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ABSTRACT 

 

QUANTUM CODES OVER EISENSTEIN-JACOBI INTEGERS 

Eda YILDIZ 

Department of Mathematics 

MSc. Thesis 

 

Advisor: Assoc.Prof.Dr. Fatih DEMİRKALE 

 

Though classical computers have been developed day by day, a new machine which is 

based on quantum mechanics and is called quantum computer is expected more powerful 

than a classical one. For instance, RSA which is a powerful cryptographic algorithm in 

classical computers is used in recent security systems and this algorithm cannot be 

cracked by using a classical computer. However, it is expected that a quantum computer 

can easily break this algorithm. If these computers can be built in practice, then a quantum 

error correction process which is based on principles of quantum mechanics is needed. 

Hence, quantum error correcting codes have been developed. 

In this thesis, in Chapter 1 development of quantum coding theory from the beginning to 

today is mentioned and many studies made in this process are explained. 

In Chapter 2, main definitions and theorems of algebraic coding theory is gave to place. 

In Chapter 3, notations, matrices, operators which are used in quantum computation and 

their operations have been explained with properties.   

In Chapter 4, the differences of quantum error correction from classical error correction 

and quantum error correcting codes are explained. CSS code, stabilizer code and 

entanglement assisted quantum codes are analyzed in detail and they are illustrated with 

examples. 

In Chapter 5, quantum codes over Eisenstein-Jacobi integers have been constructed. Error 

detection and correction procedures of this new type of quantum codes have been 

explained and they are intensified with examples. Error matrices, error bases and a new 

distance of these codes are defined. Commutative condition of error operators is given 

and it is proved. Finally, it is showed that these new codes may give new and better 

parameters. 
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     ÖZET 

 

EISENSTEIN-JACOBI TAMSAYILARI ÜZERİNDE KUANTUM 
KODLAR 

Eda YILDIZ 

Matematik Anabilim Dalı 

Yüksek Lisans Tezi 

 

Tez Danışmanı: Doç.Dr. Fatih DEMİRKALE 

 

Klasik bilgisayarlar günden güne geliştiriliyor olsa da kuantum bilgisayar adı verilen ve 
kuantum mekaniğine dayandırılan yeni bir makinenin klasik bilgisayarların çok daha 
üstünde performans göstermesi beklenmektedir. Örneğin; klasik bilgisayarda güçlü 
kriptografik bir algoritma olan RSA, günümüzde güvenlik sistemlerinde kullanılmaktadır 
ve bu algoritma klasik bilgisayarlar kullanılarak kırılamamaktadır. Ancak kuantum 
bilgisayarların kendilerine özgü özellikler sayesinde bu algoritmayı kırabilecekleri 

düşünülmektedir. Eğer bu güçlü bilgisayarlar pratikte yapılabilirse, kuantum mekaniğini 
temel alan yeni bir hata düzeltme süreci de gerekli olacaktır. Bu yüzden kuantum hata 
düzelten kodlar geliştirilmiştir. 

Bu tezde, ilk bölümde kuantum kodlama teorisinin başlangıçtan günümüze kadar gelen 
süreçteki gelişiminden söz edilmiş ve bu süreçte yapılan çalışmalar anlatılmıştır. 

İkinci bölümde cebirsel kodlama teorisindeki temel tanım ve teoremlere yer verilmiştir.  

Üçüncü bölümde kuantum hesaplamada kullanılan notasyonlar, matrisler, operatörler ve 
bunlarla yapılan işlemler özellikleriyle açıklanmıştır.  

Dördüncü bölümde kuantum hata düzeltme sürecinin klasik hata düzeltmeden farkları 
anlatılarak kuantum hata düzelten kodlardan bahsedilmiş, bunlardan CSS kod, stabilizer 

kod ve dolaşık çiftler yardımıyla oluşturulan kuantum kodlar örneklerle ayrıntılı bir 
şekilde açıklanmıştır.  
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Beşinci bölümde Eisenstein-Jacobi tamsayıları üzerinde kuantum kodlar inşa edilmiştir. 
Kuantum kodların bu yeni sınıfının hata farketme ve düzeltme süreçleri açıklanmış ve 
bunlar örneklerle pekiştirilmiştir. Bu kodlar üzerinde hata matrisleri, hata tabanları ve 
yeni bir uzaklık tanımlanmıştır. Bu hata operatörlerinin değişmeli olma şartı verilmiş ve 
bu ispatlanmıştır. Son olarak da bu yeni kodlarla yeni parametreli kodlar üretilebileceği 
örneklendirilmiştir. 

Anahtar Kelimeler: Kuantum kodlar, hata düzelten kodlar, CSS kod, stabilizer kod, 
dolaşıklık, Eisenstein-Jacobi tamsayıları  
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CHAPTER 1 

                INTRODUCTION 

 

1.1 Literature Review 

In 1948, Shannon published a paper [1] and he said that error correction is an important 

part of communication. When information transmits in a communication channel, some 

errors may occur. Hence, error correcting process is needed in classical computers [1]. 

Some codes over different structures are constructed to obtain good parameters.  

In 1976, Ingarden showed Shannon’s information theory cannot be generalized to the 

quantum case. So, a new information theory which is based on quantum mechanics is 

needed [2]. Benioff introduced an idea of a quantum computer in 1980 [3]. Deutsch 

described first universal quantum computer in 1985. A computer which is based on 

quantum mechanics is faster than classical one [4]. Error detection and correction process 

is needed in a quantum computer similar to a classical computer. Therefore, some codes 

which are based on the principles of a quantum computer are constructed. 

In 1994, Huber defined codes over Eisenstein-Jacobi integers [5]. He defined a new 

minimum distance and he said that these codes are efficient in encoding and decoding 

processes. Also, he showed that there is an isomorphism between Eisenstein-Jacobi 

integers and finite fields. In 1998, Dong, Soh and Gunowan showed that Eisenstein-

Jacobi integers give an efficient algorithms for coding QAM signals [6]. Firstly, in 1995 

Shor invented a 9-qubit quantum code which corrects an error on a single qubit [7]. In 

1996, Steane constructed a quantum code that encodes a single qubit to seven qubits [8]. 

In 1996, Calderbank and Shor described a quantum code which is obtained from two 

classical codes [9]. They showed that a quantum code can be constructed by using a linear 
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code containing its dual. Furthermore, the structures of some other error correcting codes 

are analyzed in [10], [11], [12] and [13].  

In 1997, Gottesman studied a new class of quantum codes which is called stabilizer codes 

in his PhD thesis [14]. He used group theory to construct this type of codes and he showed 

error detection and correction conditions. In 1998, Calderbank et al. obtained a quantum 

code from classical codes over  [15]. So, quantum codes over finite fields are 

obtained. In 2006, Ketkar et al. generalized quantum codes over finite fields [16] and 

[17].  In 2006, Brun, Devetak and Hsieh constructed a quantum code by using 

entanglement [18].  Thus, they obtained codes with better parameters via entangled pairs. 

There are other studies about quantum codes with entanglement in [19], [20] and [21]. 

Again in 2006, Aly, Klappenecker and Sarvepalli described quantum subsystem codes 

[22]. They divided a system into subsystems and made passive error correction.  

There are many studies on error correcting codes. In [23], [24] and [25] classical error 

correcting codes are studied. Articles [26], [27], [28], [29], [30], [31], [32], [33] and [34] 

give some information about quantum computation and quantum information theory. In 

general, main aim is finding error correcting codes over distinct mathematical structures 

to obtain better parameters. 

1.2 Objective of Thesis 

In this study, some class of quantum codes are studied. Error detection and correction 

conditions of these codes are analyzed and they are explained with illustrative examples. 

Also, a new class of quantum codes over Eisenstein-Jacobi integers are constructed. Some 

theorical properties of this code are explained and proven. Examples are given to show 

that this type of codes has good parameters and they have advantages over quantum codes 

which are constructed over finite fields. 

1.3 Hypothesis 

Quantum computers have many advantages over classical computers. Hence, quantum 

computers may become popular machines in the near future. Therefore, error correcting 

codes which is adapted to quantum computers play a significant role in recent topics. The 

existence of good quantum error correcting codes are studied by many researchers. 

In Chapter 2, we will introduce the basics of algebraic coding theory. In Chapter 3, we 

will state some definitions and mathematical properties of quantum mechanics. In 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Todd%20A.%20Brun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Igor%20Devetak.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Min-Hsiu%20Hsieh.QT.&newsearch=true
https://arxiv.org/find/quant-ph/1/au:+Aly_S/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Klappenecker_A/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Sarvepalli_P/0/1/0/all/0/1
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Chapter 4, we will study some types of quantum error correcting codes. In Chapter 5, we 

will mention about the construction of classical block codes over Eisenstein-Jacobi 

integers. Moreover, we will present the construction of quantum codes over Eisenstein-

Jacobi integers and we will illustrate it with examples. Also, we will define error bases 

and will state some properties of these new codes.  
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CHAPTER 2 

   BASICS OF THE CODING THEORY 

 

In this chapter, we give some definitions and theorems which are necessary for the next 

chapters about algebraic coding theory. In general, references [23], [24] and [25] are used 

for well-known definitions and theorems. 

2.1 Preliminaries 

Definition 2.1 Let = { , , … , } be a set with  elements. 

i) A sequence = …  for  is a -ary word of length  over . The 

sequence  is also known as the vector , , … , . 
ii) A collection of −ary words of length  with alphabet  is called a −ary block 

code over . 

iii) Let  be a −ary block code over . An element of  is called a codeword. 

iv) The notation | | denotes the number of elements in  and it is called the size of . 
v) The number | |⁄  defines the information rate of the code  of length . 

vi) The parameters of the code  of length  and size  is denoted by , . 

Note that we will refer to  as a code alphabet and its elements are code symbols. 

Definition 2.2 

• A code is called a binary code if the code alphabet is = { , }. 
• A code is called a ternary code if the code alphabet is = { , , }. 
• A code is called a quaternary code if the code alphabet is  or . 
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Example 2.3 = { , , , } is a binary , −code. = { , , , , , , } is a binary , −code. = { , , , , } is a ternary , −code. 

Definition 2.4 A set of the channel possibilities  received|  sent) which satisfies ∑ (  |  ==  where  with ={ , ,…, } is called a 

communication channel. 

Definition 2.5 Let = …  be a sent word let = …  be a received word 

of length . Then, 

 |  = ∏  |  = . 
In other words, the outcome of a transmission is independent of the outcome of the 

previous transmission. This type of the channels is called a memoryless channel. 

Definition 2.6 Let 𝒞 be a channel which satisfies the following properties: 

i) Each symbol which is transmitted has the same probability . 

ii) If any error is occurred, then each of the −  possible errors has equivalent 

probability. 

Then, 𝒞 is called a −ary symmetric channel. 

Remark 2.7 If the probabilities of the channel are  |  = |  =  and  |  =  |  =−  with the channel alphabet { , }, then the channel is called a binary symmetric 

channel. 
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          Figure 2. 1 Probability of binary symmetric channel 

Example 2.8 Let { , } be a code. The codewords are sent over a binary 

symmetric channel with = . . Suppose that the word =  is received. Then, | = | | | = . . . = . , | = | | | = . . . = . .  is more likely the codeword sent, since . > . . 

2.1.1 Maximum Likelihood Decoding 

Let  be a codeword which belongs to the code . If we sent this codeword over a 

communication channel and a word  is received, then channel probabilities can be 

computed as  |   for all . 
If  |  = max  |  , then  is the maximum 

likely codeword which is transmitted. This rule is called maximum likelihood decoding 

(MLD) rule. 

2.1.2 Hamming Distance 

Let  and  be words of length  over an alphabet . The number of different coordinates 

of  from  is called Hamming distance and denoted by ,  [23]. 

For = …  and = … , we define , = , + , + + ,  

where , = { ,    ≠,    = . 
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Example 2.9 Let = { , , } and let = , = , = . Then, , = , , = , , = . 
Proposition 2.10 Let ,  and  be words of length  over alphabet . 

Hamming distance  satisfies the following metric properties: 

i) , . 
ii) , =  if and only if = . 

iii) , = , . So  is symmetric. 

iv) , , + ,  (Triangle inequality). 

2.1.3 Nearest Minimum Distance Decoding 

Let  be a codeword which belongs to the code . If , = max ,  where  is the 

received vector, then the nearest minimum distance decoding rule will decode  to . 

Example 2.11 Let = { , , , , }. Assume that =  is 

received. Then, 

 , = , , = , , = , , = , , = . 

 

          

(2.1) 

Since min , = . We decode  to . 

2.1.4 Distance of a Code 

Besides the length and the size of a code, its distance is another parameter to define the 

code. The distance of a code is a crucial factor, because it determines the capabilities of 

the error detection and correction of a code. These capabilities are main aim of the codes. 
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Definition 2.12 Let  be a code which has at least two codewords. The minimum distance 

of  is denoted by  and it is defined as: 

 = { , | , , ≠ } (2.2) 

Definition 2.13 Let  be a code of length  and size . If the minimum distance of  is 

, then  is called an , , −code. The numbers ,  and  are parameters of . 

Example 2.14 Let = { , , , } be a ternary code. , = ,  , = ,  , = ,  , = ,  , = ,  , = . 
 is a ternary , , -code, since = . 

Definition 2.15 Let  be a positive integer. If the minimum distance decoding can detect  or fewer errors, then a code  is -error detecting. If  is -error detecting but not +
-error detecting, then it is exactly -error detecting. 

Example 2.16 = { , , } is -error detecting. 

