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ABSTRACT

ON STABILITY AND EFFICIENCY IN DIFFERENT
ECONOMIC ENVIRONMENTS

Mehmet Karakaya
Ph.D. in Economics
Supervisor: Prof. Dr. Semih Koray
July, 2011

This thesis consists of four main chapters. In the first main part, hedonic coalition
formation games where each player’s preferences rely only upon the members of her
coalition are studied. A new stability notion under free exit-free entry membership
rights, referred to as strong Nash stability, is introduced which is stronger than both
core and Nash stabilities studied earlier in the literature. The weak top-choice property
is introduced and shown to be sufficient for the existence of a strongly Nash stable par-
tition. It is also shown that descending separable preferences guarantee the existence
of a strongly Nash stable partition. Strong Nash stability under different membership
rights is also studied. In the first main part, hedonic coalition formation games are
also extended to cover formation games, where a player can be a member of several
different coalitions, and these games are studied. In the second main part, Nash im-
plementability of a social choice rule (via a mechanism) which is implementable via
a Rechtsstaat is studied. A new condition on a Rechtsstaat, referred to as equal treat-
ment of equivalent alternatives (E'T'E'A), is introduced, and it is shown that if a social
choice rule is implementable via some Rechtsstaat satisfying ET E A then it is Nash
implementable via a mechanism provided that there are at least three agents in the soci-
ety. In the third main part, a characterization of the Borda rule on the domain of weak
preferences is studied. A new property, which is referred to as the degree equality,
is introduced, and it is shown that the Borda rule is characterized by weak neutrality,
reinforcement, faithfulness and degree equality. In the fourth main part, the graduate
admissions problem with quota and budget constraints is studied as a two sided many
to one matching market. The students proposing algorithm, which is an extension of
the Gale-Shapley algorithm, is constructed, and it is shown that the students proposing
algorithm ends up with a core stable matching if the algorithm stops. However, there
exist graduate admissions problems for which there exist core stable matchings, while
neither the departments proposing nor the students proposing algorithm stops. It is
proved that the students proposing algorithm stops if and only if no cycle occurs in
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the algorithm. It is also shown that no random path to core stability for the graduate

admissions problem exists.

Keywords: Hedonic coalition formation games, core stability, Nash stability, strong
Nash stability, membership rights, cover formation games, implementation via a
Rechtsstaat, Nash implementation via a mechanism, equal treatment of equivalent al-
ternatives, the Borda rule, degree equality, graduate admissions problem, the Gale-
Shapley algorithm, quota and budget constraints, random paths to core stable match-

ing.
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OZET

CESITLI IKTISADI ORTAMLARDA KARARLILIK VE
VERIMLILIK UZERINE

Mehmet Karakaya
Ekonomi, Doktora
Tez Yoneticsi: Prof. Dr. Semih Koray
Temmuz, 2011

Bu tez calismasi dort ana kisimdan olugsmaktadir. Birinci ana kistmda her oyuncu-
nun tercihinin sadece kendisinin i¢inde bulundugu koalisyonun iiyelerine bagl oldugu
hazci koalisyon olusum oyunlar1 ¢alisilmistir. Kuvvetli Nash kararlili§1 adiyla yeni
bir kararlilik kavrami herhangi bir koalisyona giris ve ¢ikisin izne bagh olmadigi
tiyelik haklar1 cercevesinde tanimlanmigstir, bu yeni tanimlanan kararlilik kavrami
daha onceleri ¢alisilmig olan ¢ekirdek ve Nash kararlilik kavramlarinin her ikisinden
daha kuvvetlidir. En 1yi zayif se¢im 06zelligi tamimlanmis ve bu 6zelligin kuvvetli
Nash kararli koalisyon yapilariin varligi i¢in gerek sart oldugu gosterilmistir. Aza-
lan ayrilabilir tercihlerin de kuvvetli Nash kararli koalisyon yapilarinin varligim
garantiledigi goOsterilmistir. Ayrica kuvvetli Nash kararliligi farkli tiyelik haklar
altinda da calisilmigtir.  Yine, birinci ana kisimda hazci koalisyon olusum oyunlari
oyuncularin ayni anda birden fazla koalisyonun iiyesi olabildigi ortiisiik koalisyonlarin
olusum oyunlarina genisletilmis ve bu oyunlar incelenmistir. ikinci ana kisimda hak-
lar yapisi araciligi ile uygulanabilir olan bir sosyal se¢cim kuralinin bir mekanizma
vasitastyla Nash uygulanabilirligi calisilmistir.  Haklar yapis1 lizerinde egdeger
seceneklere egit muamele adiyla yeni bir sart tanimlanmis ve bu sarti saglayan bir
haklar yapis1 ile uygulanabilen bir sosyal secim kuralinin, en az ii¢ kisinin oldugu
bir toplumda, bir mekanizma vasitasiyla Nash uygulanabilir oldugu gosterilmistir.
Uciincii ana kistmda Borda kuralinin bir karakterizasyonu tanim bolgesi zayif ter-
cihler demeti olmak suretiyle calisilmistir. Derece esitligi diye adlandirilan yeni bir
ozellik tanimlanmis ve Borda kuralinin karakterizasyonu zayif notrliik, pekistirme,
sadakatlilik ve derece esitligi ozellikleri ile yapilmistir. Dordiincii ana kistmda kota ve
biitce kisitlar1 altinda doktora kabul problemi iki tarafli eslesme olarak incelenmistir.
Gale-Shapley algoritmasinin bir uzantist olan ve dgrencilerin teklif gotiirdiigii bir al-
goritma yazilmig ve bu algoritma durursa olusan eslesmenin cekirdek kararli oldugu
gosterilmistir.  Bununla beraber, ne boliimlerin teklif gotiirdiigli ne de 6grencilerin
teklif gotiirdiigii algoritmalarin durdugu ve ¢ekirdek kararli bir eslesmenin bulundugu
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durumlar mevcuttur. “Eger ve sadece eger algoritma icerisinde bir dongii olusmazsa
ogrencilerin teklif gotiirdiigii algoritma durur” onermesi ispat edilmistir. Ayrica, dok-
tora kabul problemi icin rastgele patika araciligi ile ¢ekirdek kararli bir eslesmeye
ulagilamayacag1 da gosterilmistir.

Anahtar sozciikler: Hazci koalisyon olusum oyunlari, cekirdek kararliligi, Nash
kararlilig1, kuvvetli Nash kararlilifi, tiyelik haklari, ortiisiik koalisyonlarin olusum
oyunlari, haklar yapis1 araciligi ile uygulanabilirlik, mekanizma aracilig1 ile Nash uy-
gulanabilirlik, esdeger seceneklere esit muamele, Borda kurali, derece esitligi, dok-
tora kabul problemi, Gale-Shapley algoritmasi, kota ve biitce kisitlari, ¢ekirdek karali
eslesmeye rastgele patika araciligi ile ulagilabilirlik.

vi



ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof. Semih Koray
for his invaluable guidance, encouragement and support throughout all stages of my
study. He has always been much more than a thesis supervisor and a teacher. I am truly

indebted to him. I am proud that I have had the privilege of being among his students.

I am also indebted to Prof. Tarik Kara who helped me throughout all stages of my
study. I would like to express my special thanks to him for his helps, endless sup-
port and encouragement throughout my study at Bilkent University. I am indebted to
Professors Isa Hafalir, Farhad Huseyin, Emin Karagdzoglu, Ismail Saglam, M. Remzi
Sanver and participants of the Economic Theory seminars at Bilkent University for

their invaluable suggestions and comments on my research.

