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ABSTRACT 

A METAHEURISTIC OPTIMIZATION TECHNIQUE FOR 

FEATURE SELECTION 

 

Muneer Maaroof HASAN 

 
Department of Computer Engineering  

MSc. Thesis 

 

Adviser: Assistant Prof. Dr. Oğuz ALTUN 

 

In Knowledge Discovery (KD) one of the problems we face is unrelated data. Unrelated 

data causes performance reduction when attempting to learn or draw insights from the 

original data. There are several ways to remove unrelated data, and one of them is 

Feature Selection (FS). FS aims to select features that represent the original data in a 

relevant and understandable way. There are many ways to select features. This thesis 

provides an approach to implementing a stochastic algorithm as a feature selector. 

Differential Evolution algorithm is one of the popular metaheuristic algorithms, so we 

will employ it as a feature selector. Results and comparisons show that our approach is 

successful according to a comparison with two recent works in this field.  

Key words: Differential Evolution, Expensive Optimization, Feature Selection, 

CEC2015, Metaheuristic, Binary Optimization 
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ÖZET 

ÖZELLİK SEÇİMİ İÇİN SEZGİSEL OPTİMİZASYON 

 

Muneer Maaroof HASAN 

 

Bilgisayar Mühendisliği Bölümü 

Yüksek Lisans Tezi 

 

Danışman: Yrd. Doç. Dr.  Oğuz ALTUN 

 

Bilgi Keşfi sürecinde birçok problemle karşı karşıya gelinmektedir. Bu problemlerden 

biri  biri ise, birbiriyle ilişkisi olmayan, bağlantısız verilerdir. Bu bağlantısız verileri 

ortadan kaldırmak için çeşitli yollar bulunmaktadır ve Özellik Seçimi onlardan biridir. 

Özellik Seçimi'nin amacı, orjinal veriyi en iyi şekilde yansıtacak olan özellikleri 

seçmektedir. Bu özellikleri seçmek için birçok kullanılabilir. Bu tezde  bir stokastik 

algoritmayı özellik seçicisi olarak kullanıyoruz.  

Diferansiyel Evrim Algoritması,  yaygın sezgisel optimizasyon algoritmalarından 

biridir.. Bu yüzden Özellik Seçici olarak bu algoritma çalıştırılmıştır. Bu alanda son 

zamanlarda yapılan  iki çalışma ile kıyaslandığında yaklaşımımızın başarılı olduğu 

görülmektedir. 

Anahtar Kelimeler: Diferansiyel Evrim, Pahalı Optimizasyon, Özellik Seçimi, İkinci 

Geliştirilmiş Diferansiyel Evrim Özellik Seçimi. CEC 2015 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review 

When mathematical conditions are met, there will be several applicable optimization 

methods to solve the given problem. For example, linear programming is efficient when 

the objective function is expressed as a decision variable [1]. In several cases, the 

objective function is nonlinear. Therefore, the non-linear programming will be 

applicable. In practice, usually and unfortunately many problems include more 

complications. As a result, these classical methods cannot be used [1]. Metaheuristic 

algorithms have been designed to solve these kinds of problems [2].  

There are several problems that have no clear results or the output is unpredictable. 

These kinds of problems are explained with the term” you know it when you see it” [3]. 

That means the optimal solutions are hard to find from the first sight at the problem or 

in the first iteration of a solution algorithm. 

Feature Selection is considered as a multi-objective problem [4] and also considered as 

one of the “you know it when you see it” problems [3]. We can conclude that 

metaheuristic algorithms are able to solve it successfully. 

Many metaheuristic algorithms have been applied to solve the feature selection 

problem. The applied algorithms are mostly binary algorithms, for example Genetic 

algorithm [5]. Also, there are many researchers trying to make the Differential 

Evolution algorithm works on binary space just to employ it as a feature selector, for 

example Chen et al.  [6]. Moreover, Particle Swarm algorithm also has a binary version 

that is employed on feature selection problem [7]. Finally, this thesis tries to represent 

the feature selection problem in real domain not in binary domain. 
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The recent works on a metaheuristic approach for feature selection can be categorized 

into two. The first category implements the given algorithm, for example Differential 

Evolution, on a high-dimensional dataset, e.g. Boldt et al. [8].  The second category 

cares about small scale datasets, [9] being an example. In both cases, the accuracy of 

learning is used to compare algorithms.   

1.2 Objective of the Thesis 

In this thesis, we will employ one of the metaheuristic algorithms, which is Differential 

Evolution (DE), to work as a feature selector. Feature selection treated as a binary 

optimization problem in many researches. This thesis presents a real approach for the 

feature selection problem. The presented approach is a multi-objective optimization, 

which is an enhanced version of the single objective optimization. The multi-objective 

optimization helps in selecting few features and retaining solid learning accuracy as 

well. 

1.3 Hypothesis 

The Second Chapter can be considered the core of this thesis. It explains the framework 

that we used for evaluating algorithms.   

The explanation in Chapter 2 starts by expressing the enhancing step on the DE 

algorithm. In the next step, testing of the enhanced DE is explained. The main 

framework and the workflow of the presented feature selection approach are explained 

in this Chapter 2 as well.  

There is a way to test any feature selection approach which is by implementing the 

given approach on a benchmark of datasets. Then, the accuracy of learning will decide 

whether the approach succeed or failed. For that reason, testing the new approach for 

feature selection takes place by using group of datasets is explained in Chapter 3.  

1.4 Motivation 

Feature selection is one of the interesting filed, which considered as a pre-step for 

learning. Many approaches for applying feature selection are available and one of them 

is stochastic approach. When talking about the stochastic approach, it means there is a 

metaheuristic algorithm working as a feature selector. Implementing a binary 

metaheuristic algorithm, as a feature selector, is the popular approach nowadays. 
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Consequently, implementing a stochastic feature selection approach requires an 

algorithm that works in binary search space efficiently. Almost all the new and the 

robust algorithms work in real search space. As a result, there should be a way to apply 

the real metaheuristic algorithms to work as a feature selector directly. This study 

provides an efficient way to apply a real metaheuristic algorithms to work as a feature 

selector. The results of testing and comparing with the recent work in this field show 

how far this approach succeed. 

1.5 Knowledge Discovery 

Processing data is one of the main issues that we face nowadays. The amount of data we 

have is huge. As a result, less information can be analyzed. Therefore, there are many 

requests for automated systems to help humans with extracting useful knowledge from 

data and making it understandable. 

Knowledge discovery is also called information harvesting [10], data mining [11], 

pattern discovery [12] and knowledge extraction [5]. Knowledge discovery tries to 

make the data understandable to humans [13]. As the size of data grows rapidly, the old 

approach, manual approach, of knowledge discovery process became a time-consuming 

and expensive process [14] and Medical image analysis [15] is an example. Figure 1.1 

illustrates the main processes of Knowledge Discovery.  

High dimensional data sets are also a problem for automated systems. Search space and 

the computational complexity increase exponentially by the problem dimensionality. 

The Naïve assumption of “more features = more knowledge” leads to a problem known 

as the curse of dimensionality [17]. This kind of problem occurs when irrelevant or 

correlated data is collected when training data is built. 