The vector  transforms into  by changing two coordinates. 

The vector  transforms into  by changing three coordinates. 

The vector  transforms into  by changing three coordinates. 

If an error occurs in only one position, then this word is not in . So, one error can be 

detected. But, if two errors occur in two positions, this word might be another codeword 

in . So, some two errors cannot be detected. For instance; when the codeword  

changes to , the word  is also a codeword in . Hence, this error cannot be 

detected. 
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Also,  is exactly -error detecting, because  is 1-error detecting but not -error 

detecting. 

Definition 2.17 Let  be a positive integer. If the minimum distance decoding can correct  or fewer errors, then a code  is -error correcting. If  is -error correcting but not + -error correcting, then it is exactly -error correcting. 

Example 2.18 Let = { , } be a code. 

If  is sent and one error occurs, then the possible received words are , , , . Since none of them is in , they will be decoded as . If 

 is sent and one error occurs, then the possible received words are , ,  

and . Since none of them is in the code , they will be decoded to . In all cases, 

one error can be corrected. So,  is a one-error-correcting code. But if at least two errors 

occur, the minimum distance decoding may lead to a wrong codeword. So,  is exactly 

one-error-correcting. 

2.2 Linear Codes 

A linear code of length  over the finite field  is a subspace of the vector space . So, 

the algebraic properties of linear codes take some advantages over nonlinear codes. 

Firstly, we introduce some basics of vector spaces. 

2.2.1 Vector Spaces 

Definition 2.19 Let  be a finite field with  elements. The nonempty set  is a vector 

space over  if it satisfies the following properties. For all ,  and , : 

i) , +  is an abelian group, 

ii) + = + , + = + , 

iii) = , 

iv) If  is the multiplicative identity of , = . 

Note that if = , , … , , = , , … , , then + = + , + ,… , +  and = , , … , , 
where = { , , … , | }. So,  is a vector space. 
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Example 2.20 The following sets are vector spaces over . 
i. = { } and = . 

ii. = { , , … , | }. 
iii. = { , , , , , , , , , , , } over . 
iv. = { , , , , , , , , , , , } over . 

A vector , , … ,  can be written as … . 

Definition 2.21 Let  be a subset of a vector space . If  is also a vector space, then it 

is called a subspace of . 

 

Example 2.22  

i. { } is a subspace of all vector spaces. 

ii. { , , , , , , , , , , , } is a subspace of . 
iii. { , , , , , , , , } is a subspace of . 

Definition 2.23 Let  be a vector space over  and = { , , … , } be a nonempty 

subset of . < >= { + +  |   }. 
This set is called span of . If =< >, then  is called a spanning set of . 

Definition 2.24 Let  be a vector space over .  The nonempty subset  of  is called a 

basis for  if =< > and  is linearly independent. 

Note that the number of elements of a basis for  is called dimension  and it is denoted 

by . 

Theorem 2.25 Let  be a vector space over . If dim = , then 

i.  has  elements. 

ii.  has ! ∏ −−=  different bases. 

 

Example 2.26 = , = { , }. Let  be generated by , = . Then, = { , , , , , , , , }. 
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Here, = , =  and so, 

!∏( − = != − − = ! . . = . 
Hence,  has 24 different bases. 

Definition 2.27 Let = , , … , , = , , … , . The Euclidian inner 

product (or dot product) of  and  is defined as + + +  and it is 

denoted by ∙ .  Let  be a nonempty subset of . The vectors  and  are called 

orthogonal if ∙ = .  The set ⊥ = { | . =    }  is called the 

orthogonal complement of . 

Remark 2.28 If = ∅, then ⊥ = . 

Example 2.29 

i. Let =  and = . Let = , , , , , = , , , ,  and =, , , ,  be elements of . Then, . = . + . + . + . + . = . . = . + . + . + . + . = . . = . + . + . + . + . = . 
So, ,  and ,  are pairwise orthogonal. 

ii. Let =  and = { , , , }. Let’s find the complement of . 

Let = , , ,  be an element of . . , , , = + = , . , , , = + = , = , , , = + + + = . 
Thus, = , =  and + + + = . It follows that ⊥ ={ , , , }. 
2.2.2 Linear Codes 

Definition 2.30 Let  be a subspace of . Then,  is called a linear code of length  

over . 
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Example 2.31 

i) Let = { , , , … , | }. This is called a repetition code. A repetition 

code is a linear code over . 
ii) Let =  and = { , , , , , , , } .  is a binary 

linear code. 

iii) Let =  and = { , , }.  is a ternary linear code. 

Definition 2.32 Let  be a linear code in . 
i) The dual code of  is the orthogonal complement of  and it is denoted by ⊥. 

ii) The dimension of  is the dimension of  as a vector space over  and it is 

denoted by ( . 

Theorem 2.33 Let  be a linear code of length  over . Then,  

i) | | = dim ; that is,  = log | |. 
ii) ⊥ is also a linear code and + dim ⊥ = . 

iii) ⊥ ⊥ = . 

Proof. 

i) The dimension of the code  is the dimension of  as a vector space over . A 

vector space  over  has  elements where the dimension of  is . So,  has 

 elements since  is the dimension of  as a vector space. 

ii) From the Rank-Nullity Theorem, we have already known that +⊥ =  where  is a subset of .  In here,  is a subspace of  since it is 

a linear code. So, = . Then, + ⊥ = . 
iii) For any , . ′ =  for all ′ ⊥. Then, ⊥ ⊥ . Thus, ⊆ ⊥ ⊥ . 

We conclude that ⊥ ⊥ =  since = ⊥ ⊥  and ⊆ ⊥ ⊥. 

Example 2.34 Let =  and  = { , , , , , , , , }. 
So, dim = log | | = log = . ⊥ = { , , , , , , , , }. 
Then, dim ⊥ = log | ⊥| = log = . 
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Consequently, + ⊥ = + = = . 

A code  of length  and size  over  is called an , − . If the code  is a 

linear code,  can be written as a power of . Then, =  where = dim . Hence, 

 is also called an [ , ] −  if  is a linear code. 

Definition 2.35 Let  be a linear code. 

i) If ⊆ ⊥, then  is called self-orthogonal. 

ii) If = ⊥, then  is called self-dual. 

Proposition 2.36  

i) The dimension of a self-orthogonal code of length  is less than or equal to ⁄ . 
ii) The dimension of a self-dual code of length  is ⁄ . 

Proof. 

i) From the ii) part of theorem 2.32, we know that + ⊥ = . If  is  

self-orthogonal, that is ⊆ ⊥,  then ⊥ . Thus, 

 Hence,  implies . 
ii) If  is a self-dual code, then = ⊥. So, 

So, =  implies that = . 
 

Example 2.37 Let =  and = { , , , }. Then,  ⊥ = { , , , }.   is a self-dual code since = ⊥. 
2.2.3 Hamming Weight 

Definition 2.38 [23] Let = , , … , . The Hamming weight of  is defined 

as the number of nonzero coordinates in  and it is denoted by . That is =, ̅  where ̅ is the zero vector. 

+ + ⊥ = . (2.3) 

+ = + ⊥ = . (2.4) 
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Then, the Hamming weight of  can be written as = + + +. 
Lemma 2.39 Let  and  be elements of . Then, , = − . 
Proof: If , = , then =  since  is a metric. Then, − = = . 

Thus, , = = − . 
If , ≠ , then , = |{ | ≠ }| = |{ | − ≠ }| = − , =− . 
Lemma 2.40 Let = , , … ,  and = , , … ,  be elements of . Then, 

where ∗  is defined as , , … , . 

                       Table 2. 1 Table of Lemma 2.40 

  ∗  + = + − ∗  +  

     

     

     

     

 

Proof. From the definition of Hamming distance, it is true for ,  by Table 2.1. In 

general, it can be verified as in Table 2.1. 

 

Lemma 2.41 Let , . Then, 

Definition 2.42 Let  be a code. The minimum Hamming weight of  is the smallest of 

the weights of nonzero codewords of  and it is denoted by . More formally, 

= , = {           ≠          =  
(2.5) 

+ = + − ∗ . (2.6) 

+ + − . (2.7) 

= min{ |  and ≠ }. (2.8) 



  

15 

 

Theorem 2.43 [23] Let  be a linear code over . Then, Hamming weight of the code  

is equal to Hamming distance of the code , that is = . 
Proof. Let  be a linear code and let , , we have , = − . There exist ’, ’  such that ’, ’ = . Then, 

Since  is the smallest of the weights of the nonzero codewords of . So, d(C). 
On the other hand, there is a  such that = . 

So, . 
Therefore, we obtain that =  if  is a linear code. 

Example 2.44 Let = { , , , , , , , } 
is a linear code over . Then, = = , = = ,    = = , = . 
Thus, = { |   ≠ } =  { , , , } = .  Hence, =

. 

2.2.4 Basis for Linear Codes 

Linear codes can be described by a basis since they are vector spaces. Therefore, finding 

a basis of a linear code is important. There are many methods to obtain a basis of a vector 

space. We will mention some of them here. 

Definition 2.45 Let  be a matrix over . The following operations are elementary row 

operations: 

i) swapping two rows, 

ii) multiplying a row by a scalar, 

iii) replacing a row by its sum with a scalar multiple of another row. 

Definition 2.46 Two matrices are called row equivalent if one can be obtained from the 

other by a sequence of elementary row operations. 

Remark 2.47 

= ′, ′ = ′ − ′ . (2.9) 

= = , . (2.10) 
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i) Any matrix  over  can be put in row echelon form (REF) or reduced row 

echelon form (RREF) by a sequence of elementary row operations. In other 

words, a matrix is row equivalent to a matrix in REF or in RREF.  

ii) For a given matrix, its RREF is unique, but it may have different REFs. (Recall 

that the difference between the RREF and the REF is that the leading nonzero 

entry of a row in the RREF is equal to  and it is the only nonzero entry in its 

column.) 

2.2.4.1 Method 1 

Let  be a nonempty subset of , let  be a linear code generated by ; that is, =  

and  be a matrix whose rows are the words of . The row echelon form of  is found 

by using the elementary row operations. The nonzero rows of the last matrix form a basis 

for . 

Example 2.48 Let =  and = { , , , , }. Let’s find a 

basis for  which is generated by . 

= ( 
                                         ) 

 ~( 
                                          ) 

 ~( 
                                         ) 

 ~( 
                                        ) 

 . 
The last matrix is a row reduced form of . So, { , , , } is a 

basis for . 

Note that the notation ~ denotes the row equivalent matrix. 

2.2.4.2 Method 2 

Let  be a nonempty subset of , let  be a linear code generated by ; that is, =  

and  be a matrix whose columns are the words of . The row echelon form of  is 

found by using elementary row operations. The leading columns are located in the row 

echelon form. The columns of the initial state of  which correspond to the leading 

columns form a basis for the code. 

Example 2.49 Let =  and = { , , , }. Find a basis for  which is 

generated by . 
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=                         )~                         )~                         )~                         )~                         ). 
Columns ,  and  of the row echelon form are the leading columns. So, the set ={ , , } is obtained from the original columns of  which correspond to the 

leading columns. Therefore, from the method , = { , , } is a basis for 

. 

Remark 2.50 Although the obtained basis is a subset of S in the method 2, it is not 

necessary for the method 1. 

2.2.4.3 Method 3  

Let  be a nonempty subset of , let  be a linear code which is generated by  and  

be a matrix whose rows are the words of . The reduced row echelon form (RREF) of  

is found by using elementary row operations.  

Let  be a matrix which consists of nonzero rows of the reduced row echelon form. So, 

 transforms into a form as  where  is ×  matrix and 0 denotes the zero matrix. 

 has  leading columns. We construct the matrix ’ by permuting the columns of  such 

that it contains a ×  identity matrix on the left side and a × −  matrix on the right 

side; that is, ′ = | . The matrix  is formed as = − | −  in which  is the 

transpose of . Then, the inverse of the permutation is applied to the columns of  and a 

matrix ’ is obtained. Finally, the rows of ’ form a basis for the dual code of . 

Example 2.51 Let  be a linear code over  and let  be a reduced row echelon form of 

 whose rows are the codewords in ; 

=                                                         ). 
 The columns 1, 4, 5 and 7 form an identity matrix. So, we obtain the following matrix 

by permuting these columns: 

′ =                                                         ). 
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Then, 

=                                                         ). 
Applying the inverse permutation, we obtain 

′ =                                                         ). 
The rows of ′ form a basis for the dual code of . 

2.2.5 Generator and Parity-Check Matrix of a Code 

Linear codes are important in Coding Theory since they can be represented by a basis. A 

basis for a code provides description of all codewords of the code. Bases are represented 

by a matrix so that operations can be applied easily, when the size of the code is large. A 

matrix which represents a code is called a generator matrix for the code and a matrix 

which represents the dual of a code is called a parity-check matrix of the code. 

Definition 2.52 Let  be a linear code. 

i) A matrix whose rows form a basis of  is called a generator matrix for . 

ii) A generator matrix of the dual code of  is called a parity-check matrix of . 

Definition 2.53 Let  be an [ , ] −linear code. 

i) If a generator matrix has a form | , then it is said to be in the standard form. 

ii) If a parity-check matrix has a form | − , then it is said to be in the standard 

form. 

Example 2.54 Let =  and = { , , , , }. Let  be a 

linear code such that = . 
= ( 

                                         ) 
 ~( 

                                         ) 
 ~( 

                                         ) 
 

 

where ~ denotes the row equivalences. Then, 
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=                                 )
×

, =         × . 
Remark 2.55 Every linear code may not have a generator matrix in the standard form. 

