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ABSTRACT 

 

A BRIEF REVIEW OF TRANSFERRING OF TRANSIENT 

SIGNALS ALONG HOLLOW WAVEGUIDE 
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MSc. Thesis 

 

Adviser: Assoc. Prof. Dr. Kevser KÖKLÜ 

Co-adviser: Assist. Prof. Dr. Emre EROĞLU 

 

 

In this thesis, the purpose is to bring together the studies done before.  Evolutionary 

Approach to Electromagnetics Theory (EAE), which is an anlytical method and gives 

the solutions in directly time-domain, is aimed to use. Two main problems are 

introduced to analyze transferring of transient signals along hollow waveguide. First 

one, Modal Basis Problem corresponds to Neumann and Dirichlet boundary-eigenvalue 

problems. These problems gives us eigenfuctions corresponds to eigenvalues. Second 

one is Modal Amplitude Problem which derived from Klein-Gordon equations. As a 

result of this, transverse electric (TE) and transverse magnetic (TM) modes are obtained 

in time-domain. Each component of these modal fields is expressed as a product of 

modal base element which is a vector function of transverse coordinates and a scalar 

modal amplitude that depends on time t and axial coordinate z. Also, in this study, 

Bessel and Airy functions are analyzed in detail and they are used to expressed Modal 

amplitudes. 

  

Key words: Maxwell’s equation, Neumann and Dirichlet boundary-eigenvalue 

problems, Klein-Gordon equation, Airy functions, Bessel functions 
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BOŞ DALGA KLAVUZU BOYUNCA GEÇİCİ SİNYALLERİN 

İLETİLMESİNİN KISA BİR İNCELEMESİ 

 

Sedef ŞEMŞİT 

 

Matematik Mühendisliği Anabilim Dalı 

Yüksek Lisans Tezi 

 

Tez Danışmanı: Doç. Dr. Kevser KÖKLÜ 

Eş Danışman: Yrd. Doç. Dr. Emre EROĞLU 

 

Bu tezde amaç daha önce yapılmış çalışmaları bir araya getirmektir. Analitik bir metod 

olan ve çözümleri direk olarak zaman-domeininde veren Elektromanyetik Teoriye 

Evrimsel Yaklaşım (ETEY) metodunu kullanmak amaçlanmıştır. Dalga kılavuzu 

boyunca geçici sinyallerin iletilmesini incelemek için iki temel problem tanıtılmıştır. 

Birincisi, Neumann ve Dirichlet sınır-özdeğer problemlerine karşılık gelen Modal Baz 

Problemidir. Bu problemlerden özdeğerlere bağlı özfonksiyonlar elde edilmiştir. 

İkincisi ise Klein-Gordon denkleminden elde edilen Modal Genlik Problemidir. 

Bunların sonucunda enlemsel elektrik (TE) ve enlemsel manyetik modları zaman-

domeininde elde edilmiştir. Bu modal alanların her bir elemanı, boylamsal 

koordinatların vektör fonksiyonu olan modal baz ve t zaman ve z eksenel koordinatına 

bağlı olan modal genlik çarpımıyla ifade edilmişlerdir. Ayrıca bu çalışmada Bessel ve 

Airy fonksiyonları deletaylı olarak incelenmiş ve modal genlikler bu fonksiyonlar 

yardımıyla bulunmuştur. 

 

Anahtar kelimer: Maxwell denklemleri, Neumann ve Dirichlet sınır-özdeğer 

problemleri, Klein-Gordon denklemi, Airy fonksiyonları, Bessel fonksiyonları. 
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CHAPTER 1 

INTRODUCTION 

 Literature Review 

In Electromagnetics, there are three canonical boundary value problem with given 

initial conditions for the electromagnetic field sought, namely: Cavity Problem, 

Waveguide Problem, and External Problem. In this thesis, the waveguide problem 

which is conanical problem is studied in a subdomain of Euclidean space. 

The time-domain studies in electromagnetic field theory can be investigated in two 

groups, in general. The first one is numerical methods; Finite Difference Time Domain 

(FDTD) is the most popular one among these methods. Efficiency of the method is 

abundance of data which has obtained during oscillation. Compariable process is 

permitted to reach exact results via rich data . The second one is analytical methods that 

divided into two subgroups. The first one consists of frequency domain usually 

performed concerned with Fourier integral transform or Laplace transform. The 

solutions obtained from the Fourier integral transform is needed to find time-domain 

solutions in the final step. A new alternative (to the time-harmonic field concept) 

approach in studying the time-domain modes was developed within the framework of 

four-dimensional relativistic formalism in electrodynamics. 

Eventually, one more alternative approach called Evolutionary Approach to 

Electromagnetics (EAE) was suggested in 80s. It is destined for the time-domain theory 

of both the cavity and waveguide modes. The theory is based on evolution equations 

was kept 𝜕𝑡 in time-domain of Maxwell's equations and Neumann-Dirichlet boundary-

value problems, analytically. In the method, electromagnetic fields are solved by 

extracting Maxwell's equation system in time-domain. The solution is attained by 

observing along waveguide 
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The EAE method is based on the solution of sequential two autonomous problems, 

basically. The first one is a “modal basis problem” corresponds to well-studied Dirichlet 

and Neumann boundary eigenvalue problems. This involves two complete sets as the 

Transverse-Electric (TE) and Transverse-Magnetic (TM) modes. Because of the fact 

that the generating scalar potentials for the TE and TM modes are actually the same as 

the time-harmonic modes, one can freely use the methods, which have been developed 

in the frequency domain, and use as well even ready results obtained for the complex 

waveguide configurations. The second one is a “time-dependent modal amplitude 

problem” corresponds to Klein-Gordon Equation (KGE) with the axial coordinate and 

time. Main effort of theory is addressed to obtain the analytical solution to the KGE 

leading to the timedependent modal amplitudes unlike to those in the time-harmonic 

waves .  

 Objective of the Thesis 

In this thesis, the purpose is to solve Maxwell’s equation system analytically via 

Laplacian and evolution equation that preserve 𝜕𝑡 in time-domain. Electromagnetic 

fields will be separated from Maxwell’s equation system and solved in time-domain. 

The solution is obtained by investigating along the waveguide. This study is composed 

as follows.  

In Section II, the above mentioned executive summary is presented, definition about the 

waveguide is given and time-domain problems are solved 

In Section III, the general properties of the waveguide time-domain modes are 

considered, namely. Completeness of the modal sets is discussed.. Conservation of 

energy law is given for every time-domain mode. The initial conditions for the modal 

amplitudes are mentioned. The causality principle is imposed on the time-domain 

modes. 

In Section IV, a particular case of Bessel and Airy functions are considered in detail and 

time-dependent modal amplitudes, which are expressible via Bessel and Airy functions 

with time in their arguments, are obtained.  

In Section V, graphical results are presented by using Mapple programme. 
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 Hypothesis 

There are lots of study about EAE method. But all these studies fouced on specific 

titles. Therefore, it is necessary to gather them in one study. So this is the major 

contribution of this thesis. 

As understood from the title of the thesis, we are going to reconsider all the works have 

been done up to this time. The works are stated below: 

• Serkan Aksoy  (Aksoy [1]) gave general information about the problem like 

basis formed in wave boundary operator, projection of vector fields and 

Maxwell’s equation on the basis and numerical applications for rectangular 

waveguide 

• Özlem Akgün (Akgün [2]) found the solution of Klein-Gordon Equation 

(modal amplitudes) by using Miller’s fifth case as a product of Airy 

function  and  she investigated relativistic effects on the wave propagation 

in a hollow waveguide  

• Emre Eroğlu (Eroğlu [3]) solved KGE by using Miller’s second case as a 

product of Bessel function, gave detailed solution of Bessel differential 

equation, studied spherical and cylindrical Bessel function  and he also 

focused on surplus of energy and energy. 

• Özlem Işık (Işık [4]) analyzed wave boundary operator and surplus of enery 

and expressed the modal amplitudes in terms of Airy functions. 

• Nevra Eren (Eren [5]) investigated surplus of enery and airy function in 

detail. 
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CHAPTER 2 

THE PROBLEM of TIME-DOMAIN MODES 

 The Waveguide 

The waveguide is a device that transfer electromagnetic energy efficiently which means 

with minimum extinction and degradation. Propagation of electromagnetic fields can be 

classfied as guided and unguided. The waves in guided propagation are transmitted 

from one point to another by following a particular path. The waves in unguided 

propagation spread or beam on an open space. There are three types of waveguide 

namely; circular, elliptic and rectangular. 

We consider a hollow rectangular waveguide (as in Figure 2.1) directed along 𝑂𝑧 −axis 

and bounded by conductive metal walls that means the waveguide is perfect electric 

conductor. 

Figure 2.1 The rectangular waveguide along Oz-axis 

where 𝜀0 is dielectric constant for free space (i.e., permitivity) and 𝜇0 is magnetic 

constant for free space (i.e., permeability). 
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 Formulation of the Problem 

We consider a hollow waveguide having domain 𝑆 directed along 𝑂𝑧 −axis. The 

domain 𝑆 is bounded by closed singly-connected contour 𝐿. We also assume that the 

contour has an arbitrary but smooth enough shape which means any possible inner 

angles (measured within 𝑆) can not exceed 𝜋. In the rest of the study, mutually 

orthogonal unit vectors (𝐳, 𝐥, 𝐧 ) were used where 𝐳 × 𝐥 = 𝐧,  𝐥 × 𝐧 = 𝐳  and 𝐧 × 𝐳 = 𝐥. 

The unit vector  𝐧 is outward normal to domain 𝑆, the unit vectors 𝐳 and 𝐥 are tangential 

to the 𝑂𝑧 −axis and contour 𝐿, respectively. 

In this study, 3 −component position vector 𝐑 and the operator ∇ are decomposed onto 

their transverse and longitudinal parts as 

 𝐑 = 𝐫 + 𝐳𝑧,               ∇= ∇⊥ + 𝐳𝜕𝑧 (2.1) 

where 𝐳 is a unit vector directed along 𝑂𝑧 −axis, 𝐫 is 2 −component position vector in 

the waveguide cross-section 𝑆 (and also projection of 𝐑 on domain 𝑆) and ∇⊥ is the 

transverse part of ∇. The differential operator ∇⊥ transacts only at the coordinates (𝐫) of 

transver waveguide.  

3 −component electromagnetic field strength vectors 𝐄𝑚 and 𝐇𝑚 are introduced  

 𝐄𝑚(𝐑, 𝑡) = 𝐄(𝐫, 𝑧, 𝑡) + 𝐳𝐸𝑧(𝐫, 𝑧, 𝑡) 

 𝐇𝑚(𝐑, 𝑡) = 𝐇(𝐫, 𝑧, 𝑡) + 𝐳𝐻𝑧(𝐫, 𝑧, 𝑡) 

 

(2.2) 

and the boundary conditions hold over the waveguide surface are 

 (𝐧 ⋅ 𝐇𝑚)|𝐿 = 0,   (𝐥 ⋅ 𝐄𝑚)|𝐿 = 0,    (𝐳 ⋅ 𝐄𝑚)|𝐿 = 0. (2.3) 

where  𝐧 is unit vector outer normal to domain 𝑆, 𝐳 and 𝐥 are the unit vectors tangential 

to the 𝑂𝑧 −axis and contour 𝐿, respectively. 

 TE Time-Domain Modes 

To obtain components of TE time-domain modes let’s solve Neumann boundary 

eigenvalue problem for ∇⊥  
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 (∇⊥
2 + 𝜐𝑚

2 )𝜓𝑚(𝐫) = 0 

 
𝜕𝜓𝑚(𝐫)

𝜕𝑛
|
𝐿

 = 0 

 
𝜐𝑚
2

𝑆
∫|𝜓𝑚(𝐫)|

2𝑑𝑆

𝑆

= 1𝑁 

 

 

(2.4) 

where 𝜕𝑛 = 𝐧 ⋅ ∇⊥ is normal derivative on 𝐿 −contour, 𝜐𝑚
2 > 0 are eigenvalues for 𝑚 =

1,2,… , the index 𝑚 is numerical values sorted by increasing order in the real axis and 

𝜓𝑚(𝐫)'s are eigenvectors corresponding to the eigenvalues. In equation (2.4) the first 

equation is Helmholtz equation, the second one is boundary condition and the third one 

is normalization condition. The force dimension in equation (2.4) has to be 𝑁 (Newton) 

so that physical dimensions, 𝑉𝑚
−1(Volt per meter)  and 𝐴𝑚

−1(Ampere per meter), are 

provided for the field vector extensions 𝐄𝑚 and 𝐇𝑚 , respectively. 

Example 2.1 Let us consider 𝐿-contour that is a rectangular waveguide with boundaries 

0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏. 

Since 

 ∇⊥= (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
) 

we can write Helmholtz equation as 

(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)𝜓𝑚 + 𝜐𝑚

2 𝜓𝑚 = 0       ⇒        
𝜕2𝜓𝑚
𝜕𝑥2

+
𝜕2𝜓𝑚
𝜕𝑦2

+ 𝜐𝑚
2 𝜓𝑚 = 0      

By using the separation of variables method, choose 𝜓𝑚(𝐫) = 𝑋(𝑥)𝑌(𝑦) and substitute 

it into above equation yields 

𝜕2[𝑋(𝑥)𝑌(𝑦)]

𝜕𝑥2
+
𝜕2[𝑋(𝑥)𝑌(𝑦)]

𝜕𝑦2
+ 𝜐𝑚

2 𝑋(𝑥)𝑌(𝑦) = 0 

or equavalently 

𝑌
𝜕2𝑋

𝜕𝑥2
+ 𝑋

𝜕2𝑌

𝜕𝑦2
+ 𝜐𝑚

2 𝑋𝑌 = 0. 



7 

 

Multiply both sides with 1 𝑋𝑌⁄  gives 

1

𝑋

𝜕2𝑋

𝜕𝑥2⏟  
−𝜐𝑥

2

+
1

𝑌

𝜕2𝑌

𝜕𝑦2⏟  
−𝜐𝑦

2

+ 𝜐𝑚
2 = 0      ⇒       𝜐𝑚

2 = 𝜐𝑥
2 + 𝜐𝑦

2 

The eigenvalues 𝜐𝑥
2 and 𝜐𝑦

2 are choosen as negative because if we choose them as 

positive the solution of Neumann problem becomes 𝜓𝑚(𝐫) = exp(±𝑖𝜐𝑥) exp(±𝑖𝜐𝑦) 

which is a divergent function. So, it is not suitable for the EAE method. 

Therefore, the solution of above equation can be written as 

𝑋(𝑥) = 𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥) 

𝑌(𝑦) = 𝐶 cos(𝜐𝑦𝑦) + 𝐷 sin(𝜐𝑦𝑦) 

or 

𝜓𝑚(𝐫) = 𝑋(𝑥)𝑌(𝑦) = [𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥)][𝐶 cos(𝜐𝑦𝑦) + 𝐷 sin(𝜐𝑦𝑦)]. 

By using boundary condition, the constants of 𝜓𝑚(𝐫) can be found as stated below. 

(i) 0 ≤ 𝑥 ≤ 𝑎,  
𝜕𝜓𝑚(𝐫)

𝜕𝑦
|
𝑦=0
 = 0 

𝜕𝜓𝑚
𝜕𝑦
|
𝑦=0

 = [𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥)][−𝐶𝜐𝑦 sin(𝜐𝑦𝑦) + 𝐷𝜐𝑦 cos(𝜐𝑦𝑦)]|𝑦=0 = 0 

which is equivalent to 

[𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥)][−𝐶𝜐𝑦 sin(0) + 𝐷𝜐𝑦 cos(0)] = 0 

or 

[𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥)][0 + 𝐷𝜐𝑦1] = 0 

In this equation 𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥) ≠ 0 so 

0 + 𝐷𝜐𝑦1 = 0     ⇒      𝐷 = 0 

 

(ii) 0 ≤ 𝑥 ≤ 𝑎,  
𝜕𝜓𝑚(𝐫)

𝜕𝑦
|
𝑦=𝑏
 = 0 
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𝜕𝜓𝑚
𝜕𝑦
|
𝑦=𝑏

 = [𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥)][−𝐶𝜐𝑦 sin(𝜐𝑦𝑦) + 𝐷𝜐𝑦 cos(𝜐𝑦𝑦)]|𝑦=𝑏 = 0 

which is equivalent to 

[𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥)][−𝐶𝜐𝑦 sin(𝜐𝑦𝑏)] = 0 

Again in this equation 𝐴 cos(𝜐𝑥𝑥) + 𝐵 sin(𝜐𝑥𝑥) ≠ 0 so 

[−𝐶𝜐𝑦 sin(𝜐𝑦𝑏)] = 0 = sin(0 + 𝑝𝜋) ,        𝑝 = 0,1,2,… 

                                 ⇒ 𝜐𝑦 =
𝑝𝜋

𝑏
 

 

(iii) 0 ≤ 𝑦 ≤ 𝑏,  
𝜕𝜓𝑚(𝐫)

𝜕𝑥
|
𝑥=0
 = 0 

𝜕𝜓𝑚
𝜕𝑥
|
𝑥=0
 = [−𝐴𝜐𝑥 sin(𝜐𝑥𝑥) + 𝐵𝜐𝑥 cos(𝜐𝑥𝑥)][𝐶 cos(𝜐𝑦𝑦) + 0]|𝑥=0 = 0 

which is equivalent to 

[−𝐴𝜐𝑥 sin(0) + 𝐵𝜐𝑥 cos(0)][𝐶 cos(𝜐𝑦𝑦)] = 0 

or 

[0 + 𝐵𝜐𝑥1][𝐶 cos(𝜐𝑦𝑦)] = 0 

In this equation 𝐶 cos(𝜐𝑦𝑦) ≠ 0 so 

0 + 𝐵𝜐𝑥1 = 0     ⇒      𝐵 = 0 

 

(iv) 0 ≤ 𝑦 ≤ 𝑏,   
𝜕𝜓𝑚(𝐫)

𝜕𝑥
|
𝑥=𝑎
 = 0 

𝜕𝜓𝑚
𝜕𝑥
|
𝑥=𝑎
 = [−𝐴𝜐𝑥 sin(𝜐𝑥𝑥) + 0][𝐶 cos(𝜐𝑦𝑦) + 0]|𝑥=𝑎 = 0 

which is equivalent to 

[−𝐴𝜐𝑥 sin(𝜐𝑥𝑎)][𝐶 cos(𝜐𝑦𝑦)] = 0 
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Again in this equation 𝐶 cos(𝜐𝑦𝑦) ≠ 0 so 

−𝐴𝜐𝑥 sin(𝜐𝑥𝑎) = 0 = sin(0 + 𝑞𝜋) ,        𝑞 = 0,1,2,… 

                              ⇒ 𝜐𝑥 =
𝑞𝜋

𝑎
 

Above results yields 

𝜓𝑚(𝐫) = 𝑋(𝑥)𝑌(𝑦) = [𝐴 cos(𝜐𝑥𝑥)][𝐶 cos(𝜐𝑦𝑦)] = 𝐴𝑚
ℎ cos(𝜐𝑥𝑥) cos(𝜐𝑦𝑦) 

where 𝐴𝑚
ℎ  is a normalization constant. 