Chapter four of this thesis is a joint work with Ayse Mutlu Derya whom I am in-
debted for her friendship, encouragement and support. Throughout my study at Bilkent
University, I have had many friends and colleagues. I am grateful to all of them for
sharing their ideas with me and making my life more enjoyable. I wish to thank Murat
Cemrek, Engin Emlek, Alp Sezer, Giiney Ongun, Basar Erdener, Pelin Pasin, Baris
Ciftci, Tiimer Kapan, Yilmaz Kocer, Mehdi Jelassi, Ibrahim Baris Esmerok, Tural
Huseynov, Serkan Yiiksel, Cem Sevik, Deniz Cakir, Kemal Yildiz, Battal Dogan, Fatih
Durgun, Alphan Akgiin and all graduate students of the Department of Economics at

Bilkent University.

Last but not the least, my special thanks and gratitude are for my family for their
endless love and support. They have always been there for me when I needed them,

and have been fully supportive of my choices.

vii



TABLE OF CONTENTS

......................................................................................................... jii
OZET cavncincinsinsinscnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssess v
ACKNOWLEGMENTS ...cuiiniiniiirensicssissssssesssecsssssnssssssssssssssessssssssssssssssssssssse vii
TABLE OF CONTENTS ..ccouiivinicsnissensecsncssesssecssissssssesssssssssssssssssssssssssssssssane viii
LIST OF TABLES ....ucooiiiinneininsninsnnssesssnsssssssssssssssssssssssssssssssssssasssssssssssssssssssssass X
CHAPTER 1: INTRODUCTION ...uucovuirrinsuinsenssensaessasssessanssssssesssssssssssssasssssssssss 1
CHAPTER 2: HEDONIC COALITION FORMATION GAMES AND

COVER FORMATION GAMES .....ccovvruecrursensuecsunssncsaccsesssecssees 8

2.1  Hedonic coalition formation ames ...........ccceccveeevureeriueeenineeerieeenveeennes 8
2.1.1  INtrOdUCHION ..ocoeiiieiiieciee ettt e e e 8

2.1.2  BaSIC NOIONS ....eevieriiieiieiiieiienieeieesieeeieesereeaeesaaeesseessresseens 13

2.1.3  The weak top-choiCe Property ........cccccveeevuveeecrieeriieeereeesveeenns 19

2.1.4 Descending separable preferences ...........ccceeeeeeeivenieeieeneennnen. 21

2.1.5 Strong Nash stability under different membership rights ........ 29

2.1.6  CONCIUSION .eouviiiiiieiiieiieeie ettt e 35

2.2 Cover formation AMES ............cccueerreerieerieesieereeereesseesseesseesseesseesses 36
2.2.1  INtrodUCHION ...occviieeiiieeiieeeee ettt e e e e eaaee s 36

2.2.2  BaSIC NOLIONS ...veeeevieiieeiiieiieeieeniieeteestee et esiaeeseesineeseesseesnneens 37

2.2.3  RESUILS weeeiiiiiiiiiee e 43

2.2.4  CONCIUSION ..couviiiiiriiiiiiieeiiee ettt 48

viil



CHAPTER 3: NASH IMPLEMENTATION OF SOCIAL CHOICE

3.1
3.2
3.3
34
3.5
3.7

RULES WHICH ARE IMPLEMENTABLE VIA

RECHTSSTAAT 50
INtrOAUCTION ..ooeiiiiiiiieeee e e 50
BaSIC NOTIONS ..vvvvveiiiiiiiiieeeiiiiteeeee et e et e e e e s e snbareeeeee e e 53
RECHESSLAAL ... e 55
RESUILS e e 58
Oligarchic Rechtsstaats ..........ccceeviieriiiiiieiiieiieciece e 65
CONCIUSION ..vvviiiiiiiiiitieeiee e eee e e e e e eeeabrr e e e e e e e eennanes 66

CHAPTER 4: A CHARACTERIZATION OF THE BORDA RULE ON

4.1
42
43
4.4
45

THE DOMAIN OF WEAK PREFERENCES 67
INErOAUCHION ..o e et 67
BasiC NOLIONS ....ceuviiiieiiiie e e 68
Main theorem and its Proof ..........cccceevieriiieiienieeiee e 73
The cancellation PrOPEILY ......eeevveeeriieeeiieeeiie et 81
CONCIUSION ..ttt et e e e e 85

CHAPTER 5: GRADUATE ADMISSIONS PROBLEM WITH QUOTA

AND BUDGET CONSTRAINTS.....cccvvrvensurcsensecsuecsassancsaecsanes 86
5.1 INtrOAUCHION ...ttt 86

5.2 BaSIC NOLIONS .eevvieiieiiieiieniie et eiie et et ettt e et e seteebeesateenbeesneeeneeas 90

5.3 Graduate admission algorithms ............ccecceeviieviieniienienieeeeeee e, 99
5.3.1 The departments proposing graduate admission algorithm ....101

5.3.2 The students proposing graduate admission algorithm ......... 103

5.3.3 The mix algorithm .........ccccceeeviiiiiniieiieeeeee e 121

5.4 Nonexistence of random paths to core stability ...........ccccevveennennne. 130

5.5 Students consider only their reservation prices ..........cocceeeeveerrnneenne 140

5.6  Concluding remarks .........cccoooeeveeiienienenieneeeeeene e 156
CHAPTER 6: CONCLUSION ....cooiiiuinrensessenssesssnssasssssasssssssssssssssssssssassssssns 159
13303 51 10 1€ 272N g & I /R 161
APPENDIX 166

X



LIST OF TABLES

5.1 Qualification levels and reservation prices of students for example 6....... 108
5.2 Qualification levels and reservation prices of students for example 7 ....... 112
5.3 Qualification levels and reservation prices of students for example § ....... 113
5.4 Qualification levels and reservation prices of students for example 9 ....... 116

5.5 Qualification levels and reservation prices of students for example 11 .....127
5.6 Qualification levels and reservation prices of students for example 12 .....133
5.7 Qualification levels and reservation prices of students for example 13 .....145
5.8 Qualification levels and reservation prices of students for example 14 .....146
5.9 Qualification levels and reservation prices of students for example 15 .....147
5.10 Qualification levels and reservation prices of students for example 16 ...148
5.11 Qualification levels and reservation prices of students for example 18 ...152

5.12 Qualification levels and reservation prices of students for example 19 ...155



CHAPTER 1

INTRODUCTION

In every field of economic theory, the common main question is what outcomes are
stable and what outcomes are efficient. The next natural question concerns the re-
lationship between stability and efficiency. When does stability imply efficiency, and

under what circumstances can efficient outcomes be reached as equilibrium outcomes?

The first theorem of welfare economics states that a competitive equilibrium al-
location is Pareto efficient. An allocation is Pareto efficient if there does not exist
any feasible allocation that makes some agents better off without hurting some others.
Pareto optimality is the most natural efficiency notion for agents with non-transferable
utilities who are to act individually in a decentralized way. It is worth to note that
the first welfare theorem holds under two important conditions. One is that all goods
are private goods. The theorem does not hold in the presence of public goods. The
other hypothesis is that every agent’s preferences depend only on her own consump-
tion. Hence, an agent is not allowed either to be concerned or to be jealous about what
happens to her neighbor or to the rest of the world. In game theory, on the other hand,
there is no counterpart of the first theorem. That is, it is not the case that every Nash
equilibrium of a game is Pareto optimal. To the contrary, the main problem that game
theory seems to deal with is the tension between stability and efficiency. In contrast
to the first theorem of welfare economics, players in a game may be equipped with

preferences that reflect altruism as well as envy towards their opponents.



