

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

A METAHEURISTIC OPTIMIZATION TECHNIQUE FOR

FEATURE SELECTION

MUNEER MAAROOF HASAN

MSc. THESIS

DEPARTMENT OF COMPUTER ENGINEERING

PROGRAM OF COMPUTER ENGINEERING

ADVISER

ASSIST. PROF. DR. OĞUZ ALTUN

İSTANBUL, 2016

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

A METAHEURISTIC OPTIMIZATION TECHNIQUE FOR

FEATURE SELECTION

A thesis submitted by Muneer Maaroof HASAN in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE is approved by the committee

on 25.11.2016 in Department of Computer Engineering.

Thesis Adviser

Assist. Prof. Dr. Oğuz ALTUN

Yıldız Technical University

Approved By the Examining Committee

Assist. Prof. Dr. Oğuz ALTUN

Yıldız Technical University _____________________

Assist. Prof. Dr. Mehmet AKTAŞ

Yıldız Technical University _____________________

Assist. Prof. Dr. Ali Haydar ÖZER

Marmara University _____________________

ACKNOWLEDGEMENTS

First of all, I would like to thank God for the blessing, which bestowed on us of health,

science, a great family, and good friends in my life.

I would like to express my uttermost gratitude to my supervisor Assist. Prof. Dr. Oğuz

ALTUN and Assist. Prof. Dr. Gökhan BILGIN for their motivation, enthusiasm, and

guidance, which have been essential at all stages of my research.

My sincere gratitude goes to my entire family: parents Maaroof HASSAN and Zahra

ALI; my sisters; and every single person in my family. The completion of this MSc.

would not have been possible without their kind support and encouragement.

My deepest thanks go to my father for making me believe that there is no meaning to

the “impossible” word.

I am grateful to my brother Moshtaq MAAROOF, who is the friend of my soul, who I

would not be able to see the world without.

I would also like to thank all my friends, especially the ones I met in Turkey and lived

with for their continuous support.

November, 2016

Muneer Maaroof HASSAN

iv

TABLE OF CONTENTS

Page

LIST OF SYMBOLS ... vi

LIST OF ABBREVIATIONS ... vii

LIST OF FIGURES .. viii

LIST OF TABLES ... ix

ABSTRACT .. x

ÖZET ... xi

CHAPTER 1 1

INTRODUCTION .. 1

1.1 Literature Review.. 1

1.2 Objective of the Thesis ... 2

1.3 Hypothesis... 2
1.4 Motivation ... 2

1.5 Knowledge Discovery ... 3
1.6 Feature Selection ... 3
1.7 Feature Selection Measure .. 5

1.8 Differential Evolution as an Evolutionary Algorithm 7
1.8.1 The Initialization Step .. 8
1.8.2 The Mutation Operation of Differential Evolution 9

1.8.3 The Crossover Operation of Differential Evolution 9

1.9 k NEAREST NEIGHBOR (k-NN) ... 10

CHAPTER 2 11

ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM AND EVALUATIONS

... 11

2.1 Background About Feature Selection ... 11
2.2 The Enhanced Differential Evolution (EDE) .. 12
2.3 Testing the Enhanced and the Standard Versions of Differential Evolution 13
2.4 Enhanced Differential Evolution Feature Selector (EDEFS) 15

v

2.4.1 Key Notions ... 24

2.4.2 Initialization ... 24
2.4.3 Work Flow ... 25
2.4.4 Final Step and Showing Results .. 28

CHAPTER 3 31

COMPARING EDEFS TO OTHER’S WORKS .. 31

3.1 Results of High Dimensional Datasets ... 31

3.2 Results of Small Scale Datasets .. 34
3.3 Results of Comparing the Binary and the Real Differential Evolution FS ... 36
3.4 Results of Comparing the EDEFS with Random Feature Selection 37
3.5 Results of Comparing the EDEFS with Random Indexes DEFS 39

CHAPTER 4 41

CONCLUSION AND FUTURE WORK ... 41

4.1 Conclusion .. 41
4.2 Future Works .. 42

REFERENCES ... 43

CURRICULUM VITAE ... 47

vi

LIST OF SYMBOLS

F Amplification weight factor

T(j,i,G) Tweaked individual after the crossover operation in Differential Evoultion

V(j,I,G) The original Vector in Differential Evolution

Vri,G Vectors chosen randomly out of the Differential Evolution’s population

X(j,i,G) The output vector of the Differential Evolution’s mutation operation

Xi,G Tweaked individual after the Differential Evolution’s mutation operation

vii

LIST OF ABBREVIATIONS

BDEFS Binary Differential Evolution Feature Selection

CEC 2015 Congress on Evolutionary Computation

CFS Correlation-based Feature Selection

Cr Crossover rate

DE Differential Evolution

DED Enhanced Differential Evolution

EDEFS Enhanced Differential Evolution Feature Selector

f1…f15 function1…function15 in the CEC 2015 benchmark

FES Function Evaluation Times

FRFS Fuzzy-rough Feature Selection

FS Feature Selection

KD Knowledge Discovery

k-NN k Nearest Neighbor

PCFS Probabilistic Consistency-based Feature Selection

PCR Probability of Crossover Rate

POP Population

RFS Random Feature Selection

RIDEFS Random Indexed Differential Evolution Feature Selection

viii

LIST OF FIGURES

 Page

Figure 1.1 Knowledge Discovery process [16] .. 4

Figure 1.2 Filter model [27] ... 6

Figure 1.3 Wrapper model [27] .. 6

Figure 1.4 Pseudocode of standard DE [3]... 8

Figure 1.5 k Nearest Neighbor classifier. (A) when k equal to 1; (B) when k equal

to 4 [45] ..10

Figure 2.1 Pseudocode of the EDE algorithm, Bold lines represent the changes 12

Figure 2.2 Function 1 results .. 16

Figure 2.3 Function 2 results .. 17

Figure 2.4 Function 3 results .. 17

Figure 2.5 Function 4 results .. 18

Figure 2.6 Function 5 results .. 18

Figure 2.7 Function 6 results .. 19

Figure 2.8 Function 7 results .. 19

Figure 2.9 Function 8 results .. 20

Figure 2.10 Function 9 results .. 20

Figure 2.11 Function 10 results .. 21

Figure 2.12 Function 11 results .. 21

Figure 2.13 Function 12 results .. 22

Figure 2.14 Function 13 results .. 22

Figure 2.15 Function 14 results .. 23

Figure 2.16 Function 15 results .. 23

Figure 2.17 Example of the assigned variables to each individual in population 24

Figure 2.18 Four individual’s values after the initialization step 27

Figure 2.19 Input and Output of the sorting operation ... 27

Figure 3.1 Pseudocode of the Binary Feature Selection .. 37

Figure 3.2 The pseudocode of the Random Feature Selection 38

Figure 3.3 The pseudocode of the Random Indexes DEFS 40

ix

LIST OF TABLES

Page

Table 2. 1 Functions of the CEC2015 .. 13

Table 2. 2 Results of comparing the stander DE algorithm and the Enhanced DE

algorithm using 10 dimensions, 20 individuals, and 500 function

evaluations on CEC 2015 test bed. Smaller values are better................. 14

Table 2.3 The output of EDEFS with Wine dataset by using k-NN 29

Table 2.4 The indexes of each case in table 2.2 ..30

Table 3.1 Details about the high-dimensional datasets ... 32

Table 3.2 The result of implementing EDEFS on high dimensional data 33

Table 3.3 Details about the small-scale datasets ... 34

Table 3.4 Implementing EDEFS on datasets with 1-NN .. 35

Table 3.5 The group of datasets to test BDEFS and EDEFS 36

Table 3.6 The group of datasets to compare RFS and EDEFS 38

Table 3.7 The group of datasets to compare RIDEFS and EDEFS 39

x

ABSTRACT

A METAHEURISTIC OPTIMIZATION TECHNIQUE FOR

FEATURE SELECTION

Muneer Maaroof HASAN

Department of Computer Engineering

MSc. Thesis

Adviser: Assistant Prof. Dr. Oğuz ALTUN

In Knowledge Discovery (KD) one of the problems we face is unrelated data. Unrelated

data causes performance reduction when attempting to learn or draw insights from the

original data. There are several ways to remove unrelated data, and one of them is

Feature Selection (FS). FS aims to select features that represent the original data in a

relevant and understandable way. There are many ways to select features. This thesis

provides an approach to implementing a stochastic algorithm as a feature selector.

Differential Evolution algorithm is one of the popular metaheuristic algorithms, so we

will employ it as a feature selector. Results and comparisons show that our approach is

successful according to a comparison with two recent works in this field.

Key words: Differential Evolution, Expensive Optimization, Feature Selection,

CEC2015, Metaheuristic, Binary Optimization

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

xi

ÖZET

ÖZELLİK SEÇİMİ İÇİN SEZGİSEL OPTİMİZASYON

Muneer Maaroof HASAN

Bilgisayar Mühendisliği Bölümü

Yüksek Lisans Tezi

Danışman: Yrd. Doç. Dr. Oğuz ALTUN

Bilgi Keşfi sürecinde birçok problemle karşı karşıya gelinmektedir. Bu problemlerden

biri biri ise, birbiriyle ilişkisi olmayan, bağlantısız verilerdir. Bu bağlantısız verileri

ortadan kaldırmak için çeşitli yollar bulunmaktadır ve Özellik Seçimi onlardan biridir.

