 izopentil pirifoafata izamanayanı	13
Şekil 2.8 izopentil pirilosiatin izomerasyonu	14
Şekil 2.9 Geranii pirofostatin oluşumu	14
Şekil 2.10 Farnesil pirotostatin oluşumu	14
Şekil 2.11 Geranii-geranii pirifostat oluşumu	15
Şekil 2.12 Terpenlerin Ölüşümü	10
Şekil 2.13 Monoterpenierin iskelet yapıları	/ 1
Şekil 2.14 Siklikla karşılaşılan seskiterpen laktonların yapıları	18
Şekil 2.15 Seskiterpenlerin iskelet yapıları	19
Şekil 2.16 Genel triterpen iskeletleri	21
Şekil 2.1 / 2-tenil benzopiran yapısı	22
Şekil 2.18 Flavonoidlerin yapıları	24
Şekil 2.19 α -piron, γ -piron ve kumarın bileşikleri	25
Şekil 2.20 Kumarın Kromon bileşikleri	25
Şekil 2.21 Mono, di-sübstitüe kumarinler	26
Şekil 2.22 Piron halkasına mono,di-sübstitüe kumarınler	26
Şekil 2.23 Benzen ve piron halkasında sübstitüent taşıyan kumarinler	26
Şekil 2.24 Benzen halkasına halkalı yapıların kondenzasyonu ile meydana gelen	27
Şekil 2.25 Piron halkasına halkalı yapıların kondenzasyonu ile meydana gelen	
kumarinler	27
Şekil 2.26 Dimer kumarınler	27
Şekil 2.27 2 β ,3 β ,4 α -Trimetil-3 α (3-metilen-4-pentenil)1-siklohekzanon (Balsamito	n)
maddesinin moleküler yapısı	41
Şekil 2.28 Tanabalın maddesinin yapısı	42
Şekil 4.1 1 α -Asetoksi-11 β (H),13-dihidrodouglanin moleküler yapısı	62
Şekil 4.2 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹ H-NMR spektrumu	64
Şekil 4.2 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹ H-NMR spektrumu	64
Şekil 4.2 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹ H-NMR spektrumu	65
Şekil 4.2 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹ H-NMR spektrumu	65
Şekil 4.3 1 α -Asetoksi-11 β (H),13-dihidrodouglanin APT spektrumu	66
Şekil 4.4 1 α -Asetoksi-11 β (H),13-dihidrodouglanin COSY spektrumu	66

Şekil 4.5 1α-Asetoksi-11β(H),13-dihidrodouglanin HSQC spektrumu	. 67
Şekil 4.6 1α-Asetoksi-11β(H),13-dihidrodouglanin HMBC spektrumu	. 67
Şekil 4.7 Taurin moleküler yapısı	. 68
Şekil 4.8 Taurin ¹ H NMR spektrumu	. 70
Şekil 4.8 Taurin ¹ H NMR spektrumu	. 70
Şekil 4.8 Taurin ¹ H NMR spektrumu	.71
Şekil 4.8 Taurin ¹ H NMR spektrumu	.71
Şekil 4.9 Taurin APT spektrumu	.72
Şekil 4.10 Taurin COSY spektrumu	.72
Şekil 4.11 Taurin HSQC spektrumu	.73
Şekil 4.12 Taurin HMBC spektrumu	.73
Şekil 4.13 β-Sitosterol moleküler yapısı	.74
Şekil 4.14 β-Sitosterol ¹ H-NMR spektrumu	.74
Şekil 4.15 Santonin moleküler yapısı	. 79
Şekil 4.16 Santonin ¹ H-NMR spektrumu	. 81
Şekil 4.16 Santonin ¹ H-NMR spektrumu	. 81
Şekil 4.16 Santonin ¹ H-NMR spektrumu	. 82
Şekil 4.16 Santonin 'H-NMR spektrumu	. 82
Şekil 4.17 Santonin COSY spektrumu	. 83
Şekil 4.18 Santonin APT spektrumu	. 83
Şekil 4.19 Santonin HSQC spektrumu	. 84
Şekil 4.20 Santonin HMBC spektrumu	. 84
Şekil 4.21 Chrysanthemolide moleküler yapısı	. 85
Şekil 4.22 Chrysanthemolide ¹ H NMR spektrumu	. 87
Şekil 4.22 Chrysanthemolide ¹ H NMR spektrumu	.87
Şekil 4.22 Chrysanthemolide ¹ H NMR spektrumu	. 88
Şekil 4.22 Chrysanthemolide ⁴ H NMR spektrumu	. 88
Şekil 4.23 Chrysanthemolide COSY spektrumu	. 89
Şekil 4.24 Chrysanthemolide AP1 spektrumu	. 89
Şekil 4.25 Chrysanthemolide HSQC spektrumu	.90
Şekil 4.26 Chrysanthemolide HMBC spektrumu	.90
Şekil 4.27 Pallensis molekuler yapısı	.91
Sekil 4.28 Pallensis 'H-NMR spektrumu	.93
Sekil 4.28 Pallensis H-NMR spektrumu	.93
Şekil 4.28 Pallensis H-NMR spektrumu	.94
Sekii 4.29 Pailensis COSY spektrumu	.95
Sekil 4.30 Pallensis APT spektrumu.	.95
Şekli 4.31 Pallensis NOESY spektrumu	.90
Şekli 4.21 Pallensis NOESY spektrumu	.90
Şekil 4.32 1-Asetileriyanın molekuler yapısı	.9/
Sekil 4.33 I-Asetilerivanin H NMR spektrumu	.99
Solvil 4.22.1. A sotiloriyonin ¹ UNMD spoltmumy	.99 100
Solvil 4.22 1 A sotiloriyonin ¹ H NMR spektrumu	100
Solvil 4.24.1 A sotiloriyonin COSY NMD snaktrymy	100
Solvil 4.25 1 A sotiloriyonin ADT socktrumy	101 101
Sekil 4.36.1.10. Enokeisnigiformin moleküler vanışı	101
Sekil 4 37 1 10 Epoksispiciformin ¹ H NMP spektrumu	102 107
Sakil 4 27 1 10 Epoksispiciformin ¹ U NMD snaktrumu	104 104
gekii 7.57 1,10-Epoksispienomini 11 tuurk spekuuniu	104

Şekil 4.37 1,10-Epoksispiciformin ¹ H NMR spektrumu	105
Şekil 4.37 1,10-Epoksispiciformin ¹ H NMR spektrumu	105
Şekil 4.38 1,10-Epoksispiciformin COSY spektrumu	106
Şekil 4.39 1,10-Epoksispiciformin APT spektrumu	106
Şekil 4.40 1,10-Epoksispiciformin HSQC spektrumu	107
Şekil 4.41 1,10-Epoksispiciformin HMBC spektrumu	107
Şekil 4.42 8α-Hidroksisantamarin moleküler yapısı	108
Şekil 4.43 8α-Hidroksisantamarin ¹ H NMR spektrumu	110
Şekil 4.43 8α-Hidroksisantamarin ¹ H NMR spektrumu	110
Şekil 4.43 8α-Hidroksisantamarin ¹ H NMR spektrumu	111
Şekil 4.43 8α-Hidroksisantamarin ¹ H NMR spektrumu	111
Şekil 4.44 8α-Hidroksisantamarin COSY spektrumu	112
Şekil 4.45 8α-Hidroksisantamarin APT spektrumu	112
Şekil 4.46 8α-Hidroksisantamarin HSQC spektrumu	113
Şekil 4.47 8α-Hidroksisantamarin HMBC spektrumu	113
Şekil 4.48 Tamirin moleküler yapısı	114
Şekil 4.49 Tamirin ¹ H NMR spektrumu	116
Şekil 4.49 Tamirin ¹ H NMR spektrumu	116
Şekil 4.49 Tamirin ¹ H NMR spektrumu	117
Şekil 4.49 Tamirin ¹ H NMR spektrumu	117
Şekil 4.49 Tamirin ¹ H NMR spektrumu	118
Şekil 4.49 Tamirin ¹ H NMR spektrumu	118
Şekil 4.50 Tamirin COSY spektrumu	119
Şekil 4.51 Tamirin APT spektrumu	119
Şekil 4.52 Tamirin HSQC spektrumu	120
Şekil 4.53 Tamirin HMBC spektrumu	120
Şekil 4.54 1α-Asetoksi-3- <i>epi</i> -erivanin moleküler yapısı	122
Şekil 4.55 1α-Asetoksi-3- <i>epi</i> -erivanin ¹ H NMR spektrumu	124
Şekil 4.55 1α-Asetoksi-3- <i>epi</i> -erivanin ¹ H NMR spektrumu	124
Şekil 4.55 1α-Asetoksi-3- <i>epi</i> -erivanin ¹ H NMR spektrumu	125
Şekil 4.55 1α-Asetoksi-3- <i>epi</i> -erivanin ⁴ H NMR spektrumu	125
Şekil 4.56 1α-Asetoksi-3- <i>epi</i> -erivanin COSY spektrumu	126
Şekil 4.57 1α-Asetoksi-3- <i>epi</i> -erivanin APT spektrumu	126
Şekil 4.58 1α-Asetoksi-3- <i>epi</i> -erivanin HSQC spektrumu	127
Şekil 4.59 1α-Asetoksi-3- <i>epi</i> -erivanin HMBC spektrumu	127
Şekil 4.60 lα-Asetoksi-3- <i>epi</i> -erivanin NOESY spektrumu	128
Şekil 4.61 1 α -Asetoksi-3- <i>epi</i> -erivanın kütle spektrumu	128
Şekil 4.62 5-Hidroksi-3',4',6,7-tetrametoksiflavon moleküler yapısı	129
Şekil 4.63 5-Hidroksi-3',4',6,7-tetrametoksiflavon UV/VIS kayma spektrumlari	130
Şekil 4.64 5-Hidroksi-3',4',6,/-tetrametoksiflavon H-NMR spektrumu	131
Şekil 4.64 5-Hidroksi-3',4',6,/-tetrametoksiflavon H-NMR spektrumu	131
Şekil 4.65 Cirsilineol molekuler yapısı	132
Şekil 4.66 Cirsilineol [•] H NMR spektrumu	133
Şekil 4.06 Cirsilineol ⁻ H NMK spektrumu	133
Şekil 4.67 Cirsilineol UV/VIS kayma spektrumları	134
\mathcal{S} Sekil 4.08 \mathcal{S} , \mathcal{S}' -Dihidroksi-6, \mathcal{I} , \mathcal{A}' , \mathcal{S}' tetrametoksiflavon moleküler yapısı	135
Şekli 4.09 5,5 -Dinidroksi-6,7,4,5 tetrametoksifiavon UV/VIS kayma spektrumlari.	130
\mathcal{S}_{1} \mathcal{S}_{2}	13/
Şekii 4. /U 5,5'-Dinidroksi-6, /,4',5' tetrametoksiflavon 'H NMR spektrumu	157

Şekil 4.71 Artemin moleküler yapısı	139
Şekil 4.72 Artemin ¹ H NMR spektrumu	141
Şekil 4.72 Artemin ¹ H NMR spektrumu	141
Şekil 4.73 Artemin COSY spektrumu	142
Şekil 4.74 Artemin APT spektrumu	142
Şekil 4.75 Artemin HSQC spektrumu	143
Şekil 4.76 Artemin HMBC spektrumu	143
Şekil 4.77 Artesin moleküler yapısı	144
Şekil 4.78 Artesin ¹ H NMR spektrumu	146
Şekil 4.78 Artesin ¹ H NMR spektrumu	146
Şekil 4.78 Artesin ¹ H NMR spektrumu	147
Şekil 4.78 Artesin ¹ H NMR spektrumu	147
Şekil 4.79 Artesin COSY spektrumu	148
Şekil 4.80 Artesin APT spektrumu	148
Şekil 4.81 Artesin HSQC spektrumu	149
Şekil 4.82 Artesin HMBC spektrumu	149
Şekil 4.83 Germacranolide with an 1,5-ether linkage moleküler yapısı	150
Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹ H NMR spektrumu	152
Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹ H NMR spektrumu	152
Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹ H NMR spektrumu	153
Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹ H NMR spektrumu	153
Şekil 4.85 Germacranolide with an 1,5-ether linkage COSY spektrumu	154
Şekil 4.86 Germacranolide with an 1,5-ether linkage APT spektrumu	154
Şekil 4.87 Germacranolide with an 1,5-ether linkage HSQC spektrumu	155
Şekil 4.88 Germacranolide with an 1,5-ether linkage HMBC spektrumu	155
Şekil 4.89 Umbelliferone moleküler yapısı	156
Şekil 4.90 Umbelliferone ¹ H NMR spektrumu	157
Şekil 4.91 Umbelliferone COSY spektrumu	157
Şekil 4.92 1α-Hidroksi-deasetilirinol-4α,5β-epoksit moleküler yapısı	161
Şekil 4.93 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹ H-NMR spektrumu	163
Şekil 4.93 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹ H-NMR spektrumu	163
Şekil 4.93 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹ H-NMR spektrumu	164
Şekil 4.93 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹ H-NMR spektrumu	164
Şekil 4.94 1α-Hidroksi-deasetilirinol-4α,5β-epoksit COSY spektrumu	165
Şekil 4.95 1α-Hidroksi-deasetilirinol-4α,5β-epoksit APT spektrumu	165
Şekil 4.96 1α-Hidroksi-deasetilirinol-4α,5β-epoksit HSQC spektrumu	166
Şekil 4.97 1α-Hidroksi-deasetilirinol-4α,5β-epoksit HMBC spektrumu	166
Şekil 4.98 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A moleküler yapısı	167
Şekil 4.99 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A ¹ H NMR spektrumu	169
Şekil 4.99 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A ¹ H NMR spektrumu	169
Şekil 4.99 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A ¹ H NMR spektrumu	170
Şekil 4.99 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A ¹ H NMR spektrumu	170
Şekil 4.100 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A COSY spektrumu	171
Şekil 4.101 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A APT spektrumu	171
Şekil 4.102 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A HSQC spektrumu	172
Şekil 4.103 1a,8a-Dihidroksi-10- <i>epi</i> -arbusculin A HMBC spektrumu	172
Şekil 4.104 Tavulin moleküler yapısı	173
Şekil 4.105 Tavulin ¹ H NMR spektrumu	175
Şekil 4.105 Tavulin 'H NMR spektrumu	175

Şekil 4.105 Tavulin ¹ H NMR spektrumu	176
Şekil 4.105 Tavulin ¹ H NMR spektrumu	176
Şekil 4.106 Tavulin COSY spektrumu	177
Şekil 4.107 Tavulin APT spektrumu	177
Şekil 4.108 Tavulin HSQC spektrumu	178
Sekil 4.109 Tavulin HMBC spektrumu	178
Sekil 4.110 1α-Hidroksi-1-desoksotamirin moleküler yapısı	184
Sekil 4.111 Tanachin ¹ H NMR spektrumu	186
Sekil 4.111 Tanachin ¹ H NMR spektrumu	186
Sekil 4.111 Tanachin ¹ H NMR spektrumu	187
Sekil 4.111 Tanachin ¹ H NMR spektrumu	187
Sekil 4.112 Tanachin COSY spektrumu	188
Sekil 4.113 Tanachin APT spektrumu	188
Sekil 4 114 Tanachin HSOC spektrumu	189
Sekil 4 115 Tanachin HMBC spektrumu	189
Sekil 4 116 Desasetil-B-siklopyrethrosin moleküler vanısı	190
Sekil 4 117 Desasetil-β-siklopyrethrosin ¹ H NMR spektrumu	192
Sekil 4 117 Desasetil-β-siklopyrethrosin ¹ H NMR spektrumu	192
Sekil 4 117 Desasetil-β-siklopyrethrosin ¹ H NMR spektrumu	193
Sekil 4 117 Desasetil-β-siklopyrethrosin ¹ H NMR spektrumu	193
Sekil 4 117 Desasetil-β-siklopyrethrosin ¹ H NMR spektrumu	194
Sekil 4 118 Desasetil-ß-siklopyrethrosin asetil türevinin ¹ H NMR spektrumu	194
Sekil 4 119 Desasetil-β-siklopyrethrosin COSY spektrumu	195
Sekil 4 120 Desasetil-β-siklopyrethrosin APT spektrumu	195
Sekil 4 121 Desasetil-β-siklopyrethrosin HSOC spektrumu	196
Sekil 4 122 Desasetil-β-siklopyrethrosin HMBC spektrumu	196
Sekil 4 122 Desusetti p sikiopyreuriosiii Thirde spektrunu	197
Sekil 4 124 Circimaritin IIV/VIS kayma snektrumları	198
Sekil 4 125 Circimaritin ¹ H NMR snektrumu	100
Sekil 4 125 Circimaritin ¹ H NMR spektrumu	200
Sekil 4 126 Circimaritin APT spektrumu	200
Sekil 4 127 5 7 3'-Tribidroksi-6 4' 5'-trimetoksiflayon moleküler yapışı	200
Sekil 4 128 5 7 3'-Tribidroksi-6 4' 5'-trimetoksiflavon UV/VIS kayma snektrumları	201
Sekil 4 120 5.7.3' tribidroksi 6.4' 5'trimetoksiflayon ¹ H NMP spektrumu	202
Sokil 4.129 5,7,3 - trihidroksi-0,4,5 trimetoksiflayon ¹ H NMP spektrumu	203
Sekil 4.129 5,7,5 - Ullidoksi-0,4,5 Ullidoksinavoli Ti NMK spekuullu	203
Sokil 4.129 5,7,5 - Thildroksi-0,4,5 - thildroksiflavon ¹ H NMR Spekilullu	204
$\mathcal{G}_{\text{CDC13}+D_2\text{O}}$	204
Sakil 4 121 Jaafravidin malakülar vanışı	204
Selii 4.122 Isofravidin ¹ UNAD analytrumu	203
Seliil 4.122 Isofravidin ADT analetrumu	200
Sekil 4.133 Isollaziulii AFT Spekuullu	200
Sokil 4.133 Herniarin ¹ U NMP spektrumu	207
Solvil 4.134 Horniorin ¹ H NMP spoktrumu	200
Sokil 4.125 Soonolatin moloküler venes	200
Solvil 4.126 Soppoletin ¹ U NMD spoktruppy	209
Solvil 4.136 Scopoletin ¹ H NMP engletrymy	210
Solvil 4.127 Argonin moleküler vonus	210
Solvil 4.137 AISallill HoleKulet yapisi	213
çekii 4.156 Aisanni n-invik spektrumu	21/

Şekil 4.138 Arsanin ¹ H-NMR spektrumu	. 217
Şekil 4.138 Arsani ¹ H-NMR spektrumu	
Şekil 4.139 Arsanin COSY spektrumu	. 218
Şekil 4.140 Arsanin APT spektrumu	219
Şekil 4.141 Arsanin HSQC spektrumu	219
Şekil 4.142 Arsanin HMBC spektrumu	220
Şekil 4.143 Arsanin NOESY spektrumu	220
Şekil 4.144 9α-Asetoksiartecanin moleküler yapısı	221
Şekil 4.145 9α-Asetoksiartecanin ¹ H-NMR spektrumu	223
Şekil 4.145 9α-Asetoksiartecanin ¹ H-NMR spektrumu	223
Şekil 4.145 9α-Asetoksiartecanin ¹ H-NMR spektrumu	224
Şekil 4.145 9α-Asetoksiartecanin ¹ H-NMR spektrumu	224
Sekil 4.146 9α-Asetoksiartecanin COSY spektrumu.	225
Sekil 4.147 9α-Asetoksiartecanin APT spektrumu	225
Sekil 4.148 9α-Asetoksiartecanin HSOC spektrumu	226
Sekil 4.150 Mucronolide moleküler yapısı	230
Sekil 4.151 Mucronolide ¹ H-NMR (d-piridin) spektrumu	231
Sekil 4.151 Mucronolide ¹ H-NMR (d-piridin) spektrumu	231
Sekil 4.151 Mucronolide ¹ H-NMR (d-piridin) spektrumu	
Sekil 4.151 Mucronolide ¹ H-NMR (d-piridin) spektrumu	
Sekil 4.152 Mucronolide ¹ H-NMR (CDCI ₃) spektrumu	
Sekil 4,153 Mucronolide COSY spektrumu	
Sekil 4.154 Mucronolide APT spektrumu	
Sekil 4 155 Mucronolide HSOC spektrumu	
Sekil 4 156 Mucronolide HMBC spektrumu	
Sekil 4.157 Mucronolide NOESY spektrumu	
Sekil 4 158 Mucronolide H-11 protonunun spin decoupling spektrumu	
Sekil 4 158 Mucronolide H-11 protonunun spin decoupling spektrumu.	
Sekil 4 158 Mucronolide H-11 protonunun spin decoupling spektrumu	237
Sekil 4 159 Mucronolide H-7 protonunun spin decoupling spektrumu	237
Sekil 4 159 Mucronolide H-7 protonunun spin decoupling spektrumu	238
Sekil 4 159 Mucronolide H-7 protonunun spin decoupling spektrumu	238
Sekil 4 159 Mucronolide H-7 protonunun spin decoupling spektrumu	239
Sekil 4 160 Mucronolide H-5 protonunun spin decoupling spektrumu	239
Sekil 4 160 Mucronolide H-5 protonunun spin decoupling spektrumu	240
Sekil 4 160 Mucronolide H-5 protonunun spin decoupling spektrumu	240
Sekil 4 161 Mucronolide H-6 protonunun spin decoupling spektrumu	241
Sekil 4 161 Mucronolide H-6 protonunun spin decoupling spektrumu	241
Sekil 4 161 Mucronolide H-6 protonunun spin decoupling spektrumu	242
Sekil 4 162 Mucronolide H-3 protonunun spin decoupling spektrumu	242
Sekil 4 162 Mucronolide H-3 protonunun spin decoupling spektrumu	243
Sekil 4 162 Mucronolide H-3 protonunun spin decoupling spektrumu	243
Sekil 4 163 Mucronolide H-1 protonunun spin decoupling spektrumu	244
Sekil 4 163 Mucronolide H-1 protonunun spin decoupling spektrumu	244
Sekil 4 164 Mucronolide H-9 protonunun spin decoupling spektrumu	245
Sekil 4 164 Mucronolide H-9 protonunun spin decoupling spektrumu	245
Sekil 4 164 Mucronolide H-9 protonunun spin decoupling spektrumu	2 1 5 246
Sekil 4 165 Mucronolide H-8' protonunun spin decoupling spektrumu	2 <u>4</u> 0 2 <u>4</u> 6
Sekil 4 165 Mucronolide H-8' protonunun spin decoupling spektrumu	240
year 7.105 mucrohonde 11-6 protonanan spin accoupting spearand and	+/

Şekil 4.166 Mucronolide kütle spektrumu	. 247
Şekil 4.167 Salvigenin moleküler yapısı	. 248
Şekil 4.168 Salvigenin UV/VIS kayma spektrumları	. 249
Şekil 4.169 Salvigenin ¹ H NMR spektrumu	. 250
Şekil 4.169 Salvigenin ¹ H NMR spektrumu	. 250
Şekil 4.169 Salvigenin ¹ H NMR spektrumu	. 251
Şekil 4.170 Salvigenin APT spektrumu	. 251
Şekil 4.171 Scoparone moleküler yapısı	. 252
Şekil 4.172 Scoparone ¹ H NMR spektrumu	. 253
Şekil 4.173 Scoparone APT spektrumu	. 253
Şekil 4.174 Scoparone HSQC spektrumu	. 254
Şekil 4.175 Scoparone HMBC spektrumu	. 254
Şekil 4.176 Ajanolide 1β,10α-epoksit moleküler yapısı	. 258
Şekil 4.177 Ajanolide 1β,10α-epoksit ¹ H NMR spektrumu	. 259
Şekil 4.177 Ajanolide 1β,10α-epoksit ¹ H NMR spektrumu	. 259
Şekil 4.178 Ajanolide 1β,10α-epoksit COSY spektrumu	. 260
Şekil 4.179 Ajanolide 1β,10α-epoksit APT spektrumu	. 260
Şekil 4.180 Ajanolide 1β,10α-epoksit HSQC spektrumu	. 261
Şekil 4.181 Ajanolide 1β,10α-epoksit HMBC spektrumu	. 261
Sekil 4.182 Ajanolide 1β,10α-epoksit NOESY spektrumu	. 262
Sekil 4.183 Ajanolide 1β,10α-epoksit kütle spektrumu	. 262
Sekil 4.184 Jaceosidin moleküler yapısı	. 263
Sekil 4.185 Jaceosidin UV/VIS kayma spektrumları	. 264
Sekil 4.186 Jaceosidin ¹ H NMR spektrumu	. 265
Sekil 4.186 Jaceosidin ¹ H NMR spektrumu	. 265
Sekil 4.187 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon moleküler yapısı	. 266
Şekil 4.188 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon UV/VIS kayma spektrum	ıları
	. 267
Sekil 4.189 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon ¹ H NMR spektrumu	. 268
Sekil 4.189 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon ¹ H NMR spektrumu	. 268
Sekil 4.190 5.3',4'-Trihidroksi-3.6,7,5'-tetrametoksiflavon APT spektrumu	. 269
Sekil 4.191 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon HSQC spektrumu	. 269
Sekil 4.192 α-Amirin moleküler yapısı	.271
Sekil 4.193 α-Amirin ¹ H NMR spektrumu	.272
Sekil 4.193 α -Amirin ¹ H NMR spektrumu	.272
Sekil 4 194 1 α 3B 10 α -Trihidroksi-7 α 11 α H-germakra-4-en-12-6 α -olide moleküler	
vapisi	.276
yapısı Sekil 4.195 1 α .38.10 α -Trihidroksi-7 α .11 α H-germakra-4-en-12-6 α -olide ¹ H NMR	. 276
yapısı Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.	. 276 . 278
Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu	. 276 . 278
Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu	. 276 . 278 . 278
Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Sekil 4 195 1α 3β 10α-Trihidroksi-7α 11αH-germakra-4-en-12-6α-olide ¹ H NMR	. 276 . 278 . 278
Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.	. 276 . 278 . 278 . 278 . 279
Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu. Sekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.	. 276 . 278 . 278 . 278 . 279
 Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. 	. 276 . 278 . 278 . 278 . 279
 Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. 	. 276 . 278 . 278 . 278 . 279 . 279
 Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. 	. 276 . 278 . 278 . 279 . 279 . 279
 Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu. Şekil 4.196 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide COSY spektrumu. 	. 276 . 278 . 278 . 279 . 279 . 280
Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹ H NMR spektrumu.Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide COSY spektrumu.Şekil 4.197 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide APT spektrumu.	. 276 . 278 . 278 . 279 . 279 . 279 . 280 umu . 280

Şekil 4.198 1a,3β,10a	-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide HSQC	
spektrumu	L	281
Şekil 4.199 1a,3β,10a	-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide HMBC	
spektrumu	l	281
Şekil 4.200 1a,3β,10a-	-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide NOESY	
spektrumu	l	282
Şekil 4.201 1α,3β,10α-	-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide kütle	
spektrumu	I	282

ÇİZELGE LİSTESİ

Sayfa

Çizelge 2.1 Terpenlerin sınıflandırılması	11
Çizelge 2.2 <i>Tanacetum</i> türlerinden izole edilen seskiterpen laktonlar, flavonoidler	
ve yapılan biyolojik aktivite çalışmaları	28
Çizelge 3.4.1 Araştırmada kullanılan kimyasallar materyaller ve cihazlar	54
Çizelge 4.1 TBB gövde ekstresine yapılan kaba ayırma ve elde edilen fraksiyonlar	59
Çizelge 4.2 TBB IIIC MPLC ilk kolon fraksiyonları	61
Çizelge 4.3 TBB IIIC MPLC ikinci kolon fraksiyonları	61
Çizelge 4.4 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹ H-NMR ve APT (500 MHz,	
125 MHz, CDCI ₃) kimyasal kayma değerleri	63
Cizelge 4.5 Taurin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal kaym	a
değerleri	69
Çizelge 4.6 TBB IVB+VA+VB fraksiyonunun MPLC çözücü sistemleri	.78
Çizelge 4.7 TBB IVB+VA+VB (51-79) fraksiyonunun kolon kromatografi çözücü	
sistemleri	.78
Çizelge 4.8 Santonin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	
kayma değerleri	80
Çizelge 4.9 Chrysanthemolide ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃)	
kimyasal kayma değerleri	86
Çizelge 4.10 Pallensis ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	
kayma değerleri	92
Çizelge 4.11 1-Asetilerivanin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃)	
kimyasal kayma değerleri	98
Çizelge 4.12 1,10-Epoksispiciformin ¹ H-NMR ve APT (500 MHz, 125 MHz,	
CDCI ₃) kimyasal kayma değerleri	.103
Çizelge 4.13 8α-Hidroksisantamarin ¹ H-NMR ve APT (500 MHz, 125 MHz,	
MeOD) kimyasal kayma değerleri	109
Çizelge 4.14 Tamirin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	
kayma değerleri	115
Çizelge 4.15 1α-Asetoksi-3- <i>epi</i> -erivanin ¹ H-NMR ve APT (500 MHz, 125 MHz,	
CDCI ₃) kimyasal kayma değerleri	.123
Çizelge 4.16 5-Hidroksi-3',4',6,7-tetrametoksiflavon ¹ H-NMR (500 MHz, CDCl ₃)	
ve UV/VIS (λ Max) kimyasal kayma değerleri	.129
Çizelge 4.17 Cirsilineol ¹ H-NMR (500 MHz, CDCl ₃) ve UV/VIS (λ Max) kimyasal	
kayma değerleri	132
Çizelge 4.18 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon ¹ H-NMR (500 MHz,	
$CDCl_3$) ve UV/VIS (λ Max) kimyasal kayma değerleri	135
Çizelge 4.19 TBB IIID+IVA fraksiyonunun MPLC çözücü sistemleri	138

Çizelge 4.20 Artemin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	
kayma değerleri	140
Çizelge 4.21 Artesin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	145
Cizalga 4.22 Cormercianelida with an 1.5 other linkage ${}^{1}\text{U}$ NMP vo APT (500 MHz	14J
125 MHz CDCL) kimyasal kayma değerleri	., 151
Cizelge 4.23 Umbelliferone ¹ H NMP (CDCL, 500MHz) kimvasal kavma değerleri	151
Cizelge 4.24 TBB IVC fraksivonunun MPLC cözücü sistemi	150
Cizelge 4.25 TBB IVC(12.75) fraksiyonunun kolon kromatografi cözücü	.139
sistemleri	.160
Çizelge 4.26 TBB IVC(76-175) fraksiyonunun kolon kromatografi çözücü	
sistemleri	160
Çizelge 4.27 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹ H-NMR (500 MHz, CDCI ₃)	
ve APT (125 MHz, CDCI ₃ +d-aseton	.162
Cizelge 4.28 1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A ¹ H-NMR ve APT (500 MHz,	
125 MHz, CDCI ₃) kimyasal kayma değerleri	168
Cizelge 4.29 Tavulin ¹ H-NMR (500 MHz, CDCI ₃) ve APT (125 MHz, CDCI ₃ +d-	
aseton) kimyasal kayma değerleri	174
Çizelge 4.30 TBB MeOH/CH ₂ CI ₂ fraksiyonuna ait kolon kromatografi çalışması	181
Çizelge 4.31 TBB MeOH/CH ₂ CI ₂ (48-59) fraksiyonuna ait kolon kromatografi	
çalışması	182
Çizelge 4.32 TBB MeOH/EA fraksiyonuna ait kolon kromatografi çalışması	183
Çizelge 4.33 1α-Hidroksi-1-desoksotamirin ¹ H-NMR ve APT (500 MHz, 125 MHz,	,
CDCI ₃) kimyasal kayma değerleri	.185
Çizelge 4.34 Desasetil-β-siklopyrethrosin ¹ H-NMR ve APT (500 MHz, 125 MHz,	
CDCI ₃) kimyasal kayma değerleri	.191
Çizelge 4.35 Cirsimaritin ¹ H-NMR, APT (500 MHz, 125 MHz CDCl ₃) ve UV/VIS	
(λ Max) kimyasal kayma değerleri	197
Çizelge 4.36 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon ¹ H-NMR (500 MHz, CDCl ₃)
ve UV/VIS (λ Max) sinyalleri	201
Çizelge 4.37 Isofraxidin ¹ H NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	
kayma değerleri	205
Çizelge 4.38 Herniarin ¹ H-NMR (500 MHz, CDCI ₃) kimyasal kayma değerleri	207
Çizelge 4.39 Scopoletin ¹ H NMR (500 MHz, CDCI ₃) kimyasal kayma değerleri	209
Çizelge 4.40 TM gövde ekstresine yapılan kaba ayırma ve elde edilen fraksiyonlar	212
Çizelge 4.41 TM VD+VE fraksiyonun MPLC çalışması	.214
Çizelge 4.42 Arsanin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃) kimyasal	
kayma değerleri	216
Çizelge 4.43 9α-Asetoksiartecanin ¹ H-NMR ve APT (500 MHz, 125 MHz, CDCI ₃)	
kimyasal kayma değerleri	222
Çizelge 4.44 Mucronolide ¹ H-NMR ve APT (500 MHz, 125 MHz, d-piridin)	
kimyasal kayma değerleri	230
Çizelge 4.45 Salvigenin ¹ H-NMR (500 MHz, CDCl ₃), APT (125 MHz, CDCl ₃) ve	
UV/VIS (λ Max) kimyasal kayma değerleri	248
Çizelge 4.46 Scoparone 'H NMR ve APT (500 MHz, 125 MHz, d-aseton) kimyasal	
kayma değerleri	252
Çizelge 4.47 TM VB+VC fraksiyonunun MPLC çalışması	.256
Çizelge 4.48 Ajanolide 1β,10α-epoksit ¹ H-NMR ve APT (500 MHz, 125 MHz,	
CDCI ₃) kimyasal kayma değerleri	.258

3
5
)
4
7
4
4
)
2
3
5

RESIM LISTESI

	Sayfa
Resim 2.1 Tanacetum balsamita subsp. balsamitoides kuru bitkinin genel	
görünümü	8
Resim 2.2 Tanacetum mucroniferum bitkisinin genel görünümü	9
Resim 4.1 TBB bitkisi fraksiyonlarının CHCI ₃ :Eter (3:2) çözücü sistemindeki	
kromatogramı	
Resim 4.2 TM bitkisi fraksiyonlarının çeşitli çözücü sistemleriyle İTK	
kromatogramlari	211

TÜRKİYE'DE YETİŞEN BAZI *TANACETUM* L. TÜRLERİ ÜZERİNDE FİTOKİMYASAL ARAŞTIRMALAR VE BİYOAKTİVİTE ÇALIŞMALARI

Hüseyin SERVİ

Kimya Anabilim Dalı Doktora Tezi

Tez Danışmanı: Prof. Dr. Nüket ÖCAL Eş Danışman: Prof. Dr. Nezhun GÖREN

Bitkiler yetiştikleri doğal ortamlardan Prof.Dr. Nezhun Gören ve arkadaşları tarafından farklı yıllarda toplanmıştır. *Tanacetum balsamita* L. ssp. *balsamitoides* (Schultz Bip.) Grierson (ISTE 79241a) bitkisi Van, Güzeldere, Çuh Gediği'nden 2000 yılında, *Tanacetum mucroniferum* Hub.-Mor.& Grierson (ISTE 85425) bitkisi Erzincan, Sakaltutan yöresinden 2008 yılında toplanmıştır. Bitkiler laboratuarda uygun koşullarda kurutulmuş, sırasıyla hekzan, etil asetat ve metanol ekstreleri elde edilmiştir.

Bu çalışmada, bitkilerin etil asetat ve metanol ekstreleri üzerine karşılaştırmalı olarak fitokimyasal araştırmalar yapılmıştır. Etil asetat ve metanol ekstrelerinden kolon kromatografisi, MPLC, HPTLC ve Preparatif İnce Tabaka kromatografisi gibi kromatografik yöntemler kullanılarak sekonder metabolitler izole edilmiş ve saflaştırılmıştır. Sekonder metabolitlerin stereokimyasal yapıları UV, IR, NMR (¹H-NMR,¹³C-NMR, APT, COSY, HMBC, HSQC, NOESY), MS (EI, CI, HR) ve bazı kimyasal reaksiyonlarla belirlenmiştir. İzolasyon çalışmalarında dördü yeni olmak üzere toplam kırk üç madde elde edilmiş ve yapıları aydınlatılmıştır. *Tanacetum balsamita* L. ssp. *balsamitoides* bitkisinin etil asetat ekstresinden 1 α -Acetoxy-11 β (H),13dihydrodouglanin, Taurin, β -Sitosterol, Santonin, Chrysanthemolide, Pallensis, 1-Acetylerivanin, 1,10-Epoxyspiciformin, 8 α -Hydroxysantamarin, Tamirin, **1\alpha-Acetoxy-3**-*epi*-erivanin, Artemin, Artesin, Germacranolide with an 1,5-ether linkage, 1 α - Hydroxy-deacetylirinol- 4α , 5β -epoxide, 1α , 8α -Dihydroxy-10-epi-arbusculin A, Tavulin, 5-Hydroxy-3',4',6,7-tetramethoxyflavone, Cirsilineol, 5,3'-Dihydroxy-6,7,4',5'tetramethoxyflavone, Umbelliferone maddeleri izole edilmiştir. 1a-Acetoxy-3-epierivanin maddesi doğal bir kaynaktan ilk defa tarafımızdan izole edilmiştir. Tanacetum balsamita L. ssp. balsamitoides bitkisinin MeOH ekstresinden Chrysanthemolide, Pallensis, 1,10-Epoxyspiciformin, Taurin, 1-Acetylerivanin, Tavulin, Tanachin, Deacetyl-β-cyclopyrethrosin, Cirsimaritin, 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone, Isofraxidin, 7-Methoxycoumarin ve Scopoletin maddeleri izole edilmiştir. Tanacetum mucroniferum bitkisinin etil asetat ekstresinden Arsanin, 9a-Acetoxyartecanin, Mucronolide, Ajanolide A Epoxide, α-Amyrin, Salvigenin, 5-Hydroxy-3',4',6,7tetramethoxyflavone, Cirsilineol, Scoparone, Cirsimaritin, Jaceosidin, 5,3',4'-Trihydroxy-3,6,7,5'-tetramethoxyflavone maddeleri izole edilmiştir. Mucronolide ve Ajanolide A epoxide maddeleri doğal bir kaynaktan ilk defa tarafımızdan izole edilmiştir. Tanacetum mucroniferum bitkisinin MeOH ekstresinden 1a,3β,10a-Trihydroxy-7α,11αH-germacra-4-en-12-6α-olide, Ajanolide epoxide. Α Mucronolide, Scopoletin, Umbelliferone, Scoparone, 5-Hydroxy-3',4',6,7tetramethoxyflavone maddeleri izole edilmiştir. 1a,3β,10a-Trihydroxy-7a,11aHgermacra-4-en-12-6a-olide maddesi doğal bir kaynaktan ilk defa tarafımızdan izole edilmistir.

Tanacetum mucroniferum bitkisinin toprak üstü kısımlarından elde edilen ve GC/MS ile bileşimi belirlenen uçucu yağın asetilkolinesteraz inhibisyonu, antioksidan ve sitotoksik aktiviteleri araştırılmıştır. Bitkinin uçucu yağı yüksek oranda asetilkolinesteraz inhibisyonu göstermiştir. Uçucu yağ çok düşük oranda PRAP (Phosphomolybdenum Reducing Antioxidant Power) antioksidan aktivite göstermiş ve hücre hatlarına karşı herhangi bir sitotoksik aktivite göstermemiştir.

Anahtar Kelimeler: *Tanacetum balsamita* L. ssp. *balsamitoides*, *Tanacetum mucroniferum*, sekonder metabolit, uçucu yağ, sitotoksik aktivite, antioksidan aktivite, asetilkolinesteraz inhibisyonu, seskiterpen laktonlar, flavonoidler, kumarinler

ABSTRACT

PHYTOCHEMICAL AND BIOACTIVITY STUDIES ON THE SOME TANACETUM L. SPECIES GROWING IN TURKEY

Hüseyin SERVİ

Department of Chemistry

PhD. Thesis

Adviser: Prof. Dr. Nüket ÖCAL Co-Adviser: Prof. Dr. Nezhun GÖREN

The plants were collected from their natural habitats in different years by Prof.Dr.Nezhun Gören and her colleagues. *Tanacetum balsamita* L. ssp. *balsamitoides* (Schultz Bip.) Grierson was collected from Güzeldere-Çuh breach (Van) in 2000, *Tanacetum mucroniferum* Hub.-Mor.& Grierson was collected from Sakaltutan region (Erzincan) in 2008. The plants were dried at appropriate conditions in the laboratory. The dried plants were extracted with hexan, ethylacetate and methanol respectively.

Comparative phytochemical investigation was carried out on the ethylacetate and methanol extracts of the plants. The secondary metabolites were isolated and purified by means of chromatographic methods such as column chromatography (CC), Medium Pressure Liquid Chromatography (MPLC), High Pressure Thin Layer Chromatography (HPTLC), preparative thin layer chromatography (TLC). Stereochemical structure of secondary metabolites were identified by means of spectral methods such as UV, IR, NMR (¹H-NMR, ¹³C- NMR, APT, COSY, HMBC, HSQC, NOESY), MS (EI, CI, HR) and some chemical reactions were carried out. Totally forty three compounds were isolated four of them being new. Their structures were determined by spectral methods. β-Sitosterol, 1α -Acetoxy-11 β (H),13-dihydrodouglanin, Taurin. Santonin. 1,10-Epoxyspiciformin. Chrysanthemolide, Pallensis, 1-Acetylerivanin, 8α -1α-Acetoxy-3-*epi*-erivanin, Hydroxysantamarin, Tamirin, Artemin, Artesin, Germacranolide with an 1,5-ether linkage, 1α -Hydroxy-deacetylirinol- 4α ,5 β -epoxide, 1α,8α-Dihydroxy-10-*epi*-arbusculin Α, Tavulin, 5-Hydroxy-3',4',6,7tetramethoxyflavone, Circilineol, 5,3'-Dihydroxy-6,7,4',5'-tetramethoxyflavone and Umbelliferone were isolated from the ethylacetate extract of Tanacetum balsamita L. ssp. balsamitoides. 1a-Acetoxy-3-epi-erivanin was isolated from a natural source for the first time by us. Chrysanthemolide, Pallensis, 1,10-Epoxyspiciformin, Taurin, 1-Acetylerivanin, Tavulin, Tanachin, Deacetyl-β-cyclopyrethrosin, Cirsimaritin, 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone, Isofraxidin, 7-Methoxycoumarin and Scopoletin were isolated from the methanol extract of Tanacetum balsamita L. ssp. balsamitoides. Arsanin, 9a-Acetoxyartecanin, Mucronolide, Ajanolide A epoxide, a-Amyrin, 5-Hydroxy-3',4',6,7-tetramethoxyflavone, Salvigenin, Cirsilineol, Scoparone, Cirsimaritin, Jaceosidin, 5,3',4'-Trihydroxy-3,6,7,5'-tetramethoxyflavone were isolated from the ethylacetate extract of Tanacetum mucroniferum. Mucronolide and Ajanolide A epoxide were isolated from a natural source for the first time by us. 1α,3β,10α-Trihydroxy-7α,11αH-germacra-4-en-12-6α-olide, Ajanolide A epoxide, Scopoletin, Umbelliferone. Scoparone. 5-Hydroxy-3',4',6,7-Mucronolide. tetramethoxyflavone were isolated from the methanol extract of Tanacetum mucroniferum.1a,3B,10a-Trihydroxy-7a,11aH-germacra-4-en-12-6a-olide was isolated from a natural source for the first time by us.

Composition of the essential oils obtained from flowers of *Tanacetum mucroniferum* was determined by GC/MS. The essential oil was investigated for their acetylcholinesterase inhibition, PRAP antioxidant and cytotoxic activities. The essential oil of *Tanacetum mucroniferum* showed high acetylcholinesterase inhibition. The essential oil showed very low PRAP (Phosphomolybdenum Reducing Antioxidant Power) acitivity and didn't show considerable cytotoxic activity against cell lines.

Keywords: *Tanacetum balsamita* L. ssp. *balsamitoides*, *Tanacetum mucroniferum*, secondary metabolites, essential oil, acetylcholinesterase inhibition, antioxidant activity, cytotoxic activity, sesquiterpene lactones, flavonoids, coumarins

BÖLÜM 1

GİRİŞ

1.1 Literatür Özeti

İnsanlar çok eski zamanlardan beri bitkilerden yakacak, gıda ve birçok hastalığın tedavisi gibi farklı alanlarda faydalanmıştır. 19. Yüzyıldan itibaren bitkilerde mevcut olan etken maddeler sentetik olarak üretilmiştir. Fakat bitkilerden elde edilen sentetik ilaçların birçok olumsuz yan etkiye sahip olması nedeniyle doğal kaynaklı maddeler daha çok tercih edilmeye başlanmıştır.

Modern bilimlerin zamanla gelişimi ve farklı disiplinlerin birlikte çalışması ile bitkinin yapısında bulunan doğal bileşiklerin fitokimyasal yapıları aydınlatılabilmekte ve biyolojik aktiviteleri saptanabilmektedir [1-3]. Bitkiler üzerine yapılan araştırmalarda bitkilerin; savunma, korunma, hayatta kalma ve nesillerini sürdürme gibi önemli olaylarda farklı avantajlar sağlayan kimyasal maddeler içerdikleri belirlenmiştir [4]. Bu kimyasal maddelerin önceden hiçbir işe yaramadığı bitkiler tarafından üretilen atık maddeler olduğu varsayılıyordu. Daha sonra yapılan araştırmalar neticesinde bu kimyasal maddelerin bitkilerin yaşamlarını sürdürmeleri için birinci derecede önemli olmayan; fakat değişen çevre koşullarına uyum sağlamada, bitki-zararlı ilişkilerinde önemli role sahip olan ve sekonder metabolit adı verilen doğal ürünler olduğu anlaşılmıştır. Bitki sekonder metabolitleri bitkinin çevre adaptasyonu ile ilişkili olan fakat hücre büyümesi ile ilgisi olmayan moleküllerdir. Bu bileşik grupları genel olarak fitokimyasallar, bitki ksenobiyotikleri, antinutrasyonel faktörler olarak da ifade edilmektedir.

Bugüne kadar yaklaşık 100.000 sekonder metabolit bitkilerden izole edilerek tanımlanmıştır. Her yıl bu sayıya 4.000 kadar yeni bileşik eklenmektedir [5].

Bu maddelerin bitkideki önemli görevleri şunlardır:

1- Bitkiyi patojenlere karşı koruma (antifungal, antibakteriyel, antiviral maddeler).

2- UV ışınlar, tuzluluk, kuraklık gibi zararlı çevresel etmenlerin neden olduğu stres koşullarında direnç arttırma.

3- Zararlı hayvanlar ve otlara karşı koruma sağlama (insektisit, herbisitler).

4- Çimlenmeyi önleme.

5- Tozlaşma ve tohum dağılımını sağlamak üzere hayvanları ve diğer canlıları cezbetme[6].

Sekonder metabolitlerin çoğunun bir bitki cinsine ve hatta bazen bir bitki türüne özgü olduğu, diğer bitkiler tarafından üretilmediği saptanmıştır [7]. Sekonder metabolitlerin bitki bünyesinde çok az miktarda üretildiği fakat gıda ve tıp gibi birçok alanda yaygın olarak kullanıldığı ve ekonomik olarak büyük önem kazandığı bilinmektedir.

1.2 Tezin Amacı

Bu doktora tezi çalışmasında, Asteraceae (Composiate) familyasında bulunan ve daha önce çalışılmamış *Tanacetum mucroniferum* (endemik), *Tanacetum balsamita* subsp. *balsamitoides* bitkilerinin toprak üstü kısımlarından hazırlanan etil asetat ve metanol ekstrelerinden kromatografik yöntemler kullanılarak sekonder metabolitlerin saflaştırılması, saf maddelerin spektroskopik yöntemlerle yapılarının aydınlatılması ve ekstrelerin sekonder metabolit içeriğinin karşılaştırılması; *Tanacetum mucroniferum* toprak üstü kısımlarından elde edilen ve GC/MS ile bileşimi belirlenen uçucu yağın asetilkolinesteraz inhibisyonu, antioksidan ve sitotoksik aktivitelerinin yapılması amaçlanmıştır.