The second theorem of welfare economics starts with an outcome which is Pareto
efficient and specifies sufficient conditions under which the efficient allocation can be
obtained as an equilibrium outcome by redistributing initial endowments in an econ-
omy. Not every efficient outcome may be socially desirable, however, as is typically
exemplified by dictatoriality, where all the goods in the economy go to the dictator.
The second theorem deals with the problem of designing a social configuration under
which efficient and socially desirable outcomes arise as equilibrium outcomes. The
counterpart of the second theorem in game theory can be thought of as implementa-
tion via a mechanism. Roughly said, a mechanism -conjoined with a game-theoretic
solution concept- redistributes the power among the players so as to achieve “socially
desirable” outcomes, if possible, paralleling the redistribution of initial endowments in

the economy.

An alternative way of dealing with design problems is introduced by Sertel (2002).
He proposes to explicitly introduce a rights structure (or a code of rights), specifying
what coalition is entitled to approve what changes in the states of affairs. The notion
of a rights structure can easily be seen to reduce to the notion of core-stability in the
very special case, where every coalition is entitled to approve any change in the state
of affairs. The notion of core-stability -by allowing every coalition to get formed and

to take joint binding decisions- combines efficiency and stability.

In this thesis, we deal with different environments as hedonic coalition formation
games or cover formation games, implementation via codes of rights or graduate ad-
missions problem under quota and budget constraints. Although the environments
considered exhibit a wide variety, what combines them is the efficiency-stability or the

invisible hand-design axes along which they are dealt with.

The first chapter studies hedonic coalition formation games. A hedonic coalition
formation game consists of a finite non-empty set of players and a list of players’ pref-
erences where every player’s preferences depend only on the members of her coalition.
Hedonic coalition formation games are used to model certain economic and political
circumstances such as the provision of public goods in local communities or forming
clubs and organizations. An outcome of such a game is a partition of the player set

(coalition structure) -that is, a collection of pairwise disjoint coalitions whose union



is equal to the set of players. Given a hedonic coalition formation game, the main
concern is the existence of partitions that are stable in some sense. A partition is core
stable if there is no coalition each of whose members strictly prefers it to the coalition
to which she belongs under the given partition. We introduce the framework of “mem-
bership rights” of Sertel (1992) into the context of hedonic games. Given a hedonic
game and a partition, the membership rights employed specify the set of agents whose
approval is needed for each particular deviation of a subset of players. We define a
new stability notion under free exit-free entry membership rights, referred to as strong
Nash stability, which is stronger than the core stability studied earlier in the literature.
Strong Nash stability has an analogue in non-cooperative games and it is the strongest
stability notion fitting the context of hedonic coalition formation games. We introduce
the weak top-choice property, and show that it guarantees the existence of a strongly
Nash stable partition. We prove that descending separable preferences suffice for a
hedonic game to have a strongly Nash stable partition. We also study varying versions

of strong Nash stability under different membership rights.

In the first chapter, we also extend hedonic coalition formation games to cover
formation games, where a player can be a member of several different coalitions. For
example, a researcher can be a member of several research teams at the same time. A
collection of coalitions is referred to as a cover if its union is equal to the set of players.
We define stability concepts based on individual movements as well as movements by
subsets of players under different membership rights, and provide existence results for

covers which are stable in the corresponding senses.

In the second chapter, we consider an environment with a finite non-empty set
of alternatives and a finite non-empty set of agents, where each agent has complete,
reflexive and transitive preferences over the set of alternatives. A list of agents’ prefer-
ences is called a preference profile. A social choice rule (SCR) is a rule which chooses
a nonempty subset of alternatives at each preference profile. However, agents’ pref-
erences are not known to a designer (or planner) and an agent may benefit by not re-
vealing her true preferences. The “implementation” problem arises from this situation
as it gives rise to the question of whether it is possible to design a mechanism (game
form) which provides no incentives for misrepresentation of preferences. So, we are

back at design problem with which the second welfare theorem deals. A mechanism



(game form) consists of a nonempty strategy set for each agent (messages) and an out-
come function which maps from joint messages into alternatives. A mechanism with a
preference profile on the set of alternatives induces a game in strategic form. A mech-
anism is said to implement an SCR according to a game theoretic solution concept o if
the o-equilibrium outcomes of the induced game coincide with the set of alternatives

assigned by the SCR at each preference profile of the society.

Sertel (2002) introduced the notion of a “Rechtsstaat” through which he explicitly
specifies a rights structure based on two functions, namely, the benefit function and the
code of rights function. Given a pair of alternatives and a preference profile, a benefit
gives us the set of all coalitions that strictly prefer the second alternative in the pair to
the first one at the given preference profile. A code of rights specifies, for every pair of
alternatives, a family of coalitions in which each coalition is given the right to approve
the alteration of first alternative to the second one. So, a code of rights is independent
of agents’ preferences. An alternative is said to be an equilibrium of a Rechtsstaat at a
given preference profile if there is no coalition which is given the right to approve the
alteration of this alternative to some other one such that every agent in the coalition
benefits from this alteration, i.e., all agents in the coalition strictly prefer the latter
alternative to the former one. It is clear that in a Rechtsstaat, the rights structure in the
society are explicitly given by its code of rights. An SCR is said to be implementable
via a Rechtsstaat if, at every preference profile, alternatives which are chosen by the
SCR coincide with the equilibria of the Rechtsstaat (Koray and Yildiz (2008)).

In the second chapter, we study Nash implementability of an SCR (via a mecha-
nism) which is implementable via a Rechtsstaat, i.e., what properties of a Rechtsstaat
implementing an SCR ensure that the SCR is also Nash implementable via a mecha-
nism. We introduce a condition on a Rechtsstaat which is referred to as the equal treat-
ment of equivalent alternatives (E'T'E A). We say that a Rechtsstaat satisfies ET F A,
if all agents are indifferent between two alternatives under any preference profile, then
one of these alternatives being an equilibrium of our Rechtsstaat implies that the other
alternative is also an equilibrium. We show that if an SCR is implementable via some
Rechtsstaat satisfying ET'E A then it is Nash implementable via a mechanism when
there are at least three agents in the society. However, an SCR which is implementable

via a Rechtsstaat that violates £'7'E A may not be Nash implementable. We also show
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that a Rechtsstaat satisfies E'T'E A if and only if its code of rights is as follows: for any
alternative x and any alternatives y and z (different from ), those and only those coali-
tions bearing the right to approve the alteration of y to = are also the coalitions which
have the right to approve the alteration of z to . We define oligarchic Rechtsstaats
and show that if an SCR is implementable via an oligarchic Rechtsstaat then it is Nash

implementable provided that there are at least three agents in the society.

In chapter three, we study a characterization of the Borda rule on the domain of
weak preferences, where the Borda rule is defined for each finite set of voters having
preferences over a fixed set of alternatives. In the case of a collective decision problem
where each agent in a society has preferences over a finite set of alternatives, either
a social welfare function is employed to aggregate a list of agents’ preferences into
a social ordering of alternatives (social preference), or a social choice rule (SCR) is
employed to specify a set of selected alternatives at the given preference profile (social
choice). Since, in either approach, for all individuals in the society the outcome is the
same, the situation falls into the realm of the second theorem of welfare economics.
Our concern is to employ an SCR which is used to make a choice over alternatives
for each preference profile of a society. Many different SCRs have been established
to determine which alternative(s) should be selected when a preference profile of a
society is considered. An SCR should satisfy some desirable properties such as be-
ing Pareto optimal, non-dictatorial and independent of the names of alternatives and
voters. However, there are many SCRs which are Pareto optimal and non-dictatorial,
which necessitates us to look for further specifications that fully distinguish a desirable
SCR from others. We say that a set of specific properties characterize an SCR if the
SCR is the only one that satisfies these properties. When players have strict preference
relations over alternatives, the Borda rule is characterized by neutrality, reinforcement,
faithfulness and Young’s cancellation property (Young (1974), Hansson and Sahlquist
(1976)). Neutrality means that the names of the alternatives do not affect the selected
alternatives. An SCR satisfies reinforcement if there exist common selected alterna-
tives for any two disjoint voter sets and these common choices are considered the exact
selected alternatives for the combined society. Faithfulness is satisfied by an SCR if
there is only one agent in the society and the SCR chooses her top-ranked alternative.