The eigenvalue is 

𝜐𝑚
2 = 𝜋2 (

𝑝2

𝑎2
+
𝑞2

𝑏2
) ≡ 𝜐𝑝,𝑞

2  

where the parameters 𝑝 and 𝑞 are integers that 𝑝 + 𝑞 ≠ 0 for 𝑝, 𝑞 = 0,1,2,… . 

To find normalization constant 𝐴𝑚
ℎ  let’s use normalization condition 

𝜐𝑚
2

𝑆
∫|𝜓𝑚(𝐫)|

2𝑑𝑆

𝑠

= 1𝑁      where       𝑆 = 𝑎. 𝑏  . 

𝜐𝑚
2

𝑆
∫|𝜓𝑚(𝐫)|

2𝑑𝑆

𝑠

=
𝜐𝑚
2

𝑎. 𝑏
∫(𝐴𝑚

ℎ )2 cos2(𝜐𝑥𝑥) cos
2(𝜐𝑦𝑦) 𝑑𝑥𝑑𝑦

𝑠

= 1 

                                 ⇒
(𝐴𝑚
ℎ )2. 𝜐𝑚

2

𝑎. 𝑏
∫ ∫ cos2(𝜐𝑥𝑥) cos

2(𝜐𝑦𝑦) 𝑑𝑥

𝑦=𝑏

𝑦=0

𝑑𝑦

𝑥=𝑎

𝑥=0

= 1 

                                 ⇒
(𝐴𝑚
ℎ )2. 𝜐𝑚

2

𝑎. 𝑏
∫ cos2(𝜐𝑥𝑥) 𝑑𝑥

𝑥=𝑎

𝑥=0

∫ cos2(𝜐𝑦𝑦) 𝑑𝑦

𝑦=𝑏

𝑦=0

= 1 

                                 ⇒
(𝐴𝑚
ℎ )2. 𝜐𝑚

2

𝑎. 𝑏
[(
𝑥

2
+
1

2

sin(2𝜐𝑥𝑥)

2𝜐𝑥𝑥
)
𝑥=0

𝑥=𝑎

] [(
𝑦

2
+
1

2

sin(2𝜐𝑦𝑦)

2𝜐𝑦𝑦
)
𝑦=0

𝑦=𝑏

] = 1 

                                 ⇒ 𝐴𝑚
ℎ =

2

𝜐𝑚
≡ 𝐴𝑝,𝑞

ℎ  

 

(2.5) 
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where the parameters 𝑝 and 𝑞 are integers that 𝑝 + 𝑞 ≠ 0 for 𝑝, 𝑞 = 0,1,2,… . 

Take potential 𝛹𝑚(𝐫) as 𝛹𝑚(𝐫) = 𝐴𝑚
ℎ 𝜓𝑚(𝐫) where 𝐴𝑚

ℎ   is a normalization constant. 

Then every components of TE time-domain modes can be written as  

 𝐄𝑧𝑚
ℎ = 0 

 𝜐𝑚
−1𝐄𝑚

ℎ = 〈−𝜕(𝜐𝑚𝑐𝑡)ℎ𝑚(𝑧, 𝑡)〉[ √𝜀0
−2 ∇⊥𝛹𝑚(𝐫) × 𝐳] 

 𝜐𝑚
−1𝐇𝑚

ℎ = 〈𝜕(𝜐𝑚𝑧)ℎ𝑚(𝑧, 𝑡)〉[ √𝜇0
−2 ∇⊥𝛹𝑚(𝐫)] 

 𝜐𝑚
−1𝐇𝑧𝑚

ℎ = 〈ℎ𝑚(𝑧, 𝑡)〉[𝜐𝑚 √𝜇0
−2 𝛹𝑚(𝐫)] 

 

 

(2.6) 

where  𝜕(𝜐𝑚𝑐𝑡) = (1 𝑐⁄ 𝜐𝑚)𝜕𝑡,  𝜕(𝜐𝑚𝑧) = (1 𝜐𝑚⁄ )𝜕𝑧  and  𝑐 = √𝜀0𝜇0
−2   is the speed of 

light in space. The potential ℎ𝑚(𝑧, 𝑡) is obtained from Klein-Gordon equation 

(𝜕𝜐𝑚𝑐𝑡
2 − 𝜕𝜐𝑚𝑧

2 + 1)ℎ𝑚(𝑧, 𝑡) = 0. (2.7) 

The problem (2.4) has a zero trivial solution. This solution corresponds to the 

eigenvalue  𝜐0
2 = 0 and generates the problem,  ∇⊥

2𝛹0(𝐫) = 0  and  𝜕𝑛𝛹0(𝐫)|𝐿 = 0,  for 

a harmonic function  𝛹0(𝐫). he harmonic functions are attained as  𝛹0(𝐫) = 𝑐1  where  

𝐫 ∈ 𝐿 + 𝑆  and  𝑐1  is a constant. The potential  𝛹0(𝐫)  produce a TE mode. 

𝐄0
ℎ(𝐫, 𝑧, 𝑡) = 0,            𝐇0

ℎ(𝐫, 𝑧, 𝑡) = 𝐳𝑐1 (2.8) 

where the modal amplitude of the field  𝐇0
ℎ  is constant. 

Weyl Theorem (Appendix C) means that TE time-domain modes are complete in 

Hilbert space  𝐿2  (Weyl  [6]). 

 TM Time-Domain Modes 

Dirichlet boundary eigenvalue problem for Laplacian is expressed as 
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 (∇⊥
2 + 𝜅𝑚

2 )𝜙𝑚(𝐫) = 0 

 𝜙𝑚(𝐫)|𝐿 = 0 

 
𝜅𝑚
2

𝑆
∫|𝜙𝑚(𝐫)|

2𝑑𝑆

𝑆

= 1𝑁 

 

 

(2.9) 

where  𝜅𝑚
2 > 0's  are eigenvalues for  𝑚 = 1,2,…,  the index  𝑚  is numerical values 

sorted by increasing order in the real axis and  𝜙𝑚(𝐫)'s  are eigenvectors corresponding 

to the eigenvalues. The physical dimensions of field vector extentions  𝐄𝑚  and  𝐇𝑚  are  

𝑉𝑚
−1(Volt per meter)  and  𝐴𝑚

−1(Ampere per meter ),  respectively. The solution  𝜙0(𝐫)  

corresponding to eigenvalues  𝜅0
2 = 0  is zero. 

Example 2.2 Consider previous example for the rectangular waveguide. 

The solution to Dirichlet problem is same as Neumann’s solution. 

Since 

 ∇⊥= (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
) 

we can write Helmholtz equation as 

(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)𝜙𝑚 + 𝜅𝑚

2 𝜙𝑚 = 0       ⇒        
𝜕2𝜙𝑚
𝜕𝑥2

+
𝜕2𝜙𝑚
𝜕𝑦2

+ 𝜅𝑚
2 𝜙𝑚 = 0      

By using the separation of variables method, choose 𝜙𝑚(𝐫) = 𝑋(𝑥)𝑌(𝑦) and substitute 

it into above equation yields 

𝜕2[𝑋(𝑥)𝑌(𝑦)]

𝜕𝑥2
+
𝜕2[𝑋(𝑥)𝑌(𝑦)]

𝜕𝑦2
+ 𝜅𝑚

2 𝑋(𝑥)𝑌(𝑦) = 0 

or equavalently 

𝑌
𝜕2𝑋

𝜕𝑥2
+ 𝑋

𝜕2𝑌

𝜕𝑦2
+ 𝜅𝑚

2 𝑋𝑌 = 0. 

Multiply both sides with 1 𝑋𝑌⁄  gives 
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1

𝑋

𝜕2𝑋

𝜕𝑥2⏟  
−𝜅𝑥

2

+
1

𝑌

𝜕2𝑌

𝜕𝑦2⏟  
−𝜅𝑦

2

+ 𝜅𝑚
2 = 0      ⇒       𝜅𝑚

2 = 𝜅𝑥
2 + 𝜅𝑦

2 

The eigenvalues 𝜅𝑥
2 and 𝜅𝑦

2 are choosen as negative because if we choose them as 

positive the solution of Neumann problem becomes 𝜙𝑚(𝐫) = exp(±𝑖𝜅𝑥) exp(±𝑖𝜅𝑦) 

which is a divergent function. So, it is not suitable for the EAE method. 

Therefore, the solution of above equation can be written as 

𝑋(𝑥) = 𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥) 

𝑌(𝑦) = 𝐶 cos(𝜅𝑦𝑦) + 𝐷 sin(𝜅𝑦𝑦) 

or 

𝜙𝑚(𝐫) = 𝑋(𝑥)𝑌(𝑦) = [𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][𝐶 cos(𝜅𝑦𝑦) + 𝐷 sin(𝜅𝑦𝑦)]. 

By using boundary condition, the constants of 𝜙𝑚(𝐫) can be found as stated below. 

(i) 0 ≤ 𝑥 ≤ 𝑎,  𝜙𝑚(𝐫)|𝑦=0  = 0 

𝜙𝑚(𝐫)|𝑦=0 = [𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][𝐶 cos(𝜅𝑦𝑦) + 𝐷 sin(𝜅𝑦𝑦)]|𝑦=0 = 0 

which is equivalent to 

[𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][𝐶 cos(0) + 𝐷 sin(0)] = 0 

or 

[𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][𝐶. 1 + 𝐷. 0] = 0 

In this equation 𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥) ≠ 0 so 

𝐶. 1 + 𝐷. 0 = 0     ⇒      𝐶 = 0 

 

(ii) 0 ≤ 𝑥 ≤ 𝑎,  𝜙𝑚(𝐫)|𝑦=𝑏  = 0 

𝜙𝑚(𝐫)|𝑦=𝑏 = [𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][0. cos(𝜅𝑦𝑦) + 𝐷 sin(𝜅𝑦𝑦)]|𝑦=𝑏 = 0 

which is equivalent to 
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[𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][𝐷 sin(𝜅𝑦𝑏)] = 0 

Again in this equation 𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥) ≠ 0 so 

𝐷 sin(𝜅𝑦𝑏) = 0 = sin(0 + 𝑞𝜋) ,        𝑞 = 0,1,2,… 

                       ⇒ 𝜅𝑦 =
𝑞𝜋

𝑎
 

 

(iii) 0 ≤ 𝑦 ≤ 𝑏,  𝜙𝑚(𝐫)|𝑥=0  = 0 

𝜙𝑚(𝐫)|𝑥=0 = [𝐴 cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][0. cos(𝜅𝑦𝑦) + 𝐷 sin(𝜅𝑦𝑦)]|𝑥=0 = 0 

which is equivalent to 

[𝐴 cos(0) + 𝐵 sin(0)][𝐷 sin(𝜅𝑦𝑦)] = 0 

or 

[𝐴. 1 + 𝐵. 0][𝐷 sin(𝜅𝑦𝑦)] = 0 

In this equation 𝐷 sin(𝜅𝑦𝑦) ≠ 0 so 

𝐴. 1 + 𝐵. 0 = 0     ⇒      𝐴 = 0 

 

(iv) 0 ≤ 𝑦 ≤ 𝑏,   𝜙𝑚(𝐫)|𝑥=𝑎  = 0 

𝜙𝑚(𝐫)|𝑥=𝑎 = [0. cos(𝜅𝑥𝑥) + 𝐵 sin(𝜅𝑥𝑥)][0. cos(𝜅𝑦𝑦) + 𝐷 sin(𝜅𝑦𝑦)]|𝑥=𝑎 = 0 

which is equivalent to 

[𝐵 sin(𝜅𝑥𝑎)][𝐷 sin(𝜅𝑦𝑦)] 

Again in this equation 𝐷 sin(𝜅𝑦𝑦) ≠ 0 so 

𝐵 sin(𝜅𝑥𝑎) = 0 = sin(0 + 𝑝𝜋) ,        𝑝 = 0,1,2,… 

                      ⇒ 𝜅𝑥 =
𝑝𝜋

𝑎
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Above results yields 

𝜙𝑚(𝐫) = 𝑋(𝑥)𝑌(𝑦) = [𝐵 sin(𝜅𝑥𝑥)][𝐷 sin(𝜅𝑦𝑦)] = 𝐴𝑚
𝑒 sin(𝜅𝑥𝑥) sin(𝜅𝑦𝑦) 

where 𝐴𝑚
𝑒  is a normalization constant. 

Hence, the eigenvalue is found as 

𝜅𝑚
2 = 𝜋2 (

𝑝2

𝑎2
+
𝑞2

𝑏2
) ≡ 𝜅𝑝,𝑞

2  

where the parameters 𝑝 and 𝑞 are integers that 𝑝 + 𝑞 ≠ 0 for 𝑝, 𝑞 = 0,1,2,… . 

To find normalization constant 𝐴𝑚
𝑒  let’s use normalization condition 

𝜅𝑚
2

𝑆
∫|𝜙𝑚(𝐫)|

2𝑑𝑆

𝑆

= 1𝑁      where       𝑆 = 𝑎. 𝑏  . 

𝜅𝑚
2

𝑆
∫|𝜙𝑚(𝐫)|

2𝑑𝑠

𝑠

=
𝜅𝑚
2

𝑎. 𝑏
∫(𝐴𝑚

𝑒 )2 sin2(𝜅𝑥𝑥) sin
2(𝜅𝑦𝑦)𝑑𝑥𝑑𝑦

𝑠

= 1 

                                 ⇒
(𝐴𝑚
𝑒 )2. 𝜅𝑚

2

𝑎. 𝑏
∫ ∫ sin2(𝜅𝑥𝑥) sin

2(𝜅𝑦𝑦)𝑑𝑥

𝑦=𝑏

𝑦=0

𝑑𝑦

𝑥=𝑎

𝑥=0

= 1 

                                 ⇒
(𝐴𝑚
𝑒 )2. 𝜅𝑚

2

𝑎. 𝑏
∫ sin2(𝜅𝑥𝑥)𝑑𝑥

𝑥=𝑎

𝑥=0

∫ sin2(𝜅𝑦𝑦) 𝑑𝑦

𝑦=𝑏

𝑦=0

= 1 

                                 ⇒
(𝐴𝑚
𝑒 )2. 𝜅𝑚

2

𝑎. 𝑏
[(
𝑥

2
−
1

2

sin(2𝜅𝑥𝑥)

2𝜅𝑥𝑥
)
𝑥=0

𝑥=𝑎

] [(
𝑦

2
−
1

2

sin(2𝜅𝑦𝑦)

2𝜅𝑦𝑦
)
𝑦=0

𝑦=𝑏

] = 1 

                                 ⇒ 𝐴𝑚
𝑒 =

2

𝜅𝑚
≡ 𝐴𝑝,𝑞

𝑒  

 

(2.10) 

where the parameters 𝑝 and 𝑞 are integers that 𝑝 + 𝑞 ≠ 0 for 𝑝, 𝑞 = 0,1,2,… . Then take 

the potential  Φ𝑚(𝐫)  as Φ𝑚(𝐫) = 𝐴𝑚
𝑒 𝜙𝑚(𝐫)   where  𝐴𝑚

𝑒   is normalization constant. 

Thus, every component of TM time-domain modes can be stated as 
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 𝐇𝑧𝑚
𝑒 = 0 

 𝜅𝑚
−1𝐇𝑚

𝑒 = 〈−𝜕(𝜅𝑚𝑐𝑡)𝑒𝑚(𝑧, 𝑡)〉[𝐳 × √𝜇0
−2 ∇⊥Φ𝑚(𝐫)] 

 𝜅𝑚
−1𝐄𝑚

𝒆 = 〈𝜕(𝜅𝑚𝑧)𝑒𝑚(𝑧, 𝑡)〉[ √𝜀0
−2 ∇⊥Φ𝑚(𝐫)] 

 𝜅𝑚
−1𝐄𝑚

𝒆 = 〈𝑒𝑚(𝑧, 𝑡)〉[𝜅𝑚 √𝜀0
−2 Φ𝑚(𝐫)] 

 

 

(2.11) 

where  𝜕(𝜅𝑚𝑐𝑡) = (1 𝑐⁄ 𝜅𝑚)𝜕𝑡,  𝜕𝜅𝑚𝑧 = (1 𝜅𝑚⁄ )𝜕𝑧  and  𝑐 = √𝜀0𝜇0
−2   is the speed of 

light in space. The potential 𝑒𝑚(𝑧, 𝑡) is obtained from Klein-Gordon equation 

(𝜕𝜐𝑚𝑐𝑡
2 − 𝜕𝜐𝑚𝑧

2 + 1)𝑒𝑚(𝑧, 𝑡) = 0. (2.12) 

Weyl Theorem (Appendix C) states that TM time-domain modes are complete in Hilbert 

space  𝐿2  (Weyl [6]). 
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CHAPTER 3 

  GENERAL PROPERTIES of TIME-DOMAIN MODES 

 Completeness of Time-Domain Modes 

The set of TE and TM modes is complete due to the completeness of their generating 

potentials in the same energetic space. The completeness comes from Weyl theorem 

(Appendix C) in functional analysis about orthogonal detachments of Hilbert space 𝐿2 

Proof of completeness is stated in the references  (Tretyakov [7]), (Aksoy and 

Tretyakov [8]), (Tretyakov[9]). 