1.3 Hipotez

Tanacetum L. türleri üzerine yapılan çalışmalarda biyoaktif özellik gösteren birçok yeni bileşik belirlenmiştir [8-11]. Bugüne kadar yapılan çalışmalarda başta seskiterpen laktonlar olmak üzere, seskiterpenler, flavonoidler, monoterpenler, triterpenler ve kumarinler gibi sekonder metabolitler izole edilmiştir. Belirlenen bu bileşikler antimigren, antiülser, antimikrobiyal, antispasmodik, allergen, antihelmintik, antiinflamatuar, antikoagülant, antifibrinolitik, karminatif, sitotoksik, insektisit gibi

özellikler göstermiştir [12-30]. Genellikle Asteraceae (Composiate) familyasındaki bitkilerde bulunan seskiterpen laktonların familya içerisinde kemo-sistematik önemleri bulunması nedeniyle, *Tanacetum* L. türlerinin araştırılması yeni biyoaktif bileşiklerin bulunması, ekonomik değeri olan türlerin ortaya çıkarılması ve türlerin sistematik sınıflandırmadaki hatalarının giderilmesi açısından önemlidir [31].

BÖLÜM 2

GENEL BİLGİLER

2.1 Botanik Bilgiler

2.1.1 Compositae (Asteraceae) Familyası

Compositae familyası yeryüzünde geniş yayılım göstermekte ve yaklaşık olarak 1100 cins, 25000 tür ile temsil edilmektedir. Ülkemizde bu familyaya ait 133 cins ve 1156 tür yer almaktadır. Bu türler Asteroideae (Tubuliflorae) ve Cichorioideae (Liguliflorae) olmak üzere iki alt familya altında toplanmaktadır. Ülkemizde yer alan 1156 türün 430'u endemiktir [32-33]. *Tanacetum* L. cinsi Asteroideae alt familyasında yer almaktadır [34].

Kuzey yarım kürede yayılış gösteren *Tanacetum* L. cinsi, Türkiye'de Doğu Anadolu, İç ve Güney Anadolu'da yaygındır. Ülkemizde *Tanacetum* L. cinsine ait 44 tür bulunmakta ve bu türlerin 23'ü endemik özellik göstermektedir.

2.1.2 *Tanacetum* L. (Emend. Briq.) Cinsi

Tanacetum taksonları kısa, orta boylu veya uzun çok yıllık bitkilerdir. Genellikle rizomlu, kısa veya uzun, dik veya yükselici gövdeli, otsu bazen yarı çalımsıdır. Taksonlar çıplak veya tüylü; tüyler kısa yumuşak veya ikiye çatallanmış olabilir. Yapraklar bütün, dişli, pinnatifit veya 1-3 pinnatisekt formundadır. Kapitulum heterogam (çiçekler farklı eşeylere sahip) veya homogam (çiçekler aynı eşeyde), tek veya genellikle gevşek dizilişli sık korimbus (kapitulumların oluşturduğu şemsiye şeklinde yapı) şeklinde düzenlenmiştir. İnvolukrum yarı küremsi veya çan şeklinde; involukrumu oluşturan brakteler kiremit şeklinde dizilmiş, 3-4 sıralı, lanseolat veya oblong formunda olup, braktelerin uç kısımları ve kenarları zarımsıdır. Çiçek tablası düz ve çıplaktır. Dilsi çiçekler genellikle mevcuttur. Dilsi çiçeklerin petalleri (=ligula) beyaz, sarı veya pembe, involukrumdan az çok uzun 3 lopludur. Bazı durumlarda dilsi çiçekler mevcut değildir.. Tüpsü çiçekler 5 loplu ve sarıdır. Akenler silindirik veya çomak şeklinde, 5-10 boyuna oluklu çoğu kez salgı tüylü veya çıplaktır. Korona kısadır veya neredeyse yok gibidir, genellikle lobları veya dişleri eşit dağılmamıştır, bazen tek taraflı ve sadece arkadaki yüzde bulunur [32].

Tanacetum cinsinin Türkiye'de yetişen türleri Davis tarafından üç grupta ayrılmıştır; bu grupların sistematik anahtarı aşağıda verilmiştir [32].

1. Kapitulum heterogam; ligul formunda dişi çiçekler mevcut, bazı durumlarda bu çiçekler belirgin değildir ve nadiren tüpsü çiçeklerden uzundur.

- Dişi çiçekler beyaz, mat sülfür sarısı veya pembemsi kırmızıdır ve her zaman belirgin dilsi çiçekler vardır.
 Grup A
- 2. Dişi çiçekler parlak veya koyu sarı, ligulalar bazen belirgin değildir. Grup B

1. Kapitulum homogam, tüm çiçekler tüpsü yapıda; dişi çiçekler mevcut değil. Grup C Bu tez çalışmasında incelenen *Tanacetum balsamita* subsp. *balsamitoides* bitkisi David'in teşhis anahtarında A ve C gruplarında, *Tanacetum mucroniferum* bitkisi ise A grubunda yer almaktadır [32].

Grup A:

- 1. Dilsi çiçekler beyaz veya açık sulfur sarısı renginde
 - Kapitulum, yoğun korimbus içinde birkaç tane yada çok sayıda; involukrum 1 cm'den kısa

3. Yapraklar basit, yumurta-eliptik şekilde, tabanda nadiren 1-2 dikdörtgen		
şeklinde pinnatifid segments bulunmakta	Tanacetum balsamita	
4. Kapitulum disk şeklinde	subsp. balsamita	
4. Kapitulum ışın şeklinde	subsp. balsamitoides	

2. Kapitulum, gevşek korimbus içinde tek yada birkaç tane (10'dan az); involukrum

genellikle 1 cm genişliğinden fazla (bazen 0.5 cm genişliğinde olur ama daima tektir).

- 5. Yapraklar pinnate veya subpalmate şeklinde ayrılmış
 - 6.Yaprak bölünmesi düzgün, segmentler 2 cm genişliğinden daha az, 1-3 pinnatisekt
 - 7. Yaprakların birinci segmentleri çok sayıda, 10-25 çift
 - 8. Olgun bazal yapraklar 2-pinnatisekt, yaprak segmentleri tam olarak dönüşmemiş: ot şeklinde
 - Indumentum beyaz tüylü veya tomentose, kahverengi tüylere sahip değil
 - Yaprak lobları obtuse veya subakute; indumentum ortalama tüylü veya tomentose
 - 10. Yaprak lobları mukronate; indumentum nadir tüylere sahip

T.mucroniferum

2.1.3 Tanacetum L. Türlerinin Halk Arasında Kullanımı ve Biyolojik Etkileri

Tanacetum L. türleri içermiş oldukları biyoaktif seskiterpen laktonlar, flavonoidler ve uçucu yağlar nedeniyle uzun yıllar halk ilacı, parfüm, kozmetik hammaddesi ve tatlandırıcı olarak kullanılmıştır [24], [30], [35]. *Tanacetum parthenium* bitkisinden elde edilen esktreler antimigren ilacı olarak kullanılmakta ve bu özelliğinden dolayı tarımı yapılmaktadır [16], [18], [24]. *Tanacetum vulgare* bitkisi eski çağlardan beri tatlandırıcı olarak kullanılmaktadır. Ama toksik etkiye sahip β -tuyon içermesi nedeniyle günümüzde kullanımı kısıtlandırılmıştır [23], [24], [27], [30], [36], [37]. *Tanacetum coccineum* halk arasında oltu otu olarak bilinmekte ve kaşıntılı deri hastalıklarına karşı kullanılmaktadır [15]. *Tanacetum cinerariaefolium* bitkisi vücut bitini kontrol altına almada kullanılmaktadır [38]. Doğu Anadolu bölgesinde Erzurum, Erzincan, Ağrı, Kars ve Iğdır illeri sınırları arasında bulunan kılıç otu adı ile bilinen *T. balsamita* bitkisinin yapraklarının yaraların iyileşmesinde kullanıldığı belirlenmiştir [39].

2.1.4 Tanacetum balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson Türü

Rizomlu çok yıllık bir bitkidir. Gövdesi 35-80 cm, nadiren tüylü, yukarı kısımda dallanmıştır. Bazal yaprakları basit, ovat-eliptik, 12-20 cm x 1-5.5 cm boyutunda (yaprak sapları 8-15 cm), yaprağın apeks kısmı akut veya subobtuse, yaprak tabanı kordat, trunkat veya kuneat şeklinde, yaprak kenarları tırtıllı-testere dişli, yaprağın her iki yüzeyi tüylü; sap boyuta göre azalmakta, alt kısımda kısa bir yaprak sapı, yukarıya doğru yaprak sapsız ve bazen taban kısmında dikdörtgen şeklindeki segmentlerin 1-2 çifti pinnatisekt ile birlikte bulunmaktadır. Kapitulum genellikle serbest uç korimboz içinde çok sayıda (3-)30-100 tanedir. Involukrum 5-8 mm genişliğinde; pulsu yapraklar üç seri halinde, mızrak veya dikdörtgen şeklinde, kenarları açık veya koyu renkli, dış kısmı 2.5 x 0.75 mm, iç kısmı 3-3.5 x 1 mm boyutundadır. Işın çiçekleri 12-15 tane veya yok, dilsi çiçekler beyaz, 3.5-7 x 1.75-3.5 mm boyutundadır. Tüpsü çiçekler sarı, 2 mm boyutundadır. Akenler düz ve yuvarlak, 2 mm boyutundadır. Korona bütün veya inceden inceye dişli, 0.2-0.4 mm boyutundadır. Tanacetum balsamita L. ssp. balsamitoides (Schultz Bip.) Grierson 1525-3000 m'de, nemli topraklarda yetişen çok yıllık otsu bir bitkidir. Çiçeklenme zamanı 7-9 ayları arasında olmaktadır. Türkiye'deki dağılımı Kuzey-Doğu ve Doğu Anadolu bölgelerinde iken, genel dağılımı Ermenistan ve Kuzey-Batı İran'dır [32]. Tanacetum balsamita subsp. balsamitoides bitkisinin genel görünümü Resim 2.1'de ve ülkemizde yetiştiği lokasyonlar Şekil 2.1'de verilmiştir.

Şekil 2.1 Tanacetum balsamita subsp. balsamitoides bitkisinin Türkiye'de yayılışı

Resim 2.1 Tanacetum balsamita subsp. balsamitoides kuru bitkinin genel görünümü

2.1.5 Tanacetum mucroniferum Hub.-Mor. & Grierson Türü

Botanik özellikleri *T. aucheranum* ve *T. sipikorense* türleri arasında yer almaktadır. Indumentumu seyrek veya orta derecede beyaz tüylü ama kahverengi tüyleri yer almamaktadır. Yaprakları *T. aucheranum* türü ile benzerlik göstermekte ama mukronat lobludur. Kapitulumu 1-3 tanedir. Pulsu yapraklar *T. oxylepis* türüne benzerlik göstermekte, yumurta-mızrak şeklinde, kenarları kahverengimsi, uç kısımları aküminat ve dar incedir. Çiçeklenme zamanı 7-8 aylardır. Su kenarlarında veya granitli yamaçlarda 1830-2900 m'de yetişirler. Çok yıllık otsu bir bitkidir. Türkiye'deki dağılım Kuzey-Doğu ve Doğu Anadolu bölgelerindedir. Endemik bir türdür [32]. *Tanacetum mucroniferum* bitkisinin genel görünümü Resim 2.2'de ve ülkemizde yetiştiği lokasyonlar Şekil 2.2'de verilmiştir.

Şekil 2.2 Tanacetum mucroniferum bitkisinin Türkiye'de yayılışı

Resim 2.2 Tanacetum mucroniferum bitkisinin genel görünümü

2.2 Sekonder Metabolitler

Bitkilerdeki primer metabolitler tüm organizmalarda ortak olan karbonhidrat, protein ve yağlardır. Primer metabolitler organizmaların yaşamsal işlevleri (büyüme, gelişme) için gerekli olan temel maddeleridir. Sekonder metabolitler ise, bitkinin büyüme ve gelişmesinde katkıda bulunmayan ama bitkinin savunma mekanizmasında, ortama uyumunda, dış etkilerden korunmasında ve bitkilerin diğer canlılarla etkileşimin sağlanmasında rol alan maddelerdir. Sekonder metabolitler, primer metabolitlerin yan
ürünleri olarak üretilmektedir. *Tanacetum* türlerinden günümüze kadar başta seskiterpen laktonlar olmak üzere, seskiterpenler, triterpenler, kumarinler, monoterpenler ve flavonoidler gibi sekonder metabolitler izole edilmiştir [29]. Sekonder metabolitlerin oluşumu Şekil 2.5'te verilmiştir [40].

2.2.1 Terpenler

"Terpen" sözcüğü çam ağaçlarının reçinesi olarak adlandırılan yapışkan madde terebentin (*Balsamum terebinthinae*)" den türemiştir [41]. Terpenler bitki dokularında genellikle serbest olarak, bazıları glikozitleri ya da organik asit esterleri halinde, bazıları da proteinlerle birleşmiş olarak bulunurlar. Terpenlerin yapılarında sadece karbon ve hidrojen olabileceği gibi aynı zamanda oksijen içeren yani alkol, keton, aldehit ve asit grubu taşıyan terpenler de doğada çok yaygın olarak bulunurlar. Oksijen ihtiva eden terpenler "terpenoidler" olarak adlandırılırlar [42].

Terpenler, izopren birimlerinin birbirleriyle birleşmesi sonucunda oluşmuştur. Bu durumu ilk fark eden Otto Wallach 'İzopren kuralını' ileri sürmüştür. Daha sonraki yıllarda yapılan çalışmalarda bu durum Robert Robinson tarafından geliştirilmiştir. İzopren ünitelerinin birbirleriyle baş-kuyruk şeklinde birleşmesi gerektiğini öne sürmüştür [43]. Ama Compositae familyasında yer alan bazı terpenlerin bu şekilde birleşmediği ortaya çıkmıştır. İzopren biriminin baş ve kuyruk kısmı Şekil 2.3'te belirtilmiştir. İzopren grupları birbirleriyle baş-baş, baş-kuyruk ve kuyruk-kuyruk şeklinde birleşmektedir. Doğada en yaygın olanlar baş-baş ve baş-kuyruk birleşmeleridir [44]. İzopren birimlerinin bağlanma şekilleri Şekil 2.4'te verilmiştir. Terpenler içermiş olduğu izopren birimlerinin sayılarına göre sınıflandırılırmaları Çizelge 2.1'de verilmektedir.

Şekil 2.3 İzopren (2-metil-1,3-bütadien)

Şekil 2.4 İzopren birimlerinin bağlanma şekilleri

Çizelge 2.1	Terpenlerin	sınıflandırılması
, - O-	I I	

İzopren Sayısı	Karbon Sayısı	Sınıfı
1	C ₅	Hemiterpen (C ₅ H ₈)
2	C ₁₀	Monoterpen(C ₁₀ H ₁₆)
3	C ₁₅	Seskiterpen (C ₁₅ H ₂₄)
4	C ₂₀	Diterpen (C ₂₀ H ₃₂)
5	C ₂₅	Sesterterpen (C ₂₅ H ₄₀)
6	C ₃₀	Triterpen (C ₃₀ H ₄₈)
8	C_{40}	Tetraterpen (C ₄₀ H ₅₆)
n	(C ₅) _n	Politerpenler (C ₅ H ₈) _n

Şekil 2.5 Sekonder metabolitlerin oluşumu

Terpenleri oluşturan izopren birimleri, mevalonik asit üzerinden gerçekleşen bir seri biyokimyasal olaylar sonucunda oluştuğu anlaşılmaktadır. Mevalonik asit sadece terpenlerin oluşumunda rol oynamaktadır. Mevalonik asit eldesinde başlangıç maddesi olarak asetil koenzim A kullanılmaktadır. Son yıllarda yapılan araştırmalar sonucunda izopren birimlerinin deoksikluloz 5-fosfat üzerinden de oluştuğu ispatlanmıştır [45].

Terpenlerin oluşumunun ilk basamağında, mevalonik asit 2 molekül ATP ile fosforlanarak mevalonik asit-5-pirofosfata dönüşür. Şekil 2.6'da Mevalonik asit-5-pirofosfat oluşumu verilmektedir.

Şekil 2.6 Mevalonik asit-5-pirofosfat oluşumu

Mevalonik asit-5-pirofosfatta yer alan tersiyer OH grubunun 1 mol ATP ile forforlanması sonucu daha kolay ayrılabilen bir grup haline gelir. Daha sonra su ve karbondioksit çıkması sonucu izopentil pirofosfat oluşur. Şekil 2.7'de izopentil pirofosfatın oluşumu verilmektedir.

Şekil 2.7 İzopentil pirofosfat oluşumu

İzopentil pirofosfatın bir enzim yardımıyla izomerizasyonu sonucu dimetilallil ester oluşur [46]. Şekil 2.8'de izopentil pirofosfatın izomerasyonu verilmektedir.

Şekil 2.8 İzopentil pirifosfatın izomerasyonu

Bu iki izomerin kondenzasyonu geranil pirofosfatı oluşturur. Geranil pirofosfat monoterpenlerin öncü maddesidir. Şekil 2.9'da geranil pirofosfatın oluşumu verilmektedir.

Şekil 2.9 Geranil pirofosfatın oluşumu

Geranil pirofosfatın izopentil pirofosfat ile kondenzasyonu farnesil pirofosfatı oluşturur. Farnesil pirofosfat seskiterpenlerin öncü maddesidir. Şekil 2.10'da farnesil pirifosfatın oluşumu verilmektedir.

Şekil 2.10 Farnesil pirofosfatın oluşumu

Bu maddenin tekrar izopentil pirofosfat ile kondenzasyonu geranil-geranil pirofosfatı verir. Geranil-geranil pirofosfat diterpenleri ve karotenoitleri oluşturur. Şekil 2.11'de geranil-geranil pirifosfatın oluşumu verilmektedir.

Şekil 2.11 Geranil-geranil pirifosfat oluşumu

İzopentil, geranil ve farnesil pirofosfat moleküllerinin birbirleriyle değişik kondenzasyonları sonucu daha yüksek yapılı terpenler oluşur. Terpenlerin oluşum şeması Şekil 2.12'de verilmiştir.

2.2.1.1 Monoterpenler

Monoterpenler 10 karbonlu terpenoid bileşikler olup, bitkilerden elde edilen uçucu yağlarda ve apolar ekstrelerde yer alırlar. Monoterpenlerin kaynama noktaları düşüktür ve yapılarındaki halka sayısına göre sınıflandırılırlar. Monoterpenlerin iskelet yapıları Şekil 2.13'te verilmiştir. Monoterpenler koku ve aroma verici maddeler olduğundan parfüm ve gıda sektöründe önemli ekonomik değere sahiptirler. Yapılan araştırmalar sonucunda monoterpenlerin antifungal, antibakteriyel ve antioksidan aktiviteler gösterdiği belirlenmiştir. Ayrıca monoterpenlerin bazı bitkilerde tohumun çinlenmesini ve bitkinin gelişmesini inhibe ettiği ispat edilmiştir [47]. Bitkilerden uçucu yağların elde edilmesinde, bitki materyalleri 4 saat boyunca Clevenger cihazında hidro distilasyon islemine tabi tutulur. Distilasyon sonucunda elde edilen yağın miktarı Clevenger cihazı üzerinde milimetre cinsinden ölçülür. Analize başlamadan önce uçucu yağ n-hekzan çözücüsünde 1/10 oranında seyreltilir. GC-MS cihazında gerekli parametreler ayarlanır. Analiz sonucunda ayrılan bileşiklerin bağıl yüzde miktarları, kütle kromatogramlarında yer alan piklerin integrasyonları ile hesaplanır. Uçucu yağ bileşenlerin tanımlanması, literatürdeki n-alkan (C5-C30) serilerinin bağıl gelme indisleri (RRI) ve kütle spektrum karşılaştırmaları ile belirlenir. Kütle spektrum karşılaştırmaları bilgisayarda yer alan Wiley 8th Ed./NIST 05 Mass spectra library, Adams Essential oil Mass Spectral library ve Pallisade 600k Complete Mass Spectra Library kütüphaneleriden yararlanılır.

Şekil 2.12 Terpenlerin Oluşumu

Şekil 2.13 Monoterpenlerin iskelet yapıları

2.2.1.2 Seskiterpenler ve Seskiterpen Laktonlar

Seskiterpenler üç izopren ünitesinden oluşmuş 15 karbonlu terpenlerdir. Yapılarındaki halka sayısına göre asiklik, monosiklik, bisiklik ve trisiklik yapıda olabilirler. Seskiterpenlerin iskelet yapıları Şekil 2.15'te verilmiştir. Seskiterpenler yapılarında lakton halkası bulunabilir. Lakton halkaları beş üyeli (γ -lakton) veya 6 üyeli (δ -lakton) olabilirler [48]. γ -Laktonlar seskiterpenlere biyo-oluşumları nedeniyle 6,7 veya 7,8 konumlarından bağlanabilirler.

Seskiterpen laktonlar başta Compositae familyası olmak üzere Umbelliferae, Mognoliaceae, Lauraceae, Winteraceae gibi diğer familyalara ait bitki türlerinde bulunurlar [49]. Seskiterpen laktonlar Compositae familyasında kemo-taksonomik öneme sahiptir. Bu sayede familyada yer alan cinslerin ve türlerin biribirlerine benzerlikleri belirlenebilmekte ve sınıflandırma bu duruma göre yapılabilmektedir [50-53]. Seskiterpen laktonlar içermiş oldukları α -metilen- γ -lakton yapısından dolayı birçok biyolojik aktivite göstermektedir. α -metilen- γ -lakton yapısı organizmalarda gelişimi kontrol eden enzimlerin tiyol gruplarına *Michael katılması* ile bağlanmakta ve enzimlerin aktivitelerini geri dönüşümsüz olarak inhibe etmektedir [29], [49], [54]. Sıklıkla karşılaşılan seskiterpen laktonların yapıları Şekil 2.14'te verilmiştir.

Seskiterpen laktonların yapı tayininde ¹H-NMR, COSY, APT, ¹³C NMR, HSQC, HMBC, MS, IR gibi spektral yöntemler kullanılır. ¹H-NMR spektrumunda 0.00-2.00 ppm arasında H-13, H-14 ve H-15 metil pikleri görülmektedir. Moleküler çevrelerine

bağlı olarak kimyasal kaymalar gözlenebilir. Metilen pikleri, komşu grupların yapısına bağlı olarak 1.5-4.00 ppm arasında, doymamışlık pikleri 4.5-6.5 ppm arasında gözlemlenebilir. Lakton halkasına bağlı pikler 3.5-4.5 ppm arasında görülmektedir. ¹³C NMR spektrumunda –CH₃ pikleri 0.00-20 ppm arasında, -CH₂ pikleri 20-40 ppm arasında, -CH pikleri 40-55 ppm arasında yer almaktadır. Oksijene bağlı gruplar 60-90 ppm arasında, doymamışlık pikleri 100-150 ppm arasında görülmektedir. Karbonil pikleri 170-190 ppm arasında yer almaktadır.

Şekil 2.14 Sıklıkla karşılaşılan seskiterpen laktonların yapıları

2.2.1.3 Triterpenler

Triterpenler altı izopren ünitesinden oluşmuş 30 karbonlu terpenlerdir. Triterpenler yapısındaki halka sayısına göre trisiklik, tetrasiklik ve pentasiklik yapıda olabilirler. Genel triterpen iskelet yapıları Şekil 2.16'da verilmiştir. Sübstitüent taşımayan triterpenler hidrokarbon olarak adlandırılır. Triterpenler bitkilerden ve bazı hayvanlardan elde edilebilirler. Triterpenlerin çok küçük bir kısmı doğada geniş bir yayılım göstermektedir. Bitkilerin yaprakları ve meyveleri üzerinde mumsu tabakada α -amirin, β -amirin, ursolik asit ve oleanolik asit yaygın bir şekilde bulunmaktadır. Bu triterpenlerin böcekleri uzaklaştırıcı ve mikrobiyal saldırılara karşı koruyucu etkileri olduğu düşünülmektedir [55]. Triterpenler Liebermann-Burchard renk reaksiyonunda mavi-yeşil renk alırlar. Aynı renk reaksiyonunda steroitler kızıl kahve renk verir [56].

Triterpenlerin yapı tayininde ¹H NMR spektrumu oldukça önemlidir. Triterpenlerin yapılarında 8 metil grubu bulunmaktadır. Fakat bu metil grupları, bazen aldehit, asit yada alkol gibi gruplarla yer değiştirebilirler. Metil gruplarının kimyasal kaymaları ve bölünme durumları triterpenlerin iskelet yapıları hakkında bilgi vermektedir. ¹³C NMR spektrumu yapının kaç karbonlu olduğunu ve karbonil, ester, karboksilik asit, oksimetin, hidroksimetin gibi grupların varlığını belirtmektedir. Kütle spektrumunda, moleküler pikin yanı sıra iskelet üzerinde çifte bağın yeri hakkında bilgi verir [57].

2.2.2 Flavonoidler

Flavonoidler bitkilerin fotosentezle oluşturdukları karbonhidrat ve amino asitler gibi birincil metabolitlerden türerler. Flavonoidler bitkilerde ve bazı alglerde bulunur. Flavonoidler bitkilerde çiçeklerin renklerini oluştururlar. Renk verici özellikleri sayesinde kuşlar, böcekleri cezbetmekte ve tozlaşmaya yardımcı olmaktadır. Yapılan araştırmalar sonucunda flavonoidler bitkiyi ultraviyole ışığın DNA üzerinde yaptığı zarara karşı koruduğu saptanmıştır [58]. Flavonoidlerin en önemli özellikleri antioksidan etkiye sahip olmalarıdır. Flavonoidler reaktif bir bileşikteki serbest radikalle reaksiyona girerek reaktif oksijen türlerini stabilize eder. Hidroksil gruplarının reaktif özellikleri yüksek olmasıyla radikaller inaktif hale gelir [59]. Bu reaksiyon ile LDL (low density lipoprotein) tanecikleri korunarak damar sertliğine karşı koruma sağlamış olur [60].

Flavonoidler 2-fenil benzopiran yapısındadır. 2-fenil benzopiran yapısı Şekil 2.17'de verilmiştir. Flavonoidlerin yapı tayininde UV kayma belirteçleri (sodyum metoksit, alüminyum klorür, seyreltik HCl, sodyum asetat, borik asit) önemli bilgi verir. Flavonoidler metanol çözücüsü ile alınan UV spektrumunda 2 ana pik verir. 300-400 nm arasında görülen pik Bant I olarak adlandırılmakta ve B halkasının (sinnamoil grubu) oksidasyonu hakkında bilgi verir. 240-285 nm arasında görülen pik Bant II olarak adlandırılmakta ve A halkasının (benzoil grubu) oksidasyonu hakkında bilgi verir [48].

Şekil 2.17 2-fenil benzopiran yapısı

MeOH+NaOMe ile alınan spektrumlarda Bant I, MeOH'de alınan spektrumdaki Bant I'den daha uzun dalga boyuna (~50-60 nm) kayarsa ve şiddeti artarsa 4' konumunda – OH grubunun bulunduğu anlaşılır.

MeOH+AICI₃, A halkasında 3 ve 5 konumundaki serbest hidroksil grupları ve B halkasındaki *o*-dihidroksi grupları ile ayrı ayrı kelat oluşturur.

MeOH+AICI₃+HCI ile B halkasındaki *o*-dihidroksi grupları ile oluşan kelat bozunur. Ayrıca alınan spekturumda Bant I'in metanol spektrumundaki Bant I'e oranla 34-50 nm daha uzun dalga boyuna kayması 5-OH ve 6-H olduğunu, 25-30 nm kayması 5-OH, 6-OH olduğunu, 16-25 nm uzun dalga boyuna kayması 5-OH ve 6-OCH₃ olduğunu gösterir [61].

MeOH+NaOAc ile alınan spektrumlarda flavon ve flavonollerde 7 konumunda –OH grubu varsa Bant II 5-20 nm uzun dalga boyuna kayar. Ancak flavonlarda C-6 veya C-8'de oksijen fonksiyonu varsa bu durum görülmeyebilir. 4' konumunda –OH ve 7 konumuna metoksi veya şeker varsa Bant I, NaOMe ile alınan spektrumdaki Bant I ile aynı dalga boyunda çıkar.

MeOH+NaOAc+H₃BO₃, B halkasında o-dihidroksi grupları varsa bunlar borik asit ile kelat oluştururlar ve Bant I 12-30 nm daha uzun dalga boyuna kayar [61].

Flavonoidlerinin yapılarının belirlenmesinde UV spektroskopisi ve NMR spektrum sonuçları ile birlikte değerlendirilmelidir. Ayrıca flavonoidlerin yapıları hakkında kabaca ön bilgi elde etmede renk reaksiyonlarından yararlanılır. Renk reaksiyonları, kromatogramlardaki flavonoid lekesini UV ışıkta inceleme, aynı lekenin UV ışık altında NH₃ buharlarına ve NA belirtecine karışı gösterdiği renk değişikliğinin belirlenmesi şeklinde olur [62]. Flavonoidlerin genel yapıları Şekil 2.18'de verilmiştir.

Şekil 2.18 Flavonoidlerin yapıları

2.2.3 Kumarinler

Kumarinler, piron halkasının benzen halkası ile kondenzasyonu sonucu oluşan heterosiklik bileşik sınıfıdır.

Şekil 2.19 α-piron, γ-piron ve kumarin bileşikleri

Yapıdaki karbonil gruplarının pozisyonuna göre iki tür benzopiran bileşiği tanımlanır. Bir α -piron halkasının benzen halkasına kondanse olması "kumarin", bir γ -piron halkasının benzen halkasına kondanse olması "kromon" olarak adlandırılır [63].

Şekil 2.20 Kumarin Kromon bileşikleri

Kumarin ve kumarin türevleri bitkilerde serbest ve glikozitleri halinde bulunurlar. Kumarinler in vivo olarak birçok tümör türüne karşı etki göstermekte ve anti-HIV aktiviteye sahip olduğu bilinmektedir [64]. Kumarinler floresans özellik göstermezler. Ancak alkali çözeltileri UV'de yeşil renkte floresan verir [63]. Kumarin türevleri başlıca 6 sınıfta incelenebilir [65].

1. Benzen halkası üzerinde sübstitüent taşıyan kumarinler

Şekil 2.21 Mono, di-sübstitüe kumarinler

2. Piron halkası üzerinde sübstitüe taşıyan kumarinler

3-Fenilkumarin

3-Metil-4-hidroksikumarin

Şekil 2.22 Piron halkasına mono,di-sübstitüe kumarinler

3. Hem benzen, hem de piron halkası üzerinde sübstitüent taşıyan kumarinler

4-Metilumbelliferon

7-Amino-4-metilkumarin

Şekil 2.23 Benzen ve piron halkasında sübstitüent taşıyan kumarinler

4. Benzen halkasına halkalı yapıların kondenzasyonu ile meydana gelen kumarinler

6,7-Benzokumarin

Psoralen (Furanokumarin)

Şekil 2.24 Benzen halkasına halkalı yapıların kondenzasyonu ile meydana gelen kumarinler

5. Piron halkasına halkalı yapıların kondenzasyonu ile meydana gelen kumarinler

Şekil 2.25 Piron halkasına halkalı yapıların kondenzasyonu ile meydana gelen kumarinler

6. Dimer kumarinler

Bishidroksikumarin (Dikumarol)

Şekil 2.26 Dimer kumarinler

2.3 *Tanacetum* Cinsindeki Bitkilerden Elde Edilen Seskiterpen Laktonlar ve Flavonoidler

Seskiterpen laktonlar çoğunlukla Compositae familyasında görülmekte ve kemosistematik iz olarak kullanılmaktadırlar. Seskiterpen laktonların içerdikleri α -metilen- γ -lakton yapılarından dolayı çeşitli biyolojik aktiviteler gösterdiği düşünülmektedir [29].

Flavonoidler çoğunlukla bitkilerde, bazı alglerde ve karayosunlarında rastlanır. *Tanacetum* türlerinde flavonoidler genellikle metoksil gruplarını içermektedir. *Tanacetum* cinsinde flavonoidler dışında fenolik bileşikler olarak kumarinler ve flavonoid glikozitler de görülmektedir [29].

Bu bölümde Çizelge 2.2'de *Tanacetum* cinsinden 2009-2016 yılları arasında izole edilen seskiterpen laktonlar, flavonoidler ve bu maddeler üzerine yapılmış biyolojik aktivite çalışmaları özet olarak verilmiştir.

Tanacetum cinsine ait 1965-2009 yılları arasında yapılmış çalışmalar 2009 yılında Kaan Polatoğlu tarafından hazırlanan Doktora tezinde belirtildiğinden dolayı bu tezde kaynak olarak gösterilmiştir [66].

Tür adı	İzole edilen yapı	Biyolojik aktivite	Referans
T.parthenium	Parthenolide	Antioksidan aktivite(Parthnenolide biyosentezinde Magnezyum ve manganın etkisi)	[67]
Tanacetum huronense	Tanacin	Antikanser aktivite	[68]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları

Tanacetum gracile	Gracilone, 14α -Taraxeran-3- one, 14α -Taraxeran-3-ol, Apigenin, β -Sitosterol	Antimikrobiyal, antioksidan ve antikanser aktivite	[69]
T. parthenium	Parthenolide	Antikanser aktivite(Parthenolide maddesinin sitosolik tioredoksin redüktaz ve mitokondrial tioredoksin redüktaz enzimleri ile etkileşime geçerek HeLa hücrelerinin apoptoz(hücre ölümü) indüklenmesi)	[70]
T. gracile	Kaempferol, Ketoplenolide, Tetrametoksiflavon ve Artemetin	-	[71]
T. sinaicum	Apigenin, Acacetin, Luteolin, Chrysoeriol, Cirsilineol, Jaceidin, Chrysosplenetin, Vitexicarpin, Apigenin 7- <i>O</i> -β- Glukopyranoside, Apigenin 7- <i>O</i> -β-Glukuronid, Luteolin 7- <i>O</i> -β-Glukopyranoside, Luteolin 7- <i>O</i> -β-Glukuronid, 4- Hidroksi-3-Metoksi benzoik asit, 3,4-Dimetoksi benzoik asit, 4-Hidroksi asetofenon	_	[72]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

Tanacetum	<i>p</i> -Koumarik asit, Ferulik asit,	Antioksidan	[73]
cilicicum	Gallik asit, Gentisik asit,	aktivite	
	Klorojenik asit, Chrysin,		
	Galangin, Quercetin,		
	Naringenin, Catechin		
T. gracile	Kaempferol, Ketoplenolide,	-	[74]
	Tetrametoksiflavon, Artemetin		
T.vulgare	Bitki	Biyoyakıt kaynağı olarak kullanılması	[75]
T.vulgare	Bitki	Endüstriyel aerosol emisyonların etkisi altında otsu bitkilerde ağır metallerin dağılımı ve içeriği	[76]
T.parthenium	Metanol ekstresi	Anti-bakteriyel ve antioksidan aktiviteleri	[77]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

T. albipannosum, T. argenteum subsp. argenteum, T. argenteum subsp. canum var. canum, T. argenteum subsp. flabellifolium, T. argyrophyllum var. argyrophyllum, T. aucheranum, T. balsamita subsp. balsamitoides, T. cilicicum, T. densum subsp. laxum, T. densum subsp. sivasicum, T. mucroniferum, T. parthenium, T. tomentellum	Parthenolide, Asetonitril ekstreleri(Çiçek, yaprak,gövde)	Antiasetilkolinesteraz ve anti- butirilkolinesteraz aktivite	[78]
T.parthenium	Parthenolide	Parthenolide maddesinin fare beyninin bEND.3 endotelyal hücrelerinde bastırılmış Ca ²⁺ sinyalini etkilemesi	[79]
T. vulgare	Bitki ekstresi	Allerjen Etkisi	[80]
T.parthenium	Parthenolide	Salisilik asit ve metil jasmonat maddelerinin eksojen uygulması ile <i>T.</i> <i>parthenium</i> bitkisinde bulunan parthenolide birikimine ve parthenolide biyosentezine bağlı gen sentezlemesine etkisi	[81]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

T. gracile	5-Hidroksi-3,6,7,3',4'- pentametoksiflavon, 5,4'-Dihidroksi- 3,6,7,3',4'- Pentametoksiflavon	Sitotoksik aktivite (göğüs kanser hücrelerine)	[82]
T. vulgare	(<i>E</i>)-2-(2,4- Hekzadiynyliden)-1,6- dioxaspiro[4.5]dec-3- ene, Petrol eteri ekstresi, Etil asetat ekstresi, Su ekstresi	Sitotoksik ve antiviral (HSV-1 ve HSV-2) aktiviteleri	[83]
T.parthenium	Çiçek ve yaprak ekstresi	Ağrı kesici	[84]
T. polycephalum	8β-Hidroksi-4β,15- dihidrozaluzanin C, Hekzan ekstresi	Antikanser ve Apoptotik Etki	[85]
T. vulgare var. boreale	 7-O-Glukozit apigenin, Luteolin, Scutellarein, 6- Hidroksiluteolin, 7- O-Glukuronid apigenin, Luteolin, Chrysoeriol, Eriodictyol, Apigenin, Luteolin, Hispidulin, Nepetin, Eupatilin, Jaceosidin, Pectolinarigenin ve Axillarin 		[86]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

T. parthenium	Parthenolide	Parthenolide maddesinin diyabetik nefropati üzerine etkisi	[87]
T. cinerariifolium	Bitki ekstresi	Atmosferik CO ₂ yükselmesinin ve su eksikliğinin çiçek gelişimi ve pyrethrin birikimi üzerine etkisi	[88]
Tanacetum oshanahaniia, Tanacetum ptarmiciflorum	Tanapsin, Tanapsin asetat, Etanol ekstreleri	Sitotoksik aktivite	[89]
T.parthenium	Etanol ekstresi	Antioksidan aktivite	[90]
T. parthenium	Parthenolide	Anti-enflamatuar ve Anti-Osteoclastogeni Aktivite	[91]
T. sonbolii	Hidroalkolik ekstresi	Formalin testi	[92]
Tanacetum polycephalum subsp. argyrophyllum	Metanol ekstresi	Sitotoksik aktivite	[93]
T. parthenium	Diklorometan ekstresi	Antileishmania aktivite	[94]
T.parthenium	Hidroalkolik ekstre	Diyabetik nöropati üzerine etkisi	[95]
T. canescens	Salvigenin	Anti-tümör ve immünomodülatör Etki	[96]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

Tanacetum chiliophyllum var. oligocephalum	5-Hidroksi-3',4',6,7- tetrametoksiflavon, Eupatilin (6-hidroksiluteolin-6,3',4'- trimetilether), Cirsimaritin (scuttellarin-6,7- dimetilether), Cirsilineol, 5- Hidroksi-3',4',7-trimetoksi flavon, Desmetoksi- centaureidin, Jaceosidin, Taraxasterol asetat, Etil asetat ve Metanol ekstresi	İnsektisit, animikrobiyal ve antioksidan aktiviteleri	[97]
T.parthenium	Parthenolide ve bitki ekstresi	Bitki ekstresinin deri hüclerini oksidatif hasardan koruması	[98]
T.parthenium	Parthenolide	Partenolit'in TRPV1 kanalı hedefleyerek trigeminovasküler sistemde nosisepsiyon ve nörojenik vazodilatasyona inhibe etmesi	[99]
T.parthenium	Parthenolide, 11,13- Dihidroparthenolide ve bitki ekstresi	Beyin-kan bariyerine özel yapay membran geçirgenliğinin uygulanması	[100]
T.cinerariifolium	Pyrethrin (Pyrethrin I ve II, cinerins I ve II, jasmolins I ve II)	<i>T.cinerariifolium</i> bitkisinin doğal populasyonlarının kimyasal çeşitliliği	[101]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

T.vulgare ve T.parthenium	<i>T. vulgare</i> (bitki ekstresi) <i>T. parthenium</i> (çiçek ekstresi)	Ekstrelerin seskiterpen lakton içeriğinin belirlenmesi ve alerjen potansiyelinin değerlendirilmesi	[102]
T. cinerariifolium	β-Siklopyrethrosin, Chrysanin, Pyrethrosin, Dehidro-β- siklopyrethrosin, Chrysanolide, (11R)-11,13-dehidro-tatridin-A, (11-R)-6-O-β-D-Glukosil-11–13 dehidro-tatridin-B, (11R)-11,13- Dehidro-tatridin-B (8) tatridin- A, Tatridin-B.	-	[103]
T. parthenium	Parthenolide	Review	[104]
T. parthenium	Parthenolide	Anti-migren aktivite	[105]
T.parthenium	Parthenolide	İki göğüs kanser hücrelerine apoptozis dolayımlı sitotoksik etkileri	[106]
T.parthenium	Parthenolide ve Custonolide	Genetik, gelişimsel ve mekansal faktörlerin parthenolide ve custonolide üzerine etkisi	[107]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

Çizelge 2.2 Tanacetum türlerinden izole edilen s	seskiterpen laktonlar, f	flavonoidler ve
yapılan biyolojik aktivite çalı	ışmaları (devamı)	

	1,8-Dihidroksi-5H,10-ödesma-3,11(13)-dien-	Sitotoksik	[108]
ptarmicifiorum	6,12-olide, 1,10-Epoksispiciformin, (6E,9E)-	aktivite	
	11-Etoksi-3,7,11-trimetil-1,6,9-dodecatrien-		
	3,5-diol, (5E,9E)-11-Etoksi-3,7,11-		
	trimetildodeca-1,5,9-triene-3,7-diol, Sesamin,		
	Stigmasterol, Vanillin, Scoparone, Scopoletin,		
	5,7,4'-Trihidroksi-3,6-dimetoksiflavon, 4-		
	Hidroksibenzaldehit, Apigenin, 1,6-		
	Dihidroksi-4(15)-epoksiödesm-11(13)-en-		
	8a,12-olide, TatridinA, TatridinB, Desasetil-β-		
	siklopyrethrosin, Tamirin, 4α,5β-Epoksi		
	tatridin A, Spiciformin, 1α,10β-		
	Epoksidesasetillaurenobiolide, Dentatin A,		
	1β,4α,6α-Trihidroksi-ödesm-11-en-8a,12-		
	olide, (6E), 5,9-Dihidronerolidol, (E,E)-		
	3,7,11-trimetil-1,6,9-dodecatrien-2,5,11-triol		
T. ferulaceum var. latipinnum	1,10-Epoksispiciformin, 1,8-Dihidroksi- 5H,10-ödesma-4(15),11(13)-dien-6,12-olide, 1,4-(Propil-2,2-dioksi)-8-hidroksi-10-ödesm- 6,12-olide, Sesamin, Stigmasterol, Vanillin, Scoparone, Scopoletin, 4-Hidroksibenzoik asit, 5,7,40-Trihydroxy-3,6-dimethoxyflavone, Apigenin, Tatridin A, Tatridin B, Desasetil- β - siklopyrethrosin, 4 α ,5 β -Epoksi tatridin A, Spiciformin, 1 β ,4 α ,6 α -Trihidroksi- ödesm-11- en-8 α ,12-olide, (6E) 5,9-Dihidronerolidol, (E,E)-3,7,11-Trimetil-1,6,9-dodekatrien- 2,5,11-triol	Sitotoksik aktivite	[108]

T. oshanahanii	Sivasinolide 6-O-angelate, Scoparone, Scopoletin, Tatridin A, Tatridin B, 6- Angeloyloxy tatridin A, 6a- Angeloyloxydesasetil-β- siklopyrethrosin, 6α-Angeloyloxy tatridin B, Tamirin, Desasetil-β- siklopyrethrosin, Tanapsin, 1β,10α-	Sitotoksik aktivite	[108]
	angelate, 5,7,40-Trihidroksi-3,6-		
	dimetoksiflavon, Stigmasterol		
T. parthenium	11,13-Dehidrocompressanolide	Tripanosidal aktivite	[109]
Т.	Parthenolide, 11,13Dihidroparthenolide,	Antioksidan	[110]
parthenium	Anhidroverlotorin, Santamarine,	Response Element	
	Reynosin, 3β-Hidrocostunolide,	Aktivasyonu	
	Costunolide diepoksit, 3-		
	Hidroksiparthenolide, Artemorin,		
	Artecanin, Tanaparthin-β-peroksit		
T. vulgare subsp. siculum	Douglanin, Ludovicin B, Ludovicin A, 1α-Hidroksi-1-deoksoarglanine, 11,13- Dehidrosantonin	Sitotoksik aktivite	[111]
T. parthenium	Parthenolide	Çoklu anti-kanser ve anti-enflamatuar Aktivite (Review)	[112]
T.vulgare	Bitki ekstresi	Bitki ekstrelerinden oluşan immünomodülatör ilaç olan Setarud'un nöroprotektif etkisi	[113]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

T.vulgare	Etanol ekstresi	Sitotoksik aktivite	[114]
T.vulgare	Su/etanol ekstresi	Antibakteriyel aktivite	[115]
T.parthenium	Parthenolide ve kloroform ekstresi	<i>Ophiophagus hannah</i> zehiri üzerine etkisi	[116]
T. cinerariifolium	Pyrethrin	Pyrethrin maddesinin çiçek ekin biti üzerine etkisi	[117]
T.parthenium	Süperkritik ekstresi	Fare makrofaj hücrelerinde nitrik oksit sentezinin inhibisyonu	[118]
T.parthenium	Parthenolide	Doğal ateşleme aktivitesi	[119]
T. vulgare	3,5-O-Dicaffeoylquinic asit, Axillarin, Luteolin, Parthenolide, petrol eteri ekstresi, kloroform ekstresi, etil asetat ekstresi, bütanol ekstresi, su ekstresi, ham topraküstü kısımları	Sitotoksik ve anti-viral (HSV-1 ve HSV-2) aktivite	[120]
T. parthenium	Parthenolide	Seskiterpen lakton partenolit tarafından RBL- 2H ₃ mast hücrelerinde hücre içi kalsiyum düzeyi ve degranülasyon inhibisyonunun baskılanması	[121]
Tanacetum chiliophyllum var. monocephalum	1- <i>epi</i> -chiliophyllin, Lup- 12-ene-3β-asetat (neolupenil asetat), 4',5,7-Trihidroksi-3',8- dimetoksiflavon, 4',5,7- Trihidroksi-8- metoksiflavon, Etil asetat ekstresi(kök), Metanol ekstresi(kök)	İnsektisit ve antioksidan aktivite	[122]

Çizelge 2.2 Tanacetum türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve
yapılan biyolojik aktivite çalışmaları (devamı)

T. cinerariifolium	Bitki	Işık ve abiyotik stresin kök, filiz ve tohum çimlenmesi üzerine etkileri	[123]
T. parthenium	11,13- Dehidrocompressanolide	Antileishmanial aktivite	[124]
T. parthenium	Parthenolide	Yama testi reaktivitesi	[125]
T. vulgare	Parthenolide	<i>Trypanosoma cruzi</i> üzerine sinerjistik etki	[126]
T.parthenium	Metanol ve sıcak su ekstresi	Melatonin ölçümü	[127]
T. parthenium	Parthenolide	Anti-kanser aktivite	[128]
T.vulgare	Bitki	Yetişkin <i>Harmonia axyridis</i> türlerinin çeşitli bitkiler üzerinde görsel ve koku tercihi	[129]
T. parthenium	Apigenin	GABA-benzodiazepine aktivite	[130]
T. vulgare	Parthenolide	Anti-herpes aktivite	[131]
T. parthenium	Parthenolide	Anti-enflamatuar aktivite	[132]
T. cinerariifolium	Süper kritik akışkan ekstresi	Sitotoksik ve anti-viral aktivite	[133]
T. parthenium	Parthenolide	Seskiterpen laktonların melanojen üzerine etkisi	[134]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

T. parthenium	Parthenolide	Parthenolide maddesinin vasküler düz kas hücrelerinin çoğalması üzerine etkisi	[135]
Tanacetum sinaicum	Toprak üstü kısmının ekstresi	Anti-viral aktivite	[137]
T. vulgare	3,5-O-dicaffeoylquinic asit, Axillarin, Luteolin ve metanol ekstresi	Antioksidan aktivite	[138]
T.parthenium	Sulu ekstre	Sıcak ekstraksiyonun fenolik bileşikler ve parthenolide içeriğine ve ekstre rengine etkileri	[139]

Çizelge 2.2 *Tanacetum* türlerinden izole edilen seskiterpen laktonlar, flavonoidler ve yapılan biyolojik aktivite çalışmaları (devamı)

2.3.1 *Tanacetum balsamita* subsp. *balsamitoides* ve *Tanacetum mucroniferum* Bitkileri Üzerine Yapılmış Çalışmalar

Yapılan çalışmalarda *Tanacetum balsamita* L. ssp. *balsamitoides* ve *Tanacetum mucroniferum*, bitkilerinin çeşitli biyolojik aktivitelere sahip olduğu belirlenmiştir. Çalışılan bitkilerle yapılan literatür taraması aşağıda özetlenmiştir.

Asteraceae familyasındaki flavonoidler ve sistematiği adlı çalışmada *T. balsamita* bitkisinde luteolin ve apigenin flavonoidleri ana bileşen olarak tayin edilmiştir [140].