Özellik Seçimi'nin amacı, orjinal veriyi en iyi şekilde yansıtacak olan özellikleri

seçmektedir. Bu özellikleri seçmek için birçok kullanılabilir. Bu tezde bir stokastik

algoritmayı özellik seçicisi olarak kullanıyoruz.

Diferansiyel Evrim Algoritması, yaygın sezgisel optimizasyon algoritmalarından

biridir.. Bu yüzden Özellik Seçici olarak bu algoritma çalıştırılmıştır. Bu alanda son

zamanlarda yapılan iki çalışma ile kıyaslandığında yaklaşımımızın başarılı olduğu

görülmektedir.

Anahtar Kelimeler: Diferansiyel Evrim, Pahalı Optimizasyon, Özellik Seçimi, İkinci

Geliştirilmiş Diferansiyel Evrim Özellik Seçimi. CEC 2015

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

1

CHAPTER 1

INTRODUCTION

1.1 Literature Review

When mathematical conditions are met, there will be several applicable optimization

methods to solve the given problem. For example, linear programming is efficient when

the objective function is expressed as a decision variable [1]. In several cases, the

objective function is nonlinear. Therefore, the non-linear programming will be

applicable. In practice, usually and unfortunately many problems include more

complications. As a result, these classical methods cannot be used [1]. Metaheuristic

algorithms have been designed to solve these kinds of problems [2].

There are several problems that have no clear results or the output is unpredictable.

These kinds of problems are explained with the term” you know it when you see it” [3].

That means the optimal solutions are hard to find from the first sight at the problem or

in the first iteration of a solution algorithm.

Feature Selection is considered as a multi-objective problem [4] and also considered as

one of the “you know it when you see it” problems [3]. We can conclude that

metaheuristic algorithms are able to solve it successfully.

Many metaheuristic algorithms have been applied to solve the feature selection

problem. The applied algorithms are mostly binary algorithms, for example Genetic

algorithm [5]. Also, there are many researchers trying to make the Differential

Evolution algorithm works on binary space just to employ it as a feature selector, for

example Chen et al. [6]. Moreover, Particle Swarm algorithm also has a binary version

that is employed on feature selection problem [7]. Finally, this thesis tries to represent

the feature selection problem in real domain not in binary domain.

2

The recent works on a metaheuristic approach for feature selection can be categorized

into two. The first category implements the given algorithm, for example Differential

Evolution, on a high-dimensional dataset, e.g. Boldt et al. [8]. The second category

cares about small scale datasets, [9] being an example. In both cases, the accuracy of

learning is used to compare algorithms.

1.2 Objective of the Thesis

In this thesis, we will employ one of the metaheuristic algorithms, which is Differential

Evolution (DE), to work as a feature selector. Feature selection treated as a binary

optimization problem in many researches. This thesis presents a real approach for the

feature selection problem. The presented approach is a multi-objective optimization,

which is an enhanced version of the single objective optimization. The multi-objective

optimization helps in selecting few features and retaining solid learning accuracy as

well.

1.3 Hypothesis

The Second Chapter can be considered the core of this thesis. It explains the framework

that we used for evaluating algorithms.

The explanation in Chapter 2 starts by expressing the enhancing step on the DE

algorithm. In the next step, testing of the enhanced DE is explained. The main

framework and the workflow of the presented feature selection approach are explained

in this Chapter 2 as well.

There is a way to test any feature selection approach which is by implementing the

given approach on a benchmark of datasets. Then, the accuracy of learning will decide

whether the approach succeed or failed. For that reason, testing the new approach for

feature selection takes place by using group of datasets is explained in Chapter 3.

1.4 Motivation

Feature selection is one of the interesting filed, which considered as a pre-step for

learning. Many approaches for applying feature selection are available and one of them

is stochastic approach. When talking about the stochastic approach, it means there is a

metaheuristic algorithm working as a feature selector. Implementing a binary

metaheuristic algorithm, as a feature selector, is the popular approach nowadays.

3

Consequently, implementing a stochastic feature selection approach requires an

algorithm that works in binary search space efficiently. Almost all the new and the

robust algorithms work in real search space. As a result, there should be a way to apply

the real metaheuristic algorithms to work as a feature selector directly. This study

provides an efficient way to apply a real metaheuristic algorithms to work as a feature

selector. The results of testing and comparing with the recent work in this field show

how far this approach succeed.

1.5 Knowledge Discovery

Processing data is one of the main issues that we face nowadays. The amount of data we

have is huge. As a result, less information can be analyzed. Therefore, there are many

requests for automated systems to help humans with extracting useful knowledge from

data and making it understandable.

Knowledge discovery is also called information harvesting [10], data mining [11],

pattern discovery [12] and knowledge extraction [5]. Knowledge discovery tries to

make the data understandable to humans [13]. As the size of data grows rapidly, the old

approach, manual approach, of knowledge discovery process became a time-consuming

and expensive process [14] and Medical image analysis [15] is an example. Figure 1.1

illustrates the main processes of Knowledge Discovery.

High dimensional data sets are also a problem for automated systems. Search space and

the computational complexity increase exponentially by the problem dimensionality.

The Naïve assumption of “more features = more knowledge” leads to a problem known

as the curse of dimensionality [17]. This kind of problem occurs when irrelevant or

correlated data is collected when training data is built.

1.6 Feature Selection

Feature Selection (FS), or data-reduction in general, aims to find or select minimal

feature subsets out of many features in data while also taking accuracy into account

[18]. When we can remove the irrelevant and the redundant features [20], data

classification and text processing [21, 15] can benefit.

4

Figure 1.1 Knowledge Discovery process [16]

Feature Selection is a preparation step for data mining. We need to know the overall

comparison for the following parameters to analysis and understand the importance of

feature selection:

1. Computing Time: The result of the data - reduction process can reduce the time

taken for data mining, or data learning algorithm; and

2. Predictive/Descriptive Accuracy: We expect by using only relevant features, the

learning algorithm learn with higher accuracy;

Recent works, in developing the FS methods, focus on the whole feature subsets

forming an alternative approach to the feature selection operation. Techniques such as

fuzzy-rough FS (FRFS) [22], probabilistic consistency-based FS (PCFS) [23], and

correlation-based FS (CFS) [24], also called population-based approach, are often

collectively classified as the filter-based techniques. Typically, population-based

approaches are independent of any learning algorithm. On the other hand, wrapper-

based [25] and hybrid algorithms [26] are used with learning algorithm, which are

employed in place of an evaluation metric as used in the filter-based approach.

Interpretation

Patterns

Raw data

Screening

Target data

Cleaning

Processed data

Reduction

Reduced data

Mining

Knowledge

5

Now, what is the output of a feature selection operation? The answer will be illustrated

in the next four points:

1. less data which leads to learning faster;

2. higher accuracy that the model can generalize better from the data;

3. simple results that easier to understand and use; and

4. fewer features.

1.7 Feature Selection Measure

The concept of optimality for any given feature subset is multiple, which means we

have to focus on two objectives. The first one is the quality: e.g. how well it encloses

the information contained within the original full set of features. The second one is the

size: less features are better. Due to these two objects, the feature selection process can

be formulated a “multi-objective optimization” problem.

There are three approaches for modelling a feature selection operation: the first one is

the Filter model, the second one is the Wrapper model, and the third one is the

Embedded model [27]. The basic difference between these three models is how the

algorithm evaluates the selected features. The selection of features in a Filter model is

done without trying to optimize the quality of any learning algorithm directly. The

Filter model is simply using an ad hoc function and implementing exhaustive search.

The Wrapper model selects group of features and then evaluates the quality based on

the learning algorithm [27]. This means a learning algorithm runs in each function

evaluation and that is why Wrapper model considered as a time-consuming model. The

Wrapper model is an example of so-called “expensive optimization”. The mechanisms

of Filter and Wrapper models are given in Figures 1.2 and 1.3 respectively.

Finally, in the Embedded model, the advantages of both Filter and Wrapper models are

gained. The feature search and the learning algorithm is incorporated into a single

optimization problem formulation in Embedded model [27].

6

Figure 1.2 Filter model [27]

Figure 1.3 Wrapper model [27]

Feature

generatio

n

Measuring
Subset Full set

Feature

generation

Learning

Algorithm

Subset Full set

Training data

Good?
Accuracy

Training data

No

Learning

Algorithm

yes

Training data

Best subset

Testing data

Testing
Classifie

r

Accuracy

Good?
Or

stop?

Measurement

No

Learning

Algorithm

yes

Training data

Best subset

Testing data

Testing
Classifie

r

Accuracy

7

1.8 Differential Evolution as an Evolutionary Algorithm

Differential Evolution (DE) algorithm is a nature inspired optimization algorithm [3]. It

is a population-based algorithm and it was developed for searching in continuous

domains [28]. It has been implemented on many real-world problems like image

processing [29], feature selection [4], and pattern recognition [30]. Figure 1.4 shows the

pseudocode of the standard Differential Evolution algorithm.