1.6 Feature Selection 

Feature Selection (FS), or data-reduction in general, aims to find or select minimal 

feature subsets out of many features in data while also taking accuracy into account 

[18]. When we can remove the irrelevant and the redundant features [20], data 

classification and text processing [21, 15] can benefit. 
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Figure 1.1 Knowledge Discovery process [16] 

Feature Selection is a preparation step for data mining. We need to know the overall 

comparison for the following parameters to analysis and understand the importance of 

feature selection: 

1. Computing Time: The result of the data - reduction process can reduce the time 

taken for data mining, or data learning algorithm; and 

2. Predictive/Descriptive Accuracy: We expect by using only relevant features, the 

learning algorithm learn with higher accuracy; 

Recent works, in developing the FS methods, focus on the whole feature subsets 

forming an alternative approach to the feature selection operation. Techniques such as 

fuzzy-rough FS (FRFS) [22], probabilistic consistency-based FS (PCFS) [23], and 

correlation-based FS (CFS) [24], also called population-based approach, are often 

collectively classified as the filter-based techniques. Typically, population-based 

approaches are independent of any learning algorithm. On the other hand, wrapper-

based [25] and hybrid algorithms [26] are used with learning algorithm, which are 

employed in place of an evaluation metric as used in the filter-based approach. 
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Now, what is the output of a feature selection operation? The answer will be illustrated 

in the next four points: 

1. less data which leads to learning faster; 

2. higher accuracy that the model can generalize better from the data; 

3. simple results that easier to understand and use; and 

4. fewer features. 

1.7 Feature Selection Measure  

The concept of optimality for any given feature subset is multiple, which means we 

have to focus on two objectives. The first one is the quality: e.g. how well it encloses 

the information contained within the original full set of features. The second one is the 

size: less features are better. Due to these two objects, the feature selection process can 

be formulated a “multi-objective optimization” problem.   

There are three approaches for modelling a feature selection operation: the first one is 

the Filter model, the second one is the Wrapper model, and the third one is the 

Embedded model [27]. The basic difference between these three models is how the 

algorithm evaluates the selected features. The selection of features in a Filter model is 

done without trying to optimize the quality of any learning algorithm directly. The 

Filter model is simply using an ad hoc function and implementing exhaustive search. 

The Wrapper model selects group of features and then evaluates the quality based on 

the learning algorithm [27]. This means a learning algorithm runs in each function 

evaluation and that is why Wrapper model considered as a time-consuming model. The 

Wrapper model is an example of so-called “expensive optimization”. The mechanisms 

of Filter and Wrapper models are given in Figures 1.2 and 1.3 respectively.  

Finally, in the Embedded model, the advantages of both Filter and Wrapper models are 

gained. The feature search and the learning algorithm is incorporated into a single 

optimization problem formulation in Embedded model [27]. 
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Figure 1.2 Filter model [27] 

 

 

 

 

 

 

 

   

 

   

 

Figure 1.3 Wrapper model [27] 
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1.8 Differential Evolution as an Evolutionary Algorithm 

Differential Evolution (DE) algorithm is a nature inspired optimization algorithm [3]. It 

is a population-based algorithm and it was developed for searching in continuous 

domains [28]. It has been implemented on many real-world problems like image 

processing [29], feature selection [4], and pattern recognition [30]. Figure 1.4 shows the 

pseudocode of the standard Differential Evolution algorithm. 

We tested Differential Evolution, and its Enhanced version that we developed, on all the 

15 test functions of the well-known test bed used in Congress on Evolutionary 

Computation 2015 (CEC2015) [31]. 

The performance of DE is controlled by two parameters, mutation factor (also called 

amplification weight factor) and crossover probability (also called Probability of 

Crossover Rate (PCR)) [32]. There are many types of research about how to set the 

parameters for DE but till now there is no distinct relation between search space and 

settings of DE’s parameters [33].   

Sometimes, during the executing, DE stops generating diverse solutions. In a way, it 

stops tweaking its population’ individuals. This situation is called stagnation [34].  

Usually, this stagnation problem happens when the algorithm is stuck in some local 

optima. Lou et al. [35] solves this problem by letting the parameters automatically 

change their value to get out of local optima. 

The point of enhancing the DE algorithm is firstly to improve the performance of 

choosing the optimal individual. The second reason is to reduce the computational time 

needed when we use the DE algorithm on a Feature Selection problem. After we tested 

the new enhanced versions, we noticed that the enhanced version of DE is faster than 

the standard version. For that reason, we will employ the enhanced version for feature 

selection operation, and that will reduce the time of overall operation.   
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DIFFERENTIAL EVOLUTION ALGORITHM 

 

P                     ← Is an empty desired population  

popsize           ← Is the size of the population P 

PCR = 0.7       ← Is the Crossover Rate  

α                      ← Is a random vector, commonly between 0.1 and 0.5 

Best = 0           ← Is the best solution    

FES = 1000     ← The Function Evaluation Times 

 

 For i = 1 to popsize do 

 Pi = new random individual 

 If Fitness(Pi) > Best 

o Best = Fitness(Qi) 

 Repeat 

 

 For Iteration = 1 to FES do 

 

 For each individual Pi  ∈ P do 

 A ← copy of a random individual  

 B ← copy of a random individual 

 C ← copy of a random individual 

 T = A + α (B-C) 

 

 For j =1 to Size(Pi) 

 

 𝐗(𝐣) = {
𝐓(𝐣)     𝐢𝐟 𝐫𝐚𝐧𝐝 [𝟏, 𝟎] ≤   𝐏𝐂𝐑

𝐏𝐢(𝐣)                      𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 
 

 

 Repeat 

 

 If Fitness(X) > Fitness(Pi) then 

 Pi = X       ← Replace the parent with the kid 

 If Fitness(Pi) > Fitness(Best) then 

o Best = Pi 

 

 Repeat 

 Until Best is the ideal solution or we ran out of time 

 Return Best 

Figure 1.4 Pseudocode of standard DE [3] 

1.8.1 The Initialization Step 

The first step of DE is initializing the population. Every population-based stochastic 

algorithm starts with random numbers to fill out its population. Calculating the quality, 

or so-called fitness, of the candidate solutions takes place for one time in the 

initialization step.  
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Starting with good candidates improves the performance and saves computational 

resources [36]. However, it is almost impossible to know the best values for the initial 

population when trying to work with black-box optimization. Consequently, the 

techniques to generate uniform distributed random numbers are used to initialize the 

population of DE. 

1.8.2 The Mutation Operation of Differential Evolution  

In Mutation, DE randomly selects three candidates out of the population. Then uses 

these candidates to tweak the current solution, or the individual. There are different 

possible schemes for doing this, e.g.  DE/rand/bin [40]. The Mutation operation is 

controlled by an amplification weight factor that lies between 1 and 0. The formula 

(1.1) shows the DE/rand/bin mutation scheme. 

𝑋𝑖, 𝐺 =  𝑉𝑟1, 𝐺 +  𝐹 ( 𝑉𝑟2, 𝐺 –  𝑉𝑟3, 𝐺 )  (1.1) 

In equation (1.1), 𝑋𝑖, 𝐺 is the tweaked individual after the mutation operation, 

𝑉𝑟1, 𝐺, 𝑉𝑟2, 𝐺 , and 𝑉𝑟3, 𝐺  are vectors chosen randomly out of the population and F is 

an amplification weight factor. 