T. balsamita ssp. *balsamitoides* bitkisinin köklerinden 2β , 3β , 4α -Trimetil- 3α (3-metilen-4-pentenil) 1-siklohekzanon (Balsamiton) adlı yeni bir seskiterpen izole edilmiş ve yapısını spektral yöntemlerle aydınlatılmıştır [141]. Şekil 2.27'de Balsamiton maddesinin moleküler yapısı verilmektedir.

Şekil 2.27 2β,3β,4α-Trimetil-3α (3-metilen-4-pentenil)1-siklohekzanon (Balsamiton) maddesinin moleküler yapısı

İspanya'nın çeşitli bölgelerinden toplanan *Tanacetum balsamita* ssp. *balsamita* bitkisinin uçucu yağlarının yapıları gaz kromatografi, ¹³C NMR ve ¹H NMR spektral yöntemleriyle tayin edilmiş. Her üç bitkinin ana uçucu yağ bileşeni karvon (51.5%, 41.0% ve 56.9%) olarak tespit edilmiş, daha az miktarlarda β -tuyon, *trans*-dihidrokarvon, *cis*-dihidrokarvon, *cis*-karveol ve *trans*-karveol olarak belirlenmiştir [142].

İran bitkileri üzerine yapılan bu çalışmada kırk dokuz farklı familyaya ait 149 bitki ekstresi farklı testler uygulanarak saponin, tannin, flavonoid ve alkaloid bakımından incelenmiştir. Sonuç olarak bitki ekstrelerinde 145 saponin, 74 alkaloid, 76 flavonoid ve 60 tannin saptanmıştır. *T. balsamita* bitkisinin toprak üstü kısımlarında kimyasal bileşen olarak saponin bulunmuştur [143].

Brezilya'da tıbbi bitki olarak kullanılan *Tanacetum balsamita*'nın çiçek kısımlarından elde edilen α,β -doymamış aldehit ile birlikte birkaç yağ asidini antimikrobiyal ajan olarak karakterize edilmiş. Bu bileşikler içinde α,β -doymamış aldehitin geniş bir antimikrobiyal spektrum gösterdiği belirlenmiştir [144].

Tanacetum balsamita'dan izole edilen Tanabalin maddesinin böceklerde beslenmeyi önleyici etkisi olduğunu belirlenmiş. Bu maddenin mutlak yapısını X-Ray ve Mosher metodu ile ispatlanmıştır [145]. Şekil 2.28'de Tanabalin maddesinin yapısı verilmektedir.

Şekil 2.28 Tanabalin maddesinin yapısı

Tanacetum balsamita, *T.chiliophyllum* var. *chiliophyllum*, *T. armenum* ve *T. haradjani* bitkilerinin uçucu yağlarının bileşimi, kafur ve karvon monoterpenlerinin enantiomerik dağılımı hakkında çalışma yapılmıştır. *T.balsamita* bitkisinin ana bileşeni karvon (52%) olarak karakterize edilirken, *T.balsamita* bitkisinde enantiyomerik saflıkta (%99.8) R (-) karvon tespit edilmiştir [146].

Türkiye'deki çiçekli bitki taksonları aromatik biyo-çeşitlilik bakımından değerlendirilmiş. Bu çalışmada 8 tane *Tanacetum* L. türünün uçucu yağ bileşimini incelenmiştir. *Tanacetum balsamita* türünün uçucu yağ bileşiminde ana bileşenler olarak karvon (%54) ve α -tuyon (%12) tespit edilmiştir [147].

İran'dan yetişen *Tanacetum balsamita* subsp. *balsamitoides* bitkisinin uçucu yağ bileşimi üzerine çalışma yapılmış ve *T. balsamita* subsp. *balsamitoides* bitkisinin uçucu yağ bileşenlerinin %74.6 oranında oksijenli monoterpenden oluştuğu belirlenmiş ve bunların içinden karvonun ana bileşen olduğu saptanmıştır. Hidrokarbonlu monoterpenler ise uçucu yağın % 11.8'ini oluşturmakta ve bunların içinden limonen (%7.5) ve α -pinen (%2.3) bol miktarda bulunmuştur. Seskiterpenler düşük bir oranda tespit edilmiştir [148].

Tanacetum balsamita bitkisinin toprak üstü kısmından kromatografik yöntemlerle bir flavonol aglikon olan quercetin maddesi izole edilmiş ve yapısı spektroskopik yöntemlerle (UV, ¹H NMR, MS) belirlenmiştir [149].

İran'da yetişen *T. balsamita* subsp. *balsamitoides* bitkisinin uçucu yağ bileşimi hidrodistilasyon yöntemi ile izole edilmiştir. Yağların analizi GC ve GC/MS ile yapılmıştır. Bitkinin yaprak kısmının ana bileşenleri bornil asetat (47.7%), pinokarvon (27.1%), kafur (9.3%) ve terpinolen (5.4%); çiçek kısmının ana bileşenleri bornil asetat (55.2%), pinokarvon (34.2%), kafur (2.8%) ve terpinolen (2.0%); gövde kısmının ana

bileşenleri ise bornil asetat (49.2%), pinokarvon (%28.0%), kafur (9.5%) ve terpinolen (6.0%) olarak belirlenmiştir [150].

"Bazı *Tanacetum* L. türlerinde Antimikrobiyal Aktivite ve Minimum İnhibitör Konsantrasyon (Mik.) Tayini" başlıklı Yüksek Lisans Tezinde *Tanacetum balsamita* subsp. *balsamitoides* bitkisinin gövde ve çiçek kısımları birlikte olmak üzere, kök kısmının etil asetat ve metanol ekstrelerinin antimikrobiyal aktivitesi üzerine çalışma yapılmış ve çalışma sonucunda *Tanacetum balsamita* subsp. *balsamitoides* gövde+çiçek kısımlarının etil asetat ve metanol ekstreleri *Staphylococcus aureus*, *S. epidermidis*, *Pseudomonas aeruginosa*, *Escherichia coli* ve *Klebsiella pneumoniae* bakterilerine karşı antimikrobiyal ve *Candida guilliermondii* mantar türüne karşı antifungal aktivite göstermiştir. [151].

N (azot) ve K (potasyum)'un *T. balsamita* bitkisinin uçucu yağ içeriği ve büyümesi üzerine önemli etkileri olduğu bildirilmiştir [152].

Tanacetum balsamita L. subsp. *balsamita* ve *T. chiliophyllum* var. *chiliophyllum* bitkilerinin uçucu yağlarının bileşimini ve antimikrobiyal aktiviteleri incelenmiş ve her iki bitkinin esansiyel yağlarının mikroorganizmalara karşı orta derecede aktivite gösterdiği belirlenmiştir [153].

Kuzey-batı İran'da bulunan bazı tıbbi bitkilerin antibakteriyel aktivitelerinin değerlendirilmesi üzerine yapılan bir çalışmada *T. balsamita* bitkisinin yapraklarının siklohekzan, diklorometan ve metanol ekstreleri incelenmiş ve çeşitli mikroorganizmalara karşı aktivite gösterdiği saptanmıştır [154].

Farklı konsantrasyonlardaki besin solüsyonlarının, *T. balsamita* bitkisinin vejatatif büyümesi ve uçucu yağları üzerine olan etkileri incelenmiş. *T. balsamita* bitkisinin düşük besin solüsyonunda, yüksek verimde uçucu yağ üretebilme yeteneğine sahip olduğunu gözlemlenmiştir [155].

Farklı coğrafi bölgelerden yedi *Tanacetum* türünün yaprak ve çiçeklerini lipofilik ve polar flavonoid bakımından analiz edilmiş. *T.balsamita*'nın yapraklarında bulunan flavonoidler (flavonlar); apigenin, scutellarin 6-metil eter, 6-hidroksiluteolin 6,3'-dimetil eter ve 6-hidroksiluteolin 6,7,4'-trimetil eter ve *T. balsamita*'nın yapraklarında bulunan vakuolar flavonoidler; apigenin 7-glukuronid, luteolin 7-glukuronid, krysoeriol 7-glukuronid olarak tespit edilmiştir [156].

Tanacetum balsamita ve *Helichrysum plicatum* bitkisinin dietil eter ekstrelerinin sıçanlardaki karragenan kaynaklı iltihap üzerine anti-inflamatuar etkisi incelenmiş. Çalışma sonucunda her iki bitki türünün anti-inflamatuar aktivite gösterdiği belirlenmiştir [157].

T. balsamita subsp. *balsamita* bitkisinin uçucu yağ bileşimi, sitotoksik ve antimikrobiyal aktiviteleri incelenmiş. Uçucu yağların antimikrobiyal aktivite testleri disk difüzyon ve MIC yöntemleriyle yapılmış. MIC değerlerine göre uçucu yağların ortadan yükseğe doğru antimikrobiyal aktivite gösterdiği belirlenmiştir. İnsan fetal deri fibroblast ve maymun böbreği üzerine MTT sitotoksite deneyine bağlı toksikolojik çalışmada hücre dizileri sırasıyla 2500 ve 1250 mg/ml'de IC₅₀ değerlerini gösterdiği belirlenmiştir [158].

Fransanın Midi-Pyrenees bölgesinde bulunan *Tanacetum balsamita*, *Calamintha grandiflora*, *Myrrhis odorata* ve *Monarda didyma* 4 bitkinin toprak üstü kısımlarının uçucu yağlarının antioksidan aktivitesi Oxipress metodu ile belirlenmiş, ayrıca uçucu yağların antimikrobiyal aktiviteleri dokuz bakteriye karşı değerlendirilmiştir [159].

Kültür bitkilerinden elde edilen ekstrelerin serbest radikal süpürücü kapasitelerinin değerlendirilmesi üzerine çalışma yapılmış. Bu çalışmada 22 tıbbi kültür bitkisinin metanol ekstrelerinin serbest radikal süpürücü aktivitesi DPPH kullanılarak kantitatif olarak değerlendirilmiş. İncelenen ekstrelerin flavanoid profilleri TLC analiz kullanılarak belirlenmiş. Bu çalışmada, *T. balsamita*'nın iki çeşidi (kokulu ve kafur) kullanılmış. Kafur tipinin güçlü antioksidan aktiviteye sahip olduğu gözlenmiştir [160].

Kuzey batı İran'da yetişen *Tanacetum balsamita* subsp. *balsamitoides* bitkisinin uçucu yağının bileşenleri üzerine yapılan bir çalışmada 23 uçucu yağ bileşeni elde edilmiştir. Bileşenler içinde en büyük sınıfı oksijenli monoterpenler (%87.93), ikinci sınıfı ise seskiterpen hidrokarbonların (%6.66) oluşturduğu belirlenmiştir. Monoterpenlerden ana bileşenler olarak karvon (49.11%), α -tuyon (24.6%), β -tuyon (2.68%) ve 1,8-sineol (2.59%) tespit edilmiştir. Seskiterpen hidrokarbonlardan ise β -bisabolen'in (4.44%) yüksek oranda saptanmıştır [161].

Tanacetum balsamita ve *Helichrysum plicatum* uçucu yağ ekstrelerinin, alloksan uyarılmış tip 1 diyabet veya tip iki diyabetin fizyopatolojisine benzer özelliklere sahip, fare testislerinin histopatolojisi üzerine olan etkisi incelenmiştir. Testislerin histopatolojisi üzerine *Helichrysum plicatum* ve *Tanacetum balsamita* uçucu yağ ekstrelerinin herhangi bir cesaretlendirici etkisi gözlenmemiştir [162].

Sıçanlardaki karaciğer akut toksitesi üzerine *Helicrhysum plicatum* subsp. *plicatum* ve *Tanacetum balsamita* subsp. *balsamitoides* bitkilerinin dietileter ekstrelerinin etkisi incelenmiştir. Her iki bitki ekstresininde herhangi bir koruyucu etkisi olmadığı ve toksisiteyi şiddetlendirdiği sonucuna varılmıştır [163].

Geleneksel tıpta kullanılan bazı bitkilerin antimikrobiyal aktivitelerinin in-vitro değerlendirilmesi üzerine yapılan bir çalışmada geleneksel tıpta tedavi için kullanılan dört farklı familyaya (Lamiaceae, Asteraceae, Boraginaceae, Hypericaceae) ait 11 taksonun antimikrobiyal aktivitesi araştırılmıştır. *T. balsamita* subsp. *balsamita* bitkisinin bütün mikroorganizmalara karşı aktivite gösterdiği belirlenmiştir [164].

Hakkari'nin Şemdinli İlçesindeki bazı bitkilerin etno-botanik özellikleri üzerine çalışma yapılmış. *T. balsamita* bitkisinin halk dilinde marsuvan otu adıyla bilindiği ve çiçeklerinin kaynatılıp diüretik, böbrek taşı ve parazitik hastalıklara karşı kullanıldığı saptanmıştır [165].

T. balsamita, M. officinalis ve *Z. clinopodioides* bitkilerinin yumurtlayan tavukların bağışıklık parametrelerine ve kan biyokimyasal performansları üzerine etkilerini incelemek amacıyla 8 tedavi grubu oluşturulmuş. Bu gruplar; 1- Kontrol grup, 2- %2 *M.officinalis*, 3- %2 *T.balsamita*, 4- %2 *Z.clinopodioides*, 5- %1 *M.officinaslis* - %1 *T.balsamita*, 6- %1 *M.officinalis* - %1 *Z.clinopodioides*, 7- %1 *T.balsamita* - %1 *Z. clinopodioides*, 8- %0.67 oranında *T. balsamita*, *M. officinalis* ve *Z. clinopodioides* bitkilerinden oluşturmuş. Sonuçlara göre *T. balsamita*, *M. officinalis* ve *Z. clinopodioides* bitkilerinin yumurta kalitesinde, ve kan biyokimyasal parametrelerinde önemli bir etkisi olduğunu anlaşılmıştır. En yüksek yumurta üretimi, en düşük beslenme, en yüksek ağırlık ve en yüksek yumurta sarısı içeriği 6. grupta olduğu tespit edilmiş. En yüksek yumurta ağırlığı 5. grupta ve yumurtlayan tavukların bağışıklık sistemini ve kan biyokimyasal parametrelerini düzelttiği anlaşılmıştır [166].

Tanacetum balsamita L. subsp. *balsamita* Bitki Ekstrelerinin Biyolojik Aktivitelerinin İncelenmesi adlı Yüksek Lisans Tezinde *Tanacetum balsamita* L. subsp. *balsamita* bitkisinin antioksidan ve antimikrobiyal aktivitelerini çeşitli yöntemler kullanılarak incelenmiş. *Tanacetum balsamita* L. subsp. *balsamita* bitkisinin tüm ekstrelerinin genel
standart antioksidan maddeler olarak bilinen BHA, BHT, α-tokoferol ve troloksa yakın değerlerde oksidanlara karşı etkili olduğu belirlenmiş. Bitki ekstrelerinin antimikrobiyal aktiviteleri ise en iyi antibiyotiklerden olan *Streptomisin*'e göre daha düşük çıkmasına rağmen, diğer çalışmalarla kıyaslandığında, sonuçların yeterli derecede iyi olduğu gözlenmiştir [167].

Kuzey-doğu Anadolu'dan toplanan bazı *Tanacetum* L. türlerinin karyolojik çalışmaları üzerine araştırma yapılmış. Çalışılan taksonlar karyotiplerine göre 2A, 3A ve 2B şeklinde 3 gruba ayrılmıştır. *T. balsamita* ssp. *balsamita* bitkisi 3A grubunda yer aldığı belirtilmiş. *T. balsamita* ssp. *balsamita* bitkisinin kromozom sayısının tetraploid seviyede olduğu ilk defa rapor edilmiş. Bu kromozom sayısı önceki çalışmalarla aynı sonucu göstermediği sonucu ortaya çıkmıştır [168].

Doğu Anadolu Bölgesinde (Van-Hakkari) tıbbi amaçlarla kullanılan *Ferula haussknechtii* Wolff. Ex. Rech. f. ve *Tanacetum balsamita* L. subsp. *balsamitoides* (Schultz Bip.) Grierson. bitki ekstrelerinin antimikrobiyal aktivitesi araştırılmış. Analiz esnasında çözücü olarak kloroform, etanol ve metanol kullanılmış. Yapılan çalışma ile bu bitkilerin patojen ve nonpatojen mikroorganizmaların büyüme ve gelişmelerini engellemiş olduklarını ve metanol ile yapılan ekstrelerin daha iyi sonuç verdiği tespit edilmiştir [169].

Endemik tür olan *Tanacetum mucroniferum* bitkisinin uçucu yağ bileşimi ve DPPH süpürücü aktivitesi üzerine çalışma yapılmış. *T. mucroniferum*'un çiçeklerinin uçucu yağları; oksijenli monoterpenler ve oksijenli seskiterpenler ile karakterize edildiği tespit edilmiş. Uçucu yağların ana bileşenleri 1,8-sineol 21.9 % ve kafur 6.4 % olarak belirlenmiş. Bitki uçucu yağların, düşük DPPH süpürücü aktivite gösterdiği anlaşılmıştır [170].

Seçilmiş *Tanacetum* L. türlerinin kolinesteraz inhibisyon potansiyeli ve LC-MS cihazı ile parthenolide bileşiğinin miktar belirlenmesi üzerine bir çalışma yapılmış ve *Tanacetum* L. türlerinin asetonitril ekstrelerinin dikkate değer oranda asetilkolinesteraz inhibisyonu gösterdiği ama ekstrelerin butirilkolinesteraza karşı orta derecede inhibisyon gösterdiği belirlenmiştir. *Tanacetum balsamita* subsp. *balsamitoides* ve *Tanacetum mucroniferum* bitkilerinin parthenolide bileşiğini içermediği LC-MS cihazı ile tayin edilmiştir [171].

BÖLÜM 3

DENEYSEL BÖLÜM

3.1 Bitkisel Materyal

Bitkiler yetiştikleri doğal ortamlardan Prof. Dr. Nezhun Gören ve çalışma arkadaşları tarafından farklı yıllarda toplanılmıştır. *Tanacetum balsamita* L. ssp.*balsamitoides* (Schultz Bip.) Grierson bitkisi Van, Güzeldere, Çuh Gediği'nde 2000 yılı Temmuz ayında toplanılmıştır. Bitkinin teşhisi Prof. Dr. Kerim Alpınar tarafından yapılmış ve İstanbul Üniversitesi Eczacılık Fakültesi Herbaryumu'nda ISTE 79241a kodu ile bulunmaktadır. *Tanacetum mucroniferum* Hub.-Mor.& Grierson bitkisi Prof. Dr. Neriman Özhatay tarafından yapılmış ve İstanbul Üniversitesi Eczacılık Fakülteşi ve İstanbul Üniversitesi Eczacılık Fakülteşi Yuna toplanılmıştır. Bitkinin teşhisi Prof. Dr. Neriman Özhatay tarafından yapılmış ve İstanbul Üniversiteşi Eczacılık Fakülteşi Herbaryumu'nda ISTE 85425 kodu ile bulunmaktadır. Tez çalışması Yıldız Teknik Üniversiteşi Moleküler Biyoloji ve Genetik Bölümü Biyotransformasyon ve Mikrobiyoloji laboratuarında gerçekleşmiştir.

3.2 İzolasyon Yöntemleri

3.2.1 Ekstraksiyon

Tanacetum balsamita subsp. *balsamitoides* ve *Tanacetum mucroniferum* bitkileri gölgede kurutulduktan sonra kök, gövde ve çiçek olmak üzere üç kısma ayrılmış, her bir kısım bitki öğütme değirmeninde öğütülerek toz haline getirilmiştir. Öğütülerek toz haline getirilen kısımlar sırasıyla hekzan, etil asetat (EA) ve metanol (MeOH) çözücüleri ile masere edilmişlerdir. Maserasyonun ardından sıvı kısım süzgeç kağıdı ile süzülerek alınmış ve çözücüler evaporatörde uçurularak ham ekstreler elde edilmiştir. *Tanacetum balsamita* subsp. *balsamitoides* bitkisinden 28.1 gr EA ve 77 gr MeOH ekstreleri elde edilmiştir. *Tanacetum mucroniferum* bitkisinden 20.8 gr EA ve 63 gr MeOH ekstreleri elde edilmiştir. Ekstreler çalışma yapılacağı güne kadar ~4°C'de buzdolabında saklanılmıştır. *Tanacetum balsamita* subsp. *balsamitoides* bitkisi TBB ve *Tanacetum mucroniferum* bitkisi TM olarak isimlendirilmiştir.

3.2.2 Kromatografik Yöntemler

Bitkilerden elde edilen ekstrelerdeki maddelerin izolasyonu ve saflaştırılması için kolon kromatografisi (CC), partisyon kromatografisi, moleküler elek kromatografisi, ince tabaka kromatografisi (İTK), preparatif ince tabaka kromatografisi (PİTK), orta basınçlı sıvı kromatografisi (MPLC) ve yüksek performanslı ince tabaka kromatografisi (HPTLC) kullanılmıştır.

3.2.2.1 Kolon kromatografisi (CC)

Katı-sıvı kromatografi yöntemi olup, adsorbsiyon prensibine dayalıdır. Ekstre içinde yer alan maddelerin polarite farklılığına göre fraksiyonlandırılmasını sağlar. Elde edilen fraksiyonlardan saf madde izolasyonu için sıklıkla kullanılan bir yöntemdir. Kolon kromatografisinde silika jel dolgu maddesi kullanılmıştır.

Kolon kromatografisine başlamadan önce TBB ve TM bitkilerinin EA ekstrelerinin içine ekstrelerin çözünebildiği en az miktarda metanol ilave edilerek, 40-50°C'de su banyosunda tamamen çözünmesi sağlanmıştır. Sıcak su banyosundan sonra ekstreler oda sıcaklığında soğutulmaya bırakılmıştır. Ekstreler oda sıcaklığında soğutulduktan sonra ağzı kapatılarak buzdolabında 1 gece bekletilmiştir. Ertesi gün çöken kısım süzülerek uzaklaştırılmış. Bu şekilde uzun zincirli hidrokarbonlar ve yağ asitleri ekstrelerden uzaklaştırılmıştır. Süzülen ekstreler evaporatörde çözücüsünden uzaklaştırılmış ve tekrar tartılmıştır. TBB ve TM bitkilerinin ekstre ağırlıkları sırasıyla 26.4 gr ve 17.6 gr olarak tespit edilmiştir.

Kolon kromatografisinde kullanılacak silika jel tartılıp etüvde 2 saat 105°C'de tutularak neminden uzaklaştırılmıştır. Ekstrelere minimum miktarda ekstreyi çözecek kadar etil asetat çözücüsü ilave edilmiştir. Bulamaç haline gelene kadar ekstreye kolon kromatografisinde kullanılan silika jel ilave edilmiştir. Silikajel-ekstre karışımı toz haline gelinceye kadar evaporatörde uçurulmuştur. Toz haline gelen silikajel-ekstre

karışımı vakum etüvünde 1 gece bekletilerek tamamen kurutulmuştur. Kolon boyutunun 2/3 oranında silikajel tartılarak kolona doldurulmuştur. Doldurulan silikajelin kolona yerleşmesini sağlamak ve arada boşluk kalmaması amacıyla vakum pompasıyla havası alınmıştır. Kolondaki silika jelin üzerine daha önceden hazırlanan ekstre-silikajel karışımı düzgün bir şekilde doldurulduktan sonra tekrar vakum pompasıyla yerleşimi sağlanmıştır. Son olarak en üste cam pamuğu yerleştirilerek kolonun hazırlanması tamamlanmıştır.

3.2.2.2 Partisyon Kromatografisi

Partisyon kromatografisi sıvı-sıvı veya sıvı-gaz kromatografi yöntemi olup, birbirine karışmayan iki sıvıdan yani iki faz sisteminden oluşur. Maddeler bu iki faz arasında dağılmaya uğrar.

Tanacetum mucroniferum ve *Tanacetum balsamita* L. subsp. *balsamitoides* bitkilerinin MeOH ekstrelerinin fraksiyonlandırılmasında partisyon kromatografisi yönteminden faydalanılmıştır.

Tanacetum mucroniferum (63 gr) ve *Tanacetum balsamita* L. subsp. *balsamitoides* (77 gr) bitkilerinin MeOH ekstreleri 700 ml ultra saf su ve 300 ml MeOH çözücü karışımıyla ultrasonik banyoda çözülmüştür. Çözünen ekstreler 1000 ml'lik ayırma hunisine konulmuştur. Ekstrenin üzerine 200 ml Hekzan çözücüsü ilave edilmiş ve 5 dakika boyunca çalkalanmıştır. Çalkalamadan sonra 15 dakika beklenilmiş ve faz oluşumu sağlanmıştır. Altta oluşan su fazı başka behere alınmış ve üstteki hekzan fazı başka behere toplanmıştır. Aynı işlem üç kere tekrarlanmıştır. Daha sonra CH₂CI₂, Etil asetat ve BuOH:H₂O (70:30) çözücüleri ile fraksiyonlandırma çalışmalarına devam edilmiş ve aynı işlemler 3 tekrarlı yapılmıştır.

3.2.2.3 Moleküler Elek Kromatografisi (Sephadex LH-20)

Karışımdaki moleküllerin molekül büyüklüklerine göre ayrılması esasına dayanır. Moleküler elek kromatografisinde Sephadex LH-20 dolgu maddesi kullanılmıştır. Dolgu maddesi gözenekli yapıya sahip olduğundan gözeneklerin kapanması için 24 saat boyunca metanol çözücüsü ile şişmeye bırakılmıştır. Kolonda hava kabarcığı kalmasını engellemek için metanol çözücüsü kolondan birkaç defa geçirilmiş ve dolgu maddesinin kolona tam oturması için kolonun yan kısımlarına vurulmuştur. Dolgu maddesindeki gözeneklerin açılması için hareketli faz olarak Petrol eteri:CHCI₃:MeOH (7:4:1) veya CHCI₃ sistemleri kullanılmıştır. Madde karışımı kolona verilmeden önce kolon bu hareketli faz sistemleri ile doyurulmuştur. Ayrımı yapılacak karışım uygun çözücüde çözünmüş halde kolonun üst kısmına pipet yardımıyla sıvı halde yüklenmiştir. Küçük yapıdaki moleküller dolgu maddesinin gözenekleri içine hapsolmuş ve büyük yapıdaki moleküller dolgu maddesinin gözenekleri girmeden hareketli faz ile birlikte kolondan ayrılmıştır. Gözenekler içinde yer alan maddeleri kolondan kurtarmak için kolon tekrar metanol çözücüsü ile elüe edilmiştir.

3.2.2.4 İnce Tabaka Kromatografisi (İTK)

Katı-sıvı kromatografi yöntemi olup, adsorbsiyon prensibine dayalıdır. İzolasyon ve saflaştırma çalışmalarının her basamağında bu kromatografi yönteminden yararlanılmıştır. İnce tabaka kromatografisinde katı faz olarak hazır silika jel 60 F_{254} (MERCK) 20 x 20 cm alüminyum plakalar ve hareketli faz olarak çeşitli çözücü sistemleri kullanılmıştır.. Uygun çözücü sistemlerinde yürütülen silika jel plaklar kurutulduktan sonra 254 ve 366 nm ultraviyole (UV) ışık altında incelenmiştir. Ultraviyole ışık altında görülmeyen maddelerin görünür hale gelmesi için renklendirme belirteci olarak seryum sülfat kullanılmıştır. Plaka ısıtıcı üzerinde ısıtılarak maddeler görünür hale getirilmiştir.

İTK'da Kullanılan Belirteçler:

Seryum sülfat belirteci

Hazırlanışı: 10 g Ce(SO₄)₂ .4 H₂O tartılarak üzerine 50 mL derişik H₂SO₄ ilave edilmiş. Daha sonra karışım 500 mL'ye tamamlanıncaya kadar üzerine yavaş yavaş distile su ilave edilmiştir.

3.2.2.5 Preparatif İnce Tabaka Kromatografisi

Maddelerin plak üzerinde ayrılmasında ve saflaştırılmasında kullanılan bir ayırma tekniğidir. Preparatif ince tabaka kromatografisinde fazla miktardaki maddelerin ayrılmaları için Camag TLC hazırlama aparatı ile 0.5 µm kalınlığında laboratuvarda hazırlanan plaklar kullanılmıştır. Bu amaçla 50 gr silika jel 60 HF₂₅₄, 67 gr HF₂₅₄₊₃₆₆ ve 33 gr GF₂₅₄ (Merck) bir balon jojede 350 ml distile suyla karıştırılarak 30 dakika çalkalanmıştır. Elde edilen süspansiyon Camag TLC hazırlama aparatı ile 0.5 µm

kalınlığında 20 x 20 cm boyutundaki cam plakların üzerine çekilmiştir. Hazırlanan plaklar kullanılmadan önce 1 gece oda sıcaklığında kurutulmaya bırakılmıştır. Plakaları aktif hale getirmek için 2 saat 105 ° C'de etüvde tutulmuştur. Madde karışımı plakaların tabanından 1 cm yukarıya ince kapiler pipet yardımıyla ekilmiştir. Ekim yapılan plaklar uygun çözücü sisteminde yürütülmüştür. Plaklar üzerinde ayrılmış olan bantlar 254 ve 366 nm ultraviyole (UV) ışık altında incelenmiştir. Ultraviyole ışık altında görülmeyen maddelerin görünür hale gelmesi için plaka kenarının 1 cm'lik kısmına seryum sülfat renklendirme belirteci püskürtülmüştür. Plakanın boyanan kısmı ısıtıcı üzerinden ısıtılarak maddeler görünür hale getirilmiştir.

3.2.2.6 Orta basınçlı sıvı kromatografisi (MPLC)

Ekstrelerin kolon kromatografisi ile fraksiyonlarına ayrılmasından sonra bu fraksiyonların daha ileri ayrımları için tekrar fraksiyonlandırılmasını sağlayan yöntemdir. Orta basınçlı sıvı kromatografi cihazı, bir adet pompa kontrolörü, iki adet pompa ve fraksiyon kolektöründen oluşmaktadır. Orta basınçlı sıvı kromatografisi calışmasına başlamadan önce bir takım ön hazırlık çalışmaları yapılmıştır. İlk olarak çalışma yapılacak fraksiyon için uygun çözücü sistemi belirlenmiştir. Fraksiyon ağırlığına göre uygun boyutta MPLC kolon seçilmiştir. Kaba ayrımdan sonraki fraksiyon çalışılacağından dolayı silika por boyutunun 25-40 µm olmasına karar verilmiştir. MPLC kolonda kullanılacak silika jel tartılıp inkübatörde 2 saat 105°C'de tutularak neminden uzaklaştırılmıştır. Fraksiyon mümkün olduğu kadar az çözücü ile çözülerek yeterli miktarda silikayla karıştırılıp toz haline gelinceye kadar çözücüsü evaporatörde uçurulmuştur. Toz haline gelen silikajel-ekstre karışımı vakum etüvünde 1 gece bekletilerek tamamen kurutulmuştur. MPLC silikası ve tamamen kurutulmuş silikajel-ekstre karışımı kolona yüklenmiştir. Son olarak en üste tekrar MPLC silikası yerlestirilerek kolonun hazırlanması tamamlanmıştır. Uygun çözücü sistemindeki karışımlar hazırlanmış ve MPLC pompaları bu çözücü sistemlerinin içine daldırılmıştır. Akış hızı (5ml/dk), Rock tipi, tüp sayısı gibi veriler sisteme girilerek MPLC çalışmaya hazır hale getirilmiştir.

3.2.2.7 Yüksek performanslı ince tabaka kromatografisi (HPTLC)

Zor ayrılan maddelerin saflaştırılmasında ve maddelerin plaka üzerinde düzgün bir şekilde ekilmesinde yüksek performanslı ince tabaka kromatografisinden yararlanılmıştır. Camag marka HPTLC cihazı, Linomat 5 TLC ekim mödülü, AMD2 TLC yürütme modülü, ADC2 TLC yürütme modülü, TLC Scanner 3 UV tarama modülü ve Reprostar 3 TLC görüntüleme modülünden oluşmaktadır. Genellikle çalışmalarda düzgün ekim yapılabilmesi için Linomat 5 TLC ekim modülü kullanılmıştır. Ekimi yapılıp yürütülen plakların 254 nm, 366 nm ve beyaz ışıkta görüntülenmesi için Reprostar 3 TLC modülünden faydalanılmıştır.

3.2.2.8 Asetilleme Reaksiyonu

Asetilleme reaksiyonu yapılacak saf madde, 1 mL kuru piridinde çözündürülüp üzerine 1 mL asetik anhidrit çözücüsü eklenip, 24 saat bekletilmiştir.

3.3 Spektroskopik Yöntemler

Elde edilen saf maddelerin yapılarının aydınlatılmasında spektroskopik yöntemlerden yararlanılmıştır.

3.3.1 Ultraviyole Spektroskopisi (UV/VIS)

İzole edilip saflaştırılan flavonoid türündeki maddelerin yapılarının belirlenmesinde kayma reaktifleri ile birlikte ultraviyole spektroskopisinden yararlanılmıştır. Çalışmalarda Marmara Üniversitesi Eczacılık Fakültesinde bulunan UV-1800 spektrometre kullanılmıştır. İlk once flavonoid yapısında olan madde metanol çözücüsünde çözülüp UV spektrumu alınmıştır. UV spektrumundaki değerler uygun araklıkta olması durumunda 9 ml'lik metanol çözücüsünden oluşan stok çözelti hazırlanmıştır. Stok çözeltiden 3 ml alınıp üzerine 3 damla sodium metoksit (NaOMe) çözeltisi damlatılıp tekrar UV spektrumu alınmıştır. Stok çözeltiden tekrar 3 ml alınıp üzerine 6 damla alüminyum klorür (AICI₃) ilave edilmiş ve UV spektrumu alınmıştır. Daha sonra bu çözelti üzerine 3 damla hidroklorik asit (HCI) damlatılıp UV spektrumu alınmıştır. Stok çözeltisinden tekrar 3 ml alınıp toz halinde olan sodyum asetat (NaOAc) aşırısı eklenmiş ve UV spektrumu alınmıştır. Daha sonra bu çözelti üzerine susuz borik asit (H₃BO₃) ilave edilip tekrar UV spektrumu alınmıştır.

3.3.2 Infra-Red spektroskopisi (IR)

Maddelerin yapılarında bulunan fonksiyonel grupların gözlenmesi için Infra-Red spektroskopisinden yararlanılmıştır.

3.3.3 Nükleer manyetik rezonans spektroskopisi (NMR)

Saf maddelerin yapı tayininde nükleer manyetik rezonans spektroskopisi kullanılmıştır. Çalışmalarda Bruker Avance III 500 MHz Spektrometre modeli NMR kullanılmıştır. Maddelerin yapısına bağlı olarak tek boyutlu, iki boyutlu ve çok pulslu farklı spektral yöntemler kullanılmıştır. Tek boyutlu spektral yöntemler ¹H NMR. ¹³C NMR. Spin Decoupling. NOE; iki boyutlu COSY (Correlation Spectroscopy), HSQC (Heteronuclear Single Quantum Coherence), HMBC (Heteronuclear Multiple Bond Correlation), NOESY (Nuclear Overhauser Effect); çoklu puls yöntemleri APT (Attached Proton Test) kullanılmıştır.

3.3.4 Kütle Spektroskopisi (MS)

Kütle spektroskopisi maddelerin molekül ağırlıklarını bulmak için kullanılmıştır. Maddelerin kütle spektrumları Yıldız Teknik Üniversitesi Merkez Laboratuarda bulunan TOF/Q-TOF Mass Spectrometer cihazında alınmış, iyon kaynağı olarak Dual ESI kullanılmıştır.

3.3.5 Gaz Kromatografisi Kütle Spektroskopisi (GC-MS)

GC-MS analizi Agilent 5975 Inert XL EI/CI MSD marka cihazda EI modda yapılmıştır. Enjeksiyon sıcaklığı 250 °C ve split oranı 50:1 ayarlanmıştır. GC-MS analizlerinde Innowax FSC kolon (60 m x 0.25 mm, 0.25 μ m film kalınlığında) ve taşıyıcı gaz olarak helyum gazı (1mL/min) kullanılmıştır. GC fırın sıcaklığı 60°C'de 10 dakika sabit tutulmuş ve 220°C'ye 4°C/dakika hızla çıkarılmıştır. Sıcaklık 220°C'de 10 dakika boyunca sabit tutulmuş ve sonra 240°C'ye 1°C/dakika hızla çıkarılmıştır. Kütle spektrometresi 70 eV iyonizasyon enerjisine ve tarama aralığı *m/z* 35-425 kütle alanına ayarlanmıştır.

Uçucu yağ bileşenlerinin tanınlanması literatürdeki n-alkan(C5-C30) serilerinin bağıl gelme indisleri (RRI) ve kütle spektrum karşılaştırmaları ile belirlenmiştir. Kütle spektrum karşılaştırmaları bilgisayarda yer alan Wiley 8th Ed./NIST 05 Mass spectra library, Adams Essential oil Mass Spectral library ve Pallisade 600k Complete Mass

Spectra Library kütüphaneleriden yararlanılmıştır. Analizler üç tekrarlı yapılmış ve sonuçlar standart sapmalarıyla verilmiştir.

3.4 Kullanılan Kimyasal Materyaller ve Cihazlar

Çalışmalarda kullanılan kimyasal materyaller ve cihazlar Çizelge 3.4.1'de verilmiştir.

Kimyasal Materyal ve Cihazlar	Temin Edilen Yer	Kullanıldığı Yer
Hekzan	Merck	İTK, Kolon kromatografisi
Petrol Eteri	Merck	İTK, Kolon kromatografisi
Benzen	Merck	İTK
Toluen	Merck	İTK
Diklorometan	Merck	İTK, Kolon kromatografisi
Kloroform	Merck	İTK, Kolon kromatografisi
Dietil eter	Merck	İTK, Kolon kromatografisi
Aseton	Solventaş, Solvay	İTK, Durulama
Etil asetat	Merck	İTK, Kolon kromatografisi
MeOH	Merck	İTK, Kolon kromatografisi
İzopropil alkol	Merck	İTK
Hidroklorik asit	Merck	Flavonoid UV incelemelerinde
Alüminyum klorür	Merck	Flavonoid UV incelemelerinde
Borik asit	Merck	Flavonoid UV incelemelerinde
Sodyum metoksit	Merck	Flavonoid UV incelemelerinde
Sodyum asetat	Merck	Flavonoid UV incelemelerinde

Çizelge 3.4.1 Araştırmada kullanılan kimyasallar materyaller ve cihazlar

Kimyasal Materyal ve Cihazlar	Temin Edilen Yer	Kullanıldığı Yer
Seryum sülfat	Merck	İTK Belirteç
Silika jel 60	Merck	Kolon kromatografisi
Sephadex LH-20	Sigma	Kolon kromatografisi
TLC 60 F ₂₅₄ Alüminyum	Merck	İTK
Silika jel 60 HF ₂₅₄₊₃₆₆	Merck	PİTK
Silika jel 60 HF ₂₅₄	Merck	PİTK
Silika jel 60 GF ₂₅₄	Merck	PİTK
Asetik anhidrit	Merck	Asetilleme reaksiyonu
Susuz Piridin	Merck	Asetilleme reaksiyonu
BHT	Sigma	Antioksidan aktivite
α-tokoferol	Sigma	Antioksidan aktivite
Fosfomolibdik asit	Sigma	Antioksidan aktivite
DTNB	Sigma	Antikolinesteraz aktivite
AChl	Sigma	Antikolinesteraz aktivite
Tris-HCI	Sigma	Antikolinesteraz aktivite
MPLC	Buchi	Fraksiyonlandırma ve Saflaştırma
HPTLC	Camag	Fraksiyonlandırma ve Saflaştırma
UV/VIS	Shimadzu	Flavonoid kaymaları
IR	Perkin Elmer	Fonksiyonel grup belirlenmesi
NMR	Bruker Avance III	Yapı tayini
LC/MS/QTOF	Agilent 6530	Molekül ağırlığı
GC-MS	Agilent 5975	Uçucu yağ tayini

Çizelge 3.4.1 Araştırmada kullanılan kimyasallar materyaller ve cihazlar (devamı)

3.5 Yapılan Biyolojik Aktivite Çalışmaları

3.5.1 Antikolinesteraz aktivite

Uçucu yağların asetilkolinesteraz inhibitör etkisi Ellman metodu ile belirlenmiştir [172]. Deneyde aktivite ölçümü için sarı renkli 240 µL DTNB [1.25 mM 5.5-ditiyobis (2nitrobenzoik asit], substrat olarak 192 µL AChl (asetiltiyokolin iyodid), tampon çözelti olarak 1200 µL pH 8'de 100 mM Tris-HCI ve 20 µL uçucu yağ kullanılmıştır. Blank solüsyon uçucu yağ yerine 20 µL tampon çözelti içermektedir. Deneyde pozitif kontrol Galantamin hidrobromür kullanılmıştır. Kalibrasvon olarak eğrisi farklı konsantrasyonlarda galantaminin asetilkolinesteraz inhibisyonu test edilerek elde edilmistir. Reaksiyonlar 0.0325 U/mL asetilkolinesterazın reaksiyon karışımına eklenmesiyle başlanmıştır. Reaksiyon, spektrofotometre kullanılarak 412 nm'de 2 dakika boyunca gözlemlenmiş. Enzimatik aktivite, blank çözücüden elde edilen aktivite uygunluk reaksiyon yüzdesine göre hesaplanmıştır. Asetilkolinesteraz aktivitesi (% inhibisyon) aşağıdaki eşitlik kullanılarak hesaplanmıştır (A=Absorbans).

% Inhibisyon= $(A_{kontrol} - A_{örnek}) / A_{kontrol} \times 100$

Her bir örnekten üç paralel çalışma yapılmıştır.

3.5.2 Antioksidan aktivite

Uçucu yağların antioksidan aktiviteleri PRAP (antioksidan gücünü azaltan fosfomolibden) yöntemi ile farklı sıcaklıklarda sıvı faz içindeki fosfomolibdik asit reaksiyonuna bağlı olarak belirlenmiştir [173]. Stok solüsyon olarak %10'luk (w/v) fosfomolibdik asit, 1, 5, 10 mg/ml uçucu yağ hazırlanmıştır. Pozitif kontrol olarak α -tokoferol ve BHT (2,6-di-t-bütil-1-hidroksitoluen), negatif kontrol için metanol kullanılmıştır. Fosfomolibdik asit sölüsyonu (200 µL) ve numuneler (200 µL) karıştırılmış ve sonra 80° C'de 30 dakika boyunca inkube edilmiştir. Bütün numuneler ve kontroller oda sıcaklığında soğutulmaya bırakılmıştır. Daha sonra 600 nm'de absorbans ölçümleri yapılmıştır. Blank kontrol ile kıyasladığı zaman, reaksiyonun absorbans değerinin yükselmesi bileşiklerin indirgenme gücünün yükselmesini ifade etmektedir. Her bir örnekten beş paralel çalışma yapılmıştır.

3.5.3 Sitotoksik aktivite

Sitotoksik aktivite için HeLa (insan serviks adenokarsinom), A-549 (insan alveol adenokarsinoma), MCF-7 (insan göğüs adenokarsinoma), CaCo-2 (insan kolon kolorektal adenokarsinom), mPANC96 (insan pankreas adenokarsinomu), PC-3 (insan prostat adenokarsinomu), U87MG (insan glioblastoma-astrositom) ve normal hücre hattı olarak HEK293 (insan embriyonik böbrek hücreleri) kullanılmıştır. Bütün hücre hatları ATTC'den satın alınmıştır.

Uçucu yağların sitotoksik aktivitesi canlı hücrelerin mitokondriyal redüktaz aktivitesinin tespitine dayanan modifiye edilmiş MTT metodu ile belirlenmiştir [174]. Bu amaçla bütün hücre hatları 24 saat kültüre edilmiştir. Kültüre edilen hücreler, ekstrelerin farklı dilüsyonları (0.5, 5, 50 µg/ml) ile muamele edilerek 37°C'de 48 saat boyunca inkübe edilmişlerdir. Partenolit pozitif kontrol olarak kullanılmıştır. Çözünmüş maddenin optik yoğunluğu 520 nm'de UV-VIS spektrofotometre ile ölçülmüştür [175].

BÖLÜM 4

BULGULAR

Bu bölümde *Tanacetum balsamita* subsp. *balsamitoides* ve *Tanacetum mucroniferum* bitkilerinin EA ve MeOH ekstrelerinden izole edilen maddelerin izolasyon yöntemleri ve yapı tayinleri yer almaktadır.

4.1 *Tanacetum balsamita* subsp. *balsamitoides* (TBB) bitkisinin EA ekstresinden izole edilen maddeler

TBB bitkisinin gövdesinden elde edilen 26.4 gr EA ekstresinin kaba ayrımı için kolon kromatografisi yapılmıştır. Kolon kromatografisinde hekzan-etil asetat-metanol ile gradiyent elüsyon yapılarak 22 fraksiyon elde edilmiştir. Çizelge 4.1'de yapılan kaba ayırma ve elde edilen fraksiyonları verilmektedir. Kolon kromatografisinden elde edilen fraksiyonlar CHCI₃, CHCI₃:Eter (3:2), Toluen:Hekzan (3:7), Benzen:CHCI₃:Eter (1:1), CHCI₃:Eter (1:1), Benzen:E.A (7:3) gibi çeşitli çözücü sistemleriyle İTK'da karşılaştırılmıştır. Resim 4.1'de TBB bitkisi fraksiyonlarının CHCI₃:Eter (3:2) çözücü sistemindeki kromatogramı görülmektedir. TBB I, TBB IIA, TBB IIB ve TBB IIC fraksiyonlarının yağlı bileşikler içerdikleri görülmüştür. İTK sonuçlarına göre Fr. 2: TBB II Son, Fr. 3: TBB IIIA + TBB IIIB, Fr. 4: TBB IIIC, Fr. 5: TBB IIID + TBB IVA, Fr. 6: TBB IVB + TBB VA + TBB VB, Fr. 7: TBB IVC ve Fr. 8: TBBVC+VD+VIA+VIB+VIC+VIIA+VIIB+VIII fraksiyonları birleştirilmiş. Böylece yedi ana fraksiyon elde edilmiştir.

Resim 4.1 TBB bitkisi fraksiyonlarının CHCI₃:Eter (3:2) çözücü sistemindeki kromatogramı

Fraksiyonlar	% Kullanılan çözücü miktarı	Fraksiyon ismi
1	%100 Hekzan (2500 ml)	TBB I, TBB IIA, TBB IIB,TBB IIC
2	%90 Hekzan(2250ml) + %10 EA (250ml)	TBB II Son
3	%75 Hekzan(1875ml) + %25 EA (625ml)	TBB IIIA, TBB IIIB
4	%50 Hekzan (1250ml) + %50 EA (1250ml)	TBB IIIC
5	%100 EA (2500ml)	TBB IIID, TBB IVA
6	%90 EA (2250ml) + %10 MeOH (250ml)	TBB IVB, TBB IVC
7	%50 EA (1250ml) + %50 MeOH (1250ml)	TBB VA, TBB VB
8	%100 MeOH (2500ml)	TBB VC, TBB VD, TBB VIA, TBB VIB, TBB VIC, TBB VIIA,TBB VIIB, TBB VIII

Çizelge 4.1 TBB gövde ekstresine yapılan kaba ayırma ve elde edilen fraksiyonlar

4.1.1 Fr4-TBB IIIC fraksiyonundan izole edilen maddeler

Elde edilen fraksiyonlardan TBB IIIC'nin MPLC ile Petrol eteri:CHCI₃:EA (18:9:2) çözücü sisteminde tekrar fraksiyonlandırma yapılmıştır. Fraksiyon ağırlığına (2.2 gr) göre uygun boyutta MPLC kolon bulunmadığından dolayı fraksiyon ikiye bölünmüş ve iki ayrı kolon yapılmıştır. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.2 ve 4.3'te verilmektedir. İlk yapılan kolondan 430 fraksiyon ve ikinci yapılan kolondan 754 fraksiyon toplanmıştır. İnce tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiş. TBB IIIC (184-224) fraksiyonu Petrol eteri: Eter (6:4) sistemi ile iki defa preperatif ince tabaka kromatografisi ile yürütülmüş ve 5 bant elde edilmiştir. Buradan elde edilen 2. bant Petrol eteri:CHCI₃:EA (18:9:2) sistemi ile tekrar iki defa ince tabaka kromatografisinde yürütülerek 5 bant elde edilmiştir. Yapılan ince tabaka kromatografisi sonucunda 2. ve 3. bantlarda aynı maddelerin olduğuna karar verilmiş ve bu bantlar birleştirilmiştir. Birleştirilen bantlardan TBB IIIC (184-224) 2 (2+3) kodlu 1 α -Asetoksi-11 β (H),13-dihidrodouglanin 10 mg miktarında elde edilmiştir.