We tested Differential Evolution, and its Enhanced version that we developed, on all the

15 test functions of the well-known test bed used in Congress on Evolutionary

Computation 2015 (CEC2015) [31].

The performance of DE is controlled by two parameters, mutation factor (also called

amplification weight factor) and crossover probability (also called Probability of

Crossover Rate (PCR)) [32]. There are many types of research about how to set the

parameters for DE but till now there is no distinct relation between search space and

settings of DE’s parameters [33].

Sometimes, during the executing, DE stops generating diverse solutions. In a way, it

stops tweaking its population’ individuals. This situation is called stagnation [34].

Usually, this stagnation problem happens when the algorithm is stuck in some local

optima. Lou et al. [35] solves this problem by letting the parameters automatically

change their value to get out of local optima.

The point of enhancing the DE algorithm is firstly to improve the performance of

choosing the optimal individual. The second reason is to reduce the computational time

needed when we use the DE algorithm on a Feature Selection problem. After we tested

the new enhanced versions, we noticed that the enhanced version of DE is faster than

the standard version. For that reason, we will employ the enhanced version for feature

selection operation, and that will reduce the time of overall operation.

8

DIFFERENTIAL EVOLUTION ALGORITHM

P ← Is an empty desired population

popsize ← Is the size of the population P

PCR = 0.7 ← Is the Crossover Rate

α ← Is a random vector, commonly between 0.1 and 0.5

Best = 0 ← Is the best solution

FES = 1000 ← The Function Evaluation Times

 For i = 1 to popsize do

 Pi = new random individual

 If Fitness(Pi) > Best

o Best = Fitness(Qi)

 Repeat

 For Iteration = 1 to FES do

 For each individual Pi ∈ P do

 A ← copy of a random individual

 B ← copy of a random individual

 C ← copy of a random individual

 T = A + α (B-C)

 For j =1 to Size(Pi)

 𝐗(𝐣) = {
𝐓(𝐣) 𝐢𝐟 𝐫𝐚𝐧𝐝 [𝟏, 𝟎] ≤ 𝐏𝐂𝐑

𝐏𝐢(𝐣) 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 Repeat

 If Fitness(X) > Fitness(Pi) then

 Pi = X ← Replace the parent with the kid

 If Fitness(Pi) > Fitness(Best) then

o Best = Pi

 Repeat

 Until Best is the ideal solution or we ran out of time

 Return Best

Figure 1.4 Pseudocode of standard DE [3]

1.8.1 The Initialization Step

The first step of DE is initializing the population. Every population-based stochastic

algorithm starts with random numbers to fill out its population. Calculating the quality,

or so-called fitness, of the candidate solutions takes place for one time in the

initialization step.

9

Starting with good candidates improves the performance and saves computational

resources [36]. However, it is almost impossible to know the best values for the initial

population when trying to work with black-box optimization. Consequently, the

techniques to generate uniform distributed random numbers are used to initialize the

population of DE.

1.8.2 The Mutation Operation of Differential Evolution

In Mutation, DE randomly selects three candidates out of the population. Then uses

these candidates to tweak the current solution, or the individual. There are different

possible schemes for doing this, e.g. DE/rand/bin [40]. The Mutation operation is

controlled by an amplification weight factor that lies between 1 and 0. The formula

(1.1) shows the DE/rand/bin mutation scheme.

𝑋𝑖, 𝐺 = 𝑉𝑟1, 𝐺 + 𝐹 (𝑉𝑟2, 𝐺 – 𝑉𝑟3, 𝐺) (1.1)

In equation (1.1), 𝑋𝑖, 𝐺 is the tweaked individual after the mutation operation,

𝑉𝑟1, 𝐺, 𝑉𝑟2, 𝐺 , and 𝑉𝑟3, 𝐺 are vectors chosen randomly out of the population and F is

an amplification weight factor.

1.8.3 The Crossover Operation of Differential Evolution

The crossover operation comes after the mutation operation. It takes the output of the

mutation and the current individual as inputs parameters. The crossover operation is

controlled by a parameter which is called Crossover Rate (Cr). As we see in formula

(1.2), the crossover operation is simply a probability kind of operations. The new child

is considered as a mixed vector. The values of the child are a mix of both the current

individual and the output of the mutation operation values.

𝑻(𝒋, 𝒊, 𝑮) = {
𝑿(𝒋, 𝒊, 𝑮) 𝒊𝒇 𝒓𝒂𝒏𝒅 [𝟏, 𝟎] ≤ 𝑪𝒓

𝑽(𝒋, 𝒊, 𝑮) 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (1.2)

Where T is the tweaked individual after the crossover operation. X is the output of the

mutation operation. V is the current individual (out of the population) used to generate a

child by implementing the mutation and the crossover operation. And where rand [1,0]

is a function that generates a random number between 0 and 1.

10

1.9 k NEAREST NEIGHBOR (k-NN)

k Nearest Neighbor or k-NN classifier determines the decision boundary locally [27]. If

the k was equal to 1, the new sample will be assigned to its closest neighbor’s class as

shown in Figure 1.5 (A). Assume we have classes as in figure 1.5 (+ and −) in our

training data, the new sample (?) would be labeled with the class of its closest neighbor.

The (?) sample will be even + or − according to its distance from them. 1-NN classifier

is not a very robust methodology [27]. When k is greater than 1, the new sample will be

assigned to the majority class of its k closest neighbors. An example for k = 4 is given

in Figure 1.5 (B). k-NN classifier for k > 1 is more robust, as results, larger k means the

lowest noise in classification.

k-NN keeps all samples in the training set. When the new sample came to be classified

then it will be compared with the values and labels that already learned from the

training. This reason makes k-NN called as a memory-based learning.

(A)

(B)

Figure 1.5 k Nearest Neighbor classifier. (A) when k equal to 1; (B) when k equal to 4

[45]

We used k-NN classifier as a fitness function, since we are trying to implement a

Wrapper model for feature selection. The advantage of k-NN being fast allows us to

increase the Function Evaluation Times (FES) for DE with remaining its fast work.

11

CHAPTER 2

ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM AND

EVALUATIONS

In this chapter, we discuss Differential Evolution (DE) algorithm and our

enhancements, our tests, and using enhanced versions of DE for feature selection.

Moreover, the initialization and the optimization for the framework will be presented in

details with an explanation about what is the new in our work. This chapter can be

considered the core of this thesis. It explains the framework that we used for evaluating

algorithms by starting with expressing the enhancing step on the DE algorithm. In the

next step, testing of the enhanced DE is explained. The main framework and the

workflow of the presented feature selection approach are explained in this chapter as

well.

2.1 Background About Feature Selection

As the amount of available data increases, the need for efficient technologies for

dimensionality reduction increased. Feature Selection (FS) methods achieve this by

finding minimal or close-to-minimal feature subsets. If the algorithm can maintain the

basic data semantics after feature selection process, the reduced data may be transparent

to human scrutiny. General speaking, FS involves two computational processes: Feature

subset evaluation process and Feature subset search process.

The studies in the literature [41] break down FS into smaller sub processes. Two of

these sub processes are feature subset generation (as we will discuss in Section 2.5.2)

and termination (as discussed in Section 2.5.4). Exceptional cases [42] exist where the

two parts are indifferentiable or inseparable.

12

2.2 The Enhanced Differential Evolution (EDE)

The enhancing on DE has been made on the mutation process to gain a fast

convergence. Since searching around the best solution leads to find the optimal

solution, fast convergence is achievable by selecting the right individual in each

iteration. In EDE, the best solution is tracked. If the best solution did not change for 10

times, the mutation scheme will be changed to DE/best/bin. And also, the crossover of

the DE will be changed from the normal one to the Two Points Crossover. In that way,

the new child will be a mix of some features (or genes) from the best solution and also

some of its own features. As a result, the desired change in the individual will be done.

ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM

P ← Is an empty desired population

popsize ← Is the size of the population P

α ← Is a random vector, commonly between 0.1 and 0.5

Best = 0 ← Is the best solution

FES = 1000 ← The Function Evaluation Times

 For i = 1 to popsize do

 Pi = new random individual

 If Fitness(Pi) > Best

o Best = Fitness(Pi)

 Repeat

 For Iteration = 1 to FES do

 For j =1 to popsize do

 A ← copy of a random individual

 B ← copy of a random individual

 C ← copy of a random individual

 If I >11 && Best(Iteration-1) = Best(Iteration-11)

o T= Best(Iteration-1) + α (B-C)

 Else

o T = A + α (B-C)

 R1 = rand [1, Size(Pj)]

 R2 = rand [1, Size(Pj)]

 X=Pj

 X(from R1 to R2) = T(from R1 to R2)

 If Fitness(X) > Fitness(Pj) then

 Pj = X ← Replace the parent with the kid

 If Fitness(Pj) > Fitness(Best(i-1)) then

o Best(i) = Pi

 Repeat

 Until Best is the ideal solution or we ran out of time

 Return Best

Figure 2.1 Pseudocode of the EDE algorithm, Bold lines represent the changes

13

The Two Points Crossover means choosing two random points on the vectors. Then,

exchange the features that lies inside the two point of the two vectors. Figure 2.1 shows

the pseudocode of the EDE and shows how the two mutation operations take place in

the main procedure.