1.8.3 The Crossover Operation of Differential Evolution   

The crossover operation comes after the mutation operation. It takes the output of the 

mutation and the current individual as inputs parameters.  The crossover operation is 

controlled by a parameter which is called Crossover Rate (Cr). As we see in formula 

(1.2), the crossover operation is simply a probability kind of operations. The new child 

is considered as a mixed vector. The values of the child are a mix of both the current 

individual and the output of the mutation operation values.  

𝑻(𝒋, 𝒊, 𝑮) = {
𝑿(𝒋, 𝒊, 𝑮)                                         𝒊𝒇 𝒓𝒂𝒏𝒅 [𝟏, 𝟎] ≤   𝑪𝒓

𝑽(𝒋, 𝒊, 𝑮)                                                             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 
 (1.2) 

Where T is the tweaked individual after the crossover operation. X is the output of the 

mutation operation. V is the current individual (out of the population) used to generate a 

child by implementing the mutation and the crossover operation. And where rand [1,0] 

is a function that generates a random number between 0 and 1. 
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1.9 k NEAREST NEIGHBOR (k-NN) 

k Nearest Neighbor or k-NN classifier determines the decision boundary locally [27]. If 

the k was equal to 1, the new sample will be assigned to its closest neighbor’s class as 

shown in Figure 1.5 (A). Assume we have classes as in figure 1.5 (+ and −) in our 

training data, the new sample (?) would be labeled with the class of its closest neighbor. 

The (?) sample will be even + or − according to its distance from them. 1-NN classifier 

is not a very robust methodology [27]. When k is greater than 1, the new sample will be 

assigned to the majority class of its k closest neighbors. An example for k = 4 is given 

in Figure 1.5 (B). k-NN classifier for k > 1 is more robust, as results, larger k means the 

lowest noise in classification. 

k-NN keeps all samples in the training set. When the new sample came to be classified 

then it will be compared with the values and labels that already learned from the 

training. This reason makes k-NN called as a memory-based learning. 

 

 
(A) 

 
(B) 

Figure 1.5 k Nearest Neighbor classifier. (A) when k equal to 1; (B) when k equal to 4 

[45] 

We used k-NN classifier as a fitness function, since we are trying to implement a 

Wrapper model for feature selection. The advantage of k-NN being fast allows us to 

increase the Function Evaluation Times (FES) for DE with remaining its fast work. 

 

 

 

 



 

11 
 

 

CHAPTER 2 

ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM AND 

EVALUATIONS 

In this chapter, we discuss Differential Evolution (DE) algorithm and our 

enhancements, our tests, and using enhanced versions of DE for feature selection. 

Moreover, the initialization and the optimization for the framework will be presented in 

details with an explanation about what is the new in our work. This chapter can be 

considered the core of this thesis. It explains the framework that we used for evaluating 

algorithms by starting with expressing the enhancing step on the DE algorithm. In the 

next step, testing of the enhanced DE is explained. The main framework and the 

workflow of the presented feature selection approach are explained in this chapter as 

well. 

2.1 Background About Feature Selection  

As the amount of available data increases, the need for efficient technologies for 

dimensionality reduction increased. Feature Selection (FS) methods achieve this by 

finding minimal or close-to-minimal feature subsets. If the algorithm can maintain the 

basic data semantics after feature selection process, the reduced data may be transparent 

to human scrutiny. General speaking, FS involves two computational processes: Feature 

subset evaluation process and Feature subset search process.  

The studies in the literature [41] break down FS into smaller sub processes. Two of 

these sub processes are feature subset generation (as we will discuss in Section 2.5.2) 

and termination (as discussed in Section 2.5.4). Exceptional cases [42] exist where the 

two parts are indifferentiable or inseparable.  
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2.2 The Enhanced Differential Evolution (EDE) 

The enhancing on DE has been made on the mutation process to gain a fast 

convergence. Since searching around the best solution leads to find the optimal 

solution, fast convergence is achievable by selecting the right individual in each 

iteration. In EDE, the best solution is tracked. If the best solution did not change for 10 

times, the mutation scheme will be changed to DE/best/bin. And also, the crossover of 

the DE will be changed from the normal one to the Two Points Crossover.  In that way, 

the new child will be a mix of some features (or genes) from the best solution and also 

some of its own features. As a result, the desired change in the individual will be done.  

ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM 

P                     ← Is an empty desired population  

popsize           ← Is the size of the population P 

α                      ← Is a random vector, commonly between 0.1 and 0.5 

Best = 0           ← Is the best solution    

FES = 1000     ← The Function Evaluation Times 

 For i = 1 to popsize do 

 Pi = new random individual 

 If Fitness(Pi) > Best 

o Best = Fitness(Pi) 

 Repeat 

 For Iteration = 1 to FES do 

 For j =1 to popsize do 

 A ← copy of a random individual  

 B ← copy of a random individual 

 C ← copy of a random individual 

 If I >11 && Best(Iteration-1) = Best(Iteration-11) 

o T= Best(Iteration-1) + α (B-C) 

 Else 

o T = A + α (B-C) 

 R1 = rand [1, Size(Pj)] 

 R2 = rand [1, Size(Pj)] 

 X=Pj 

 X(from R1 to R2) = T(from R1 to R2) 

 If Fitness(X) > Fitness(Pj) then 

 Pj = X       ← Replace the parent with the kid 

 If Fitness(Pj) > Fitness(Best(i-1)) then 

o Best(i) = Pi 

 Repeat 

 Until Best is the ideal solution or we ran out of time 

 Return Best 

Figure 2.1 Pseudocode of the EDE algorithm, Bold lines represent the changes 
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The Two Points Crossover means choosing two random points on the vectors. Then, 

exchange the features that lies inside the two point of the two vectors.  Figure 2.1 shows 

the pseudocode of the EDE and shows how the two mutation operations take place in 

the main procedure.  

2.3 Testing the Enhanced and the Standard Versions of Differential Evolution  

The performance of the standard and the enhanced versions of DE are tested by using 

the fifteen computationally expensive single objective functions, which are presented in 

the Congress on Evolutionary Computation 2015 [31]. Two of the functions are 

unimodal, three of them are simple multimodal, other three of them are hybrid, and the 

rest are composition functions. Table 2.1 illustrates the fifteen function with their range 

of search and the global optima. 

Table 2. 1 Functions of the CEC2015 

Group No. No Function name Range Fi 
* 

Unimodal Functions 
1 

Rotated High Conditioned 

Elliptic Function  
[-100,100] 

100 

2 Rotated Cigar Function [-100,100] 200 

Simple Multimodal 

Functions 

3 
Shifted and Rotated Ackley’s 

Function  

[-100,100] 300 

4 
Shifted and Rotated Rastrigin’s 

Function  

[-100,100] 400 

5 
Shifted and Rotated 

Schwefel’s Function 

[-100,100] 500 

Hybrid Functions 

6 Hybrid Function 1 (N=3) [-100,100] 600 

7 Hybrid Function 2 (N=4)  [-100,100] 700 

8 Hybrid Function 3(N=5) [-100,100] 800 

Composition Functions 

9 Composition Function 1 (N=3) [-100,100] 900 

10 Composition Function 2 (N=3)  [-100,100] 1000 

11 Composition Function 3 (N=5)  [-100,100] 1100 

12 Composition Function 4 (N=5) [-100,100] 1200 

13 Composition Function 5 (N=5) [-100,100] 1300 

14 Composition Function 6 (N=7)  [-100,100] 1400 

15 
15 Composition Function 7 

(N=10) 

[-100,100] 1500 

We tested our work by setting the solution dimensionality to 10D and allowed 500 

function evaluations (FES), as we are simulating an expensive optimization (e.g. as if 

each function evaluation is the result of a classification experiment). 