4. ve 5. bantlarda aynı maddeler olduğuna karar verildi ama 4. bant kirli olduğundan bu iki bant birleştirilmemiş. 5. banttan TBB IIIC (184-224) 2.5 kodlu β -Sitosterol 10 mg miktarında elde edilmiştir.

TBB IIIC (225-260) fraksiyonu Petrol eteri:CHCI₃:EA (18:12:3) sistemi ile iki defa preparatif ince tabaka kromatografisiyle yürütülerek 5 banta ayrılmış. TBB IIIC (225-260) 2 kodlu 2. bant Petrol eteri:CHCI₃:Etil asetat (18:12:3) çözücü sistemi ile tekrar 3 defa preparatif ince tabaka kromatografisinde yürütülerek 5 banta ayrılmış. 2. banttan TBB IIIC (225-260) 2.2 kodlu Taurin 15 mg miktarında elde edilmiştir.

TBB IIIC (261-291) fraksiyonu Petrol eteri:CHCI₃:EA (18:12:3) sistemi ile 3 defa preparatif ince tabaka kromatografisi ile yürütülerek 5 banta ayrılmış. Yapılan ince tabaka kromatografisi çalışmaları ve ¹H NMR spektrum karşılaştırmaları sonucunda TBB IIIC (261-291) 1 kodlu 1. bant ve TBB IIIC (261-291) 2 kodlu 2. bantta elde edilen maddelerin TBB IIIC(225-260)2.2 fraksiyonundan izole edilen maddeyle aynı olduğu sonucuna varılmıştır.

Kullanılan çözücü sistemi	İlk Fraksiyon	Son Fraksiyon
P.E:CHCI ₃ :EA (18:9:2)	TBBIIIC.16	TBBIIIC.100
P.E:CHCI ₃ :EA (9:9:2)	TBBIIIC.101	TBBIIIC.152
CHCI ₃ :EA (9:2)	TBBIIIC.153	TBBIIIC.201
CHCI ₃ :EA (4:2)	TBBIIIC.202	TBBIIIC.274
CHC ₃ :EA (1:1)	TBBIIIC.275	TBBIIIC.365
Etil asetat	TBBIIIC.366	TBBIIIC.411
МеОН	TBBIIIC.412	TBBIIIC.430

Çizelge 4.2 TBB IIIC MPLC ilk kolon fraksiyonları

Çizelge 4.3 TBB IIIC MPLC ikinci kolon fraksiyonları

Kullanılan çözücü		
sistemi	İlk Fraksiyon	Son Fraksiyon
P.E:CHCI ₃ :EA (18:9:2)	TBBIIIC.18	TBBIIIC.291
P.E:CHCI ₃ :EA (9:9:2)	TBBIIIC.292	TBBIIIC.444
CHCI ₃ :EA (9:2)	TBBIIIC.445	TBBIIIC.524
CHCI ₃ :EA (4:2)	TBBIIIC.525	TBBIIIC.657
CHC ₃ :EA (1:1)	TBBIIIC.658	TBBIIIC.698
Etil asetat	TBBIIIC.699	TBBIIIC.732
МеОН	TBBIIIC.733	TBBIIIC.754

4.1.1.1 TBB IIIC (184-224) 2 (2+3)=1α-Asetoksi-11β(H),13-dihidrodouglanin (1αacetoxy-11β(H),13-dihydrodouglanin)

Maddenin yapısı spektral yöntemlerle (¹H NMR, ¹³C NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.4'te 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.1'de 1 α -Asetoksi-11 β (H),13-dihidrodouglanin moleküler yapısı, Şekil 4.2'de ¹H NMR spektrumu, Şekil 4.3'te APT spektrumu, Şekil 4.4'te COSY spektrumu, Şekil 4.5'de HSQC spektrumu ve Şekil 4.6'da HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [176-178].

Şekil 4.1 1α-Asetoksi-11β(H),13-dihidrodouglanin moleküler yapısı

Н	¹ H-NMR	С	APT
1	4.56 brd (1H, <i>J</i> =4.5 Hz)	1	74.82
2	2.36 brd(1H, <i>J</i> =19.5 Hz)	2	29.18
2'	2.02 (1H)	3	118.83
3	5.21 brs (1H)	4	133.45
5	2.52 brd (1H, <i>J</i> =11.5 Hz)	5	44.54
6	3.89 dd (1H, <i>J</i> =11.3;10 Hz)	6	81.31
7	1.51 m (1H)	7	53.42
8	1.78 (1H)	8	22.39
8'	1.51 m (1H)	9	33.58
9	1.51 m (1H)	10	39.10
9'	1.28 m (1H)	11	40.36
11	2.22 dq (1H, <i>J</i> =13.5;7.0 Hz)	12	179.62
13	1.15 d (3H, <i>J</i> =7.0Hz)	13	17.39
14	0.86 s (3H)	14	12.47
15	1.78 brs (3H)	15	23.43
-OAc	2.02 s (3H)	-OCO-	170.74
		-OAc	21.57

Çizelge 4.4 1α-Asetoksi-11β(H),13-dihidrodouglanin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.2 1a-Asetoksi-11B(H),13-dihidrodouglanin ¹H-NMR spektrumu

JK

NAME DATE
THENC (184-2.91.2, 02+ 31.

Şekil 4.2 1 α -Asetoksi-11 β (H),13-dihidrodouglanin ¹H-NMR spektrumu

Şekil 4.4 1 α -Asetoksi-11 β (H),13-dihidrodouglanin COSY spektrumu

Şekil 4.5 1 α -Asetoksi-11 β (H),13-dihidrodouglanin HSQC spektrumu

Şekil 4.6 1 α -Asetoksi-11 β (H),13-dihidrodouglanin HMBC spektrumu

4.1.1.2 TBB IIIC (225-260) 2.2= Taurin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.5'te Taurin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.7'de Taurin moleküler yapısı, Şekil 4.8'de ¹H NMR spektrumu, Şekil 4.9'da APT spektrumu, Şekil 4.10'da COSY spektrumu, Şekil 4.11'de HSQC spektrumu ve Şekil 4.12'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [179].

Şekil 4.7 Taurin moleküler yapısı

	Н	¹ H-NMR	С	АРТ
	2	2.63 ddd (1H, <i>J</i> =6.0;7.0;13.0 Hz)	1	213.25
	2'	2.49 ddd (1H, <i>J</i> =6.5;7.5;14 Hz)	2	36.01
	3	2.35-2.40 m (2H)	3	33.02
	6	4.60 brd (1H, <i>J</i> =11Hz)	4	126.96
	7	1.73 m (1H)	5	129.57
	8	2.00 m (1H)	6	81.54
	8′	2.00 m (1H)	7	52.89
	9	1.86 ddd (1H, <i>J</i> =2.3;5.0;15Hz)	8	23.88
	9′	1.5 m (1H)	9	34.78
	11	2.29 m (1H)	10	48.96
	13	1.23 d (3H, <i>J</i> =7.0 Hz)	11	40.99
	14	1.32 s (3H)	12	178.35
	15	1.96 brs (3H)	13	12.74
			14	23.36
			15	19.68

Çizelge 4.5 Taurin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.8 Taurin ¹H NMR spektrumu

Şekil 4.8 Taurin ¹H NMR spektrumu

Şekil 4.10 Taurin COSY spektrumu

Şekil 4.12 Taurin HMBC spektrumu

4.1.1.3 TBB IIIC (184-224) 2.5 = β-Sitosterol

Maddenin yapısı ¹H-NMR spektral yöntemle ve spektrum karşılatırılmaları ile aydınlatılmıştır. Şekil 4.13'te β -Sitosterol moleküler yapısı ve Şekil 4.14'te ¹H NMR spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [180].

β-Sitosterol UV (254 ve 366 nm) ışık altında görülmemekte, renklendirme belirteçi seryum sülfat püskürtülüp manyetik ısıtıcı üzerinde yakıldığında mavi-fuşya renk vermekte daha sonra kahverengiye dönüşmektedir. ¹H-NMR spektrumunda δ 5-5.5 arasında boynuzlu bir pik, δ 3.5 da multiplet piki vermektedir.

Şekil 4.13 β-Sitosterol moleküler yapısı

Şekil 4.14 β-Sitosterol ¹H-NMR spektrumu

4.1.2 Fr6-TBB IVB+VA+VB fraksiyonundan izole edilen maddeler

TBB IVB+VA+VB fraksiyonu CHCI₃:Eter (1:1) çözücü sisteminde MPLC yapılmasına karar verilmiştir. MPLC çalışması sonucunda 315 fraksiyon toplanmış ve ince tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.6'da verilmektedir.

TBB IVB+VA+VB (27-50) fraksiyonununda bir çökelti oluşmuş. Oluşan çökelti fraksiyondan ayırılarak ince tabaka kromatografisinde CHCI₃ sisteminde yürütüldüğünde çökeltinin üç farklı maddeden oluştuğu gözlenmiş ve preparatif ince tabaka kromatografisi ile bu üç madde birbirinden ayrılmıştır. 1. banttan TBB IVB+VA+VB (27-50) 4.1 kodlu 5-Hidroksi-3',4',6,7-tetrametoksiflavon 6 mg ve 3. banttan TBB IVB+VA+VB (27-50) 4.3 kodlu Chrysanthemolide 8 mg elde edilmiştir.

TBB IVB+VA+VB (51-79) fraksiyonu kolon kromatografisi yapılmış. Fraksiyon miktarına (1.5 gr) göre uygun boy (110cm) ve çapta (1.5cm) kolon seçilmiş. Kolon kromatografisi çalışması sonucunda 315 fraksiyon toplanmış ve ince tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. Kolon kromatografisinde kullanılan çözücü sistemleri Çizelge 4.7'de verilmektedir. TBB IVB+VA+VB (51-79) (46-52) fraksiyonu CHCI₃ sisteminde preperatif ince tabaka kromatografisi yapılmıştır. 2. banttan TBB IVB+VA+VB (51-79) (46-52) 2.2 kodlu Santonin 7 mg miktarında elde edilmiştir.

TBB IVB+VA+VB (51-79) (62-68) fraksiyonu CHCI₃:MeOH (30:1) çözücü sisteminde 2 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 11 bantta ayrılmıştır. 2. bantta yer alan maddeler CHCI₃ çözücü sisteminde tekrar preparatif ince tabaka kromatografisinde yürütülmüş. 4. banttan TBB IVB+VA+VB (51-79) (62-68) 2.4 kodlu 5,3'-Dihidroksi-6,7,4',5'-tetrametoksiflavon maddesi 4 mg ve 5. banttan TBB IVB+VA+VB (51-79) (62-68) 2.5 kodlu Pallensis 7 mg miktarında elde edilmiştir.

TBB IVB+VA+VB (51-79) (62-68) fraksiyonunun 3.bandında yer alan maddeler CHCI₃ çözücü sisteminde preparatif ince tabaka kromatografisinde yürütülmüş. TBB IVB+VA+VB (51-79) (62-68) 3.2 kodlu 2. banttan saflaştırılan maddenin TBB IVB+VA+VB (51-79) (62-68) 2.5 kodlu maddeyle aynı olduğu, çeşitli çözücü sistemlerde yürütülen ince tabaka kromatografisi ve ¹H NMR spektrumları karşılaştırılarak karar verilmiştir. TBB IVB+VA+VB (51-79) (62-68) 3.3 kodlu 1,10-Epoksispiciformin 8 mg miktarında elde edilmiştir. TBB IVB+VA+VB (51-79) (62-68) fraksiyonun 4. bandında yer alan maddeler CHCI₃ sisteminde ince tabaka kromatografisi yapılmış ve 2 bantta ayrılmıştır. TBB IVB+VA+VB (51-79) (62-68) 4.1 kodlu 1. banttan saflaştırılan maddenin TBB IVB+VA+VB (51-79) (62-68) 3.3 kodlu maddeyle aynı olduğu, çeşitli çözücü sistemlerinde yürütülen ince tabaka kromatografisi ve ¹H NMR spektrumları karşılaştırılarak karar verilmiştir. 2. banttan TBB IVB+VA+VB (51-79) (62-68) 4.2 kodlu 1-Asetilerivanin 9 mg miktarında saflaştırılmıştır.

TBB IVB+VA+VB (51-79) (62-68) 9 kodlu 8α-Hidroksisantamarin 5 mg miktarında elde edilmiştir.

TBB IVB+VA+VB (51-79) (69-77) fraksiyonunun 2. bantında yer alan maddeler Hekzan:CHCI₃:MeOH (15:15:1) sistemi ile dört defa preparatif ince tabaka kromatografisiyle yürütülerek 8 banta ayrılmıştır.

TBB IVB+VA+VB (51-79) (69-77) 2.3 kodlu 3. bantta yer alan maddeler Hekzan:CHCI₃:MeOH (15:15:1) çözücü sisteminde tekrar preparatif ince tabaka kromatografisi yapılmış ve 6 bantta ayrılmıştır. Yapılan ince tabaka kromatografisi sonucuna göre 2. ve 3. bantta aynı saf maddeler olduğuna karar verilmiş ve bu bantlar birleştirilmiştir. Bu bantlarda yer alan saf maddenin daha önce TBB IVB+VA+VB (27-50) 4.3 kodlu fraksiyonunda izole edilen Chrysanthemolide olduğu, ¹H NMR spektrumları karşılaştırılarak karar verilmiştir.

TBB IVB+VA+VB (51-79) (69-77) 2.4 kodlu 4. bantta yer alan maddeler Hekzan:CHCI₃:MeOH (15:15:1) çözücü sisteminde tekrar preparatif ince tabaka kromatografisi yapılmış ve 6 bantta ayrılmıştır. Yapılan ince tabaka kromatografisi sonucuna göre 2, 3. ve 4. bantta aynı saf maddeler olduğuna karar verilmiş ve bu bantlar birleştirilmiştir. Bu bantlarda yer alan saf maddenin daha önce TBB IVB+VA+VB (51-79) (62-68) 2.5 kodlu fraksiyonunda izole edilen Pallensis olduğu, ¹H NMR spektrumları karşılaştırılarak karar verilmiştir.

TBB IVB+VA+VB (51-79) (69-77) 2.6 kodlu 6. bantta yer alan maddeler Hekzan:CHCI₃:MeOH (15:15:1) çözücü sistemi ile 6 defa preparatif ince tabaka kromatografisinde yürütülerek 3 bantta ayrılmıştır. TBB IVB+VA+VB (51-79) (69-77) 2.6.1 kodlu 1. banttan saflaştırılan maddenin TBB IVB+VA+VB (51-79) (62-68) 3.3 kodlu fraksiyondan izole edilen 1,10-Epoksispiciformin olduğu, çeşitli çözücü sistemlerde yürütülen ince tabaka kromatografisi ve ¹H NMR spektrumları karşılaştırılarak karar verilmiştir.

TBB IVB+VA+VB (51-79) (69-77) fraksiyonunun 3.bandında yer alan maddeler Hekzan:CHCI₃:MeOH (15:15:1) çözücü sistemi ile 5 defa preparatif ince tabaka kromatografisinde yürütülerek 6 banta ayrılmıştır. TBB IVB+VA+VB (51-79) (69-77) 3.4 kodlu 4. bantta yer alan maddeler Hekzan:CHCI₃:MeOH (15:15:1) çözücü sisteminde tekrar preparatif ince tabaka kromatografisi yapılmış ve 2 bantta ayrılmıştır. Her iki bantta sırasıyla 1 α -asetoksi-3-*epi*-erivanin 3 mg ve Tamirin 6 mg miktarında elde edilmiştir.

TBB IVB+VA+VB (51-79) (78-127) fraksiyonu CHCI3:MeOH (30:1) çözücü sisteminde 4 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 7 bantta ayrılmıştır. TBB IVB+VA+VB (51-79) (78-127) 4 kodlu 4.bantta yer alan maddeler CHCI₃:MeOH (30:1) sistemi ile 2 defa tekrar preparatif ince tabaka kromatografisiyle yürütülerek 3 banta ayrılmıştır. TBB IVB+VA+VB (51-79) (78-127) 4.3 kodlu 3. banttan saflaştırılan maddenin TBB IVB+VA+VB (51-79) (62-68) 4.2 kodlu fraksiyondan izole edilen 1-Asetilerivanin olduğu, çeşitli çözücü sistemlerde yürütülen ince tabaka kromatografisi ve ¹H NMR spektrumları karşılaştırılarak karar verilmiştir.

TBB IVB+VA+VB (51-79) (78-127) 5 kodlu 5.bantta yer alan maddeler Hekzan:CHCI₃:MeOH (30:30:1) çözücü sistemi ile 10 defa preparatif ince tabaka kromatografisinde yürütülerek 4 banta ayrılmıştır. TBB IVB+VA+VB (51-79) (78-127) 5.1 kodlu 1. bantta ve TBB IVB+VA+VB (51-79) (78-127) 5.2 kodlu 2. bantta yer alan maddeler CHCI₃:EA (8:1) çözücü sisteminde tekrar preparatif ince tabaka kromatografisi yapılmıştır. TBB IVB+VA+VB (51-79) (78-127) 5.1.2 ve TBB IVB+VA+VB (51-79) (78-127) 5.2.3 kodlu maddelerin TBB IVB+VA+VB (51-79) (62-68) 4.2 kodlu fraksiyondan izole edilen 1-Asetilerivanin olduğu, çeşitli çözücü sistemlerde yürütülen ince tabaka kromatografisi ve ¹H NMR spektrumları karşılaştırılarak karar verilmiştir.

|--|

Kullanılan çözücü sistemi	İlk Fraksiyon	Son Fraksiyon
CHCI ₃ :Eter (1:1)	TBB IVB+VA+VB.1	TBBIVA+VB+VB.180
Eter	TBBIVB+VA+VB.181	TBBIVB+VA+VB.240
Etil asetat	TBBIVB+VA+VB.241	TBBIVA+VB+VB.270
МеОН	TBBIVB+VA+VB.271	TBBIVB+VA+VB.315

Çizelge 4.7 TBB IVB+VA+VB (51-79) fraksiyonunun kolon kromatografi çözücü sistemleri

Çözücü sistemi	Miktar
%100 Petrol eteri	100 ml
%50 P.E : %50 CH ₂ CI ₂	100 ml
%100 CH ₂ CI ₂	100 ml
%80 CH ₂ CI ₂ : %20 Eter	100 ml
%60 CH ₂ CI ₂ : %40 Eter	100 ml
%40 CH ₂ CI ₂ : %60 Eter	100 ml
%20 CH ₂ CI ₂ : %80 Eter	100 ml
%100 Eter	100 ml
%90 eter : %20 EA	100 ml
%100 EA	100 ml
%100 MeOH	100 ml

4.1.2.1 TBB IVB+VA+VB (51-79) (46-52) 2=Santonin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.8'de Santonin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.15'te Santonin moleküler yapısı, Şekil 4.16'da ¹H NMR spektrumu, Şekil 4.17'de COSY spektrumu, Şekil 4.18'de APT spektrumu, Şekil 4.19'da HSQC spektrumu ve Şekil 4.20'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [181].

Н	¹ H-NMR	С	APT
1	6.26 d (1H, <i>J</i> =9.87 Hz)	1	154.56
2	6.69 d (1H, <i>J</i> =9.87 Hz)	2	125.91
6	4.80 dd (1H, <i>J</i> =1.39;11.33 Hz)	3	186.40
7	1.82 dddd (1H, <i>J</i> =3.45;11.54;12.06;12.08 Hz)	4	150.68
8	1.69, dddd (1H, <i>J</i> = 3.83;12.36;12.9;12.96 Hz)	5	124.05
8'	2.04 m (1H)	6	81.31
9	1.52 ddd (1H, <i>J</i> =4.48;13.13;13.25 Hz)	7	53.64
9′	1.90 m (1H)	8	22.91
11	2.42 dq(1H, <i>J</i> =13.87;6.95 Hz)	9	38.05
13	1.28 d (3H, <i>J</i> =6.92 Hz)	10	41.19
14	1.33 s (3H)	11	41.19
15	2.14 d (3H, <i>J</i> =1.36 Hz)	12	177.30
		13	10.90
		14	12.69
		15	25.00

Çizelge 4.8 Santonin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.16 Santonin ¹H-NMR spektrumu

Şekil 4.16 Santonin ¹H-NMR spektrumu

Şekil 4.18 Santonin APT spektrumu

Şekil 4.20 Santonin HMBC spektrumu

4.1.2.2 TBB IVB+VA+VB (27-50) 4.3=1α-asetoksi-4α-hidroksi-5α,6β,7α,11β-Hödesm-2-en-12,6-olide (Chrysanthemolide)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.9'da Chrysanthemolide maddesinin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.21'de Chrysanthemolide maddesinin moleküler yapısı, Şekil 4.22'de ¹H NMR spektrumu, Şekil 4.23'te COSY spektrumu, Şekil 4.24'te APT spektrumu, Şekil 4.25'te HSQC spektrumu ve Şekil 4.26'da HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [182-183].

Şekil 4.21 Chrysanthemolide moleküler yapısı

Н	¹ H-NMR	С	APT
1	4.78 d (1H, <i>J</i> =5.0 Hz)	1	72.21
2	5.84 dd (1H, <i>J</i> =5.0:11 Hz)	2	137.62
3	5.80 d (1H, <i>J</i> =11 Hz)	3	123.01
5	2.40 d (1H, <i>J</i> =11.68 Hz)	4	69.98
6	4.06 dd (1H, <i>J</i> =10.7;10.7 Hz)	5	49.46
7	1.75 (1H, m)	6	80.79
8	1.90, dddd (1H, <i>J</i> = 3.3;6.7;10;13 Hz)	7	52.37
8'	1.75 m (1H)	8	22.91
9	1.50 ddd (1H, <i>J</i> =3.0;12.0;13.0 Hz)	9	35.44
9′	1.37 m (1H)	10	38.80
11	2.34 dq (1H, <i>J</i> =7.0;10 Hz)	11	40.66
13	1.27 d (3H, <i>J</i> =6.91 Hz)	12	175.30
14	1.05 s (3H)	13	12.47
15	1.40 s (3H)	14	20.00
-OAc	2.08 s (3H)	15	24.53
		-OCO-	170.52
		-OAc	21.07

Çizelge 4.9 Chrysanthemolide ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.22 Chrysanthemolide ¹H NMR spektrumu

Şekil 4.22 Chrysanthemolide ¹H NMR spektrumu

Şekil 4.24 Chrysanthemolide APT spektrumu

Şekil 4.26 Chrysanthemolide HMBC spektrumu

4.1.2.3 TBB IVB+VA+VB (51-79) (69-77) 2.5=Pallensis

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, NOESY) aydınlatılmıştır. Çizelge 4.10'da Pallensis ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.27'de Pallensis moleküler yapısı, Şekil 4.28'de ¹H NMR spektrumu, Şekil 4.29'da COSY spektrumu, Şekil 4.30'da APT spektrumu ve Şekil 4.31'de NOESY spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [184].

Şekil 4.27 Pallensis moleküler yapısı

	Н	¹ H-NMR	С	APT
	2	5.90 d (1H, <i>J</i> =10.3 Hz)	1	201.60
	3	6.61 d (1H, <i>J</i> =10.3 Hz)	2	125.63
	5	2.45 d (1H, <i>J</i> =11.5 Hz)	3	151.71
	6	4.17 dd (1H, <i>J</i> =10.5;10.5 Hz)	4	70.07
	7	1.63-1.74 m (1H)	5	54.62
	8	1.95-2.07 m (1H)	6	79.57
	8'	1.41-1.53 m (1H)	7	52.41
	9	1.95-2.07 m (1H)	8	22.70
	9'	1.52-1.58 m (1H)	9	34.24
	11	2.36 dq (1H, <i>J</i> =7.0;13.9 Hz	10	46.24
	13	1.27 d (3H, <i>J</i> =6.91 Hz)	11	40.55
	14	1.20 s (3H)	12	178.14
	15	1.57 s (3H)	13	12.44
			14	19.72
			15	23.81

Çizelge 4.10 Pallensis ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.28 Pallensis ¹H-NMR spektrumu

Şekil 4.28 Pallensis ¹H-NMR spektrumu

Şekil 4.30 Pallensis APT spektrumu

Şekil 4.31 Pallensis NOESY spektrumu

4.1.2.4 TBB IVB+VA+VB (51-79) (78-127) 4.3=1α-asetoksi-3α-hidroksi-5α,6β,7α, 11β-H-ödesm-4(15)en-12,6-olide (1-Asetilerivanin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY) aydınlatılmıştır. Çizelge 4.11'de 1-Asetilerivanin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.32'de 1-Asetilerivanin moleküler yapısı, Şekil 4.33'te ¹H NMR spektrumu, Şekil 4.34'te COSY spektrumu ve Şekil 4.35'te APT spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [182], [183], [185].

Şekil 4.32 1-Asetilerivanin moleküler yapısı

	Н	¹ H-NMR	С	APT
	1	4.67 dd (1H, <i>J</i> =2.91;2.89 Hz)	1	76.19
	2	2.03 m (1H)	2	32.91
	2'	1.98 m (1H)	3	72.34
	3	4.21 dd (1H, J=1.75;3.75 Hz)	4	144.94
	5	2.98 brd (1H, <i>J</i> =10.8 Hz)	5	42.84
	6	3.96 dd (1H, <i>J</i> =10.7;10.7 Hz)	6	79.09
	7	1.64 m (1H)	7	52.11
	8	1.82 dddd (1H, <i>J</i> =3.6;6.5;10;12.8 Hz)	8	22.75
	8′	1.45 dddd (1H, <i>J</i> =3.4;12.5;12.7;12.7 Hz)	9	33.18
	9	1.64 m (1H)	10	41.09
	9′	1.32 dt (1H, <i>J</i> =3.3;13 Hz)	11	41.51
	11	2.27 dq (1H, <i>J</i> =6.9;13.7 Hz)	12	178.88
	13	1.18 d (3H, <i>J</i> =6.9 Hz)	13	12.48
	14	0.84 s (3H)	14	17.71
	15	5.14 brs (1H)	15	113.35
	15'	4.98 d (1H, <i>J</i> =1.1 Hz)	-OCO-	170.24
	-OAc	2.07 s (3H)	-OAc	21.35

Çizelge 4.11 1-Asetilerivanin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.33 1-Asetilerivanin ¹H NMR spektrumu

Şekil 4.33 1-Asetilerivanin ¹H NMR spektrumu

Şekil 4.35 1-Asetilerivanin APT spektrumu

4.1.2.5 TBB IVB+VA+VB (51-79) (69-77) 2.6.1 = 1,10-Epoksispiciformin (1,10-Epoxyspiciformin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.12'de 1,10-Epoksispiciformin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.36'da 1,10-Epoksispiciformin moleküler yapısı, Şekil 4.37'de ¹H NMR spektrumu, Şekil 4.38'de COSY spektrumu, Şekil 4.39'da APT spektrumu, Şekil 4.40'ta HSQC spektrumu ve Şekil 4.41'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [186].

Şekil 4.36 1,10-Epoksispiciformin moleküler yapısı

Н	¹ H-NMR	С	APT
1	2.85 d (1H, <i>J</i> =10.4 Hz)	1	60.6
2	2.09 m (1H)	2	23.9
2'	1.48 m (1H)	3	36.5
3	2.15 m (1H)	4	60.6
3'	1.26 m (1H)	5	63.8
5	2.95 m (1H)	6	67.4
6	4.07 dd (1H, <i>J</i> =3.4;10.8 Hz)	7	45.8
7	2.93 m(1H)	8	75.1
8	4.51 ddd (1H, <i>J</i> =2.6;5.4;11.8 Hz)	9	42.9
9	1.96 dd (1H, <i>J</i> =4.10;14.29 Hz)	10	57
9'	2.15 m (1H)	11	133.9
13	6.05 brd (1H, <i>J</i> =1.0 Hz)	12	169.3
13'	6.4 brd (1H, <i>J</i> =2.0 Hz)	13	128.5
14	1.48 s (3H)	14	22.5
15	1.51 s (3H)	15	15.8

Çizelge 4.12 1,10-Epoksispiciformin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.37 1,10-Epoksispiciformin ¹H NMR spektrumu

Şekil 4.37 1,10-Epoksispiciformin ¹H NMR spektrumu

Şekil 4.39 1,10-Epoksispiciformin APT spektrumu

Şekil 4.41 1,10-Epoksispiciformin HMBC spektrumu

4.1.2.6 TBB IVB+VA+VB (51-79) (62-68) 9 = 8α-Hidroksisantamarin (8α-Hydroxysantamarin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.13'de 8α-Hidroksisantamarin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.42'de 8α-Hidroksisantamarin moleküler yapısı, Şekil 4.43'te ¹H NMR spektrumu, Şekil 4.44'te COSY NMR spektrumu, Şekil 4.45'te APT spektrumu, Şekil 4.46'da HSQC spektrumu ve Şekil 4.47'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [187].

Şekil 4.42 8a-Hidroksisantamarin moleküler yapısı

Н	¹ H-NMR	С	APT
1	3.70 m (1H)	1	66.83
2	2.28 m (1H)	2	33.74
2'	1.87 m (1H)	3	122.11
3	5.27 brs (1H)	4	140.5
5	1.75 d (1H, <i>J</i> =10 Hz)	5	59.53
6	3.67 dd (1H, <i>J</i> =9.7;10 Hz)	6	75.72
7	2.50 dddd (1H, <i>J</i> =3;3;10.7;10.7 Hz)	7	56.10
8	4.00 ddd (1H, <i>J</i> =3.7;12;12 Hz)	8	77.81
9	2.56 dd (1H, <i>J</i> =3.5;11.8 Hz)	9	38.13
9'	1.25 dd (1H, <i>J</i> =12.2;12.2 Hz)	10	40.4
13	5.94 dd (1H, <i>J</i> =1.0;3.0 Hz)	11	136.96
13'	5.83 dd (1H, <i>J</i> =1.0;3.0 Hz)	12	169.3
14	0.87 s (3H)	13	119.72
15	1.81 brs(3H)	14	20.68
		15	26.64

Çizelge 4.13 8α-Hidroksisantamarin ¹H-NMR ve APT (500 MHz, 125 MHz, MeOD) kimyasal kayma değerleri

Şekil 4.43 8 α -Hidroksisantamarin ¹H NMR spektrumu

Şekil 4.43 8a-Hidroksisantamarin ¹H NMR spektrumu

Şekil 4.43 8a-Hidroksisantamarin ¹H NMR spektrumu

Şekil 4.45 8α-Hidroksisantamarin APT spektrumu

Şekil 4.47 8 α -Hidroksisantamarin HMBC spektrumu

4.1.2.7 TBB IVB+VA+VB (51-79) (69-77) 3.4.2=Tamirin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.14'te Tamirin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.48'de Tamirin moleküler yapısı, Şekil 4.49'da ¹H NMR spektrumu, Şekil 4.50'de COSY NMR spektrumu, Şekil 4.51'de APT spektrumu, Şekil 4.52'de HSQC spektrumu ve Şekil 4.53'te HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [9], [179], [188], [189], [190], [191], [192], [193], [194], [195], [196], [197], [198].

Şekil 4.48 Tamirin moleküler yapısı

	Н	¹ H-NMR	С	APT
	2	2.55 m (1H)	1	203.63
	2'	3.28 m (1H)	2	36.46
	3	2.55 m (1H)	3	35.14
	3'	2.39 m (1H)	4	145.75
	5	5.08 brd (1H, <i>J</i> =9.7 Hz)	5	131.88
	6	4.15 dd (1H, <i>J</i> =9.7;9.7 Hz)	6	69.84
	7	2.74 m (1H)	7	47.68
	8	3.94 m (1H)	8	76.62
	9	3.39 brd (1H, <i>J</i> =13 Hz)	9	39.84
	9′	2.15 dd (1H, <i>J</i> =11.4;11.4 Hz)	10	146.28
	13	6.35 brd (1H, <i>J</i> =2.9 Hz)	11	135.84
	13′	6.18 dd (1H, <i>J</i> =1.1;2.5 Hz)	12	170.22
	14	5.84 d (1H, <i>J</i> =1.0 Hz)	13	126.66
	14′	5.80 d (1H, <i>J</i> =1.9 Hz)	14	124.86
	15	1.65 brs (3H)	15	17.39

Çizelge 4.14 Tamirin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.49 Tamirin ¹H NMR spektrumu

Şekil 4.49 Tamirin ¹H NMR spektrumu

Şekil 4.49 Tamirin ¹H NMR spektrumu

Şekil 4.51 Tamirin APT spektrumu

Şekil 4.53 Tamirin HMBC spektrumu

4.1.2.8 TBB IVB+VA+VB (51-79) (68-77) 3.4.1=1α-Asetoksi-3β- hidroksi, 5α, 6β, 7α, 11β(H)-ödesm-4(15)-en-6,12-olide (1α-Asetoksi-3-*epi*-erivanin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC, NOESY, MS) aydınlatılmıştır. Çizelge 4.15'te 1α-Asetoksi-3-*epi*-erivanin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.54'te 1α-Asetoksi-3-*epi*-erivanin moleküler yapısı, Şekil 4.55'te ¹H NMR spektrumu, Şekil 4.56'da COSY spektrumu, Şekil 4.57'de APT spektrumu, Şekil 4.58'de HSQC spektrumu, Şekil 4.59'da HMBC, Şekil 4.60'da NOESY spektrumu ve Şekil 4.61'de kütle spektrumu verilmektedir.

Dötoro kloroformda çekilen ¹H-NMR spektrumunda δ 4.01 (1H, dd, *J*=10.7;10.5 Hz) olarak görülen pik H-6 ya aittir ve ve bu pik COSY deneylerinde δ 1.70'de (H-7, 1H, m) ve δ 2.53'te (H-5, 1H, brd, *J*=10.9 Hz) pikleriyle etkileştiği görülmektedir. Ayrıca H-7 piki δ 2.28'de (H-11, 1H, dq, *J*=6.6;13.2 Hz), δ 1.90'da (H-8, 1H, m) ve δ 1.51'de (H-8', 1H, m) pikleriyle etkileşim göstermektedir. H-11 piki δ 1.17'de (H-13, 3H, d, *J*=6.9 Hz) pikiyle etkileşmektedir. H-8 ve H-8' pikleri, δ 1.70 (H-9, 1H, m) ve δ 1.39 (H-9', 1H, m) pikleriyle etkileşmektedir. δ 4.73'teki H-1 (1H, dd, *J*=2.77;2.74 Hz) piki, δ 2.08 (H-2, 1H, m) ve δ 2.05 (H-2', 1H, m) pikleriyle etkileşmektedir. Ayrıca H-2 ve H-2' pikleri δ 4.22 (H-3, 1H, dd, *J*=5.2;11.7 Hz) piki ile etkileşmektedir. H-14 (3H) piki δ 0.86'da singlet olarak görülmektedir. δ 5.23'de H-15 (1H, brs) ve δ 4.96'da H-15' (1H, brs) pikleri görülmektedir.

Elde edilen deneysel bulgular daha önce izole edilmiş olan 1-Asetilerivanin ve 3-*epi*erivanin maddelerinin verilerine oldukça yakındır [182], [183], [185], [200]. Ancak H-3 protonunun etkileşme sabitlerinin 1-Asetilerivanin maddesinden farklı olduğu görülmektedir. 1-Asetilerivanin maddesinin H-3/H-2 ve H-3/H-2' protonları arasında etkileşim sabiti J=1.75;3.75 Hz olarak verilmiş ve buna göre C-3 konumundaki –OH grubunun α konumunda olduğu bilinmektedir. TBB IVB+VA+VB (51-79) (68-77) 3.4.1 kodlu fraksiyondan izole ettiğimiz bu maddenin ise H-3/H-2 ve H-3/H-2' protonları arasındaki etkileşim sabiti J=5.2;11.7 Hz olarak görülmektedir. Bu nedenle –OH grubunun β konumunda bağlı olduğu anlaşılmaktadır.

3-*epi*-erivanin maddesinin C-1'de –OH grubu bulunmasına karşın TBB IVB+VA+VB (51-79) (68-77) 3.4.1 maddesine C-1'de asetoksi grubu bağlıdır. TBB IVB+VA+VB (51-79) (68-77) 3.4.1 maddesi, 3-*epi*-erivanin maddesinin asetil türevi şeklindedir.

Maddenin NOESY deneyinde H-3 protonu H-7 protonu ile etkileşim gösterdiği ve aynı uzaysal düzlemi paylaştığı görülmektedir. Biyo oluşumsal olarak H-7 protonu α konumunda olduğu bilinmektedir. NOESY spektrumundan H-3, H-5 ve H-13 protonlarının α konumunda olduğu, H-1 ve H-14 protonlarının β konumunda olduğu anlaşılmıştır.

Bu maddenin kütle spektrumunda moleküler iyon piki m/z 331 [M+Na]⁺ net bir şekilde görülmektedir. Yapının C₁₇H₂₄O₅ formülüne sahip olduğu ve tayin edilen yapıyla uyum içinde olduğu görülmektedir. Ayrıca yapıdan m/z 270 [331- CH₃COOH-H]⁺, m/z 253 [270- OH] ve m/z 227 [253-CO-2] çıkışları görülmektedir.

1 α -Asetoksi-3-*epi*-erivanin maddesinin spesifik çevirme açısı $[\alpha]^{22}=10.04$ olarak bulunmuştur.

Şekil 4.54 1a-Asetoksi-3-epi-erivanin moleküler yapısı

Н	¹ H-NMR	С	APT
1	4.73 dd (1H, <i>J</i> =2.77;2.74 Hz)	1	68.55
2	2.00 m (1H)	2	32.84
2'	2.05 m (1H)	3	72.43
3	4.22 dd (1H, <i>J</i> =5.2;11.7 Hz)	4	146.27
5	2.53 brd (1H, <i>J</i> =10.9 Hz)	5	47.17
6	4.01 dd (1H, <i>J</i> =10.7;10.5 Hz)	6	79.00
7	1.70 m (1H)	7	51.84
8	1.90 m (1H)	8	22.62
8'	1.51 m (1H)	9	36.49
9	1.70 m (1H)	10	41.70
9'	1.39 m (1H)	11	40.89
11	2.28 dq (1H, <i>J</i> =6.6;13.2 Hz)	12	179.10
13	1.17 d (3H, <i>J</i> =6.9 Hz)	13	12.70
14	0.86 s (3H)	14	18.23
15	5.23 brs (1H)	15	106.60
15'	4.96 brs (1H)	-OCO-	170.22
-OAc	2.06 s (3H)	-OAc	21.05

Çizelge 4.15 1α-Asetoksi-3-*epi*-erivanin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.55 1a-Asetoksi-3-epi-erivanin ¹H NMR spektrumu

Şekil 4.55 1α-Asetoksi-3-*epi*-erivanin ¹H NMR spektrumu

Şekil 4.55 1α-Asetoksi-3-epi-erivanin¹H NMR spektrumu

Şekil 4.57 1a-Asetoksi-3-epi-erivanin APT spektrumu

Şekil 4.59 1a-Asetoksi-3-epi-erivanin HMBC spektrumu

Şekil 4.60 1a-Asetoksi-3-epi-erivanin NOESY spektrumu

Şekil 4.61 1a-Asetoksi-3-epi-erivanin kütle spektrumu

4.1.2.9 TBB IVB+VA+VB (27-50) 4.1=5-Hidroksi-3',4',6,7-tetrametoksiflavon

Maddenin yapısı spektral yöntemlerle (¹H NMR, UV/VIS) aydınlatılmıştır. Çizelge 4.16'da 5-Hidroksi-3',4',6,7-tetrametoksiflavon ¹H-NMR (500 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.62'de 5-Hidroksi-3',4',6,7-tetrametoksiflavon moleküler yapısı, Şekil 4.63'te UV/VIS kayma spektrumları ve Şekil 4.64'te ¹H NMR spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [97].

Şekil 4.62 5-Hidroksi-3',4',6,7-tetrametoksiflavon moleküler yapısı

Çizelge 4.16 5-Hidroksi-3',4',6,7-tetrametoksiflavon ¹ H-NMR (500 MHz, CDCl ₃) v	e
UV/VIS (λ Max) kimyasal kayma değerleri	

Н	¹ H NMR	Reaktif	Band I(λ max)	Band II (λ max)
3	6.60 s (1H)	МеОН	338 nm	275 nm
8	6.56 s (1H)	NaOMe	333 nm	278 nm
6'	7.53 m,o (1H, <i>J</i> =2.0;8.5 Hz)	NaOAc	337 nm	276 nm
2'	7.34 m (1H, <i>J</i> =2.0 Hz)	NaOAc+H ₃ BO ₃	338 nm	275 nm
5'	6.99 o (1H, <i>J</i> =8.5 Hz)	AlCl ₃	370 nm	285 nm, 259 nm
-OMe	4.00 s (3H), 3.99 s (3H), 3.98 s (3H), 3.93 s (3H)	AlCl ₃ +HCI	360 nm	288 nm, 259 nm

Şekil 4.63 5-Hidroksi-3',4',6,7-tetrametoksiflavon UV/VIS kayma spektrumları

Şekil 4.64 5-Hidroksi-3',4',6,7-tetrametoksiflavon ¹H-NMR spektrumu

4.1.2.10 TBB IVB+VA+VB (51-79) (62-68) 2.3= 5,4'-Dihidroksi-6,7,3'trimetoksiflavon (Cirsilineol)

Maddenin yapısı spektral yöntemlerle (¹H NMR, UV/VIS) aydınlatılmıştır. Çizelge 4.17'de Cirsilineol ¹H-NMR (500 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.65'te Cirsilineol moleküler yapısı, Şekil 4.66'da ¹H NMR spektrumu ve Şekil 4.67'de UV/VIS kayma spektrumları verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [72], [97], [201].

Şekil 4.65 Cirsilineol moleküler yapısı

Çizelge 4.17 Cirsilineol	¹ H-NMR (500 MHz,	CDCl ₃) ve UV/V	VIS (λ Max)	kimyasal
	kayma değe	rleri		

Н	¹ H NMR	Reaktif	Band I (λ max)	Band II (λ max)
3	6.60 s (1H)	MeOH	342 nm	275 nm, 240 nm
8	6.56 s (1H)	NaOMe	406 nm	267 nm
6′	7.50 m,o (1H, <i>J</i> =2.0;8.5 Hz)	NaOAc	406 nm	269 nm
2'	7.33 m (1H, <i>J</i> =2.0 Hz)	NaOAc+H ₃ BO ₃	346 nm	275 nm
5'	7.04 o (1H, <i>J</i> =8.5 Hz)	AlCl ₃	376 nm	284 nm, 261 nm
-OMe	4.02 s (3H), 3.98 s (3H), 3.93 s (3H)	AlCl ₃ +HCI	364 nm	288 nm, 259 nm

Şekil 4.66 Cirsilineol ¹H NMR spektrumu

Şekil 4.67 Cirsilineol UV/VIS kayma spektrumları

4.1.2.11 TBB IVB+VA+VB (51-79) (62-68) 2.4 = 5,3'-Dihidroksi-6, 7, 4', 5' tetrametoksiflavon

Maddenin yapısı spektral yöntemlerle (¹H NMR, UV/VIS) aydınlatılmıştır. Çizelge 4.18'de 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon ¹H-NMR (500 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.68'de 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon moleküler yapısı, Şekil 4.69'da UV/VIS kayma spektrumları ve Şekil 4.70'de ¹H NMR spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [202-204].

Şekil 4.68 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon moleküler yapısı

Çizelge 4.18 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon ¹H-NMR (500 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri

н	¹ H NMR	Reaktif	Band I (λ max)	Band II (λ max)
3	6.60 s (1H)	МеОН	330 nm	277 nm
8	6.56 s (1H)	NaOMe	335 nm	265 nm
6'	7.19 m (1H, <i>J</i> =2 Hz)	NaOAc	332 nm	274 nm
2'	6.96 m (1H, <i>J</i> =2 Hz)	NaOAc+H ₃ BO ₃	333 nm	275 nm
-OMe	4.00 s (3H), 3.99 s (3H), 3.98 s (3H), 3.93 s (3H)	AlCl ₃	361 nm	287 nm
		AlCl ₃ +HCI	353 nm	292 nm

Şekil 4.69 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon UV/VIS kayma spektrumları

Şekil 4.70 5,3'-Dihidroksi-6,7,4',5' tetrametoksiflavon ¹H NMR spektrumu

4.1.3 Fr5-TBB IIID+IVA fraksiyonundan izole edilen maddeler

TBB IIID+IVA fraksiyonu Benzen:CHCI₃:Eter (1:1:1) sisteminde MPLC yapılmıştır. MPLC çalışması sonucunda 281 fraksiyon toplanmış ve ince tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.19'da verilmektedir.

TBB IIID+IVA (28-35) fraksiyonu Hekzan:CHCI₃:Eter (3:1:2) sisteminde dört defa preparatif ince tabaka kromatografisinde yürütülmüş ve 5 bant elde edilmiştir. 4. banttan TBB IIID+IVA (28-35) 4.3.2 kodlu Artesin 7 mg, TBB IIID+IVA (28-35) 4.4.3 kodlu Germacranolide with an 1,5-ether linkage adlı madde 4 mg ve TBB IIID+IVA (28-35) 4.4.7 kodlu Umbelliferone 8 mg miktarında elde edilmiştir.

TBB IIID+IVA (50-59) fraksiyonu CHCI₃:Etil asetat (5:1) sisteminde 3 defa preparatif ince tabaka kromatografisinde yürütülerek 4 bant elde edilmiştir. 4. banttan TBB IIID+IVA (50-59) 4.2 kodlu Artemin 10 mg miktarında elde edilmiştir.

Kullanılan çözücü sistemi	İlk Fraksiyon	Son Fraksiyon
Benzen:CHCI ₃ :Eter(1:1:1)	TBB IIID+IVA.1	TBBIIID+IVA.100
Benzen:CHCI ₃ :Eter(3:4:4)	TBBIIID+IVA101	TBBIIID+IVA.150
Benzen:CHCI ₃ :Eter(1:2:2)	TBBIIID+IVA.151	TBBIIID+IVA.180
CHCI ₃ :Eter(1:1)	TBBIIID+IVA.181	TBBIIID+IVA.200
Eter	TBBIIID+IVA.201	TBBIIID+IVA.240
Eter:EA(1:1)	TBBIIID+IVA.241	TBBIIID+IVA.260
EA	TBBIIID+IVA.261	TBBIIID+IVA.275
МеОН	TBBIIID+IVA.276	TBBIII+IVA.281

Çizelge 4.19 TBB IIID+IVA fraksiyonunun MPLC çözücü sistemleri

4.1.3.1 TBB IIID+IVA (50-59) 4.2=Artemin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.20'de Artemin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.71'de Artemin moleküler yapısı, Şekil 4.72'de ¹H NMR spektrumu, Şekil 4.73'te COSY NMR spektrumu, Şekil 4.74'te APT spektrumu, Şekil 4.75'te HSQC spektrumu ve Şekil 4.76'da HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [179].

Şekil 4.71 Artemin moleküler yapısı

	Н	¹ H-NMR	С	APT
	1	4.18 dd (1H, <i>J</i> =4.95;11.5 Hz)	1	71.69
	2	1.88 m (1H)	2	29.6
	2'	1.58 m (1H)	3	29.88
	3	2.68 ddd (1H, <i>J</i> =6.0;14;14 Hz)	4	144.96
	3'	2.20 dd (1H, <i>J</i> =5.4;13.9 Hz)	5	76.66
	6	4.30 d (1H, <i>J</i> =10.28 Hz)	6	81.53
	7	2.40 m (1H)	7	45.36
	8	1.88 m (1H)	8	22.79
	8′	1.57 m (1H)	9	30.3
	9	1.60 m (1H)	10	44.54
	9′	1.85 m (1H)	11	41.21
	11	2.40 m (1H)	12	179.4
	13	1.27 d (3H, <i>J</i> =6.4 Hz)	13	12.43
	14	0.92 s (3H)	14	13.21
	15	5.05 brs (1H)	15	112.39
	15′	5.00 brs (1H)		

Çizelge 4.20 Artemin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.72 Artemin ¹H NMR spektrumu

Şekil 4.74 Artemin APT spektrumu

Şekil 4.76 Artemin HMBC spektrumu

4.1.3.2 TBB IIID+IVA (28-35) 4.3.2=Artesin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY HSQC, HMBC) aydınlatılmıştır. Çizelge 4.21'de Artesin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.77'de Artesin moleküler yapısı, Şekil 4.78'de ¹H NMR spektrumu, Şekil 4.79'da COSY spektrumu, Şekil 4.80'de APT spektrumu, Şekil 4.81'de HSQC spektrumu ve Şekil 4.82'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [179].