2.3 Testing the Enhanced and the Standard Versions of Differential Evolution

The performance of the standard and the enhanced versions of DE are tested by using

the fifteen computationally expensive single objective functions, which are presented in

the Congress on Evolutionary Computation 2015 [31]. Two of the functions are

unimodal, three of them are simple multimodal, other three of them are hybrid, and the

rest are composition functions. Table 2.1 illustrates the fifteen function with their range

of search and the global optima.

Table 2. 1 Functions of the CEC2015

Group No. No Function name Range Fi
*

Unimodal Functions
1

Rotated High Conditioned

Elliptic Function
[-100,100]

100

2 Rotated Cigar Function [-100,100] 200

Simple Multimodal

Functions

3
Shifted and Rotated Ackley’s

Function

[-100,100] 300

4
Shifted and Rotated Rastrigin’s

Function

[-100,100] 400

5
Shifted and Rotated

Schwefel’s Function

[-100,100] 500

Hybrid Functions

6 Hybrid Function 1 (N=3) [-100,100] 600

7 Hybrid Function 2 (N=4) [-100,100] 700

8 Hybrid Function 3(N=5) [-100,100] 800

Composition Functions

9 Composition Function 1 (N=3) [-100,100] 900

10 Composition Function 2 (N=3) [-100,100] 1000

11 Composition Function 3 (N=5) [-100,100] 1100

12 Composition Function 4 (N=5) [-100,100] 1200

13 Composition Function 5 (N=5) [-100,100] 1300

14 Composition Function 6 (N=7) [-100,100] 1400

15
15 Composition Function 7

(N=10)

[-100,100] 1500

We tested our work by setting the solution dimensionality to 10D and allowed 500

function evaluations (FES), as we are simulating an expensive optimization (e.g. as if

each function evaluation is the result of a classification experiment).

The results compare the best, standard deviation, time and median for the two

algorithms as shown in Table 2.2. The experiment results are for 30 times with random

14

initialization. That means the best, standard deviation, and median values in Table 2.2

are an average of 30 iterations with random start points.

Table 2. 2 Results of comparing the stander DE algorithm and the Enhanced DE

algorithm using 10 dimensions, 20 individuals, and 500 function evaluations on CEC

2015 test bed. Smaller values are better.

Function

No.

Algorithm

Name

Mean Standard

Deviation

Median Time in second

F1
DE 18256110 52481237 452535.9 2.686

EDE 12940039 48353826 251833.1 2.544

F2
DE 13975.83 7670.185 12410.56 2.700

EDE 10741.48 6147.09 9289.593 2.689

F3
DE 302.0908 1.694143 301.8833 3.723

EDE 301.6306 1.355487 301.4214 3.599

F4
DE 481.1714 104.5238 424.9232 2.775

EDE 449.0032 61.02273 409.8091 2.563

F5
DE 501.5076 0.311221 501.4579 3.646

EDE 501.417 0.259725 501.4118 3.202

F6
DE 600.2274 0.215809 600.1958 2.692

EDE 600.1949 0.090044 600.1667 2.670

F7
DE 700.4289 0.574207 700.2947 2.626

EDE 700.3191 0.139404 700.2862 2.596

F8
DE 801.6431 0.672089 801.6779 2.829

EDE 801.4711 0.61487 801.3187 2.613

F9
DE 902.8359 0.397755 902.8248 2.800

EDE 902.8456 0.38164 902.9181 2.574

F10
DE 5170.448 3803.941 3845.374 2.768

EDE 4469.002 2987.391 3909.215 2.761

F11
DE 1102.974 1.126325 1103.076 2.883

EDE 1102.561 0.893995 1102.228 2.958

F12
DE 1240.118 11.90536 1238.472 2.819

EDE 1238.064 14.23116 1232.238 2.845

F13
DE 1526.978 13.06892 1522.065 3.044

EDE 1522.927 11.67048 1518.95 2.796

F14
DE 1585.507 29.45875 1600.66 3.140

EDE 1568.094 37.17384 1600.231 2.674

F15
DE 1868.769 36.50787 1873.231 4.149

EDE 1857.414 40.12524 1861.926 3.962

As obvious in Table 2.2, since the problems are minimization problems, the algorithm

with the lowest mean value is better than the others. No algorithm seems to be the best

all the time. The results imply that in general 6.67% of the time, DE performs better

than the EDE in terms of time and the optimization result. In addition, 93.3% of the

time EDE performs better than the DE in terms of optimization result.

15

Table 2.2 shows that in Unimodal functions (f1 and f2), in Simple Multimodal

Functions (f3, f4, and f5), and in Hybrid Functions (f6, f7, and f8), the EDE was better

than the standard DE in both time and optimization results.

Finally, for composition functions (f9, f10, f11, f12, f13, f14 and f15), the time is nearly

uniformly distributed between EDE and DE. Overall, it can be deduced that EDE

performs better than the standard DE. EDE can reach the optimal and it requires less

computation time most of the time.

2.4 Enhanced Differential Evolution Feature Selector (EDEFS)

Feature selection is a slow process so it needs a fast algorithm to reduce the executing

time. By testing the performance of the two versions of DE algorithm, EDE showed

good results with less computation time. Therefore, applying the EDE as a feature

selector is more suitable than applying DE.

The EDEFS is a new FS approach based on EDE, a simple and powerful optimization

technique. It guaranties a good accuracy of learning with high dimensional datasets.

The fixability of DEDEFS allows to use any fitness function such as CFS, PCFS, and

FRFS. Also, it can use any given classifier accuracy or error rate as a fitness of the

given subset feature. According to the enhancements in the EDE, EDEFS can escape

from the local optima and can find multiple feature subsets quality.

For representing the data, each individual in the population represents an index vector.

The index vector is a vector which its values represent the location of the features in the

raw data. We only save the best individual and its fitness value in every iteration when

we use the basic DE. In several cases, there will be two different feature subsets with

the same accuracy and different number of features. Since we are searching for less

number of features with high accuracy, we assume that high accuracy and less number

of features is better than the other one. By holding the best accuracy for each individual,

we will be able to choose the subset with few features and high accuracy.

For optimizing the population size of EDE, we tested the performance of EDEFS with a

slight change in population size in each time. The testing started with 10

individuals…till 50 individuals. The results showed that only 20 individuals are enough

to get acceptable accuracy.

16

For optimizing the FES for the EDEFS, when we were testing the performance of DE,

and EDE, we have seen the results of EDE converge at the 50th FES for 7 functions.

The Figures 2.2to2.16 shows the performance of EDE with 20 individuals and 500 FES

on all the 15 functions in CEC2015.

Figure 2.2 Results of Function 1

17

Figure 2.3 Results of Function 2

Figure 2.4 Results of Function 3

18

Figure 2.5 Results of Function 4

Figure 2.6 Results of Function 5

19

Figure 2.7 Results of Function 6

Figure 2.8 Results of Function 7

20

Figure 2.9 Results of Function 8

Figure 2.10 Results of Function 9

21

Figure 2.11 Results of Function 10

Figure 2.12 Results of Function 11

22

Figure 2.13 Results of Function 12

Figure 2.14 Results of Function 13

23

Figure 2.15 Results of Function 14

Figure 2.16 Results of Function 15

24

As we demonstrated in Figures 2.2…2.16, the EDE gets stable at the 50th FES. We also

notice that EDE was better than the basic DE, as we have seen in Table 2.2. Now it

became clear that EDE got that preference by using only fifty FES out of its 500 FES!

The results tell us to set the number of iteration of EDEFS to only 50.

2.4.1 Key Notions

In this section, we will explain what the parameters of EDE means in our EDEFS

approach.

Number of elements on an individual solution, or individual’s size, is equal the number

of features in the raw data. The number of individuals in the EDE represents the number

of cases that our approach will find (assuming we have 20 individuals, we get 20 cases).

The Best individual represents the highest accuracy with N number of features.

We also assigned two variables to every individual in the EDE. The first variable holds

the best values of the given individual along the process lifecycle. The second one will

hold the accuracy (the fitness) of the value in the first assigned variable. In this way, we

will have a number of best values equal to the population size.

3 9 8 6 10 7 22 1 4 30 27 5 20

The first variable

80%

The second

variable

Figure 2.17 Example of the assigned variables to each individual in population

Note: The size of the first variable is not fixed. We will see how that size changes on

every iteration during its lifecycle in Section 2.4.3. Just to make it more clear, the

reason behind changing the size is to get as fewer features as possible.

2.4.2 Initialization

This section talks about the first step of the EDEFS lifecycle. We will also talk about

what is the new with our approach and how it helps.

As we mentioned in Section 1.8.1, in the initialization step, the solutions should be

filled with random numbers. Many metaheuristic approaches for Feature selection

depend on representing the features with a binary vector. In this approach, the “1”

25

values mean that features are participating in the selected subset, whereas the “0” means

the feature is not included in the selected subset.

The convergence rate with binary approach weaker than if it was in real [6]. The new

idea in our approach is to not make the values in the representing vector zeros and ones.