The results compare the best, standard deviation, time and median for the two 

algorithms as shown in Table 2.2. The experiment results are for 30 times with random 
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initialization. That means the best, standard deviation, and median values in Table 2.2 

are an average of 30 iterations with random start points. 

Table 2. 2 Results of comparing the stander DE algorithm and the Enhanced DE 

algorithm using 10 dimensions, 20 individuals, and 500 function evaluations on CEC 

2015 test bed. Smaller values are better. 

Function  

No. 

Algorithm 

Name 

Mean Standard 

Deviation 

Median Time in second 

F1 
DE 18256110 52481237 452535.9 2.686 

EDE 12940039 48353826 251833.1 2.544 

F2 
DE 13975.83 7670.185 12410.56 2.700 

EDE 10741.48 6147.09 9289.593 2.689 

F3 
DE 302.0908 1.694143 301.8833 3.723 

EDE 301.6306 1.355487 301.4214 3.599 

F4 
DE 481.1714 104.5238 424.9232 2.775 

EDE 449.0032 61.02273 409.8091 2.563 

F5 
DE 501.5076 0.311221 501.4579 3.646 

EDE 501.417 0.259725 501.4118 3.202 

F6 
DE 600.2274 0.215809 600.1958 2.692 

EDE 600.1949 0.090044 600.1667 2.670 

F7 
DE 700.4289 0.574207 700.2947 2.626 

EDE 700.3191 0.139404 700.2862 2.596 

F8 
DE 801.6431 0.672089 801.6779 2.829 

EDE 801.4711 0.61487 801.3187 2.613 

F9 
DE 902.8359 0.397755 902.8248 2.800 

EDE 902.8456 0.38164 902.9181 2.574 

F10 
DE 5170.448 3803.941 3845.374 2.768 

EDE 4469.002 2987.391 3909.215 2.761 

F11 
DE 1102.974 1.126325 1103.076 2.883 

EDE 1102.561 0.893995 1102.228 2.958 

F12 
DE 1240.118 11.90536 1238.472 2.819 

EDE 1238.064 14.23116 1232.238 2.845 

F13 
DE 1526.978 13.06892 1522.065 3.044 

EDE 1522.927 11.67048 1518.95 2.796 

F14 
DE 1585.507 29.45875 1600.66 3.140 

EDE 1568.094 37.17384 1600.231 2.674 

F15 
DE 1868.769 36.50787 1873.231 4.149 

EDE 1857.414 40.12524 1861.926 3.962 

As obvious in Table 2.2, since the problems are minimization problems, the algorithm 

with the lowest mean value is better than the others. No algorithm seems to be the best 

all the time. The results imply that in general 6.67% of the time, DE performs better 

than the EDE in terms of time and the optimization result. In addition, 93.3% of the 

time EDE performs better than the DE in terms of optimization result. 
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Table 2.2 shows that in Unimodal functions (f1 and f2), in Simple Multimodal 

Functions (f3, f4, and f5), and in Hybrid Functions (f6, f7, and f8), the EDE was better 

than the standard DE in both time and optimization results.  

Finally, for composition functions (f9, f10, f11, f12, f13, f14 and f15), the time is nearly 

uniformly distributed between EDE and DE. Overall, it can be deduced that EDE 

performs better than the standard DE. EDE can reach the optimal and it requires less 

computation time most of the time. 

2.4 Enhanced Differential Evolution Feature Selector (EDEFS) 

Feature selection is a slow process so it needs a fast algorithm to reduce the executing 

time. By testing the performance of the two versions of DE algorithm, EDE showed 

good results with less computation time. Therefore, applying the EDE as a feature 

selector is more suitable than applying DE. 

The EDEFS is a new FS approach based on EDE, a simple and powerful optimization 

technique. It guaranties a good accuracy of learning with high dimensional datasets. 

The fixability of DEDEFS allows to use any fitness function such as CFS, PCFS, and 

FRFS. Also, it can use any given classifier accuracy or error rate as a fitness of the 

given subset feature. According to the enhancements in the EDE, EDEFS can escape 

from the local optima and can find multiple feature subsets quality. 

For representing the data, each individual in the population represents an index vector. 

The index vector is a vector which its values represent the location of the features in the 

raw data. We only save the best individual and its fitness value in every iteration when 

we use the basic DE. In several cases, there will be two different feature subsets with 

the same accuracy and different number of features. Since we are searching for less 

number of features with high accuracy, we assume that high accuracy and less number 

of features is better than the other one. By holding the best accuracy for each individual, 

we will be able to choose the subset with few features and high accuracy. 

For optimizing the population size of EDE, we tested the performance of EDEFS with a 

slight change in population size in each time. The testing started with 10 

individuals…till 50 individuals. The results showed that only 20 individuals are enough 

to get acceptable accuracy.  
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For optimizing the FES for the EDEFS, when we were testing the performance of DE, 

and EDE, we have seen the results of EDE converge at the 50th FES for 7 functions. 

The Figures 2.2to2.16 shows the performance of EDE with 20 individuals and 500 FES 

on all the 15 functions in CEC2015.      

Figure 2.2 Results of Function 1  
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Figure 2.3 Results of Function 2  

 

Figure 2.4 Results of Function 3  
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Figure 2.5 Results of Function 4  

 

 

Figure 2.6 Results of Function 5  
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Figure 2.7 Results of Function 6  

 

 

Figure 2.8 Results of Function 7  
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Figure 2.9 Results of Function 8  

 

 

Figure 2.10 Results of Function 9 
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Figure 2.11 Results of Function 10 

 

 

Figure 2.12 Results of Function 11 
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Figure 2.13 Results of Function 12 

 

 

Figure 2.14 Results of Function 13 
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Figure 2.15 Results of Function 14 

 

 

Figure 2.16 Results of Function 15 
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As we demonstrated in Figures 2.2…2.16, the EDE gets stable at the 50th FES. We also 

notice that EDE was better than the basic DE, as we have seen in Table 2.2. Now it 

became clear that EDE got that preference by using only fifty FES out of its 500 FES! 

The results tell us to set the number of iteration of EDEFS to only 50.   

2.4.1 Key Notions 

In this section, we will explain what the parameters of EDE means in our EDEFS 

approach.  

Number of elements on an individual solution, or individual’s size, is equal the number 

of features in the raw data. The number of individuals in the EDE represents the number 

of cases that our approach will find (assuming we have 20 individuals, we get 20 cases). 

The Best individual represents the highest accuracy with N number of features. 

We also assigned two variables to every individual in the EDE. The first variable holds 

the best values of the given individual along the process lifecycle.  The second one will 

hold the accuracy (the fitness) of the value in the first assigned variable. In this way, we 

will have a number of best values equal to the population size. 