This energetic space can be specified by an inner product as 

( 𝑋1, 𝑋2) =
1

𝑆
∫(𝜀0𝐄1 ⋅ 𝐄2

∗ + 𝜇0𝐇1 ⋅ 𝐇2
∗)

𝑆

𝑑𝑠 < ∞ 

 

(3.1) 

where 𝑋1 = 𝑐𝑜𝑙(𝐄1, 𝐇1),  𝑋2 = 𝑐𝑜𝑙(𝐄2, 𝐇2) and the meaning of “𝑐𝑜𝑙” is column and “⋅” 

is scalar product of 3 −component vectors. 

 

Since TE and Tm time-domain modes are complete, we can talk about their 

orthogonality. Let’s choose the set of TE and TM modes (2.6) and (2.11) as  

𝐆 = {𝑋𝑚
ℎ }𝑚=0
∞  ,                          𝕴 = {𝑋𝑚

𝑒 }𝑚=0
∞  .   (3.2) 

respectively, where 𝑋𝑚
ℎ = 𝑐𝑜𝑙(𝐄𝑚

ℎ , 𝐇𝑚
ℎ ) and 𝑋𝑚

𝑒 = 𝑐𝑜𝑙(𝐄𝑚
𝑒 ,𝐇𝑚

𝑒 ). 

If we set 𝑚 = 𝑚′  and substitute the pair 𝑋𝑚
ℎ , 𝑋𝑚′

ℎ  into the pair 𝑋1, 𝑋2 in equation (3.1), 

then it yields (𝑋𝑚
ℎ , 𝑋𝑚′

ℎ ) = 0. It shows that all elements of the set 𝐆 are mutually 

orthogonal. The same is true for the elements of the set 𝕴. Let’s take an element 𝑋𝑚
ℎ  

from the set 𝐆 and take another element 𝑋𝑚
𝑒  from the set  𝕴. Now, if we plug them into 
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equation (3.1), again we have the same result (𝑋𝑚
ℎ , 𝑋𝑚′

𝑒 ) = 0 where 𝑚 = 𝑚′ is 

arbitrary.  

Therefore, any pair of the TE and TM time-domain modes is orthogonal in the sense of 

inner product as in Figure 3.1. 

Figure 3.1 Orthogonality of TE and TM modes 

The proofs of the completeness of 𝐆 and 𝕴 are in the studies of (Tretyakov [10]) and 

(Tretyakov [7]).  

 Energy Conservation Law for Time-Domain Modes 

Let’s select a volume 𝑉 located between two waveguide cross-sections along the 

coordinates 𝑧 and 𝑧 + 𝛿𝑧 where 𝑧 and 𝛿𝑧 > 0 are arbitrary. After applying Poynting 

theorem (Appendix D)  to Maxwell’s equations for this volume with the limiting case of  

𝛿𝑧 → 0, it yields law of conservation for any modal field energy as 

𝜕

𝜕𝜉
𝑃𝑧(𝜉, 𝜏) +

𝜕

𝜕𝜏
𝑊(𝜉, 𝜏) = 0 

 

(3.3) 

where 𝑃𝑧(𝜉, 𝜏) and 𝑊(𝜉, 𝜏) is the 𝑧 −component of Poynting vector averaged over the 

waveguide cross-section and averaged modal field energy stored in the same cross-

section, respectively, and they defined as  

 

 𝑊(𝜉, 𝜏) = [(𝜕𝜏𝑓)
2 + (𝜕𝜉𝑓)

2
+ 𝑓2] 2⁄   

 𝑃𝑧(𝜉, 𝜏) = 𝑐(−𝜕𝜏𝑓)(𝜕𝜉𝑓). 

 

(3.4) 
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Equation (3.3) known as “continuity equation” holds for every modal field. Detailed 

solution is in (Akgun [2]) and (Eroglu [3]). 

 Initial Conditions for Klein-Gordon Equations 

Klein-Gordon equation should has a pair of initial conditions like any other second 

order partial differential equations. Physically, they are involved in the excitation of a 

suitable signal source.Let’s assume that this source is at rest before time 𝑡 = 0 but it 

starts excitation at time 𝑡 = 0. So, the initial condition can be written as 

 𝑓(𝜉, 𝜏)|𝜉=0 = {
𝜑(𝜏),   𝜏 ≥ 0      for    𝑡 ≥ 0 
0,            𝜏 < 0     for       𝑡 < 0

 

 
𝜕

𝜕𝜏
𝑓(𝜉, 𝜏)|𝜉=0 = {

𝜑̂(𝜏),   𝜏 ≥ 0     for    𝑡 ≥ 0 
0,         𝜏 < 0     for    𝑡 < 0

  

 

(3.5) 

where 𝜑(𝜏) and 𝜑̂(𝜏) should be given and 𝜉 = 0  ⇒   𝑧 = 0. 

 The Causality Principle 

The solutions of Klein-Gordon equation is based on the causality principle. There are 

two kinds of causality. If the sources are zero at the beginning then all the fields are 

zero at weak causality. In our problem this correponds to 𝜏 < 0. The strong causality 

condition is the Einstein’s postulate that claims any magnetic field propagates a signal 

in space with the speed of light 𝑐. In our problem, the source is in the waveguide cross-

section at 𝜉 = 0. It states that the solution of Klein-Gordon must be zero at beyond the 

source point 𝜉 = 0, after 𝜉 = 𝜏 (i.e., 𝑧 = 𝑐𝑡). Hence, if the signal propagates along 

𝑂𝑧 −axis then Klein-Gordon equation should be read as 

 𝑓(𝜉, 𝜏) = {

𝑓(𝜉, 𝜏) = 0        if                 𝜏 < 0

𝑓(𝜉, 𝜏) ≠ 0        if          0 ≤ ξ ≤ τ

𝑓(𝜉, 𝜏) = 0         if                   𝜉 > 𝜏

   

 

(3.6) 
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CHAPTER 4 

MODAL AMPLITUDE PROBLEM 

The wave equation which moves along the  𝑧 −axis at a particular time 𝑡 is Klein-

Gordon equation and it is defined by 

(𝜕𝑐𝑡
2 − 𝜕𝑧

2 + 𝜅2)𝐹(𝑧, 𝑡) = 0                                      

where 𝑐 is the speed of light and  𝜅2  is an eigenvalue of Wave-Boundary Operators 

(which are inside the parenthesis of the equation).  

Let us consider  

 (𝜕𝑐𝑡
2 − 𝜕𝑧

2 + 1)𝐹(𝑧, 𝑡) = 0,   (4.1) 

where 𝜅2 ≡ 1. The function  𝐹  sought, in equation (4.1), is depend on two variables 

which are  𝑧  and  𝑡: 𝐹 ≡ 𝐹(𝑧, 𝑡). To apply the method of separation of variables, we 

need to ask a question like “is it possible to write  (𝑧, 𝑡)  as a combination of   𝑢(𝑧, 𝑡)  

and  𝑣(𝑧, 𝑡)”. To make it possible  (𝑖)  we should take into new independent variables 

provided that (𝑖𝑖)  these new variables can be separated in Klein-Gordon equation. In 

other words, we consider separation of variables in regard to the function  𝐹  as follows: 

 𝐹 ≡ 𝐹(𝑧, 𝑡) = 𝐹[𝑢(𝑧, 𝑐𝑡), 𝑣(𝑧, 𝑐𝑡)] ≡ 𝐹(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣)   (4.2) 

To answer above question, we should look at which form acquires equation (4.1) in 

terms of new variables,  𝑢 ≡ 𝑢(𝑧, 𝑡)  and  𝑣 ≡ 𝑣(𝑧, 𝑡), as some functions of the original 

ones. For reforming equation (4.1) in terms of  𝑢  and  v, we have to do the initial work 

as stated below: 

1

𝑐

𝜕

𝜕𝑡
𝐹(𝑢, 𝑣) =

1

𝑐
{
𝜕𝐹

𝜕𝑢

𝜕𝑢

𝜕𝑡
+
𝜕𝐹

𝜕𝑣

𝜕𝑣

𝜕𝑡
} 
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1

𝑐2
𝜕2

𝜕𝑡2
𝐹(𝑢, 𝑣) =

1

𝑐2
{
𝜕2𝐹

𝜕𝑢2
(
𝜕𝑢

𝜕𝑡
)
2

+
𝜕𝐹

𝜕𝑢

𝜕2𝑢

𝜕𝑡2
+
𝜕2𝐹

𝜕𝑣2
(
𝜕𝑣

𝜕𝑡
)
2

+
𝜕𝐹

𝜕𝑣

𝜕2𝑣

𝜕𝑡2
}

+
1

𝑐2
{
𝜕2𝐹

𝜕𝑢𝜕𝑣

𝜕𝑢

𝜕𝑡

𝜕𝑣

𝜕𝑡
+
𝜕2𝐹

𝜕𝑣𝜕𝑢

𝜕𝑣

𝜕𝑡

𝜕𝑢

𝜕𝑡
} 

Since  𝑢  and  𝑣  are independent variables, the last equation can be rearrange as 

1

𝑐2
𝜕2

𝜕𝑡2
𝐹(𝑢, 𝑣) =

1

𝑐2
{
𝜕2𝐹

𝜕𝑢2
(
𝜕𝑢

𝜕𝑡
)
2

+
𝜕2𝐹

𝜕𝑣2
(
𝜕𝑣

𝜕𝑡
)
2

+
𝜕𝐹

𝜕𝑢

𝜕2𝑢

𝜕𝑡2
+
𝜕𝐹

𝜕𝑣

𝜕2𝑣

𝜕𝑡2
 

+ 2
𝜕2𝐹

𝜕𝑢𝜕𝑣

𝜕𝑢

𝜕𝑡

𝜕𝑣

𝜕𝑡
}. 

 

(4.3) 

Equally, 

  
𝜕2

𝜕𝑡2
𝐹(𝑢, 𝑣) = {

𝜕2𝐹

𝜕𝑢2
(
𝜕𝑢

𝜕𝑡
)
2

+
𝜕2𝐹

𝜕𝑣2
(
𝜕𝑣

𝜕𝑡
)
2

+
𝜕𝐹

𝜕𝑢

𝜕2𝑢

𝜕𝑡2
+
𝜕𝐹

𝜕𝑣

𝜕2𝑣

𝜕𝑡2

+ 2
𝜕2𝐹

𝜕𝑢𝜕𝑣

𝜕𝑢

𝜕𝑡

𝜕𝑣

𝜕𝑡
}.    

 

(4.4) 

Substituting equations (4.3) and (4.4) in (4.1) lead us to 

[(
1

𝑐

𝜕𝑢

𝜕𝑡
)
2

− (
𝜕𝑢

𝜕𝑧
)
2

]
𝜕2𝐹

𝜕𝑢2
+ [(

1

𝑐

𝜕𝑣

𝜕𝑡
)
2

− (
𝜕𝑣

𝜕𝑧
)
2

]
𝜕2𝐹

𝜕𝑣2
+ [
1

𝑐2
𝜕2𝑢

𝜕𝑡2
−
𝜕2𝑢

𝜕𝑧2
]
𝜕𝐹

𝜕𝑢

+ [
1

𝑐2
𝜕2𝑣

𝜕𝑡2
−
𝜕2𝑣

𝜕𝑧2
]
𝜕𝐹

𝜕𝑣
+ 2 [

1

𝑐

𝜕𝑢

𝜕𝑡

1

𝑐

𝜕𝑣

𝜕𝑡
−
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧
]
𝜕2𝐹

𝜕𝑢𝜕𝑣
+ 𝐹 = 0    

 

(4.5) 

At this point, the following comments may be needed: 

 Equation (4.5) is reformulated version of equation (4.1) with the transformation 

of the original variables to 𝑢(𝑧, 𝑡) and 𝑣(𝑧, 𝑡) 

 The terms in the square brackets of equation (4.5) has variable coefficients; 

 The dependences of  𝑢(𝑧, 𝑡)  and  𝑣(𝑧, 𝑡) should be defined to separate new 

variables  𝑢  and  𝑣  and find a solution of equation (4.5) in the form of  
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𝐹(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣). The definition can not be understood with a simple look at 

equation (4.5). 

Klein-Gordon equation is well-studied about separation of variables in the mathematical 

book (Miller [11]). In this book, 11 orthogonal coordinate systems (Appendix A) were 

found which makes it possible to separate new variables, by using group theory 

approach. In addition, another set of nonorthogonal coordinate systems, in which 

separation of the variables is possible, can be attained with the aid of the same 

approach. The list of the orhogonal coordinate systems are cited below. 

Group theory gives positive answer on this question. In the list, there is 11 versions of 

𝑐𝑡 and 𝑧 in terms of the functions of 𝑢 and 𝑣. Inverse functional depences, 𝑢 ≡ 𝑢(𝑧, 𝑐𝑡) 

and 𝑣 ≡ 𝑣(𝑧, 𝑐𝑡) can be found easily. 

 An Overview of Bessel Functions 

4.1.1 Definition 

Consider the homogenous linear 𝑛 −th order ordinary differential equation of is 

 𝑦(𝑛) + 𝑝𝑛−1(𝑥)𝑦
(𝑛−1) + 𝑝𝑛−2(𝑥)𝑦

(𝑛−2) +⋯+ 𝑝0(𝑥)𝑦 = 0.  (4.6) 

In this case; 

1. If the coefficients 𝑝0(𝑥), 𝑝1(𝑥),… , 𝑝𝑛−1(𝑥) are not analytic at 𝑥 = 𝑥0 then 𝑥0 is 

called a singular point of given differential equation. 

2. If all the coefficients 𝑝𝑘(𝑥) are not analytic but all points (𝑥 − 𝑥0)
𝑛−𝑘  for 𝑘 =

0,1,… , (𝑛 − 2) are analytic, then the point 𝑥0 is regular singular. 

3. If the point 𝑥0 is neither an ordinary point nor a regular singular point of 

equation (4.6) then it is called as irregular singular point. 

4.1.2 The Method of Frobenius 

Let us consider a homogenous linear 2 −nd order ordinary differential equation. If 𝑥 =

0 is a regular singular point then both 𝑥𝑃(𝑥) and 𝑥2𝑄(𝑥) can be written as power series  

𝑥𝑃(𝑥) = ∑𝑃𝑛𝑥
𝑛

∞

𝑛=0

,            |𝑥| < 𝑟  
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𝑥2𝑄(𝑥) = ∑𝑄𝑛𝑥
𝑛

∞

𝑛=0

,            |𝑥| < 𝑟     

or equivalenly, 

𝑃(𝑥) = ∑𝑃𝑛𝑥
𝑛−1

∞

𝑛=0

,            |𝑥| < 𝑟,   𝑥 ≠ 0    

𝑄(𝑥) = ∑𝑄𝑛𝑥
𝑛−2

∞

𝑛=0

,            |𝑥| < 𝑟,        𝑥 ≠ 0. 

Frobenius series solution of given differential equation is suggested as 

𝑦(𝑥) = 𝑥𝛼∑𝑎𝑛𝑥
𝑛+𝛼

∞

𝑛=0

= ∑𝑎𝑛𝑥
𝑛+𝛼

∞

𝑛=0

,    0 < 𝑥 < 𝑟     

Differentiating 𝑦 with respect to 𝑥, in turn, yields 

𝑦′(𝑥) = ∑(𝑛 + 𝛼)𝑎𝑛𝑥
𝑛+𝛼−1

∞

𝑛=0

,      

𝑦′′(𝑥) = ∑(𝑛 + 𝛼)(𝑛 + 𝛼 − 1)𝑎𝑛𝑥
𝑛+𝛼−2

∞

𝑛=0

                 

and substituting these results into the differential equation, we get 

  ∑(𝑛 + 𝛼)(𝑛 + 𝛼 − 1)𝑎𝑛𝑥
𝑛+𝛼−2

∞

𝑛=0

+∑𝑃𝑛𝑥
𝑛−1

∞

𝑛=0

∑(𝑛 + 𝛼)𝑎𝑛𝑥
𝑛+𝛼−1

∞

𝑛=0

+∑𝑄𝑛𝑥
𝑛−2

∞

𝑛=0

∑𝑎𝑛𝑥
𝑛+𝛼

∞

𝑛=0

= 0  

 

 

(4.7) 

In this equation, the second and third power series can be stated as  

 ∑𝑃𝑛𝑥
𝑛−1

∞

𝑛=0

∑(𝑛 + 𝛼)𝑎𝑛𝑥
𝑛+𝛼−1

∞

𝑛=0

= ∑∑ 𝑃𝑛−𝑚𝑥
𝑛−𝑚−1

𝑛

𝑚=0

∞

𝑛=0

(𝑚 + 𝛼)𝑎𝑚𝑥
𝑚+𝛼−1 
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                                                               = ∑[∑(𝑚 + 𝛼)𝑃𝑛−𝑚

𝑛

𝑚=0

𝑎𝑚]

∞

𝑛=0

𝑥𝑛+𝛼−2 

 

(4.8) 

and 

 ∑𝑄𝑛𝑥
𝑛−2

∞

𝑛=0

∑𝑎𝑛𝑥
𝑛+𝛼

∞

𝑛=0

= ∑[∑ 𝑄𝑛−𝑚

𝑛

𝑚=0

𝑎𝑚]

∞

𝑛=0

𝑥𝑛+𝛼−2  ,   

 

(4.9) 

respectively. Plugging equations (4.8) and (4.9) into (4.7) gives  

∑{(𝑛 + 𝛼)(𝑛 + 𝛼 − 1)𝑎𝑛 + ∑[(𝑚 + 𝛼)𝑃𝑛−𝑚 +𝑄𝑛−𝑚]

𝑛

𝑚=0

𝑎𝑚} 𝑥
𝑛+𝛼−2

∞

𝑛=0

= 0.    

 

(4.10) 

However, for equation (4.10) to hold the coefficient 𝑥𝑛+𝛼−2, 𝑛 = 0,1,… should be zero. 

Our task is to find a recurrence relation involving 𝑎𝑛, for 𝑛 = 0,1,…. So, setting 𝑛 = 0 

equation (4.10) becomes 

[𝛼(𝛼 − 1) + 𝛼𝑃0 +𝑄0]𝑎0 = 0 .                           

In this case, 𝑎0 = 0 or 𝛼(𝛼 − 1) + 𝛼𝑃0 +𝑄0 = 0. 