We initialize the EDE with a real number between any two boundaries. In that way, the

mutation and the crossover operations are going to work better. For these reasons, we

worked on making the EDEFS works with real values rather than binary.

Firstly, each individual in the population is filled with random values between any

given boundaries. For example, between 5 and -5. Then the fitness of every individual

will be calculated and saved in the second assigned variable. The first assigned variable

of the given individual will be holding the indexes values of the initializing step. In

each iteration of the initialization, the best value will be checked and saved in a variable

which is called BEST.

The indexes values will be explained clearly in Section 2.4.3 and we will see how it

plays a good role in our work.

Note: the first and the second assigned variables have been explained in details in

Section 2.4.1 and Figure 2.17 shows an example of their values.

2.4.3 Work Flow

In this section, we will express the workflow of EDEFS in details to make it easy to

understand. We will make the explanation in steps to make it easier to read. Also, we

will provide samples of all the variables in our work at several steps so the reader can

follow the changing in values step by step. Let us take the Wine dataset (which has 13

features, 178 instances, and 3 classes [43]) as an example and try to implement the

EDEFS on it. Figure 2.18 demonstrates the pseudocode of the EDEFS algorithm.

26

Function Fitness(X) // function to calculate the accuracy of learning

{

D = Data(:,X) // extract only the desired features

Training=10-fold(D) // split the data into train and test by using 10-fold method

Testing=10-fold(D)

Accuracy=kNN(Training , Testing) // calculate the accuracy of learning using kNN

Return (Accuracy)

}

popsize = 20

The parents size = number of features in the given dataset (Data)

For i =1 to 20 do

 P(i)= rand([1,number of features in the given dataset (Data)],[-5,5])

Repeat

For i = 1 to 50 do

 For j =1 to popsize do // 20 parents chosen for popsize

 A ← copy of a random individual

 B ← copy of a random individual

 C ← copy of a random individual

 If i >=11 && Best(i-1) = =Best(i-11)

 T= Best(i-1) + α (B-C)

 Else

 T = A + α (B-C)

 R1 = rand [1, Size(P(j))]

 R2 = rand [1, Size(P(j))]

 X=P(j)

 X(from R1 to R2) = T(from R1 to R2)

 [~,Y] = sort(X) // takes the indexes of the new child after sorting it

 Z= Y (from 1 to rand [1, Size(P(j))) // take the values from the first

 till a random value

 If Fitness(Z) > Fitness(P(j))

 P(j) = Z // Replace the parent with the kid

 If Fitness(P(j)) > Best(i-1) then

 Best(i) = P(j)

 Repeat

Repeat

Return (Best)

Figure 2.18 The pseudocode of the EDEFS algorithm

The First step: the population of EDE, the twenty individuals, will be filled randomly

between any two given boundaries. We used -5 and 5 as the two boundaries to the

initialization step. In this step, the values of every individual will be assigned using

continuous uniform distribution.

Since the number of features in Wine dataset is 13, then the individual's size will be 13

as well, as we explained that in Section 2.4.1. Figure 2.18 gives an example of four

individuals, out of twenty individuals in our population, values after the initialization

step.

27

-0.13 -0.64 -0.53 -1.93 0.085 0.107 3.176 2.948 1.443 -1.21 3.115 0.328 -1.49

3.243 4.826 2.302 -1.56 0.840 -3.92 4.063 3.796 3.177 -2.39 0.943 -4.77 -0.74

3.147 4.057 -3.73 4.133 1.323 -4.02 -2.21 0.468 4.575 4.648 -3.42 4.705 4.571

2.688 -3.32 3.619 4.898 0.144 3.842 0.880 -3.45 -3.00 -0.93 2.487 3.255 2.899

Figure 2.19 Four individual’s values after the initialization step

In this step, the fitness values for every individual will be calculated and saved in the

second assigned variable. Also, the best value will be calculated and saved in the BEST

variable.

The Second step: after the initialization step, we will get into the main EDE loop. Every

individual in our population will pass through the mutation and the crossover

operations. The output of the mutation and the crossover operation will represent a new

child. We will sort the values of the new child. Then we will take the indexes of the

sorting operation.

The output of the sorting operation represents the indexes of the individual values after

the sorting operation. Figure 2.19 shows an example of the values of an individual and

the output after implementing the sorting operation.

-0.13 -0.64 -0.53 -1.93 0.08 0.10 3.17 2.94 1.44 -1.21 3.11 0.328 -1.49

An individual’s values / Input vector

4 13 10 2 3 1 5 6 12 9 8 11 7

The output of the sorting operation / Output vector

Figure 2.20 Input and Output of the sorting operation

After taking the output vector of the sorting operation, the output represents the indexes

of the features in the Wine dataset. Which means, the 4 value (in the output vector in

Figure 2.20) represents the 4th feature in the Wine dataset and the 13 value represents

the 13th feature…etc.

The Third step: The indexes of the features are available in this step. Now, we are about

to decide how many features we should pick. If we want our EDEFS to select fixed

number of the features, for example N, then we should pick N number of values out of

the indexes vector in each iteration. For example, assume N=5 then the values

4,13,10,2, and 3 (of the output vector in Figure 2.20) will be selected.

28

As we previously mentioned in Section 1.7, feature selection cares about how many

features to be selected. And also, we mentioned that fewer features with high accuracy

are better than more features with the same accuracy. That leads us to not fix the

number of features to be picked out of the indexes vector. For this reason, we made a

randomized value to the number of features that we pick in each iteration.

The Fourth step: we mentioned in Section 1.9 that we will use k-NN classifier or

Decision Tree classifier accuracy as a fitness function.

The Fifth step: after we sent only the given features to the classifier, we will divide it

into training and testing data. We used K-fold cross validation method to separate the

data into training and testing sets. We use K=10.

The values that have been picked out of the indexes vector will be saved in the first

assigned variable.

The accuracy value will be compared with the old value which already saved from the

first step. If the accuracy of this new child is higher than the parent’s value, then we will

replace the parent with the new child. Also, the values of the two assigned variables will

be replaced with the new values.

The Sixth step: if the stop criteria are achieved then we will stop and go to the final step

(Section 2.5.4), if not then we will go back to The Second Step.

2.4.4 Final Step and Showing Results

When the stop criteria in the main loop of EDE achieved, we will only have to know the

highest accuracy that we found. In the beginning of Section 2.4, we were talking about

the problem when we have the same accuracy with a different number of features. And

also, explained that less number of features with high accuracy is better than large

number of features with the same accuracy. We solved this problem by viewing the

number of features with the accuracy of that given features. As a result, we let the user

to decide which feature subset is the best.

The final result of the EDEFS is the final values of the two assigned variables for each

individual in the last version of the population. The highest accuracy will be saved in

the BEST variable. The output is represented by a structure array and each element

represents the indexes of the dataset. The number of elements in the structure variable is

29

20 because we have 20 individuals. Table 2.3 shows the output screen of EDEFS when

we implemented it on the Wine dataset by using k-NN classifier.

Table 2.3 The output of EDEFS with Wine dataset by using k-NN

INDIVIDUAL

NUMBER

NUMBER OF

FEATURES

ACCURACY

1 7 97.674

2 8 97.674

3 4 97.674

4 4 97.674

5 7 97.674

6 4 97.674

7 10 100

8 8 93.023

9 5 95.348

10 6 100

11 4 97.674

12 9 100

13 2 93.023

14 9 97.674

15 7 97.674

16 4 97.674

17 8 97.674

18 8 97.674

19 6 95.348

20 8 95.348

As we see from the output (Table 2.3), there are three cases with the highest accuracy

(100%). The three cases are 7, 10, and 12. In these cases, the accuracy is equal to 100%

but the number of features is different. That is why we should show this table to the

user to let him/her choice the best case. The 10th case probably the best because it has

the highest accuracy with the fewer number of features.

The indexes of the given features are available in a structure array and Table 2.4 shows

the values of that structure variable. Each case in Table 2.3 has its indexes in Table 2.4

with the same individual number. If we want to choose the 10th case in Table 2.3 then

we should go to Table 2.4 and select the 10th indexes that given in the indexes column.

30

Table 2.4 The indexes of each case in table 2.2

 INDIVIDUAL NUMBER THE INDEXES

1 [3,7,10,9,4,8,6]

2 [1,8,9,10,11,2,4,7]

3 [10,3,1,9]

4 [7,11,6,10]

5 [3,11,7,10,12,1,9]

6 [3,10,6,7]

7 [12,10,4,11,1,6,7,3,9,8]

8 [3,7,10,9,11,12,6,5]

9 [7,10,6,8,9]

10 [8,9,10,6,7,5]

11 [7,10,12,9]

12 [4,10,12,1,6,11,7,3,9]

13 [10,7]

14 [7,10,12,11,4,1,3,9,8]

15 [12,10,8,4,9,1,2]

16 [10,3,12,11]

17 [6,12,10,9,7,1,3,11]

18 [7,10,12,6,9,3,1,11]

19 [11,4,8,12,1,3]

20 [12,10,4,1,11,6,9,3]

31

CHAPTER 3

COMPARING EDEFS TO OTHER’S WORKS

This chapter talks about the results of implementing EDEFS on different datasets. We

have seen an example of the performance in CHAPTER 2. Now, we will see the

performance on high dimensional datasets. After we explained the framework of

EDEFS, now we have to see how far we succeed. The way to evaluate the successful is

by comparing with recent work in this field of studying. Many researchers worked on

implementing DE for feature selection. Some of them talk about how many features

selected while others talk about the accuracy of training. We selected two recent works.