 

3 9 8 6 10 7 22 1 4 30 27 5 20 
 

The first variable 

 

80% 
 

The second 

variable  

Figure 2.17 Example of the assigned variables to each individual in population 

Note: The size of the first variable is not fixed. We will see how that size changes on 

every iteration during its lifecycle in Section 2.4.3. Just to make it more clear, the 

reason behind changing the size is to get as fewer features as possible. 

2.4.2 Initialization 

This section talks about the first step of the EDEFS lifecycle. We will also talk about 

what is the new with our approach and how it helps. 

As we mentioned in Section 1.8.1, in the initialization step, the solutions should be 

filled with random numbers. Many metaheuristic approaches for Feature selection 

depend on representing the features with a binary vector. In this approach, the “1” 
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values mean that features are participating in the selected subset, whereas the “0” means 

the feature is not included in the selected subset.  

The convergence rate with binary approach weaker than if it was in real [6]. The new 

idea in our approach is to not make the values in the representing vector zeros and ones. 

We initialize the EDE with a real number between any two boundaries. In that way, the 

mutation and the crossover operations are going to work better. For these reasons, we 

worked on making the EDEFS works with real values rather than binary.  

Firstly, each individual in the population is filled with random values between any 

given boundaries.  For example, between 5 and -5. Then the fitness of every individual 

will be calculated and saved in the second assigned variable. The first assigned variable 

of the given individual will be holding the indexes values of the initializing step. In 

each iteration of the initialization, the best value will be checked and saved in a variable 

which is called BEST. 

The indexes values will be explained clearly in Section 2.4.3 and we will see how it 

plays a good role in our work. 

Note: the first and the second assigned variables have been explained in details in 

Section 2.4.1 and Figure 2.17 shows an example of their values. 

2.4.3 Work Flow 

In this section, we will express the workflow of EDEFS in details to make it easy to 

understand. We will make the explanation in steps to make it easier to read. Also, we 

will provide samples of all the variables in our work at several steps so the reader can 

follow the changing in values step by step. Let us take the Wine dataset (which has 13 

features, 178 instances, and 3 classes [43]) as an example and try to implement the 

EDEFS on it. Figure 2.18 demonstrates the pseudocode of the EDEFS algorithm. 
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Function Fitness(X)      // function to calculate the accuracy of learning 

{ 

D = Data(:,X)       // extract only the desired features 

Training=10-fold(D)  // split the data into train and test by using 10-fold method 

Testing=10-fold(D) 

Accuracy=kNN(Training , Testing)  // calculate the accuracy of learning using kNN 

Return (Accuracy) 

} 

popsize = 20 

The parents size  = number of features in the given dataset (Data) 

For i =1 to 20 do 

   P(i)= rand([1,number of features in the given dataset (Data)],[-5,5]) 

Repeat 

For i = 1 to 50 do 

       For j =1 to popsize do     // 20 parents chosen for  popsize 

  A ← copy of a random individual  

  B ← copy of a random individual 

  C ← copy of a random individual 

  If i >=11 && Best(i-1) = =Best(i-11) 

        T= Best(i-1) + α (B-C) 

  Else 

        T = A + α (B-C) 

  R1 = rand [1, Size(P( j ))] 

  R2 = rand [1, Size(P( j ))] 

  X=P( j ) 

  X(from R1 to R2) = T(from R1 to R2) 

  [~,Y] = sort(X)   // takes the indexes of the new child after sorting it  

  Z= Y (from 1 to rand [1, Size(P( j )))   // take the values from the first       

                                                                                                         till a random value   

  If Fitness(Z) > Fitness(P(j))  

   P(j) = Z      // Replace the parent with the kid 

   If Fitness(P(j)) > Best(i-1) then 

    Best(i) = P(j) 

       Repeat 

Repeat 

Return (Best) 

Figure 2.18 The pseudocode of the EDEFS algorithm 

The First step: the population of EDE, the twenty individuals, will be filled randomly 

between any two given boundaries. We used -5 and 5 as the two boundaries to the 

initialization step. In this step, the values of every individual will be assigned using 

continuous uniform distribution.  

Since the number of features in Wine dataset is 13, then the individual's size will be 13 

as well, as we explained that in Section 2.4.1. Figure 2.18 gives an example of four 

individuals, out of twenty individuals in our population, values after the initialization 

step. 
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-0.13 -0.64 -0.53 -1.93 0.085 0.107 3.176 2.948 1.443 -1.21 3.115 0.328 -1.49 

3.243 4.826 2.302 -1.56 0.840 -3.92 4.063 3.796 3.177 -2.39 0.943 -4.77 -0.74 

3.147 4.057 -3.73 4.133 1.323 -4.02 -2.21 0.468 4.575 4.648 -3.42 4.705 4.571 

2.688 -3.32 3.619 4.898 0.144 3.842 0.880 -3.45 -3.00 -0.93 2.487 3.255 2.899 

Figure 2.19 Four individual’s values after the initialization step  

In this step, the fitness values for every individual will be calculated and saved in the 

second assigned variable. Also, the best value will be calculated and saved in the BEST 

variable. 

The Second step: after the initialization step, we will get into the main EDE loop. Every 

individual in our population will pass through the mutation and the crossover 

operations. The output of the mutation and the crossover operation will represent a new 

child. We will sort the values of the new child. Then we will take the indexes of the 

sorting operation. 

The output of the sorting operation represents the indexes of the individual values after 

the sorting operation. Figure 2.19 shows an example of the values of an individual and 

the output after implementing the sorting operation. 

 
-0.13 -0.64 -0.53 -1.93 0.08 0.10 3.17 2.94 1.44 -1.21 3.11 0.328 -1.49 

An individual’s values / Input vector 

 

4 13 10 2 3 1 5 6 12 9 8 11 7 

The output of the sorting operation / Output vector 

Figure 2.20 Input and Output of the sorting operation 

After taking the output vector of the sorting operation, the output represents the indexes 

of the features in the Wine dataset. Which means, the 4 value (in the output vector in 

Figure 2.20) represents the 4th feature in the Wine dataset and the 13 value represents 

the 13th feature…etc. 

The Third step: The indexes of the features are available in this step. Now, we are about 

to decide how many features we should pick. If we want our EDEFS to select fixed 

number of the features, for example N, then we should pick N number of values out of 

the indexes vector in each iteration. For example, assume N=5 then the values 

4,13,10,2, and 3 (of the output vector in Figure 2.20) will be selected.  
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As we previously mentioned in Section 1.7, feature selection cares about how many 

features to be selected. And also, we mentioned that fewer features with high accuracy 

are better than more features with the same accuracy. That leads us to not fix the 

number of features to be picked out of the indexes vector. For this reason, we made a 

randomized value to the number of features that we pick in each iteration. 

The Fourth step:  we mentioned in Section 1.9 that we will use k-NN classifier or 

Decision Tree classifier accuracy as a fitness function.  

The Fifth step: after we sent only the given features to the classifier, we will divide it 

into training and testing data. We used K-fold cross validation method to separate the 

data into training and testing sets.  We use K=10.  

The values that have been picked out of the indexes vector will be saved in the first 

assigned variable. 

The accuracy value will be compared with the old value which already saved from the 

first step. If the accuracy of this new child is higher than the parent’s value, then we will 

replace the parent with the new child. Also, the values of the two assigned variables will 

be replaced with the new values. 