Setting 𝑛 = 1 in (4.10) 

(𝑛 + 𝛼)(𝑛 + 𝛼 − 1)𝑎𝑛 + ∑[(𝑚 + 𝛼)𝑃𝑛−𝑚 + 𝑄𝑛−𝑚]

𝑛

𝑚=0

𝑎𝑚 = 0                 

or, 

𝑎𝑛 = −
1

(𝑛 + 𝛼)(𝑛 + 𝛼 − 1) + (𝑛 + 𝛼)𝑃0 +𝑄0
∑[(𝑚 + 𝛼)𝑃𝑛−𝑚 +𝑄𝑛−𝑚]

𝑛−1

𝑚=0

𝑎𝑚 .              

1. If 𝑎0 = 0 then 𝑎1 = 𝑎2 = ⋯ = 0 and so 𝑦(𝑥) = 0.  

2. If 𝑎0 ≠ 0 then the indicial equation  

𝛼(𝛼 − 1) + 𝛼𝑃0 + 𝑄0 = 0 (4.11) 

is obtained. 
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We assume that 𝑎0 ≠ 0, so equation (4.11) must be hold. Thus, 𝛼1 and 𝛼2are the roots 

of the indicial equation associated with 𝑥 = 0.  

4.1.3 Fuchs Theorem (Series Solution Near a Regular Singular Point) 

We already know that if 𝑥 = 0 is a singular point for 2nd order homogenous linear 

ordinary differential equation 

 𝑦′′(𝑥) + 𝑃(𝑥)𝑦′(𝑥) + 𝑄(𝑥)𝑦(𝑥) = 0, (4.12) 

then 

𝑥𝑃(𝑥) = ∑𝑃𝑛𝑥
𝑛

∞

𝑛=0

,    𝑥2𝑄(𝑥) = ∑𝑄𝑛𝑥
𝑛

∞

𝑛=0

,         |𝑥| < 𝑟.                                        

Let the indicial equation (4.11) has two real roots 𝛼1 and 𝛼2 where 𝛼1 ≥ 𝛼2.  

1. If 𝛼1 − 𝛼2is not an integer, then there exist two linearly independent solutions of 

the form 

      𝑦1(𝑥) = 𝑥
𝛼1∑𝑎𝑛𝑥

𝑛

∞

𝑛=0

,      𝑎0 ≠ 0,   0 < 𝑥 < 𝑟  

 

(4.13) 

      𝑦2(𝑥) = 𝑥
𝛼2∑𝑏𝑛𝑥

𝑛

∞

𝑛=0

,         𝑎0 ≠ 0,    0 < 𝑥 < 𝑟.  

 

(4.14) 

The coefficients 𝑏𝑛 is found by substituting 𝑦1(𝑥) into the differential equation. 

2. If 𝛼1 = 𝛼2 = 𝛼 then the first and second linearly independent solutions are  

       𝑦1(𝑥) = 𝑥
𝛼1∑𝑎𝑛𝑥

𝑛

∞

𝑛=0

,      𝑎0 ≠ 0,   0 < 𝑥 < 𝑟                                    

𝑦2(𝑥) = 𝑦1(𝑥) ln𝑥 + 𝑥
𝛼∑𝑏𝑛𝑥

𝑛

∞

𝑛=0

,             0 < 𝑥 < 𝑟.   

 

(4.15) 

In this case, second solution 𝑦2(𝑥) is not a Frobenius series solution. 

3. If 𝛼1 − 𝛼2 is an integer then 
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        𝑦1(𝑥) = 𝑥
𝛼1∑𝑎𝑛𝑥

𝑛

∞

𝑛=0

,      𝑎0 ≠ 0,   0 < 𝑥 < 𝑟                                    

  𝑦2(𝑥) = 𝑎𝑦1(𝑥) ln 𝑥 + 𝑥
𝛼2∑𝑏𝑛𝑥

𝑛

∞

𝑛=0

,             0 < 𝑥 < 𝑟.  

 

(4.16) 

where 𝑎 is a constant that could be zero. The solution 𝑦2(𝑥) can be a second solution of 

Frobenius series solution. 

Consequently, the general solution of differential equation is 

𝑦(𝑥) = 𝐶1(𝑥)𝑦1(𝑥) + 𝐶2(𝑥)𝑦2(𝑥). (4.17) 

4.1.4 Bessel Differential Equation and its Solution  

The Bessel differential equation is the linear second-order ordinary differential equation 

given by 

 𝑥2𝑦′′(𝑥) + 𝑥𝑦′(𝑥) + (𝑥2 − 𝑝2)𝑦(𝑥) = 0,       𝑥 > 0     (4.18) 

where 𝑝 ≥ 0 is a constant number. The method of series solution near a regular singular 

point is used for solving the Bessel differential equation.  

Clearly,  

 𝑦′′(𝑥) + 𝑃(𝑥)𝑦′(𝑥) + 𝑄(𝑥)𝑦(𝑥) = 0  (4.19) 

has a regular singular point at 𝑥 = 0 where 𝑃(𝑥) =
1

𝑥
 and 𝑄(𝑥) =

𝑥2−𝑝2

𝑥2
. Since, 

 𝑥𝑃(𝑥) = 1 = 1 + 0. 𝑥 + 0. 𝑥2 +⋯          ⇒                𝑃0 = 1   (4.20) 

 𝑥2𝑄(𝑥) = 𝑥2 − 𝑝2 = −𝑝2 + 0. 𝑥 + 𝑥2 + 0. 𝑥3 +⋯          ⇒        𝑄0 = −𝑝
2     (4.21) 

𝑥𝑃(𝑥) and 𝑥2𝑄(𝑥) are both analytic at the point 𝑥 = 0, can be written as a series 

expansion and these series are convergent for |𝑥| < ∞, respectively. 

By the indicial equation (4.11) 

http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html
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 𝛼(𝛼 − 1) + 𝛼. 1 − 𝑝2 = 0    ⇒     𝛼 − 𝑝2 = 0    ⇒      𝛼1 = 𝑝,   𝛼2 = −𝑝. (4.22) 

The Bessel differential equation (4.18) has a series solution in the form of 

 𝑦1(𝑥) = 𝑥
𝑝∑𝑎𝑛

∞

𝑛=0

𝑥𝑛 = ∑𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝,      𝑎0 ≠ 0,    0 < 𝑥 < ∞.  

 

(4.23) 

We begin by differentiating 𝑦1(𝑥) in (4.23) with respect to 𝑥 to obtain 

 𝑦1
′(𝑥) = ∑(𝑛 + 𝑝)𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝−1     

 

(4.24) 

 𝑦1
′′(𝑥) = ∑(𝑛 + 𝑝)(𝑛 + 𝑝 − 1)𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝−2.    

 

(4.25) 

Substituting 𝑦1(𝑥), 𝑦1
′(𝑥) and 𝑦1

′′(𝑥) into equation (4.18) yields 

 𝑥2∑(𝑛 + 𝑝)(𝑛 + 𝑝 − 1)𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝−2 + 𝑥∑(𝑛 + 𝑝)𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝−1 

                                                                     +(𝑥2 − 𝑝2)∑𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝 = 0 

or more precisely, 

 ∑[(𝑛 + 𝑝)(𝑛 + 𝑝 − 1) + (𝑛 + 𝑝) − 𝑝2]𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝 +∑𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝+2 = 0 

 

(4.26) 

To simplify the addition of two summations in (4.26), let’s shift the index of second  

∑𝑎𝑛

∞

𝑛=0

𝑥𝑛+𝑝+2    
𝑛+2=𝑚
⇒       ∑ 𝑎𝑛−2

∞

𝑚=2

𝑥𝑛+𝑝. 

With these changes equation (4.26) becomes 
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 𝑥𝑝 {∑[(𝑛 + 𝑝)(𝑛 + 𝑝 − 1) + (𝑛 + 𝑝) − 𝑝2]𝑎𝑛

∞

𝑛=0

𝑥𝑛 +∑𝑎𝑛−2

∞

𝑛=2

𝑥𝑛} = 0. 

 

(4.27) 

Since 𝑥𝑝 ≠ 0, then 

 ∑𝑛(𝑛 + 2𝑝)𝑎𝑛

∞

𝑛=0

𝑥𝑛 +∑𝑎𝑛−2

∞

𝑛=2

𝑥𝑛 = 0  

 

(4.28) 

holds for 𝑥𝑛 ≠ 0, 𝑛 = 0,1,… . 

Separating the terms corresponding to 𝑛 = 0 and 𝑛 = 1 and combining the rest under 

one summation, we have 

 0. (0 + 2𝑝)𝑎0 + 1. (1 + 2𝑝)𝑎1𝑥 +∑(𝑛(𝑛 + 2𝑝)𝑎𝑛 + 𝑎𝑛−2)

∞

𝑛=2

𝑥𝑛 = 0 .      

Setting the coefficients equal to zero gives 

0. (0 + 2𝑝)𝑎0 = 0 

where 𝑎0 ≠ 0is an arbitrary constant, 

1. (1 + 2𝑝)𝑎1 = 0   ⇒       𝑎1 = 0     

and the recurrence relation for 𝑛 ≥ 2 is 

𝑛(𝑛 + 2𝑝)𝑎𝑛  + 𝑎𝑛−2 = 0            

 𝑎𝑛 = −
𝑎𝑛−2

𝑛(𝑛 + 2𝑝)
   (4.29) 

Solving the recurrence relation (4.29) for 𝑎2𝑛+1,  𝑛 = 0,1,… ,we obtain 

 𝑎2𝑛+1 = 0. 

For 𝑛 = 2 and 4. this gives 

𝑎2 = −
𝑎0

2(2 + 2𝑝)
= −

𝑎0
22. 1(1 + 𝑝)

 

𝑎4 = −
𝑎2

4(4 + 2𝑝)
= −

𝑎2
22. 2(2 + 𝑝)

= (−1)2
𝑎0

24. 2! (1 + 𝑝)(2 + 𝑝)
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it follows by induction 

𝑎2𝑛 = (−1)
𝑛

𝑎0
22𝑛 . 𝑛! (1 + 𝑝)(2 + 𝑝)… (𝑛 + 𝑝)

 . 

So, equation (4.23) is 

 𝑦1(𝑥) = 𝑎0𝑥
𝑝∑(−1)𝑛

1

𝑛! (1 + 𝑝)(2 + 𝑝)… (𝑛 + 𝑝)
(
𝑥

2
)
2𝑛

∞

𝑛=0

,    0 < 𝑥 < ∞.  

 

(4.30) 

In order to write simplified solution, the Gamma function can be used which is defined 

as 

𝛤(𝑝 + 1) = ∫ 𝑡𝑝𝑒−𝑡𝑑𝑡

∞

0

,     𝑝 > 0                     

(Xie [12]). Using integration by part 

𝛤(𝑝 + 1) = −𝑡𝑝𝑒−𝑡|𝑡=0
∞ +∫ 𝑝𝑡𝑝−1𝑒−𝑡𝑑𝑡

∞

0

= 𝑝∫ 𝑡𝑝−1𝑒−𝑡𝑑𝑡

∞

0

= 𝑝𝛤(𝑝),    

 

(4.31) 

is obtained. Thus 

𝛤(𝑛 + 𝑝 + 1) = (𝑛 + 𝑝)𝛤(𝑛 + 𝑝) = (𝑛 + 𝑝)(𝑛 + 𝑝 − 1)𝛤(𝑛 + 𝑝 − 1) 

                          = ⋯ = (𝑛 + 𝑝)(𝑛 + 𝑝 − 1)… (1 + 𝑝)𝛤(1 + 𝑝). 

In equation (4.31), for 𝑝 = 0 

𝛤(1) = +∫ 𝑒−𝑡𝑑𝑡

∞

0

= 𝑒−𝑡|𝑡=0
∞ = 1, 

for 𝑝 = 1 

𝛤(2) = 2. 𝛤(1) = 1, 

for 𝑝 = 2 

𝛤(3) = 2. 𝛤(2) = 2.1 = 2!, 

                         ⋮ 
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for the case 𝑝 = 𝑘 is an integer 

𝛤(𝑘 + 1) = 𝑘. 𝛤(𝑘) = 𝑘! . 

Therefore, if we choose 

𝑎0 = [2
𝑝𝛤(1 + 𝑝)]−1 

and, first Frobenius series solution is 

𝑦1(𝑥) = 𝐽𝑝(𝑥)  (4.32) 

where 𝐽𝑝(𝑥) is called as the Bessel function of the first kind and defined by 

𝐽𝑝(𝑥) =
1

2𝑝𝛤(1 + 𝑝)
𝑥𝑝∑(−1)𝑛

1

𝑛! (1 + 𝑝)(2 + 𝑝)…(𝑛 + 𝑝)
(
𝑥

2
)
2𝑛

∞

𝑛=0

 

or equivalently, 

𝐽𝑝(𝑥) = ∑(−1)𝑛
1

𝑛!𝛤(𝑛 + 𝑝 + 1)
(
𝑥

2
)
2𝑛+𝑝

∞

𝑛=0

 

In Fuch’s theory, linearly independent second solution changes according to the 

difference between the roots of the indicial equation (4.11).The difference 𝛼1 − 𝛼2 =

2𝑝 is not an integer,  equal to zero or a positive integer 

 2p Nonbeing an Integer 

Second Frobenius series solution (4.14) of the Bessel equation (4.18) is 

 𝑦2(𝑥) = 𝑥
−𝑝∑𝑏𝑛𝑥

𝑛

∞

𝑛=0

,           0 < 𝑥 < ∞ 

Similarly, in the previous section, 

𝑏2𝑛−1 = 0,   

and th recurrence relation is 

𝑏2𝑛 = (−1)
𝑛

𝑏0
22𝑛 . 𝑛! (1 − 𝑝)(2 − 𝑝)… (𝑛 − 𝑝)

. 
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Hence, the second Frobenius series solution is 

𝑦2(𝑥) = 𝑏0𝑥
−𝑝∑(−1)𝑛

1

𝑛! (1 − 𝑝)(2− 𝑝)… (𝑛 − 𝑝)

∞

𝑛=0

(
𝑥

2
)
2𝑛

,           0 < 𝑥 < ∞ 

or equivalently, 

 𝑦2(𝑥) = 𝑥
−𝑝∑(−1)𝑛

1

𝑛! Γ(𝑛 − 𝑝 + 1)

∞

𝑛=0

(
𝑥

2
)
2𝑛−𝑝

= 𝐽−𝑝(𝑥),     0 < 𝑥 < ∞ 

 

(4.33) 

where 𝑏0 = [2
−𝑝Γ(1 − 𝑝)]−1. 

As a result, the general solution of the Bessel equation is 

 𝑦(𝑥) = 𝐶1𝐽𝑝(𝑥) + 𝐶2𝐽−𝑝(𝑥)           (4.34) 

or 

 𝑦(𝑥) = 𝐷1𝐽𝑝(𝑥) + 𝐷2𝑌𝑝(𝑥)𝑦(𝑥) = 𝐶1𝐽𝑝(𝑥) + 𝐶2𝐽−𝑝(𝑥)           (4.35) 

where 𝑌𝑝(𝑥) is the Bessel function of the second kind of order two and represented by 

 𝑌𝑝(𝑥) =
𝐽𝑝(𝑥) cos(𝑝𝜋) − 𝐽−𝑝(𝑥)

sin(𝑝𝜋)
   

(4.36) 

 𝒑 =  𝟎, 𝜶𝟏  =  𝜶𝟐  =  𝟎 

The solution of first Frobenius series solution simplified from equation (4.32) as  

 𝑦1(𝑥) = 𝐽0(𝑥) = ∑(−1)𝑛
1

(𝑛!)2

∞

𝑛=0

(
𝑥

2
)
2𝑛

,           0 < 𝑥 < ∞  

 

(4.37) 

and linearly independent second solution is 

 𝑦2(𝑥) = 𝑦1(𝑥) ln𝑥 +∑𝑏𝑛𝑥
𝑛

∞

𝑛=0

.           0 < 𝑥 < ∞ 

 

(4.38) 

We differentiate termwise to obtain 
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 𝑦2
′(𝑥) = 𝑦1

′(𝑥) ln𝑥 +
𝑦1
𝑥
+∑𝑛𝑏𝑛𝑥

𝑛−1

∞

𝑛=0

         0 < 𝑥 < ∞ 

 

(4.39) 

 𝑦2
′′(𝑥) = 𝑦1

′′(𝑥) ln 𝑥 +
2𝑦1

′

𝑥
−
𝑦1
𝑥2
+∑𝑛(𝑛 − 1)𝑏𝑛𝑥

𝑛−2

∞

𝑛=2

. 

 

(4.40) 

and substituting them into the Bessel equation (4.18) for 𝑝 = 0 yields 

 (𝑥2𝑦1
′′ + 𝑥𝑦1

′ + 𝑥2𝑦1) ln𝑥 + 2𝑥𝑦1
′ +∑𝑛(𝑛 − 1)𝑏𝑛𝑥

𝑛

∞

𝑛=2

+∑𝑛𝑏𝑛𝑥
𝑛

∞

𝑛=1

+∑𝑏𝑛𝑥
𝑛+2

∞

𝑛=0

= 0                                

 

(4.41) 

(Xie [12]). 

Since 𝑦1(𝑥) is a solution of the Bessel equation, we can write 𝑥2𝑦1
′′ + 𝑥𝑦1

′ + 𝑥2𝑦1 = 0 

and  

 2𝑥𝑦1
′ = 2𝑥∑(−1)𝑛

∞

𝑛=0

1

(𝑛!)2
2𝑛 𝑥2𝑛−1

22𝑛
= ∑(−1)𝑛

∞

𝑛=1

4𝑛

(𝑛!)2
(
𝑥

2
)
2𝑛

.  

 

(4.42) 

Plugging above equations in equation (4.41) gives 

 ∑(−1)𝑛
∞

𝑛=1

4𝑛

(𝑛!)2
(
𝑥

2
)
2𝑛

+∑𝑛(𝑛 − 1)𝑏𝑛𝑥
𝑛

∞

𝑛=2

+∑𝑛𝑏𝑛𝑥
𝑛

∞

𝑛=1

+∑𝑏𝑛−2𝑥
𝑛

∞

𝑛=2

= 0 

 

(4.43) 

where 𝑥𝑛is need be equal zero to provide this equality for 𝑛 = 0,1,… . 