The first work is [8] and the second one is [9]. The first work talks about high

dimensional datasets. The second one talks about small scale datasets.

3.1 Results of High Dimensional Datasets

To evaluate the performance of EDEFS on high-dimensional datasets, we have to

implement it on huge datasets. There are many high dimensional datasets available in

[43], [44], and [45]. We selected twenty (20) datasets with a number of features

between 2000 and 15009. Some of the twenty datasets are available at [46] and the rest

of them are available at [47]. Details about the twenty datasets are explained in Table

3.1.

The work in [8] is done by employing the 1-NN classifier as a fitness function. They

separate every dataset into train and test by using the 10-fold method. Since the 10-folds

are generated randomly, the results will have some randomness. We also used the 10-

fold cross validation method to separate our dataset into training and test/validation sets.

The training accuracy depends on the training data and the training data itself depends

on k-fold cross validation.

32

Table 3.1 Details about the high-dimensional datasets

No Dataset Name No of Classes No of sample No of feature
1 9_Tumors 9 60 5726
2 11_Tumors 11 174 12,533
3 14_Tumors 26 308 15,009
4 Brain_Tumor1 5 90 5,920
5 Brain_Tumor2 4 50 10,367
6 DLBCL 2 77 5,469
7 Leukemia1 3 72 5,327
8 Leukemia2 3 72 11,225
9 Lung Cancer 4 203 12,600
10 Prostate Tumor 2 102 10,509
11 SRBCT 4 82 2,308
12 Adenocarcinoma 2 76 9,868
13 Brain 5 42 5,597
14 Breast2 2 77 4,869
15 Breast3 3 95 4,869
16 Colon 2 62 2,000
17 Leukemia 3 38 3,051
18 Lymphoma 3 62 4,026
19 Nci 8 61 5,244
20 Prostate 2 102 6,033

As a result, the accuracy value will depend on the random value of k-fold. For that

reason, we take the accuracy as average of 10 iterations as in [8]. When we

implemented EDEFS on the datasets in Table 3.1, the settings of the EDEFS parameters

were as the following:

1. Population size = 20

2. Minimum boundary = -5

3. Maximum boundary = 5

4. Function Evaluation Times =50

We will compare our work in the concept of learning accuracy. As we mentioned lately,

we use k-NN as the classifier. In [8], they used only 1-NN as a fitness function. For that

reason, we are going to compare our work only by using 1-NN classifier. The work in

[8] optimized the parameters of their work. We also optimized our parameters. For that

reason, we will take the Table of results in [8] directly without setting the same

parameters. Table 3.2 showing the results of implementing EDEFS on the datasets in

Table 3.1 and compare it with [8] results.

33

In Table 3.2, Dataset name column contains the names of the twenty datasets. Full data

accuracy column contains the accuracy of implementing 1-NN on the whole data. SSFS

column contains the results of implementing the work in [8], Single Sequence Fast

Feature Selection for High-Dimensional Data (SSFS), on the datasets. EDEFS column

contains the results of implementing our work on the datasets. The highlighted value

means it is the best by comparing it with others.

Table 3.2 The result of implementing EDEFS on high dimensional data

No Dataset name No of

feature

Full data

accuracy

SSFS EDEFS

1 9_Tumors 5726 51% 63% 71.6667%

2 11_Tumors 12,533 82% 83% 90.0000%

3 14_Tumors 15,009 57% 58% 63.4375%

4 Brain_Tumor1 5,920 86% 89% 93.3333%

5 Brain_Tumor2 10,367 71% 85% 87%

6 DLBCL 5,469 86% 97% 98.3333

7 Leukemia1 5,327 89% 99% 98.2353%

8 Leukemia2 11,225 93% 98% 99.4444%

9 Lung Cancer 12,600 90% 95% 96.1224%

10 Prostate Tumor 10,509 77% 96% 86.4000%

11 SRBCT 2,308 92% 99% 97.3684%

12 adenocarcinoma 9,868 87% 95% 91.5789%

13 brain 5,597 75% 93% 87.7778

14 Breast2 4,869 62% 86% 71.5789%

15 Breast3 4,869 55% 78% 64.3478

16 colon 2,000 73% 94% 88.6667%

17 leukemia 3,051 98% 98% 100%

18 lymphoma 4,026 98% 100% 100%

19 nci 5,244 72% 82% 88.4615%

20 prostate 6,033 83% 96% 88.8000%

It is clear from Table 3.2 that our work has better results when the dataset has a high

number of features. For datasets No. 1 to 6, our work gets the best accuracy. By looking

at the details in Table 3.1, the dataset No. 1 to 4 has the highest number of features.

While for datasets from 10 to 16, SSFS has the highest accuracy. Datasets No. 10 to 16

has the lowest number of features. By considering this analysis of the results in Table

3.2, we can say that our work is better with high dimensional data.

We should notice that EDEFS always get higher accuracy than the full datasets. This is

the main idea of using feature selection process so we can say we successfully achieved

this principle. Moreover, the number of cases that EDEFS has the best result is more

34

than what SSFS has. After testing EDEFS on high dimensional data, now we need to

test our work on small scale datasets (datasets which have less than 100 features), to see

if it is able to get best results or not.

3.2 Results of Small Scale Datasets

Now we will try to implement our work (EDEFS) on a standard datasets benchmark.

The recent work on this kind of dataset is [9]. They use 12 datasets as a benchmark. 3 of

the datasets come with missing values so the training accuracy is lower than 50%. We

will not take them into account. All the 12 datasets are available in [43]. Table 3.3

illustrates the benchmarks in more details. In [9], they use 1-NN and Decision Tree as

classifiers. Firstly, we will compare our work in case we use 1-NN on the 9 datasets in

Table 3.3. Also, we will compare our work by using Decision Tree as a classifier.

Datasets in Table 3.3 have number of features between 60 and 13. Testing EDEFS on

this kind of datasets means we will test it on a small-scale dataset. We are trying to

prove that EDEFS is a general approach and it can be implemented on any size of data.

We mentioned in Section 3.1 that our EDEFS works better with high dimensional data.

In this section, we will prove that our algorithm is also able to deal with small-scale

datasets.

Table 3.3 Details about the small-scale datasets

No Dataset name Number of

samples

Number of

features

Number of

classes

1 Heart 270 13 2

2 Hepatitis 155 19 2

3 Ozone level detection 2536 73 2

4 Parkinson 195 22 2

5 Segmentation 2310 19 7

6 Sonar 208 60 2

7 Spectf 267 44 2

8 Wine 178 13 3

9 Wisc. prognostic breast

cancer
198 13 3

35

Table 3.4 shows the results of implementing EDEFS on the datasets in Table 3.3 by

using 1-NN. The random values of the 10-fold cross validation may effect on the

learning accuracy so taking average of number of accuracies is probably necessary. The

work in [9] is simply using 1-NN classifier and also using 10-fold cross validation to

separate the datasets without any consideration to the random values of the k-fold

method. We also used 1-NN without any consideration to the random values of the k-

fold method (without taking an average of number of accuracies). The parameters

settings for our work are as follow:

1. Population size = 20

2. Minimum boundary = -5

3. Maximum boundary = 5

4. Function Evaluation Times =50

Table 3.4 shows the result of implementing EDEFS on the datasets in Table 3.3 by

using only 1-NN and compare it with the results in [9]. In Table 3.4, MODE_FS is the

abbreviation of Multi-Operator Differential Evolution for Feature Selection.

Table 3.4 Implementing EDEFS on datasets with 1-NN

No Dataset names Full data

accuracy

EDEFS Accuracy MODE-

FS

1 Heart 75.27% 89.55% 92.48%

2 Hepatitis 74.39% 92.10% 81.49%

3 Ozone level detection 85.32% 97.47% 95.16%

4 Parkinson 94.95% 95.83% 99.21%

5 Segmentation 83.33% 97.95% 91.67%

6 Sonar 84.90% 98.03% 88.75%

7 Spectf 77.72% 89.39% 88.16%

8 Wine 96.93% 100% 97.47%

9 Wisc. prognostic breast
cancer

93.16% 87.50% 96.58%

The results of EDEFS in Table 3.4 are better than full data accuracy. This means our

work can be considered as a good feature selection approach for small scale datasets.

Also, we see in Table 3.4 that our work is better than MODE-FS in 6 datasets. These

results prove that EDEFS can also be used with small scale data.

36

3.3 Results of Comparing the Binary and the Real Differential Evolution FS

Feature Selection is treated as a binary optimization problem in most of the researches.