Example 2.56 Let = { , , , } be a linear code over . Each of the 

sets { , }, { , }  and { , }  is a basis for . So, each of the 

following matrices is a generator matrix of :             ,               ,               ,               ,               ,               . 
However, none of them is in standard form. 

Lemma 2.57 Let  be an [ , ] −linear code over  and let  be a generator matrix of 

. Then, ⊥ if and only if = . 

Let  be an − ×  matrix. The matrix  is a parity-check matrix of  if and only if 

the rows of the matrix are linearly independent and = . 

Equivalently for the first statement,  if and only if = . 

Proof. Let  be the th row of . Any element of  can be written as a linear 

combination of the rows of , since the rows of  form a basis for . In other words, for 

all ,  = + + +  

where  for . If , then ∙ ’ =  for all ’ ⊥ .  The product ∙’ =  implies that + + + . ’ = . Thus, ′ is orthogonal to  for { , , . . , }; that is, = . 

On the other hand, if =0, then ∙  =  for all . Then, ∙ ′ = + + + . ′ = . ′ + . ′ + + . ′ =  

since = + + +  and . ′ =  for all { , , . . , }.  
From Definition 2.51 ii), the rows of  are linearly independent since  is a parity-check 

matrix and from the former statement, =  since the rows of  are codewords in ⊥. 
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Conversely, assume =  and let  be the row space of . By the former 

statement, we have ⊆ ⊥. Then,  has dimension −  since the rows of  

are linearly independent, thus = ⊥. Thus,  is a parity-check matrix of . 

Theorem 2.58 Let  be a linear code and let  be a parity-check matrix of . 

i) A set of  columns of  is linearly dependent if and only if the distance of  is 

less than or equal to . 

ii) Any −  columns of  are linearly independent if and only if the distance of  

is greater than or equal to . 

Proof. 

i) If  columns are linearly dependent, then a linear combination of them is equal to 

zero; that is, ℎ + ℎ + + ℎ =  where ℎ  is th column of  and  is 

an element of  for all . Then, at least one of these coefficients  is 

nonzero. The nonzero coefficients  define a vector  of length  or less which 

satisfies = . 

Conversely, let the distance of  be less than or equal to . Then, there exists =, , … ,  such that = =  since  is a linear 

code. So, −  coordinates of  are zero by the definition of the weight. Then, 

the remaining  columns of  are linearly dependent. 

ii) It is similar to the first statement of the proof. 

Example 2.59 Let  be a linear code over , let  be the minimum distance of  and let 

 be a parity-check matrix of C where 

=                                                 ). 
Any two columns of  are linearly independent. But, three columns are linearly 

dependent since the sum of the columns ,  and  is zero. So, = . 

Theorem 2.60 Let  be an [ , ] −linear code. If =( |  is a generator matrix of  

which is in standard form, then the matrix =(− | −  is a parity-check matrix of . 
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Proof. Let =       , −      , −      , , − )  and =
 − − ,          − − ,         − , − − , −         ). It is clear that the rows of  are linearly independent. 

The product of the th row of  and th row of  gives + + + + + + +− + = . This shows that  is orthogonal to . Then,  is a parity-check matrix 

for  by lemma 2.56. 

2.2.6 Encoding Procedure in Linear Codes 

Let  be an [ , ] −linear code over . Each codeword in  carries an information. So, 

 carries  information since  has  codewords. Let { , , … , } be a basis for . 

Then, each codeword  in  can be written as = + + +  where 

 for all . Let the vector  be the th row of matrix . The vector = . =+ + +  is an element of  where = , , … , . In other words, 

any codeword in  can be written as = . So, every element of  can be encoded as = . 

Describing an element of  as a codeword of  is called encoding. An element  

transforms into  by =  where  is a generator matrix of . 

Example 2.61 Let  be a [ , ] −linear code over  and let  be a generator matrix of 

: 

=                                                 ). 
Let =  be a message which is sent. Then,  

= =                                                       ) =             . 
The encoded vector =              is a codeword in . 
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2.2.7 Decoding Procedure in Linear Codes 

If a decoding method of a code can be applied easily, then the code is practical. 

Cosets play an important role in the decoding methods. So, firstly we will introduce the 

concept of a coset. 

2.2.7.1 Cosets 

Definition 2.62 Let C be a linear code which is a subspace of  and let  be an element 

of . A coset of  is defined as  

The set +  is called a coset of . 

Example 2.63 Let = { , , , } be a code over . Then, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }, + = { , , , },   + = { , , , }. 
 Note that + = + = + = + = . 

Theorem 2.64 Let  be an [ , ] −linear code over . Then, 

i) The size | + | = | | = | + | =  for all . 
ii) For all ,  if + , then + = + . 

iii) Every element of  is included in some coset of . 

iv) Two cosets are either disjoint or identical. 

v) The number of the different cosets of  is − . 

vi) For any , , −  if and only if  and  are in the same coset. 

+ = { +  | } = + . (2.11) 
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Proof. 

i) Coset +  has at most  elements since  has  elements. Let +  and +’ be two elements of + . The elements + = + ’ if and only if = ’. 
So, +  has exactly  elements. 

ii) If + , then + ⊆ + . From Part i), | + | = | | for all . 

So, | + | = | + | where , . Hence, + = + . 

iii) Let  be an element of . It is clear that + . 

iv) Let +  and +  be two coset of . Assume that the intersection of them is 

nonempty. Let + ∩ + . Then,  +  and + . From 

Part ii), + = +  since +  and + = +  since  + . 

Hence, + = + = +  and then + = + . This means that if 

intersection of +  and +  is nonempty, then they are identical. 

v) The vector space  has  elements. By Part i), the sizes of the cosets of  are 

. From Parts iii) and iv), we know that every element of  is included in some 

coset and the cosets are either disjoint or identical. So, the number of the distinct 

cosets of  is 
𝑛𝑘 = − . 

vi) Let − = . Then, = + + . So, we have that + = +  

by Part ii). Element  is contained in +  and element  is contained in + . 

Then + = +  and + = + . Hence,  and  are in the 

same coset since + = + . 

On the other hand, let  and  be in the same coset + . Then, elements  and 

 can be written as = +  and = + ’ for some , ’ . Thus, − =+ − + ′ = − ′ .  

2.2.7.2 Decoding Procedure for Linear Codes with Standard Array 

Let  be a linear code and let  be a codeword in  which is transmitted. Assume that  

is received. Then, = −  is the error string. From Theorem 2.63 vi),  and  are in 

the same coset since − = . The method works as following: 

1) Firstly, the standard array of  is constructed.  

2) The error string  of least weight in the coset +  is chosen. 

3) The vector = −  is the original codeword which is transmitted. 
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Example 2.65 Let = { , , , } be a linear code over . 
Assume that =  is received. Then, the cosets are + = { , , , } + = { , , , } + = { , , , } + = { , , , } + = { , , , } + = { , , , } + = { , , , } + = { , , , } 
Then, =  is in + . The error string which has the least weight in the 

coset is . Thus, = − = − =  is the most likely 

codeword which is transmitted. 

A vector which has a length of the smallest weight in a coset is called a coset leader. 

2.2.7.3 Decoding Procedure for Linear Codes with Syndromes 

Syndrome decoding is an efficient way in order to decode linear codes. There is a one-to-

one correspondence between cosets and syndromes of a code. This correspondence 

provides an easy decoding method. Thus, the method is known as a general decoding 

algorithm. 

Definition 2.66 Let  be a -ary [ , , ] −linear code. Let  be a parity-check matrix 

of . The syndrome of  is denoted by  and it is calculated as =  for any . The vector  is an element of − . 
Theorem 2.67 Let  be a -ary [ , , ] −linear code and let  be a parity-check matrix 

of . Then, for all , , 

i) + = + . 

ii) =  if and only if  is a codeword in . 

iii) =  if and only if  and  are in the same coset. 

Proof. Let  be a linear code, let ,  and  be a parity-check matrix of . 
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i) + = + = + = + . 

ii) =  means = . From Lemma 2.56, =   if and only if . 

iii) If = , then − = . Then, from Part i), − = . From 

Part ii), it follows that −  is a codeword in  if and only if − = . So, 

 and  are in the same coset by Theorem 2.63 vi). 

Definition 2.68 A table which matches each coset leader with its syndrome is called a 

syndrome look up table. This table is constructed by the following steps: 

1) Find all cosets of the code and determine the coset leader  of each coset. 

2) Calculate the syndrome of  as =   for each coset leader  where  is a 

parity-check matrix of the code. 

Next, we will describe the decoding procedure. 

Firstly, we construct the syndrome look up table. Let  a received word. Then, we 

compute the syndrome . The coset leader  is found such that =  in the 

table. The word  is decoded as = − . 

Example 2.69 We will construct the syndrome look up table of the linear code ={ , , , , , , , , ,  , , , , , , } . A parity-

check matrix of  is = (                                     ). 
Example 2.70 The syndrome look up table and a parity-check matrix of the code is given 

in Table 2.2. We will decode = . 

We first compute = = . In the table, the syndrome  corresponds to the 

coset leader . Thus, + =  is the most likely 

codeword which is transmitted. 
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                                   Table 2. 2 Syndrome table of Example 2.69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coset Leader  Syndrome =  
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CHAPTER 3 

      QUANTUM COMPUTATION 

The quantum mechanics has certain interesting properties. A quantum computer is a 

machine which is based on the quantum mechanics. In 1976, R.S. Ingarden published a 

paper which is titled ‘Quantum Information Theory’ [2]. It shows that Shannon’s classical 

information theory cannot be adapted to quantum world directly. However, a new 

information theory can be constructed which is based on quantum mechanics. In 1985, 

first quantum computer is described by David Deutsch [4]. Then, some quantum 

computers with small qubits are constructed up to the present. 

Recently, there are many studies on quantum computers and they are developed day by 

day. If a successful quantum computer can be made with all expected properties, then the 

effects on cryptography and the other related disciplines will be significant.  

We will begin with explaining the quantum mechanics to understand the structure of a 

quantum computer. Hence, in this chapter we introduce the quantum computation which 

is the fundamental of the quantum mechanics. 

In this chapter, the books [27], [28], [29], [30], [31], [32], [33] and [34] are used. 

3.1 Dirac Notation 

The unit of a quantum computer is called a quantum bit, shortly a qubit. While a classical 

computer works with  and , a quantum computer works with the vectors |  and |  

corresponding to 0 and 1 in the classical system, respectively. They are called ket vectors. 
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Besides these vectors, there exists another state in a quantum computer. It is called the 

quantum superposition.  

There is a different notation used in quantum computation. This notation is discovered by 

Paul Dirac and so, it is known as Dirac notation. While in Physics and Mathematics the 

vectors are represented by a letter with an arrow, in quantum mechanics a vector is 

represented by a ‘ket’. That is, if  is a vector, then it is denoted by | . The dual of this 

vector is denoted by | and it is known as ‘bra’. The matrix representation of the bra 

vector is a row vector whose elements are complex conjugates of the ket vector. More 

formally, if | = ) then, | = ∗, ∗,…, ∗  where ∗ denotes the complex 

conjugates of  for . 

Let  be a sequence of length . Then, the vector |  corresponds to a column matrix of 

length . In fact, Dirac notation provides simplicity in presentation. In general, the set {| , | } is used as a basis and it is called the computational basis (or standard basis). 

Vectors of length  can be listed by using the computational basis: | … , | … , | … , | … . Then, the columns matrices corresponding to these ket vectors can 

be written as follows: 

| … = ) , | … = ) ,… , | … = ). 
The above vectors are −dimensional column vectors. 

For a small example, assume that take = . Then, there are two ket vectors |  and | . 

The column matrices corresponding to these vectors are as follows: | =  and | =
. 
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Example 3.1 Let |𝜑 = √ | + √ | . Actually, |𝜑 = √ | ⊗ | + √ | ⊗ | . 

Alternatively, this expression is equivalent to a column vector ( 
 √⁄

√⁄ ) 
 

.  

The main reason of using Dirac notation is that it provides an easy representation. For 

instance, for a 10-qubit state we need a column vector which has  components. It leads 

a complexity in representation. However, it can be represented by a sequence of length 

10 if Dirac notation is used. 

A Hilbert space is a vector space over complex numbers. An advantage of a Hilbert space 

is that it can be represented by a basis. So, this space is used in quantum computation. 

Next, we will describe the dual space of a Hilbert space. 

Definition 3.2 Let  be a Hilbert space. The set ∗ is the set of linear transformation 

from  to ℂ as → ℂ. The elements of ∗ are denoted by | and the action of | is 

defined as |: |𝜑 → |𝜑  where |𝜑  is an inner product of |  and |𝜑 . The set ∗ 

is also a vector space over complex numbers and it is called the dual space of . The 

vector | is the dual of | . While |  is a column vector, | is a row vector which is 

constructed by the complex conjugates of elements of | . 

Example 3.3 Let |𝜑 = √ | + √ |  and |𝜑 = √ | + √ | . Matrix 

representations of |𝜑  and |𝜑  are (  
 √⁄√ √⁄ )  

 
 and (  

 √ √⁄
√⁄ )  

 
, respectively. Then,  

𝜑 |𝜑 = ( √⁄ √ √⁄ )(  
 √ √⁄

√⁄ )  
 = −√√ . 
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Definition 3.4 Let , , … , ℂ and let | , | ,…, | ℂ 𝑛
 be ket vectors. The 

superposition of the vectors is also a vector. It can be written as  |𝜑 = | + | ++ |  where | | + | | + + | | = . Here, | |  denotes the possibilities 

of |  where . The vector |𝜑  is called a quantum superposition. 