Şekil 4.77 Artesin moleküler yapısı

Н	¹ H-NMR	С	APT
1	3.54 dd (1H, <i>J</i> =4.0;11.5 Hz)	1	77.69
2	1.72 m (1H)	2	27.06
2'	1.72 m (1H)	3	38.3
3	2.20 m (1H)	4	125.92
3'	2.00 m (1H)	5	128.75
6	4.61 d (1H, <i>J</i> =10.28 Hz)	6	83.1
7	1.72 m (1H)	7	52.86
8	1.54 dddd (1H, <i>J</i> =3.5;12.68;12.7;12.85 Hz)	8	24.18
8'	1.30 m (1H)	9	33.35
9	2.09 ddd (1H, <i>J</i> =2.8;2.8;13.46 Hz)	10	41.7
9′	1.97 ddd (1H, <i>J</i> =3.3;6.68;9.64 Hz)	11	40.89
11	2.29 dq (1H, <i>J</i> =7.0;13 Hz)	12	178.57
13	1.25 d (3H, <i>J</i> =7 Hz)	13	12.24
14	1.12 s (3H)	14	18.46
15	1.86 brs (3H)	15	19.77

Çizelge 4.21 Artesin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.78 Artesin ¹H NMR spektrumu

Şekil 4.78 Artesin ¹H NMR spektrumu

Şekil 4.80 Artesin APT spektrumu

Şekil 4.82 Artesin HMBC spektrumu

4.1.3.3 TBB IIID+IVA (28-35) 4.4.3=Germacranolide with an 1,5-ether linkage

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.22'de Germacranolide with an 1,5-ether linkage adlı maddenin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.83'te Germacranolide with an 1,5-ether linkage adlı maddenin moleküler yapısı, Şekil 4.84'te ¹H NMR spektrumu, Şekil 4.85'te COSY spektrumu, Şekil 4.86'da APT spektrumu, Şekil 4.87'de HSQC spektrumu ve Şekil 4.88'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [9].

Şekil 4.83 Germacranolide with an 1,5-ether linkage moleküler yapısı

Н	¹ H-NMR	С	APT
1	4.46 dddd (1H, <i>J</i> =2.4;2.0;2.0;8.0 Hz)	1	75.37
2	2.26 m (1H)	2	26.79
2'	1.78 m (1H)	3	28.12
3	2.45 m (1H)	4	149.88
3'	2.36 m (1H)	5	72.99
5	3.49 brs (1H)	6	72.33
6	4.21 brd (1H, <i>J</i> =7.6 Hz)	7	53.61
7	3.33 m (1H)	8	81.62
8	4.07 ddd (1H, <i>J</i> =1.0;10.3;10.3 Hz)	9	42.79
9	2.96 brd (1H, <i>J</i> =13.24 Hz)	10	144.16
9'	2.63 dd (1H, <i>J</i> =12.6;10.6 Hz)	11	139.08
13	6.25 brd (1H, <i>J</i> =3.6 Hz)	12	169.47
13'	6.08 brd (1H, <i>J</i> =3.26 Hz)	13	121.49
14	5.38 d (1H, <i>J</i> =1.5 Hz)	14	107.08
14'	5.13 brs (1H)	15	117.64
15	4.98 d (1H, <i>J</i> =1.5 Hz)		
15'	4.95 brs (1H)		

Çizelge 4.22 Germacranolide with an 1,5-ether linkage ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹H NMR spektrumu

Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹H NMR spektrumu

Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹H NMR spektrumu

Şekil 4.84 Germacranolide with an 1,5-ether linkage ¹H NMR spektrumu

Şekil 4.85 Germacranolide with an 1,5-ether linkage COSY spektrumu

Şekil 4.86 Germacranolide with an 1,5-ether linkage APT spektrumu

Şekil 4.87 Germacranolide with an 1,5-ether linkage HSQC spektrumu

Şekil 4.88 Germacranolide with an 1,5-ether linkage HMBC spektrumu

4.1.3.4 TBB IIID+IVA (28-35) 4.4.7=7-hidroksikumarin (Umbelliferone)

Maddenin yapısı spektral yöntemlerle (¹H NMR, COSY) aydınlatılmıştır. Dötoro kloroformda çekilen ¹H-NMR spektrumunda δ 7.67'de H-4 (1H, d, *J*=9.4 Hz) protonu δ 6.28'de H-3 (1H, d, *J*=9.4 Hz) protonu ile etkileşmektedir. δ 6.82'de H-6 (1H, o,m, *J*=8.4;2.3 Hz) protonu δ 6.85'de H-8 (1H, *J*=2.3 Hz) protonu ile meta etkileşim ve δ 7.38'de H-5 (1H, o, *J*=8.4 Hz) protonu ile orto etkileşim göstermektedir. 254 nm UV ışıkta açık mavi, 366 nm'de ise parlak mavi renk veren bu bileşik seryum sülfat belirteci püskürtülüp ısıtıcı üzerinde yakıldığında görülmemektedir. Çizelge 4.23'te Umbelliferone ¹H NMR kimyasal kayma değerleri Şekil 4.89'da Umbelliferone moleküler yapısı, Şekil 4.90'da ¹H NMR spektrumu ve Şekil 4.91'de COSY spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [179].

Şekil 4.89 Umbelliferone moleküler yapısı

Çizelge 4.23 Umbelliferone ¹H NMR (CDCI₃, 500MHz) kimyasal kayma değerleri

Н	¹ H-NMR
3	6.28 d (1H, <i>J</i> =9.4 Hz)
4	7.67 d (1H, <i>J</i> =9.4 Hz)
5	7.38 o (1H, <i>J</i> =8.4 Hz)
6	6.82 o,m (1H, <i>J</i> =8.4;2.3)
8	6.85 m (1H, <i>J</i> =2.3 Hz)

Şekil 4.91 Umbelliferone COSY spektrumu

4.1.4 Fr7-TBB IVC fraksiyonundan izole edilen maddeler

TBB IVC fraksiyonu CHCI₃:Eter (1:1) sisteminde MPLC yapılmıştır. MPLC çalışması sonucunda 190 fraksiyon toplanmış ve ince tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.24'te verilmektedir.

TBB IVC (12-75) fraksiyonu kolon kromatografisi yapılmış ve 38 fraksiyon toplanmıştır. İnce tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. Kolon kromatografisinde kullanılan çözücü sistemleri Çizelge 4.25'te verilmektedir. TBB IVC (12-75) 29 fraksiyonu CHCI₃:Eter (3:1) çözücü sisteminde preperatif ince tabaka kromatografisi yapılmış ve 4 bant elde edilmiştir. 4. banttan TBB IVC (12-75) 29 (4.2) kodlu Tavulin 5 mg miktarında elde edilmiştir.

TBB IVC (12-75) (25-28) fraksiyonu CHCI₃:Eter (1:1) çözücü sisteminde preparatif ince tabaka kromatografisi yapılmış ve 4 bant elde edilmiştir. 3. banttan daha önce izole edilen Tamirin 10 mg miktarında elde edilmiştir.

TBB IVC (76-175) fraksiyonu kolon kromatografisi yapılmış ve 37 fraksiyon toplanmıştır. İnce tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. Kolon kromatografisinde kullanılan çözücü sistemleri Çizelge 4.26'da verilmektedir. TBB IVC (76-175) (16-19) fraksiyonu CHCI₃:Eter (3:1) çözücü sisteminde preparatif ince tabaka kromatografisi yapılmış ve 7 bant elde edilmiştir. 2. banttan daha önce izole edilen Santonin 7 mg miktarında elde edilmiştir. 6. banttan TBB IVC (76-175) (16-19) 6 kodlu Tavulin 8 mg miktarında elde edilmiştir.

TBB IVC (76-175) (30-33) fraksiyonu CHCI₃:Eter (3:1) sisteminde 4 defa preparatif ince tabaka kromatografisi ile yürütülerek 7 bant elde edilmiştir. 4. banttan TBB IVC(76-175) (30-33) 4.2 kodlu 1 α ,8 α -Dihidroksi-10-*epi*-arbusculin A 6 mg ve 6. banttan TBB IVC (76-175) (30-33) 6 kodlu 1 α -Hidroksi-desasetilirinol-4 α ,5 β -epoksit 7 mg miktarında elde edilmiştir.

	Kullanılan çözücü sistemi	İlk Fraksiyon	Son Fraksiyon
	CHCI ₃	TBB IVC.1	TBBIVC.25
	CHCI ₃ :Eter(90:10)	TBBIVC.26	TBBIVC.40
	CHCI ₃ :Eter(80:20)	TBBIVC.41	TBBIVC.55
	CHCI ₃ :Eter(70:30)	TBBIVC.56	TBBIVC.70
	CHCI ₃ :Eter(60:40)	TBBIVC.71	TBBIVC.85
	CHCI ₃ :Eter(50:50)	TBBIVC.86	TBBIVC.100
	CHCI ₃ :Eter(40:60)	TBBIVC.101	TBBIVC.115
	CHCI ₃ :Eter(30:70)	TBBIVC.116	TBBIVC.130
	CHCI ₃ :Eter(20:80)	TBBIVC.131	TBBIVC.145
	CHCI ₃ :Eter(10:90)	TBBIVC.146	TBBIVC.160
	Eter	TBBIVC.161	TBBIVC.170
	Etil asetat	TBBIVC.171	TBBIVC.180
	МеОН	TBBIVC.181	TBBIVC.190

Çizelge 4.24 TBB IVC fraksiyonunun MPLC çözücü sistemi

Çizelge 4.25 TBB IVC(12-75) fraksiyonunun kolon kromatografi çözücü sistemleri

Çözücü sistemi	Miktar
%100 CHCI ₃	100 ml
%90 CHCI ₃ : %10 Eter	100 ml
%70 CHCI ₃ : %30 Eter	100 ml
%50 CHCI ₃ : %50 Eter	100 ml
%40 CHCI ₃ : %60 Eter	100 ml
%30 CHCI ₃ : %70 Eter	100 ml
%20 CHCI ₃ : %80 Eter	100 ml
%100 Eter	100 ml
%100 MeOH	300 ml

Çizelge 4.26 TBB IVC(76-175) fraksiyonunun kolon kromatografi çözücü sistemleri

Çözücü sistemi	Miktar
%50 CHCI ₃ : %50 Eter	100 ml
%50 CHCI ₃ : %50 Eter	100 ml
%50 CHCI ₃ : %50 Eter	100 ml
%40 CHCI ₃ : %60 Eter	100 ml
%30 CHCI ₃ : %70 Eter	100 ml
%20 CHCI ₃ : %80 Eter	100 ml
%10 CHCI ₃ : %90 Eter	100 ml
%100 Eter	100 ml
%100 MeOH	300 ml

4.1.4.1 TBB IVC (76-175) (30-33) 6=1α-Hidroksi-deasetilirinol-4α,5β-epoksit (1α-Hydroxy-desacetylirinol-4α,5β-epoxide)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.27'de 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.92'de 1α-Hidroksi-deasetilirinol-4α,5β-epoksit moleküler yapısı, Şekil 4.93'te ¹H NMR spektrumu, Şekil 4.94'te COSY spektrumu, Şekil 4.95'te APT spektrumu, Şekil 4.96'da HSQC spektrumu ve Şekil 4.97'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [196].

Şekil 4.92 1α-Hidroksi-deasetilirinol-4α,5β-epoksit moleküler yapısı

Н	¹ H-NMR	С	APT
1	4.76 dd (1H, <i>J</i> =11.3;5.5 Hz)	1	66.5
2	1.96 m (1H)	2	30
2'	1.85 m (1H)	3	34
3	2.05 m (1H)	4	62
3'	0.89 m (1H)	5	69.96
5	2.58 d (1H, <i>J</i> =9.6 Hz)	6	71
6	3.62 dd (1H, <i>J</i> =9.44;9.45 Hz)	7	50.7
7	2.93 m (1H)	8	74
8	4.80 dd (1H, <i>J</i> =9.7;10.3 Hz)	9	126.36
9	5.40 brd (1H, <i>J</i> =10.28 Hz)	10	145.6
13	6.27 brd (1H, <i>J</i> =3.0 Hz)	11	138.7
13'	6.18 brd (1H, <i>J</i> =3.0 Hz)	12	170.37
14	1.79 d (3H, <i>J</i> =1.3 Hz)	13	123
15	1.39 s (3H)	14	17.5
		15	18.15

Çizelge 4.27 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹H-NMR (500 MHz, CDCI₃) ve APT (125 MHz, CDCI₃+d-aseton)

Şekil 4.93 1 α -Hidroksi-deasetilirinol-4 α ,5 β -epoksit ¹H-NMR spektrumu

Şekil 4.93 1a-Hidroksi-deasetilirinol-4a,5β-epoksit ¹H-NMR spektrumu

Şekil 4.93 1 α -Hidroksi-deasetilirinol-4 α ,5 β -epoksit ¹H-NMR spektrumu

Şekil 4.93 1α-Hidroksi-deasetilirinol-4α,5β-epoksit ¹H-NMR spektrumu

Şekil 4.94 1 α -Hidroksi-deasetilirinol-4 α ,5 β -epoksit COSY spektrumu

Şekil 4.95 1 α -Hidroksi-deasetilirinol-4 α ,5 β -epoksit APT spektrumu

Şekil 4.96 1 α -Hidroksi-deasetilirinol-4 α ,5 β -epoksit HSQC spektrumu

Şekil 4.97 1 α -Hidroksi-deasetilirinol-4 α ,5 β -epoksit HMBC spektrumu

4.1.4.2 TBB IVC (76-175) (30-33) 4.2=1α,8α-Dihidroksi-10-*epi*-arbusculin A (1α,8α-Dihydroxy-10-*epi*-arbusculin A)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.28'de 1α,8α-Dihidroksi-10-*epi*-arbusculin A ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.98'de 1α,8α-Dihidroksi-10-*epi*-arbusculin A moleküler yapısı, Şekil 4.99'da ¹H NMR spektrumu, Şekil 4.100'de COSY spektrumu, Şekil 4.101'de APT spektrumu, Şekil 4.102'de HSQC spektrumu ve Şekil 4.103'te HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [205].

Şekil 4.98 1a,8a-Dihidroksi-10-epi-arbusculin A moleküler yapısı

Н	¹ H-NMR	С	APT
1	3.51 dd (1H, <i>J</i> =4.7;11 Hz)	1	76.61
2 ve 2'	1.66 m (2H)	2	26.79
3 ve 3'	2.08 m (2H)	3	31.42
6	4.63 brd (1H, <i>J</i> =9.1 Hz)	4	136.13
7	2.99 m (1H)	5	135.09
8	3.57 ddd (1H, <i>J</i> =6.4;11.6;11.7 Hz)	6	70.69
9	2.35 dd (1H, <i>J</i> =6.4;12.7 Hz)	7	50.7
9'	1.74 m (1H)	8	75.35
13	6.17 brd (1H, <i>J</i> =3.3 Hz)	9	41.04
13'	5.82 brd (1H, <i>J</i> =3.3Hz)	10	39.99
14	1.26 s (3H)	11	138.44
15	1.74 brs (3H)	12	170.66
		13	120.25
		14	25.22
		15	19.77

Çizelge 4.28 1α,8α-Dihidroksi-10-*epi*-arbusculin A ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.99 1a,8a-Dihidroksi-10-epi-arbusculin A ¹H NMR spektrumu

Şekil 4.99 1a,8a-Dihidroksi-10-epi-arbusculin A ¹H NMR spektrumu

Şekil 4.99 1a,8a-Dihidroksi-10-epi-arbusculin A ¹H NMR spektrumu

Şekil 4.101 1a,8a-Dihidroksi-10-epi-arbusculin A APT spektrumu

Şekil 4.102 1a,8a-Dihidroksi-10-epi-arbusculin A HSQC spektrumu

Şekil 4.103 1a,8a-Dihidroksi-10-epi-arbusculin A HMBC spektrumu

4.1.4.3 TBB IVC (12-75) 29 (4.2) = Tavulin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.29'da Tavulin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.104'te Tavulin moleküler yapısı, Şekil 4.105'te ¹H NMR spektrumu, Şekil 4.106'da COSY spektrumu, Şekil 4.107'de APT spektrumu, Şekil 4.108'de HSQC spektrumu ve Şekil 4.109'da HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [9], [179], [188], [189], [190], [191], [192], [193], [194], [195], [196], [197], [198].

Şekil 4.104 Tavulin moleküler yapısı

Н	¹ H-NMR	С	APT
1	4.30 dd (1H, <i>J</i> =5.7;10 Hz	1	66.54
2	1.87 m (1H)	2	28.51
2'	1.60 m (1H)	3	36.05
3	2.13 dd (1H, <i>J</i> =6.4;12.22 Hz)	4	143.75
3'	1.75 m (1H)	5	131.7
5	4.86 brd (1H, <i>J</i> =10.6 Hz)	6	71.02
6	4.39 dd (1H, J=3.6;12.0;11.5 Hz)	7	53.5
7	2.66 m (1H)	8	75.42
8	4.50 ddd (1H, <i>J</i> =9.8;9.8 Hz)	9	127.34
9	5.14 brd (1H, <i>J</i> =10 Hz)	10	134.13
13	6.06 dd (1H, <i>J</i> =1.6;3 Hz)	11	139.57
13'	6.0 dd (1H, <i>J</i> =1.6;3 Hz)	12	170.89
14	1.70 d (3H, <i>J</i> =1.4 Hz)	13	122.82
15	1.66 s (3H)	14	17.77
		15	16.20

Çizelge 4.29 Tavulin ¹H-NMR (500 MHz, CDCI₃) ve APT (125 MHz, CDCI₃+d-aseton) kimyasal kayma değerleri

Şekil 4.105 Tavulin ¹H NMR spektrumu

Şekil 4.105 Tavulin ¹H NMR spektrumu

Şekil 4.107 Tavulin APT spektrumu

Şekil 4.109 Tavulin HMBC spektrumu

4.2 *Tanacetum balsamita* subsp. *balsamitoides* (TBB) bitkisinin MeOH ekstresinden izole edilen maddeler

TBB bitkisinin gövdesinden elde edilen 77 gr MeOH ekstresinin kaba ayrımı için sıvısıvı kromatografisi yapılmıştır. Sıvı-sıvı kromatografisinde hekzan-CH₂CI₂-etil asetat-BuOH:H₂O (70:30) çözücüleri kullanılmış ve toplam 4 fraksiyon elde edilmiştir.

TBB MeOH/CH₂CI₂ fraksiyonu kolon kromatografisi yapılmış ve 165 fraksiyon toplanmıştır. İnce tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. Çizelge 4.30'da kolon kromatografisinde yer alan çözücü sistemleri yer almaktadır.

TBB MeOH/CH₂CI₂ (15-20) fraksiyonunda bulunan maddeler LH 20 sephadex kolon kromatografisi yapılarak ayrılmaya çalışılmıştır. Kolon sonrası iki fraksiyon elde edilmiştir. TBB MeOH/CH₂CI₂ (15-20) 1 kodlu 1. fraksiyon CHCI₃ sisteminde 3 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 5 bant elde edilmiştir. İzolasyon çalışmaları sonucunda TBB MeOH/ CH₂CI₂ (15-20) 1.3.2, TBB MeOH/CH₂CI₂ (15-20) 1.4.2 ve TBB MeOH/CH₂CI₂ (15-20) 1.5.3 kodlu maddeler saflaştırılmıştır. Maddelerin ¹H NMR spektrumları incelenmesi sonucunda bu maddelerin sırasıyla daha önce etil asetat ekstresinden izole edilen Chrysanthemolide, Pallensis ve 1,10-Epoksispiciformin olduğu anlaşılmıştır. TBB MeOH/CH₂CI₂ (15-20) 1.4.1.1.1 kodlu Isofraxidin 10 mg miktarında elde edilmiştir.

TBB MeOH/CH₂CI₂ (15-20) 2 kodlu 2.fraksiyon CHCI₃ sisteminde 5 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 7 bant elde edilmiştir. İzolasyon çalışmaları sonucunda TBB MeOH/CH₂CI₂ (15-20) 2.2 kodlu Scopoletin, TBB MeOH/CH₂CI₂ (15-20) 2.5.2.2 kodlu Cirsimaritin ve TBB MeOH/CH₂CI₂ (15-20) 2.5.3.3 kodlu 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon saflaştırılmıştır.

TBB MeOH/CH₂CI₂ (2-9) fraksiyonu CHCI₃ sisteminde 2 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 5 bant elde edilmiştir. 3. banttan TBB MeOH/CH₂CI₂ (2-9) 3 kodlu 7-Metoksikumarin 6 mg elde edilmiştir. 5. banttan izole edilen maddenin ¹H-NMR spektrumu incelenmesi sonucunda bu maddenin daha önce etil asetat ekstresinden izole edilen Taurin olduğu belirlenmiştir.

TBB MeOH/CH₂CI₂ (21-35) fraksiyonu CHCI₃:Eter (3:1)sisteminde 3 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 5 bant elde edilmiştir. 3. banttan izole

edilen maddenin ¹H-NMR spektrumu incelenmesi sonucunda bu maddenin daha önce etil asetat ekstresinden izole edilen 1-Asetilerivanin olduğu belirlenmiştir.

TBB MeOH/CH₂CI₂ (60-89) fraksiyonu CHCI₃:Eter:EA (1:1:1) çözücü sisteminde 3 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 5 bant elde edilmiştir. 2. banttan TBB MeOH/CH₂CI₂ (60-89) 2.4.2 kodlu Tanachin 5 mg miktarında elde edilmiştir. TBB MeOH/CH₂CI₂ (60-89) 2.4.2, TBB MeOH/EA (72-85) 2 ve TBB MeOH/EA (86-150)2 maddelerinin ¹H-NMR spektrumları karşılaştırıldığında aynı yapıdaki maddeler oldukları belirlenmiştir. TBB MeOH/CH₂CI₂ (60-89) 2.2.1 maddesinin ¹H-NMR spektrumu incelenmesi sonucunda etil asetat ekstresinden izole edilen maddenin Tavulin olduğu anlaşılmıştır.

TBB MeOH/EA fraksiyonu kolon kromatografisi yapılmış ve 185 fraksiyon toplanılmıştır. İnce tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. TBB MeOH/EA (27-46) fraksiyonu CHCI₃ sisteminde 6 defa tekrar preparatif ince tabaka kromatografisinde yürütülmüş ve 8 bant elde edilmiştir. İzolasyon çalışmaları sonucunda TBB MeOH/EA (27-46) 7.2 kodlu Deasetil-β-siklopyrethrosin saflaştırılmıştır.

TBB MeOH/EA (72-85) fraksiyonu CHCI₃:Eter (1:1) çözücü sisteminde 3 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 2 bant elde edilmiştir. TBB MeOH/EA (72-85) 1 kodlu 1. banttan 10 mg madde saflaştırılmıştır. Maddenin ¹H-NMR spektrumu incelenmesi sonucunda bu maddenin daha önce etil asetat ekstresinden izole edilen Tavulin olduğu belirlenmiştir.

	Kullanılan çözücü sistemi	Fraksiyonlar
	Hekzan	TBB MeOH/CH ₂ CI ₂ .1-5
	Hekzan:CHCI ₃ (50:50)	TBB MeOH/CH ₂ CI ₂ .6-15
	CHCI ₃	TBB MeOH/CH ₂ CI ₂ .16-30
	CHCI ₃ :Eter (80:20)	TBB MeOH/CH ₂ CI ₂ .31-40
	CHCI ₃ :Eter (60:40)	TBB MeOH/CH ₂ CI ₂ .41-60
	CHCI ₃ :Eter (40:60)	TBB MeOH/CH ₂ CI ₂ .61-75
	CHCI ₃ :Eter (20:80)	TBB MeOH/CH ₂ CI ₂ .76-85
	Eter	TBB MeOH/CH ₂ CI ₂ .86-90
	Eter:Etil asetat(80:20)	TBB MeOH/CH ₂ CI ₂ .91-95
	Eter:Etil asetat(60:40)	TBB MeOH/CH ₂ CI ₂ .96-100
	Eter:Etil asetat (40:60)	TBB MeOH/CH ₂ CI ₂ .101-105
	Eter:Etil asetat (20:80)	TBB MeOH/CH ₂ CI ₂ .106-115
	Etil asetat	TBB MeOH/CH ₂ CI ₂ .116-125
	Etil asetat:MeOH (80:20)	TBB MeOH/CH ₂ CI ₂ .126-140
	Etil asetat:MeOH(60:40)	TBB MeOH/CH ₂ CI ₂ .141-150
	Etil asetat:MeOH(80:20)	TBB MeOH/CH ₂ CI ₂ .151-160
	МеОН	TBB MeOH/CH ₂ CI ₂ .161-163
	MeOH:Asetik asit(60:1)	TBB MeOH/CH ₂ CI ₂ .164-165

Çizelge 4.30 TBB MeOH/CH $_2$ CI $_2$ fraksiyonuna ait kolon kromatografi çalışması

Fraksiyonlar	Kullanılan çözücü sistemi
1.parti	CHCI ₃
2. parti	CHCI ₃ :Eter (9.5:0.5)
3.parti	CHCI ₃ :Eter (9:0.5)
4.parti	CHCI ₃ :Eter (8.5:0.5)
5.parti	CHCI ₃ :Eter (8:0.5)
6.parti	CHCI ₃ :Eter (7.5:0.5)
7.parti	CHCI ₃ :Eter (7:0.5)
8.parti	CHCI ₃ :Eter (6.5:0.5)
9.parti	CHCI ₃ :Eter (6:0.5)
10.parti	CHCI ₃ :Eter (5.5:0.5)
11.parti	CHCI ₃ :Eter (5:0.5)
12.parti	CHCI ₃ :Eter (9:1)
13.parti	CHCI ₃ :Eter (8:1)
14.parti	CHCI ₃ :Eter (7:1)
15.parti	CHCI ₃ :Eter (5:1)
16.parti	Eter
17.parti	МеОН
18.parti	MeOH:Asetik asit(20:1)

Çizelge 4.31 TBB MeOH/CH₂CI₂ (48-59) fraksiyonuna ait kolon kromatografi çalışması

Fraksiyonlar	Kullanılan çözücü sistemi
1.parti	CHCI ₃
2. parti	CHCI ₃ :Eter (90:10)
3.parti	CHCI ₃ :Eter (80:20)
4.parti	CHCI ₃ :Eter (70:30)
5.parti	CHCI ₃ :Eter (60:40)
6.parti	CHCI ₃ :Eter (50:50)
7.parti	CHCI ₃ :Eter (40:60)
8.parti	CHCI ₃ :Eter (30:70)
9.parti	CHCI ₃ :Eter (20:80)
10.parti	CHCI ₃ :Eter (10:90)
11.parti	Eter
12.parti	Eter:Etil asetat (80:20)
13.parti	Eter:Etil asetat (60:40)
14.parti	Eter:Etil asetat (40:60)
15.parti	Eter:Etil asetat (20:80)
16.parti	Etil asetat
17.parti	МеОН

Çizelge 4.32 TBB MeOH/EA fraksiyonuna ait kolon kromatografi çalışması

4.2.1 TBB MeOH/CH₂CI₂ (60-89) 2.4.2=1α-Hidroksi-1-desoksotamirin (Tanachin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.33'te 1α-Hidroksi-1-desoksotamirin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.110'da 1α-Hidroksi-1-desoksotamirin moleküler yapısı, Şekil 4.111'de ¹H NMR spektrumu, Şekil 4.112'de COSY spektrumu, Şekil 4.113'te APT spektrumu, Şekil 4.114'te HSQC spektrumu ve Şekil 4.115'te HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [9], [10], [179], [188], [189], [190], [191], [192], [196], [197], [198], [206], [207].

Şekil 4.110 1α-Hidroksi-1-desoksotamirin moleküler yapısı

Н	¹ H-NMR	С	APT
1	3.85 dd (1H, <i>J</i> =4.5;10.2 Hz)	1	70.17
2 ve 2'	2.08 m (2H)	2	30.67
3	2.05 m (2H)	3	34.40
3'	2.23 m (1H)	4	128.23
5	5.04 brd (1H, <i>J</i> =10 Hz)	5	131.35
6	4.26 dd (1H, <i>J</i> =9.8;9.8 Hz)	6	70.5
7	2.81 m (1H)	7	51.73
8	3.96 m (1H)	8	79.01
9	2.92 dd (1H, <i>J</i> =1.5;14 Hz)	9	41.41
9'	2.37 dd (1H, <i>J</i> =10;14 Hz)	10	136.55
13	6.32 dd (1H, <i>J</i> =1.0;3.0 Hz)	11	146.28
13'	6.20 dd (1H, <i>J</i> =1.0;2.6 Hz)	12	170.52
14	5.14 brs (1H)	13	125.91
14'	5.09 brd (1H, <i>J</i> =1.5 Hz)	14	114.66
15	1.70 d (3H, <i>J</i> =1.0 Hz)	15	17.34

Çizelge 4.33 1α-Hidroksi-1-desoksotamirin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.111 Tanachin ¹H NMR spektrumu

Şekil 4.111 Tanachin ¹H NMR spektrumu

Şekil 4.113 Tanachin APT spektrumu

Şekil 4.115 Tanachin HMBC spektrumu
4.2.2 TBB MeOH/EA (27-46) 7.2=Desasetil-β-siklopyrethrosin (Desacetyl-βcyclopyrethrosin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmış ve asetillme reaksiyonu yapılmıştır. Çizelge 4.34'te Desasetil- β -siklopyrethrosin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.116'da Desasetil- β -siklopyrethrosin moleküler yapısı, Şekil 4.117'de ¹H NMR spektrumu, Şekil 4.118'de asetil türevinin ¹H NMR spektrumu, Şekil 4.119'da COSY spektrumu, Şekil 4.120'de APT spektrumu, Şekil 4.121'de HSQC spektrumu ve Şekil 4.122'de HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [9], [10], [179], [188], [189], [190], [191], [192], [196], [197], [198], [206], [207].

Şekil 4.116 Desasetil-β-siklopyrethrosin moleküler yapısı

Н	¹ H-NMR	С	APT
1	3.61 dd (1H, <i>J</i> =4.5;11.3 Hz)	1	77.8
2	1.95 m (1H)	2	31.5
2'	1.62 m (1H)	3	34.7
3	2.40 ddd (1H, <i>J</i> =2.0;5.0;13 Hz)	4	130
3'	2.11 m (1H)	5	57.2
5	1.95 m (1H)	6	67.3
6	4.15 dd (1H, <i>J</i> =9.7;9.9 Hz)	7	53.6
7	2.62 m (1H)	8	76.3
8	4.01 ddd (1H, <i>J</i> =3.5;11.7;11.7 Hz)	9	40.2
9	2.56 dd (1H, <i>J</i> =3.7;11.6 Hz)	10	38
9'	1.58 m (1H)	11	143.8
13	6.20 dd (1H, <i>J</i> =1.0;3.0 Hz)	12	170.7
13'	6.00 dd (1H, <i>J</i> =1.0;2.94 Hz)	13	120.5
14	0.84 s (3H)	14	13.8
15	5.12 brs (1H)	15	108.6
15'	4.79 brs (1H)		

Çizelge 4.34 Desasetil-β-siklopyrethrosin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.117 Desasetil-β-siklopyrethrosin ¹H NMR spektrumu

Şekil 4.117 Desasetil-β-siklopyrethrosin ¹H NMR spektrumu

Şekil 4.118 Desasetil-β-siklopyrethrosin asetil türevinin ¹H NMR spektrumu

Şekil 4.120 Desasetil- β -siklopyrethrosin APT spektrumu

Şekil 4.121 Desasetil- β -siklopyrethrosin HSQC spektrumu

Şekil 4.122 Desasetil- β -siklopyrethrosin HMBC spektrumu

4.2.3 TBB MeOH/CH₂CI₂ (15-20) 2.5.2.2=5,4'-Dihidroksi-6,7-dimetoksiflavon (Cirsimaritin)

Maddenin yapısı spektral yöntemlerle (¹H NMR, APT, UV/VIS) aydınlatılmıştır. Çizelge 4.35'te Cirsimaritin ¹H-NMR (500 MHz, CDCl₃), APT (125 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.123'te Cirsimaritin moleküler yapısı, Şekil 4.124'te UV/VIS kayma spektrumları, Şekil 4.125'te ¹H NMR spektrumu ve Şekil 4.126'da APT spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [97], [208].

Şekil 4.123 Cirsimaritin moleküler yapısı

Çizelge 4.35 Cirsimaritin ¹H-NMR, APT (500 MHz, 125 MHz CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri

Н	¹ H-NMR	APT	Reaktif	Band I (λ max)	Band II (λ max)
3	6.52 s (1H)	104	MeOH	334 nm	275 nm
8	6.48 s (1H)	90	NaOMe	389 nm	301 nm, 272 nm, 237 nm
2' ve 6'	7.75 m,o (1H, <i>J</i> =2.0;7.0 Hz)	128	NaOAc	390 nm	306 nm, 274 nm
3' ve 5'	6.90 m,o (1H, <i>J</i> =2.0;7.0 Hz)	115	NaOAc+H ₃ BO ₃	339 nm	274 nm
-OMe	3.90 s (3H)	60	AlCl ₃	389 nm	301 nm, 274 nm, 238 nm
-OMe	3.86 s (3H)	56	AlCl ₃ +HCI	350 nm	300 nm, 284 nm

Şekil 4.124 Cirsimaritin UV/VIS kayma spektrumları

Şekil 4.125 Cirsimaritin ¹H NMR spektrumu

Şekil 4.126 Cirsimaritin APT spektrumu

4.2.4 TBB MeOH/CH₂CI₂ (15-20) 2.5.3.3=5,7,3'-Trihidroksi-6,4',5'trimetoksiflavon

Maddenin yapısı spektral yöntemlerle (¹H NMR, UV/VIS) aydınlatılmıştır. Çizelge 4.36'da 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon ¹H-NMR (500 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.127'de 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon moleküler yapısı, Şekil 4.128'de UV/VIS kayma spektrumları, Şekil 4.129'da ¹H NMR spektrumu ve Şekil 4.130'da ¹H NMR spektrumu (CDCI₃+D₂O) verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [209-216].

Şekil 4.127 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon moleküler yapısı

Çizelge 4.36 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon	¹ H-NMR	(500 MHz,	CDCl ₃) ve
UV/VIS (λ Max) sinvalle	ri		

Н	¹ H-NMR	Reaktif	Band I(λ max)	Band II (λ max)
3	6.53 s (1H)	МеОН	330 nm	276 nm
8	6.50 s (1H)	NaOMe	373 nm	307 nm, 273 nm
6'	7.75 m (1H, <i>J</i> =2.0 Hz)	NaOAc	368 nm	306 nm, 275 nm
2'	6.90 m (1H, <i>J</i> =2.0 Hz)	NaOAc+H ₃ BO ₃	330 nm	276 nm
-OMe	3.98 s (3H)	AlCl ₃	357 nm	286 nm
-OMe	3.92 s (3H)	AlCl ₃ +HCI	351 nm	293 nm
-OMe	3.89 s (3H)			

Şekil 4.128 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon UV/VIS kayma spektrumları

Şekil 4.129 5,7,3'-trihidroksi-6,4',5'trimetoksiflavon ¹H NMR spektrumu

Şekil 4.129 5,7,3'-trihidroksi-6,4',5'trimetoksiflavon ¹H NMR spektrumu

Şekil 4.129 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon ¹H NMR spektrumu

Şekil 4.130 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon ¹H NMR (CDCI₃+D₂O) spektrumu

4.2.5 TBB MeOH/CH₂CI₂ (15-20) 1.4.1.1.1=Isofraxidin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT) aydınlatılmıştır. Dötoro kloroformda çekilen ¹H-NMR spektrumunda δ 7.54'te H-4 (1H, d, *J*=9.5 Hz) protonu δ 6.21'de H-3 (1H, d, *J*=9.4 Hz) protonu ile etkileşmektedir. Ayrıca, δ 6.59'da H-5 (1H, s) protonu, δ 4.02 ve 3.87'de iki metoksi protonu görülmektedir. 254 nm UV ışıkta açık mavi, 366 nm'de ise parlak mavi renk veren bu bileşik seryum sülfat belirteci püskürtülüp, ısıtıcı üzerinde yakıldıktan sonra açık sarı bir renk vermektedir. Şekil 4.131'de Isofraxidin moleküler yapısı, Şekil 4.132'de ¹H NMR spektrumu, Şekil 4.133'te APT spektrumu ve Çizelge 4.37'de Isofraxidin ¹H NMR ve APT kimyasal kayma değerleri verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [217-219].

Şekil 4.131 Isofraxidin moleküler yapısı

Çizelge 4.37 Isofraxidin ¹H NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Н	¹ H-NMR	С	APT
3	6.21 d (1H, <i>J</i> =9.4 Hz)	3	113.5
4	7.54 d (1H, <i>J</i> =9.4 Hz)	4	143.90
5	6.59 s (1H)	5	103.22
-OMe	4.02 s (3H)	-OMe	56.5
-OMe	3.87 s (3H)	-OMe	61.65

Şekil 4.133 Isofraxidin APT spektrumu

4.2.6 TBB MeOH/CH₂CI₂ (2-9) 3=7-Metoksikumarin (Herniarin)

Maddenin yapısı ¹H-NMR spektral yöntemle aydınlatılmıştır. Dötoro kloroformda çekilen ¹H-NMR spektrumunda δ 7.57'de H-4 (1H, d, *J*=9.5 Hz) protonu δ 6.18'de H-3 (1H, d, *J*=9.4 Hz) protonu ile etkileşim göstermektedir. δ 6.78'de H-6 (1H, o,m, *J*=8.5;2.5 Hz) protonu, δ 6.75'de H-8 (1H, m, *J*=2.5 Hz, H-8) protonu ile meta etkileşim ve δ 7.30'da H-5 (1H, o, *J*=8.5 Hz, H-5) protonu ile orto etkileşim göstermektedir. δ 3.79'da metoksi piki görülmektedir. Şekil 4.133'te Herniarin moleküler yapısı, Şekil 4.134'te ¹H NMR spektrumu ve Çizelge 4.38'de Herniarin ¹H NMR kimyasal kayma değerleri verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [220-223].

Şekil 4.133 Herniarin moleküler yapısı

(Cizelge 4.38 Herniarin	¹ H-NMR	(500 M	Hz, CDCI ₃) kimvasal	l kavma değerl	eri
			(, 5,	, , , , , , , , , , , , , , , , , , , ,		

Н	¹ H-NMR
3	6.18 d (1H, <i>J</i> =9.4 Hz)
4	7.57 d (1H, <i>J</i> =9.5 Hz)
5	7.30 o (1H, <i>J</i> =8.5 Hz)
6	6.78 m,o (1H, <i>J</i> =2.5;8.5 Hz)
8	6.75 m (1H, <i>J</i> =2.5 Hz)
-OMe	3.79 s

Şekil 4.134 Herniarin ¹H-NMR spektrumu

4.2.7 TBB MeOH/CH₂CI₂ (15-20) 2.2=Scopoletin

Maddenin yapısı ¹H-NMR spektral yöntemle aydınlatılmıştır. Dötoro kloroformda çekilen ¹H-NMR spektrumunda δ 7.53'de H-4 (1H, d, *J*=9.5 Hz) protonu δ 6.20'de H-3 (1H, d, *J*=9.4 Hz) protonu ile etkileşim göstermektedir. δ 6.85'te H-5 (1H, s), δ 6.77'de H-8 (1H, s) ve δ 3.88'de metoksi protonları görülmektedir. 254 nm UV ışıkta açık mavi, 366 nm'de ise parlak mavi renk veren bu bileşik seryum sülfat renklendirme belirteci püskürtülüp, ısıtıcı üzerinde yakıldıktan sonra açık sarı bir renk vermektedir. Şekil 4.135'te Scopoletin moleküler yapısı, Şekil 4.136'da ¹H NMR spektrumu ve Çizelge 4.39'da Scopoletin ¹H NMR kimyasal kayma değerleri verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [179], [189], [195].

Şekil 4.135 Scopoletin moleküler yapısı

Cizelge 4.39 Scopoletin ¹H NMR (500 MHz, CDCI₃) kimyasal kayma değerleri

Н	¹ H-NMR
3	6.20 d (1H, <i>J</i> =9.4 Hz)
4	7.53 d (1H, <i>J</i> =9.5)
5	6.85 s (1H)
8	6.77 s (1H)
-OMe	3.88 s (3H)

Şekil 4.136 Scopoletin ¹H-NMR spektrumu

4.3 Tanacetum mucroniferum (TM) bitkisinin EA ekstresinden izole edilen maddeler

TM bitkisinin gövdesinden elde edilen 17.6 gr EA ekstresinin kaba ayrımı için kolon kromatografisi yapılmıştır. Kolon kromatografisinde hekzan-etil asetat-metanol çözücüleri kullanılmış ve 31 fraksiyon elde edilmiştir. Çizelge 4.40'ta yapılan kaba ayırma ve elde edilen fraksiyonları verilmektedir. Kolon kromatografisinden elde edilen fraksiyonlar CHCI₃, Eter, Benzen:Eter (2:1), Hekzan:CHCI₃ (3:1), Etil asetat gibi çeşitli çözücü sistemleriyle İTK'da karşılaştırılmıştır. Resim 4.2'de TM bitkisi fraksiyonlarının çeşitli çözücü sistemleriyle İTK'da kromatogramları verilmektedir. İTK sonuçlarından sonra TM I, TM IIA, TM IIB TM IIC ve TM IID fraksiyonları yağlı bileşikler içerdiklerinden dolayı çalışılmamasına karar verilmiştir. İTK sonuçlarına göre Fr 2: TM IIIA + IIIB+ IIIC, Fr 3: TM IIID + IVA, Fr 4: TM IVB +IVC + IVD, Fr 5: TM IVE + IVF + VA, Fr 6: TM VB + VC, Fr 7: TM VD + VE ve Fr 8: TM VIA +VIB + VIC + VIIA+VIIB+ VIIC + VIID + VIIE + VIIIA fraksiyonları birleştirilmiştir. Böylece yedi ana fraksiyon elde edilmiştir

Resim 4.2 TM bitkisi fraksiyonlarının çeşitli çözücü sistemleriyle İTK kromatogramları

Fraksiyonlar	% Kullanılan çözücü miktarı	Fraksiyon ismi
1.	%100 Hekzan (2500 ml)	TM I, TM IIA, TM IIB, TM IIC, TM IID
2.	%90 Hekzan(2250ml) + %10 EA (250ml)	TM IIIA, TM IIIB, TM IIIC
3.	%75 Hekzan(1875ml) + %25 EA (625ml)	TM IIID, TM IVA
4.	%50 Hekzan (1250ml) + %50 EA (1250ml)	TM IVB, TM IVC, TM IVD
5.	%100 EA (2500ml)	TM IVE, TM IVF, TM VA
6.	%90 EA (2250ml) + %10 MeOH (1250ml)	TM VB, TM VC
7.	%50 EA (1250ml) + %50 MeOH (1250ml)	TM VD, TM VE
8.	%100 MeOH (2500ml)	TM VIA, TM VIB, TM VIC, TM VIIA, TM VIIB, TM VIIC, TM VIID, TM VIIE, TMVIIIA

Çizelge 4.40 TM gövde ekstresine yapılan kaba ayırma ve elde edilen fraksiyonlar

4.3.1 Fr7-TM VD+VE fraksiyonundan izole edilen maddeler

Elde edilen fraksiyonlardan TM VD+VE'nin MPLC ile tekrar fraksiyonlandırılmasına karar verilmiştir. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.41'de verilmektedir. MPLC sonucunda 148 fraksiyon toplanmıştır. Yapılan ince tabaka kromatografisi çalışmaları sonucunda benzer fraksiyonlar birleştirilmiştir. TM VD+VE (27-33) fraksiyonu CHCI₃ sisteminde 5 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 5 bant elde edilmiştir. 3. banttan TM VD+VE (27-33) 3 kodlu Scoparone 11 mg ve 4. banttan TM VD+VE (27-33) 4 kodlu Salvigenin 13 mg miktarında elde edilmiştir. TM VD+VE (34-50) fraksiyonu CHCI₃ sisteminde 5 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 8 bant elde edilmiştir. 2. banttan TM VD+VE (34-50) 2.5 kodlu 5-Hidroksi-3',4',6,7-tetrametoksiflavon 7 mg ve TM VD+VE (34-50)2.3.1 kodlu Scoparone 4 mg miktarında elde edilmiştir.

TM VD+VE (51-65) fraksiyonu CHCI₃ sisteminde 5 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 7 bant elde edilmiştir. 4. banttan TM VD+VE (51-65) 4.2 kodlu Cirsilineol 6 mg, 3. banttan TM VD+VE (51-65) 5.3.1 maddesi 7 mg ve 5. banttan TM VD+VE (51-65) 5.1 maddesi 10 mg miktarında elde edilmiştir. TM VD+VE (51-65) 5.3.1 ve TM VD+VE(51-65) 5.1 maddelerinin ¹H NMR spektrumları karşılaştırıldığında aynı madde oldukları belirlenmiştir. TM VD+VE (66-85) fraksiyonu CHCI₃:Eter (3:1) sisteminde 7 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 7 bant elde edilmiştir. 3. banttan TM VD+VE (66-85) 3.4 kodlu 9α-Asetoksiartecanin 9 mg ve 5. banttan TM VD+VE(66-85) 5.3.2 kodlu Arsanin 10 mg miktarında elde edilmiştir.

Kullanılan çözücü sistemi	Fraksiyonlar
CH ₂ CI ₂	TM VD+VE.1-10
CH ₂ CI ₂ :Eter (90:10)	TM VD+VE.11-25
CH ₂ CI ₂ :Eter (80:20)	TM VD+VE.26-35
CH ₂ CI ₂ :Eter (70:30)	TM VD+VE.36-45
CH ₂ CI ₂ :Eter (60:40)	TM VD+VE.46-55
CH ₂ CI ₂ :Eter (50:50)	TM VD+VE.56-65
CH ₂ CI ₂ :Eter (40:60)	TM VD+VE.66-75
CH ₂ CI ₂ :Eter (30:70)	TM VD+VE.76-85
CH ₂ CI ₂ :Eter (20:80)	TM VD+VE.86-95
CH ₂ CI ₂ :Eter (10:90)	TM VD+VE.96-105
Eter	TM VD+VE.106-115
Eter:EA (80:20)	TM VD+VE.116-125
Eter:EA (60:40)	TM VD+VE.126-135
Eter:EA (40:60)	TM VD+VE.136-140
Eter:EA (20:80)	TM VD+VE.141-144
EA	TM VD+VE.145
EA:MeOH (50:50)	TM VD+VE.146
МеОН	TM VD+VE.147-148

Çizelge 4.41 TM VD+VE fraksiyonun MPLC çalışması

4.3.1.1 TM VD+VE (66-85) 5.3.2=Arsanin

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC, NOESY) aydınlatılmıştır. Çizelge 4.42'de Arsanin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.137'de Arsanin moleküler yapısı, Şekil 4.138'de ¹H NMR spektrumu, Şekil 4.139'da COSY spektrumu, Şekil 4.140'ta APT spektrumu, Şekil 4.141'de HSQC spektrumu, Şekil 4.142'de HMBC spektrumu ve Şekil 4.143'te NOESY spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [224].

Şekil 4.137 Arsanin moleküler yapısı

Н	¹ H-NMR	С	APT
1	3.67 dd (1H, <i>J</i> =5.5;11.7 Hz)	1	76.38
2	2.73 dd (1H, <i>J</i> =5.5;15 Hz)	2	46.37
2'	2.54 m (1H)	3	208.33
4	2.56 m (1H)	4	44.61
5	1.45 dd (1H, <i>J</i> =11.5;10.8 Hz)	5	50.4
6	4.23 dd (1H, <i>J</i> =10.7;10.7 Hz)	6	81.54
7	2.13 m (1H)	7	48.9
8	1.62 dddd (1H, <i>J</i> =3.5;12.9;12.9;12.9 Hz)	8	19.67
8'	1.78 m (1H)	9	36.2
9	2.13 m (1H)	10	41.7
9′	1.28 m (1H)	11	38
11	2.65 dq (1H, <i>J</i> =7.5;15 Hz)	12	179.39
13	1.21 d (3H, <i>J</i> =7.7 Hz)	13	9.64
14	1.14 s (3H)	14	11.7
15	1.25 d (3H, <i>J</i> =6.7 Hz)	15	13.46

Çizelge 4.42 Arsanin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.138 Arsanin ¹H-NMR spektrumu

Şekil 4.139 Arsanin COSY spektrumu

Şekil 4.141 Arsanin HSQC spektrumu

Şekil 4.142 Arsanin HMBC spektrumu

Şekil 4.143 Arsanin NOESY spektrumu

4.3.1.2 TM VD+VE (66-85) 3.4=9α-Asetoksiartecanin (9α-acetoxyartecanin)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC) aydınlatılmıştır. Çizelge 4.43'te 9α-Asetoksiartecanin ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.144'te 9α-Asetoksiartecanin moleküler yapısı, Şekil 4.145'te ¹H NMR spektrumu, Şekil 4.146'da COSY spektrumu, Şekil 4.147'de APT spektrumu, Şekil 4.148'de HSQC spektrumu ve Şekil 4.149'da HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [225].