The Sixth step: if the stop criteria are achieved then we will stop and go to the final step 

(Section 2.5.4), if not then we will go back to The Second Step.  

2.4.4 Final Step and Showing Results 

When the stop criteria in the main loop of EDE achieved, we will only have to know the 

highest accuracy that we found. In the beginning of Section 2.4, we were talking about 

the problem when we have the same accuracy with a different number of features. And 

also, explained that less number of features with high accuracy is better than large 

number of features with the same accuracy. We solved this problem by viewing the 

number of features with the accuracy of that given features. As a result, we let the user 

to decide which feature subset is the best. 

The final result of the EDEFS is the final values of the two assigned variables for each 

individual in the last version of the population. The highest accuracy will be saved in 

the BEST variable. The output is represented by a structure array and each element 

represents the indexes of the dataset. The number of elements in the structure variable is 
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20 because we have 20 individuals. Table 2.3 shows the output screen of EDEFS when 

we implemented it on the Wine dataset by using k-NN classifier.  

Table 2.3 The output of EDEFS with Wine dataset by using k-NN 

INDIVIDUAL 

NUMBER 

NUMBER OF 

FEATURES 

ACCURACY 

1 7 97.674 

2 8 97.674 

3 4 97.674 

4 4 97.674 

5 7 97.674 

6 4 97.674 

7 10 100 

8 8 93.023 

9 5 95.348 

10 6 100 

11 4 97.674 

12 9 100 

13 2 93.023 

14 9 97.674 

15 7 97.674 

16 4 97.674 

17 8 97.674 

18 8 97.674 

19 6 95.348 

20 8 95.348 

As we see from the output (Table 2.3), there are three cases with the highest accuracy 

(100%). The three cases are 7, 10, and 12. In these cases, the accuracy is equal to 100% 

but the number of features is different. That is why we should show this table to the 

user to let him/her choice the best case. The 10th case probably the best because it has 

the highest accuracy with the fewer number of features.  

The indexes of the given features are available in a structure array and Table 2.4 shows 

the values of that structure variable. Each case in Table 2.3 has its indexes in Table 2.4 

with the same individual number. If we want to choose the 10th case in Table 2.3 then 

we should go to Table 2.4 and select the 10th indexes that given in the indexes column.  
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Table 2.4 The indexes of each case in table 2.2 

 INDIVIDUAL NUMBER THE INDEXES  

1 [3,7,10,9,4,8,6] 

2 [1,8,9,10,11,2,4,7] 

3 [10,3,1,9] 

4 [7,11,6,10] 

5 [3,11,7,10,12,1,9] 

6 [3,10,6,7] 

7 [12,10,4,11,1,6,7,3,9,8] 

8 [3,7,10,9,11,12,6,5] 

9 [7,10,6,8,9] 

10 [8,9,10,6,7,5] 

11 [7,10,12,9] 

12 [4,10,12,1,6,11,7,3,9] 

13 [10,7] 

14 [7,10,12,11,4,1,3,9,8] 

15 [12,10,8,4,9,1,2] 

16 [10,3,12,11] 

17 [6,12,10,9,7,1,3,11] 

18 [7,10,12,6,9,3,1,11] 

19 [11,4,8,12,1,3] 

20 [12,10,4,1,11,6,9,3] 
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CHAPTER 3 

COMPARING EDEFS TO OTHER’S WORKS 

This chapter talks about the results of implementing EDEFS on different datasets. We 

have seen an example of the performance in CHAPTER 2. Now, we will see the 

performance on high dimensional datasets.  After we explained the framework of 

EDEFS, now we have to see how far we succeed. The way to evaluate the successful is 

by comparing with recent work in this field of studying. Many researchers worked on 

implementing DE for feature selection. Some of them talk about how many features 

selected while others talk about the accuracy of training. We selected two recent works. 

The first work is [8] and the second one is [9]. The first work talks about high 

dimensional datasets. The second one talks about small scale datasets. 

3.1 Results of High Dimensional Datasets 

To evaluate the performance of EDEFS on high-dimensional datasets, we have to 

implement it on huge datasets. There are many high dimensional datasets available in 

[43], [44], and [45]. We selected twenty (20) datasets with a number of features 

between 2000 and 15009. Some of the twenty datasets are available at [46] and the rest 

of them are available at [47]. Details about the twenty datasets are explained in Table 

3.1. 

The work in [8] is done by employing the 1-NN classifier as a fitness function. They 

separate every dataset into train and test by using the 10-fold method. Since the 10-folds 

are generated randomly, the results will have some randomness. We also used the 10-

fold cross validation method to separate our dataset into training and test/validation sets. 

The training accuracy depends on the training data and the training data itself depends 

on k-fold cross validation.  
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Table 3.1 Details about the high-dimensional datasets 

No Dataset Name No of Classes No of sample No of feature 
1 9_Tumors 9 60 5726 
2 11_Tumors 11 174 12,533 
3 14_Tumors 26 308 15,009 
4 Brain_Tumor1 5 90 5,920 
5 Brain_Tumor2 4 50 10,367 
6 DLBCL 2 77 5,469 
7 Leukemia1 3 72 5,327 
8 Leukemia2 3 72 11,225 
9 Lung Cancer 4 203 12,600 
10 Prostate Tumor 2 102 10,509 
11 SRBCT 4 82 2,308 
12 Adenocarcinoma 2 76 9,868 
13 Brain 5 42 5,597 
14 Breast2 2 77 4,869 
15 Breast3 3 95 4,869 
16 Colon 2 62 2,000 
17 Leukemia 3 38 3,051 
18 Lymphoma 3 62 4,026 
19 Nci 8 61 5,244 
20 Prostate 2 102 6,033 

As a result, the accuracy value will depend on the random value of k-fold. For that 

reason, we take the accuracy as average of 10 iterations as in [8]. When we 

implemented EDEFS on the datasets in Table 3.1, the settings of the EDEFS parameters 

were as the following: 

1. Population size = 20 

2. Minimum boundary = -5  

3. Maximum boundary = 5 

4. Function Evaluation Times =50 

We will compare our work in the concept of learning accuracy. As we mentioned lately, 

we use k-NN as the classifier. In [8], they used only 1-NN as a fitness function. For that 

reason, we are going to compare our work only by using 1-NN classifier. The work in 

[8] optimized the parameters of their work. We also optimized our parameters. For that 

reason, we will take the Table of results in [8] directly without setting the same 

parameters. Table 3.2 showing the results of implementing EDEFS on the datasets in 

Table 3.1 and compare it with [8] results. 
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In Table 3.2, Dataset name column contains the names of the twenty datasets. Full data 

accuracy column contains the accuracy of implementing 1-NN on the whole data. SSFS 

column contains the results of implementing the work in [8], Single Sequence Fast 

Feature Selection for High-Dimensional Data (SSFS), on the datasets. EDEFS column 

contains the results of implementing our work on the datasets. The highlighted value 

means it is the best by comparing it with others.  