Since EDEFS is a real feature selection approach, there should be a comparison with a

binary approach to evaluate the performance as well. Firstly, a binary DE is presented

by using a V-shape transfer function as a mutation operation. The V-shape transfer

function helps to adapt any real metaheuristic algorithm to work in binary search space

or so-called discrete search space. Indeed, there are many differences in the main steps

of the BDE from the basic DE, for example in the initialization step. Figure 3.1 shows

the pseudocode of the binary feature selection approach, which is applied by using the

BDE. We applied the binary version of the Differential Evolution to work as a feature

selector. Figure 3.1 shows the pseudocode of the Binary Differential Evolution Feature

Selector (BDEFS).

We used group of datasets (illustrated in Table 3.5) to evaluate the performance of the

EDEFS and the BDEFS approach by using kNN as a fitness function and the parameter

sittings as the following:

1. Population size for both EDEFS and BDEFS = 20

2. Minimum boundary for EDEFS = -5

3. Minimum boundary for BDEFS = 0

4. Maximum boundary for EDEFS = 5

5. Maximum boundary for BDEFS = 1

6. Function Evaluation Times for both EDEFS and BDEFS =50

Table 3.5 The group of datasets to test BDEFS and EDEFS

No Dataset names Number of features BDEFS EDEFS

1 Heart 13 80.1493% 82.0896%

2 Hepatitis 19 83.9474% 85.7895%

3 Ozone level detection 73 96.0979% 96.9352%

4 Parkinson 22 92.7083% 90.8333%

5 Segmentation 19 92.0408% 92.4490%

6 9_Tumors 5726 68.3333% 71.6667%

7 11_Tumors 12,533 88.6842% 90.0000%

8 14_Tumors 15,009 65% 63.4375%

9 Brain_Tumor1 5,920 93.3333% 93.3333%

10 Brain_Tumor2 10,367 85% 87%

37

Function Fitness(X) // function to calculate the accuracy of learning

{

D = Data(:,X==1) // extract only the desired features

Training=10-fold(D) // split the data into train and test by using 10-fold method

Testing=10-fold(D)

Accuracy=kNN(Training , Testing) // calculate the accuracy of learning using kNN

Return (Accuracy)

}

popsize = 20

For i =1 to 20 do

 P(i)= rand([1,number of features in the given dataset (Data)],[0,1])

Repeat

For i = 1 to 50 do

 For j =1 to popsize do // 20 parents chosen for popsize

 X=P(j)

 A ← copy of a random individual

 B ← copy of a random individual

 C ← copy of a random individual

 For s=1 to Size(P(j))

 V = TransferFunction (mean(A(s),B(s),C(s)),P(j))

 if rand [0,1] > V

 X(s)=X(s)’ //if X(s)=1 then X(s)’= 0 and vice versa

 Repeat

 Child = TwoPointsCrossover(X , P(j))

 If Fitness(Child) > Fitness(P(j))

 P(j) = Child // Replace the parent with the kid

 If Fitness(P(j)) > Best(i-1) then

 Best(i) = P(j)

 Repeat

Repeat

Figure 3.1 Pseudocode of the Binary Feature Selection

3.4 Results of Comparing the EDEFS with Random Feature Selection

Random Feature Selection is one of the exist approaches for feature selection. It all

depends on the randomness and also uses a learning algorithm to evaluate the accuracy

of learning for the selected features subsets. The experiment results showed that EDEFS

is a good approach compared with the stochastic approach, even binary or others. To

make sure that EDEFS is better than the random feature selection, we applied and

compared one of the random feature selection approaches by using a group of datasets.

Figure 3.2 shows the pseudocode of the Random Feature Selection (RFS) and Table 3.6

shows the group of datasets.

38

Function Fitness(X)

{

D = Data(:,X)

Training=10-fold(D)

Testing=10-fold(D)

Accuracy=kNN(Training , Testing)

Return (Accuracy)

}

LoadData(X)

S = Size(X) // S is the number of features in the given data

Indexes = [0] // initialize the variable which will hold the indexes

Best=0

For i = 1 to 1000 do

 N = random [1 , S] //Chose the number of feature to be selected

 Features = random (N , [1, S]) // Chose the N features indexes

 Accuracy = Fitness(Features)

 if Accuracy > Best

 Best = Accuracy

 Indexes = Features

Repeat

Return(Indexes)

Figure 3.2 The pseudocode of the Random Feature Selection

Table 3.6 The group of datasets to compare RFS and EDEFS

Datasets name No of Features Whole data RFS EDEFS

Adenocarcinoma 9868 87% 91% 95%

brain 5597 75% 87% 93%

Sonar 60 84.90% 89% 98%

Breast2 4869 62% 71% 86%

39

3.5 Results of Comparing the EDEFS with Random Indexes DEFS

It is clear, from the experiment results and from the caparisons with the recent works,

that EDEFS is able to achieve high accuracy. Regarding these claims, only one test is

remaining. This test is simply by using the DE but with initializing its population with

the indexes of the features! The population also passes through the mutation and the

crossover operations but there is an additional operation after them. The additional

operation is rounding the values of the new child to be between 1 and the number of

features.

Figure 3.3 shows the pseudocode of the Random Indexes DEFS (RIDEFS) and

illustrates the main steps. We also used a group of datasets (datasets in table 3.7) to test

and compare the EDEFS with the RIDEFS.

Table 3.7 The group of datasets to compare RIDEFS and EDEFS

Datasets name No of Features Whole data RIDEFS EDEFS

Adenocarcinoma 9868 87% 91% 95%

brain 5597 75% 87% 93%

Sonar 60 84.90% 89% 98%

Breast2 4869 62% 71% 86%

Obviously, EDEFS still a good approach by comparing with the available approach. All

the testing approved that EDEFS is applicable and acceptable to be used with high or

small scale datasets.

40

Function Fitness(X) // function to calculate the accuracy of learning

{

D = Data(:,X==1) // extract only the desired features

Training=10-fold(D) // split the data into train and test by using 10-fold method

Testing=10-fold(D)

Accuracy=kNN(Training , Testing) // calculate the accuracy of learning using

kNN

Return (Accuracy)

}

popsize = 20

NumerOfFeatures = Size(Data)

For i =1 to 20 do

 P(i)= rand([1, NumerOfFeatures])

Repeat

For i = 1 to 50 do

 For j =1 to popsize do // 20 parents chosen for popsize

 A ← copy of a random individual

 B ← copy of a random individual

 C ← copy of a random individual

 T = A + α (B-C)

 R1 = rand [1, Size(P(j))]

 R2 = rand [1, Size(P(j))]

 X=P(j)

 X(from R1 to R2) = T(from R1 to R2)

 X= round(X,1,NumerOfFeatures)

 Z= X (from 1 to rand [1, Size(P(j))) // take randomly number of

 features

 If Fitness(Z) > Fitness(P(j))

 P(j) = Z // Replace the parent with the kid

 If Fitness(P(j)) > Best(i-1) then

 Best(i) = P(j)

 Repeat

Repeat

Return(Best)

Figure 3.3 The pseudocode of the Random Indexes DEFS

41

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

Feature Selection is an important subject to be studied. It helps to increase the accuracy

of any learning algorithm. There are many ways to do feature selection and, in our

opinion, the stochastic way is the simplest one. The simplicity of DE algorithm has

made the whole implementation simple as well. Indeed, there are many metaheuristic

algorithms which can be employed to work as a feature selector. The differences

between any two given metaheuristic algorithms can be determined and can be analyzed

by using the CEC 2015 benchmark.

EDE is a good algorithm to be used for Feature Selection. Also, it can be implemented

for any related subjects since it has high exploration rate. By implementing and testing,

we found that the population-base algorithms can get close to the optimal solution in a

short period of time. For that reason, the number of evaluation time should not be that

large. As a result, we can make the extraction of the program, or the algorithm, faster by

tuning the parameters with perfect values.

EDEFS is a new and efficient approach for feature selection. The results show how

strong and efficient the EDEFS algorithm with high dimensional datasets is. Also, it is

suitable for low scale datasets.

42

4.2 Future Works

No doubt, the initialization step of the EDE effects on the total results. For that reason,

we can work on finding a way to initialize the population depending on the given

problem range. Also, the way to select the individuals to mutation step is very

important. Therefore, we can increase the exploration rate if we can find a good way to

select the effective individuals for mutation operation.

43

REFERENCES

[1] Jarraya, B., and Abdelfettah B., (2012)."Metaheuristic Ptimization

Backgrounds: A Literature Review" International Journal of Contemporary

Business Studies 3(12): 2156-7506.

[2] Olafsson, S., (2006). "Metaheuristics." Handbooks in operations research and

management science 13(6):633-654.

[3] Luke, S., (2013). Essentials Of Metaheuristics, Lulu Com, New York.

[4] Xue, B., Wenlong, F., and Mengjie ,Z.,(2014). "Differential Evolution (De)

For Multi-Objective Feature Selection in Classification", Proceedings of the

Companion Publication of the 2014 Annual Conference on Genetic and

Evolutionary Computation, ACM, 12 – 16 July 2014, Indian.

[5] Wang, H., Kwong, S., and Jin, Y., (2005). “Multi-Objective Hierarchical

Genetic Algorithm for Interpretable Fuzzy Rule-Based Knowledge

Extraction” Fuzzy Sets and Systems, 149(1):149–186.