Şekil 4.144 9a-Asetoksiartecanin moleküler yapısı

Н	¹ H-NMR	С	APT
2	3.52 d (1H, <i>J</i> =1.1 Hz)	1	75.5
3	3.27 d (1H, <i>J</i> =1.0 Hz)	2	56.25
5	2.87 d (1H, <i>J</i> =10.8 Hz)	3	57.07
6	3.96 dd (1H, <i>J</i> =10.4;10.4 Hz)	4	71.17
7	3.44 m (1H)	5	42.23
8	2.10 m (1H)	6	82.06
8′	2.00 m (1H)	7	40.6
9	4.78 dd (1H, <i>J</i> =1.4;6.3 Hz)	8	31.27
13	6.14 d (1H, <i>J</i> =3.6 Hz)	9	74.0
13′	5.33 d (1H, <i>J</i> =3.1 Hz)	10	72.7
14	1.00 s (3H)	11	138.6
15	1.49 s (3H)	12	169.44
-OAc	2.10 s (3H)	13	119.13
		14	24.7
		15	19.2
		-OCO-	169.95
		-OAc	21.35

Çizelge 4.43 9α-Asetoksiartecanin ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.145 9a-Asetoksiartecanin ¹H-NMR spektrumu

Şekil 4.145 9 α -Asetoksiartecanin ¹H-NMR spektrumu

Şekil 4.147 9 α -Asetoksiartecanin APT spektrumu

Şekil 4.148 9a-Asetoksiartecanin HSQC spektrumu

Şekil 4.149 9 α -Asetoksiartecanin HMBC spektrumu

4.3.1.3 TM VD+VE (51-65) 5.1=1β-Hidroksi-3β-asetoksi-4Z,10(14)-dien, 6β, 7α, 11α(H)-6,12-olide (Mucronolide)

Maddenin yapısı spektral yöntemlerle (¹H NMR, APT, COSY, HSQC, HMBC, Spin decoupling, NOESY, MS) aydınlatılmıştır. Çizelge 4.44'te Mucronolide ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.150'de Mucronolide moleküler yapısı, Şekil 4.151'de ¹H NMR spektrumu (d-piridin), Şekil 4.152'de ¹H NMR spektrumu (CDCI₃), Şekil 4.153'te COSY spektrumu, Şekil 4.154'te APT spektrumu, Şekil 4.155'te HSQC spektrumu, Şekil 4.156'da HMBC spektrumu, Şekil 4.157'de NOESY spektrumu, Şekil 4.158'de H-11 protonunun spin decoupling spektrumu, Şekil 4.169'da H-7 protonunun spin decoupling spektrumu, Şekil 4.160'ta H-5 protonunun spin decoupling spektrumu, Şekil 4.162'de H-3 protonunun spin decoupling spektrumu, Şekil 4.163'te H-1 protonunun spin decoupling spektrumu, Şekil 4.165'te H-8' protonunun spin decoupling spektrumu ve Şekil 4.166'da kütle spektrumu verilmektedir.

Dötoro piridinde çekilen ¹H-NMR spektrumunda δ 2.81 (1H, dq, *J*=7.5;10.5 Hz) olarak görülen pik H-11'e aittir ve ve bu proton COSY deneylerinde δ 2.61'de H-7 (1H, brdd, *J*= 10.8;10.5 Hz) ve δ 1.07'de H-13 (1H, d, *J*=7.4 Hz) protonları ile etkileşmektedir. Ayrıca H-7 protonu δ 1.68 H-8 (1H, m) ve δ 1.31 H-8' (1H, m) protonları ile etkileşim göstermektedir. H-8 piki δ 1.71'de yer alan H-15 (3H, brs) pikinin altında kaldığından net olarak görülememektedir. H-8 ve H-8' protonları δ 2.68 H-9 (1H, ddd, *J*=4.1;9.4;14.9 Hz) ve δ 2.32 H-9' (1H, ddd, *J*=5.1;6.9;14.2 Hz) protonları ile etkileşim göstermektedir. δ 4.40 H-1 (1H, brd, *J*=11.1 Hz) protonu δ 2.51 H-2 (1H, ddd, *J*=2.4;11.3;15.5 Hz) protonu ile etkileşmektedir. H-2 protonu δ 2.41 H-2' (1H, ddd, *J*=3.9;7.2;15.3 Hz) ve δ 5.69 H-3 (1H, brd, *J*=6.6 Hz) protonları ile etkileşmektedir. δ 5.43 H-5 (1H, ddq, *J*=1.2;1.2;6.8 Hz) protonu δ 5.64 H-6 (1H, brd, *J*=6.6 Hz) ve δ 1.71 H-15 (3H, brs) protonları ile etkileşim göstermektedir. δ 5.00 H-3 (1H, brd, *J*=6.6 Hz) protonları ile etkileşmektedir. δ 5.16'da H-14' (1H, brs) ve asetoksi grubuna bağlı metil piki δ 2.01'de (3H, s) görülmektedir.

Spin decoupling deneyinde H-11 protonuna ait pikin sinyali ışınladırıldığında H-7 protonuna ait pikin sinyalinde broad dublet-dublet yapısı broad dublet yapısına ve H-13 protonuna ait pikin sinyalinde ise dublet yapısından singlet yapısına dönüştüğü

görülmektedir. H-7 protonu ışınlandırıldığında H-8, H-8' ve H-11 protonlarıa ait piklerin sinyallerinde değişim net bir şekilde görülmekte fakat H-6 protonuna ait pikin sinyalinde dublet yapısı değişmemekte sadece bu protona ait pik sinyalinde sivrilme olduğu görülmektedir. H-6 protonu ışınladırıldığında H-5 protonuna ait pikin sinyalinde dublet-quartet yapısı singlet yapısına dönüşmekte ancak H-7 protonuna ait pikin sinyalinde broad dublet-dublet-dublet yapısı normal dublet-dublet-dublet yapısına dönüşmektedir. Aynı şekilde H-5 protonuna ait pikin sinyalini ışınlandırdığımızda H-6 protonu singlete dönüşmekte ve H-15 protonuna ait pikin sinyalinde sivrilme olduğu görülmektedir. H-3 protonuna ait pikin sinyali ışınlandırıldığında H-2 ve H-2' protonlarına ait piklerin sinyalerinde değişim gözlenmektedir. H-1 protonuna ait sinyali ışınladırıldığında yine aynı şekilde H-2 ve H-2' protonlarına ait piklerde değişim görülmektedir. Sonuç olarak H-7 ve H-6 protonları arasındaki etkileşme sabitlerinin küçük olması bileşiğin yapısının heliangolide yapıda seskiterpen lakton olduğunu göstermektedir.

Elde edilen deneysel bulgular sonucunda Mucronolide maddesinin yapısı, 1β-Hidroksi-3β-asetoksigermakra-4,10(14)-dien-6β,11βH-12,6-olide maddesinin yapısına benzerlik göstermektedir [226]. 1B-Hidroksi-3B-asetoksigermakra-4,10(14)-dien-6B,11BH-12,6olide maddesinin ¹H NMR ve ¹³C NMR spektrumları dötoro kloroformda cekilmistir. δ 4.41'de H-6 protonunun H-6/H-5 ve H-6/H-7 etkileşme sabitleri J=10;9.8 Hz olarak verilmis. Bu etkilesme sabitlerine göre 1B-Hidroksi-3B-asetoksigermakra-4,10(14)-dien-6β,11βH-12,6-olide maddesinin heliangolide yapıda olmayan bir seskiterpen lakton olduğu görülmektedir. Her iki maddenin ¹H-NMR spektrumlarını karşılaştırmak için, Mucronolide maddesinin ¹H NMR ve APT spektrumları dötoro kloroformda çekilmiştir. H-6 protonu 5.30 ppm'de H-5 ve H-3 protonları ile birlikte üst üste görülmektedir. Pikleri birbirinden ayırmak ve etkilesim sabitlerini doğru bir sekilde hesaplamak için 1 H NMR spektrumu farklı çözücüler ile çekilmiştir. Dötoro piridinde çekilen ¹H NMR spektrumunda pikler birbirinden net bir sekilde ayrıldığı gözlenmiştir. Yukarıda belirtildiği gibi COSY ve Spin decoupling deneylerinde H-6 ve H-7 protonları arasında çok küçük bir etkileşim sabiti görülmekte ve H-6 ile H-5 protonları arasındaki etkileşim sabiti ise J=6.6 Hz olarak ölçülmektedir. Elde edilen deneysel bulgular sonucunda her iki maddenin H-6 protonları arasındaki etkileşim sabitleri ve piklerin görüldüğü yerler birbirinden farklı olduğu belirlenmiştir.

Mucronolide maddesinin heliangolide yapıda olduğu, 1β-Hidroksi-3βasetoksigermakra-4,10(14)-dien-6β,11βH-12,6-olide maddesinin ise heliangolide yapıda olmadığı görülmektedir.

HSQC deneyinde tek bağ üzerinden karbon-proton etkileşim incelenmiştir. Dötoro piridinde çekilen HSQC spektrumunda δ 4.40 H-1 protonunun δ 73.08'de yer alan karbon ile etkileştiği, δ 2.51 H-2 ve δ 2.41 H-2' protonları δ 37.8'de yer alan karbon ile etkileştiği, δ 5.69 H-3 protonu δ 79.02'de yer alan karbon ile etkileştiği, δ 5.43 H-5 protonu δ 126.3'te yer alan karbon ile etkileştiği, δ 5.64 H-6 protonu δ 72.8'de yer alan karbon ile etkileştiği, δ 2.61 H-7 protonu δ 41.8'de yer alan karbon ile etkileştiği, δ 1.68 H-8 ve δ 1.31 H-8' protonları δ 28.0'de yer alan karbon ile etkileştiği, δ 2.68 H-9 ve δ 2.32 H-9' protonları δ 30.5'ta yer alan karbon ile etkileştiği, δ 2.81 H-11 protonu δ 37.8'de yer alan karbon ile etkileştiği δ 1.07 H-13 protonu δ 10.6'da yer alan karbon ile etkileştiği, δ 5.38 H-14 ve δ 5.16 H-14' protonları δ 114.7'de yer alan karbon ile etkileştiği, δ 1.71 H-15 protonu δ 22.7'de yer alan karbon ile etkileştiği görülmektedir. Elde edilen veriler maddenin yapısı ile uyum içindedir.

HMBC deneyinde 2 ve 3 bağ üzerinden karbon-proton etkileşimi incelenmiştir. Asetoksi grubuna ait metil piki ile H-3 protonunun etkileştiği görülmüştür. Bu nedenle asetoksi grubunun H-3 protonuna ait olduğu belirlenmiştir. HMBC deneyinde elde edilen diğer veriler maddenin yapısı ile uyum içindedir.

NOESY deneyinde H-11 protonu H-7 protonu ile etkileşim gösterdiği ve aynı uzaysal düzlemi paylaştığı görülmektedir. Biyo oluşumsal olarak H-7 protonu α konumunda olduğu bilinmektedir. NOESY spektrumundan H-1, H-3 ve H-11 protonlarının α konumunda olduğu, H-6 ve H-13 protonlarının β konumunda olduğu anlaşılmıştır.

Bu maddenin kütle spektrumunda moleküler iyon piki m/z 331 [M+Na]⁺ net bir şekilde görülmektedir. Yapının C₁₇H₂₄O₅ formülüne sahip olduğu ve tayin edilen yapıyla uyum içinde olduğu görülmektedir. Ayrıca yapıdan m/z 271 [331- CH₃COOH], m/z 185 [271-(OCOCCH₃)-CH₃] ve m/z 157 [185- CO] çıkışları görülmektedir.

Mucronolide maddesinin spesifik çevirme açısı $[\alpha]^{22} = 17.19$, erime noktası=223.4°C olarak bulunmuştur.

Şekil 4.150 Mucronolide moleküler yapısı

Ruyinu degenien					
Н	¹ H-NMR	С	APT		
1	4.40 brd (1H, <i>J</i> =11.1 Hz)	1	73.08		
2	2.51 ddd (1H, <i>J</i> =2.4;11.3;15.5 Hz)	2	37.84		
2'	2.41 ddd (1H, <i>J</i> =3.9;7.2;15.3 Hz)	3	79.02		
3	5.69 brd (1H, <i>J</i> =6.6 Hz)	4	139.1		
5	5.43 ddq (1H, <i>J</i> =1.2;1.2;6.8 Hz)	5	126.34		
6	5.64 brd (1H, <i>J</i> =6.6 Hz)	6	72.8		
7	2.61 brdd (1H, <i>J</i> =10.8;10.5 Hz)	7	41.88		
8	1.68 m (1H)	8	28.0		
8′	1.31 m (1H)	9	30.5		
9	2.68 ddd (1H, <i>J</i> =4.1;9.4;14.9 Hz)	10	151.5		
9′	2.32 ddd (1H, <i>J</i> =5.1;6.9;14.2 Hz)	11	37.84		
11	2.81 dq (1H, <i>J</i> =7.5;10.5 Hz)	12	181.0		
13	1.07 d (3H, <i>J</i> =7.4 Hz)	13	10.69		
14	5.38 brs (1H)	14	114.72		
14′	5.16 brs (1H)	15	22.71		
15	1.71 brs (3H)	-OCO-	170.2		
-OAc	2.01 s (3H)	-OAc	21.24		

Çizelge 4.44 Mucronolide ¹H-NMR ve APT (500 MHz, 125 MHz, d-piridin) kimyasal kayma değerleri

Şekil 4.151 Mucronolide ¹H-NMR (d-piridin) spektrumu

Şekil 4.151 Mucronolide ¹H-NMR (d-piridin) spektrumu

Şekil 4.153 Mucronolide COSY spektrumu

Şekil 4.155 Mucronolide HSQC spektrumu

Şekil 4.157 Mucronolide NOESY spektrumu

Şekil 4.158 Mucronolide H-11 protonunun spin decoupling spektrumu

Şekil 4.158 Mucronolide H-11 protonunun spin decoupling spektrumu

Şekil 4.158 Mucronolide H-11 protonunun spin decoupling spektrumu

Şekil 4.159 Mucronolide H-7 protonunun spin decoupling spektrumu

Şekil 4.159 Mucronolide H-7 protonunun spin decoupling spektrumu

Şekil 4.159 Mucronolide H-7 protonunun spin decoupling spektrumu

Şekil 4.159 Mucronolide H-7 protonunun spin decoupling spektrumu

Şekil 4.160 Mucronolide H-5 protonunun spin decoupling spektrumu

Şekil 4.160 Mucronolide H-5 protonunun spin decoupling spektrumu

Şekil 4.160 Mucronolide H-5 protonunun spin decoupling spektrumu

Şekil 4.161 Mucronolide H-6 protonunun spin decoupling spektrumu

Şekil 4.161 Mucronolide H-6 protonunun spin decoupling spektrumu

Şekil 4.161 Mucronolide H-6 protonunun spin decoupling spektrumu

Şekil 4.162 Mucronolide H-3 protonunun spin decoupling spektrumu

Şekil 4.162 Mucronolide H-3 protonunun spin decoupling spektrumu

Şekil 4.162 Mucronolide H-3 protonunun spin decoupling spektrumu

Şekil 4.163 Mucronolide H-1 protonunun spin decoupling spektrumu

Şekil 4.163 Mucronolide H-1 protonunun spin decoupling spektrumu

Şekil 4.164 Mucronolide H-9 protonunun spin decoupling spektrumu

Şekil 4.164 Mucronolide H-9 protonunun spin decoupling spektrumu

Şekil 4.164 Mucronolide H-9 protonunun spin decoupling spektrumu

Şekil 4.165 Mucronolide H-8' protonunun spin decoupling spektrumu

Şekil 4.165 Mucronolide H-8' protonunun spin decoupling spektrumu

Şekil 4.166 Mucronolide kütle spektrumu

4.3.1.4 TM VD+VE (27-33) 4=Salvigenin

Maddenin yapısı spektral yöntemlerle (¹H NMR, APT, UV/VIS) aydınlatılmıştır. Çizelge 4.45'te Salvigenin ¹H-NMR (500 MHz, CDCl₃), APT (125 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.167'de Salvigenin moleküler yapısı, Şekil 4.168'de UV/VIS kayma spektrumları, Şekil 4.169'da ¹H NMR spektrumu ve Şekil 4.170'te APT spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [96], [208].

Şekil 4.167 Salvigenin moleküler yapısı

Çizelge 4.45 Salvigenin ¹H-NMR (500 MHz, CDCl₃), APT (125 MHz, CDCl₃) ve UV/VIS (λ Max) kimyasal kayma değerleri

Н	¹ H-NMR	APT	Reaktif	Band I (λ max)	Band II (λ max)
3	6.53 s (1H)	104	МеОН	328 nm	275 nm
8	6.48 s (1H)	90	NaOMe	326 nm	279 nm
2' ve 6'	7.78 m,o (2H, <i>J</i> =2.1;6.8 Hz)	128	NaOAc	330 nm	276 nm
3' ve 5'	6.96 m,o (2H, <i>J</i> =2.1;6.9 Hz)	114	NaOAc+H ₃ BO ₃	332 nm	274 nm
-OMe	3.90 s (3H)	60	AlCl ₃	356 nm	301 nm, 291 nm, 263 nm
-OMe	3.86 s (3H)	56	AlCl ₃ +HCI	351 nm	300 nm, 291 nm, 262 nm
-OMe	3.83 s (3H)	77			

Şekil 4.168 Salvigenin UV/VIS kayma spektrumları

Şekil 4.169 Salvigenin ¹H NMR spektrumu

Şekil 4.170 Salvigenin APT spektrumu

4.3.1.5 TM VD+VE (34-50) 2.3.1=Scoparone

Maddenin yapısı spektral yöntemlerle (¹H NMR, APT, HSQC, HMBC) aydınlatılmıştır. Dötoro asetonda çekilen ¹H-NMR spektrumunda δ 7.80'de H-4 (1H, d, *J*=9.4 Hz) protonu δ 6.23'de H-3 (1H, d, *J*=9.4 Hz) protonu ile etkileşmektedir. δ 7.20'de H-5 (1H, s), δ 6.96'da H-8 (1H, s) ve δ 3.96, 3.88'de metoksi pikleri bulunmaktadır. 254 nm UV ışıkta açık mavi, 366 nm'de ise parlak mavi renk veren bu bileşik seryum sülfat renklendirme belirteci püskürtülüp, ısıtıcı üzerinde yakıldıktan sonra görülmemektedir. Çizelge 4.46'da Scoparone ¹H NMR ve APT kimyasal kayma değerleri, Şekil 4.171'de Scoparone moleküler yapısı, Şekil 4.172'de ¹H NMR spektrumu, Şekil 4.173'te APT spektrumu, Şekil 4.174'te HSQC spektrumu ve Şekil 4.175'te HMBC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [186], [189], [195].

Şekil 4.171 Scoparone moleküler yapısı

Çizelge 4.46 Scoparone ¹H NMR ve APT (500 MHz, 125 MHz, d-aseton) kimyasal kayma değerleri

Н	¹ H-NMR	АРТ
3	6.23 d (1H, <i>J</i> =9.4 Hz)	113
4	7.80 d (1H, <i>J</i> =9.4 Hz)	144
5	7.20 s (1H)	109
8	6.96 s (1H)	100
-OMe	3.96	56.5
-OMe	3.88	56.5

Şekil 4.173 Scoparone APT spektrumu

Şekil 4.175 Scoparone HMBC spektrumu

4.3.2 Fr6-TM VB+VC fraksiyonundan izole edilen maddeler

TM VB+VC'nin MPLC ile tekrar fraksiyonlandırılmasına karar verilmiştir. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.47'de verilmektedir. MPLC sonucunda 230 fraksiyon toplanmıştır. Yapılan ince tabaka kromatografisi çalışmaları sonucunda benzer fraksiyonlar birleştirilmiştir. TM VB+VC(16-145) fraksiyonu CHCI₃:Eter (5:1) sisteminde üç defa preparatif ince tabaka kromatografisinde yürütülmüş ve 7 bant elde edilmiştir. 2. banttan daha önce izole edilen kumarin yapısındaki Scoparone elde edilmiştir. TM VB+VC (16-145) fraksiyonunun 3. bantından TM VB+VC (16-145) 3.2.2 kodlu Ajonolide 1 β ,10 α -epoksit 8 mg miktarında elde edilmiştir.

TM VB+VC (16-145) fraksiyonunun 4. bantından TM VB+VC (16-145) 4.1.1 maddesi 4 mg, TM VB+VC (16-145) 4.2.1 maddesi 4 mg ve TM VB+VC (16-145) 4.3.1 maddesi 3 mg miktarında elde edilmiştir. Elde edilen maddelerin ¹H NMR spektrumları incelenmesi sonucunda TM VB+VC (16-145) 4.2.1 ve TM VB+VC (16-145) 4.3.1 maddelerinin aynı olduğuna karar verilmiştir. TM VB+VC (16-145) 4.1.1 maddesinin daha önce izole edilen 5-Hidroksi-3',4',6,7-tetrametoksiflavon olduğu belirlenmiştir. TM VB+VC (16-145) fraksiyonunun 5. banttından daha önce izole edilen flavonoid yapısındaki Cirsilineol elde edilmiştir. TM VB+VC (16-145) fraksiyonunun 6. bantından TM VB+VC (16-145) 6.1 Çöken kodlu Cirsimaritin 8 mg ve TM VB+VC (16-145) 6.2 Çöken kodlu Jaceosidin 9 mg miktarında elde edilmiştir.

Kullanılan çözücü sistemi	Fraksiyonlar
CHCI ₃	TM VB+VC.1-40
CHCI ₃ :Eter (90:10)	TM VB+VC.41-55
CHCI ₃ :Eter (80:20)	TM VB+VC.56-75
CHCI ₃ :Eter (70:30)	TM VB+VC.76-95
CHCI ₃ :Eter (60:40)	TM VB+VC.96-105
CHCI ₃ :Eter (50:50)	TM VB+VC.106-125
CHCI ₃ :Eter (40:60)	TM VB+VC.126-145
CHCI ₃ :Eter (30:70)	TM VB+VC.146-175
CHCI ₃ :Eter (20:80)	TM VB+VC.176-195
CHCI ₃ :Eter (10:90)	TM VB+VC.196-205
Eter	TM VB+VC.206-216
Eter:EA (80:20)	TM VB+VC.207-210
Eter:EA (60:40)	TM VB+VC.211-215
Eter:EA (40:60)	TM VB+VC.216-220
Eter:EA (20:80)	TM VB+VC.221
EA	TM VB+VC.222
EA:MeOH (60:40)	TM VB+VC.223
EA:MeOH (40:60)	TM VB+VC.224-225
МеОН	TM VB+VC.226-230

Çizelge 4.47 TM VB+VC fraksiyonunun MPLC çalışması

4.3.2.1 TM VB+VC (16-145) 3.2.2=3β-Asetoksi-1β,10α-epoksi-6β(H)-7,11α(H)germakra-4Z-en-6,12-olide (Ajanolide 1β,10α-epoxide)

Maddenin yapısı spektral yöntemlerle (¹H NMR, APT, COSY, HSQC, HMBC, NOESY, MS) aydınlatılmıştır. Çizelge 4.48'de Ajanolide 1 β ,10 α -epoksit ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.176'da Ajanolide 1β,10α-epoksit moleküler yapısı, Sekil 4.177'de ¹H NMR spektrumu, Sekil 4.178'de COSY spektrumu, Sekil 4.179'da APT spektrumu, Şekil 4.180'de HSQC spektrumu, Şekil 4.181'de HMBC spektrumu, Şekil 4.182'de NOESY spektrumu ve Şekil 183'te MS spektrumu verilmektedir. Dötoro kloroformda cekilen ¹H-NMR spektrumunda δ 2.84 (1H, dq, J=7.0;9.0 Hz) olarak görülen pik H-11'e aittir ve bu proton COSY deneylerinde δ 2.04'te H-7 (1H) ve δ 1.11'de H-13 (3H, d, J=7.0 Hz) protonları ile etkilesim gösterdiği belirlenmiştir. H-7 piki δ 2.04'de ver alan asetoksi grubuna ait metil pikinin altında kaldığından tam net görülememektedir. H-7 protonu & 5.46'da H-6 (1H, brd, J=11.4 Hz), δ 1.66'da H-8 (1H, m) ve δ 1.40'ta H-8' (1H, m) protonları ile etkileşim göstermektedir. H-6 protonu & 5.36'da H-5 (1H, dq, J=1.4;11.4 Hz) protonu ile etkileşmektedir. H-5 protonu δ 1.83'te H-15 (3H, d, J=1.4 Hz) protonu ile homoallilik etkileşim göstermektedir. H-8 ve H-8' protonları δ 2.33'te H-9 (1H, ddd, J=2.4;4.5;11.8 Hz) ve δ 0.98'de H-9' (1H, ddd, J=3.0;13.6;12.5 Hz) protonları ile etkileşmektedir. δ 5.12'de H-3 (1H, dd, J=2.2;5.0 Hz) protonu δ 2.50'de H-2 (1H, ddd, J=4.8;4.8;10.5;Hz) ve δ 1.66'da H-2' (1H, m) protonları ile etkileşim göstermektedir. H-2 ve H-2' protonları δ 2.76'da H-1 (1H, dd, J=4.5;10 Hz, H-1) protonu ile etkileşmektedir. δ 1.37'de H-14 (3H, s) piki görülmektedir. Ajanolide 1β,10α-epoksit H-6/H-5 protonları arasında etkileşim sabiti J=11.4 Hz ve H-6/H-7 protonları arasındaki etkileşim sabiti broad şeklinde görülmektedir. H-7 ve H-6 protonları arasındaki etkileşim sabitlerinin küçük olması bileşiğin yapısının heliangolide yapıda seskiterpen lakton olduğunu göstermektedir. Ajanolide 1 β ,10 α -epoksit spesifik çevirme açısı $[\alpha]^{22} = -14.15$, erime noktası=127.3°C olarak bulunmuştur. Bu maddenin kütle spektrumunda moleküler iyon piki m/z 331 [M+Na]⁺ net bir şekilde görülmektedir. Yapının C₁₇H₂₄O₅ formülüne sahip olduğu ve tayin edilen yapıyla uyum içinde olduğu görülmektedir. Ayrıca yapıdan m/z272 [331- CH₃COOH-H], *m/z* 185 [272-(OCOCCH₃+H)-CH₃] ve *m/z* 159 [185- CO+2] çıkışları görülmektedir.

Şekil 4.176 Ajanolide 1 β ,10 α -epoksit moleküler yapısı

Çizelge 4.48 Ajanolide 1β,10α-epoksit ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

н	¹ H-NMR	С	АРТ
1	2.76 dd (1H, <i>J</i> =4.5;10 Hz)	1	60.21
2	2.50 ddd (1H, <i>J</i> =4.8;4.8;10.5 Hz)	2	30.97
2'	1.66 m (1H)	3	72.91
3	5.12 dd (1H, <i>J</i> =2.2;5.0 Hz)	4	138.97
5	5.36 dq (1H, <i>J</i> =1.4;11.4 Hz)	5	124.84
6	5.46 brd (1H, <i>J</i> =11.4 Hz)	6	80.01
7	2.04 (1H)	7	45.04
8	1.66 m (1H)	8	81.62
8′	1.40 m (1H)	9	24.45
9	2.33 ddd (1H, <i>J</i> =2.4;4.5;11.8 Hz)	10	59.90
9′	0.98 ddd (1H, <i>J</i> =3.0;13.6;12.5 Hz)	11	36.14
11	2.84 dq (1H, <i>J</i> =7.0;9.0 Hz)	12	169.47
13	1.11 d (3H, <i>J</i> =7.0 Hz)	13	10.38
14	1.34 s (3H)	14	16.35
15	1.84 d (3H, <i>J</i> =1.4 Hz)	15	23.13
-OAc	2.04 s (3H)	-OCO-	178.86
		-OAc	21.05

Şekil 4.177 Ajanolide 1 β ,10 α -epoksit ¹H NMR spektrumu

Şekil 4.179 Ajanolide 1β,10α-epoksit APT spektrumu

Şekil 4.181 Ajanolide 1β,10α-epoksit HMBC spektrumu

Şekil 4.182 Ajanolide 1β,10α-epoksit NOESY spektrumu

Şekil 4.183 Ajanolide 16,10a-epoksit kütle spektrumu

4.3.2.3 TM VB+VC (16-145) 6.2 Çöken=5,7,4'-Trihidroksi-6,3'-dimetoksiflavon (Jaceosidin)

Maddenin yapısı spektral yöntemlerle (¹H NMR, UV/VIS) aydınlatılmıştır. Çizelge 4.49'da Jaceosidin ¹H-NMR (500 MHz, d-aseton), APT (125 MHz, d-aseton) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.184'te Jaceosidin moleküler yapısı, Şekil 4.185'te UV/VIS kayma spektrumları ve Şekil 4.186'da ¹H NMR spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [72], [97], [227], [228].

Şekil 4.184 Jaceosidin moleküler yapısı

Çizelge 4.49 Jaceosidin ¹H-NMR (500 MHz, d-aseton) ve UV/VIS (λ Max) kimyasal kayma değerleri

Н	¹ H NMR	Reaktif	Band I	Band II (λ max)
			(λ max)	
3	6.58 s (1H)	МеОН	343 nm	273 nm ve 251 nm
8	6.51 s (1H)	NaOMe	405 nm	343 nm ve 279 nm
2'	7.51 m (1H, <i>J</i> =2.1 Hz)	NaOAc	393 nm	322 nm ve 275 nm
5'	6.87 o (1H, <i>J</i> =8.3 Hz)	NaOAc+H ₃ BO ₃	342 nm	273 nm
6′	7.48 o,m (1H, <i>J</i> =8.3;2.1 Hz)	AICI ₃	375 nm	297 nm, 281 nm ve 260 nm
-OMe	3.86 s	AICI ₃ +HCI	364 nm	290 nm ve 259 nm
-OMe	3.74 s			

Şekil 4.185 Jaceosidin UV/VIS kayma spektrumları

Şekil 4.186 Jaceosidin ¹H NMR spektrumu

4.3.2.4 TM VB+VC (16-145) 4.2.1= 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon

Maddenin yapısı spektral yöntemlerle (¹H NMR, APT, HSQC, UV/VIS) aydınlatılmıştır. Çizelge 4.50'de 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon ¹H-NMR (500 MHz, CDCI₃), APT (125 MHz, CDCI₃) ve UV/VIS (λ Max) kimyasal kayma değerleri, Şekil 4.187'de 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon moleküler yapısı, Şekil 4.188'de UV/VIS kayma spektrumları, Şekil 4.189'da ¹H NMR spektrumu, Şekil 4.190'da APT spektrumu ve Şekil 4.191'de HSQC spektrumu verilmektedir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [229].

Şekil 4.187 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon moleküler yapısı

Çizelge 4.50 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon	¹ H-NMR, APT (500 MHz,
125 MHz, CDCI ₃) ve UV/VIS (λ Max) kimyasal	kayma değerleri

Н	¹ H NMR	APT	Reaktif	Band I (λ max)	Band II (λ max)
8	6.49 s (1H)	90	МеОН	337 nm	271 nm 251 nm
2'	7.93 m (1H, <i>J</i> =1.9 Hz)	116	NaOMe	384 nm	271 nm 239 nm
6'	8.40 m (1H, <i>J</i> =2.0 Hz)	117	AICI ₃	364 nm	283 nm 260 nm
-OMe	3.97 s	60.8	AICI ₃ +HCI	357 nm	285 nm 257 nm
-OMe	3.93 s	60.4	NaOAc	381 nm	271 nm
-OMe	3.87 s	56.9	NaOAc+H ₃ BO ₃	381 nm	271 nm
-OMe	3.86 s	56.4			

Şekil 4.188 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon UV/VIS kayma spektrumları

Şekil 4.189 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon ¹H NMR spektrumu

Şekil 4.189 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon ¹H NMR spektrumu

Şekil 4.191 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon HSQC spektrumu

4.3.3 Fr5-TM IVB+IVC+IVD ve Fr4-TM IIID+IVA fraksiyonlarından izole edilen maddeler

TM IVB+IVC+IVD'nin MPLC ile tekrar fraksiyonlandırılmasına karar verilmiştir. MPLC'de kullanılan çözücü sistemleri ve fraksiyonlar Çizelge 4.51'de verilmektedir. MPLC sonucunda 181 fraksiyon toplanmıştır. Yapılan ince tabaka kromatografisi çalışmaları sonucunda benzer fraksiyonlar birleştirilmiştir. TM IVB+IVC+IVD (115-124) fraksiyonunda bulunan maddeler LH 20 sephadex kolon kromatografisi yapılarak ayrılmaya çalışılmıştır. Kolon sonrası iki fraksiyon elde edilmiştir. 2. fraksiyondan TM IVB+IVC+IVD (115-124) 2.5 kodlu α-Amirin 8 mg miktarında elde edilmiştir. TM IIID+IVA fraksiyonuna MPLC çalışması yapılmıştır. MPLC sonucunda 181 fraksiyon toplanmıştır. Yapılan ince tabaka kromatografisi çalışmaları sonucunda benzer fraksiyonlar birleştirilmiştir. TM IIID+IVA fraksiyonuna MPLC çalışması yapılmıştır. MPLC sonucunda 181 fraksiyon toplanmıştır. Yapılan ince tabaka kromatografisi çalışmaları sonucunda benzer fraksiyonlar birleştirilmiştir. TM IIID+IVA (79-129) fraksiyonunda bulunan maddeler LH 20 sephadex kolon kromatografisi yapılarak ayrılmaya çalışılmıştır. Kolon sonrası iki fraksiyon toplanmıştır. Yapılan ince tabaka kromatografisi çalışmaları sonucunda benzer fraksiyonlar birleştirilmiştir. TM IIID+IVA (79-129) fraksiyonunda bulunan maddeler LH 20 sephadex kolon kromatografisi yapılarak ayrılmaya çalışılmıştır. Kolon sonrası iki fraksiyon elde edilmiştir. TM IIID+IVA (79-129) 2.1.1 maddesinin daha önce izole edilen Jaceosidin olduğu belirlenmiştir.

Kullanılan çözücü sistemi	Fraksiyonlar
Hekzan	TM IVB+IVC+IVD.1-20
Hekzan:CHCI ₃ (50:50)	TM IVB+IVC+IVD 21-35
CHCI ₃	TM IVB+IVC+IVD.36-65
CHCI ₃ :Eter (80:20)	TM IVB+IVC+IVD.66-75
CHCI ₃ :Eter (60:40)	TM IVB+IVC+IVD.76-105
CHCI ₃ :Eter (40:60)	TM IVB+IVC+IVD.106-125
CHCI ₃ :Eter (20:80)	TM IVB+IVC+IVD.126-145
Eter	TM IVB+IVC+IVD.146-181

Cizelge 4.51 TM IVB+IVC+IVD fraksiyonunun MPLC çalışması

4.3.3.1 TM IVB+IVC+IVD (115-124) 2.5=α-Amirin

Maddenin yapısı ¹H NMR spektral yöntemle aydınlatılmıştır. Şekil 4.192'de α-Amirin moleküler yapısı, Şekil 4.193'te ¹H NMR spektrumu verilmektedir.

α-Amirin silika jel plaka üzerinde UV (254 nm ve 366 nm) ışık altında görünmeyen, renklendirme belirteci seryum sülfat püskürtülüp yakıldığında kahve-mor arası renk alan bir bileşiktir.

Dötoro kloroformda çekilen ¹H-NMR spektrumunda maddenin triterpen yapısında olduğu, yukarı alanda (0.70-1.20 ppm) görülen 8 tane metil piki sayesinde belirlenmiştir. δ 0.71, 0.72, 0.86, 0.92, 1.01 ve 1.18'de singlet metil pikleri yer almaktadır. δ 0.79 ve 0.88'de dublete (*J*=6.3 Hz) yarılmış metil pikleri bulunmaktadır. δ 3.14'te H-3 (1H, dd, *J*=4.8;11.0 Hz) protonu ve δ 5.18'de H-12 (1H, dd, *J*=3.5;3.5 Hz) protonu görülmektedir.

 α -Amirin bitkilerde sık rastlanan triterpen yapısında bir bileşiktir. Maddenin ¹H NMR spektrumu incelenmesi ve diğer spektrumlarla karşılaştırılması sonucunda α -Amirin yapısında olduğuna karar verilmiştir. Elde edilen veriler literatürde verilen değerlerle uyum içindedir [190], [191], [224].

Şekil 4.192 α-Amirin moleküler yapısı

Şekil 4.193
 $\alpha\text{-}Amirin\ ^1H$ NMR spektrumu

4.4 *Tanacetum mucroniferum* (TM) bitkisinin MeOH ekstresinden izole edilen maddeler

TM bitkisinin gövdesinden elde edilen 63 gr MeOH ekstresinin kaba ayrımı için sıvısıvı kromatografisi yapılmıştır. Sıvı-sıvı kromatografisinde hekzan-CH₂CI₂-etil asetat-BuOH:H₂O (70:30) çözücüleri kullanılmış ve toplam 4 fraksiyon elde edilmiştir.

TM MeOH/CH₂CI₂ fraksiyonu kolon kromatografisi yapılmış ve 87 fraksiyon toplanmıştır. İnce tabaka kromatografisi yardımıyla benzer fraksiyonlar birleştirilmiştir. Çizelge 4.52'de kolon kromatografisinde yer alan çözücü sistemleri yer almaktadır.

TM MeOH/CH₂CI₂ (15-22) fraksiyonu CHCI₃:Eter (2:1) sisteminde 4 defa preparatif ince tabaka kromatografisinde yürütülmüş ve 7 bant elde edilmiştir. İzolasyon çalışmaları sonucunda 1. ve 2. banttan TM MeOH/CH₂CI₂ (15-22) 1.2.1 ve TM MeOH/CH₂CI₂ (15-22) 2.1.1 kodlu kumarin yapısındaki Scoparone izole edilmiştir. Ayrıca 2. banttan TM MeOH/CH₂CI₂ (15-22) 2.1.3 kodlu flavonoid yapısındaki 5-Hidroksi-3',4',6,7-tetrametoksiflavon ve TM MeOH/CH₂CI₂ (15-22) 2.2.3 kodlu seskiterpen lakton yapısındaki Ajanolide 1β,10α-epoksit izole edilmiştir. 3. banttan TM MeOH/CH₂CI₂ (15-22) 3.4.2 kodlu Scopoletin 5 mg ve TM MeOH/CH₂CI₂ (15-22) 3.4.4 kodlu Umbelliferone 4 mg miktarında elde edilmiştir. Ayrıca 3. banttan TM MeOH/CH₂CI₂ (15-22) 3.2.4 kodlu seskiterpen lakton yapısındaki Ajanolide 1β,10αepoksit tekrar izole edilmiştir. 6. banttan izole edilen TM MeOH/CH₂CI₂ (15-22) 6.2.2 kodlu maddenin ¹H NMR spektrumu incelenmesi sonucunda Mucronolide ile aynı olduğuna karar verilmiştir. 7. banttan TM MeOH/CH₂CI₂ (15-22) 7.2.3 kodlu 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide 3 mg miktarında elde edilmiştir.

Fraksiyonlar	Kullanılan çözücü sistemi
1. parti	CHCI ₃
2. parti	CHCI ₃ :Eter (90:10)
3. parti	CHCI ₃ :Eter (80:20)
4. parti	CHCI ₃ :Eter (70:30)
5. parti	CHCI ₃ :Eter (60:40)
6. parti	CHCI ₃ :Eter (50:50)
7. parti	CHCI ₃ :Eter (40:60)
8. parti	CHCI ₃ :Eter (30:70)
9. parti	CHCI ₃ :Eter (20:80)
10. parti	CHCI ₃ :Eter (10:90)
11. parti	Eter
12. parti	Eter:Etil asetat (90:10)
13. parti	Eter:Etil asetat (80:20)
14. parti	Eter:Etil asetat (70:30)
15. parti	Eter:Etil asetat (60:40)
16. parti	Eter:Etil asetat (50:50)
17. parti	Eter:Etil asetat (40:60)
18. parti	Eter:Etil asetat (30:70)
19. parti	МеОН

Çizelge 4.52 TM MeOH/CH $_2$ CI $_2$ fraksiyonunun kolon kromatografi çalışması

4.4.1 TM MeOH/CH₂CI₂ (15-22) 7.2.3=1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide (1α,3β,10α-Trihydroxy-7α,11αH-germacra-4-en-12-6α-olide)

Maddenin yapısı spektral yöntemlerle (¹H-NMR, APT, COSY, HSQC, HMBC, NOESY, MS) aydınlatılmıştır. Çizelge 4.53'te 1 α ,3 β ,10 α -Trihidroksi-7 α ,11 α H-germakra-4-en-12-6 α -olide ¹H-NMR ve APT kimyasal kayma değerleri, Şekil 4.194'te 1 α ,3 β ,10 α -Trihidroksi-7 α ,11 α H-germakra-4-en-12-6 α -olide moleküler yapısı, Şekil 4.195'te ¹H NMR spektrumu, Şekil 4.196'da COSY spektrumu, Şekil 4.197'de APT spektrumu, Şekil 4.198'de HSQC spektrumu, Şekil 4.199'da HMBC, Şekil 4.200'de NOESY spektrumu ve Şekil 4.201'de kütle spektrumu verilmektedir.

Dötoro kloroformda çekilen ¹H-NMR spektrumunda δ 5.74 (1H, dd, J=9.3;6.3 Hz) olarak görülen pik H-6 ya aittir ve ve bu proton COSY deneylerinde δ 2.13 H-7 (1H, m) ve δ 5.11 H-5 (1H, dq, J=6.3;1.5 Hz) protonları ile etkileşmektedir. H-7 ve H-2 pikleri üst üste çıkmıştır. Ayrıca H-7 protonu δ 2.61 H-11 (1H, dq, J=6.6;15.6 Hz) ve δ 1.73 H-8 ve H-8' (2H, m) protonları ile etkileşim göstermektedir. H-11 protonu δ 1.16 H-13 (3H, d, J=7.7 Hz) protonu ile etkilesmektedir. H-8 ve H-8' protonları, δ 1.38 H-9 (1H, m) ve δ 1.49 H-9' (1H, m) protonları ile etkileşmektedir. H-5 protonu δ 1.54 H-15 (3H, brs) protonu ile homoallilik etkilesim vermektedir. δ 3.82'de ver alan H-1 (1H, brd, J=3.5 Hz) protonu, δ 2.13 H-2 (1H, m) ve δ 2.21 H-2' (1H, m) protonlari ile etkileşmektedir. Ayrıca H-2 ve H-2' protonları δ 4.69 H-3 (1H, dd, J=8.3;8.5 Hz) protonu ile etkileşmektedir. H-14 (3H) protonu δ 1.26'da singlet olarak görülmektedir. H-14 protonu –OH grubuna komşu olduğundan aşağı alana kaymıştır. Elde edilen deneysel bulgular $1\alpha, 3\beta, 10\alpha$ -Trihidroksi- $7\alpha, 11\beta$ H-germakra-4Z-en- $12, 6\alpha$ -olide maddesinin verilerine oldukça yakındır. Ancak H-6 protonunun etkileşme sabitlerine bakıldığında $1\alpha, 3\beta, 10\alpha$ -Trihidroksi- $7\alpha, 11\beta$ H-germakra-4Z-en- $12, 6\alpha$ -olide maddesinden farklı olduğu görülmektedir. 1α,3β,10α-Trihidroksi-7α,11βH-germakra-4Z-en-12,6αolide maddesinin H-6/H-5 ve H-6/H-7 protonları arasında etkileşim sabiti J=11.0;11.0 Hz olarak verilmiş. TM MeOH/CH₂CI₂ (15-22) 7.2.3 kodlu fraksiyondan izole ettiğimiz bu maddenin ise H-6/H-5 ve H-6/H-7 protonları arasındaki etkileşim sabiti J=6.3;9.3 Hz olarak görülmektedir. H-6/H-5 protonlarının etkileşim sabiti literatürde yer alan (Z) konfigürasyonlarının etkileşim sabitlerine maddelerin (E) ve uyum göstermemektedir. Bu nedenle izole ettiğimiz maddenin konfigürasyonunu belirlemek için X-Ray analizinin yapılmasına karar verilmiştir.

Maddenin NOESY deneyinde H-3 protonu H-7 protonu ile etkileşim gösterdiği ve aynı uzaysal düzlemi paylaştığı görülmektedir. Biyo oluşumsal olarak H-7 protonu α konumunda olduğu bilinmektedir. H-6 protonunun H-13 ve H-9 protonları ile NOESY verdiği görülmektedir. H-9 protonunun H-14 ve H-14 protonunun H-1 protonu ile NOESY verdiği belirlenmiştir. NOESY spektrumundan H-3 ve H-11 protonlarının α konumunda olduğu, H-1, H-13 ve H-14 protonlarının β konumunda olduğu anlaşılmıştır. Bu maddenin kütle spektrumunda moleküler iyon piki m/z 307 [M+Na]⁺ net bir şekilde görülmektedir. Yapının C₁₅H₂₄O₅ formülüne sahip olduğu ve tayin edilen yapıyla uyum içinde olduğu görülmektedir. Ayrıca yapıdan m/z 289 [307- H₂O]⁺ ve m/z245 [289- CO₂] çıkışları görülmektedir.

Şekil 4.194 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide moleküler yapısı

Н	¹ H NMR	С	APT
1	3.82 brd (1H, <i>J</i> =3.5 Hz)	1	77.5
2	2.13 m (1H)	2	41.3
2'	2.21 m (1H)	3	79.6
3	4.69 dd (1H, <i>J</i> =8.3;8.5 Hz)	4	138.2
5	5.11 dq (1H, <i>J</i> =6.3;1.5 Hz)	5	124.9
6	5.74 dd (1H, <i>J</i> =9.3;6.3 Hz)	6	82.7
7	2.13 m (1H)	7	46.06
8 ve 8'	1.73 m (1H)	8	23.2
9	1.38 m (1H)	9	35.5
9'	1.49 m (1H)	10	87.6
11	2.61 dq (1H, <i>J</i> =6.6;15.6 Hz)	11	40.2
13	1.16 d (3H, <i>J</i> =7.7 Hz)	12	179.9
14	1.26 s (3H)	13	12.4
15	1.54 brs (3H)	14	18.9
		15	20.3

Çizelge 4.53 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H-NMR ve APT (500 MHz, 125 MHz, CDCI₃) kimyasal kayma değerleri

Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu

Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu

Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu

Şekil 4.195 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide ¹H NMR spektrumu

Şekil 4.196 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide COSY spektrumu

Şekil 4.197 1 α ,3 β ,10 α -Trihidroksi-7 α ,11 α H-germakra-4-en-12-6 α -olide APT spektrumu

Şekil 4.198 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide HSQC spektrumu

Şekil 4.199 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide HMBC spektrumu

Şekil 4.200 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide NOESY spektrumu

Şekil 4.201 1α,3β,10α-Trihidroksi-7α,11αH-germakra-4-en-12-6α-olide kütle spektrumu

4.5 Biyolojik Aktivite

Tanacetum mucroniferum bitkisinin toprak üstü kısımlarından elde edilen ve GC/MS ile bileşimi belirlenen uçucu yağın asetilkolinesteraz inhibisyonu, antioksidan ve sitotoksik aktiviteleri araştırılmıştır. Bitkinin uçucu yağı yüksek oranda asetilkolinesteraz inhibisyonu göstermiştir. Uçuçu yağın ana bileşenleri 1,8-sineol (21.9%) ve kafur (6.4%) olarak tespit edilmiştir [170]. Bitki uçucu yağının yüksek oranda asetilkolinesteraz inhibisyonuna sahip olması bu iki ana bileşen ile ilişkili olduğu rapor edilmiştir [230]. Uçucu yağ en yüksek asetilkolinesteraz inhibisyonunu 10 mg/mL konsatrasyonda göstermiştir. Uçucu yağ konsantrasyonu seyreldikçe inhibisyon oranının düştüğü görülmektedir. Çizelge 5.1'de *Tanacetum mucroniferum* bitkisinin uçucu yağ asetilkolinesteraz aktivite çalışması verilmektedir.

Uçucu yağ çok düşük oranda PRAP antioksidan aktivite göstermiştir. 10 mg/mL konsatrasyonda 1.32 ±0.02 AU aktivite göstermiş ancak bu aktivite oranının pozitif kontrolün 1 mg/mL'de (1.46 ±0.33 AU) gösterdiği aktivite oranından daha düşük olduğu belirlenmiştir. Çizelge 5.2'de *Tanacetum mucroniferum* bitkisinin uçucu yağ PRAP aktivite çalışması verilmektedir

Uçucu yağ, hücre hatlarına karşı herhangi bir sitotoksik aktivite göstermemiştir.