Next, if we separate the 𝑥1 terms from others and set the coefficients of the power series 

equal to zeroe get 

𝑏1 = 0, 

𝑏2𝑛+1 = 0 

and the recurrence relation 
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(−1)𝑛
4𝑛

(𝑛!)2
(
1

2
)
2𝑛

+ [2𝑛(2𝑛 − 1) + 2𝑛]𝑏2𝑛 + 𝑏2𝑛−2 = 0 

or 

𝑏2𝑛 = (−1)
𝑛+1

1

𝑛(𝑛!)2
(
1

2
)
2𝑛

−
𝑏2𝑛−2
(2𝑛)2

   ⋅ 

Assuming 𝑏0 = 0 yields 

𝑏2𝑛 = (−1)
𝑛+1
1 +

1
2 +

1
3 +⋯+

1
𝑛

(𝑛!)2
(
1

2
)
2𝑛

⋅ 

Accordingly, the linearly independent second solution becomes 

 𝑦2(𝑥) = 𝐽0(𝑥) ln 𝑥 +∑(−1)𝑛+1
1 +

1
2 +

1
3 +⋯+

1
𝑛

(𝑛!)2
(
1

2
)
2𝑛∞

𝑛=1

.         0 < 𝑥 < ∞ 

 

(4.44) 

is a term of the Bessel funtion of the second kind of order zero. Or it can be expressed 

by 

 𝑦2(𝑥) =
𝜋

2
𝑌0(𝑥) + (ln2 − 𝛾)𝐽0(𝑥)           0 < 𝑥 < ∞  

(4.45) 

where 𝑌0(𝑥) is the Bessel funtion of the second kind of order zero. It is defined by 

 𝑌0 =
2

𝜋
[(ln

𝑥

2
+ 𝛾) 𝐽0(𝑥) +∑(−1)𝑛+1

1 +
1
2 +

1
3 +⋯+

1
𝑛

(𝑛!)2
(
1

2
)
2𝑛∞

𝑛=1

] 

where 𝛾 = 0,57721566490153… = lim
𝑛→∞

(∑
1

𝑘
− ln𝑛𝑛

𝑘=1 ) is Euler constant. 

The general solution is  

 𝑦(𝑥) = 𝐶0𝐽𝑝(𝑥) + 𝐶2𝑌0 (𝑥).  (4.46) 

 𝒑 Being a Positive Integer 

The solution of first Frobenius series solution was 
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 𝑦1(𝑥) = 𝐽𝑝(𝑥) = ∑(−1)𝑛
1

(𝑛!)(𝑛 + 𝑝)!

∞

𝑛=0

(
𝑥

2
)
2𝑛+𝑝

.           0 < 𝑥 < ∞ 

 

(4.47) 

Linearly independent second solution is  

 𝑦2(𝑥) = 𝑎𝑦1(𝑥) ln 𝑥 + 𝑥
−𝑝∑𝑏𝑛𝑥

𝑛

∞

𝑛=0

.           0 < 𝑥 < ∞ 

 

(4.48) 

Our goal is to determine the coefficients 𝑏𝑛 by substituting 𝑦2(𝑥) directly into equation 

(4.18). Let’s take the derivatives of equation (4.48) with respect to 𝑥 

 𝑦2
′(𝑥) = 𝑎 (𝑦1

′(𝑥) ln𝑥 +
𝑦1
𝑥
) +∑(𝑛 − 𝑝)𝑏𝑛𝑥

𝑛−𝑝−1

∞

𝑛=0

 

 

(4.49) 

 𝑦2
′′(𝑥) = 𝑎 (𝑦1

′′(𝑥) ln 𝑥 +
2𝑦1

′

𝑥
−
𝑦1
𝑥2
) +∑(𝑛 − 𝑝)(𝑛 − 𝑝 − 1)𝑏𝑛𝑥

𝑛−𝑝−2

∞

𝑛=0

 

 

(4.50) 

and substitute them into the Bessel equation (4.18)  

𝑎(𝑥2𝑦1
′′ + 𝑥𝑦1

′ + (𝑥2 − 𝑝2)𝑦1) ln 𝑥 + 2𝑎𝑥𝑦1
′ +∑(𝑛 − 𝑝)(𝑛 − 𝑝 − 1)𝑏𝑛𝑥

𝑛−𝑝

∞

𝑛=0

 

                                 +∑(𝑛 − 𝑝)𝑏𝑛𝑥
𝑛−𝑝

∞

𝑛=
𝑛=0

+∑𝑏𝑛𝑥
𝑛−𝑝−2

∞

𝑛=0

−∑𝑝2𝑏𝑛𝑥
𝑛−𝑝

∞

𝑛=0

= 0 .  

 

(4.51) 

Since 𝑦1(𝑥) is a solution of Bessel equation, we can write  

 𝑥2𝑦1
′′ + 𝑥𝑦1

′ + (𝑥2 − 𝑝2)𝑦1 = 0  (4.52) 

and  

2𝑎𝑥𝑦1
′ = 2𝑎𝑥∑(−1)𝑛

∞

𝑛=0

(2𝑛 + 𝑝). 𝑥2𝑛+𝑝−1

𝑛! (𝑛 + 𝑝)! 22𝑛+𝑝
= ∑(−1)𝑛

∞

𝑛=1

2𝑎(2𝑛 + 𝑝)

𝑛! (𝑛 + 𝑝)!
(
𝑥

2
)
2𝑛+𝑝

.    
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Multiply the equation by 𝑥𝑝 and substituting it and equation (4.52) into equation (4.51) 

gives 

∑(−1)𝑛
∞

𝑛=0

2𝑝+2𝑎(2𝑛 + 𝑝)

𝑛! (𝑛 + 𝑝)!
(
𝑥

2
)
2(𝑛+𝑝)

+∑𝑛(2𝑛 − 𝑝)𝑏𝑛𝑥
𝑛

∞

𝑛=0

+∑𝑏𝑛−2𝑥
𝑛

∞

𝑛=0

= 0 

 

(4.53) 

where 𝑥𝑛is need to be equal zero to provide this equality for 𝑛 = 0,1,… (Xie [12]).  In   

equation (4.53), there is no contribution of 𝑥𝑛: 0 ≤ 𝑛 < 2𝑝. 

 

Separating the terms correponding to 𝑛 = 0 and 𝑛 = 1 and setting the coefficients equal 

to zero yields 

0. (0 − 2𝑝)𝑏0 = 0       

where 𝑏0 is an arbitrary and 

1. (1 − 2𝑝)𝑏1 = 0       ⇒          𝑏1 = 0 

Let’s assume that 𝑏0 = 1. The recurrence relation for 2 ≤ 𝑛 < 2𝑝 is 

 𝑛(𝑛 − 2𝑝)𝑏𝑛 + 𝑏𝑛−2 = 0        ⇒      𝑏𝑛 =
𝑏𝑛−2

𝑛(2𝑝 − 𝑛)
 .  

 

(4.54) 

Thus, 

𝑏2 =
𝑏0

2(2𝑝 − 2)
=

1

22. 1(𝑝 − 1)
                            (𝑛 = 2), 

𝑏4 =
𝑏2

4(2𝑝 − 4)
=

1

24. 2! (𝑝 − 1)(𝑝 − 2)
                        (𝑛 = 4). 

The pattern for the coefficients is now apparent. We find 

 𝑏2𝑘 =
𝑏2𝑘−2

2𝑘(2𝑝 − 2𝑘)
=

1

22𝑘 . 𝑘! (𝑝 − 1)(𝑝 − 2)… (𝑝 − 𝑘)
=
(𝑝 − 𝑘 − 1)!

22𝑘 . 𝑘! (𝑝 − 1)!
 

where 𝑏2𝑛+1 = 0 is obvious for 𝑛 = 0,1,2,… . 

From the coefficient 𝑥2𝑝 in equation (4.53)  
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2𝑝+1𝑎𝑝

𝑝!
(
𝑥

2
)
2𝑝

+ 𝑏2𝑝−2 = 0 

then 

  𝑎 = −2𝑝−1(𝑝 − 1)! 𝑏2(𝑝−1) = −
1

2𝑝−1(𝑝 − 1)
.   

 

(4.55) 

Let’s take the arbitrary contant 𝑏2𝑝 = 0.  

By the cofficient 𝑥2(𝑛+𝑝), 𝑛 ≥ 1 

(−1)𝑛
2𝑝+1𝑎(2𝑛 + 𝑝)

𝑛! (𝑛 + 𝑝)!
(
1

2
)
2(𝑛+𝑝)

+ (2𝑛 + 2𝑝)(2𝑛)𝑏2(𝑛+𝑝) + 𝑏2(𝑛−1+𝑝) = 0 

Leave the term 𝑏2(𝑛+𝑝) alone  

𝑏2(𝑛+𝑝) = (−1)
𝑛+1

2𝑝−1𝑎(2𝑛 + 𝑝)

𝑛(𝑛 + 𝑝)𝑛! (𝑛 + 𝑝)!
(
1

2
)
2(𝑛+𝑝)

−
𝑏2(𝑛−1+𝑝)

22𝑛(𝑛 + 𝑝)
⋅ 

or equivalently, 

𝑏2(𝑛+𝑝) = (−1)
𝑛+1

2𝑝−1𝑎𝐴𝑛
𝑛! (𝑛 + 𝑝)!

(
1

2
)
2(𝑛+𝑝)

 

where 𝐴𝑛 = (
1

1
+
1

2
+⋯+

1

𝑛
) (

1

1+𝑝
+

1

2+𝑝
+⋯+

1

𝑛+𝑝
). So, linealy independent second 

solution is 

𝑦2(𝑥) = 𝑎𝐽𝑝(𝑥) ln 𝑥 

            +𝑥−𝑝 (∑
(𝑝 − 𝑛 − 1)!

𝑛! (𝑝 − 1)!
(
𝑥

2
)
2𝑛

𝑝−1

𝑛=0

+ 𝑎∑(−1)𝑛+1
2𝑝−1𝑎𝐴𝑛
𝑛! (𝑛 + 𝑝)!

(
𝑥

2
)
2(𝑛+𝑝)

∞

𝑛=1

).  

 

(4.56) 

 

or it can be expressed by 
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𝑦2(𝑥) = 𝑎(𝐽𝑝(𝑥) ln 𝑥 +
𝑥−𝑝

𝑎
∑
(𝑝 − 𝑛 − 1)!

𝑛! (𝑝 − 1)!
(
𝑥

2
)
2𝑛

𝑝−1

𝑛=0

+
1

2
∑(−1)𝑛+1

𝜓(𝑛 + 1) + 𝜓(𝑛 + 𝑝 + 1) − 𝜓(𝑝 + 1) + 𝛾

𝑛! (𝑛 + 𝑝)!
(
𝑥

2
)
2𝑛+𝑝

∞

𝑛=0

) 

             = 𝑎 (𝐽𝑝(𝑥) ln
𝑥

2
−
1

2
∑
(𝑝 − 𝑛 − 1)!

𝑛!
(
𝑥

2
)
2𝑛−𝑝

𝑝−1

𝑛=0

 

                              −
1

2
∑(−1)𝑛

𝜓(𝑛 + 1) + 𝜓(𝑛 + 𝑝 + 1)

𝑛! (𝑛 + 𝑝)!
(
𝑥

2
)
2𝑛+𝑝

∞

𝑛=0

 

                                −
1

2
(𝛾 − 𝜓(𝑝 + 1) − 2 ln 2)𝐽𝑝(𝑥)) 

               = 𝑎 (
𝜋

2
𝑌𝑝(𝑥) −

1

2
(𝛾 − 𝜓(𝑝 + 1) − 2 ln 2)𝐽𝑝(𝑥)) ,    0 < 𝑥 < ∞  

 

(4.57) 

where the function 𝜓 is a term of the Bessel function which is defined by 

𝛾 + 𝜓(𝑛 + 1) =
1

1
+
1

2
+⋯+

1

𝑛
 

𝜓(1) = −𝛾 

𝜓(𝑛) =
Γ′(𝑛)

Γ(𝑛)
 

and the Bessel function of the second kind is formulated as  

𝑌𝑝(𝑥) =
2

𝜋
𝐽𝑝(𝑥) ln

𝑥

2
−
1

𝜋
∑
(𝑝 − 𝑛 − 1)!

𝑛!
(
𝑥

2
)
2𝑛−𝑝

𝑝−1

𝑛=0

−
1

𝜋
∑(−1)𝑛

𝜓(𝑛 + 1) + 𝜓(𝑛 + 𝑝 + 1)

𝑛! (𝑛 + 𝑝)!
(
𝑥

2
)
2𝑛+𝑝

∞

𝑛=0

. 

The general solution can be expressed in terms of the Bessel function of the first and 

second kind as follows: 
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 𝑦(𝑥) = 𝐶1𝐽𝑝(𝑥) + 𝐶2𝑌𝑝 (𝑥).  (4.58) 

This solution is the case of 𝛼1 − 𝛼2 being an integer. The second solution contains the 

logaritmic function ln 𝑥 (Xie [12]). 

 𝒑 = 𝒌 +
𝟏

𝟐
, 𝒌 = 𝟎,𝟏, … and 𝜶𝟏 −𝜶𝟐 = 𝟐𝒌 + 𝟏 Being an Integer 

The solution of first Frobenius series solution is 

 𝑦1(𝑥) = 𝐽𝑘 +1
2

(𝑥) = ∑(−1)𝑛
1

(𝑛!)Γ (𝑛 + 𝑘 +
3
2)

∞

𝑛=0

(
𝑥

2
)
2𝑛+𝑘+

1
2
          0 < 𝑥 < ∞ 

 

(4.59) 

and first derivative of the solution is 

 𝑦1
′(𝑥) = ∑(−1)𝑛

2𝑛 + 𝑘 +
1
2

2𝑛! Γ (𝑛 + 𝑘 +
3
2)

∞

𝑛=0

(
𝑥

2
)
2𝑛+𝑘−

1
2
 

 

(4.60) 

By using equation (4.60), linearly independent second solution can be derived as  

 𝑦2(𝑥) = 𝑎𝑦1(𝑥) ln 𝑥 + 𝑥
−(𝑘 +

1
2
)∑𝑏𝑛𝑥

𝑛

∞

𝑛=0

.           0 < 𝑥 < ∞  

 

(4.61) 

Let’s take the derivatives of this equation with respect to 𝑥 

𝑦2
′(𝑥) = 𝑎 (𝑦1

′(𝑥) ln𝑥 +
𝑦1
𝑥
) +∑(𝑛 − 𝑘 −

1

2
)𝑏𝑛𝑥

𝑛−𝑘−
3
2

∞

𝑛=0

                    

𝑦2
′′(𝑥) = 𝑎 (𝑦1

′′(𝑥) ln 𝑥 +
2𝑦1

′

𝑥
−
𝑦1
𝑥2
) +∑(𝑛 − 𝑘 −

1

2
) (𝑛 − 𝑘 −

3

2
) 𝑏𝑛𝑥

𝑛−𝑘−
5
2

∞

𝑛=0

  

and substitute them into the Bessel equation  
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 𝑎(𝑥2𝑦1
′′ + 𝑥𝑦1

′ + (𝑥2 − 𝑝2)𝑦1) ln 𝑥 + 2𝑎𝑥𝑦1
′ +∑(𝑛 − 2𝑘 − 1)𝑏𝑛𝑥

𝑛−𝑘−
1
2

∞

𝑛=0

+∑𝑏𝑛𝑥
𝑛−𝑘+

3
2

∞

𝑛=0

= 0 . 

 

(4.62) 

Since 𝑦1(𝑥) is a solution of Bessel equation, we can write  

𝑥2𝑦1
′′ + 𝑥𝑦1

′ + (𝑥2 − 𝑝2)𝑦1 = 0        

By multipling equation (4.62) by 𝑥𝑘+
1

2, we obtain 

 𝑎∑(−1)𝑛
∞

𝑛=0

2𝑘+
3
2 (2𝑛 + 𝑘 +

1
2)

𝑛! Γ (𝑛 + 𝑘 +
3
2) !

(
𝑥

2
)
2𝑛+2𝑘+1

+∑𝑛(𝑛 − 2𝑘 − 1)𝑏𝑛𝑥
𝑛

∞

𝑛=0

+∑𝑏𝑛𝑥
𝑛+2

∞

𝑛=0

= 0 

 

(4.63) 

where 𝑥2𝑛 = 0= to hold this equality for 𝑛 = 0,1,… . In equation (4.63), there is no 

contribution of 𝑥𝑛: 0 ≤ 𝑛 < 2𝑘 + 1. 

For 𝑛 = 0, 

𝑥0: 0. (0 − 2𝑘 − 1)𝑏0 = 0       

where 𝑏0 is an arbitrary. 

For 𝑛 = 1, 

𝑥1: 1. (1 − 2𝑘 − 1)𝑏1 = 0       ⇒          𝑏1 = 0 

For 𝑛: 2 ≤ 𝑛 < 2𝑝 we can easily see that 

 𝑏2𝑚+1 = −
𝑏2𝑚−1

(2𝑚 + 1)(2𝑚 − 2𝑘)
= 0 .     1 < 𝑚 < 𝑘 

From the coefficient 𝑥2𝑘+1  
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𝑎
𝑘 +

1
2

2𝑘−
1
2Γ (𝑘 +

3
2)
+ (2𝑘 + 1). 0. 𝑏2𝑘+1 + 𝑏2𝑘−1 = 0 

then 

 𝑎 = 0 (4.64) 

Plugging equation (4.64) into equation (4.63)and by the coefficient 𝑥𝑛 

𝑛(𝑛 − 2𝑝)𝑏𝑛 + 𝑏𝑛−2 = 0   ⇒      𝑏2𝑚−1 = 0                  

and 

𝑏2𝑚 = −
𝑏2𝑚−2

22𝑚(𝑚 − 𝑝)
       for 𝑚 = 1,2,… 

or equivalently, 

𝑏2𝑚 = (−1)
𝑚

𝑏0
22𝑚𝑚! (1 − 𝑝)(2 − 𝑝)… (𝑚 − 𝑝)

 .    

If we choose 𝑏0 = (2
−𝑝Γ(1 − 𝑝))

−1
, then 

𝑏2𝑚 =
(−1)𝑚

𝑚!Γ(𝑚 − 𝑝 + 1)
(
1

2
)
2𝑚−𝑝

 .    