An SCR satisfies Young’s cancellation property if, for every pair of alternatives, the



number of agents who strictly prefer the first alternative to the second one is equal to
the number of agents who strictly prefer the second alternative to the first one implies

the selection of all alternatives.

We introduce a new property which is referred to as the degree equality; an SCR
satisfies degree equality if, for any two profiles of a finite set of voters, equality between
the sums of the degrees of every alternative under the two profiles implies that the same
alternatives get chosen by the SCR at these two profiles. We show that the Borda rule
is characterized by the conjunction of weak neutrality, reinforcement, faithfulness and
degree equality on the domain of weak preferences. As it is not often easy to show the
independence of neutrality from other axioms when it is used in a characterization, we
could not show that weak neutrality is independent of the other three axioms. We also
show that the Borda rule is the unique scoring rule which satisfies the degree equality.
In addition, we introduce a new cancellation property and show that it characterizes

the Borda rule among all scoring rules.

In the fourth chapter, we study the graduate admissions problem with quota and
budget constraints as a two sided many to one matching market as a continuation of
Karakaya and Koray (2003). One side of the market consists of the departments of a
university, while there is a set of students (applicants) on the other side. Each depart-
ment faces both quota and budget constraints set by the central university administra-
tion. Karakaya and Koray (2003) constructed the departments proposing algorithm,
and showed that if the algorithm stops then the resulting matching is core stable, and
it is possible that the algorithm does not stop while there is a core stable matching.
They also showed that the departments proposing algorithm stops if and only if no
cycle occurs in the algorithm, i.e., a finite sequence of matchings does not repeat itself
infinitely many times in the algorithm. The existence of either a departments-optimal
or a students-optimal matching is not guaranteed in the graduate admissions problem

with both quota and budget constraints.

We construct the students proposing algorithm, and show that the students propos-
ing algorithm ends up with a core stable matching if the algorithm stops. However,
there exist graduate admissions problems for which there exist core stable matchings,

while neither the algorithm proposing side being the departments nor that proposing



side being the students stops. We show that the students proposing algorithm stops
if and only if no cycle occurs in the algorithm. Moreover, we show that there is no
random path to core stability for the graduate admissions problem, i.e., a core stable
matching can not be reached starting with an arbitrary matching and satisfying a ran-
domly chosen blocking coalition at each step. We also consider the model with the
assumption that the students care only about their reservation prices and do not derive
any further utility from money transfers over and above their reservation prices. Under

this model we get results similar to those obtained in the general model.

The thesis is organized as follows: Hedonic coalition formation games and cover
formation games are studied in chapter 2. Chapter 3 studies Nash implementation of
social choice rules which are implementable via a Rechtsstaat. Chapter 4 studies the
characterization of the Borda rule on the domain of weak preferences. Graduate ad-
missions problem with quota and budget constraints is studied in chapter 5. Chapter 6

constitutes the conclusion. Omitted proofs and examples are provided in the Appendix.



CHAPTER 2

HEDONIC COALITION FORMATION GAMES AND
COVER FORMATION GAMES

2.1 Hedonic coalition formation games

2.1.1 Introduction

Individuals act by forming coalitions under certain economic and political circum-
stances such as the provision of public goods in local communities or forming clubs
and organizations. One way to describe such an environment is to model it as a (pure)

hedonic coalition formation game.

A hedonic coalition formation game consists of a finite non-empty set of players
and a list of players’ preferences where every player’s preferences depend only on the
members of her coalition.! An outcome of such a game is a partition of the player
set (coalition structure) -that is, a collection of coalitions whose union is equal to the
set of players, and which are pairwise disjoint. Marriage problems and roommate
problems (Gale and Shapley (1962), Roth and Sotomayor (1990b)) can be seen as
special cases of hedonic coalition formation games, where each agent only considers

who will be his/her mate. In fact, hedonic games are reduced forms of general coalition

'The dependence of a player’s utility on the identity of members of her coalition is referred to as
the “hedonic aspect” in Dreze and Greenberg (1980), and the formal model of (pure) hedonic coalition
formation games was introduced by Banerjee et al. (2001) and Bogomolnaia and Jackson (2002).
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formation games where, for each coalition, how its total payoff is to be divided among

its members is fixed in advance and made known to all agents.

Given a hedonic coalition formation game, the main concern is the existence of
partitions that are stable in some sense. The stability concepts that have been mostly
studied so far are core stability and Nash stability of coalition structures.> A partition
is core stable if there is no coalition each of whose members strictly prefers it to the
coalition to which she belongs under the given partition. A partition is said to be
Nash stable if there is no player who benefits from leaving her present coalition to join
another coalition of the partition which might be the “empty coalition” in this context.
Note that a Nash stable partition need not be core stable, and a core stable partition

need not be Nash stable.

One needs to focus attention on two key points when considering or comparing sta-
bility concepts, namely: (i) who can deviate from the given partition (e.g., a coalition
of players as in core stability, a singleton as in Nash stability), and (i1) what the devia-
tors are entitled to do (e.g., form a new, self standing coalition as in core stability, join
an already existing coalition -irrespective of how the incumbent members are effected-
as in Nash stability). For hedonic coalition formation games, the second point can be
examined by introducing membership rights. Sertel (1992) introduced four possible
membership rights in an abstract setting. Given a hedonic game and a partition, the
membership rights employed specify the set of agents whose approval is needed for

each particular deviation of a subset of players.

Under free exit-free entry (FX-FE) membership rights, every agent is entitled to
make any movements among the coalitions of a given partition without taking any
permission of members of the coalitions that she leaves or joins. An example in the
context of the roommate problem would be that whenever an agent finds a place in a
room she has the right to move into that room. So, two agents in different rooms may
benefit by exchanging their rooms without asking anyone else. Another example is
that a citizen of a country which is a member of the EU can move to another country

in the EU without the permission of either country.

2See the taxonomy introduced in Sung and Dimitrov (2007) for all stability concepts which were
studied in the literature.



Under free exit-approved entry (FX-AE) membership rights, an agent can leave
her current coalition without the permissions of her current partners, but she can join
another coalition only if all members of that coalition welcome her, that is her joining
does not hurt any member of the coalition she joins. A typical example is provided by
club membership, where a member of a club can leave her current club without taking
into account whether her leaving hurts some members of that club. However, she needs
the approval of the members of a club that she wants to join. Another example is that
of aresearcher, who is a member of a research team and can leave the team without the
permissions of other team members, while her joining another team is usually subject

to the approval of that team’s present members.

Under approved exit-free entry (AX-FE), every agent is endowed with rights, under
which she can leave her current coalition only if that coalition’s members approve her
leaving, while her joining requires no one else’s permission. An example would be
that of an army recruiting volunteers. Every healthy citizen in a certain age interval
may enter the army if he volunteers to do so, but is not allowed to freely exit once he

is in.

Under approved exit-approved entry (AX-AE) membership rights each player
needs to get the unanimous permission of the coalition that she leaves or joins. A
typical example is that of a criminal organization. An agent who is a member of a
criminal organization cannot leave it without permission as she may have information
about some secrets of the organization. Similarly, one cannot join a criminal organiza-

tion without permission by a similar token.