Table 3.2 The result of implementing EDEFS on high dimensional data 

No Dataset name No of 

feature 

Full data 

accuracy 

SSFS EDEFS 

1 9_Tumors 5726 51% 63% 71.6667% 

2 11_Tumors 12,533 82% 83% 90.0000% 

3 14_Tumors 15,009 57% 58% 63.4375% 

4 Brain_Tumor1 5,920 86% 89% 93.3333% 

5 Brain_Tumor2 10,367 71% 85% 87% 

6 DLBCL 5,469 86% 97% 98.3333 

7 Leukemia1 5,327 89% 99% 98.2353% 

8 Leukemia2 11,225 93% 98% 99.4444% 

9 Lung Cancer 12,600 90% 95% 96.1224% 

10 Prostate Tumor 10,509 77% 96% 86.4000% 

11 SRBCT 2,308 92% 99% 97.3684% 

12 adenocarcinoma 9,868 87% 95% 91.5789% 

13 brain 5,597 75% 93% 87.7778 

14 Breast2 4,869 62% 86% 71.5789% 

15 Breast3 4,869 55% 78% 64.3478 

16 colon 2,000 73% 94% 88.6667% 

17 leukemia 3,051 98% 98% 100% 

18 lymphoma 4,026 98% 100% 100% 

19 nci 5,244 72% 82% 88.4615% 

20 prostate 6,033 83% 96% 88.8000% 

It is clear from Table 3.2 that our work has better results when the dataset has a high 

number of features. For datasets No. 1 to 6, our work gets the best accuracy. By looking 

at the details in Table 3.1, the dataset No. 1 to 4 has the highest number of features. 

While for datasets from 10 to 16, SSFS has the highest accuracy. Datasets No. 10 to 16 

has the lowest number of features. By considering this analysis of the results in Table 

3.2, we can say that our work is better with high dimensional data. 

We should notice that EDEFS always get higher accuracy than the full datasets. This is 

the main idea of using feature selection process so we can say we successfully achieved 

this principle. Moreover, the number of cases that EDEFS has the best result is more 
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than what SSFS has. After testing EDEFS on high dimensional data, now we need to 

test our work on small scale datasets (datasets which have less than 100 features), to see 

if it is able to get best results or not. 

3.2 Results of Small Scale Datasets 

Now we will try to implement our work (EDEFS) on a standard datasets benchmark. 

The recent work on this kind of dataset is [9]. They use 12 datasets as a benchmark. 3 of 

the datasets come with missing values so the training accuracy is lower than 50%. We 

will not take them into account. All the 12 datasets are available in [43]. Table 3.3 

illustrates the benchmarks in more details. In [9], they use 1-NN and Decision Tree as 

classifiers. Firstly, we will compare our work in case we use 1-NN on the 9 datasets in 

Table 3.3. Also, we will compare our work by using Decision Tree as a classifier.  

Datasets in Table 3.3 have number of features between 60 and 13. Testing EDEFS on 

this kind of datasets means we will test it on a small-scale dataset. We are trying to 

prove that EDEFS is a general approach and it can be implemented on any size of data. 

We mentioned in Section 3.1 that our EDEFS works better with high dimensional data. 

In this section, we will prove that our algorithm is also able to deal with small-scale 

datasets. 

Table 3.3 Details about the small-scale datasets 

No Dataset name Number of 

samples  

Number of 

features 

Number of 

classes 

1 Heart 270 13 2 

2 Hepatitis 155 19 2 

3 Ozone level detection 2536 73 2 

4 Parkinson 195 22 2 

5 Segmentation 2310 19 7 

6 Sonar 208 60 2 

7 Spectf 267 44 2 

8 Wine 178 13 3 

9 Wisc. prognostic breast 

cancer 
198 13 3 
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Table 3.4 shows the results of implementing EDEFS on the datasets in Table 3.3 by 

using 1-NN. The random values of the 10-fold cross validation may effect on the 

learning accuracy so taking average of number of accuracies is probably necessary. The 

work in [9] is simply using 1-NN classifier and also using 10-fold cross validation to 

separate the datasets without any consideration to the random values of the k-fold 

method. We also used 1-NN without any consideration to the random values of the k-

fold method (without taking an average of number of accuracies). The parameters 

settings for our work are as follow: 

1. Population size = 20 

2. Minimum boundary = -5  

3. Maximum boundary = 5 

4. Function Evaluation Times =50 

Table 3.4 shows the result of implementing EDEFS on the datasets in Table 3.3 by 

using only 1-NN and compare it with the results in [9]. In Table 3.4, MODE_FS is the 

abbreviation of Multi-Operator Differential Evolution for Feature Selection. 

Table 3.4 Implementing EDEFS on datasets with 1-NN 

No Dataset names Full data 

accuracy 

EDEFS Accuracy MODE-

FS 

1 Heart 75.27% 89.55% 92.48% 

2 Hepatitis 74.39% 92.10% 81.49% 

3 Ozone level detection 85.32% 97.47% 95.16% 

4 Parkinson 94.95% 95.83% 99.21% 

5 Segmentation 83.33% 97.95% 91.67% 

6 Sonar 84.90% 98.03% 88.75% 

7 Spectf 77.72% 89.39% 88.16% 

8 Wine 96.93% 100% 97.47% 

9 Wisc. prognostic breast 
cancer 

93.16% 87.50% 96.58% 

The results of EDEFS in Table 3.4 are better than full data accuracy. This means our 

work can be considered as a good feature selection approach for small scale datasets. 

Also, we see in Table 3.4 that our work is better than MODE-FS in 6 datasets. These 

results prove that EDEFS can also be used with small scale data. 
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3.3 Results of Comparing the Binary and the Real Differential Evolution FS 

Feature Selection is treated as a binary optimization problem in most of the researches. 

Since EDEFS is a real feature selection approach, there should be a comparison with a 

binary approach to evaluate the performance as well. Firstly, a binary DE is presented 

by using a V-shape transfer function as a mutation operation. The V-shape transfer 

function helps to adapt any real metaheuristic algorithm to work in binary search space 

or so-called discrete search space. Indeed, there are many differences in the main steps 

of the BDE from the basic DE, for example in the initialization step. Figure 3.1 shows 

the pseudocode of the binary feature selection approach, which is applied by using the 

BDE. We applied the binary version of the Differential Evolution to work as a feature 

selector. Figure 3.1 shows the pseudocode of the Binary Differential Evolution Feature 

Selector (BDEFS). 