Thus, linealy independent second solution is 

𝑦2(𝑥) = 𝑥
−𝑝∑𝑏2𝑛

∞

𝑛=0

𝑥−2𝑛 = ∑
(−1)𝑛

𝑛! Γ(𝑛 − 𝑝 + 1)
(
𝑥

2
)
2𝑛+𝑝

∞

𝑛=0

= 𝐽−𝑝(𝑥).         0 < 𝑥 < ∞  

The general solution can be expressed by 

𝑦(𝑥) = 𝐶1𝐽𝑝(𝑥) + 𝐶2𝐽−𝑝 (𝑥).                                                    

This solution is same as the case of 𝛼1 − 𝛼2 being a positive integer. The second 

solution is a Frobenius seriesand does not contain the logaritmic function ln 𝑥 (Xie 

[12]). 

In application, the Bessel function is rarely in standart form. 

Let’s consider the second order ordinary differential equation  
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𝑑2𝑦

𝑑𝑥2
+
1 − 2𝛼

𝑥

𝑑𝑦

𝑑𝑥
+ (𝛽𝜌𝑥𝜌−1 +

𝛼2 − 𝑝2𝜌2

𝑥2
)𝑦 = 0,               𝑥 > 0 

 

(4.65) 

where 𝛼, 𝛽, 𝑝 and 𝜌 are constant numbers. 

Now, we will interchange the Bessel equation  

 𝜉2
𝑑2𝜂

𝑑𝜉2
+ 𝜉

𝑑𝜂

𝑑𝜉
+ (𝜉2 − 𝑝2)𝜂 = 0,       𝜉 > 0  

 

(4.66) 

to equation (4.65) as stated below. 

By using change of variables method 𝜉 = 𝛽𝑥𝜌, we can write 

𝜉
𝑑𝑦

𝑑𝜉
= 𝜉

𝑑𝑦 𝑑𝑥⁄

𝑑𝜉 𝑑𝑥⁄
= 𝛽𝑥𝜌

1

𝛽𝜌𝑥𝜌−1
𝑑𝑦

𝑑𝑥
=
𝑥

𝜌
 
𝑑𝑦

𝑑𝑥
       ⇒         𝜉

𝑑

𝑑𝜉
=
𝑥

𝜌
 
𝑑

𝑑𝑥
 

 

(4.67) 

which simplifies equation (4.66) as 

 𝜉
𝑑

𝑑𝜉
(𝜉
𝑑𝜂

𝑑𝜉
) + (𝜉2 − 𝑝2)𝜂 = 0  

(4.68) 

and then substitute equation (4.67) in eq. (4.68) 

𝑥

𝜌
 
𝑑

𝑑𝑥
(
𝑥

𝜌
 
𝑑𝜂

𝑑𝑥
) + (𝛽2𝑥2𝜌 − 𝑝2)𝜂 = 0.                    

For 𝜂 = 𝑥−𝛼𝑦 

𝑥 
𝑑𝜂

𝑑𝑥
= 𝑥1−𝛼

𝑑𝑦

𝑑𝑥
− 𝛼𝑥−𝛼𝑦 

and  

𝑥 
𝑑

𝑑𝑥
(𝑥 
𝑑𝜂

𝑑𝑥
) = 𝑥2−𝛼

𝑑2𝑦

𝑑𝑥2
+ (1 − 2𝛼)𝑥1−𝛼

𝑑𝑦

𝑑𝑥
+ 𝛼2𝑥−𝛼𝑦. 

Finally, the equation (4.66) becomes 

𝑥2−𝛼  
𝑑2𝑦

𝑑𝑥2
+ (1 − 2𝛼)𝑥1−𝛼

𝑑𝑦

𝑑𝑥
+ 𝛼2𝑥−𝛼𝑦 + (𝛽2𝑥2𝜌 − 𝑝2)𝜌2𝑥−𝛼𝑦 = 0.              

which is equal to equation (4.65). 
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 Expression of Modal Amplitudes via Bessel Functions 

Let’s investigate Miller’s second case. 

Case 2:  𝑐𝑡 = 𝑢 cosh 𝑣,  𝑧 = 𝑢 sinh 𝑣;  0 ≤ 𝑢 < ∞,  −∞ < 𝑣 < ∞. Initially, we need to 

find relations for  𝑢(𝑧, 𝑡)  and  𝑣(𝑧, 𝑡). In order to do that, let us take square of two 

equations mentioned  

𝑐2𝑡2 = 𝑢2 cosh2 𝑣,     𝑧2 = 𝑢2 sinh2 𝑣 

and then 

𝑐2𝑡2 − 𝑧2 = 𝑢2(cosh2 𝑣 − sinh2 𝑣) = 𝑢2. 

Hence, 

   𝑢 = √𝑐2𝑡2 − 𝑧2  (4.69) 

since 0 ≤ 𝑢 < ∞, by definition. Similarly,  

𝑧

𝑐𝑡
=
𝑢 sinh 𝑣

𝑢 cosh 𝑣
= tanh 𝑣 

and thus,  

   𝑣 = arctanh
𝑧

𝑐𝑡
≡
1

2
ln
𝑐𝑡 + 𝑧

𝑐𝑡 − 𝑧
 . 

(4.70) 

The next step is to calculate the partial derivatives of  𝑢(𝑧, 𝑡)  and  𝑣(𝑧, 𝑡)  in equation 

(4.5).  

 
1

𝑐

𝜕𝑢

𝜕𝑡
=
1

𝑐

𝜕

𝜕𝑡
√𝑐2𝑡2 − 𝑧2 =

𝑐𝑡

√𝑐2𝑡2 − 𝑧2
=
𝑢 cosh 𝑣

𝑢
= cosh 𝑣 ; 

(4.71) 

 
1

𝑐

𝜕𝑣

𝜕𝑡
=
1

𝑐

𝜕

𝜕𝑡
(
1

2
ln
𝑐𝑡 + 𝑧

𝑐𝑡 − 𝑧
) = −

𝑧

𝑐2𝑡2 − 𝑧2
= −

𝑢 sinh 𝑣

𝑢2
= −

sinh 𝑣

𝑢
; 

 

 
1

𝑐2
𝜕2𝑢

𝜕𝑡2
=
1

𝑐

𝜕

𝜕𝑡
(
1

𝑐

𝜕𝑢

𝜕𝑡
) =

1

𝑐

𝜕

𝜕𝑡
cosh 𝑣 =

1

𝑐

𝜕𝑣

𝜕𝑡
sinh 𝑣 = −

sinh2 𝑣

𝑢
; 

(4.72) 
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1

𝑐2
𝜕2𝑣

𝜕𝑡2
=
1

𝑐

𝜕

𝜕𝑡
(
1

𝑐

𝜕𝑣

𝜕𝑡
) =

1

𝑐

𝜕

𝜕𝑡
(−
sinh 𝑣

𝑢
) =

sinh 2𝑣

𝑢2
; 

(4.73) 

 
𝜕𝑢

𝜕𝑧
=
𝜕

𝜕𝑧
√𝑐2𝑡2 − 𝑧2 = −

𝑧

√𝑐2𝑡2 − 𝑧2
= −

𝑢 sinh 𝑣

𝑢
= −sinh 𝑣 ; 

(4.74) 

 
𝜕𝑣

𝜕𝑧
=
𝜕

𝜕𝑧
(
1

2
ln
𝑐𝑡 + 𝑧

𝑐𝑡 − 𝑧
) =

𝑐𝑡

𝑐2𝑡2 − 𝑧2
=
𝑢 cosh 𝑣

𝑢2
=
cosh 𝑣

𝑢
;   

(4.75) 

 
𝜕2𝑢

𝜕𝑧2
= −

cosh2 𝑣

𝑢
;  

(4.76) 

 
𝜕2𝑣

𝜕𝑧2
=
sinh 2𝑣

𝑢2
;   

(4.77) 

Substituting these results in Klein-Gordon equation (4.5), a new representation in terms 

of the variables  𝑢  and  𝑣  arises as 

[cosh2 𝑣 − sinh2𝑣]
𝜕2𝐹

𝜕𝑢2
+ [
sinh2 𝑣

𝑢2
−
cosh2 𝑣

𝑢2
]
𝜕2𝐹

𝜕𝑣2
+ [−

sinh2 𝑣

𝑢
+
cosh2 𝑣

𝑢
]
𝜕𝐹

𝜕𝑢

+ [
sinh 2𝑣

𝑢2
−
sinh 2𝑣

𝑢2
]
𝜕𝐹

𝜕𝑣
+ 2 [−

sinh 𝑣 cosh 𝑣

𝑢
+
sinh 𝑣 cosh 𝑣

𝑢
]
𝜕2𝐹

𝜕𝑢𝜕𝑣

+ 𝐹 = 0 

The last equation can be simplified as 

 
𝜕2𝐹

𝜕𝑢2
+
1

𝑢

𝜕𝐹

𝜕𝑢
+ 𝐹 −

1

𝑢2
𝜕2𝐹

𝜕𝑣2
= 0 

 

(4.78) 

Now, the solution of equation (4.78) can be obtained by separation of the variables 

(𝑢, 𝑣). So, if we choose  

 𝐹(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣) , (4.79) 

then equation (4.78) can be rewritten as  
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  (
𝜕2

𝜕𝑢2
+
1

𝑢

𝜕

𝜕𝑢
+ 1 −

1

𝑢2
𝑉′′(𝑣)

𝑉(𝑣)
)𝑈(𝑢) = 0.   

 

(4.80) 

In equation (4.80),  𝑉′′(𝑣) = 𝛼2𝑉(𝑣) where  𝛼  is a free parameter that is a constant of 

separation of the variables  𝑢  and  𝑣. Solution of this equation is 

 𝑉(𝑣) = 𝑒±𝛼𝑣 . (4.81) 

Thus, the function  𝑈(𝑢)  satisfies Bessel equation 

 (
𝜕2

𝜕𝑢2
+
1

𝑢

𝜕

𝜕𝑢
+ 1 −

𝛼2

𝑢2
)𝑈(𝑢) = 0.   

(4.82) 

which has two linearly independent solutions, in particularly,   

 𝑈(𝑢) = 𝐴𝛼𝐽𝛼(𝑢) + 𝐵𝛼𝑌𝛼(𝑢), (4.83) 

where  𝐴𝛼  and  𝐵𝛼  are arbitrary constants, 𝐽𝛼 and 𝑌𝛼 are Bessel functions. 

 

Example 4.1 Let us consider  

𝑉(𝑣) = 𝑒−𝛼𝑣 ,         𝑈(𝑢) = 𝐽𝛼(𝜅𝑢). 

So 

  𝐹(𝑧, 𝑡) = 𝑈(𝑢)𝑉(𝑣) = 𝑒−𝛼𝑣𝐽𝛼(𝜅𝑢). (4.84) 

Since 𝑣 =
1

2
ln
𝑐𝑡+𝑧

𝑐𝑡−𝑧
 ,  𝑢 = √𝑐2𝑡2 − 𝑧2  and  

𝑒−𝛼𝑣 = 𝑒− 
𝛼
2
ln
𝑐𝑡+𝑧
𝑐𝑡−𝑧 = 𝑒ln(

𝑐𝑡−𝑧
𝑐𝑡+𝑧

)
 𝛼 2⁄

= (
𝑐𝑡 − 𝑧

𝑐𝑡 + 𝑧
)
 𝛼 2⁄

 

then right-hand side of equation (4.84) become  

𝐹(𝑧, 𝑡) = (
𝑐𝑡 − 𝑧

𝑐𝑡 + 𝑧
)
 𝛼 2⁄

𝐽𝛼 (𝜅√𝑐2𝑡2 − 𝑧2) ≡ 𝐹𝛼(𝑧, 𝑡) 
(4.85) 

where  𝛼  is free numerical parameter. The equation (4.85) transforms into 
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 𝐹𝛼(𝑧, 𝑡) = 𝐽𝛼(𝜅𝑐𝑡)      𝑎𝑡 𝑧 = 0.   (4.86) 

When we choose the free parameter  𝛼  as integer:  𝛼 = 0,1,2,… ,  then a set of function  

 {𝐽𝑛(𝜅𝑐𝑡)}𝑛=0
∞  ,   (4.87) 

is complete. It means that arbitrary function of time  𝜑(𝑡)  can be expressed in the form 

of Neumann series, that is,  

𝜑(𝑡) = ∑𝐶𝑛𝐽𝑛(𝜅𝑐𝑡)

∞

𝑛=0

 

where  𝐶𝑛’s are appropriate constants. 

 Differential Equation and Functions of Airy 

Consider the Airy’s differential equation which is named after the applied 

mathematician and astronomer G. B. Airy, who investigated the second order 

differential equation,  

 𝑦′′ − 𝑧𝑦 = 0.   (4.88) 

Since the term −𝑧 is analytic at 𝑧 = 0 then 𝑧 = 0 is an ordinary point for equation 

(4.88). Hence, we can express its general solution as a power series in the form 

 𝑦(𝑧) = ∑𝑎𝑛𝑧
𝑛

∞

𝑛=0

 

 

(4.89) 

The first and second derivatives of equation (4.89) with respect to z are  

 𝑦′(𝑧) = ∑𝑛𝑎𝑛𝑧
𝑛−1

∞

𝑛=1

 

 

(4.90) 

and 

 𝑦′′(𝑧) = ∑𝑛(𝑛 − 1)𝑎𝑛𝑧
𝑛−2

∞

𝑛=2

, 

 

(4.91) 
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respectively. 

Substituting these power series into equation (4.88) we find 

∑𝑛(𝑛 − 1)𝑎𝑛𝑧
𝑛−2

∞

𝑛=2

− 𝑧∑𝑎𝑛𝑧
𝑛

∞

𝑛=0

= 0                               

or, equivalently,  

∑𝑛(𝑛 − 1)𝑎𝑛𝑧
𝑛−2

∞

𝑛=2

−∑𝑎𝑛𝑧
𝑛+1

∞

𝑛=0

= 0                               

The next goal is simplfy this expression by combining everything into a single 

summation. Let’s shift the indeces so that the general term in each is a constant times 

𝑧𝑛, that is, 

∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑧
𝑛

∞

𝑛=0

−∑𝑎𝑛−1𝑧
𝑛

∞

𝑛=1

= 0 .     

 

(4.92) 

For the first summation, we split of the 0-th term as 

∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑧
𝑛

∞

𝑛=0

= 2.1. 𝑎2 +∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑧
𝑛

∞

𝑛=1

 

With these changes of indeces, equation (4.92) becomes 

2𝑎2 +∑((𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑧
𝑛 − 𝑎𝑛−1𝑧

𝑛)

∞

𝑛=1

= 0                              

or 

2𝑎2 +∑((𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑎𝑛−1)𝑧
𝑛

∞

𝑛=1

= 0 .                          

Since the power series is equal to zero, all coefficients are supposed to be equal to zero, 

too. Therefore, 

𝑎2 = 0 

and the recurrence relation is 
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(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 = 𝑎𝑛−1 

or  

𝑎𝑛+2 =
𝑎𝑛−1

(𝑛 + 2)(𝑛 + 1)
,        for all 𝑛 = 1,2,3,…  .   

 

(4.93) 

To find the series solution to equation (4.88), the values of 𝑎𝑛’s are needed to 

determine. 

For 𝑛 = 1, equation (4.93) is 

𝑎3 =
𝑎0
3.2

 

Continuing, 

𝑎4 =
𝑎1
4.3

 

𝑎5 =
𝑎2
5.4
= 0 

𝑎6 =
𝑎3
6.5
=

𝑎0
(6.5)(3.2)

 

𝑎7 =
𝑎4
7.6
=

𝑎1
(7.6)(4.3)

 

𝑎8 =
𝑎5
8.7
= 0 

𝑎9 =
𝑎6
9.8
=

𝑎0
(9.8)(6.5)(3.2)

 

The pattern for the coefficients is now apparent. So, let’s write down all the cases: 

(i) The terms 𝑎2, 𝑎5, 𝑎8, … are equal to zero, that is, 

 

𝑎3𝑛−1 = 0   for all 𝑛 = 1,2,… 

 

(ii) The terms 𝑎3, 𝑎6, 𝑎9, … are multiples of 𝑎0, so 
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𝑎3𝑛 =
𝑎0

[(3𝑛)(3𝑛 − 1)][(3𝑛 − 3)(3𝑛 − 4)]… [6.5][3.2]
 

 

for all 𝑛 = 1,2, … . 

(iii)All the terms 𝑎4, 𝑎7, 𝑎10, … are multiples of 𝑎1 and so 

 

𝑎3𝑛+1 =
𝑎1

[(3𝑛 + 1)(3𝑛)][(3𝑛 − 2)(3𝑛 − 3)]… [7.6][4.3]
 

 

for all 𝑛 = 1,2, … . 

Finally, the general solution of Airy’s equation is given by 

𝑦(𝑧) = 𝑎0 [∑
𝑧3𝑛

(3𝑛)(3𝑛 − 1)(3𝑛 − 3)(3𝑛 − 4)…3.2

∞

𝑛=1

] 

                                               +𝑎1 [∑
𝑧3𝑛+1

(3𝑛 + 1)(3𝑛)(3𝑛 − 2)(3𝑛 − 3)…4.3

∞

𝑛=1

].  

 

(4.94) 

and this is also called as the Airy functions.  

After G. B. Airy, the Airy functions were well-studied by H.Jeffreys and J.C.P Miller. It 

was them who introduced the Airy functions 𝐴𝑖 and 𝐵𝑖 as special solutions of Airy’s 

equation. So, the solution of the Airy’s equation was expressed by 

𝑦(𝑧) = 𝑐1𝐴𝑖 + 𝑐2𝐵𝑖,                        𝑧 ∈ ℝ                            

where 𝐴𝑖 is the first solution of the Airy’s differential equation which is called as the 

Airy function of first kind and 𝐵𝑖 is the second solution of the differential equation  

which is named as the Airy function of second kind. 

The Airy functions 𝐴𝑖 and 𝐵𝑖 have rather simple integral representations through sine, 

cosine and power functions as follows: 

   𝐴𝑖(𝑧) =
1

𝜋
∫ cos(

𝑡3

3
+ 𝑧𝑡)𝑑𝑡

∞

0

,                𝑧 ∈ ℝ 

 

(4.95) 

and 
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   𝐵𝑖(𝑧) =
1

𝜋
∫ [sin (

𝑡3

3
+ 𝑧𝑡) + exp(−

𝑡3

3
+ 𝑧𝑡)] 𝑑𝑡

∞

0

,                 𝑧 ∈ ℝ.   

 

(4.96) 

 Expression of Modal Amplitudes via Airy Functions 

Let’s investigate Miller’s fifth case. 