Note that under the definition of Nash stability, a player can deviate by leaving her
current coalition to join another coalition of the partition without any permission of
the players of the coalitions that she leaves or joins, although she might thereby be
hurting some of these. In other words, Nash stability is defined under FX-FE member-
ship rights. Other stability concepts that consider individual deviations under different
membership rights have already been studied in the literature. That is, individual sta-
bility is defined under FX-AE membership rights (Bogomolnaia and Jackson (2002)),
contractual Nash stability is defined under AX-FE membership rights (Sung and Dim-
itrov (2007)), and contractual individual stability is defined under AX-AE membership
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rights (Bogomolnaia and Jackson (2002) and Ballester (2004)).

The aim of this section is to study coalitional extension of Nash stability under FX-
FE membership rights, referred to as strong Nash stability, which has not been studied
yet. Note that strong Nash stability is not defined in Sung and Dimitrov (2007) but

they identified some weaker versions of strong Nash stability.

Two approaches will be employed while defining a strongly Nash stable partition.
The first approach is posed in terms of an induced non-cooperative game. A hedo-
nic coalition formation game induces a non-cooperative game in which each player
chooses a “label”; players who choose the same label are placed in a common coali-
tion. Strong Nash (respectively, Nash) stability in this induced game then corresponds
to strong Nash (respectively, Nash) of the corresponding partition in the coalitional
form of the game. The second approach is posed in terms of movements and reacha-
bility. A partition is said to be strongly Nash stable if there is no subset of players who
reach a new partition via certain admissible movements such that these players strictly

prefer the new partition to the initial one.

Banerjee et al. (2001) introduced the top-coalition and the weak top-coalition prop-
erties and proved that each property suffices for a hedonic game to have a core stable
partition. They also showed that if a game is anonymous and separable, then it has
a core stable partition. Bogomolnaia and Jackson (2002) introduced two conditions,
called ordinal balancedness and weak consecutiveness. They showed that if a hedo-
nic game is ordinally balanced or weakly consecutive, then there exists a core stable
partition. Iehlé (2007) introduced pivotal balancedness and showed that it is both a
necessary and sufficient condition for the existence of a core stable partition. Alcalde
and Romero-Medina (2006) introduced four different restrictions on the domain of
each player’s preferences called as the union responsiveness condition, the intersec-
tion responsiveness condition, singularity and essentiality. They showed that each of
these conditions is sufficient for the existence of a core stable partition under the as-
sumption that players have strict preferences. Alcalde and Revilla (2004) proposed a
condition in each player’s preferences called as top responsiveness and showed that
if each player’s preferences satisfy top responsiveness then there exists a core stable

partition. Dimitrov et al. (2006) studied core stability in a hedonic game if players’
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preferences derived from appreciation of friends or aversion to enemies. They showed
that if players’ preferences are derived from either appreciation of friends or aver-
sion to enemies then a core stable partition exists. Pdpai (2004) studied unique core
stability of hedonic games and introduced single-lapping property. She showed that
single-lapping property is both a necessary and sufficient condition for a hedonic game
to have a unique core stable partition. We note that none of the above conditions which
suffices for the existence of a core stable partition guarantees the existence of a strongly

Nash stable partition.

Bogomolnaia and Jackson (2002) showed that a hedonic game which is additively
separable and satisfies symmetry has a Nash stable partition. However, Banerjee et al.
(2001) provided an example of a hedonic game which is additively separable and satis-
fies symmetry, but has no core stable partition. Burani and Zwicker (2003) considered
descending separable preferences posed in the form of several ordinal axioms, and
showed that it is sufficient for the simultaneous existence of Nash and core stable par-

tition.

The weak top-choice property is introduced by borrowing the definition of weak
top-coalition from Banerjee et al. (2001), and shown that it guarantees the existence of
a strongly Nash stable partition (Proposition 1). It is also shown that descending sep-
arable preferences suffice for a hedonic game to have a strongly Nash stable partition

(Proposition 2).

How the concept of strong Nash stability changes under different membership
rights is also examined. It is shown that under FX-AE membership rights, a partition is
FX-AE strictly strongly Nash stable if and only if it is strictly core stable (Proposition
3), showing that core stability entails an FX-AE rights structure. Sung and Dimitrov
(2007) defined contractual strict core stability and showed that for any hedonic game
such a partition always exists. It is proved that under AX-AE membership rights, a
partition is AX-AE strictly strongly Nash stable if and only if it is contractual strictly

core stable (Proposition 4).

This section is organized as follows: Section 2.1.2 presents the basic notions. Sec-
tion 2.1.3 introduces the weak top-choice property and provides an existence result.

Descending separable preferences are studied in section 2.1.4 and it is shown that
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there always exists a strongly Nash stable partition if players have descending sep-
arable preferences. In section 2.1.5, strong Nash stability under different membership

rights is studied. Section 2.1.6 concludes.

2.1.2 Basic notions

Let N = {1,2,...,n} be a nonempty finite set of players. A nonempty subset H of
N is called a coalition. Let i € N be a player, and 0; = {H C N | i € H} denote the
set of coalitions each of which contains player 7. Each player 7 has a reflexive, com-
plete and transitive preference relation >; over o;. So, a player’s preferences depend
only on the members of her coalition. The strict and indifference preference relations
associated with >=; will be denoted by >=; and ~;, respectively. Let == (>=1,...,>,)

denote a preference profile for the set of players.

Definition 1 A pair G = (IV, >) denote a hedonic coalition formation game, or sim-

ply a hedonic game.

Given a hedonic game, it is required that the set of coalitions which might form to

be a partition of V.

Definition 2 A partition (coalition structure) of a finite set of players N = {1,...,n}

isasetm = {Hy, Hs,..., Hx} (K < nis a positive integer) such that
(i) forany k € {1,..., K}, H, # 0,
(i) s, Hx = N, and

(iii) for any k,l € {1,..., K} with k # [, H, N H, = 0.
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Let TI(N) denote the set of all partitions of N. Given any 7 € II(N) and any
i € N, let (i) € 7 denote the unique coalition which contains the player i. Since we
are working with hedonic games, for any player ¢ € NN, the preference relation >, over
o; can be extended over the set of all partitions ITI(/N) in a usual way as follows: For
any 7,7 € II(N), [r =, 7] if and only if [ (i) =; 7(7)].

Definition 3 Let G = (N, =) be a hedonic game. A partition 7= € II(N) is individu-
ally rational for player i if (i) =, {i} and is individually rational if it is individually

rational for every player ¢ € N.

A partition is individually rational if each player prefers the coalition that she is a

member of to being single, i.e., each agent i prefers (i) to {i}.

Definition 4 Let G = (IV, ) be a hedonic game. A partition 7 € II(V) is core stable
if there does not exist a coalition 7" C N such that for all i € T, T >; 7(4). If such a

coalition 7T exists, then it is said that T blocks .

Definition 5 Let G = (NN, =) be a hedonic game and 7 € II(V) a partition. We say
that a player ¢ € N Nash blocks r if there exists a coalition H € (7 U {(}) such that
H U{i} »; m(i). A partition is Nash stable if there does not exist a player who Nash
blocks it.

Two approaches will be employed while defining the strongly Nash stable partition.

In the first one, the non-cooperative game induced by a hedonic game is used.
Every hedonic game induces a non-cooperative game as defined below.

Let G = (N, =) be a hedonic game with | N |= n players. Consider the follow-
ing induced non-cooperative game I'“ = (N, (S;);en, (R;)ien) which is defined as

follows:

e The set of players in I'“ is the player set N of G.

3A partition m € II(N) is strictly core stable if there does not exist a coalition 7' C N such that for
alli € T, T »; w(i), and for some ¢ € T, T >; w(¢). If such a coalition T exists, then it is said that T
weakly blocks .
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o Let L ={Ly,...,L,} be a finite set of labels such that m = n + 1. Take L to
be the set of strategies available to each player, so S; = £ foreach i € N. Let
S = [Licn Si denote the strategy space. A strategy profile s = (s1,...,5,) € S
induces a partition 7 of IV as follows: two players ¢, of /N are in the same

piece of 7, if and only if s; = s; (2 and j choose the same strategy according to

s).

e Preferences for I'C is defined as follows: a player i prefers the strategy profile s
to the strategy profile $, sR;$, if and only if 7,(i) »=; m4(7), i.e., player i prefers
the coalition of those who choose the same strategy as she does according to s,
to the coalition of those who choose the same strategy as she does according to

8.