Bir çok durumda asetilkolinesteraz inhibisyonu insektisit aktivite ile ilgilidir [231]. TM bitkisinin uçucu yağı yüksek oranda asetilkolinesteraz inhibisyona sahip olması, bu yağın düşük toksisitede yüksek insektisit aktivite gösterme olasılığını kuvvetlendirmektedir. Bu çalışma sonucunda *Tanacetum* türlerine ait uçucu yağların yüksek insektisit aktivite gösterme potansiyeline sahip olabileceği düşünülmektedir.

Konsantrasyon ^b	T. mucroniferum ^c	Galantamin ^d	Blank ^e
Saf uçucu yağ ^a	100 ± 0.00^{b}		
10 mg/mL	13.81 ± 2.97	3.74 ± 0.06	0.15 ± 0.01
5 mg/mL	5.80 ± 1.98	3.64 ± 0.19	
1 mg/mL	0.00 ± 0.00	1.46 ± 0.33	

Çizelge 4.54 *Tanacetum mucroniferum* bitkisinin uçucu yağ asetilkolinesteraz aktivite çalışması^a

^aÜç parallel çalışmanın sonuçları standart sapmaları ile birlikte verilmiştir; ^bMetotta kullanılan örneğin konsantrasyonları; ^cÖrneklerin yüzde asetilkolinesteraz inhibisyonu; ^dPozitif kontrol olarak galantamin kullanılmıştır; ^eMetanol negatif kontrol olarak kullanılmıştır.

Çizelge 4.55 Tanacetum	<i>mucroniferum</i> bitki	sinin uçucu yağ PRAF	aktivite çalışması ^a

Konsantrasyon ^b	T. mucroniferum ^c	α-Tokoferol ^d	Blank ^e
10 mg/mL	1.32 ± 0.02^{a}	3.74 ± 0.06	0.15 ± 0.01
5 mg/mL	0.73 ± 0.07	3.64 ± 0.19	
1 mg/mL	0.20 ± 0.04	1.46 ± 0.33	

^aÜç parallel çalışmanın sonuçları standart sapmaları ile birlikte verilmiştir; ^bMetotta kullanılan örneğin konsantrasyonları; ^cÖrneklerin 600 nm'deki absorbansı; ^dPozitif kontrol olarak α -tokoferol kullanılmıştır; ^eMetanol negatif kontrol olarak kullanılmıştır.

BÖLÜM 5

SONUÇ VE ÖNERİLER

Sekonder metabolitlerin bitki bünyesinde çok az miktarda üretildiği fakat gıda ve tıp gibi birçok alanda yaygın olarak kullanıldığı ve ekonomik olarak büyük önem kazandığı bilinmektedir. Bugüne kadar *Tanacetum* L. türlerinden başta seskiterpen laktonlar olmak üzere, seskiterpenler, flavonoidler, monoterpenler, triterpenler ve kumarinler gibi sekonder metabolitler izole edilmiştir. Bu bileşikler antimigren, antiülser, antimikrobiyal, antispasmodik, allergen, antihelmintik, antiinflamatuar, antikoagülant, antifibrinolitik, karminatif, sitotoksik, insektisit gibi özellikler göstermiştir [17-35]. *Tanacetum* L. türlerinin araştırılması yeni biyoaktif bileşiklerin bulunması, ekonomik değeri olan türlerin ortaya çıkarılması ve türlerin sistematik sınıflandırmadaki hataların giderilmesi açısından önemlidir [31].

Bu doktora tezi çalışmasında, Asteraceae familyasında bulunan ve daha önce çalışılmamış olan *Tanacetum mucroniferum* (TM) (endemik) ve *Tanacetum balsamita* subsp. *balsamitoides* (TBB) bitkilerinin toprak üstü kısımlarından hazırlanan etil asetat ve metanol ekstreleri üzerinde izolasyon çalışmaları yapılmıştır. İzolasyon çalışmaları sonucunda 43 maddenin yapısı spektral yöntemlerle aydınlatılmıştır. Ayrıca, *Tanacetum mucroniferum* bitkisinin toprak üstü kısımlarından elde edilen ve GC/MS ile bileşimi belirlenen uçucu yağın asetilkolinesteraz inhibisyonu, antioksidan ve sitotoksik aktiviteleri araştırılmıştır.

Tanacetum balsamita subsp. balsamitoides bitkisinin etil asetat ekstresinden 1a-Asetoksi-11 β (H),13-dihidrodouglanin, Taurin, β-Sitosterol, Santonin, Chrysanthemolide, Pallensis, 1-Asetilerivanin, 1,10-Epoksispiciformin, 8α-Hidroksisantamarin, Tamirin, 1α-Asetoksi-3-*epi*-erivanin, Artemin, Artesin, Germacranolide with an 1,5-ether linkage, 1α -Hidroksi-deasetilirinol- 4α ,5 β -epoksit, 1α,8α-Dihidroksi-10-epi-arbusculin A, Tavulin, 5-Hidroksi-3',4',6,7-tetrametoksiflavon, Cirsilineol, 5,3'-Dihidroksi-6,7,4',5'-tetrametoksiflavon, Umbelliferone maddeleri izole edilmiştir. Çizelge 5.1'de TBB bitkisinin etil asetat ekstresinden izole edilen maddeler verilmektedir.

3-*epi*-erivanin daha önce *Artemisia herba-alba* subsp. *valentina* bitkisinden izole edilmiştir [200]. Ancak TBB bitkisinin etil asetat ekstresinden elde edilen 1α-Asetoksi-3-*epi*-erivanin doğal bir kaynaktan ilk defa tarafımızdan izole edilmiştir.

1α-Asetoksi-11β(H),13-dihidrodouglanin, Chrysanthemolide, Pallensis, 1-Asetilerivanin, 5,3'-Dihidroksi-6,7,4',5'-tetrametoksiflavon, 1α,8α-Dihidroksi-10-*epi*arbusculin A ise *Tanacetum* cinsinden ilk defa izole edilmiştir. 1α-Asetoksi-11β(H),13dihidrodouglanin bileşiği daha önce *Artemisia herba-alba* subsp. *herba alba*, *Artemisia rutifolia* ve *Artemisia lehmanniana* bitkilerinden izole edilmiştir [176-178]. Chrysanthemolide *Senecio chrysanthemoides* ve *Artemisia lehmanniana* bitkilerden izole edilmiştir [182-183]. Pallensis *Artemisia pallens* bitkisinden izole edilmiştir [184]. 1-Asetilerivanin *Senecio chrysanthemoides*, *Artemisia lehmanniana* ve *Artemisia vestita* bitkilerinden izole edilmiştir [182], [183], [185]. 1α,8α-Dihidroksi-10-*epi*-arbusculin A *Cassina subtropica* bitkisinden [205]. 5,3'-Dihidroksi-6,7,4',5'-tetrametoksiflavon ise *Carhochaete bigelovii*, *Murraya paniculata* ve *Uncarina* sp. bitkilerinden izole edilmiştir [202-204].

Taurin, β -sitosterol, Santonin, 1,10-Epoksispiciformin, 8 α -Hidroksisantamarin, Tamirin, Artemin, Artesin, Germacranolide with an 1,5-ether linkage, 1α-Hidroksi-deasetilirinol- 4α , 5 β -epoksit, Tavulin, 5-Hidroksi-3',4',6,7-tetrametoksiflavon, Cirsilineol ve Umbelliferone daha önce diğer bazı Tanacetum türlerinden izole edilmiştir. Taurin Tanacetum cadmeum subsp. cadmeum [179] bitkisinden, β-sitosterol Tanacetum santolinoides [180] bitkisinden, Tamirin ve Tavulin Tanacetum chiliophyllum var. heimerlei, T. cadmeum subsp. cadmeum, T. polycephalum, T. vulgare, T. densum subsp. eginense, T. praeteritum subsp. praeteritum, T. argenteum subsp. flabellifolium, T. ulutavicum, T. santolina, T. argenteum, T. argyrophyllum var. argyrophyllum, T. ferulaceum ve T. ptarmicaflorum bitkilerinden izole edilmiştir [9], [179], [188], [189], [190], [191], [192], [193], [194], [195], [196], [197], [198]. Bu bileşikler Tanacetum türlerinde sıklıkla rastlanan bilesiklerdir. Santonin Tanacetum vulgare subsp. siculum bitkisinden izole edilmiştir [181]. 1,10-Epoksispiciformin ilk defa Tanacetum ptarmiciflorum ve Tanacetum ferulacum var. latipinnum bitkilerinden izole edilmiştir [186]. 8 α -Hidroksisantamarin *Tanacetum chiliophyllum* var. *heimerlei* bitkisinden izole edilmiştir [187]. Artemin, Artesin ve Umbelliferone *T. cadmeum* subsp. *cadmeum* bitkisinden izole edilmiştir [179]. Germacranolide with an 1,5-ether linkage *T. argyrophyllum* var. *argyrophyllum* bitkisinden izole edilmiştir [9]. 1 α -Hidroksideasetilirinol-4 α ,5 β -epoksit *Tanacetum polycephalum* bitkisinden izole edilmiştir [196]. 5-Hidroksi-3',4',6,7-tetrametoksiflavon *Tanacetum chiliophyllum* var. *oligocephalum* bitkisinden izole edilmiştir [97]. Cirsilineol *Tanacetum sinaicum*, *Tanacetum chiliophyllum* var. *oligocephalum* ve *Tanacetum santolinoides* bitkilerinden izole edilmiştir [72], [97], [201].

Tanacetum balsamita subsp. *balsamitoides* bitkisinin MeOH ekstresinden Chrysanthemolide, Pallensis, 1,10-Epoksispiciformin, Taurin, 1-Asetilerivanin, Tavulin, Tanachin, Deasetil- β -siklopyrethrosin, Cirsimaritin, 5,7,3'-Trihidroksi-6,4',5'trimetoksiflavon, Isofraxidin, 7-Metoksikumarin ve Scopoletin izole edilmiştir. Çizelge 5.1'de TBB bitkisinin MeOH ektresinden izole edilen bileşikler verilmektedir.

TBB bitkisinin etil asetat ve MeOH ekstrelerinden Chrysanthemolide, Pallensis, 1,10-Epoksispiciformin, Taurin, 1-Asetilerivanin, Tavulin ortak izole edilen maddelerdir.

5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon ve 7-Metoksikumarin *Tanacetum* cinsinden ilk defa izole edilmişlerdir. 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon *Artemisia herba-alba*, *Artemisia hispanica*, *Artemisia frigida*, *Artemisia argyri*, *Seriphidium stenocephalum*, *Gardenia sootepensis*, *Gardenia tubifera*, ve *Chrysanthemum sinense* bitkilerinden izole edilmiştir [209-216]. 7-Metoksikumarin *Chamomilla recutita*, *Anthemis mirheydari*, *Matricaria chamomilla* ve *Tagetes lucida* bitkilerinden izole edilmiştir [220-223].

Tanachin, Deasetil-β-siklopyrethrosin, Cirsimaritin, Isofraxidin, ve Scopoletin bileşikleri daha önce *Tanacetum* türlerinden izole edilmişlerdir. Tanachin ve Deasetil-βsiklopyrethrosin *T. cadmeum* subsp. *cadmeum*, *T. vulgare*, *T. argenteum* subsp. *canum* var. *canum*, *T. praeteritum*, *T. argenteum* subsp. *flabellifolium*, *T. argenteum*, *T. densum* subsp. *eginense*, *Tanacetum chiliophyllum* var. *heimerlei*, *T. densum* subsp. *sivasicum*, *T. polycephalum*, *Tanacetum ferulacum*, *T. argyrophyllum* var. *argyrophyllum*, *T. densum* subsp. *amani* ve *T. pseudoachillea* bitkilerinden izole edilmiştir [9], [10], [179], [188], [189], [190], [191], [192], [196], [197], [198], [206], [207]. Bu bileşikler *Tanacetum* türlerinde sıklıkla rastlanan bileşiklerdir. Cirsimaritin *T. chiliophyllum* var. *oligocephalum* ve *Tanacetum cilicium* bitkilerinden [97], [208], Isofraxidin *T. cadmeum* subsp. *cadmeum*, *T. parthenium* ve *T. heterotomum* [217-219] bitkilerinden, Scopoletin *T. cadmeum* subsp. *cadmeum*, *T. ptarmicaeflorum* ve *T. ferulaceum* bitkilerinden [179], [189], [195] izole edilmiştir.

Tanacetum mucroniferum bitkisinin etil asetat ekstresinden Arsanin, 9 α -Asetoksiartecanin, **Mucronolide**, **Ajanolide A epoksit**, α -Amirin, Salvigenin, 5-Hidroksi-3',4',6,7-tetrametoksiflavon, Cirsilineol, Scoparone, Cirsimaritin, Jaceosidin, 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon izole edilmiştir. Çizelge 5.2'de TM bitkisinin etil asetat ekstresinden izole edilen bileşikler verilmektedir.

Mucronolide ve **Ajanolide A epoksit** bileşikleri doğal bir kaynaktan ilk defa tarafımızdan izole edilmiştir. Ajanolide A daha önce *Ajania fruticulosa* bitkisinden izole edilmiştir [232]. Heliangolid yapısındaki seskiterpen laktonlar yüksek anti-tümör aktivite göstermektedir [233]. İzole edilen yeni maddeler heliangolid yapısında ve bitki ektresinin ana bileşenlerini oluşturmaktadırlar. Bu nedenle *Tanacetum mucroniferum* bitkisinin iyi bir anti-tümör kaynağı olacağı öngörülmektedir.

5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon Asteraceae familyasından ilk defa izole edilmiştir. 9α-Asetoksiartecanin *Tanacetum* cinsinden ilk defa izole edilmiştir. 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon Cleomaceae familyasında yer alan *Cleome felina* bitkisinden daha once izole edilmiştir [229]. 9α-Asetoksiartecanin *Achillea clavennae* bitkisinden izole edilmiştir [225].

Arsanin, α -Amirin, Salvigenin, 5-Hidroksi-3',4',6,7-tetrametoksiflavon, Cirsilineol, Scoparone, Cirsimaritin, Jaceosidin daha önce Tanacetum cinsinden izole edilmiştir. Arsanin maddesi Tanacetum annuum [224], α-Amirin T. argenteum subsp. flabellifolium, T. densum subsp. eginense ve T.vulgare [190], [191], [224] bitkilerinden, Salvigenin Tanacetum canescens ve Tanacetum cilicium [96], [208] 5-Hidroksi-3',4',6,7-tetrametoksiflavon bitkilerinden. Τ. chiliophyllum var. oligocephalum [97], Cirsilineol Tanacetum sinaicum, Tanacetum chiliophyllum var. oligocephalum ve Tanacetum santolinoides [72], [97], [201] bitkilerinden, Scoparone T. ptarmicaeflorum, T. ferulaceum ve T. oshanahanii [186], [189], [195], Cirsimaritin T. chiliophyllum var. oligocephalum ve Tanacetum cilicium [97], [208], Jaceosidin ise Tanacetum chiliophyllum var. oligocephalum, Tanacetum santolinoides, T.vulgare, T.

balsamita ve *T. corymbosum* [72], [97], [227], [228] bitkilerinden daha önce izole edilmişlerdir.

Tanacetum mucroniferum bitkisinin MeOH ekstresinden ise $1\alpha,3\beta,10\alpha$ -Trihidroksi-7 $\alpha,11\alpha$ H-germakra-4-en-12-6 α -olide, Ajanolide A epoksit, Mucronolide, Scopoletin, Umbelliferone, Scoparone, 5-Hidroksi-3',4',6,7-tetrametoksiflavon izole edilmiştir. Çizelge 5.2'de TM bitkisinin MeOH ektresinden izole edilen bileşikler verilmektedir.

 1α , 3β , 10α -**Trihidroksi**- 7α , 11α **H-germakra**-4-en-12- 6α -olide doğal bir kaynaktan ilk defa tarafımızdan izole edilmiştir. Scopoletin ve Umbelliferone daha önce *Tanacetum* cinsinden ve pek çok bitkiden izole edilmiştir.

T. mucroniferum bitkisinin etil asetat ve MeOH ekstrelerinden, Ajanolide A epoksit, Mucronolide, Scoparone, 5-Hidroksi-3',4',6,7-tetrametoksiflavon ortak izole edilen bileşiklerdir.

İzole edilen bileşiklerin isimleri	İzole edilen bileşiklerin formülleri	TBB EA Ekstresi	TBB MeOH Ekstresi
	Iormunerr		
1α-Asetoksi-3- <i>epi-</i> erivanin (Yeni)	$C_{17}H_{24}O_5$	1α-Asetoksi-3- <i>epi</i> - erivanin (Yeni)	Tanachin
1α-Asetoksi- 11β(H),13- dihidrodouglanin	$C_{17}H_{24}O_4$	1α-Asetoksi- 11β(H),13- dihidrodouglanin	Deasetil-β- siklopyrethrosin
Taurin	$C_{15}H_{20}O_{3}$	Taurin	Taurin
Tavulin	$C_{15}H_{20}O_4$	Tavulin	Tavulin
Chrysanthemolide	C ₁₇ H ₂₄ O ₅	Chrysanthemolide	Chrysanthemolide
Pallensis	$C_{15}H_{20}O_4$	Pallensis	Pallensis
1-Asetilerivanin	$C_{17}H_{24}O_5$	1-Asetilerivanin	1-Asetilerivanin
1,10- Epoksispiciformin	$C_{15}H_{20}O_5$	1,10- Epoksispiciformin	1,10- Epoksispiciformin
8α-Hidroksisantamarin	$C_{15}H_{20}O_4$	8α- Hidroksisantamarin	Cirsimaritin
Tamirin	$C_{15}H_{18}O_4$	Tamirin	5,7,3'-Trihidroksi- 6,4',5'- trimetoksiflavon
Artemin	$C_{15}H_{22}O_4$	Artemin	7-Metoksikumarin
Artesin	C ₁₅ H ₂₂ O ₃	Artesin	Isofraxidin
Germacranolide with an 1,5-ether linkage	$C_{15}H_{18}O_4$	Germacranolide with an 1,5-ether linkage	Scopoletin

Çizelge 5.1 TBB bitkisinden izole edilen bileşikler

İzole edilen bileşiklerin isimleri	İzole edilen bileşiklerin formülleri	TBB EA Ekstresi	TBB MeOH Ekstresi
1α-Hidroksi- deasetilirinol-4α,5β- epoksit	$C_{15}H_{20}O_5$	1α-Hidroksi-deasetilirinol- 4α,5β-epoksit	
1α,8α-Dihidroksi-10- <i>epi</i> -arbusculin A	$C_{15}H_{20}O_4$	1α,8α-Dihidroksi-10- <i>epi-</i> arbusculin A	
Santonin	$C_{15}H_{18}O_3$	Santonin	
Tanachin	$C_{15}H_{20}O_4$	β-sitosterol	
Deasetil-β- cyclopyrethrosin	C ₁₅ H ₂₀ O ₄	Circilineol	
5-Hidroksi-3',4',6,7- tetrametoksiflavon	$C_{19}H_{18}O_7$	5,3'-Dihidroksi-6,7,4',5'- tetrametoksiflavon	
Circilineol	C ₁₈ H ₁₅ O ₇	Umbelliferone	
5,3'-Dihidroksi- 6,7,4',5'- tetrametoksiflavon	$C_{19}H_{18}O_8$	5-Hidroksi-3',4',6,7- tetrametoksiflavon	
Umbelliferone	$C_9H_6O_3$		
Cirsimaritin	$C_{17}H_{14}O_6$		
5,7,3'-Trihidroksi- 6,4',5'-trimetoksiflavon	$C_{18}H_{16}O_8$		
7-Metoksikumarin	$C_{10}H_{18}O_3$		
Isofraxidin	$C_{11}H_{10}O_5$		
Scopoletin	$C_{10}H_8O_4$		
β-Sitosterol	C ₂₉ H ₅₀ O		

Çizelge 5.1 TBB bitkisinden izole edilen bileşikler (devamı)

İzole edilen bileşiklerin isimleri	İzole edilen bileşiklerin formülleri	TM EA Ekstresi	TM MeOH Ekstresi
Mucronolide (Yeni)	$C_{17}H_{24}O_5$	Mucronolide (Yeni)	Mucronolide (Yeni)
Ajanolide A epoksit (Yeni)	C ₁₇ H ₂₄ O ₅	Ajanolide A epoksit (Yeni)	Ajanolide A epoksit (Yeni)
1α,3β,10α-Trihidroksi- 7α,11αH-germakra-4- en-12-6α-olide (Yeni)	C ₁₅ H ₂₄ O ₅	9α-Asetoksiartecanin	1α,3β,10α-Trihidroksi- 7α,11αH-germakra-4- en-12-6α-olide (Yeni)
9α-Asetoksiartecanin	$C_{17}H_{20}O_6$	Arsanin	5-Hidroksi-3',4',6,7- tetrametoksiflavon
Arsanin	C ₁₅ H ₂₂ O ₄	Salvigenin	Scopoletin
5,3',4'-Trihidroksi- 3,6,7,5'- tetrametoksiflavon	C ₁₉ H ₁₈ O ₉	5,3',4'-Trihidroksi- 3,6,7,5'- tetrametoksiflavon	Umbelliferone
Salvigenin	$C_{18}H_{16}O_{6}$	5-Hidroksi-3',4',6,7- tetrametoksiflavon	Scoparone
5-Hidroksi-3',4',6,7- tetrametoksiflavon	$C_{19}H_{18}O_7$	Cirsilineol	
Cirsilineol	C ₁₈ H ₁₆ O ₇	Cirsimaritin	
Cirsimaritin	$C_{17}H_{14}O_6$	Jaceosidin	
Jaceosidin	$C_{17}H_{14}O_{7}$	Scoparone	
Scoparone	$C_{11}H_{10}O_4$	α-Amirin	
α-Amirin	C ₃₀ H ₅₀ O		
Scopoletin	$C_{10}H_8O_4$		

Çizelge 5.2 TM bitkisinden izole edilen bileşikler

TBB etil asetat ekstresinin sekonder metabolit içeriğine bakıldığında; 16 seskiterpen lakton, 3 flavon, 1 kumarin ve 1 steroid olmak üzere 21 molekülün yapısı spektral yöntemlerle aydınlatılmıştır. Seskiterpen laktonlardan 11 molekülün ödesmanolid ve 5 molekülün germakranolid yapıda olduğu belirlenmiştir.

TM etil asetat ekstresinin sekonder metabolit içeriğine bakıldığında; 4 seskiterpen lakton, 6 flavon, 1 kumarin ve 1 triterpen olmak üzere 12 molekülün yapısı spektral yöntemlerle aydınlatılmıştır. Seskiterpen laktonlardan 2 molekülün heliangolid, 1 molekülün gayanolid ve 1 molekülün ödesmanolid yapıda olduğu belirlenmiştir.

Her iki bitkinin etil asetat ekstrelerinden toplam 33 molekülün yapısı aydınlatılmıştır. Bu maddeler içinde 5-Hidroksi-3',4',6,7-tetrametoksiflavon ve Cirsilineol her iki ekstreden ortak izole edilmiştir. Her iki ekstrenin içermiş olduğu sekonder metabolit benzerlik oranı %6 civarında görülmektedir. TBB bitkisinin etil asetat ekstresinde ağırlıklı olarak ödesmanolid yapıda seskiterpen laktonlar görülürken, TM bitkisinde ise heliangolid yapıda seskiterpen laktonlar bulunmaktadır. Her iki bitkinin etil asetat ekstrelerini karşılaştırdığımızda sekonder metabolit içeriklerinin % 94 civarında birbirinden farklı görülmektedir. Çizelge 5.3'te TBB ve TM bitkilerinin etil asetat ekstrelerinden izole edilen bileşiklerin karşılaştırılması verilmektedir.

TBB EA Ekstresi	TM EA Ekstresi	Ortak izole edilen maddeler
1α-Asetoksi-3 <i>-epi</i> -erivanin (Yeni)	Mucronolide (Yeni)	5-Hidroksi-3',4',6,7- tetrametoksiflavon
1α-Asetoksi-11β(H),13- dihidrodouglanin	Ajanolide A epoksit (Yeni)	Cirsilineol
Taurin	9α-Asetoksiartecanin	
Tavulin	Arsanin	
Chrysanthemolide	Salvigenin	

Çizelge 5.3 TBB ve TM bitkilerinin etil asetat ekstrelerinden izole edilen bileşiklerin karşılaştırılması

TBB EA Ekstresi	TM EA Ekstresi	Ortak izole edilen bileşikler
1α-Hidroksi-deasetilirinol- 4α,5β-epoksit	5,3',4'-Trihidroksi-3,6,7,5'- tetramethoxyflavone	
Germacranolide with an 1,5-ether linkage	5-Hidroksi-3',4',6,7- tetrametoksiflavon	
1,10-Epoksispiciformin	Cirsilineol	
8α-Hidroksisantamarin	Cirsimaritin	
Tamirin	Jaceosidin	
Artemin	Scoparone	
Artesin	α-Amirin	
1-Asetilerivanin		
Pallensis		
1α,8α-Dihidroksi-10 <i>-epi-</i> arbusculin A		
Santonin		
5-Hidroksi-3',4',6,7- tetrametoksiflavon		
Circilineol		
5,3'-Dihidroksi-6,7,4',5'- tetrametoksiflavon		
Umbelliferone		
β-Sitosterol		

Çizelge 5.3 TBB ve TM bitkilerinin etil asetat ekstrelerinden izole edilen bileşiklerin karşılaştırılması (devamı) TBB MeOH ekstresinden 8 seskiterpen lakton, 2 flavon ve 3 kumarin olmak üzere 13 molekülün yapısı spektral yöntemlerle aydınlatılmıştır. Seskiterpen laktonlardan 5 molekülün ödesmanolid ve 3 molekülün germakranolid yapıda olduğu belirlenmiştir.

TM MeOH ekstresinin sekonder metabolit içeriğine bakıldığında, 3 seskiterpen lakton, 1 flavon ve 3 kumarin olmak üzere 7 molekülün yapısı spektral yöntemlerle aydınlatılmıştır. Seskiterpen laktonlardan 2 molekülün heliangolid ve 1 molekülün germakranolid yapıda olduğu belirlenmiştir.

Her iki bitkinin MeOH ekstrelerinden toplam 20 molekülün yapısı aydınlatılmıştır. Bu maddeler içerisinde Scopoletin her iki ekstreden ortak izole edilmiştir. Her iki ekstrenin içermiş olduğu sekonder metabolit benzerlik oranı %5 civarında görülmektedir. TBB bitkisinin MeOH ekstresinde ağırlıklı olarak ödesmanolid yapıda seskiterpen laktonlar görülürken, TM bitkisinde ise heliangolid yapıda seskiterpen laktonlar bulunmaktadır. Her iki bitkinin MeOH ekstrelerini karşılaştırdığımızda sekonder metabolit içerikleri % 95 civarında birbirinde farklı görülmektedir. Çizelge 5.4'te TBB ve TM bitkilerinin etil MeOH ekstrelerinden izole edilen maddelerin karşılaştırılması verilmektedir.

Her iki bitkiden 23 tane seskiterpen lakton, 11 tane flavonoid, 7 tane kumarin, 1 triterpen ve 1 steroid olmak üzere toplam 43 molekülün yapısı spektral yöntemlerle aydınlatılmıştır. Bu moleküller içinde 5-Hidroksi-3',4',6,7-tetrametoksiflavon, Cirsilineol, Umbelliferone, Cirsimaritin ve Scopoletin her iki bitkiden ortak izole edilmiştir. Her iki bitkinin içermiş olduğu sekonder metabolit benzerlik oranı % 11.6 civarında görülmektedir.

Tanacetum balsamita ssp. *balsamitoides* bitkisi David'in teşhis anahtarında A ve C gruplarında, *Tanacetum mucroniferum* bitkisi ise A grubunda yer almaktadır [32]. Her iki bitkinin A grubunda yer alması benzer taksonomik özellikler gösterdiğini ifade etmektedir. Bu nedenle sekonder metabolit içeriklerinin % 11.6 benzerlik göstermesi kemo-taksonomik açıdan bu durumu doğrulamaktadır. Ancak, *Tanacetum balsamita* ssp. *balsamitoides* bitkisinin C grubunda da yer alması nedeniyle bir takım taksonomik özelliklerin farklı olduğunu işaret etmektedir. Her iki bitkinin yüksek oranda farklı sekonder metabolit içeriğine sahip olduğu bu farklılığı kemo-taksonomik açıdan ortaya koymaktadır.

TBB MeOH Ekstresi	TM MeOH Ekstresi	Ortak izole edilen bileşikler
Tanachin	Mucronolide (Yeni)	Scopoletin
Deasetil-β- siklopyrethrosin	Ajanolide A epoksit (Yeni)	
Taurin	1α,3β,10α-Trihidroksi- 7α,11αH-germakra-4-en- 12-6α-olide (Yeni)	
Tavulin	5-Hidroksi-3',4',6,7- tetrametoksiflavon	
Chrysanthemolide	Scopoletin	
Pallensis	Umbelliferone	
1-Asetilerivanin	Scoparone	
1,10-Epoksispiciformin		
Cirsimaritin		
5,7,3'-Trihidroksi-6,4',5'- trimetoksiflavon		
7-Metoksikumarin		
Isofraxidin		
Scopoletin		

Çizelge 5.4 TBB ve TM bitkilerinin MeOH ekstrelerinden izole edilen bileşiklerin karşılaştırılması

Sonuç olarak;

- *Tanacetum balsamita* subsp. *balsamitoides* bitkisinin etil asetat ekstresinden bir adet yeni ödesmanolid yapıda seskiterpen lakton 1α-Asetoksi-3-epi-erivanin ilk defa tarafımızdan izole edilmiştir.
- Tanacetum balsamita subsp. balsamitoides bitkisinin etil asetat ekstresinden 1α-Asetoksi-11β(H),13-dihidrodouglanin, Chrysanthemolide, Pallensis, 1-Asetilerivanin, 5,3'-Dihidroksi-6,7,4',5'-tetrametoksiflavon, 1α,8α-Dihidroksi-10-epi-arbusculin A Tanacetum cinsinden ilk defa izole edilmiştir.
- *Tanacetum balsamita* subsp. *balsamitoides* bitkisinin MeOH ekstresinden 5,7,3'-Trihidroksi-6,4',5'-trimetoksiflavon ve 7-Metoksikumarin *Tanacetum* cinsinden ilk defa izole edilmiştir.
- *Tanacetum mucroniferum* bitkisinin etil asetat ekstresinden iki adet yeni heliangolid yapıda seskiterpen lakton **Mucronolide**, **Ajanolide A epoksit** ilk defa tarafımızdan izole edilmiştir. Heliangolid yapıdaki seskiterpen laktonların yüksek anti-tümor aktivite göstermesi nedeniyle izole edilen bu yeni maddelerinde yüksek anti-tümör aktiviteye sahip olacağı öngörülmektedir.
- *Tanacetum mucroniferum* bitkisinin etil asetat ekstresinden 5,3',4'-Trihidroksi-3,6,7,5'-tetrametoksiflavon Asteraceae familyasında ilk defa izole edilmiştir.*Tanacetum mucroniferum* bitkisinin etil asetat ekstresinden 9α-Asetoksiartecanin *Tanacetum* cinsinden ilk defa izole edilmiştir.
- *Tanacetum mucroniferum* bitkisinin MeOH ekstresinden bir adet yeni germakranolid yapıda seskiterpen lakton 1α,3β,10α-Trihidroksi-7α,11αHgermakra-4-en-12-6α-olide ilk defa tarafımızdan izole edilmiştir.
- Tanacetum mucroniferum bitkisinin uçucu yağı yüksek oranda asetilkolinesteraz inhibisyonu göstermiştir. Bitkinin yüksek asetilkolinesteraz inhibisyonuna sahip olması, düşük toksisitede yüksek insektisit aktivite gösterme olasılığını kuvvetlendirmektedir.
- *Tanacetum mucroniferum* bitkisinin uçucu yağı, çok düşük PRAP antioksidan aktivite göstermiştir. *Tanacetum mucroniferum* bitkisinin uçucu yağı, hücre hatlarına karşı herhangi bir sitotoksik aktivite göstermemiştir.
KAYNAKLAR

- [1] Baykal, T., (1997). "Doğal Kaynaklı Bileşiklerin Biyolojik Aktivite Yönünden Değerlendirilmesi ve Tedavideki Yeri", GE, 46: 21-22.
- [2] Dülger, B., Ceylan, M., Alıtsaos, M. ve Uğurlu, E., (1999). "Artemisia absinthium L. (Pelin)'un Antimikrobiyal Aktivitesi", Tr. J. of Botany, 23(3): 377-384.
- [3] Tadeg, H., Mohammed, E., Asres, K. ve Mariam, T.G., (2005).
 "Antimicrobial Activities of Some Selected Traditional Ethiopian Medicinal Plants Used in Treatment of Skin Disorders", J. of Ethnapharmacol., 100(1): 168-175.
- [4] Bourgaud, F., Gravot, A., Milesi, S. ve Gontier, E., (2001). "Production of Plant Secondary Metabolites; a Historical Perspective", Plant Sci., 161: 839-851.
- [5] Verpoorte, R., Van Der Heijden, R., Ten Hoopen, H.J.G. ve Memelink, J., (1999). "Metabolic Engineering of Plant Secondary Metabolite Pathways for the Fine Chemical", Biotec.Lett., 21: 467-479.
- [6] Charwood, B.V., Rhodes, M.J.C., (1990). "Secondary Products from Plant Tissue Culture", ISNB: 0-19-857717-6. Clarendon Press., New York.
- [7] Ramachandra Rao, R.S. ve Ravishankar, G.A., (2002)."Plant Cell Cultures: Chemical Factories of Secondary Metbolites", Biotech. Adv., (20): 101-153.
- [8] Picman, A.A., (1986)., "Biological Activities of Sesquiterpene Lactone" Biochem. Systematic and Ecology, 11(4): 321-327.
- [9] Gören, N., Jakupovic, J. ve Topal, S., (1990). "Sesquiterpene Lactones with Antibacterial Activity from *T. argyrophyllum* var. *argyrophyllum*", Phytochemistry, 29(5): 1467-1469.
- [10] Gören, N., Ulubelen, A., Bozok-Johanson, C. ve Tahtasakal, E., (1993). "Sesquiterpene Lactones from *Tanacetum densum* subsp. *amani*", Phytochemistry, 33(5): 1157-1159.
- [11] Gören, N., Tahtasakal, E., Pezzuto, J.M., Cordell, G.A., Schwarz, B. ve Proksch, P., (1994). "Sesquiterpene Lactones from *Tanacetum argenteum*", Phytochemistry, 36(1): 389-392.

- Schearer, W.R., (1984). "Components of Oil of Tansy (*Tanacetum vulgare*) that Repel Colorada Potato Beetles (*Leptinotarsa decemlineata*)", J. Nat. Prod., 47(6): 964-969.
- [13] Thomas, O. O., (1989). "Antibacterial properties of the leaf and flower oils of *Tanacetum macrophyllum*", Fitoterapia, 60: 327-328.
- [14] Thiery, D., Gabel, B., Suchy, V., Marison-Poll, F., Hradasky, P. ve Farkas, P., (1992). "Floral Volatiles of *Tanacetum vulgare* L. Attractive to Lobesia botrana Den. Et Schiff. Females", J. Chem. Ecol., 18(5): 693-700.
- [15] Asımgil, A., (1993). "Şifalı Bitkiler", Timas Yayınları, İstanbul.
- [16] British Herbal Medicine Assoaciation, (1996)."British Herbal Pharmacopoeia", Published by the British Herbal Medicine Assoation and Completely Revised by its Scientific Committee 4th edition, 81-82.
- [17] Kalodera, Z., Papeljnjak, S., Balzevic, N. ve Petrak, T., (1997)."Chemical composition and antimicrobial activity of *Tanacetum parthenium* oil", Pharmazie, 52(11): 885-886.
- [18] Bruneton, J., (1999). "Pharmacognosy Phytochemistry Medical Plant", Second edition, Hampshire Intercept Press., Paris.
- [19] Urzua, A., (2003). "Antibacterial Activity of Fresh Flower Heads of *Chrysanthemum coronarium*", Fitoterapia, 74: 606-608.
- [20] Juteau, F., Jerkovic, I., Masotti, V., Milos, M., Mastelic, J., Bessiere, J.M. ve Viano, J., (2003). "Composition and Antimicrobial Activity of The Essential Oil of *Artemisia absinthium* from Crotia and France", Planta Med., 69: 158-159.
- [21] Charwood, B.V., Rhodes, M.J.C., (1990). "Secondary Products from Plant Tissue Culture", ISNB: 0-19-857717-6. Clarendon Press., New York.
- [22] Ramachandra Rao, R. S. ve Ravishankar, G. A., (2002). "Plant Cell Cultures: Chemical Factories of Secondary Metbolites", Biotech. Adv., 20: 101-153.
- [23] D'Amelio F. Sr., Roton B., (1999). "Botanicals A Phytochemical Desk Reference", CRC Pres,. New York.
- [24] Newall C. A., Anderson L. A., Phillipson J. D., (1996). "Herbal Medicine;A Guide for health care professionals", 2. Edition, London Pharmeceutical Pres, London.
- [25] Nottingham, S.F. ve Hardie, J., (1993). "Flight Behivior of the Black Bean Aphid, *Aphis fabae*, and the Cabbage Aphid, *Brevicoryne brassicae*, in Host and Non-host Plant Odour", Physiol.Ebtomol., 18:389-394.
- [26] Poucher, W. A., (1974). "Perfumer Cosmetics and Soaps", 7th edition, Chapman and Hall London Halsted press Book John Wiley & Sons, New York.
- [27] Reclu M., (1925). "Guide De L'Herboriste", Paris Libraire J.-B. Bailliere et fils 19, Rue Hautefeuille, Paris.
- [28] Thiery, D. ve Gabel, B., (1994)."Non-Host Plant Odor (*Tanacetum vulgare*; Asteraceae) Affets the Reproductive Beheavior of *Lobesia botrana* Den. Et Schiff (Lepidoptera: Tortricidae)", Journal of Insect Behavior, 7(2): 149-157.

- [29] Gören N., Arda N., Çalışkan Z., (2002). "Chemical Characterization and Biological Activities of the Genus *Tanacetum* (Compositae)", Studies in Natural Products Chemistry, Vol. 27 Edited by Atta-ur Rahman, Elsevier Science Press.
- [30] Güenther, E., (1948). "The Essential Oils", 5. edition, D. Van Nostard Company Inc., Princeton, New Jersey.
- [31] Spitzer, C. ve Steelink, C., (1966). "Sesquiterpene Lactones in Chemotaxonomy", Phytochemistry, 5: 357-365.
- [32] Davis, P.H., Matthews, V.A., Kupicha, F. K. ve Parris, B.S., (1975). "Flora of Turkey and East Aegan Islands", Fifth edition, Edinburgh at the University Press, Edinburgh.
- [33] Heywood, V.H., (1978). "Flowering Plants of the World", Oxford University Press, London.
- [34] Akman, Y., (1998). "Bitki Biyoteknolojisine Giriş" 8. Baskı, Palme Yayınları, Ankara.
- [35] Duke, J.A., (1987). "Handbook of Medicinal Herbs", CRC Press, Florida.
- [36] Hendriks, H., Elst, D.J.D.V.D., Putten F.M.S.V. ve Bos, R., (1990)."The Essential Oil of Dutch Tansy (*Tanacetum vulgare* L.)", J. Essential Oil Research, 2: 155-162.
- [37] Groom, N., (1997)."The New Perfume Handbook", Blackie Academic Press, 325, London.
- [38] Güven, A., Yürekli, A. K., (1991)."Fırat Havzasında Yayılış Gösteren *Tanacetum* Türlerinin Ekonomik Potansiyeli", 6-8 Ekim 1986 Fırat Havzası Tıbbi Endüstriyel Bitkileri Sempozyumu, Editörler: Baltepe., Babaç M. T., Evren H.251-259, Elazığ.
- [39] Sezik, E., Yeşilada, E., Tabata, M., Honda, G., Takaishi, Y., Fujita, T., Tanaka, T. ve Takeda, Y., (1997). "Traditional medicine in Turkey VIII. Folk medicine in east anatolia; Erzurum, Erzíncan, Ağri, Kars, Iğdır provinces", Economic Botany, 51(3): 195-211.
- [40] Dewick, P.M., (2001). "Medicinal Natural Products 'A Biosynthetic Approach", Second Edition, John Wiley & Sons Ltd. Baffins Lane, Chichester.
- [41] Breitmaier, E.,(2006). "Terpenes: Importance, General Structure and Biosynthesis", WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- [42] Yurkanis, P., (1998). "Organic Chemistry", Second Edition, Prentice Hall, Chapter 23, Santa Barbara.
- [43] Teisseire, P.J., (1994). "Chimie des Substances Odorantes", Tercüme:Peter A. Cadby, VCH Publishers, New York.
- [44] Croteau, R., Kutchan, M.T. ve Lewis, G.N., (2000). "Natural Products (Secondary Metabolities)", The Royal Society of Chemistry, Cambridge.
- [45] Seto, H. ve Kuzuyama, T., (2003). "Diversity of The Biosynthesis of The Isoprene Units", Natural Product Reports, 20: 171-183.

- [46] Geissman, T. A. ve Crout, D. H. G., (1969). "Organic Chemistry of Secondary Plant Metabolism", California: Freeman, Cooper and Company, California.
- [47] Fischer, N. H., (1986)."The Function of Mono and Sesquiterpenes as Plant Germination and Growth Regulators, In: The Science of Allelopathy", Derleyen: Putnam A., Shih Tang C., John Wiley and Sons, New York.
- [48] Halfon, B., (2005). Natural Products Lecture Notes, Boğaziçi University Press, İstanbul
- [49] Rodriguez, E., Towers, G.H.N. ve Mitchell, J. C., (1976). "Biological Activities of Sesquiterpene Lactones", Phytochemistry, 15: 1573-1580.
- [50] Spitzer, C. ve Steelink, C., (1966). "Sesquiterpene Lactones in Chemotaxonomy", Phytochemistry, 5: 357-365.
- [51] Zdero, C. ve Bohlmann, F., (1990). "Systematics and evolution within the Compositae, seen with the eyes of a chemist", Plant Systematics and Evolution, 171: 1-14.
- [52] Staneva, J.D., Todorova, M.N. ve Evstatieva, L.N., (2008). "Sesquiterpene lactones as chemotaxonomic markers in genus *Anthemis*", Phytochemistry, 69: 607-618.
- [53] Zidorn, C., (2008). "Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe *Cichorieae* of the *Asteraceae*", Phytochemistry, 69: 2270-2296.
- [54] Klein, C.D., Bachelier, A. ve Mayer, R., (2006). "Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme Mur A", Bioorganic & Medicinal Chemistry Letters, 16: 5605-5609.
- [55] Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A. ve Brielmann, H.L., (2006). "Natural Products from Plants", 2.nd Edition, CRC Press, Boca Raton, Florida.
- [56] Boiteau, P., Pasich, B. ve Ratsimamanga, A.R., (1964)."Les Triterpenoids". Paris, Gauthier-Villards, pp. 3, 32, 184, 469.
- [57] Budzikiewicz H., Wilson J.M. ve Djerassi C., (1964). "Structural elucidation of natural products by mass", J. Amer. Chem. Soc., 85:3688.
- [58] Simmonds, M.S.J., (2001)."Importance of Flavonoids in Insect-Plant Interactions Feeding and Oviposition", Phytochemistry, 56: 245-252.
- [59] Korkina, L.G. ve Afanas'ev, I.B., (1997). "Antioxidant and Chelating Properties of Flavonoids", Adv Pharmacol, 38:151–63.
- [60] Shoskes, D.A., (1998). "Effect of Bioflavonoids Quercetin and Curcumin on Ischemic Renal Injury: A New Class of Renoprotective Agents", Transplantation, 66:147–52.
- [61] Mabry, T. J., Markham, K.R. ve Thomas, M.B., (1970). "The Systematic Identification of Flavonoids", Springer Verlag, Berlin.

- [62] Mabry T.J. ve Ulubelen, A., (1980). "Chemistry and utilization of phenylpropanoids including flavonoids, coumarins, and lignans" J. Agric. and Food Chemistry, 28(2):188-196.
- [63] Çakar, B., (2010). "*Ferulago idaea* ve *Ferulago trojana* Bitkilerindeki Sekonder metabolitlerin İzolasyonu, Antioksidan ve Antikolinesteraz Aktivitelerinin İncelenmesi", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- [64] El-Khatib, R.M. ve Nassr, L.A.E., (2007)."Reactivity Trends of The Base Hydrolysis of Coumarin and Thiocoumarin an Binary Aqueous Methanol Mixtures at Different Temperature", SpectrochimicaActa, 67:643-648.
- [65] Boğa, M., (2005). "Kumarin Türevi Yeni 14:4 Taç Eter Bileşiklerinin Sentezi ve Yapılarının Aydınlatılması", Yüksek Lisans Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- [66] Polatoğlu, K., (2009). "Tanacetum chiliophyllum (Fisch. & Mey.) Schultz Bip. Türü Varyeteleri Üzerinde Karşılaştırmalı Fitokimyasal ve Biyolojik Araştırmalar", Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- [67] Farzadfar, S., Zarinkamar, F., Behmanesh, M. ve Hojati, M., (2016). "Magnesium and manganese interactively modulate parthenolide accumulation and the antioxidant defense system in the leaves of *Tanacetum parthenium*", J Plant Physiol., 202: 10-20.
- [68] Dissanayake, A.A., Bejcek, B.E., Zhang, C.R. ve Nair, M.G., (2016). "Sesquiterpenoid Lactones in *Tanacetum huronense* Inhibit Human Glioblastoma Cell Proliferation", Nat Prod Commun., 11(5):579-82.
- [69] Bhat, G., Masood, A., Ganai, B.A., Hamza, B., Ganie, S., Shafi, T., Idris, A., Shawl, A.S. ve Tantry, M.A., (2016). "Gracilone, a new sesquiterpene lactone from *Tanacetum gracile* (Tansies)", Nat Prod Res., 27: 1-8.
- [70] Duan, D., Zhang, J., Yao, J., Liu, Y. ve Fang, J., (2016). "Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells", J Biol Chem., 291(19):10021-31.
- [71] Sharma, N., Kumar, C., Dutt, P., Gupta, S., Satti, N.K., Chandra, S., Kitchlu, S., Paul, S., Vishwakarma, R.A. ve Verma, M.K., (2016). "Isolation, Chemical Fingerprinting and Simultaneous Quantification of Four Compounds from *Tanacetum gracile* Using a Validated HPLC-ESI-QTOF-Mass Spectrometry Method", J Chromatogr Sci., 54(5):796-804.
- [72] Marzouk, M.M., Mohamed T.A., Elkhateeb, A., El-toumy, S.A. ve Hegazy, F.E.M., (2016). "Phenolics from *Tanacetum sinaicum* (Fresen.) Delile ex Bremer & Humphries (Asteraceae)", Biochemical Systematics and Ecology,65:143–146.
- [73] Gecibeşler, İ.H., Koçak, A. ve Demirtaş, İ., (2016). "Biological activities, phenolic profiles and essential oil components of *Tanacetum cilicicum* (BOISS.) GRIERS", Nat. Prod. Res., 8:1-6.
- [74] Sharma, N., Kumar, C., Dutt, P., Gupta, S., Satti, N.K., Chandra, S, Kitchlu, S., Paul, S, Vishwakarma, R.A. ve Verma, M.K., (2016). "Isolation, Chemical

Fingerprinting and Simultaneous Quantification of Four Compounds from Tanacetum gracile Using a Validated HPLC-ESI-QTOF-Mass Spectrometry Method", J. Chromatogr. Sci.,54(5):796-804.