Case 5:  𝑐𝑡 =
1

2
(𝑢 − 𝑣)2 + 𝑢 + 𝑣,  𝑧 = −

1

2
(𝑢 − 𝑣)2 + 𝑢 + 𝑣,  −∞ < 𝑢, 𝑣 < ∞. First, 

the relation for 𝑢(𝑧, 𝑡) and 𝑣(𝑧, 𝑡) should be found. So, 

 𝑐𝑡 + 𝑧 = 2(𝑢 + 𝑣),       𝑐𝑡 − 𝑧 = (𝑢 − 𝑣)2 

Adding above equations side by side gives 

 𝑢 =
𝑐𝑡 + 𝑧

4
−
√𝑐𝑡 − 𝑧

2
  

 

(4.97) 

and  

 𝑣 =
𝑐𝑡 + 𝑧

4
+
√𝑐𝑡 − 𝑧

2
   

 

(4.98) 

Taking partial derivatives of equation (4.97) and (4.98) to substitute them into equation 

(4.5)  

 
1

𝑐

𝜕𝑢

𝜕𝑡
=
1

4
−

1

4√𝑐𝑡 − 𝑧
=
1

4
−

1

4(𝑢 − 𝑣)
 

 
1

𝑐

𝜕𝑣

𝜕𝑡
=
1

4
+

1

4√𝑐𝑡 − 𝑧
=
1

4
+

1

4(𝑢 − 𝑣)
 

 
1

𝑐2
𝜕2𝑢

𝜕𝑡2
=
1

𝑐

𝜕

𝜕𝑡
(
1

𝑐

𝜕𝑢

𝜕𝑡
) =

1

32(𝑢 − 𝑣)3 2⁄
 

 
1

𝑐2
𝜕2𝑣

𝜕𝑡2
=
1

𝑐

𝜕

𝜕𝑡
(
1

𝑐

𝜕𝑣

𝜕𝑡
) = −

1

32(𝑢 − 𝑣)3 2⁄
 

 
𝜕𝑢

𝜕𝑧
=
1

4
+

1

4(𝑢 − 𝑣)
 

 
𝜕𝑣

𝜕𝑧
=
1

4
−

1

4(𝑢 − 𝑣)
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𝜕2𝑢

𝜕𝑧2
=

1

32(𝑢 − 𝑣)3 2⁄
 

 
𝜕2𝑣

𝜕𝑧2
= −

1

32(𝑢 − 𝑣)3 2⁄
   

Substituting above results to equation (4.5) yields 

 
1

4(𝑢 − 𝑣)

𝜕2𝐹

𝜕𝑢2
−

1

4(𝑢 − 𝑣)

𝜕2𝐹

𝜕𝑣2
+ 𝐹 = 0 

 

(4.99) 

(Aksoy and Tretyakov [8]), (Akgun [2]). 

Now, the solution of equation (4.99) can be obtained by separation of the variables 

(𝑢, 𝑣). So, if we choose  

𝐹(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣)  

then equation (4.99) can be rewritten as  

 
1

𝑈(𝑢)

𝑑2𝑈(𝑢)

𝑑𝑢2
+ 4𝑢 =

1

𝑉(𝑣)

𝑑2𝑉(𝑣)

𝑑𝑣2
+ 4𝑣 = 4𝛼. 

 

(4.100) 

where 𝛼 is a constant of separation of the variables. 

At this point, it is reasonable to change notations for the variables 𝑢 and v as 

 𝑢̅ = √4
3 (𝛼 − 𝑢)      and     𝑣̅ = √4

3 (𝛼 − 𝑣),  

then equation  (4.100) becomes  

 
𝑑2𝑈(𝑢̅)

𝑑𝑢̅2
− 𝑢̅𝑈(𝑢̅) = 0    and    

𝑑2𝑉(𝑣̅)

𝑑𝑣̅2
− 𝑣̅𝑉(𝑣̅) = 0. 

(4.101) 

Since equation (4.101) is standart Airy’s differential equation, it has two linearly 

independet solution in the form of 

 𝑈(𝑢̅) = 𝐶1𝐴𝑖(𝑢̅) + 𝐷1𝐵𝑖(𝑢̅) (4.102) 

and 
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 𝑉(𝑣̅) = 𝐶2𝐴𝑖(𝑣̅) + 𝐷2𝐵𝑖(𝑣̅) (4.103) 

where 𝐶1, 𝐶2, 𝐷1 and 𝐷2 are arbitrary constants and 𝐴𝑖 and 𝐵𝑖 are Airy Functions. 

Consequently, we shown that Miller’s fifth case can be written in terms of Airy 

Functions. 
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CHAPTER 5 

GRAPHICS 

The energy 𝑊𝛼  and surplus of energy 𝑠𝑊𝛼  are exhibited in the following figures for the 

changing values of 𝛼. The Mapple programme (Appendix B) is used for drawings. 

 

 
Figure 5.1 Time dependence of 𝑊3 and 𝑠𝑊3 for 0 ≤ 𝜏 ≤ 15. 
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Figure 5.2 Time dependence of 𝑊3 and 𝑠𝑊3 for 0 ≤ 𝜏 ≤ 50. 

 
 

 

 
Figure 5.3 Time dependence of 𝑊4 and 𝑠𝑊4 for 0 ≤ 𝜏 ≤ 15. 

 

 

 



53 

 

 
Figure 5.4 Time dependence of 𝑊4 and 𝑠𝑊4 for 0 ≤ 𝜏 ≤ 50. 

 

 
 

 

The following figures are exhibited the changes of modal ampitudes 𝐴 and 𝐵 for 𝛼 =

0,1,2,…  which are depend on the solution 𝐹 of KGE functions, in the cylindrical and 

spherical form. These oscillations are in time 𝑡 (i.e., in 𝜏) and axial coordinate 𝑧 (i.e., in 

𝜉).  
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Figure 5.5 The changes of modal amplitudes in interval for 0 ≤ 𝜏 ≤ 15 where 𝛼 = 3. 

 

 
Figure 5.6 The changes of modal amplitudes in interval for 0 ≤ 𝜏 ≤ 30 where 𝛼 = 3. 
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Figure 5.7 The changes of modal amplitudes in interval for 10 ≤ 𝜏 ≤ 20 where 𝛼 = 0, 

𝜉 = 10. 
 

 
Figure 5.8 The changes of modal amplitudes in interval for 10 ≤ 𝜏 ≤ 30 where 𝛼 = 0, 

𝜉 = 10. 
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In the following graphs, the speed 𝑣𝛼 is calculated with transverse 𝑤𝛼
𝑡and longitudinal 

𝑤𝛼
𝑙  parts of energy, separately.  

 
Figure 5.9 The change of 𝑣0, 𝑤0

𝑡 and 𝑤0
𝑙  in 0 ≤ 𝜉 ≤ 𝜏 where 𝜏 = 10 and 𝛼 = 0 

 

 
Figure 5.10 The change of 𝑣1, 𝑤1

𝑡 and 𝑤1
𝑙  in 0 ≤ 𝜉 ≤ 𝜏 where 𝜏 = 10 and 𝛼 = 1 
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CHAPTER 6 

RESULTS AND DISCUSSION 

In this study, the time-domain waveguide modes are expressed analytically by a method 

of Evolutionary Approach to Electromagnetics (EAE). A hollow waveguide is 

considered with the perfect electric conductor surfaces. 

 

Initialy, relevant definition of the waveguide were given. To obtain the components of 

transverse electric (TE) and transverse magnetic (TM)  time-domain modes, Maxwell’s 

equation and fields are decomposed into their transverse and longitudinal parts. Two 

main problems are introduced to analyze transferring of transient signals along hollow 

waveguide. Modal bases are determined by obtaining the solution of Dirichlet and 

Neumann boundary eigenvalue problems. Solving  Klein-Gordon Equation yields 

modal amplitudes as a function of time and axial coordinate . As a result, every 

component of time-domain modes are expressed as a product of modal bases and modal 

amplitudes.  

 

According to this new method, we expressed the solutions of Klein-Gordon equations 

(modal amplitudes) in terms of some sellected proper functions. By using Miller’s list, 

the modal amplitudes were obtained in terms of Airy and Bessel functions with 

especially sellected parameters. The informations such as type (or mode) of wave 

spanning over the waveguide or form and dimension of waveguide cross-section can be 

attained by using modal amplitudes. 

 

 

 



58 

 

REFERENCES 

[1] Aksoy, S., (2003). Dalga Kılavuzlarında Eloktromagnetik Zaman Domeni 

Analizlerinin Yeni Bir Analitik Metotla İncelenmesi, PhD Thesis, Gebze 

Institute of Technology, Institute of Mathematics and Sciences, Gebze. 

[2] Akgün, O., (2011). Real-Valued Time-domain Modes in Hollow Waveguides, 

PhD Thesis, Gebze Institute of Technology, Institute of Mathematics and 

Sciences, Gebze. 

[3] Eroğlu, E., (2011). Dalga Kılavuzları Boyunca Geçici Sinyallerin Transferi 

(Transferring of Transient Signals Along Waveguides), PhD Thesis, Gebze 

Institute of Technology, Institute of Mathematics and Sciences, Gebze. 

[4] Işık, O., (2014). Özel Fonksiyonlar yardımıyla sinyal iletimi, PhD Thesis, 

Muğla Sıtkı Koçman University, Graduate School of Natural and Applied 

Sciences, Muğla. 

[5] Eren, N., (2015). Special Functions in Transferring of Energy and Surplus of 

Energy, PhD Thesis, Yildiz Technical University, Graduate School of Natural 

and Applied Sciences, İstanbul. 

[6] Weyl, H., (1940). “The Method of Orthogonal Projection in Potential Theory”. 

Duke Mathematical Journal, 7:411-444. 

[7] Tretyakov, O.A., (1993). “Essentials of Nonstationary and Nonlinear 

Electromagnetic Field Theory”, Editor: Hashimoto, M., Idemen, M. and 

Tretyakov, O.A., Analytical and Numerical Methods in Electromagnetic Wave 

Theory, Science House Company, Tokyo, Japan. 

[8] Aksoy, S. and Tretyakov, O.A., (2003). “Evolution Equations for Analytical 

Study of Digital Signals in Waveguides”, Journal of Electromagnetic Waves 

and Applications, 17(12):1665-1682. 

[9] Tretyakov, O.A., (1994). “Evolutionary Equations for the Theory of 

Waveguides”, Proceedings of the IEEE AP-S Int. Symp. Dig., June 1994, 

Seattle, WA, 3:2465-2471. 

[10] Tretyakov, O.A., (1990). “Evolutionary waveguide equations”, Soviet Journal 

of Communications Technology and Electronics (Eng. Translation of 

Elektrosvyaz i Radiotekhnika), 35(2): 7-17. 

[11] Miller, W.Jr., (1977). Symmetry and Separation of Variables, Addison-Wesley 

Publication Company, Boston. 

[12] Xie, W.C., (2010). Differential Equations For Engineers, First Edition, 

Cambridge University Press, The Edinburg Building, Cambridge. 



59 

 

[13] Tretyakov, O.A. and Akgün, O., (2010). “Derivation of Klein-Gordon Equation 

from Maxwell’s Equations and Study of Relativistic Time-domain Waveguide 

Modes”, Progress In Electromagnetics Research (PIER), 105: 171-191.  

[14] Blades, J.V., (1964). Electromagnetic Fields, Hemisphere Publishing 

Corporation, Washington. 

[15] Bennet, C.L. and Ross, G.F., (1978). “Time-domain Electromagnetics and Its 

Applications”, Proceedings of the IEEE, 66: 299-318. 

[16] Camp, M. and Garbe, H., (2004). “Susceptibility of personal Computer 

Systems to Electromagnetics Pulses with Double Exponential Character”, 

Advances in Radio Science, 2: 63-69. 

[17] Cramer, J., Scholtz, R.A. and Win, M.Z., (1999). “On the Analysis of UWB 

Communication Channels”, Proceedings of the IEEE Military Communications 

Conference, 2:1191-1195. 

[18] Diaz, R.E. and Alexopoulos, N.G., (1997). “An analytic Continuation Method 

for the Analysis and Design of Dispersive Materials”, IEEE Transactions on 

Antennas and Propagation, 45(11):1602-1610. 

[19] Dvorak, S.L. and Dudley, D.D., (1995). “Propagation of Ultra-Wide-Band 

Electromagnetic Pulses Through Dispersive Media”, IEEE Transactions on 

Electromagnetic Compatibility, 37(2): 192-200. 

[20] Erden, F. and Tretyakov, O.A., (2008). “Excitation of the Real-Valued 

Electromagnetic Fields in a Cavity by a Green Transient Signal”, Physical 

Review Series E, 77: 056605. 

[21] Erden, F. and Tretyakov, O.A., (2004) “Solenoidal Eşleşmiş Dejenere Kavite 

Modlarının Zaman Domeni Salınımları”, URSI-Türkiye’ 2004 İkinci Ulusal 

Kongresi, 08-10 Eylül, Bilken University-Ankara, 204-206. 

[22] Hillion, P., (1993). Some Comments on Electromagnetic Signals, Editor: 

Lalhtakia, A., Essays on the formal aspects of electromagnetic theory, World 

Scientific Publication Company, Singapore. 

[23] Harmuth, H.F., (1993). Electromagnetic Transients not Explained by 

Maxwell’s Equations, Editor: Lalhtakia, A., Essays on the formal aspects of 

electromagnetic theory, World Scientific Publication Company, Singapore. 

[24] Kisun’ko, G.V., (1994). Electrodynamics of Hollow Systems, VKAS Press, 

Leningrad, Russia 

[25] Kurukawa, K., (1958). “The Expansion of Electromagnetic Fields in Cavities”, 

IRE Transactions on Microwave Theory and Techniques, 6: 178-187. 

[26] Nagle, R.K., Saff, E.B. and Snider, A.D., (2008). Fundamentals of Differential 

Equations and Boundary Value Problems, Pearson International Edition- 

Addison-Wesley Publication Company, 5.edition. 

[27] Muller, R., (1961). Theory of Cavity Resonators in Electromagnetic 

waveguides and cavities, Pergamon Press, London. 

[28] Savic, M.S., (2005). “Estimation of the Surge Arrester Outage Rate Caused by 

Lightning Overvoltages”, IEEE Trans. on Power Delivery, 20(01):116-122. 



60 

 

[29] Slater, J.C., (1946). “Microwave Electronics”, Review of Modern Physics, 

18(4): 441-512. 

[30] Taflove, A. and Hagness, S., (2005). Computational Electrodynamics: The 

Finite-Difference Time-Domain Method, Artech House, Boston. 

[31] Tretyakov, O A. and Kaya, A., (2013). “Time-domain real valued TM-modal 

waves in lossy waveguides”, Progress in Electromagnetics Research, 138(675-

696). 

[32] Anderson, U. (2001). Time Domain Methods for the Maxwell Equations, 

Doctoral Differtation, KTH Royal Institute of Technology, Stokholm, 150. 

[33] Aksoy, S., Antyufeyeva, M., Başaran, E., Ergin, A.A. and Tretyakov O.A., 

(2005) “Time-Domain Cavity Oscillations Supported by a Temporally 

Dispersive Dielectric”, IEEE Transactions on Microwave Theory and 

Techniques, 53(8):2465-2471. 

[34] Tretyakov, O.A. and Erden, F., (2008). “Temporal Cavity Oscillations Caused 

by a Wide-Band Waveform”, Progress in Electromagnetic Research B (PIER 

B), 6:183-204. 

[35] Tretyakov, O.A. and Erden, F., (2006). “Temporal Cavity Oscillations Caused 

bya Wide-Bve Double-Exponential Waveform”, 4th International Workshop 

on Electromagnetic Wave Scattering (EWS-2006), 18-22 September, Gebze, 

Kocaeli. 

[36] Tretyakov, O.A. and Erden, F., (2007). “Separation of the Instantaneous and 

Dynamic Polarizations in Studies of Dispersive Dielectrics”, The Sicth 

International Kharkov Symposium on physics and Engineering of Microwaves, 

Millimeter and Submillimeter Waves (MSMW), 25-30 June 2007, Kharkov, 

Ukraine, 1:42-48. 

[37]   Baum, C.E. Carin, L. and Stone, A.P., (1997). Ultra-Widebve Short-Pulse 

Electromagnetics, 3, Plenum Press, New York. 

[38] Aksoy, S. and Tretyakov, O.A., (2004). “The Evolution Equations in Study of 

the Cavity Oscillations Excited by a Digital Signal”, IEEE Transactions on 

Antennas and Propagation, 52(1):263-270.  

[39] Zhen, J., Hagness, S.C., Booske, J.H, Mathur, S. and Meltz, M.L., (2006). 

“FDTD Analysis of a Gigahertz TEM Cell for Ultra-widebve Pulse Exposure 

Studies of Biological Specimens”, IEEE Trans. on Biomedical Eng., 53(5): 

780-789. 

[40] Erden, F., (2009) Time domain study of forced oscillations in cavities, PhD 

Thesis, Gebze Institute of Technology, Gebze. 

[41] Aksoy, S. and Tretyakov, O.A., (2002). “Study of a Time Variant Cavity 

System”, Journal of Electromagnetic Waves and Applications, 16(11):1535-

1553. 

[42] Anderson, D.V. and Barnes, C., (1953). “The dispersion of a pulse propagated 

through a cylindrical tube”, The Journal of the Acoustical Society of America, 

25(3): 525-528. 



61 

 

[43] Coppens, A.B., (1966). “Exact solutions for the propagation of two simple 

acoustic transients in waveguides with perfectly reflecting walls”, The Journal 

of the Acoustical Society of America, 40(2): 331-341. 

[44] Gabriel, G.J., (1980). “Theory of electromagnetic transmission structures, Part 

I: Relativistic foundation and network formalism”, Proceedings of the IEEE, 

68(3):354-366. 

[45] Tretyakov, O.A., (1989). “Evolutionary waveguide equations”, Soviet Journal 

of Communications Technology and Electronics (Eng. Translation of Rusiian 

journal Radiotekhnika i Elektronika), 34(5):917-926. 

[46] Erol, Y. and Balık, H.H., (2001). “Zaman domeininde Sonlu Farklar Metodu 

ile Tek Boyutlu Yapılarda Elektromanyetik Dalga Yayılımının 

İncelenmesi”,16-20 Nisan, UBMK2001-Ulusal Bilişim ve Multimedya 

Konferansı, Elazığ.  