In particular, let ,  ℂ  and let | , | ℂ .  The vector |𝜑 =  | + |  is a 

quantum superposition acting on the single qubits. 

The vector space which is used in the quantum computation is a finite dimensional vector 

space over complex numbers. Since Hilbert space is an example of such a vector space, 

it can be used in the quantum computation. 

The set of complex numbers is a one-dimensional Hilbert space. The elements of two-

dimensional Hilbert space are ×  column vectors whose components are complex 

numbers. More formally, let , ℂ then . For all , = +
 where , ℂ. Therefore, the set of the matrices { , } is a basis for . 

Let |𝜑  be the superposition acting on the single qubits. Then, |𝜑 = | + | . This 

vector corresponds to a matrix as . In other words,  is the matrix representation 

of |𝜑 . Moreover, the matrix can be written as + ( ) = + . Then, |𝜑 =| + |  and |𝜑 =  + . We obtain that the matrix representations of |  

and |  as   and , respectively. 

Note that if | = ), | = ) ℂ  and ℂ, then  

i) | + | = +++ ), 

ii) | = ). 
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3.2 Some Linear Algebra about the Quantum Vectors 

In quantum systems, Hilbert space is used since it has better algebraic properties. Qubits 

which are units of quantum computers correspond to vectors in the space. Since we 

mention about vectors, they have some algebraic properties. These properties provide 

simplicity in the computation.  

Now, we will explain some linear algebraic properties of the quantum vectors. 

1)  Let , , … , ℂ and | ,  | ,…,  |  be quantum vectors. If the sum  | + | + + | =  implies = = = = , then the set 

of {| , | ,…, | } is called linearly independent. 

2) There may be many spanning sets and the minimal spanning set is a basis. 

Therefore, spanning set is not unique. 

Example 3.5 Let | =  and | = − . Assume that we have |𝜑 = | +| . This superposition state corresponds to the column matrix . Then,  

|𝜑 = = + ( ) = +− + ( −+ )
= + − + ( ) + (− ) 

          = + − + − −  

                            = + + − − = + | + − | . 
This shows that {| , | } and {| , | } are two distinct spanning sets of |𝜑 . 

3) A vector space may have more than one basis. However, the size of each basis 

should be the same. In Example 3.5, {| , | } and {| , | } are two bases for |𝜑 . 

4) Let |  and |  be two vectors. The inner product of |  and |  is denoted by | . The result of an inner product is a complex number. If the result is zero; 

that is, | = , then |  and |  are called orthogonal. The notation | ∗  denotes the complex conjugate of |  and we can find as | ∗ = | . 
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5) The norm of any vector |  is defined as ‖ ‖ = √ | . The result of a norm 

is a real number. A norm satisfies the following properties: 

i) The inner product | =  if and only if | = . 

ii) | + = | + | . 
iii) + | = | + | . 
iv) | + = |. 

Let | = ) and | = 𝜃𝜃𝜃 ) be ket vectors. Note that the dual of the vector is that 

| + = )+ = ∗ , ∗ ,…,  ∗ = |  and | = ∗ , ∗ ,…,  ∗ 𝜃𝜃𝜃 ) =
∑ ∗𝜃= . 

6) If the norm of a vector is 1, then this vector is called a normal vector. If each 

vector of a set is normal and the vectors are pairwise, the set is called an 

orthonormal set. 

Example 3.6 Let |𝜑 = | + | . We know that | =  and | = . Then, the 

inner products are evaluated as follows: | =  = , | =  =, | =  = , | =  = . Hence, {| , | } is an orthonormal set 

since ‖ ‖ = ‖ ‖ =  and | = | = . 

3.3 Matrices and Operators 

In quantum computation, matrices and operators play an important role. Each action 

corresponds to a matrix or operator and it can be represented by a matrix. 

First, we will give definition of an operator. 

Definition 3.7 An operator is a linear transformation from a vector space to the same 

vector space. 

The outer product of |𝜑  and |𝜑  is denoted by |𝜑 𝜑 | and it is an operator. If this 

product is applied on | , then |𝜑 𝜑 | | = |𝜑 𝜑 | = 𝜑 | |𝜑 . 



  

33 

 

Let  be an operator and | , |  be two vectors. If | = | , then  is said to be 

an operator which transforms into ket to ket. If | = |, then  is said to be an 

operator which transforms into bra to bra. 

Definition 3.8 

i) If |x = |x , then  is called identity operator. 

ii) If |x = , then  is called zero operator. 

iii) If |x + |x  can be written as |x + |x , then  is called a 

linear operator. 

3.3.1 Pauli Matrices 

There are four special matrices such that they have fundamental importance in the 

quantum computation. These matrices which act on a single qubit are known as the Pauli 

matrices and they are denoted by , , ,  [27]. The Pauli matrices are defined as follows: = , = − , = − , = . 
 

(3.1) 

Next, we will give the operator forms of the Pauli matrices by using the matrix 

representations. 

First, |  and |  are evaluated as: | = = = | , | = = = | . 

Second, actions of  on |  and |  are evaluated:  | = − = = = | , | = − = − = − =− | . 

Lastly, actions of  and  are evaluated as:  | = − = = | , | = − = − = −| . 

| = = = | , | = = = | . 

 is known as NOT operator since |  is transformed into |  and |  is transformed 

into | . 
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Conversely, we will obtain the matrix representation by using the action of an operator. 

Let  be an operator. Then, it can be written as follow: 

since ∑ | | =  where |  is the basis vectors. 

Example 3.9 Find the matrix representation of the Pauli matrix . We know that | = |  and | = | . By using the formula, = ( | | | || | | | ) = ( | | | || | | | ) = ( |  |  |  |  ) =  

where |  and |  are the basis vectors. 

3.3.2 Hermitian, Unitary and Normal Operators 

Some special type of operators play an important role in the quantum computation. The 

Hermitian adjoint of an operator  is denoted by +  and it is defined as | +| =| | ∗. 

1) ∗ = ∗ +  

2) |𝜑 + = 𝜑| 
3) 𝜑| + = |𝜑  

4) + = + + 

5) |𝜑 + = 𝜑| + 

6) |𝜑 + = 𝜑| + + 

7) + + + = + + + + + 

Definition 3.10 Let  be an operator. 

i) If = +, then  is called a Hermitian operator. Each of the Pauli operators is a 

Hermitian operator. 

ii) If + = = + , then  is called a unitary operator. The Pauli operators are 

unitary operators. 

iii) If + = + , then  is called a normal operator. 

= = (∑| |) ∑| ⟩ ⟨ | = ∑⟨ | | ⟩| ⟨ |,   

 

 

(3.2) 
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iv) If |𝜑 = |𝜑  where ℂ, then  is called an eigenvalue of  and |𝜑  is called 

an eigenvector of  that corresponds to . The characteristic equation of  is | −  | = . 

v) An operator  can be written as ∑ | | where  is an eigenvalue of  and |  is a basis vector. This expression is called a spectral decomposition of . For 

instance, the Pauli operator  can be written as = | | − | |. Here,  and −  are eigenvalues of . 

Now, we will give a formal definition of spectral decomposition. 

Definition 3.11 Let  be a normal operator which acts on a Hilbert space . The vectors |  form an orthonormal basis for  where each |  is an eigenvector of . The operator 

 can be written as =∑ | | where  is an eigenvalue of . This expression is 

called the spectral decomposition. The set of eigenvalues of  is called the spectrum of 

. 

Theorem 3.12 For every finite dimensional normal matrix , there exist a unitary matrix 

 such that = + where  is a diagonal matrix. The diagonal elements of  are 

eigenvalues of  and the columns of  are the eigenvectors of . 

Example 3.13 Consider that Pauli operator  whose action is as follows: | = |  and | = | . The matrix representation of this operator is = . It can be 

diagonalized as follows: 

= ( 
 √ √√ −√ ) 

 − ( 
 √ √√ −√ ) 

 . 
Here, = √ √√ − √  is a unitary matrix and = −  is a diagonal matrix. The 

eigenvalues of  are  and − . The eigenvectors of  corresponding to these 

eigenvalues are 
√√  and 

√− √ , respectively. In dirac notation, these matrices are 

denoted by = | | + | |, 



  

36 

 

= √ | | + √ | | + √ | | − √ | |, 
= | | − | |. 

Definition 3.14 Let  be an operator. The trace of  is defined by = ∑ | |  

where |  are basis vectors. 

Example 3.15 Let = | | − | | + | | + | | and let {| ,| } be the 

set of basis vectors. From Definition 3.14, = ∑ | | = | | + | | . 
= | | |− | |+ | |+ | | | +| | |− | |+ | |+ | | | = | | − | | +| | + | | + | | − | | + | | +| | = + . 

Remark 3.16 Let  and  be two operators and let ℂ. Then, =  and + = + . In other words, trace is a linear function. 

3.3.3 Projection Operators 

If an operator  can be written as = |𝜑 𝜑|, then it is called a projection operator. A 

projection operator satisfies the following properties: 

i) If  is a projection operator, then it is Hermitian; that is, + = . 

ii) A projection operator  satisfies = . 

iii) Projection operators commute. More formally, if  and  are two projection 

operators, then = . 
A spectral decomposition can be rewritten by using the projection operators. Let  be any 

operator and let |  be basis vectors. Then, ∑ | | where  are eigenvalues of . 

Hence, = ∑  since = | |  projects onto the subspace that is defined by 

eigenvalue . 

Example 3.17 We will describe the projection operators with respect to the computational 

basis. 

The set {| , | } is the computational basis. The projection operators are defined by 
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= | | = = , 
= | | = = . 

3.3.4 Hadamard Matrix 

[27] There is another matrix that is important in quantum mechanics besides from the 

Pauli matrices. This matrix which acts on a single qubit is called the Hadamard matrix 

and it is defined by 

= √ − . 
 

(3.3) 

If the Hadamard matrix acts on the vector |  and | , then it gives 
| +|√  and 

| −|√ , 

respectively. More formally, the action of the Hadamard matrix is  

| = | + |√ , | = | − |√ . 
The Hadamard matrix has a property that if it is applied twice on a quantum state, then it 

returns to the initial state. To illustrate this, we assume |𝜑 =  | + | . Then, 

|𝜑 = | + | = | + | = | + |√ + | − |√  

                                                                 = +√ | + −√ |  

If we apply the Hadamard matrix to last equation one more time, then 

( +√ | + −√ | ) = +√ | + −√ |  

                                                                            = +√ | + |√ + −√ | − |√  

                                      = | + | = |𝜑 .  
Therefore, we obtain the initial quantum state. 
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3.3.5 CNOT Gate 

[27] CNOT gate acts on two qubits, while some operators like Pauli operators and the 

Hadamard gate act on a single qubit. Here, the first qubit is a check qubit and the second 

qubit is a target qubit. If the first qubit is 0, then the second qubit is not changed. But, if 

the first qubit is 1, then the Pauli matrix  is applied on the second qubit. In other words, |  and |  are not changed. However, |  and |  are transformed into |  and | , respectively. The matrix representation of CNOT gate is defined by 

3.4 Tensor Product 

We use qubits when we make some computations in the quantum theory. However, in 

some cases, we need more complex structures which are constructed with more than one 

qubit. Tensor product is used to construct a structure that is a composite of the qubits. 

Hence, a Hilbert space that is a composite of independent Hilbert spaces can be 

constructed. Assume that  and  are two Hilbert spaces of dimensions  and , 

respectively. A larger Hilbert space can be constructed by composing  and . This 

construction is obtained by tensor product and it is denoted by ⊗. 

Let =  and = ( ). Then, 

⊗ = ( ) =                                                 ). 
Tensor product of |𝜑  and |𝜑  can be denoted by |𝜑 ⊗ |𝜑 , |𝜑 |𝜑  or |𝜑 𝜑 . 

Let |𝜑 , |𝜑  and |𝜑  be three quantum states and let ℂ. Then, tensor product has 

the following properties: 

i) |𝜑 ⊗ |𝜑 + |𝜑 = |𝜑 ⊗ |𝜑 + |𝜑 ⊗ |𝜑  

       =                                               . 
 

 

(3.4) 
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ii) |𝜑 + |𝜑 ⊗ |𝜑 = |𝜑 ⊗ |𝜑 + |𝜑 ⊗ |𝜑  

iii) |𝜑 ⊗ |𝜑 = |𝜑 ⊗ |𝜑  

iv) If  and  are two operators, then ⊗  |𝜑 ⊗ |𝜑 = |𝜑 ⊗|𝜑 . 

Example 3.18 Let =            −  and = . Then, 

⊗ =     −       −    ). 
Note that if we take the standard orthonormal basis {| , | }, then 

• | ⊗ | = ⊗ = ),  

• | ⊗ | = ⊗ = ), 

• | ⊗ | = ⊗ = ),  

• | ⊗ | = ⊗ = ). 

Remark 3.19 The Pauli operators act on a single qubit. However, they can act on more 

qubits by combining them with tensor product. 

Example 3.20 Let  be an operator and |  be a quantum state. Actually,  is 

defined as the tensor product of ,  and ; that is, = ⊗ ⊗ . The state |  

can be written as | ⊗ | ⊗ . Then, | = ⊗ ⊗ | ⊗ | ⊗ . 