- [75] Ciesielczuk, T., Poluszyńska, J., Rosik-Dulewska, C., Sporek, M. ve Lenkiewicz, M., (2016). "Uses of weeds as an economical alternative to processed wood biomass and fossil fuels", Ecological Engineering, 95:485–491.
- [76] Minkina, M. T., Mandzhieva, S. S., Chaplygin, V. A., Bauer, T. V., Burachevskaya, M.V., Nevidomskaya, D.G., Sushkova, S.N., Sherstnev, A.K., Zamulina, I.V., (2016). "Content and distribution of heavy metals in herbaceous plants under the effect of industrial aerosol emissions", Journal of Geochemical Exploration,(baskida).
- [77] Stanković, N., Mihajilov-Krstev, T.,Zlatković, B., Stankov-Jovanović, V., Mitić, V., Jovana Jović, J., Čomić, L., Kocić, B. ve Bernstein, N., (2016).
 "Antibacterial and Antioxidant Activity of Traditional Medicinal Plants from the Balkan Peninsula", NJAS - Wageningen Journal of Life Sciences, 78: 21–28.
- [78] Orhan, I.E., Tosun, F., Gülpınar, A.R., Kartal, M., Duran, A., Mihoglugil, F. ve Akalgan, D., (2015). "LC–MS quantification of parthenolide and cholinesterase inhibitory potential of selected *Tanacetum* L. (Emend. Briq.) taxa", Phytochemistry Letters, 11: 347–352.
- [79] Tsai, T.Y., Lou, S.L., Cheng, K.S., Wong, K. L., Wang, M.L., Su, T.H., Chan, P. ve Leung, Y.M., (2015). "Repressed Ca(2+) clearance in parthenolide-treated murine brain bEND.3 endothelial cells", Eur J Pharmacol., 769:280-6.
- [80] De, D., Khullar, G. ve Handa, S., (2015). "Performance of a commercially available plant allergen series in the assessment of suspected occupational contact dermatitis to plants in north Indian patients", Indian J Dermatol Venereol Leprol., 81(4):376-9.
- [81] Majdi, M., Abdollahi, M.R. ve Maroufi, A., (2015). "Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in *Tanacetum parthenium*", Plant Cell Rep., 34(11):1909-18.
- [82] Sinha, S., Amin, H., Nayak, D., Bhatnagar, M., Kacker, P., Chakraborty, S., Kitchlu, S., Vishwakarma, R., Goswami, A. ve Ghosal, S., (2015). "Assessment of microtubule depolymerization property of flavonoids isolated from *Tanacetum gracile* in breast cancer cells by biochemical and molecular docking approach", Chem Biol Interact., 239:1-11.
- [83] Álvarez, A.L., Habtemariam, S., Abdel Moneim, A. E., Melón, S., Dalton, K.P. ve Francisco Parra, F., (2015)."A spiroketal-enol ether derivative from *Tanacetum vulgare* selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in Vero cells", Antiviral Research, 119: 8–18.
- [84] Di Cesare Mannelli, L., Tenci, B., Zanardelli, M., Maidecchi, A., Lugli, A., Mattoli, L. ve Ghelardini, C., (2015). "Widespread pain reliever profile of a flower extract of *Tanacetum parthenium*", Phytomedicine, 22(7-8):752-8.
- [85] Karimian, H.,Fadaeinasab, M., Moghadamtousi, S.Z., Hajrezaei, M., Zahedifard, M., Razavi, M., Safi, S.Z., Mohan, S., Khalifa, S.A., El-Seedi, H.R., Abdulla, M.A., Ali, H.M. ve Noordin, M.I., (2015). "The Chemopreventive Effect

of *Tanacetum polycephalum* Against LA7-Induced Breast Cancer in Rats and the Apoptotic Effect of a Cytotoxic Sesquiterpene Lactone in MCF7 Cells: A Bioassay-Guided Approach", Cell Physiol Biochem., 36(3):988-1003.

- [86] Uehara, A., Akiyama, S. ve Iwashina, T., (2015)."Foliar flavonoids from *Tanacetum vulgare* var. *boreale* and their geographical variation", Nat Prod Commun., 10(3):40-35.
- [87] Zhao, Y., Chen, S.J., Wang, J.C., Niu, H.X., Jia, Q.Q., Chen, X.W., Du, X.Y., Lu, L, Huang, B., Zhang, Q., Chen, Y. ve Long, H.B., (2015). "Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-κB-dependent mechanism", Oxid Med Cell Longev., 9(3):40-58.
- [88] Suraweera, D.D., Groom, T. ve Nicolas, M.E., (2015). "Impact of Elevated Atmospheric Carbon Dioxide and Water Deficit on Flower Development and Pyrethrin Accumulation in Pyrethrum", Procedia Environmental Sciences, 29: 5-6.
- [89] Negrín, G., Rubio, S., Marrero, M.T., Quintana, J., Eiroa, J.L., Triana, J. ve Estévez, F., (2015). "The eudesmanolide tanapsin from *Tanacetum oshanahanii* and its acetate induce cell death in human tumor cells through a mechanism dependent on reactive oxygen species", Phytomedicine., 22(3):85-93.
- [90] Agatonovic-Kustrin, S., Babazadeh Ortakand, D., Morton, D.W. ve Yusof, A.P., (2015). "Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts", J Chromatogr A., 1385:103-10.
- [91] Zhang, X., Fan, C., Xiao, Y. ve Mao, X., (2014)."Anti-inflammatory and antiosteoclastogenic activities of parthenolide on human periodontal ligament cells in vitro", Evid Based Complement Alternat Med., 5(4):60-97.
- [92] Sofiabadi, M., Azhdari-Zarmehri, H, Naderi, F, Ghalandari-Shamami, M., Sonboli, A. ve Haghparast, A., (2014). "Effects of Hydroalcoholic Extract of *Tanacetum sonbolii* (Asteraceae) on Pain-related Behaviors during Formalin Test in Mice", Basic Clin Neurosci., 5(2):162-8.
- [93] Naghibi, F., Khalaj, A., Mosaddegh, M., Malekmohamadi, M. ve Hamzeloo-Moghadam, M., (2014). "Cytotoxic activity evaluation of some medicinal plants, selected from Iranian traditional medicine Pharmacopoeia to treat cancer and related disorders", J Ethnopharmacol.,155(1):230-9.
- [94] Rabito, M.F., Britta, E.A., Pelegrini, B.L., Scariot, D.B., Almeida, M.B., Nixdorf, S.L., Nakamura, C.V. ve Ferreira, I.C., (2014). "In vitro and in vivo antileishmania activity of sesquiterpene lactone-rich dichloromethane fraction obtained from *Tanacetum parthenium* (L.) Schultz-Bip.", Exp Parasitol.,143:18-23.
- [95] Galeotti, N., Maidecchi, A., Mattoli, L., Burico, M. ve Ghelardini, C., (2014). "St. John's Wort seed and feverfew flower extracts relieve painful diabetic neuropathy in a rat model of diabetes", Fitoterapia.,92:23-33.
- [96] Noori, S., Hassan, Z.M., Yaghmaei, B. ve Dolatkhah, M., (2013). "Antitumor and immunomodulatory effects of salvigenin on tumor bearing mice", Cell Immunol., 286(1-2):16-21.

- [97] Polatoğlu, K., Karakoç, O.C., Demirci, F., Gökçe, A. ve Gören, N., (2013). "Chemistry and biological activities of *Tanacetum chiliophyllum* var. *oligocephalum* extracts", J AOAC Int., 96(6):1222-7.
- [98] Rodriguez, K.J., Wong, H.K.,Oddos, T., Southall, M.,Frei, B. ve Kaur, S., (2013). "A purified Feverfew extract protects from oxidative damage by inducing DNA repair in skin cells via a PI3-kinase-dependent Nrf2/ARE pathway", Journal of Dermatological Science, 72(3): 304-310.
- [99] Materazzi, S., Benemei, S., Fusi, C., Gualdani, R., De Siena, G., Vastani, N., Andersson, D.A., Trevisan, G., Moncelli, M.R., Wei, X., Dussor, G., Pollastro, F., Patacchini, R., Appendino, G., Geppetti, P. ve Nassini, R., (2013). "Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel", Pain., 154(12):2750-8.
- [100] Könczöl, A., Müller, J., Földes, E., Béni, Z., Végh, K., Kéry, A. ve Balogh, G.T., (2013). "Applicability of a blood-brain barrier specific artificial membrane permeability assay at the early stage of natural product-based CNS drug discovery", J. Nat. Prod., 76(4):655-63.
- [101] Grdiša, M., Babić, S., Periša, M., Carović-Stanko, K., Kolak, I., Liber Z., Jug-Dujaković, M. ve Satovic, Z., (2013). "Chemical diversity of the natural populations of Dalmatian pyrethrum (*Tanacetum cinerariifolium* (TREVIR.) SCH.BIP.) in Croatia", Chem. Biodivers., 10(3):460-72.
- [102] Salapovic, H., Geier, J. ve Reznicek, G., (2013). "Quantification of Sesquiterpene Lactones in Asteraceae Plant Extracts: Evaluation of their Allergenic Potential.", Sci Pharm., 81(3):807-18.
- [103] Ramirez, A. M., Saillard, N., Yang, T., Franssen, M.C., Bouwmeester, H. J. ve Jongsma, M.A., (2013), "Biosynthesis of sesquiterpene lactones in pyrethrum (*Tanacetum cinerariifolium*)", PLoS One., 8(5):e65030.
- [104] Ghantous, A., Sinjab, A., Herceg, Z. ve Darwiche, N., (2013).
 "Parthenolide: from plant shoots to cancer roots", Drug Discov Today.,18(17-18):894-905.
- [105] Studzińska-Sroka, E., Znajdek-Awizeń, P. ve Gawron-Gzella, A., (2013). "Studies on the antimigraine action of Feverfew (*Tanacetum parthenium* (L.) Sch. Bip", Wiad Lek., 66:195-9.
- [106] Wyrębska, A., Szymański, J., Gach, K., Piekielna, J., Koszuk, J., Janecki, T. ve Janecka, A., (2013). "Apoptosis-mediated cytotoxic effects of parthenolide and the new synthetic analog MZ-6 on two breast cancer cell lines", Mol Biol Rep., 40(2):1655-63.
- [107] Majdi, M., Charnikhova, T. ve Bouwmeester, H., (2013). "Genetical, developmental and spatial factors influencing parthenolide and its precursor costunolide in feverfew (*Tanacetum parthenium* L. Schulz Bip.)", Industrial Crops and Products, 47: 270–276.
- [108] Triana, J., Eiroa, J.L., Morales, M., Pérez, F.J.,Brouard, I., Marrero, M.T., Estévez, S., Quintana, J.,Estévez, F.,Castillo, Q.A. ve León, F., (2013). "A chemotaxonomic study of endemic species of genus *Tanacetum* from the Canary Islands", Phytochemistry, 92: 87–104.

- [109] Cogo, J., Caleare Ade, O., Ueda-Nakamura, T., Filho, B.P., Ferreira, I.C. ve Nakamura, C.V., (2012). "Trypanocidal activity of guaianolide obtained from *Tanacetum parthenium* (L.) Schultz-Bip. and its combinational effect with benznidazole", Phytomedicine., 20(1):59-66.
- [110] Fischedick, J. T., Standiford, M., Johnson, D. A., De Vos, R. C., Todorović, S., Banjanac, T., Verpoorte, R. ve Johnson, J.A., (2012). "Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from *Tanacetum parthenium*", Planta Med., 78(16):1725-30.
- [111] Rosselli,S., Bruno, M., Raimondo, F. M., Spadaro, V., Varol, M., Koparal, A.T. ve Maggio, A., (2012). "Cytotoxic Effect of Eudesmanolides Isolated from Flowers of *Tanacetum vulgare* ssp. *siculum*", Molecules, 17: 8186-8195.
- [112] Mathema, V.B., Koh, Y.S., Thakuri, B.C. ve Sillanpää, M., (2012). "Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and antiinflammatory activities", Inflammation., 35(2):560-5.
- [113] Vafaee, F., Zangiabadi, N., Pour, F.M., Dehghanian, F., Asadi-Shekaari, M. ve Afshar, H.K., (2012). "Neuroprotective effects of the immunomodulatory drug Setarud on cerebral ischemia in male rats", Neural Regeneration, 7(27): 2085-2091.
- [114] Wegiera, M., Smolarz, H.D., Jedruch, M., Korczak, M. ve Koproń, K., (2012). "Cytotoxic effect of some medicinal plants from Asteraceae family on J-45.01 leukemic cell line--pilot study", Acta Pol Pharm., 69(2):263-8.
- [115] Smirnova, G., Samoilova, Z., Muzyka, N. ve Oktyabrsky, O., (2012). "Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of *Escherichia coli*", J Appl Microbiol., 113(1):192-9.
- [116] Salama, R., Sattayasai, J., Gande, A.K., Sattayasai, N., Davis, M. ve Lattmann, E., (2012). "Identification and evaluation of agents isolated from traditionally used herbs against *Ophiophagus hannah venom*", Drug Discov Ther., 6(1):18-23.
- [117] Yang, T., Stoopen, G., Wiegers, G., Mao, J., Wang, C., Dicke, M. ve Jongsma, M.A., (2012). "Pyrethrins protect pyrethrum leaves against attack by western flower thrips, Frankliniella occidentalis", J Chem Ecol., 38(4):370-7.
- [118] Aviram, A., Tsoukias, N.M., Melnick, S.J., Resek, A.P. ve Ramachandran, C., (2012). "Inhibition of nitric oxide synthesis in mouse macrophage cells by feverfew supercritical extract", Phytother Res., 26(4):541-5.
- [119] Schwarz, D., Bloom, D., Castro, R., Pagán, O.R. ve Jiménez-Rivera, C.A., (2011). "Parthenolide Blocks Cocaine's Effect on Spontaneous Firing Activity of Dopaminergic Neurons in the Ventral Tegmental Area", Curr Neuropharmacol.,9(1):17-20.
- [120] Alvarez, A.L., Habtemariam, S., Juan-Badaturuge, M., Jackson, C. ve Parra, F., (2011). "In vitro anti HSV-1 and HSV-2 activity of *Tanacetum vulgare* extracts and isolated compounds: an approach to their mechanisms of action", Phytother Res., 25(2):296-301.
- [121] Hong, J., Aoyama, S., Hirasawa, N., Zee, O., Ishihara, K., Hashida, C., Kimura, M., Seyama, T. ve Ohuchi K., (2011). "Suppression of intracellular calcium

levels and inhibition of degranulation in RBL-2H3 mast cells by the sesquiterpene lactone parthenolide", Planta Med., 77(3):252-6.

- [122] Polatoğlu, K., Karakoç, Ö.C., Gökçe, A. ve Gören, N., (2011) "Insecticidal activity of *Tanacetum chiliophyllum* (Fisch. & Mey.) var. *monocephalum* grierson extracts and a new sesquiterpene lactone", Phytochemistry Letters, 4(4): 432–435.
- [123] Li, J., Yin, L.Y., Jongsma,M.A. ve Wang, C.Y., (2011). "Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (*Tanacetum cinerariifolium*)", Industrial Crops and Products,34(3):1543–1549.
- [124] Da Silva, B.P., Cortez, D.A., Violin, T.Y., Dias Filho, B. P., Nakamura, C.V., Ueda-Nakamura, T. ve Ferreira, I.C., (2010). "Antileishmanial activity of a guaianolide from *Tanacetum parthenium* (L.) Schultz Bip.", Parasitology International, 59(4):643–646.
- [125] Paulsen, E., Christensen, L.P., Fretté, X.C. ve Andersen, K.E., (2010). "Patch test reactivity to feverfew-containing creams in feverfew-allergic patients", Contact Dermatitis.,63(3):146-50.
- [126] Pelizzaro-Rocha, K.J., Tiuman, T.S., Izumi, E., Ueda-Nakamura, T., Dias Filho, B.P. ve Nakamura, C.V., (2010). "Synergistic effects of parthenolide and benznidazole on *Trypanosoma cruzi*", Phytomedicine., 18(1):36-9.
- [127] Ansari,M., Rafiee, Kh.,Yasa, N.,Vardasbi, S., Naimi, S.M. ve Nowrouzi, A., (2010). "Measurement of melatonin in alcoholic and hot water extracts of *Tanacetum parthenium*, *Tripleurospermum disciforme* and *Viola odorata*", Daru.,18(3): 173–178.
- [128] Lesiak, K., Koprowska, K., Zalesna, I., Nejc, D.,Düchler, M. ve Czyz, M., (2010). "Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro", Melanoma Res.,20(1):21-34.
- [129] Adedipe, F. ve Park, Y.L., (2010). "Visual and olfactory preference of *Harmonia axyridis* (Coleoptera: Coccinellidae) adults to various companion plants", Journal of Asia-Pacific Entomology, 13(4): 319–323.
- [130] Jäger, A.K., Krydsfeldt, K. ve Rasmussen, H.B., (2009). "Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from *Tanacetum parthenium*", Phytother Res., 23(11):1642-4.
- [131] Onozato, T., Nakamura, C.V., Cortez, D.A., Dias Filho, B.P. ve Ueda-Nakamura, T., (2009). "*Tanacetum vulgare*: antiherpes virus activity of crude extract and the purified compound parthenolide", Phytother Res.,23(6):791-6.
- [132] Sur, R., Martin, K., Liebel, F., Lyte, P., Shapiro, S. ve Southall, M., (2009). "Anti-inflammatory activity of parthenolide-depleted Feverfew (*Tanacetum parthenium*)", Inflammopharmacology.17(1):42-9.
- [133] Marongiu, B., Piras, A., Porcedda, S., Tuveri, E., Laconi, S., Deidda, D. ve Maxia, A., (2009). "Chemical and biological comparisons on supercritical extracts of *Tanacetum cinerariifolium* (Trevir) Sch. Bip. with three related species of chrysanthemums of Sardinia (Italy)", Nat Prod Res.,23(2):190-9.

- [134] Ohguchi, K., Ito, M., Yokoyama, K., Iinuma, M., Itoh, T., Nozawa, Y. ve Akao, Y., (2009). "Effects of sesquiterpene lactones on melanogenesis in mouse B16 melanoma cells", Biol Pharm Bull., 32(2):308-10.
- [135] Weng, S.X., Sui, M. H., Chen, S., Wang, J.A., Xu, G., Ma, J., Shan, J. ve Fang, L., (2009). "Parthenolide inhibits proliferation of vascular smooth muscle cells through induction of G0/G1 phase cell cycle arrest", J Zhejiang Univ Sci B.,10(7):528-35.
- [136] Kulyyasov, A.T., Edil'baeva, T.T., Turdybekov, K.M., Raldugin, V.A., Shakirov, M.M. ve Adekenov, S.M., (1999). "Chemical transformations of Ajanolide A", Chemistry of Natural Compounds, 35(1):55-60.
- [137] Soltan, M. M. ve Zaki, A. K., (2009). "Antiviral screening of forty-two Egyptian medicinal plants", J Ethnopharmacol., 126(1):102-7.
- [138] Juan-Badaturuge, M., Habtemariam, S., Jackson, C. ve Thomas, M. J., (2009). "Antioxidant principles of *Tanacetum vulgare* L. aerial parts", Nat. Prod. Commun., 4(11):1561-4.
- [139] Marete, E.N., Jacquier, J.C. ve Dolores O'Riordan, D., (2009). "Effects of extraction temperature on the phenolic and parthenolide contents, and colour of aqueous feverfew (*Tanacetum parthenium*) extracts", Food Chemistry,117(2): 226-231.
- [140] Greger, H., (1969). "Flavonoide und Systematik der Anthemideae (Astreaceae)" Naturwissenschaften, 56(9): 467-468.
- [141] Bohlmann, F., Zdero, C. ve Schwarz, H.,(1975). "Über einen neuen sesquiterpentyp aus *Tanacetum balsamita* L.ssp. *balsamitoides*", Chemische Berichte, 108(5): 1369-1372.
- [142] Perez-Alonso, M. J., Velasco-Negueruela, A. ve Burzaco, A., (1992). "Tanacetum balsamita L.: a medicinal plan from Guadalajara (Spain)", International Symposium on Medicinal and Aromatic Plants, XXIII IHC, 306: 188-193.
- [143] Surmaghi,M.H.S., Aynehchi, Y., Amin, G.H. ve Mahmoodi, Z., (1992). "Survey of Iranian Plants for Saponins Alkaloids Flavonoids and Tannins", J.Sch. of Pharm.Tehran Unive, 2(3): 61-70.
- [144] Kubo, A. ve Kubo, I., (1995). "Antimicrobial Agents from *Tanacetum balsamita*", Journal of Natural Products, 58(10): 1565-1569.
- [145] Kubo, I., Jamalamadaka, V., Kamikawa, T., Takahashi, K., Tabata, K. ve Kusumi, T., (1996). "Absolute Stereochemistry of Tanabalin, an Insect Antifeedant Clerodane from *Tanacetum balsamita*", Cheminform, 27(43):441-442.
- [146] Başer, K.H.C., Demirci, B., Tabanca, N., Özek, T. ve Gören, N., (2001). "Composition of the essential oils of *Tanacetum armenum* (DC.) Schultz Bip., *T. balsamita* L., *T. chiliophyllum* (Fisch.& Mey.) Schultz Bip. var. *chiliophyllum* and *T. haradjani* (Rech. fil.) Grierson and the enantiomeric distribution of camphor and carvone", Flavour and Fragrance Journal, 16: 195-200.
- [147] Başer, K. H. C., (2002). "Aromatic biodiversity among the flowering plant taxa of Turkey", Pure Appl. Chem., 74(4): 527–545.

- [148] Monfared, A., Davarani, S.S.H., Roustaeian, A.A.H. ve Masoudi,S., (2002). "Composition of the essential oil of *Tanacetum balsamita* subsp. *balsamitoides* from Iran", Journal of Essential Oil Research January, 14(1): 1-2.
- [149] Nickavar, B., Amin, G. ve Mehregan, N., (2003). "Quercetine, a Major Flavonol Aglycon from *Tanacetum balsamita* L.", Iranian Journal of Pharmaceutical Research, 2(4): 249-250.
- [150] Jaimand, K. ve Rezaee, M. B., (2005). "Chemical constituents of essential oils from *Tanacetum balsamita* L. ssp. *balsamitoides* (Schultz-Bip.) Grierson. from Iran", The Journal of Essential Oil Research, 17(5): 565-566.
- [151] Özcan, L.,(2006)."Bazı *Tanacetum* L. Türlerinde Antimikrobiyal Aktivite ve Minimum İnhibitör Konsantrasyon (Mik.) Tayini", Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- [152] Hasanpouraghdam, M.B., Tabatabaei, S.J., Nazemiyeh, H. ve Aflatouni, A., (2008). "N and K nutrition levels affect growth and essential oil content of costmary (*Tanacetum balsamita* L.)", International Journal of Food, Agriculture and Environment, 6(2): 150-154.
- [153] Bagci, E., Kursat, M., Kocak, A. ve Gur, S.,(2008). "Composition and Antimicrobial Activity of the Essential Oils of *Tanacetum balsamita* L. subsp. *balsamita* and *T. chiliophyllum* (Fisch. et Mey.) Schultz Bip. var. *chiliophyllum* (Asteraceae) from Turkey", Jeobp, 11(5): 476-484.
- [154] Lotfipour, F., Nazemiyeh, H., Azad, F.F., Garaei, N., Arami, S., Talat, S., Sadegpour, F. ve Hasanpour, R., (2008). "Evaluation of Antibacterial activities of some medicinal plants from North-West Iran Iranian", Journal of Basic Medical Sciences, 11(2): 80-85.
- [155] Hasanpouraghdam, M.B., Tabatabaei, S.J., Nazemieh, H. ve Aflatouni, A., (2008). "Effects of Different Concentrations of Nutrient Solution on Vegetative Grwoth and Essential Oil of Costmary (*Tanacetum balsamita* L.)", Journal of Agricultural Science (University of Tabriz), 18(1): 27-38.
- [156] Williams, C.A., Harborne, J.B. ve Eagles, J.,(2009)."Variations in lipophilic and polar flavonoids in the genus *Tanacetum*", Phytochemistry, 52: 1301-1306.
- [157] Karaca, M., Özbek, H., Akkan, H.A., Tütüncü, M., Özgökce, F., Him, A. ve Bakir, B., (2009). "Anti-inflammatory activities of diethyl ether extracts of *Tanacetum balsamita* and *Helichrysum plicatum* in Rats", Asian Journal of Animal and Veterinary Advances, 4(6): 320-325.
- [158] Yousefzadi, M., Ebrahimi, S. N., Sonboli, A., Miraghasi, F., Ghiasi, S., Arman, M. ve Mosaffa, N., (2009). "Cytotoxicity, antimicrobial activity and composition of essential oil from *Tanacetum balsamita* L. subsp. *balsamita*", Natural Product Communications, 4(1): 119-122.
- [159] Kalamouni, C.E., Raynaud, C. ve Talou, T., (2009). "Screening of antioxidant and antimicrobial activities of Midi-Pyrenées aromatic plants", Chemine Technologija, 3(52): ISSN 1392-1231.
- [160] Nikoloval, M. ve Dzhurmanski, A., (2009)."Evaluation of Free Radical Scavenging Capacity of Extracts from Cultivated Plants", Biotechnology & Biotechnological Equipment, 23(2): ISNN:1310-2818.

- [161] Hasanpouraghdam, M.B., Tabatabaei, S.J., Nazemiyeh, H., Vojodi, L. ve Aazami, M.A., (2009). "Volatile oil constituents of alecost [*Tanacetum balsamita* L. ssp. *balsamitoides* (Schultz-Bip.)] growing wild in North-West of Iran", Herba Polonica, 55(1): 53-59.
- [162] Uslu, B.A., İlhan, F., Gülyuzf, F., Karaca, M. ve Öner, A.C., (2009). "Assessment of the Histopathological Changes Occurring in the Testis of the Mice Suffering from Experimental Diabetes Induced Using Alloxan", Journal of Animal and Veterinary Advances, 8(10):1929-1935, ISSN:1680-5593.
- [163] Tütüncü, M., Özbek, H., Karaca, M., Akkan, H.A., Bayram, I., Cengiz, N., Özgökce, F. ve Him, A., (2010). "The effects of diethylether extract of *Helicrhysum plicatum* subsp. *plicatum* and *Tanacetum balsamita* subsp. *balsamitoides* on the Acute Liver Toxicity in Rats", Asian Journal of Animal and Veterinary Adbances, 5(7): 465-471.
- [164] Ercevit, T, P., Onganer, A.N., Kursat, M. ve Kırbağ, S., (2011). "In Vitro Evaluation of Antimicrobial Activities of Some Plant Extracts Used in Traditional Medicine", Turkish Journal of Science & Technology, 6(2): 81-86.
- [165] Öztürk, F. ve Ölçücü, C.,(2011). "Ethnobotanical Features of some Plants in the District of Şemdinli (Hakkari-Turkey)", International Journal of Academic Research, 3(1): 117-121.
- [166] Nobakht, A., Mansoub, N. V. ve Nezhady, M. A. M., (2012). "Effect of *Melissa officinalis* L., *Tanacetum balsamita* L. and *Ziziphora clinopodioides* L. on performance, blood biochemical and immunity parameters of laying hen", Asian Journal of Animal and Veterinary Advances, 7(1): 74-79.
- [167] Erdoğan, M.K., (2012)."*Tanacetum balsamita* L. subsp. *balsamita* Bitki Ekstrelerinin Biyolojik Aktivitelerinin İncelenmesi", Yüksek Lisans Tezi, Bingöl Üniversitesi Fen Bilimleri Enstitüsü, Bingöl.
- [168] Inceer, H., Ayaz, S. H., Güler, H.S., Aksu, N. ve Ozcan, M., (2012). "Karyological studies of some representatives of *Tanacetum L.* (Anthemideae-Asteraceae) from north-east Anatolia", Plant Syst. Evol., 298: 827-834.
- [169] Ertaş, M., Kaval, İ, Sadullahoğlu, C., Özdemir, K., Öğün, E., Behçet, L. ve Orhan, E., (2012). "Doğu Anadolu Bölgesinde (Van-Hakkari) Tıbbi Amaçlı Kullanılan Bazı Bitki Türlerinin Antimikrobiyal Aktivitesi", Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi/ Journal of The Institute ofNatural & Applied Sciences, 17(2): 104-107.
- [170] Polatoğlu, K., Şen, A., Kandemir, A. ve Gören, N., (2012). "Essential Oil Composition and DPPH Scavenging Activity of Endemic *Tanacetum mucroniferum* Hub. –Mor. & Grierson from Turkey", Journal of Essential Oil Bearing Plants, 15(1): 66 –74.
- [171] Orhan, I.E., Tosun, F.,Gülpınar, A.R., Kartal, M., Duran, A., Mihoglugil, F. ve Akalgan, D., (2015). "LC–MS quantification of parthenolide and cholinesterase inhibitory potential of selected *Tanacetum* L. (Emend. Briq.) taxa", Phytochemistry, 11: 347-352.
- [172] Ellman, G. L., Courtney, K. D., Andres Jr., V., Featherstone, R. M. (1961). "A new and rapid colorimetric determination of acetylcholinesterase activity", Biochemical Pharmacology, 7, 88–95.

- [173] Falcioni, G., Fedeli, D., Tiano, L., Calzuola, I., Mancinelli, L., Marsili, V., Gianfranceschi, G., 2002. "Antioxidant activity of wheat sprouts extracts *in vitro*: inhibition of DNA oxidative damage". Journal of Food Science, 67, 2918–2922.
- [174] Mosmann, T. (1983). "Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays", Journal of Immunological Methods, 65, 55–63.
- [175] Nalbantsoy, A., Ayyıldız Tamis, D., Akgun, I. H., Ozturk Yalcın, T., Deliloğlu Gürhan, I., Karaboz, I. (2008). "Antimicrobial and Cytotoxic Activities of *Zingiber officinalis* Extracts", Journal of Pharmaceutical Sciences, FABAD, 33, 76–85.
- [176] Marco, J. A., (1989). "Sesquiterpene lactones from *Artemisia herba-alba* subsp. *herba-alba*" Phytochemistry, 28(11): 3121-3126.
- [177] Tan,R. X.,(1992)."Sesquiterpenes from *Artemisia rutifolia*" Phytochemistry, 31(7): 2534-2536.
- [178] Sham'yanov, I. D., Tashkhodzhaev, B., Mukhamatkhanova, R.F. ve Antipin, M. Yu., (2000). "1-acetoxy-11β(H),13-Dihydrodouglanin, a new eudesmanolide from Artemisia lehmanniana", Chemistry of Natural Compounds, 36(4): 369-372.
- [179] Susurluk, H., Çalışkan, Z., Gürkan, O., Kırmızıgül, S. ve Gören, N., (2007). "Antifeedant activity of some *Tanacetum* species and bioassay guided isolation of the secondary metabolites of *Tanacetum cadmeum* ssp. *cadmium* (Compositae)",Industrial Crops and Products, 26: 220-228.
- [180] El-Shazly, A., Dorai, G. ve Wink, M., (2002). "Composition and Antimicrobial Activity of Essential Oil and Hexane-Ether Extract of *Tanacetum santolinoides* (DC.) Feinbr. and Fertig", Zeitschrift für Naturforschung C., 57(7-8): 620-623.
- [181] Rosselli, S., Bruno, M., Raimondo, F.M., Spadaro, V., Varol, M., Koparal, A.T. ve Maggio, A., (2012). "Cytotoxic Effect of Eudesmanolides Isolated from Flowers of *Tanacetum vulgare ssp. siculum*", Molecules, 17: 8186-8195.
- [182] Mengi, N., Taneja, S.C., Mahajan, V.P. ve Mathela, C.S.,(1991). "Eudesmanolides from *Senecio chrysanthemoides*" Phytochemistry, 30(7): 2329-2330.
- [183] Mukhamatkhanova,R.F., Turgunov, K.K., Tashkhodzhaev, B., Sham'yanov, I. D. ve Saidkhodzhaev, A.I., (2004). "Eudesmanolides from Artemisia lehmanniana, Crysatal and molecular structures of 1α-acetoxy-4α-hydroxy-5,7α,6,11β(H)-eudesm-2,3-en-6,12-olide and 1α-acetoxy-3α-hydroxy-5,7α,6,11β(H)-eudesm-4,15-en-6,12-olide", Chemistry of Natural Compounds, 40(6): 557-560.
- [184] Ruikar, A. D., Jadhav, R. B., Phalgune, U. D., Rojatkar, S.R., Puranik, V. G. ve Deshpande, N.R., (2011). "Phytochemical Investigation of *Artemisia pallens*", Helvetica Chimica Acta, 97(1): 73-77.
- [185] Tian, S.H., Chai, X.Y., Zan, K., Zeng, K.W. ve Tu, P.F., (2013)."Three new eudesmane sesquiterpenes from *Artemisia vestita*", Chinese Chemical letters, 24: 797-800.

- [186] Triana, J., Eiroa, J.L., Morales, M., Pérez, F.J., Brouard, I., Marrero, M.T., Estévez, S., Quintana, J., Estévez, F., Castillo, Q.A. ve León, F., (2013). "A chemotaxonomic study of endemic species of genus *Tanacetum* from the Canary Islands", Phytochemistry, 92: 87-104.
- [187] Gören, N., Tahtasakal, E. ve Arda, N., (1994). "A further investigation on *Tanacetum chiliophyllum* var. *heimerlei*", Turkish Journal of Chemistry, 18: 296.
- [188] Gören, N., Johansson, C.B., Jakupovic, J., Lin, L.J., Shieh, H.L., Cordells, G.A. ve Çelik, N., (1992). "Sesquiterpene lactones with antibacterial activity from *Tanacetum densum* subsp. *sivasicum*", Phytochemistry, 31(1): 101-104.
- [189] Gonzalez, A. G., Barrera, J. B., Mendez, J. T., Sanchezs, M. L. ve Martinez, J.L.E., (1992). "Sesquiterpene lactones and other constituents of *Tanacetum* species", Phytochemistry, 31(5): 1821-1822.
- [190] Gören, N., Tahtasakal, E., Krawiec, M. ve Watson, W.H., (1996). "A guaianolide from *Tanacetum argenteum* subsp. *flabellifolium*", Phytochemistry, 42(3): 757-760.
- [191] Gören, N. ve Tahtasakal, E., (1994)."Constituents of *Tanacetum densum* subsp. *eginense*", Phytochemistry, 36(5): 1281-1282.
- [192] Gören, N. ve Tahtasakal, E., (1993). "Sesquiterpenes of *Tanacetum chiliophyllum* var. *heimerlei*", Phytochemistry, 34(4): 1071-1073.
- [193] Gören, N., Tahtasakal, E., Pezzuto, J. M., Cordell, G. A., Schwarz, B. ve Proksch, P., (1994). "Sesquiterpene lactones from *Tanacetum argenteum*", Phytochemistry, 56(2): 389-392.
- [194] Gören, N., Woerdenbag, H.J. ve Johansson, C.B., (1996). "Cytotoxic and Antibacterial Activities of Sesquiterpene Lactones Isolated from *Tanacetum praeteritum* subsp. *praeteritum*", Planta Medica, 62: 419-422.
- [195] Gonzalez, A. G., Barrera, J. B., Mendez, J.T., Sanchez, M.P. ve Martinez, J.L.E., (1990). "Sesquiterpene lactones from *Tanacetum ferulaceum*", Phytochemistry, 29(7): 2339-2341.
- [196] Rustaiyan, A., Zare, K., Habibi, Z. ve Hashemi, M., (1990). "Germacranolides from *Tanacetum polycephalum*", Phytochemistry, 29(9): 3022-3023.
- [197] Sanz, J. F. ve Marco, J.A., (1991). "NMR studies of Tatridin A and some related sesquiterpene lactones from *Tanacetum vulgare*", Journal of Natural Products, 54(2): 591-596.
- [198] Belyaev, N. F., Zopal'skaya-Dovnar, G. M. ve Adekenov, S.M., (1996). "Comparative chromatographic study of the sesquiterpenes of some *Tanacetum* species", Chemistry of Natural Compounds, 32(6): 866.
- [199] Uchio Y., (1978), "Isolation and Structural Determination of Vulgarone A and B, Two Novel Sesquiterpene Ketones from *Chrysanthemum vulgare*." Tetrahedron, 34, 2893-2899.
- [200] Sanz, J. F., Falco, E. ve Marco, J. A., (1990). "Further new sesquiterpene lactones from *Artemisia herba-alba* subsp. *valentine*", Journal of Natural Products, 53(4): 940-945.

- [201] Mosharrafa, S.A.M., Mansour, R.M.A., Abou-Zaid, M. ve Saleh, N.A.M., (1994). "Some biologically active flavonoids from Egyptian members of the Compositae", Bull.Chem.Soc.Ethiop., 8(1): 9-13.
- [202] Meurer, B. ve Mabry, T.J., (1987)."6-methoxylated flavones from *Carphochaete bigelovii*", Journal of Natural Products, 50(4): 775-776.
- [203] Kinoshita, T. ve Firman, K., (1996). "Highly oxygenated flavonoids from *Murraya paniculata*", Phytochemistry, 42(4): 1207-1210.
- [204] Yamazaki, K., Iwashina, T., Kitajima, J., Gamou, Y., Yoshida, A. ve Tannowa, T., (2007). "External and internal flavonoids from Madagascarian Uncarina species (Pedaliaceae)", Biochemical Systematics and Ecology, 35: 743-749.
- [205] Jakupovic, J., Lehmann, L., Bohlmann, F., King, R.M. ve Robinson, H.,(1988).
 "Sesquiterpene lactones and other constituents from *Cassina*, *Actinobole* and *Anaxeton* Species", Phytochemistry, 27(12): 3831-3839.
- [206] Gören, N. ve Tahtasakal, E.,(1997). "Sesquiterpenoids from *Tanacetum argenteum* subsp. *canum* var. *canum*", Phytochemistry, 45(1): 107-109.
- [207] Yunusov, A.I., Abdullaev, N.D., Kasymov, Sh.Z. ve Sidyakin, G.P., (1976). "Tanachin-a new sesquiterpene lactone from *Tanacetum pseudoachillea*", Chemistry of Natural Compounds, 2: 63.
- [208] Öksüz, S., (1990). "Sesquiterpenoids and other constituents from *Tanacetum cilicium*", Phytochemistry, 29(3): 887-890.
- [209] Saleh, N.A.M., El-Negoumy, S.I. ve Abou-Zaid, M.M., (1987). "Flavonoids of Artemisia judaica, Artemisia monosperma and Artemisia herba-alba", Phytochemistry, 6(11):3059-3064.
- [210] Marco, J.A., Barbera, O., Rodriguez, S., Domingo, C. ve Adell, J., (1988). "Flavonoids and other phenolics from *Artemisia hispanica*", Phytochemistry, 27(10): 3155-3159.
- [211] Long, L.Y. ve Mabry, T.J., (1981). "Two methylated flavones from *Artemisia frigida*", Phytochemistry, 20: 309-311.
- [212] Shafiqa, N., Riaza, N., Ahmedab, S., Ashrafc, M., Ejazd, S.A., Ahmede, I., Saleema, M., Touseefa, M.I., Tareenf, R.B. ve Jabbar, A., (2013). "Bioactive phenolics from *Seriphidium stenocephalum*", Journal of Asian Natural Products Research, 15(3): 286-293.
- [213] Nguyen, M.T.T., Awale, S., Tezuka, Y., Ueda, J., Tran, Q.L. ve Kadota, S., (2006). "Xanthine oxidase inhibitors from the flowers of *Chrysanthemum sinense*", Planta Med., 72: 46-51.
- [214] Rukachaisirikul, V., Naovanit, S.A., Taylor, W. C., Bubb, W.A. ve Dampawan, P., (1998). "A sesquiterpene from *Gardenia sootepensis*", Phytochemistry, 48(1): 197-200.
- [215] Reutrakul, V., Krachangchaeng, C., Tuchinda, P., Pohmakotr, M., Jaipetch, T., Yoosook, C., Kasisit, J., Sophasan, S., Sujaritd, K. ve Santisuk, T., (2004).
 "Cytotoxic and anti-HIV-1 constituents from leaves and twigs of *Gardenia tubifera*", Tetrahedron, 60: 1517-1523.

- [216] Seo, J. M., Kang, H. M., Son, K. H., Kim, J. H., Lee, C.W., Kim, H. M., Chang, S.I. ve Kwon, B.M., (2003). "Antitumor activity of flavones isolated from *Artemisia argyi*", Planta Med., 69: 218-222.
- [217] Çalışkan, Z., Gören, N. ve Watson, W.H., (1994). "Isolation and structures of eudesmanolides from *Tanacetum cadmeum* ssp. *cadmium*", Journal of Chemical Crystallography, 34(5): 307-310.
- [218] Kisiel, W. ve Stojakowska, A., (1997). "A sesquiterpene coumarin ether from transformed roots of *Tanacetum parthenium*", Phytochemistry, 46(3): 515-516.
- [219] Gören, N., Ulubelen, A. ve Öksüz, S., (1988). "A sesquiterpene-coumarin ether and acetylenic compound from *Tanacetum heterotomum*", Phytochemistry, 27(2): 1527-1529.
- [220] Paulsen, E., Otkjær, A. ve Andersen, K.E., (2010). "The coumarin herniarin as a sensitizer in German chamomile [*Chamomilla recutita* (L.) Rauschert, Compositae]", Contact Dermatitis, 62: 338-342.
- [221] Jassbi, A. R., Firuzi, O., Miri, R., Salhei, S., Zare, S., Zare, M., Masroorbabanari, M., Chandran, J.N., Schneider, B. ve Baldwin, I.T., (2016). "Cytotoxic activity and chemical constituents of *Anthemis mirheydari*", Pharmaceutical Biology, 54(10): 2044-2049.
- [222] Ahmad, A. ve Misra, L.N., (1997). "Isolation of herniarin and other constituents from *Matricaria chamomilla* flowers", International Journal of Pharmacognosy, 35(2): 121-125.
- [223] Cespedes, C. L., Avila, J. G., Martinez, A., Serrato, B., Mugica, J.C.C. ve Garciglia, R.S., (2006). "Antifungal and Antibacterial Activities of Mexican Tarragon (*Tagetes lucida*)", J. Agric. Food Chem., 54: 3521-3527.
- [224] Barrero, A.F., Sanchez, J.F., Barren, A. ve Barrero, A.R., (1992). "Biomi-metic cyclizations of germacranolide from *Tanacetum annuum*", Phytochemistry, 31(1): 332-335.
- [225] Trifunovic, S., Vajs, V., J uranic, Z., Zizak, Z., Tesevic, V., Macura, S. ve Milosavljevic, S., (2006). "Cytotoxic constituents of Achillea clavennae from Montenegro", Phytochemistry, 67: 887-893.
- [226] Mahmoud, A.A., Ahmed, A.A., Linuma, M. ve Tanaka, T., (1994). "2,3secogermacranolides and germacranolides from *Pyrethrum santolionoides*", Phytochemistry, 36(2):393-398.
- [227] Wilkomirski, B. ve Kucharska, E., (1992)."Triterpene chemotypes of some Polish populations of *Tanacetum vulgare*", Phytochemistry, 31(11): 3915-3916.
- [228] Ivancheva, S., Cherneva, J., Stancheva, B., (1998). "External flavonoid aglycones in genus *Tanacetum* (Asteraceae)", Progress in Botanical Research, 227-230.
- [229] Wollenwebera, E., Valant-Vetscherab, K. M. ve Roitmanc, J.N., (2007). "Chemodiversity Studies on Exudate Flavonoids of Cleomaceae species (Brassicales)", Natural Product Communications, 2(10): 997-1002.
- [230] Perry, N. S., Houghton, P. J., Theobald, A., Jenner, P. ve Perry, E. K., (2000). "In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by *Salvia*

lavandulaefolia Essential Oil and Constituent Terpenes", Journal of Pharmacy and Pharmacology, 52(7): 895-902.

- [231] Lopez, M. D. ve Pascual-Villalobos, M. J., (2010). "Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control", Industrial Crops and Products, 31: 284–288.
- [232] Adekenov, S.M., Kulyjasov, A. T., Raldugin, V.A., Bagryanskaya, I. Y., Gatilov, Y.V. ve Shakirov, M.M., (1998). "Ajanolide A, a new germacranolide from *Ajania fruticulosa*" Russian Chemical Bulletin., 47(1): 169-172.
- [233] Takahashi, T., Eto, H., Ichimura, T. ve Murae, T., (1979). "Hiyodorilactones D, E, and F, New Cytotoxic Sesquiterpene Lactones from *Eupatorium sachalinense* MAKINO", Chemical and Pharmaceutical Bulletin, 27(10): 2539-2343.

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı	:Hüseyin SERVİ
Doğum Tarihi ve Yeri	:05.01.1984-Bakırköy
Yabancı Dili	:İngilizce
E-posta	:servi@hotmail.com.tr

ÖĞRENİM DURUMU

Derece	Alan	Okul/Üniversite	Mezuniyet Yılı
Y. Lisans	Biyoloji	Ankara Üniversitesi	2010
Lisans	Biyoloji	Uludağ Üniversitesi	2007
Lise	Sayısal	Orhan Cemal Fersoy	2002

İŞ TECRÜBESİ

Yıl	Firma/Kurum	Görevi
2016	Kemerburgaz Üniversitesi	Öğretim Görevlisi

YAYINLARI

Makale

1. Servi, H., Akata, I. and Çetin, B. (2010). "Macrofungal Diversity of Bolu Abant Nature Park (Turkey)". African Journal of Biotechnology, 9(24): 3622-3628.

2. Polatoğlu, K., **Servi, H**., Yücel, Y.Y. and Nalbantsoy, A. (2015)." Cytotoxicity and Acetylcholinesterase inhibitory and PRAP activities of the essential oils of selected *Tanacetum* L. species" Nat. Volatiles & Essent. Oils, 2(4):11-16.

Bildiri

1. **Servi, H**., Akata, I. (2009). "Beşikdüzü (Trabzon) Yöresinden Türkiye Makrofunguslarına Katkılar". IX. Ekoloji ve Çevre Kongresi, 7-10 Ekim, Ürgüp-Nevşehir, Türkiye, s. 233.

2. Servi, H., Akata, I., Canlı, K. (2010). "Ekolojik ve Biyolojik Çeşitlilik Bakımından Bolu Abant Tabiat Parkı'nın Önemi" Ekoloji Sempozyumu, 5-7 Mayıs, Aksaray, Türkiye, s. 149.

3. Akata, I., Canlı, K., **Servi, H**. (2010). "Ilgaz Dağı Milli Parkı'nın Nadir ve Endemik Türleri" Ekoloji Sempozyumu, 5-7 Mayıs, Aksaray, Türkiye, s. 148.

4. Canlı, K., **Servi, H**., Akata, I. (2010). "Kızılcahamam Soğuksu Milli Parkı'nın Biyoçeşitlilik Açısından Değerlendirilmesi", Ekoloji Sempozyumu, 5-7 Mayıs, Aksaray, Türkiye, s. 150.

5. **Servi, H**. (2010). "Bolu Abant Tabiat Parkı'ndan Tespit Edilen Parazit Makrofunguslar" Ekoloji Sempozyumu, 5-7 Mayıs Aksaray.

6. Çağlar, P., **Servi, H**., Gören, N. (2011). "Fatty Acids Profile of *Tanacetum zahlbruckneri* (Náb.) Grierson".New Challenges in Natural Product Chemistry, 12-13 Eylül, İstanbul, Türkiye.

7. Polatoğlu, K., Yücel, Y.Y., **Servi, H**., Kaya, C., Demirci, B., Gören, N.(2015). "Acetylcholinesterase inhibitory and PRAP activities of the essential oils on selected *Tanacetum* species", 46th International Symposium on Essential Oils, 13-16 September, Lublin, Poland.

8. Polatoğlu,K., **Servi, H.**, Karakoç, Ö.C., Yücel, Y.Y., Gücel, S., Demirci, B., Başer, K.H.C. (2016). "Essential oils as potential insecticidal agents for protection of stored products", 47th International Symposium on Essential Oils, 11-14 September, Nice, France.

9. Polatoğlu, K., **Servi, H**., Karakoç, Ö.C., Yücel, Y.Y., Gücel, S., Nalbantsoy, A. (2016). "Insecticidal activity and essential oil composition of *Ruta chalepensis* L.", 47th International Symposium on Essential Oils, 11-14 September, Nice, France.

10. Polatoğlu, K., **Servi, H**., Bardakçı, H. (2016). "Essential oil composition of *Salvia candidissima* VAHL., *S. tomentosa* MILLER. and *Salvia heldreichiana* BOISS.EX.BENTHAM from Turkey", 47th International Symposium on Essential Oils, 11-14 September, Nice, France.

11. Polatoğlu, K., **Servi, H**., Özçınar, Ö., Gücel, S., Nalbantsoy, A. (2016). "Essential oil composition of *Arabis* species from Cyprus", 47th International Symposium on Essential Oils, 11-14 September, Nice, France.

12. Ertürk, S., **Servi, H**., Karakoç, Ö.C., Alkan, M., Yücel, Y.Y., Polatoğlu, K. (2016). *"Tanacetum parthenium* (Asteraceae) Uçucu Yağının İnsektisidal ve AChE Engelleyici Aktiviteleri" Uluslararası Katılımlı Türkiye VI. Bitki Koruma Kongresi, 5-8 Eylül, Konya, Türkiye.

13. Alkan, M., **Servi, H**., Karakoç, Ö.C., Ertürk, S., Yücel, Y.Y., Polatoğlu, K. (2016). "İstanbul ve Bursa'da Toplanan *Matricaria chamomilla* var. *recutita* Uçucu Yağlarının İnsektisidal ve AChE Engelleyici Aktiviteleri", Uluslararası Katılımlı Türkiye VI. Bitki Koruma Kongresi, 5-8 Eylül, Konya, Türkiye.