Now, the main stability concept of this section will be defined by using the induced

non-cooperative game approach.

Definition 6 Let G = (N, =) be a hedonic game. A partition 7 € II(N) is strongly
Nash stable if it is induced by a strategy profile which is a strong Nash equilibrium of

the induced non-cooperative game I'“.

Thus, the Nash equilibria of I'“ correspond to the Nash stable partitions of G, and
the strong Nash equilibria of I'“ correspond to the strongly Nash stable partitions of
G. Hence, strong Nash stability has an analogue in non-cooperative games, and it is

the strongest natural stability notion appropriate to the context of hedonic games.

If the strategy profile s which induces the partition 7, is not a strong Nash equilib-
rium of I'“, then there is a subset of players H C N which deviates from s (according
to s) and this deviation is beneficial to all agents in /1. In such a case, it is said that [/

strongly Nash blocks the partition 7.

The second approach is posed in terms of movements and reachability which is

derived from the first one.

Let 74 be a partition which is induced by the strategy profile s, and H C N be a

deviating subset of players. The deviation of these players from s can be explained as
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movements among the coalitions of the partition 7, where the allowable movements

of these players are as follows:*

(i) All players in H ¢ 74 choose a label which is not chosen by any player under
s.> Let § denote the strategy profile that is obtained by this deviation. Now, H € ;.
This deviation means in terms of movements that all players in H leave their current
coalitions and form the coalition H € w4 (which is the movement used in the definition

of blocking in the core stability).

(i) All players in H ¢ choose the label which is chosen by members of a coalition
T € 7, Let s denote the strategy profile that is obtained by this deviation. Now,
(HUT) € 7z This deviation means all players in H leave their current coalitions and

join another coalition 7" of 7, so foreach i € H, w3(i) =T U H.

(iii) Players in H ¢ m partition among themselves as { H1, ..., H;}, and for any
k € {1,...,t}, agents in H choose the label which is chosen under s by an agent
j € Hyy1, where itis taken ¢ + 1 = 1. Let 5 denote the strategy profile that is obtained
by this deviation. Now, for any i € Hy, ms(i) = (m5(j) \ H) U Hj. This deviation
means individual players in H (or subsets of H) exchange their current coalitions in
the partition 7. For instance, let H = {i,j} ¢ 7, and player ¢ leaves 7,(¢) and joins
7s(j) \ {j}, and player j leaves 7(j) and joins 7s(7) \ {i}. So, ms(i) = (7s(j) \
{j}) U {i} and ms(j) = (ms(i) \ {¢}) U {j}. Note that more complicated movements

are possible when the size of H increases.’

Given a partition 7 and a subset of players / C N, by any movements of // among
the coalitions of the partition 7, players of H obtain a new partition 7, and it is said

that 7 is reachable from the partition 7 via H.

“Movements of H are coordinated and simultaneous.

5Such a label always exists, since m = n + 1.

®It is possible in here that H € 7.

"Movements of H among the coalitions of the partition 7, can also be explained as follows: Each
player in H leaves the coalition that she belongs under partition 7,. Let 7,7 = {T\ H | T € T,
and T'\ H # ()} denote the set of coalitions after each player in H leaves her current coalition. Now,
individual players or subsets of H can join any coalition (or an empty set) of (7; % U {()}). This
approach is similar to the one given by Conley and Konishi (2002). In their approach, a set of agents
is only allowed to form coalitions among themselves, i.e., individual players or subsets of H are only
permitted to join the empty set. However, in our approach individual players or subsets of H are allowed

to join not only the empty set but also any coalition of 7, .
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Definition 7 Let G = (N, =) be a hedonic game and 7 € TI(/N) be a partition. An-
other partition 7 € (II(IV) \ {r}) is said to be reachable from 7 by movements of a
subset of players H C N, denoted by 7 LN 7, if, for all i, 7 € (N \ H) with i # j,
(i) = 7(j) & 7 (i) = £(5).

Reachability by movements of a subset of agents simply says that agents who are
not deviators are passive, and a non-deviator remains with all former mates who are
not deviators. Notice that a subset of players H D H can do all movements that H
can. Note that for any 7 € II(N) and 7 € (II(N) \ {7}), 7 N, #, ie., given any

partition 7 all other partitions can be reached by movements of the grand coalition V.

Now, the strong Nash stability of a partition can also be defined in terms of move-

ments and reachability.

Definition 8 Let G = (N, =) be a hedonic game. A partition 7 € II(N) is strongly
Nash stable if there does not exist a pair (7, H) (where # € (II(N) \ {r}) and 0 #
H C N) such that

@a) w RN (7 is reachable from 7 by movements of H), and

(ii) forall i € H, 7 (i) =; 7(3).
If such a pair (7, H) exists, then it is said that H strongly Nash blocks 7 (by inducing

).
Note that the two definitions of strongly Nash stable partitions are equivalent (def-

initions 6 and 8).

It is clear that a strongly Nash stable partition is both core and Nash stable. How-
ever, a hedonic game which has a partition that is both core and Nash stable may not

have a strongly Nash stable partition.
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Example 1 Let G = (N, =), where N = {1,2, 3,4} and the preferences of players

are as follows:
(1,4} =1 {1,2} =1 {1,3,4} = {1,3} > {1} = ...8
(2,4} 75 {1,2} 55 {2,3,4} 35 {2} =0 ...,
{1,3} =3 {3,4} =3 {1,2,3} =3 {3} =5 ...,
(3,4} =4 {1,2,4} =4 {2,4} =4 {4} =4 ...

The partitions 7 = {{1,2}, {3,4}} and 7 = {{1, 3}, {2, 4} } are the only partitions
which are both core stable and Nash stable, and there is no partition 7 € (II(N) \
{7, 7}) which is either core stable or Nash stable. However, neither 7 nor 7 is strongly
Nash stable.

Let 5 denote the strategy profile in I'“ which induces the partition 7. So, players
1 and 2 choose the same label under s, say L, and players 3 and 4 choose the same
label under 5, say L. Thus 5 = (L, L,L, L). The strategy profile 5 is not a strong Nash
equilibrium of I'®, since players 2 and 3 deviate from 3 as follows:? Player 2 chooses
label L and player 3 chooses label L. Let § = (L, L, L, L) denote the strategy profile
that is obtained by the deviation of players 2 and 3. Now, the strategy profile 5 induces
the partition 7 = {{1, 3}, {2,4}}.!° This deviation is beneficial to both players 2 and
3, since 7(2) =5 m(2) and 7(3) >3 7(3). Therefore, 7 is not strongly Nash stable.

Now consider the partition 7 = {{1,3},{2,4}}. 7 is not strongly Nash stable,
since players 1 and 4 strongly Nash block the partition 7 by exchanging their current

coalitions, i.e., T LA m,and (1) =1 7(1) and 7(4) >4 7(4).

Hence the partitions 7 and 7 are not strongly Nash stable, whereas they are both

core and Nash stable. Therefore there is no strongly Nash stable partition for this game.