By using the properties of tensor product, we obtain | ⊗ | ⊗ | = | ⊗−| ⊗ | = − | ⊗ | ⊗ | . This result can also be written as − | . 
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3.5 Measurement 

A quantum system is affected via measurement, whereas classical systems are not 

affected by measurement. Measurement is a crucial part of quantum mechanics. The state 

of the system cannot be known, before a measurement is made in a quantum system. 

Hence, measurement is necessary to determine the system which is uncertain. For 

example, let’s consider a superposition | + | . Here,  and  denote the square 

root of the possibilities of |  and | , respectively. When a measurement is made, only |  and |  will be obtained. However, the possibilities  and  may change in the 

superposition and so this leads to a deformation in the quantum state. In other words, 

measurement leads a damage of the initial state. 

3.6 Entanglement 

In quantum mechanics, systems can become entangled. Systems  and  may affect 

each other. Even if  and  are separated, the properties of them can become 

correlated. This idea leads to a new approach which is called quantum entanglement. 

The idea of entanglement dates to 1935. Einstein, Podolsky and Rosen published a paper 

which is titled as “Can the quantum mechanical description of reality be considered 

complete?” [36]. After this paper was published, a new term is introduced to quantum 

mechanics.  

If we have two Hilbert spaces  and , then a composite system of them can be written 

as = ⊗ . In many cases, these two spaces interact with each other and so it is not 

possible to separate into two independent components. Thus, they cannot be thought as 

two independent spaces.  

Let |   and |  be basis for  and , respectively. Then, | ⊗ | = | | =|  is a basis for composite system . 

The quantum state of each particle cannot be described independently of the others, even 

when the particles are separated. Actually, a state must be described for the system as a 

whole.  

Definition 3.21 The states which are dependent to each other are called entangled 

systems. 
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There are four special entangled pairs. They are known as Bell states [37] which are 

defined by 

1) | = | +|√ ,  

2) | = | +|√ , 

3) | = | −|√ , 

4) | = | −|√ . 

If two systems are entangled, then the composite system of them can only be described 

as related to the other system. Otherwise, they can be written as a product of each system 

and the systems are called separable. There are some methods to determine whether the 

systems are entangled. 

3.6.1 Method 1 

The following method can be applied to vectors in ℂ . Let |𝜑 = ). This vector is 

not entangled if and only if = . 

Example 3.22 

i) | = | +|√ = √ [ ) + )] = √ ) . Here, = = √  and =
= . Then, ≠ . Hence, |  is entangled. 

ii) | = | +|√ = √ [ ) + )] = √ ) . Here, = =  and =
= √ . Then, ≠ . Hence, |  is entangled. 

iii) | = | −|√ = √ [ ) − )] = √
         − ). Here, = √ , = − √  and 

= = . Then, ≠ . Hence, |  is entangled. 



  

42 

 

iv) | = | −|√ = √ [ ) − )] = √
      −   ) . Here, = =  and =

√ , = − √ . Then, ≠ . Hence, |  is entangled. 

Therefore, the Bell states are entangled. 

Example 3.23 We will determine whether ⊗ |  is entangled. Firstly, 

[√ − ⊗ ] ) = √                                 −     −    ) ) = √       −  ). 
So, = , = , = −  and = . Then, = . Thus, ⊗ |  is not 

entangled. It is separable. This separation can be written as | − | ⊗ √ | . 

Note that we can also mention about entangled matrix similar to a quantum state. 

Example 3.24 Let = − −− ) . This matrix can be written as tensor 

product of two Pauli matrices: ⊗ = ⊗    − . So,  is a separable 

matrix. 

Note that the matrix representation of CNOT cannot be separated as tensor product of any 

two matrices. Hence, CNOT is an example of entangled matrix.  

3.6.2 Method 2 (Schmidt Decomposition) 

Assume that  is a composite system which can be written as ⊗ . Let  |𝜑 ⊗
. Then, |𝜑  can be expressed as follows: 

where |  and |  are orthonormal bases for  and , respectively. Here,  and ∑ = . The number  is called Schmidt coefficients and Equation 3.5 is said to be 

Schmidt decomposition. The number  is evaluated as |𝜑 𝜑| . The eigenvalues of 

this matrix are . The number of nonzero eigenvalues  are the Schmidt numbers [38]. 

|𝜑 = ∑ | |  
(3.5) 
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These numbers are denoted by Sch. Some properties of the Schmidt numbers are the 

following: 

i) A state is entangled if the Schmidt number is greater than 1. 

ii) A state is separable if the Schmidt number is 1. 

 

Example 3.25 Consider |𝜑 = √ | + | + | + | . Then, we obtain  

|𝜑 𝜑| = | |+| | + | | + | | + | | + | | +| | + | | + | | + | | + | | + | | + | | +| | + | | + | | . Also,            |𝜑 𝜑| = |𝜑 𝜑| + |𝜑 𝜑|   = | | + | | + | | + | | + | | + | | + | | + | | 
= | | + | | + | | + | | = | | + | | + | | + | | 

                      = + + + = . 
The eigenvalues of this matrix are =  and = . There is one nonzero eigenvalue. 

Hence, this state is separable since ℎ = . This separation is  √ | + | ⊗ | +| . 
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   CHAPTER 4 

                   QUANTUM ERROR CORRECTING CODES 

In this chapter, some types of quantum error correcting codes are analyzed and illustrated 

with examples. Generally, we take the advantage of reference [29]. 

4.1 Quantum Error Correcting Codes 

Error correction is necessary during a data transmission. When a message is sent, some 

errors may occur in the communication channel. Some codes are used to correct these 

errors. 

In a quantum system, error correction procedure is different from  classical one. A distinct 

approach is needed for error correction since quantum systems are based on quantum 

mechanics. Hence, a new method based on quantum mechanics should be constructed. 

There are some differences between quantum and classical error corrections. These are 

described below. 

A quantum state cannot be dublicated. So, repetition codes do not exist as in the classical 

systems. 

While there is only bit flip errors in the classical systems, addition to this error there is 

also phase flip errors in the quantum systems. In other words, error types are more 

complicated in the quantum systems. Thus, error detection and correction procedures are 

more complicated. 

We need to make a measurement to determine the quantum state in a quantum system. 

However, measurements destroy a quantum state. We cannot determine the coefficients 

of a quantum superposition. Therefore, a quantum state cannot be exactly described.  
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4.2 Error Types in Quantum States 

There are three types of errors. First, we will describe bit flip error. 

The vectors |  and |  transform into |  and | , respectively. This error is similar to 

the classical bit flip error. If we have a quantum state | + | , then it is transformed 

into | + | .  In quantum systems, every error can be represented by an operator. So, 

Pauli  operator leads to a bit flip error. In other words, a quantum bit flip error can be 

represented by an  operator. 

Second, we will describe phase flip error. 

The vectors |  and |  transform into |  and −| , respectively. This type of error is 

different from the classical systems. If we have a quantum state | + | , then it is 

transformed into | − | .   Pauli  operator leads to a phase flip error. 

Lastly, we will describe mixed bit and phase flip errors. 

The vectors |  and |  transform into |  and −| , respectively. If we have a quantum 

state | + | , then it is transformed into | − | .  Pauli  operator leads to this 

error. 

Basically, these errors that act on single qubit are detected by helping projection 

operators. Suppose that we have a quantum state | + | . Firstly, it is transformed 

into 3-qubit flip code in order to detect any error acting single qubit. 3-qubit code send 

one qubit three times. Hence, this code can be called repetition code. But, it should not 

interpret like classical repetition code. Because, arbitrary quantum state cannot be copied. 

3-qubit flip code is constructed by applying CNOT operator: 

1 original qubit and 2 ancilla qubits are used to encoding. Firstly, | + |  is 

transformed into|𝜑 = | + | . Secondly, CNOT is applied on the first and 

second qubit: | + | = | + | . 
Lastly, CNOT is applied on the first and third qubit: | + | = | + | . 
Therefore, |̅ + |̅  is constructed where |̅ = |  and |̅ = | . 

Some projection operators are used to error detection procedure: 
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= | | + | | = | | + | | = | | + | | = | | + | | 
If error occurred on th qubit and the state is transformed into |𝜑 , then 𝜑 │ │𝜑  =

. 

Example 4.1 Assume that we have | + | . We need to determine place of the 

error.  𝜑 | |𝜑  = , 𝜑 | |𝜑  = , 𝜑 | |𝜑  = , 𝜑 │ │𝜑  =  

If we apply these operators on the state with error, then we obtain , ,  and , 

respectively. The vector [ , , , ] is the syndrome vector of the state and it shows that an 

error occurred on the second qubit. 

Actually,  corresponds to  matrix. For instance,  is represented as: 

=
( 
   
 

) 
   
        +

( 
   
 

) 
   
         

                                       
=

( 
   
 

) 
   
 +

( 
   
 

) 
   
 

 

                                       =
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Next, we will give a theorem that is the main difference between quantum and classical 

error correction.  

Theorem 4.2 [27] Let |𝜑 = | + |  be a quantum state where , ℂ. Then, |𝜑  

can be cloned only when = . More formally, there is no operator that clones an 

arbitrary quantum state. 

Proof. Let |𝜑 = | + | . The copied state as follow:  |𝜑 |𝜑 = | + | | + |= | + | + | + | . 
It is possible only when = . Therefore, every quantum state cannot be cloned without 

this special case. 

Alternatively, let |𝜑 = | + |  and |𝜑 = | + |  be two quantum 

states. Assume that |𝜑  can be cloned and let  be an operator which clones any 

quantum state. We can apply  to the below state: |𝜑 ⊗ |𝜑 = |𝜑 ⊗ |𝜑 = |𝜑 ⊗ |𝜑 . 
Suppose that |𝜑 = | . Then, | ⊗ |𝜑 = | ⊗ | = |𝜑 ⊗ |𝜑 =|𝜑 ⊗ |𝜑 . Hence, =  and then =  or = . Namely, the quantum state 

can be copied when  =  or = . But, every arbitrary quantum state cannot be copied. 

Remark 4.3 Action of the CNOT operator is that | , | , |  and |  are 

transformed into | , | , |  and | , respectively. We can express this action as | ⊗|  is transformed into | ⊗| ⊕  where ⊕  denotes addition modulo 2. If =
, then | ⊗ | = |  is transformed into | ⊗ | ⊕ = | ⊗ | = | . 

Therefore, a quantum state can be cloned for some special cases. However, an arbitrary 

quantum state cannot be cloned. 

4.3 Quantum Codes 

Quantum codes are defined over Hilbert spaces. A quantum code of length  is a subspace 

of a −dimensional Hilbert space. Hence, a quantum code of length  that encodes  

qubits to  qubits is a  −dimensional Hilbert space and it is denoted by , . An 

element of this subspace is called a codeword.  
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Example 4.4 The set {|𝜑 = | + |  | | | + | | = } is a −dimensional 

subspace of  −dimensional Hilbert space. Because, the space of −qubit quantum 

states is a −dimensional Hilbert space. Here,  qubit is encoded to  qubits. Thus, =
 and = . Therefore, this set is a , −quantum code. The states |  and |  

are the codewords of the quantum code. 

Theorem 4.5 [29] Let  be a code and let = { , , , …} be a set of errors which act 

on this code. Then,  is a set of correctable errors if and only if for all ≠  it 

implies that ≠  for all , . 

Proof. For necessary condition, suppose that = =  for some  ≠  and for 

some , . If  or  error occurs, then we have same codeword . So, we cannot 

determine whether the error is  or  has occured. Therefore, original codeword cannot 

be obtained. 

Conversely, for sufficient condition, assume that if any error occurs, then the vector  is 

obtained. Then, there exist only one  such that = . Hence,  is the original 

codeword. We can decode  as . 

Proposition 4.6 [29] If  is invertible, then the above correctability condition is 

equivalent to the detectability condition. 

Proof: Let  be a code, let = { , , … } be a set of correctable errors and let  and 

 be two invertible error operators. Assume that −  is not detectable. Then, there exist ≠  such that = − . This implies that =  since  and  are 

invertible. Therefore, we conclude that the set  is not correctable by the previous 

theorem. 

Example 4.7 Let = { , , , } be a code. Assume that we have 4 error 

operators , ,  and , and they act as follows: 

i.  transforms 000 into 100 and fixes the others. 

ii.  transforms 111 into 110 and fixes the others. 

iii.  transforms 010 into 011 and fixes the others. 

iv.  transforms 101 into 001 and fixes the others. 

Here,  are invertible. Thus, the detectability and correctability for this code are the 

same. 
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The first quantum error correcting code which correct any arbitrary error on a single qubit 

is Shor code. The code encodes  qubit to  qubits as  | → | 𝐿  and | → | 𝐿  where 

| 𝐿 = | + | ⊗ | + | ⊗ | + |√ , 
| 𝐿 = | − | ⊗ | − | ⊗ | − |√ . 

4.3.1 The CSS Code 

In 1996, a useful quantum code is invented by Robert Calderbank, Peter Shor and Andrew 

Steane. This code leads to a relation between classical linear codes and quantum codes. 

Thus, the problem of finding a quantum code transforms into finding a classical linear 

code containing its dual. This type of quantum codes are known as CSS codes [9]. 

Definition 4.8 [9] Let  be an [ , ]-linear code and let  be an [ , ]-linear code 

such that ⊆ . Codewords of the quantum code are defined by 

| + = √| | ∑ | ⊕  

where ⊕  is addition modulo 2 and . 

This code which is constructed by using cosets of a linear code is called an , −  

CSS code and shortly it is denoted by , . If the minimum distances of  and ⊥ are  and , respectively, then the minimum distance of ,  is { , }. If the dual of  is a subset of , then  can be chosen as the dual of . Hence, = ( ⊥ ⊥ = ⊥ = . Therefore, it needs to find a linear code of the 

minimum distance  which contains its dual in order to obtain an n, −, −quantum code. 