[6] Chen, Y., Weicheng, X., and Xiufen, Z.,(2015). "A Binary Differential

Evolution Algorithm Learning From Explored Solutions" Neurocomputing

,149 (3): 1038-1047.

[7] Clerc, M., Initialisations for Particle Swarm Optimisation, http://clerc.

maurice. free. fr/pso, 3 September 2016.

[8] Boldt, F., Thomas, W., and Flávio, M., (2015). "Single Sequence Fast Feature

Selection for High-Dimensional Data" Tools with Artificial Intelligence

(ICTAI), 2015 IEEE 27th International Conference on. IEEE, 9-11 Nov 2015,

Canada.

[9] Debie, E., Elsayed, M., and Essam, L.,(2016). "Investigating Multi-Operator

Differential Evolution for Feature Selection." Australasian Conference on

Artificial Life and Computational Intelligence,Springer International

Publishing, 2-5 February 2016, Australia.

[10] Memon, N., Hicks, D., and Larsen. (2007), “Notice Of Violation Of Ieee

Publication Principles Harvesting Terrorists Information From Web” in 11th

International Conference on Information Visualization, 4-6 July 2007, US.

[11] Hand, D., (2007), “Principles of Data Mining” Drug Safety, 30(7): 621–622.

44

[12] Cooley, R., Mobasher, B.,and Srivastava, J. ,(1997). “Web Mining:

Information And Pattern Discovery On The World Wide Web” in Proceedings

of the 9th IEEE International Conference on Tools with Artificial

Intelligence, 3-8 Nov 1997, Newport Beach, California.

[13] Mac,N., (2006). Guiding rough and fuzzy-rough feature selection using

alternative evaluation functions and search strategies, Ph.D. dissertation,

University of Wales Aberystwyth, UK.

[14] Fayyad, U., Piatetsky,G., and Smyth, P., (1996). “From Data Mining To

Knowledge Discovery In Databases” AI Magazine, 17(3):37–54.

[15] Mac, N., Jensen, A., and Shen, Q., (2010).“Fuzzy-Rough Approaches For

Mammographic Risk Analysis”, Intelligent Data Analysis, 14(2):225–244.

[16] Diao, R,(2014) .Feature Selection with Harmony Search and Its Applications,

PhD thesis, Aberystwyth University, UK.

[17] Bellman, E., and Stuart, E., (2015). Applied Dynamic Programming, Princeton

university press, London.

[18] Dash, M., and Huan,L., (1997)."Feature Selection for Classification"

Intelligent Data Analysis, 1(3):131-156.

[19] Xing, P., Jordan, M., and Karp,M., (2001). “Feature Selection For High-

Dimensional Genomic Microarray Data” ICML, 1(3):601–608.

[20] Jensen, R., and Qiang, S., (2009),"Are More Features Better? A Response to

Attributes Reduction Using Fuzzy Rough Sets", IEEE Transactions on Fuzzy

Systems 17(6):1456-1458.

[21] Lee, M., Chen, M., and Chen, J., (2001).“An Efficient Fuzzy Classifier With

Feature Selection Based On Fuzzy Entropy” IEEE Trans Syst Man

Cybern,31(2): 426–432.

[22] Jensen, R., and Qiang, S., (2009)."New Approaches to Fuzzy-Rough Feature

Selection" IEEE Transactions on Fuzzy Systems 17(4): 824-838.

[23] Dash ,M., and Liu, H.,(2003). “Consistency-Based Search In Feature

Selection” Artificial Intelligence, 151(1-2) :155–176.

[24] Hall, M., (1998). Correlation-Based Feature Subset Selection For Machine

Learning, Ph.D. thesis, University of Waikato, Hamilton, New Zealand.

[25] Hsu, N., Huang,J., and Schuschel, D., (2002).“The Annigma-Wrapper

Approach To Fast Feature Selection For Neural Nets” IEEE Trans. Syst., Man,

Cybern. B, 32(2): 207–212.

[26] Zhu, Z., Ong,Y., and Dash, M., (2007). “Wrapper-Filter Feature Selection

Algorithm Using A Memetic Framework” IEEE Trans. Syst., Man, Cybern. B,

37(1): 70–76.

[27] Francis, L., (2005). Data Mining Concepts, Models, Methods and Algorithms,

Paperback, IEEE Press/Wiley, Canada.

45

[28] Storn, R., and Kenneth, P., (1997). "Differential Evolution–A Simple and

Efficient Heuristic For Global Optimization Over Continuous Spaces" ,Journal

of Global Optimization 11(4): 341-359.

[29] Bharathi, T., and Subashini, P., (2015). "Optimal Feature Subset Selection

Using Differential Evolution With Sequential Extreme Learning Machine For

River Ice Images" TENCON 2015-2015 IEEE Region 10 Conference. IEEE,

1-4 Nov 2015, China.

[30] Gadat, S., and Laurent, Y., (2007). "A Stochastic Algorithm For Feature

Selection In Pattern Recognition" ,Journal of Machine Learning Research

8.(2): 509-547.

[31] Chen, Q., Liu, B., and Zhang, Q.,(2014). Problem Definitions and Evaluation

Criteria for CEC 2015 Special Session on Bound Constrained Single-objective

Computationally Expensive Numerical Optimization Technical Report

Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou.

[32] Gamperle, R., Muller,S., and Koumoutsakos, P., (2002).“A Parameter Study

For Differential Evolution” in Advances in intelligent systems, fuzzy systems,

evolutionary computation, 10(2):293-298.

[33] Mezura,E.,Velazquez,J., and Coello,C.,(2006) , “A Comparative Study Of

Different Evolution Variants For Global Optimization” in Proc. Genetic and

Evolutionary Computing Conference, 8-12 July 2006,Mexico, US.

[34] Shu,M., and Pang, H., “Improving Differential Evolution with a Successful-

Parent-Selecting Framework”, IEEE Transactions On Evolutionary

Computation, 19(5):717-730.

[35] Lou, Y., Li,J., and Li,G., (2012). “A Differential Evolution Algorithm Based

On Individual-Sorting And Individual-Sampling Strategies” , Comput. Inf.

Syst, 8(2): 717–725.

[36] Rahnamayan, S., Tizhoosh,R., and Salama, M.,(2007). “Quasioppositional

Differential Evolution” in Evolutionary Computation, CEC 2007. IEEE

Congress on. IEEE, 10(11):2229–2236.

[37] Kazimipour, B., Li, X., and Qin, A.,(2013) ,“Initialization Methods For Large

Scale Global Optimization” in Evolutionary Computation (CEC), 2013 IEEE

Congress on. IEEE, 17(3): 2750–2757.

[38] Kazimipour,B., Li, X., and Qin, A., (2014). “A Review Of Population

Initialization Techniques For Evolutionary Algorithms” in Evolutionary

Computation (CEC), 2014 IEEE Congress on. IEEE, 6-11 July 2014, China.

[39] Pant,M., Ali, M., and Singh,V., (2009). “Differential Evolution Using

Quadratic Interpolation For Initializing The Population,” in Advance

Computing Conference, 2009. IACC 2009. IEEE International. IEEE,

10(2):375–380.

[40] Ajeet, S., Tarun,S., and Shweta ,S.,(2016).“Differential Evolution Algorithm

for Solving Computationally Expensive Optimization Problems”, Springer

International Publishing Switzerland, 12(2):87:96.

46

[41] Liu, H, and Motoda, H.,(2007). Computational Methods of Feature Selection,

CRC Press, US.

[42] Witten, H., and Eibe, F., (2005). Data Mining: Practical Machine Learning

Tools And Techniques. Morgan Kaufmann, New Zealand.

[43] Frank, A., and Arthur, A., (2010). UCI Machine Learning Repository, School

of Information and Computer Science, Turkey.

[44] Statnikov, A., Aliferis,C., and Tsamardinos, I., (2004). “Methods For Multi-

Category Cancer Diagnosis From Gene Expression Data: A Comprehensive

Evaluation To Inform Decision Support System Development”, Medinfo,

11(2):813–7.

[45] Diaz, R., and Andr´es, S., (2005). “Variable Selection From Random Forests:

Application To Gene Expression Data”, 22 -25 Jun 2005, Ithaca.

[46] Statnikov, A., Tsamardinos, I., Dosbayev , F., www.gems-system.org, 3 June,

2016.

[47] Supplementary material for ``Gene Selection and Classification of Microarray
Data Using Random Forest”,
www.ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html ,7 June 2016.

http://www.gems-system.org/
http://www.ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html

47

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Muneer HASAN

Date of birth and place : 22-1-1991 Iraq/Diyala

Foreign Languages : English

E-mail : memobarazanchi@gmail.com

EDUCATION

Degree Department University Date of

Graduation

Graduate Computer Engineering YTU 2016

Undergraduate Computer Science Diyala university 2013

High School Ghalybya school 2008

48

PUBLISHMENTS

Conference Papers

1. Hasan, M. M. and Altun, O., (2016). “Two Enhanced Differential

Evolution Algorithms for Expensive Optimization” in Journal of

Applied and Physical Sciences, 28-29 September 2016, Istanbul,

Turkey.