We used group of datasets (illustrated in Table 3.5) to evaluate the performance of the 

EDEFS and the BDEFS approach by using kNN as a fitness function and the parameter 

sittings as the following: 

1. Population size for both EDEFS and BDEFS = 20 

2. Minimum boundary for EDEFS = -5 

3. Minimum boundary for BDEFS = 0 

4. Maximum boundary for EDEFS = 5 

5. Maximum boundary for BDEFS = 1 

6. Function Evaluation Times for both EDEFS and BDEFS =50 

Table 3.5 The group of datasets to test BDEFS and EDEFS 

No Dataset names Number of features BDEFS EDEFS 

1 Heart 13 80.1493% 82.0896% 

2 Hepatitis 19 83.9474% 85.7895% 

3 Ozone level detection 73 96.0979% 96.9352% 

4 Parkinson 22 92.7083% 90.8333% 

5 Segmentation 19 92.0408% 92.4490% 

6 9_Tumors 5726 68.3333% 71.6667% 

7 11_Tumors 12,533 88.6842% 90.0000% 

8 14_Tumors 15,009 65% 63.4375% 

9 Brain_Tumor1 5,920 93.3333% 93.3333% 

10 Brain_Tumor2 10,367 85% 87% 
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Function Fitness(X)      // function to calculate the accuracy of learning 

{ 

D = Data(:,X==1)       // extract only the desired features 

Training=10-fold(D)  // split the data into train and test by using 10-fold method 

Testing=10-fold(D) 

Accuracy=kNN(Training , Testing)  // calculate the accuracy of learning using kNN 

Return (Accuracy) 

} 

 
popsize = 20 

For i =1 to 20 do 

   P(i)= rand([1,number of features in the given dataset (Data)],[0,1]) 

Repeat 

For i = 1 to 50 do 

          For j =1 to popsize do  // 20 parents chosen for  popsize 

  X=P(j) 

  A ← copy of a random individual  

  B ← copy of a random individual 

  C ← copy of a random individual 

                                For s=1 to Size(P(j)) 

   V =  TransferFunction (mean(A(s),B(s),C(s) ),P(j)) 

   if rand [0,1] > V 

    X(s)=X(s)’  //if X(s)=1 then X(s)’= 0 and vice versa 

                                Repeat  

  Child = TwoPointsCrossover( X , P(j) ) 

  If Fitness(Child) > Fitness(P(j))  

   P(j) = Child            // Replace the parent with the kid 

   If Fitness(P(j)) > Best(i-1) then 

    Best(i) = P(j) 

         Repeat 

Repeat 

Figure 3.1 Pseudocode of the Binary Feature Selection 

3.4 Results of Comparing the EDEFS with Random Feature Selection 

Random Feature Selection is one of the exist approaches for feature selection. It all 

depends on the randomness and also uses a learning algorithm to evaluate the accuracy 

of learning for the selected features subsets. The experiment results showed that EDEFS 

is a good approach compared with the stochastic approach, even binary or others. To 

make sure that EDEFS is better than the random feature selection, we applied and 

compared one of the random feature selection approaches by using a group of datasets. 

Figure 3.2 shows the pseudocode of the Random Feature Selection (RFS) and Table 3.6 

shows the group of datasets.     
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Function Fitness(X) 

{ 

D = Data(:,X) 

Training=10-fold(D) 

Testing=10-fold(D) 

Accuracy=kNN(Training , Testing) 

Return (Accuracy) 

} 

LoadData(X) 

S = Size(X)        // S is the number of features in the given data 

Indexes = [0]     // initialize the variable  which will hold the indexes 

Best=0 

For i = 1 to 1000 do 

  N = random  [ 1 , S ]      //Chose the number of feature to be selected 

  Features = random ( N , [ 1, S ]  ) // Chose the N features indexes  

  Accuracy = Fitness(Features) 

  if Accuracy > Best 

   Best = Accuracy 

    Indexes = Features 

Repeat 

Return(Indexes) 

Figure 3.2 The pseudocode of the Random Feature Selection 

 

Table 3.6 The group of datasets to compare RFS and EDEFS 

Datasets name No of Features Whole data RFS EDEFS 

Adenocarcinoma 9868 87% 91% 95% 

brain 5597 75% 87% 93% 

Sonar 60 84.90% 89% 98% 

Breast2 4869 62% 71% 86% 
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3.5 Results of Comparing the EDEFS with Random Indexes DEFS 

It is clear, from the experiment results and from the caparisons with the recent works, 

that EDEFS is able to achieve high accuracy. Regarding these claims, only one test is 

remaining. This test is simply by using the DE but with initializing its population with 

the indexes of the features! The population also passes through the mutation and the 

crossover operations but there is an additional operation after them. The additional 

operation is rounding the values of the new child to be between 1 and the number of 

features.  

Figure 3.3 shows the pseudocode of the Random Indexes DEFS (RIDEFS) and 

illustrates the main steps. We also used a group of datasets (datasets in table 3.7) to test 

and compare the EDEFS with the RIDEFS. 

Table 3.7 The group of datasets to compare RIDEFS and EDEFS 

Datasets name No of Features Whole data RIDEFS EDEFS 

Adenocarcinoma 9868 87% 91% 95% 

brain 5597 75% 87% 93% 

Sonar 60 84.90% 89% 98% 

Breast2 4869 62% 71% 86% 

Obviously, EDEFS still a good approach by comparing with the available approach. All 

the testing approved that EDEFS is applicable and acceptable to be used with high or 

small scale datasets.   
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Function Fitness(X)      // function to calculate the accuracy of learning 

{ 

D = Data(:,X==1)       // extract only the desired features 

Training=10-fold(D)  // split the data into train and test by using 10-fold method 

Testing=10-fold(D) 

Accuracy=kNN(Training , Testing)  // calculate the accuracy of learning using 

kNN 

Return (Accuracy) 

} 

popsize = 20 

NumerOfFeatures = Size(Data) 

For i =1 to 20 do 

   P(i)= rand([1, NumerOfFeatures ]) 

Repeat 

For i = 1 to 50 do 

       For j =1 to popsize do     // 20 parents chosen for  popsize 

  A ← copy of a random individual  

  B ← copy of a random individual 

  C ← copy of a random individual 

  T = A + α (B-C) 

  R1 = rand [1, Size(P( j ))] 

  R2 = rand [1, Size(P( j ))] 

  X=P( j ) 

  X(from R1 to R2) = T(from R1 to R2) 

                        X= round(X,1,NumerOfFeatures) 

  Z= X (from 1 to rand [1, Size(P( j )))   // take randomly number of            

                                                                                                                      features 

  If Fitness(Z) > Fitness(P(j))  

   P(j) = Z      // Replace the parent with the kid 

   If Fitness(P(j)) > Best(i-1) then 

    Best(i) = P(j) 

       Repeat 

Repeat 

Return(Best) 

Figure 3.3 The pseudocode of the Random Indexes DEFS 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

Feature Selection is an important subject to be studied. It helps to increase the accuracy 

of any learning algorithm. There are many ways to do feature selection and, in our 

opinion, the stochastic way is the simplest one. The simplicity of DE algorithm has 

made the whole implementation simple as well. Indeed, there are many metaheuristic 

algorithms which can be employed to work as a feature selector. The differences 

between any two given metaheuristic algorithms can be determined and can be analyzed 

by using the CEC 2015 benchmark. 

EDE is a good algorithm to be used for Feature Selection. Also, it can be implemented 

for any related subjects since it has high exploration rate. By implementing and testing, 

we found that the population-base algorithms can get close to the optimal solution in a 

short period of time. For that reason, the number of evaluation time should not be that 

large. As a result, we can make the extraction of the program, or the algorithm, faster by 

tuning the parameters with perfect values. 

EDEFS is a new and efficient approach for feature selection. The results show how 

strong and efficient the EDEFS algorithm with high dimensional datasets is. Also, it is 

suitable for low scale datasets. 

 

 



 

42 
 

4.2 Future Works  

No doubt, the initialization step of the EDE effects on the total results. For that reason, 

we can work on finding a way to initialize the population depending on the given 

problem range. Also, the way to select the individuals to mutation step is very 

important. Therefore, we can increase the exploration rate if we can find a good way to 

select the effective individuals for mutation operation. 
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