The parameters of ,  depend on the parameters of  and . If − , 
then | + = | +  where , . Also, if   and  belong to distinct 

cosets of , then there do not exist ,  such that + = +  and so | +  and | +  are orthonormal. The number of distinct cosets of  in  is | || | = 𝑘𝑘 = − . It means that the dimension of ,  is − . 

Example 4.9 Let = { , , , , , , 



  

50 

 

 , , , , , , , , ,  }. Then,  is a [7,4,3]-linear code. The dual of  can be evaluated and then ⊥ ={ , , , , , , , } . 

The dual ⊥is a [7,3,4]-linear code. Here, ⊥ ⊂ . We can choose = ⊥. Now, we 

can construct a quantum code ( , . Since =  and = , − =  and { ( , ⊥ } =  { , } = .  Hence, ,  is a , , −quantum code. 

Codewords can be written by using cosets. However, some cosets can be same. So, 

codewords are the different cosets: | + = √ | + | + | + | +| + | + | + | . | + = √ | + | + | + | +| + | + | + | . 

4.3.1.1 Decoding Procedure in CSS codes 

Error correcting ability of ,  bases on error correcting abilities of  and ⊥. If 

a bit flip error occurs, then the code  is used. If a phase flip error occurs, then the dual 

of  is used to correct errors in a quantum code. 

Let  be an error operator. Assume that  and ε  are errors corresponding to bit flip and 

phase flip error, respectively. Action of the error  on a quantum state |  is defined by  | = − ,𝜀 | +  

where ,  denotes the standard inner product. 

Example 4.10 Let =  and | = | . Here, =  and = . Then, | = | = −| . Moreover, action of  can be evaluated as: | = − , | ⊕ = − | = −| . 
Error  is a vector corresponding to bit flip error. So, if  operator acts on some 

coordinates of a vector, then these coordinates of the vector are 1, otherwise 0. 

Error  is a vector corresponding to phase flip error. So, if  operator acts on some 

coordinates of a vector, then these coordinates of the vector are 1, otherwise 0.  
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Similar to the classical encoding procedure, ancillary qubits are used in the quantum 

coding procedure. 

Action of the Hadamard gate on |  is defined by  

√ ∑ − , | .𝐹𝑛  

Example 4.11 Let | = | . If the Hadamard gate acts on each qubit, then  

acts on | . Here, = . Then, 

√ ∑ − , |𝐹4  

= − , | + − , | + − , | +− , | + − , | + − , | +− , | + − , | + − , | +− , | + − , | + − , | +− , | + − , | + − , | +− , | . = | − | + | + | − | + | − | + | −| + | − | + | − | − | − | + | . 

Next, we will give error correction procedure in the CSS code. 

In order to detect and correct quantum errors, we can use the classical error correcting 

properties of  and 
⊥

. An  bit vector  describes bit flip errors such that there are 1s 

where bit flips occurred and there are 0s elsewhere. An  bit vector  describes phase 

flip errors such that there are 1s where phase flips occurred and there are 0s elsewhere. 

Let | +  be the initial state. If some errors occurred, then the corrupted state is: 

√| | ∑ − + 𝜀 | + + . 
To detect the location of bit flips, we introduce ancilla qubits. The state | + + |  

to | + + | + + = | + + |  where  is parity-check matrix 

of  since +  is annihilated by matrix . Then, we obtain  
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√| | ∑ − + 𝜀 | + + | . 
The detection procedure is completed by measuring ancilla qubits, then 

√| | ∑ − + 𝜀 | + + . 
Since  can correct up to  errors, if we know the error syndrome , we can conclude 

the error . So, error correction abilities of linear codes  and  are related to the 

quantum code which are obtained by these linear codes. 

4.3.2 Stabilizer Codes 

Stabilizer codes are invented by Daniel Gottesman in 1997 [14]. While the set of Pauli 

matrices , , ,  is not a group, the set can be extended to a group as {∓ , ∓ ,∓ ,∓ , ∓ ,∓ ,∓ ,∓ }. Each element of this group acts on a single qubit. 

However, a group which acts on more than one qubit can be constructed by using tensor 

product. More formally, while = {∓ ,∓ , ∓ ,∓ ,∓ , ∓ ,∓ ,∓ }  acts on a 

single qubit, = ⊗ ⊗ …  acts on  qubits. Group theory is used in encoding and 

decoding procedure of stabilizer codes. A map 𝜃 from ×  to  is defined by  𝜃: × →  , |𝜑 → |𝜑  

Stabilizers of a quantum state of length  are the elements of  which fix the quantum 

state. 

Example 4.12 Let |𝜑 = √ | + | . The operators which fix this quantum state are  

and . Because,  

|𝜑 = (√ | + | ) = √ | + | = √ | + |  

 

|𝜑 = (√ | + | ) = √ | + | = √ | + | . 
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𝒮 = { , } is an Abelian subgroup of  which is generated by . The vector |𝜑  is a 

quantum state which is fixed by 𝒮. 

Example 4.13 Let |𝜑 = √ | − | . The operators , , −  and −  fix this 

quantum state. Because, 

|𝜑 = (√ | − | ) = √ | − | = √ | − | , 
|𝜑 = (√ | − | ) = √ | − | = √ | − | , 

− |𝜑 = − (√ | − | ) = √ − | + |
= √ −| + | , 

− |𝜑 = − (√ | − | ) = √ − | + | = √ −| + | . 
𝒮 = { , , − ,− } is an abelian subgroup of . The vector |𝜑  is a quantum state 

which is fixed by 𝒮. 

Let 𝒮 be a subgroup of  and 𝒮 be a subspace of quantum states of length  which is 

fixed by 𝒮. The set 𝒮 is called the stabilizer of 𝒮.  

Note that 𝒮 is the intersection of spaces of quantum states which is fixed by each element 

of 𝒮. 

Example 4.14 Let 𝒮 = { , , , }. This set is a subgroup of . 

•  fixes all elements of . 

•  fixes the set of | , | , |  and | . 

•  fixes the set of | , | , |  and | . 

•  fixes the set of | , | , |  and | . 

Then, the space that is fixed by 𝒮 is the intersection of the above sets. Hence, 𝒮 fixes |  and | . The space 𝒮 = { | + | | , ℂ and | | + | | = } is 

fixed by 𝒮. This group is generated by  and . Because, = .  
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We can study the properties of a group by generators of the group. The generators of 𝒮 in 

Example 4.14 are  and . Hence, the intersection of the set of quantum states which 

is fixed only by the generators is enough to construct a stabilizer code. 

Proposition 4.15 [14] Let 𝒮 be a subgroup of  and 𝒮 be a space of quantum states 

which is fixed by 𝒮. We need the following two conditions to have 𝒮 ≠ ∅: 

1) −  is not an element of 𝒮. 

2) 𝒮 is an abelian group. 

Proof.  

1) Assume that −  is an element of 𝒮. Let |𝜑 𝒮 . Then, − |𝜑 = − |𝜑 = − |𝜑 = −|𝜑 . 
Moreover, |𝜑  is fixed by −  since −  is an element of 𝒮. Hence, − |𝜑 .= |𝜑 . 
By the above equations, |𝜑  must be zero. This means that 𝒮 = ∅. 

2) Let  and  be two elements of 𝒮. Assume that 𝒮 is a nonabelian group. Then, 

 and  anti-commute. That is, = − . Let |𝜑  be an element of 𝒮. The 

operator  is also element of 𝒮 since 𝒮 is a group. Then, |𝜑 = − |𝜑 = − |𝜑 = − |𝜑 = − |𝜑 = −|𝜑  . 
However, |𝜑  must be fixed by  since  is an element of 𝒮. It is possible only 

when |𝜑 = . Hence, 𝒮 = ∅. 

Lemma 4.16 [14] Let 𝒮 be a subgroup of  and  and  be two elements of 𝒮. The 

elements  and  commute if and only if the number of different positions without 

identity operator between  and  is even. 

Proof. Let = …  and = … . Assume that the number of different 

positions between  and  is even. Then, 

= … … )= ⊗ ⊗ …⊗  

If one of  and  is identity or they are same, then they commute. Otherwise, they 

anti-commute; that is = − , since elements of 𝒮 either commute or anti-

commute. Finally, we have a product of even number of − s. We conclude =
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− … − )= ⊗ ⊗ …⊗ = … … = . 

Namely,  and  commute. 

Similarly, converse is clear.  

Example 4.17 Let =  and = . Then, = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗  = ⊗ ⊗ ⊗ ⊗ ⊗  = − ⊗ ⊗ − ⊗ ⊗ ⊗  = − − ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗  = = . 
In fact, the number of different positions in  and  is two. So,  and  commute by 

Lemma 4.17 

Remark 4.18 Let 𝒮 be a subgroup of . Each element  of 𝒮 has eigenvalues +  or −  

since = . 
Definition 4.19 Let  be a map from  to . An element of  is transformed into a 

vector by using the map. This map is defined as  

 : →  →  

i. If  acts on the  th qubit as , then the th entry of the vector  is . 

ii. If  acts on the ith qubit as , then the + th entry of the vector  is . 

iii. If  acts on the ith qubit as , then both the th and the + th entries of 

the vector  is . 

iv. If  acts on the ith qubit as , then the th entry of the vector  is . 

Example 4.20 Let =  for = . Then,  =     |     . 
The map  is a homomorphism and Ker = . The map  leads to a relation between 

subspaces of  and stabilizer groups. The map  can be used to check the commutative 

property of two elements of . 
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We know that two elements  and  of Pauli group commute if and only if they have 

an even number of positions which is different from each other. This condition is 

equivalent to the following expression: 

The elements  and  commute if and only if  ≡    where 

A= . 

Example 4.21 Let =  and =  be elements of . Then, 

=   |    , =   |     and = (  
 

)  
 

. Also, 

 

     =      (  
 

)  
 

(  
 

)  
 

 

=      (  
 

)  
 = + = ≡   . 

Then,  and  commute. 

The generators of stabilizer group 𝒮 can be described by a check matrix. A check matrix 

of a stabilizer group is defined as each row of the matrix corresponds to the images of a 

generator of 𝒮 under the map . 

Definition 4.22 Suppose 𝒮 is generated by , , … , . The check matrix of 𝒮 is denoted 

by 𝒮  and it is defined as: 𝒮 →  

for all , { , , … , }  where 𝒮 × . Here,  denotes the th row of (𝒮). 

Example 4.23 𝒮= { , , , }. The generators of 𝒮 are  and . Then, 𝒮 → =      , 𝒮 → =      . 
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Thus, (𝒮)=( 𝒮𝒮 ) =  is the check or control matrix of 𝒮. 

Example 4.24 Let = , = , = , = , =  and =  be generators of a stabilizer group. It is enough to 

check the commutativity of generators instead of the full group. So, 

𝒮 = (  
 

)  
 , 

𝒮 𝒮 ≡    

where =

( 
   
   
   
 

) 
   
   
   
 

. 

Hence, these six generators commute and then the stabilizer group is also commutative. 

Furthermore, −  is not an element of the stabilizer group. Thus, from Proposition 4.16 a 

quantum code can be constructed by using this stabilizer group. This code is known as −qubit Steane code with parameters , . Here, =  and = . The number of 

generators is . This shows that − = . It can be generalized as Definition 4.25:  

Definition 4.25 Let , ,…,  be commutative and independent generators of a 

stabilizer group 𝒮. Namely, 𝒮 = , , … ,  and − 𝒮. The code space 𝒮 which is 

fixed by 𝒮 is called , − −stabilizer code and it is denoted by 𝒮 . 

Example 4.26 The generators = , = , = , = , = , = , =  and =  generate , −Shor code. 

Here, =  and = . Hence, = .  
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4.3.2.1 Decoding Procedure in Stabilizer Codes 

Let 𝒮  be a stabilizer code which is fixed by 𝒮. For all |𝜑 𝒮  and for all 𝒮, |𝜑 = |𝜑 . This means that a codeword of 𝒮  is an eigenvector of each element of 𝒮 

corresponding to the eigenvalue 1. 

Let  be an element which does not commute with 𝒮. Then, for 𝒮, = −  since 

elements of  commute or anti-commute. Then, |𝜑 = |𝜑 = − |𝜑 = − |𝜑 = − |𝜑 = − |𝜑 . 
That is, |𝜑  is an eigenvector of  which has eigenvalue − . A vector with +  

eigenvalue is transformed into a vector with −  eigenvalue. Errors can be detected by 

using this transformation. 

Example 4.27 Let 𝒮 = { | + | | , ℂ and | | + | | = } . Then, 𝒮 = { , , , }. It is a 3-qubit flip code. Suppose that error operator  acts 

on the first qubit. Namely,  is an error operator. Then, ( | + | =| + | . Now, action of each element of 𝒮 on the state with error is evaluated: | + | = − | + | , | + | = + | + | , | + | = − | + | . 
The operators  and  change eigenvalues to − . If  leads to this change, then 

 also change eigenvalues to − . If  leads to a change, then  also change 

eigenvalues to − . Hence,  leads to this change of eigenvalue. This means that an error 

occurs in the first qubit. This error can be corrected by applying operator  to the first 

qubit. Namely,  is applied on quantum state with error. 