[47] Aksoy, S. and Tretyakov, O.A., (2001). “Excitation of rectangular cavity by 

Walsh function signals”, 2nd International Conference on Electrical and 

Electronics Engineering, 7-11 November 2001, Bursa, Turkey, 175-177. 

[48] Van Bladel, J., (1964). Electromagnetics Fields, McGraw-Hill, New York. 

[49] Eroglu, E., Aksoy, S. and Tretyakov, O.A., (2012). “Surplus of energy for 

time-domain waveguide modes”, Energy Education Science and Technology 

Part A: Energy Science and Research, 29(1): 495-506. 

[50] Borisov, V.V., (1987). Transient Electromagnetic Waves, Leningrad 

University Press, Leningrad, Russia. 

[51] Kristensson, G., (1995). “Transient electromagnetic wave propagation in 

waveguides”, Journal of Electromagnetic Waves and Applications, 9(5/6): 645-

671. 

[52] Shvartsburg, A.B., (1998). “Single-cycle waveforms and non-periodic waves in 

dispersive media (exactly solvable models)”, Physics-Uspekhi (Advances in 

Physical Sciences), 41(1): 77-94. 

[53] Slivinski, A. and Heyman, E., (1999). “Time-domain near field analysis of 

short-pulse antennas – Part I: Spherical wave (multipole) expansion”, IEEE 

Trans. on  Antenn. and Propag., 47:271-279. 

[54] Wen, G., (2006). “A time-domain theory of waveguides”, Progress In 

Electromagnetics Research (PIER), 59:267-297. 

[55] Tretyakov, O.A., (2000). “A set of exact analytical solutions in time domain 

for UWB electromagnetic signals in waveguides”, International Conference 

EUROEM, May 30 – June 2 2000, Edinburg, England. 

[56] Tretyakov, O.A., (2001). “The evolutionary approach to analytical study of 

electromagnetic phenomena in the time domain”, URSI International 

Symposium on Electromagnetic Theory, May 13-17 2001, Victoria, Canada. 

[57] Tretyakov, O.A., (2001). “Analytical approach to study of nonlinear 

electromagnetics”, Progress in Electromagnetic Research Symposium, July 18-

22 2001, Osaka, Japan. 



62 

 

[58] Tretyakov, O.A., (2001). “Analytical approach to study of electromagnetic 

signals”, Progress in Electromagnetic Research Symposium, July 18-22 2001, 

Osaka, Japan. 

[59] Tretyakov, O.A., (2001). “Time domain oscillations in cavities and signal 

propagation in waveguides”, International Workshop on Advanced 

Electromagnetics, July 30 - 31 2001, Tokyo, Japan. 

[60] Erden, F. and Tretyakov, O.A., (2008). “Excitation by a transient signal of the 

real-valued electromagnetic fields in a cavity”, Physical Review Series E, 77, 

056605. 

[61] Nerukh, A.G., Scherbatko, I.V. and Marciniak, M., (2001). Electromagnetics of 

Modulated Media with Application to Photonics, National Ins. of 

Telecommunications Press, Poland, Warsaw. 

[62] Kalnins, E., (1975). “On the separation of variables for the Laplace equation in 

two- and three-dimensional Minkowski space”, SIAM J. Math. Anal., 6:340-

374. 

[63] Beauchamp, K.G.,(1975). Walsh Functions and Their Applications, Academic 

Press Inc., New York. 

[64] Felsen, L.B. and Marcuvitz, N., (1973). Radiation and Scattering of Waves, 

Prentice Hall, Englwood Cliffs, NJ. 

[65] Harmuth, H.F, (1977). Sequency Theory: Foundations and Applications, 

Academic Press, New York. 

[66] Middleton, R.G., (1971). Troubleshooting with the Oscilloscope, 2. Edition, 

Howard W. Sams and Co., Indianapolis. 

[67] Hayashi, S., (1955). Surges on transmission systems, Denki-shoin Inc, Kyoto, 

Japan. 

[68] Polyanin, A.D. and Manzhirov, A.V., (2006). Handbook of Mathematics for 

Engineers ans Scientists, Chapman and Hall/CRC Press, Boca Raton, FL. 

[69] Polyanin, A.D., (2002). Handbook of Linear Partial Differential Equations for 

Engineers ans Scientists, Chapman and Hall/CRC Press, Boca Raton, FL. 

[70] Torre, A., (2009). “A note on the Airy beams in the light of symmetry algebra 

based approach”, J. Opt. A: Pure Appl. Opt., 11,125701. 

[71] Valle, O. and Soarez, M., (2004). Airy Functions and Applications to Physics, 

Imperial College Press, London, England. 

[72] Isik, O., Kocak, Z.F. and Eroglu, E., (2014). “The Investigation of surplus 

Energy and Signal Propagation at Time-Domain Waveguide Modes”, 

Applications and Applied Mathematics: An International Journal (AAM), 

9(2):637-645. 

[73] Akgun, O. and Tretyakov, O. A., (2015). “Solution to the Klein-Gordon 

equation for the study of time-domain waveguide fields and accompanying 

energetic processes”, IET Microwaves, Antennas and Propagation, ,9(2): 1337-

1344. 

[74] Harmuth, H.F., (1984). “Nonsinusoidal Waves in Rectangular Waveguides”, 

IEEE Trans. Electromagnetic Compatibility, 26(1):34-42. 



63 

 

[75] Sener, U.S. and Sener, E., (2013). “Review of Time Domain Waveguide 

Modes in Perspective of Evolutionary Approach to Electromagnetics (EAE)”, 

Balkan Journal of Mathematics, 01(1):61-71. 

[76] Aksoy, S. and Tretyakov, O.A., (2004). “Evolution Equations for Analytical 

Study of Digital Signals in Waveguides”, Journal of Electromagnetic Waves 

and Applications, 17:263-270. 

[77] Tretyakov, O.A. and Erden, F., (2012). “Evolutionary approach to 

electromagnetics as an alternative to the time-harmonic field method”, 2012 

IEEE International Symposium on Antennas and Propagation and USNC-URSI 

National Radio Science Meeting, July 8-14 2012, Chicago, United states 

[78] Tretyakov, O.A. and Kaya, M., (2012). “The real-valued time-domain TE 

modes in lossy waveguides”, Progress In Electromagnetics Research, 127: 405-

426. 

[79] Dusseaux, R., (2008). “Telegraphist’s equations for rectangular waveguides 

and analysis in nonorthogonal coordinates”, Progress In Electromagnetics 

Research (PIER), 88:53-71. 

[80] Abramowitz, M. and Stegun, I. A., (1965). Handbook of Mathematical 

Functions-Chapter 19, Dover Publications Inc.., 

[81] Poynting, J. H., (1884). “On the transfer of energy in the electromagnetic 

field”, Philos. Trans. of the Royal Society of London, 175:343-361. 

[82] Akgun, O. (2015). “Solution to the Klein-Gordon equation for the study of 

time domain waveguide fields and accompanying energetic processes”, IET 

Microwaves, Antennas and Propagation, 9(12):1337. 

[83] Ozbay, B., (2015). “Use of Special Functions in Engineering; A Distiguished 

Method: Evolutionary Approach to Electromagnetics Theory”, MSc Thesis, 

Gebze Technical University. 

[84] Eroglu, E., Ak, N., Koklu, K.O., Ozdemir, Z.O., Celik, N. and Eren, N., 

(2012). “Special Functions in Transferring of Energy; a specific case: Airy 

function”, Energy Education Science and Technology Part A: Energy Science 

and Research, 30(1):719-721 

 

 

 



64 

 

APPENDIX-A 

 MILLER’S LIST 

Coordinate Systems for Separation of Variables in Klein-Gordon Equation 

 

1.  𝑐𝑡 = 𝑢, 𝑧 = 𝑣: 𝑈(𝑢)𝑉(𝑣) is a product of the exponentials 

2. 𝑐𝑡 = 𝑢 cosh 𝑣,  𝑧 = 𝑢 sinh 𝑣;  0 ≤ 𝑢 < ∞,  −∞ < 𝑣 < ∞:  𝑈(𝑢)𝑉(𝑣) is a 

product of Bessel function and an exponential. 

3. 𝑐𝑡 =
1

2
(𝑢2 + 𝑣2), 𝑧 = 𝑢𝑣; −∞ < 𝑢 < ∞, 0 ≤ 𝑣 < ∞: 𝑈(𝑢)𝑉(𝑣) is a product of 

parabolic cylinder functions. 

4. 𝑐𝑡 = 𝑢𝑣, 𝑧 =
1

2
(𝑢2 + 𝑣2); −∞ < 𝑢 < ∞, 0 ≤ 𝑣 < ∞: 𝑈(𝑢)𝑉(𝑣) is a product of 

parabolic cylinder functions. 

5. 𝑐𝑡 =
1

2
(𝑢 − 𝑣)2 + 𝑢 + 𝑣, 𝑧 = −

1

2
(𝑢 − 𝑣)2 + 𝑢 + 𝑣; −∞ < 𝑢, 𝑣 < ∞: 

𝑈(𝑢)𝑉(𝑣) is a product of Airy functions. 

6. 2𝑐𝑡 = cosh
𝑢−𝑣

2
+ sinh

𝑢+𝑣

2
, 2𝑧 = cosh

𝑢−𝑣

2
sinh

𝑢+𝑣

2
: −∞ < 𝑢, 𝑣 < ∞: 

𝑈(𝑢)𝑉(𝑣) is a product of Mathieu functions. 

7. 𝑐𝑡 = sinh(𝑢 − 𝑣) +
1

2
𝑒𝑢+𝑣, 𝑧 = sinh(𝑢 − 𝑣) −

1

2
𝑒𝑢+𝑣: −∞ < 𝑢, 𝑣 < ∞: 

𝑈(𝑢)𝑉(𝑣) is a product of Bessel functions. 

8. 𝑐𝑡 = cosh(𝑢 − 𝑣) +
1

2
𝑒𝑢+𝑣, 𝑧 = cosh(𝑢 − 𝑣) −

1

2
𝑒𝑢+𝑣 : −∞ < 𝑢, 𝑣 < ∞: 

𝑈(𝑢)𝑉(𝑣) is a product of Bessel functions 

9. 𝑐𝑡 = sinh 𝑢 cosh 𝑣, 𝑧 = cosh 𝑢 sinh 𝑣; −∞ < 𝑢, 𝑣 < ∞: 𝑈(𝑢)𝑉(𝑣) is a product 

of Mathieu functions. 

10. 𝑐𝑡 = cosh 𝑢 cosh 𝑣, 𝑧 = sinh 𝑢 sinh 𝑣; −∞ < 𝑢 < ∞, 0 ≤ 𝑣 < ∞: 𝑈(𝑢)𝑉(𝑣) is 

a product of Mathieu functions. 

11. 𝑐𝑡 = cos𝑢 cos𝑣, 𝑧 = sin 𝑢 sin 𝑣; 0 < 𝑢 < 2𝜋, 0 ≤ 𝑣 < 𝜋: 𝑈(𝑢)𝑉(𝑣) is a 

product of Mathieu functions. 
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APPENDIX-B 

 MAPPLE CODES 

Mapple Code for Figure 5.1 and Figure 5.2 

 

> ##f22:Bi(u)*Bi(v)  

> restart;                                

  alpha:=-1;              

  y1:=-0.15; 

  y2:=0.34; 

  tau1:=0; 

  tau2:=15; 

  u:=(4^(1/3))*(alpha-(tau+xi)/4+(((tau-xi)^(1/2))/2)); 

  v:=(4^(1/3))*(alpha-(tau+xi)/4-(((tau-xi)^(1/2))/2)); 

 

  f:=AiryBi((4^(1/3))*(alpha-(tau+xi)/4+(((tau-   

xi)^(1/2))/2)))*AiryBi((4^(1/3))*(alpha-(tau+xi)/4-(((tau-  

xi)^(1/2))/2))); 

  A:=-diff(f,tau); 

  B:=diff(f,xi); 

 

  sW4:=(1/2)*((A)^2-(B)^2); 

  WW:=(1/2)*(f^2+A^2+B^2); 

 

  N:=1500;         #N=numpoints 

  th:=2;           #th is thickness 

  h4:=piecewise(0>tau,0,f); 

 

  xi:=tau-0.05; 
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  with(plots): 

#a4:=plot(h4,tau=tau1..tau2,numpoints=N,thickness=th,view=[

tau1..tau2,y1..y2],axes=boxed,legend=typeset(F4),color=blac

k,symbol=box,linestyle=solid); 

#t7:=plot(ttau,tau=tau1..tau2,numpoints=N,thickness=th,view

=[tau1..tau2,y1..y2],axes=boxed,legend=typeset(A4),color=bl

ack,symbol=box,linestyle=dot); 

#t8:=plot(txi,tau=tau1..tau2,numpoints=N,thickness=th,view=

[tau1..tau2,y1..y2],axes=boxed,legend=typeset(B4),color=bla

ck,symbol=box,linestyle=dash); 

 

w:=plot(WW,tau=tau1..tau2,numpoints=N,thickness=th,view=[ta

u1..tau2,y1..y2],axes=boxed,legend=typeset(W[4]),color=blac

k,symbol=box,linestyle=dash); 

SW:=plot(sW4,tau=tau1..tau2,numpoints=N,thickness=th,view=[

tau1..tau2,y1..y2],axes=boxed,legend=typeset(sW[4]),color=b

lack,symbol=box,linestyle=solid); 

 

display({SW,w}); 

 

Mapple Code for Figure 5.3 and Figure 5.4 

 

> ##f21:Bi(u)*Ai(v) 

> restart;                                

alpha:=-1;              

  

y1:=-0.64; 

y2:=0.16; 

tau1:=0; 

tau2:=15; 

u:=(4^(1/3))*(alpha-(tau+xi)/4+(((tau-xi)^(1/2))/2)); 

v:=(4^(1/3))*(alpha-(tau+xi)/4-(((tau-xi)^(1/2))/2)); 

 

f3:=AiryBi((4^(1/3))*(alpha-(tau+xi)/4+(((tau-

xi)^(1/2))/2)))*AiryAi((4^(1/3))*(alpha-(tau+xi)/4-(((tau-

xi)^(1/2))/2))); 

ttau:=-diff(f3,tau); 

txi:=diff(f3,xi); 
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N:=1500;         #N=numpoints 

th:=2;           #th is thickness 

h3:=piecewise(0>tau,0,f3); 

 

xi:=tau-0.05; 

 

with(plots): 

a3:=plot(h3,tau=tau1..tau2,numpoints=N,thickness=th,view=[t

au1..tau2,y1..y2],axes=boxed,legend=typeset(F3),color=black

,symbol=box,linestyle=solid); 

t5:=plot(ttau,tau=tau1..tau2,numpoints=N,thickness=th,view=

[tau1..tau2,y1..y2],axes=boxed,legend=typeset(A3),color=bla

ck,symbol=box,linestyle=dot); 

t6:=plot(txi,tau=tau1..tau2,numpoints=N,thickness=th,view=[

tau1..tau2,y1..y2],axes=boxed,legend=typeset(B3),color=blac

k,symbol=box,linestyle=dash); 

 

display({a3,t5,t6}); 
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APPENDIX-C 

 WEYL THEOREM 

Let 𝐺 be a Lie group and let 𝜌 be a group representation of 𝑮 on ℂ𝑛 (for some natural 

number 𝑛) which is continuous in the sense that the function 𝐺 × ℂ𝑛 → ℂ𝑛 defined by 

(𝑔, 𝑣) → 𝜌(𝑔)(𝑣)  is continuous. Then for each 𝑣 ∈ ℂ𝑛 and each 𝛼 ∈ (ℂ𝑛)∗, the 

function 𝐺 → ℂ𝑛 defined by 𝑔 → 𝛼(𝜌(𝑔)(𝑣)) is continuous. The vector space span of 

all such functions is called the space of representative functions. 

The Weyl theorem says that, if 𝐺 is compact, then 

1) The representative functions are dense in the space of all continuous functions, 

with respect to the supremum norm; 

2) The representative functions are dense in the space 𝐿2(𝐺) of all square-

integrable functions, with respect to aHaar measure on 𝐺; 

3) The vector space span of the characters of the irreducible continuous 

representations of 𝐺 are dense in the space of all continuous functions from  𝐺 

into ℂ𝑛 which are constant on each conjugacy class of 𝐺, with respect to the 

supremum norm. 

This theorem is easy to deduce from the Stone-Weierstrass theorem if it is assumed that 

𝐺 is a matrix group. On the other hand, it is a corollary of the Weyl theorem that every 

compact Lie group is isomorphic to some matrix group 

 

http://mathworld.wolfram.com/SupremumNorm.html
http://mathworld.wolfram.com/HaarMeasure.html
http://mathworld.wolfram.com/VectorSpaceSpan.html
http://mathworld.wolfram.com/GroupCharacter.html
http://mathworld.wolfram.com/IrreducibleRepresentation.html
http://mathworld.wolfram.com/ConjugacyClass.html
http://mathworld.wolfram.com/Stone-WeierstrassTheorem.html
http://mathworld.wolfram.com/MatrixGroup.html
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APPENDIX-D 

POYNTING’S THEOREM (ENERGY CONSERVATION THEOREM) 

Poynting's theorem is a powerful statement of energy conservation. It can be used to 

relate power absorption in an object to incident field. The theorem allows us to calculate 

the rate at which energy changes within a given volume due to the action of 

electromagnetic fields.. The theorem says if 𝑆 is any closed mathematical surface and 𝑉 

is the volume inside 𝑆, then 

𝜕

𝜕𝑡
∫(𝑊𝑐 + 𝜀0𝐄. 𝐄 + 𝜇0𝐇.𝐇)𝑑𝑉

𝑉

+∮(𝐄 × 𝐇)𝑑𝑆

𝑆

= 0 

where 𝑊𝑐  is the energy possessed by charged particles at a given point in V, 𝜀0𝐄. 𝐄 is 

the enery stored in the 𝐄 electric field at a given point in 𝑉 and 𝜇0𝐇.𝐇 is the enery 

stored in the 𝐇 emagnetic field at a given point in 𝑉. The first integral gives the rate at 

which energy stored within the fields changes within the volume 𝑉 and the second 

integral gives the rate at which  energy flows across the surface 𝑆 enclosing 𝑉.  
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