8Note that only individually rational coalitions are listed in a player’s preference list, since remaining
coalitions for the player can be listed in any way.
“Note that players 2 and 3 dislike each other, that is {2} =2 {2,3} and {3} =3 {2,3}.
10This deviation means in terms of movements that players 2 and 3 exchange the coalitions that they
are in under 7, and the partition 7 is reached by this movement.
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Iehlé (2007) introduced pivotal balancedness and showed that it is both necessary
and sufficient for the existence of a core stable partition. As strong Nash stability
implies core stability, and the hedonic game in Example 1 has a core stable partition
but lacks any strongly Nash stable partitions, it follows that pivotal balancedness is a

necessary but not sufficient condition for strong Nash stability.

2.1.3 The weak top-choice property

Banerjee et al. (2001) introduced two top-coalition properties and showed that each

property is sufficient for a hedonic game to have a core stable partition.

Given a nonempty set of players N CN,a nonempty subset H C Nisa top-
coalition of N if for any ¢ € H andany 7' C N with i € T, we have H =i T.
A game G = (N, ) satisfies the top-coalition property if for any nonempty set of
players N C N, there exists a top-coalition of N.

Given a nonempty set of players N CN,a nonempty subset H C N is a weak
top-coalition of N if H has an ordered partition { H', ..., H'} such that

(1) forany ¢ € H' and any 7' C N with i € T,wehave H >; T, and
(ii) forany £ > 1, any ¢ € H* and any ' C N with i € T, we have

T H=Tn0 (U, H") #0.
A game G = (N, ) satisfies the weak top-coalition property if for any nonempty set

of players N C N, there exists a weak top-coalition of N.

For any nonempty set of players H C N, let W (H ) denote the weak top-coalitions
of H. Thus, W () denote the weak top-coalitions of the grand coalition N.

Definition 9 A hedonic game G = (N, ) satisfies the weak top-choice property if
W (N) partitions .
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Proposition 1 If a hedonic game satisfies the weak top-choice property, then it has a

strongly Nash stable partition.

Proof Let G = (N, =) be a hedonic game which satisfies the weak top-choice prop-
erty. Let W(N) = {Hj, ..., Hx} with corresponding partitions { H7, . . ., Hi(l)}, e
{H},...,.H %K)} Clearly, W () is a partition for N since the game satisfies the weak
top-choice property. Let W (/N) = 7*. It will be shown that 7* is strongly Nash stable.
Suppose that 7 is not strongly Nash stable. Then, there exists a nonempty subset of

players H C N which strongly Nash blocks the partition 7*.

Note that H N (Ujil Hj) = 0, since for any j € {1,...,K}, forany i € H}
and any 7' € o;, H; »=; T. Now it will be shown that H N (U]K:1 H?) = {). For
any j € {1,...,K}, any agenti € H ]2 needs the cooperation of at least one agent
in H} in order to form a better coalition than H;. That is, for any < € H; and any
T €o0;, T =; Hj implies T N Hj1 £ (). However, it is known that H N Hj1 = () for all
je{l,....K},so Hn (UL, H?) = 0.

Continuing with similar arguments it is shown that 4 N (UJK:1 H J’“) = () for all
k € {1,...,1}, where [ = max {I(1),...,I(K)}. However, this implies that there
does not exist a nonempty subset of players H C NN which strongly Nash blocks the

partition 7*, a contradiction. Hence 7* is strongly Nash stable. 0

We have constructed examples showing that the weak top-choice property and the
weak top-coalition property are independent of each other.!! If a game satisfies the
weak top-choice property and players have strict preferences, then the game may have

more than one strongly Nash stable partition.

A stronger version of the weak top-choice property can be defined as follows (by
using the definition of top-coalition): A hedonic game G = (N, =) satisfies the top-
choice property if the top-coalitions of the grand coalition N form a partition of .
Now, if a hedonic game satisfies the top-choice property then it has a strongly Nash
stable partition. Moreover, if every player’s best coalition is unique then there exists

a unique strongly Nash stable partition which consists of the top-coalitions of N. We

""These examples are provided in the Appendix.
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have constructed examples showing that the top-choice property and the top-coalition
property (respectively, the weak top-coalition property) are independent of each other.
It is clear that if a hedonic game satisfies the top-choice property then it also satisfies
the weak top-choice property. However, a hedonic game satisfying the weak top-choice

property may fail to satisfy the top-choice property.

An application of the weak top-choice property is Benassy (1982)’s uniform real-
location rule.'? Banerjee et al. (2001) showed that a hedonic game which is induced
by the uniform reallocation rule satisfies the weak top-coalition property, by proving
that any subset N C N is a weak top-coalition of itself. Hence, the weak top-choice
property is satisfied, and the partition {/V} is strongly Nash stable. Note that a hedo-
nic game which is induced by the uniform reallocation rule may violate the top-choice

property.!3

2.1.4 Descending separable preferences

In a well established paper, Burani and Zwicker (2003) study hedonic games when
players have descending separable preferences, and show that such a hedonic game
always has a partition, which is called the rop segment partition, that is both core
and Nash stable. Burani and Zwicker (2003) will be followed to define descending

separable preferences and the top segment partition.'*

Let p : N — N be a permutation of the set of players and assume that p yields a

strict reference ranking of players
P1L> P2 > ... > Dy (2.1)
The following conditions are defined for an individual player’s preferences.

Condition 1. (Common ranking of individuals, CRI) For any three distinct players

pi, pj and py, if p; > py. then {p;, p;} =p, {pi, pr}-

12Gee Banerjee et al. (2001) for details of the hedonic game derived from the uniform reallocation
rule.

13See example 3 (page 152) of Banerjee et al. (2001) for such an example.

14The reader is referred to Burani and Zwicker (2003) for more details of descending separable pref-
erences and the construction of the top segment partition.
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Condition 2. (Descending desire, DD) For any pair p;, p; of distinct players with
pi > p; and for any coalition C' containing neither player p; nor p;, if {p; }UC' =, {p;}
then {p;} UC =, {p:} andif {p;} UC >, {p;} then {p;} UC >, {p;}.

Condition 3. (Separable preferences, SP) A profile of players’ preferences is sep-
arable if, for every i,j € N and every coalition C' such that C' € o; and j ¢ C,
{i,j} =i {i} & CU{j} =i Cand {i, j} =i {i} & CU{j} = C.

Condition SP implies the property of iterated separable preferences.

Definition 10 (Iterated separable preferences) For any player p; and for any two dis-
joint coalitions C' and D with C' > p;, if {p;,d} >, {p;} for every d € D then
CUD ,, C,andif {p;,d} =, {p;} foreveryd € DthenC U D >, C.

Condition 4. (Group separable preferences, GSP) For any player p; and for any
two disjoint coalitions C' and D with C' > p;, if {p;} UD >, {p;} then CUD >, C
and if {p;} UD >, {p;} then CUD >, C.

Condition 5. (Responsive preferences, RESP) For any triple of players p;, p;, p
and for any coalition C' such that p;, p, ¢ C and p; € C, {p;,p;} =p, {p:i,px} if and

only if {p;} UC =, {px} UC and {p;,p;} >p, {pi,pr} if and only if {p;} UC >,
{pr} U C.

Condition 6. (Replaceable preferences, REP) For any pair p;, p; of distinct players
with p; > p, and for any coalition C' containing neither player p; nor p;, if {p;,p;} U
C =y, {p;} then {p;, p;} U C =, {pi} and if {pi, p;} U C =p, {p;} then {p;, p;} U
C >, {pi}.

Condition REP implies descending mutual preferences.

Definition 11 (Descending mutual preferences) For any pair p;, p; of distinct players
with p; > p;, if {pi, p;} =p, {p;} then {p;, p;} =p, {p:} and if {pi, p;} ~, {p;} then
{pispi} = {pi}-
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Definition 12 A profile of agents’ preferences is descending separable if there exists
a reference ordering (2.1) under which Conditions 1 (CRI), 2 (DD), 3 (SP), 4 (GSP), 5
(RESP), and 6 (REP) all hold.