So,  | + | = | + | . It is initial quantum state. That is, error 

is corrected. 
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Error detection can be also made by using a syndrome table: 

Table 4. 1 Syndrome table of Example 4.26 

    

Error =  − + − 

Error =  − − + 

Error =  + − − 

 

After the syndrome table is constructed, each element of the stabilizer group is applied to 

the quantum state with an error and then eigenvalues determine the error by using the 

syndrome table. 
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Table 4. 2 Syndrome table of Steane code 

  

       

 + + + + + + 

 + + + − − − 

 + + + − − + 

 + + + − + − 

 + + + − + + 

 + + + + − − 

 + + + + − + 

 + + + + + − 

 − − − + + + 

 − − − + + + 

 − + − + + + 

 − + + + + + 

 + − − + + + 

 + − + + + + 

 + + − + + + 

 − − − − − − 

 − − − − − + 

 − + − − + − 

 − + + − + + 

 + − − + − − 

 + − + + − + 

 + + − + + − 
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Table 4.2 shows the transformation of eigenvalues when errors of weight 1 occur. 

Example 4.28 Let 𝒮= , , , , , . The 

code which is fixed by 𝒮 is known as Steane code and the codeword of the code space 𝒮  as: 

√ | + | + | + | | + | +| + | + √ | + | + | +| + | + | + | + | . 

Assume that an error occurs on the codeword and we have a quantum state as: 

√ | + | + | + | + | +| + | + | + √ | + | +| + | + | + | + | + | . 

When we observe an action of stabilizers on the codeword with error, we obtain 

eigenvalues + ,+ , + ,− ,+  and − , respectively. These eigenvalues correspond to 

error  by using Syndrome Table 5.2. If we again apply  to the codeword 

with error, we obtain the original codeword. So, 

√ | + | + | + | + | +| + | + | + √ | + | +| + | + | + | + | + | . 

           = √ | + | + | + | | +| + | + | + √ | + | +| + | + | + | + | + | . 

Steane code corrects all errors of weight 1. However, some of errors of weight 2 cannot 

be corrected by this code. 

Errors are divided into three classes in stabilizer codes: 

1) The errors which belong to 𝒮. 

2) The errors which do not commute with 𝒮. 
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3) The errors which commute with 𝒮 but they do not belong to 𝒮. 

Code space 𝒮  cannot detect the errors in case .  

• The centralizer of 𝒮 in  is defined by 𝒮 = { | = , for all 𝒮}. 
•  The normalizer of 𝒮 in  is defined by 𝒮 = { | 𝒮 = 𝒮 , for all 𝒮}. 

We have already known that 𝒮 ⊆ 𝒮 ⊆ 𝒮 . 

For any  and 𝒮, + = ± + = ± = ± . 
If − 𝒮, then − = − 𝒮. So, this contradicts with − 𝒮. Then, + =  

implies = . Therefore, 𝒮 . So, 𝒮 ⊆ 𝒮 . Therefore 𝒮 = 𝒮  in a 

stabilizer group 𝒮. 

The error which commute with 𝒮 but do not belong to 𝒮 is the elements of 𝒮 − 𝒮. 

Hence, the errors in 𝒮 − 𝒮 cannot be detected. 

Example 4.29 Let𝒮 = { , , , }  and 𝒮 = { | + | | ,ℂ and | | + | | = }. Suppose that the error operator is . 

i.  commutes with . 

ii.  commutes with . 

iii.  commutes with . 

Hence,  commutes with 𝒮 and it does not belong to 𝒮. Thus, 𝒮 −𝒮. So, it cannot be detected. 

Actually, the action of  is as follows: | + | = | + |  

The error operator does not lead to a change of the eigenvalue. 

Definition 4.30 Let  be an operator which belongs to . The number of nonidentity 

positions is called the weight of  and it is denoted by . More formally, = { | ≠ , } 
where = … . 

Example 4.31 For A= , = . Also, =   
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Definition 4.32 The minimum weight of the errors in  which is in 𝒮 − 𝒮 is called 

the minimum distance of stabilizer code 𝒮  and it is denoted by . More formally, = { | 𝒮 − 𝒮, }. 
Example 4.33 Let 𝒮 = { , , , } then 𝒮 = { | + | | ,ℂ and | | + | | = }. Here, = . The group 𝒮 can be generated by  and . 

So, there are two generators. Then,  = .Therefore, = − = − = . The 

operator  commutes 𝒮 and it does not belong to 𝒮. So,  𝒮 − 𝒮. The operator 

 is equivalent to . The weight of  is . Hence, the minimum weight of the 

elements in 𝒮 − 𝒮 is . Then, = . Thus, 𝒮  is a , , −stabilizer code. 

Definition 4.34 Let 𝒮  be a commutative group. Assume that 𝒮 is generated by  

independent elements and −  does not belong to 𝒮. Suppose that the minimum weight of 

the operators in 𝒮 − 𝒮 is . Then, 𝒮  is called an , − , −stabilizer code. 

Example 4.35 Let 𝒮 = , , , . The codewords of 𝒮  which 

is constructed by stabilizer group 𝒮 are defined as: |̂⟩ = | + | + | + | + | − | − |− | − | − | − | − | − |− | − | + | , |̂⟩ = | + | + | + | + | − | − |− | − | − | − | − | − |− | − | + | . 
Here, the number of generators is  and the stabilizer group 𝒮 is a subgroup of . Hence, =  and − = .  Moreover, though there is no element of 𝒮 − 𝒮 such that its 

weight is smaller than ,  is an element of 𝒮 − 𝒮. So, = . Therefore, this 

code is a , , −code. 

Example 4.36 Let 𝒮 be a stabilizer group which is generated by the below generators: ========
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Since =  and = , − = . We cannot find an element of 𝒮 − 𝒮 with weight 

1 or 2. However,  𝒮 − 𝒮 . So, = . Therefore, 𝒮  is a , , −code and it is known as Shor code. 

4.3.3 Entanglement Assisted Quantum Error Correcting Codes (EAQECC) 

There are some methods used to construct quantum codes from classical codes. For 

instance, we can obtain quantum codes from two linear codes by using cosets. This is 

called a CSS code. However, the linear codes need to have some additional properties for 

this method. 

By another method, the stabilizer codes are obtained. A stabilizer code is generated by 

using a stabilizer group. A code fixed by a stabilizer group are called a stabilizer code. 

But this stabilizer group must be commutative to generate a stabilizer code. 

If we do not have a linear code which contains its dual or if the stabilizer group is not 

commutative, then we can obtain any quantum error correcting code by using another 

method [18]. 

Let 𝒮 be a group of noncommutative operators which is generated by four operators: ====  

i.  does not commute with ,  and . 

ii.  commutes with  but not . 

iii.  and  do not commute. 

We can find a different generator set for 𝒮. So, 𝒮 is transformed into a simpler form ℬ. 

Error correction conditions can be discussed by using ℬ. 

Generator set of 𝒮 can be separated to two different subgroup: 

i. 𝒮  is the group of commutative generators in 𝒮 and it is called isotropic subgroup 

. 

ii. 𝒮  is the group of noncommutative genarators in 𝒮 and it is called symplectic 

subgroup. 

Some lemmas are necessary to discuss error correction conditions: 
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Lemma 4.37 [18] Given arbitrary , a subgroup in  if  has  distinct elements, then 

there are  independent generators for : { ̅ , ̅ , … , ̅ , ̅ , ̅ , … , ̅ − } where [ ̅ , ̅ ] = , [ ̅ , ̅ ] =   ∀ ,  ; [ ̅ , ̅ ] =  ∀ ≠, { ̅ , ̅ } =  ∀ . Let = ̅ − + , ̅ − + , … , ̅  be isotropic group and =̅ , ̅ , … , ̅ − , ̅ , ̅ , … , ̅ −  be symplectic group. The group = ,  is a 

subgroup which is generated by  and . 

Consider that  independent generators for 𝒮: ̅ =̅ =̅ =̅ =  

= ̅ , ̅ , = ̅ , ̅  and 𝒮 = , . 

Let ℬ be a group which is generated by following generators: ====  

ℬ = , , = ,  and ℬ = ℬ ,ℬ . 

So, ℬ is isomorphic to 𝒮; that is, ℬ≅ 𝒮. We can be related 𝒮 with simpler form ℬ. 

Lemma 4.38 If ℬ≅ 𝒮, then there exists a unitary operator  such that B= −   ℬ and 𝒮. 

According to Lemma 4.38, powers of error correction of ℬ  and 𝒮  are related to 

unitary transformations. 

Next, we will analyze the code space X of C(B). 

Since ℬ is not a commutative group, we cannot make up ℬ . But by extending 

generators, we can construct a new group that is commutative. Qubits of codewords will 

be embedded to a larger space. ′ =′ =′ =′ =  
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Let |𝜑  be entangled state shared between Alice and Bob. 

Consider that Alice has 4 original qubit and Bob has  extra qubit.  ℬ = { ′ , ′ , ′ , ′ }  and ℬ = {|𝜑 | | |𝜑 } . The vector |𝜑   is arbitrary 

single qubit. Since entanglement is used, this is called Entanglement Assisted Quantum 

Error Correction Code (EAQECC). , ;  is parameter of EAQECC. The number of logical qubit is ,  physical qubit is  

and ebit is . It may be used as , , ; . 

• Number of  ebits equal to number of noncommutative generator pairs in ℬ . 

• Number of ancilla qubits  equal to number of independent generators in ℬ . 

 Relation between these numbers is that = − − . If any error  anti-commutes 

with group ℬ, then  can be corrected. We can back error correction properties of original 

set 𝒮 with analysis of ℬ. Just as we made for ℬ, if entangled state can be used, then it can 

be constructed QECC from noncommutative group 𝒮. By adding  and  extra operators, 𝒮 can be transformed into commutative group. Extra qubit belongs to receiver Bob and it 

is error free. ′ =′ =′ =′ =  

The set 𝒮   is generated group by the above generators. Since ℬ ≅ 𝒮 , by Lemma 4.38 

unitary operator  such that 𝒮 = −  ℬ . The operator  is applied only 

Alice’s entangled qubits.  is called coding operation of EAQECC by 𝒮.  

Error operator must anti-commutes with 𝒮 in that 𝒮  can correct errors.  

Assume that Alice sends a message to Bob via a quantum channel. An error correction 

process is needed to true transmission of the message. Entangled pairs are used for much 

more error corrections. Above encoding and decoding process with parameters can be 

summarized as the following: 

▪ Alice and Bob share a single entangled pair of qubits. =  

▪ Alice (sender) wants to encode a single qubit |𝜑  to  qubits. = , =  
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▪ Alice performs encoding operation  on her original qubit |𝜑 , on her half of the 

entanglement pair and two ancilla qubits. =  

▪ She transmits them to Bob by noisy quantum channel.  

▪ Bob measures extended generators ′ , ′ , ′  and ′  on the four received 

qubits and his half of entangled pair. 

▪ Outcome of these  measurements gives error syndrome. 

If error correction conditions are satisfied, Bob can correct the error and decode |𝜑 . 

4.3.4 Quantum Codes over Finite Fields 

The space = ⊗ …⊗  is a − dimensional Hilbert space where  is a 

2−dimensional Hilbert space. A quantum code of length  is defined as a subspace of  −dimensional Hilbert space. Hence, a quantum code which encodes  qubits to  

qubits is a −dimensional subspace of a −dimensional Hilbert space and it is 

denoted by , . An element of a quantum code space is called a codeword. 

 Let  be a power of a prime  and let  be a −dimensional complex vector space 

which represents the states of a quantum mechanical system. We use |  to denote the 

vectors of a distinguished orthonormal basis of  where . A quantum error 

correcting code  is a -dimensional subspace of 
𝑛 = ⊗ ⊗ …⊗  where ⊗ 

denotes tensor product. 

In order to measure the performance of a code, we need to have an error model. The set 

 is a basis for the vector space of a complex  matrix which represents a set of the 

errors. The error operators play an important role on the coding procedure.  

More information about the quantum computation can be found in [27]. 

Definition 4.39: [17] Let  and  be elements of . We define the unitary operators 

 and  on  by | = | +  and   | = |  where  is a 

primitive th root of unity as = ⁄  and  denotes the trace operation from  to 

. 

Definition 4.40: [17] The set = { | , } is a set of error operators. The 

set  has the following properties: 
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i. The identity matrix belongs to . 

ii. For all , , =  for some , . 

iii. + )=  for all , . 
If a finite set of unitary matrices satisfies these properties, then it is called a nice error 

basis. 
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CHAPTER 5 

         QUANTUM CODES OVER EISENSTEIN-JACOBI INTEGERS 

 

In this chapter, we construct quantum codes over EJ-integers. Quantum codes over these 

integers can be used for coding over two-dimensional signal space [6]. A new minimum 

weight and a new distance are defined on the quantum code. Error operators play an 

important role on the error detection and correction procedure. Especially, if a set of the 

error operators satisfies some certain properties, then it is called a nice error basis. The 

nice error basis has some advantages during the coding procedure. We illustrate that the 

set of the error operators which is defined with respect to residue class function  is a nice 

error basis. Moreover, the commutative property of the error operators is important in 

some cases. We prove the commutativity relation between these operators. The 

construction of a quantum code over EJ-integers and an error basis are explained via 

examples. These new quantum codes can give codes with new and better parameters. 

The set of Eisenstein-Jacobi integers is a subset of the complex numbers such that these 

integers have a real and rho part [35]. Classical codes over Eisenstein-Jacobi integers are 

constructed and a distance is defined by Huber in [5]. The Eisenstein-Jacobi integer ring 

which has a unique factorization is the algebraic integer ring of cyclotomic field √− . 

The multiplicative group of units in the Eisenstein-Jacobi integer ring which has a unique 

factorization may be infinite. So, we should study on quotient ring of this ring. Although 

the factorization of this structure is diffıcult, an algorithm is given in [6]. Quadrature 

amplitude modulation (QAM) is both a digital and an analog modulation scheme. QAM 

signals belong to a type of two-dimensional signal spaces. The signal set can be obtained 

by factoring the multiplicative group of units in the quotient ring. Also, block codes can 

be constructed by using the factorization. Therefore, for coding over two-dimensional 
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signal spaces like QAM signals, block codes over these integers; = , , , , , , ,…, can be useful [6]. 

Firstly, we will give a formal definition of Eisenstein- Jacobi integers. 

Definition 5.1 [35] Eisenstein-Jacobi integers (EJ-integers) are complex numbers defined 

by + .  where ,  and = − +√  . The set of all EJ-integers is denoted by . If = + .  , then ∗ = + .  is called the conjugate of  where + + =
. The norm of the element  is defined by = − +  = ∗. There are six 

elements whose norms are  of the set of EJ-integers. These elements are , − , , − ,  and − . In other words, these elements are called the unities of the set. Then, the set { , − , , − , , − } is the unities of the set of EJ-integers. 

If any prime  is of the form = +  where , then it can be written as = +
 where , . We have ∗ = = +  where = + + .  and ∗ =+ + . . 

We can define the modulo function as follows: : →  

where  is all EJ-integers and  is the residue class of  modulo . This function is 

defined by  

= − [ ∗∗] .                    
The operation of [. ] denotes rounding to the closest Einstein-Jacobi integer.  

The map : →  is defined by  = − [ ∗∗]  is a one to one and onto 

homomorphism. Hence, ≅ . The isomorphism leads to a relation between a field 

with  elements and EJ-integers. When  is represented as , it provides important 

advantages for coding as physically meaning like signal constellations [6]. 

Example 5.2 Let =  and =3+ . . Then, + . = { , , − , , − , + ,− − } 
and we will construct a code over + . . Let the generator matrix of code  over + .  

be ( , .  Then, = { , , , , − , − , − − , , + ,− , − , +, − ,− − }. 
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Example 5.3 Let =  and =5+ . . Then,  

+ . = { , , − − ,− − ,− − , + ,− + , , + , + ,− −,− − ,− , − ,− − , + , + , + ,− }. = { , , , , , , − , + , − − ,− ,+ , , , , − , − − }  is a code 

of length  over + . . 

5.1 Error Correction with EJ-Integers 

In order to construct a code over + .  , Huber defined a new distance and a new weight 

for EJ-integers [5]. Let  and  be elements of  and = − . The element  can 

be written in several different ways as = +  where , { , − , , − , +,− − }. 
The weight of  is defined as ( = min {| | + | |} in [2]. The distance  between 

 and  is defined as , = . 

Example 5.4 Let =  and =3+ . . Assume that = + , = − + .  . 

Let  be the difference between  and . Then, = − = − −  . Thus,  can 

be written in several different ways as = − . − . ,   = − . + − . ,   =. − − − . , = . − − + . . Therefore, we obtain − − = { , , , } = , since =  {| | + | |}. 
In general, the weight of the vector = , , … , −  is defined by =∑ −=  and the distance between the vectors  and   is defined by − . The 

distance satisfies the following properties:  , = ,  ,  , , if  = then , = , and  , , + , . Hence,  defines a metric.  

We will construct a one-error-correcting code over  of length = −
 . Errors can be 

any value from the set { , − , , − , + ,− − }. Let  be a  primitive root of  

order −  . A one-error-correcting code over  can be constructed by the following 

parity-check matrix : 

= ( , , … , − − ). 
A codeword  over  gives = . 

The generator matrix  is given by 
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= ( 
−           …   −         …                      ⋱ − −   … ) . 

A single error which is in { , − , , − , + ,− − }  will produce a different 

syndrome. Next, we will describe the decoding procedure. Let = +  be a received 

vector and we compute syndrome =  . The location of an error which has weight 

one is given by =    and the value of an error is given by − .  

Example 5.5 Let = 13, = + .  and = + . Then,  = , + , = − − , . 
Assume that the received vector is = ,− . Then, we compute the syndrome as == − − = . We can find the position of the error is  since log =  and  

is equivalent to  modulo . The value of the error is that  − = − − . So, =− − , . Then,  = − = ,− − − − , = + ,− = − −,− . 

These codes can be generalized to the codes of length  = 𝑟−
. Similarly, the parity-

check matrix can be defined by 

= ( , , … , 𝑟− − ) 

where 𝑟 is an element of order − . A bijective map from  to 𝑟  can be 

defined as : → 𝑟  where  = − [ 𝑟 ∗𝑟 𝑟 ∗]  for all . 

Hence,  is isomorphic to 𝑟 since  is a one to one and onto homomorphism. 

Let  be a prime such that ≡   . A -ary quantum code  of length  and size 

 is a -dimensional subspace of a − dimensional Hilbert space. A distinguished 

orthonormal basis of  is denoted by vector |  where  is an element of . For -tuple 

vectors =( , , … , −  and =( , , … , − , usual inner product on  is 

given by ∙ = ∑ −= . For | , ′| ′  , | ∗ ′| ′ = ′ − ′  

where : 𝑟 →  is the trace map. The notation |  denotes -tuple vector which 

is composed by  and . 

We can define a new weight  and distance  over EJ-integers as follows: 
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= ⌈⌈⌈
⌈ [min{| , | + | , |} + + min{| − , | + | − , |} +min{| ′ , | + | ′ , |} + + min{| ′ − , | + | ′ − , |}]

⌉⌉⌉
⌉ 
 

where = | − ′| ′ = ( − ′| − ′ = ( | ′   mod , and  ( | , ′| ′ = . 
Let  be a code over . Then, the dual code of  is defined as: ⊥∗ = { | : | ∗ ′| ′ =  for all ′| ′ }. 
5.2 Error Operators  

Definition 5.6: We define unitary operators as  | = | +   and | =𝜇− |  where ,  and  is a primitive th root of unity, and : →  defined 

by  = − [ ∗] . 
Hadamard gate is defined as follows: = √ ( ,  where  , = − −     for , . 

Proposition 5.7: The set = { | , } is a nice error basis on  where = ∗. 

Proof.  

i) The operator  acts as follow: | = 𝜇− | =| = | + = | . Since | = | ,  is the identity matrix in 

.  

ii) We have 𝜇− =  and this implies that ′ ′ = 𝜇− ( ′ ′ ′                                     = 𝜇− ( ′ + ′ + ′   

for all , ′ ′ . Since + ’  and + ′  are elements of , 

the product of any two operators ′ ′  is a scalar multiple of an operator 

in .  
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iii) Let =  and = ′ ′  be two error operators where ≠ ′. The 

operator + = − − ′ ′  which implies that the diagonal elements of the 

matrix +  are 0. Therefore, ( + =  where  and  are different elements 

of . Since i), ii) and iii) are satisfied,  is a nice error basis. 

Theorem 5.8 Let  and ’ ’  be two operators such that | =| +  and | = 𝜇− | . Operators  and ’ ’  are 

commutative if and only if − ′ − − ′ = . 

Proof. Since |u = | +   |u = 𝜇− |u  , we have 𝜇− = . Let  and ′ ′  be two operators. The 

product of two error operators is given by 

′ ′ = 𝜇− ′ ′ ′ , 
′ ′ = 𝜇− ′ ′ ′ . 

We already have ′ = ′  and ′ = ′ . 
If  ) and ’ ’) commute, we obtain 𝜇− ( ′ = 𝜇− ( ′

. This implies 

that − ′ − − ′ =  . 

Conversely, if − ′ − − ′ = , then − ′ = − ′  which implies 𝜇− ( ′ = 𝜇− ( ′
. Since ′ ′ = 𝜇− ′ ′ ′  

and ′ ′ = 𝜇− ′ ′ ′ , we obtain ′ ′ = ′ ′ . This shows that these operators are 

commutative. 

Example 5.9 Let = , = + .  and the map = − [ ∗∗] . We can find the 

following images of  under the map: = , = , = , = − − ,  = − , = , =+ ,  = − −  , = − , =  , = + , =− , =  − . Then, + . = { , ,  , − − ,− , , + ,− ,  , − , , + , − ,−  }. 
The error basis can be found by the method below: 
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, = 𝜇 ,𝜇 , = 𝜇 + ,𝜇 , = 𝜇 + ,𝜇  , − − =
𝜇 + ,𝜇  , − = 𝜇 + ,𝜇 ,         = 𝜇 + ,𝜇 , + = 𝜇 + ,𝜇 ,− − = 𝜇 + ,𝜇 , − = 𝜇 + ,𝜇 , = 𝜇 + ,𝜇 , + =
𝜇 + ,𝜇 , − = 𝜇 + ,𝜇 , − = 𝜇 + ,𝜇 . 

For example, − =
( 
   
   
   

                                                                                                                                                                                                                                                                                                                           ) 
   
   
   

. 

We define a distinguished orthonormal basis for =  as follows: | =              , |ρ =              , |−ρ =              , | =             , |− =             , |− − ρ =              , | + ρ =             , | ρ =              , |− ρ =             , |− =              , | =              ,  |ρ + =             , |−ρ − =             . 

For instance, if an error acts on a vector: |−ρ = |μ ρ − ρ = | . Then, 
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− − | = 𝜇− − − | = | . 
Suppose that we have a quantum state |𝜑 = | ⊗ − − ⊗ − ⊗ − . 

Here, 𝜑 is a vector of length 4. If any error  occured in the third position, then error 

vector is . The action of the −  is that − |− = | ( − − =| ( − − = | − . So, error vector is (0,0, −  ,0). Therefore, corrupted state 

becomes | ⊗ − − ⊗ − ⊗ −  if the error −  occurred. 

Theorem 5.10 [5] Let  and  be two classical linear codes over    with the 

parameters [ , , ] and [ , , ] such that  ⊆ . Then, there exists an [[ , −
 ,   ]] quantum code with the minimum distance = { , ⊥} , where  

denotes the new minimum distance of the code  over    and 
⊥ denotes the new 

minimum distance of the dual code 
⊥ of the code  over  .  

Proof. Let | + = √| | ∑ | ⊕  where ⊕  is addition modulo 2. If − ′
 where , ′ , then | + = | ′ + . Also, if  and ’ belong to distinct cosets 

of , then there do not exist , ’  such that + = ′ + ′ and so | +  and | ′ +  are orthonormal. 

The quantum CSS code which is defined by ,  is spanned by | +  for all . 

The number of cosets of  in  is | || |. Hence, the dimension of the CSS code is 
| || | =

𝑘𝑘 = − . So, the quantum CSS code which is defined by  and  is an [ , −]-code. 

In order to detect and correct quantum errors, we can use the classical error correcting 

properties of  and 
⊥

. An  bit vector  describes bit flip errors such that there are  

where bit flips occurred and there are 0s elsewhere. An  bit vector  describes phase 

flip errors such that there are 1s where phase flips occurred and there are  elsewhere. 

Let | +  be the initial state. If some errors occurred, then the corrupted state is: 

√| | ∑ − + 𝜀 | + + . 
To detect the location of bit flips, we introduce ancilla qubits. Since +  is 

annihilated by matrix , | + + |  to | + + | + + = | + +|  where  is parity-check matrix of . Then, we obtain  
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√| | ∑ − + 𝜀 | + + | . 
The detection procedure is completed by measuring ancilla qubits, then 

√| | ∑ − + 𝜀 | + + . 
Since  can correct up to  errors, if we know the error syndrome , we can conclude 

the error . So, the error correction abilities of linear codes  and  are related to the 

quantum codes which are obtained by these linear codes. The complete proof is given in 

[4] and [5]. The quantum code which is constructed by using linear codes  and   is 

known as the CSS code.  

Example 5.11 Let = + .  and let = + + + + = −+ +  be the generator polynomial of the code  over + .  and =+ − + − = + − − −  be the generator polynomial of 

the code  over + . . The code  which is generated by  is a [ , , ] −code and 

the code  which is generated by  is a [ , , ] −code. So, we can obtain a quantum 

code with respect to the new distance with parameters , , + .  by using CSS code 

construction of  and  .  

A table of more generator polynomials is given by Huber in [5]. 
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    CHAPTER 6 

               CONCLUSION 

 

In this thesis, we introduced coding theory. We gave historical view of classical and 

quantum coding theory. 

We gave some preliminaries about algebraic coding theory and we stated some definitions 

about error correcting codes by illustrating these with examples. 

We introduced mathematical concepts of quantum mechanics. Also, we explained 

algebraic properties of quantum vectors and showed principals of quantum theory. 

Moreover, we conducted a literature research about quantum error correcting codes. We 

explained some types of quantum codes with details and we illustrated these codes with 

examples. Furthermore, we gave error detection and correction conditions.  Also, we 

mentioned about relation between classical and quantum codes.  

We gave the definition of Eisenstein-Jacobi integers and we showed that there is an 

isomorphism between the set of these integers and a finite field. This isomorphism 

provides a construction of quantum codes over Eisenstein-Jacobi integers. We defined a 

new distance for this new class of quantum codes, and we described error bases, matrices 

and operators of them. Also, we proved the commutative property of error operators with 

respect to this new distance. Obtaining these codes can lead an answer for the existence 

question for some new parameters. 

Another class of quantum codes can be researched in the future. Finding a new code with 

better parameters is always an open problem. 
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