Let G = (N, ) be a hedonic game where players have descending separable
preferences. A partition 7* = {T*, {p;i1}, ..., {pn}} is called a rop-segment partition
which is obtained in terms of the reference ordering (2.1) as follows: First, the rop-
segment coalition T* is formed. Player p,, the first agent in the ordering, belongs to
the top-segment coalition. If the next agent, player p-, strictly prefers being alone to
joining p;, then 7™ is completed and 7% = {p;}. If, however, {p1,p2} =p, {p2},
then player p, is added to 7™. Continue to add players from left to right until a player,
denoted as p;;1, is reached who strictly prefers staying alone to joining the growing
coalition (or until everyone joins, if such an agent p;,; is never reached). The top-
segment coalition is denoted by 7% = {py,...,p;}. Second, let players from p;,; to

pn, €ach form a one member coalition.

Following results are taken from Burani and Zwicker (2003) which will be helpful
while proving that a hedonic game with descending separable preferences always has

a strongly Nash stable partition.

Lemma 1 (Burani and Zwicker (2003), Lemma 1, page 37) Every individually ratio-

nal coalition contains at most | members.

It is shown in Burani and Zwicker (2003) that there exists a coalition () # T** =
{p1,...,ps} contained in 7 such that {p;, p;} >, {p;} holds for each agent p; € T,
where such an agent with the highest index is denoted by py.

Lemma 2 (Burani and Zwicker (2003), Lemma 3, page 38) For each of the players
in T = {p1,...,pr} C T* coalition T* is top-ranked among individually rational
coalitions (or tied for top). Therefore, no deviating coalition can contain any of the

players in T™*.

We will also need the following lemma.
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Lemma 3 For each player p;, € {pit1,...,pn}, {0k} >p. {pj.pr} holds for any
pj €{pPsr1, - oy =T \T™

Proof First, it is shown that the lemma holds for agent p;;;. Consider agent pys..
Since pry1 & 1™, {ps+1} =p;o1 {Ps+1, 2} Then, condition CRI and transitivity of
preferences imply, {psi1} =p,,, {Ps+1, 241} This fact, together with descending
mutual preferences, yields that {p;11} >, , {Ps+1,P41}. Now, by condition CRI,
{1} >py {Pj; P13} holds for any p; € {ps41,...,pi}. Itis also needed to show
independently that {p; 1} >p,,, {pi,pi+1} holds, in case T** = {pi,...,pi—1}. Sup-

Dl+1 {pl-i-l} for all p; € T,
Now, iterated separable preferences imply that (7* U {p;.1}) = i {pi+1} which is

pose not. Condition CRI then implies that {p;, p;11} >

in contradiction with p;; ¢ T*. So, {pi1} >p,, {Pi, P41} also holds. Hence,
{1} ~pii1 {pj7pl+1} for any p; € {pf+1, . mi}

Second, by condition DD, it holds for any p;, < p;i; that {py} >, {pj,px} for
every p; € {ps+1,...,p}. completing the proof. 0J

Our main result with descending separable preferences is now stated and proved.

Proposition 2 Let G = (N, =) be a hedonic game. If players have descending sepa-

rable preferences, then there always exists a strongly Nash stable partition.

Proof Let G = (N, =) be a hedonic game where players have descending separable
preferences. Let 7* be a top-segment partition. It is known by Burani and Zwicker
(2003) that 7 is both core and Nash stable. It will be shown that 7* is strongly Nash
stable. Suppose that 77* is not strongly Nash stable. Then, there exists a pair (7, H)
where 7 € (II(N) \ {#7*}) and ) # H C N such that 7* A, wandforalli € H,
m(i) =; 7 (7). Note that | H |> 1 since 7* is Nash stable.

Since 7* is both core and Nash stable, and it is supposed that H strongly Nash

blocks the partition 7*, another remaining four possible cases will be checked.
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Casel. H C {p;.1,...,pn} and H strongly Nash blocks the top-segment partition
7 by joining T*.1

Since H strongly Nash blocks the partition 7* by joining 7™, (T* U H) >, {p;}
for all p; € H. For any p; € 1™ and any p; € H, p; > p;. So, by condition REP,
it holds for each p; € T™* that (T* U H) >,, {p;}. Hence, (T* U H) would be an
individually rational coalition which contradicts with Lemma 1, since | (T* U H) |> [.
So, there is no subset H of {p; 1, ..., p,} which strongly Nash blocks the top-segment

partition 7* by joining 7™.

Case2. H G {pii1,...,pn}, i € [N\ (T U H)|, and H strongly Nash blocks
the top-segment partition 7* by joining {p; }.!

Since H strongly Nash blocks the partition 7* by joining {p;}, (HU{p:}) >, {p;}
for all p; € H. Note that since 7* is Nash stable, it is true for every p; € H that
{pj} =p, {pj, pi} forall p, € [(H\{p;})U{p:}]. Then, iterated separable preferences
imply that {p;} =, (HU{p;}) forevery p; € H. This s in contradiction with the fact
that H strongly Nash blocks the partition 7* by joining {p;}. Hence, there does not
exist a proper subset H of {p;1, ..., p,} which strongly Nash blocks the top-segment
partition 7* by joining {p; }, where p; € [N \ (T* U H)].

Case3. H C T*,p; € {pi+1,--.,pn}, and H strongly Nash blocks the top-segment
partition 7* by joining {p;}."”

Since H C T* strongly Nash blocks the partition 7* by joining {p;}, (H U
{pi}) »p, T* for all p; € H. This fact, together with Lemma 2, implies that
HNT* =0. Let p, € H be a player such that p, > p; forall p; € (H \ {pn}). Note
that p, # p;, because | H |> 1. Since p, ¢ T**, agent p;, has preferences such that
{pn} >=p, {pn,pi}. Condition CRI yields that {py,p;} =, {pn,p:} because p; > p;,
and transitivity of preferences implies, {ps} >,, {pn,p:}. Then, descending mutu-

ality implies, {p;} =, {p;,p:} holds for each p; € H. This result combined with

BSo,m={T*UH} ={{N}}if H = {pi41,...,pn},and 7 = {T* U H,{{p;} | p € N\ (T* U
H)}}ifH 7C¢ {P1s1, -}

1630, 7 = {T*, H U {pih, {{p;} | p; € N\ (T* U H U {p]Hif H £ N\ (T* U {p,}), and
= (T HU{p}} it H = N\ (T* U {pi}).

Now, w = {T*\ H,H U {pi}. {({p} | p; € N\ (T* U {p)}} if H C T, and = = {H U
{pi}: {{pj} [ pj € NN(T*U{p:})}}if H = T™.
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condition SP implies that H >, (H U {p;}) for every p; € H. Now, transitivity of
preferences yields for each p; € H that H >, T*. However, this is in contradiction
with 7* being core stable, i.e., H would block the partition 7*. Hence, there is no sub-

set H of T* which strongly Nash blocks the top-segment partition 7* by joining {p;},
where p; € {pi11,---,Pn}-

Cased4. H = H, U Hy, where H; C T* and Hy G {pi11,...,pn}. i € N\ (T*U
H,), and H strongly Nash blocks the top-segment partition 7* by joining {p;}.'*

So, (H U {pi}) =p; T* forall p; € Hy, and (H U{p;}) =, {px} forall p, € H>.
Since 7* is Nash stable, it holds for each p, € Hj that, {py} =, {px,pn} for any
pr € [(Ha \ {px}) U {pi}]. Now, Lemma 2 implies that H; N T** = (), i.e., H; C
{pf+1,-..,m}. This fact, together with Lemma 3, implies that, for each p;, € Ho,
{pe} >p. {pr,p;} for any p; € H;. Hence, for each p, € H it holds that {p.} =,
{pk, p.} forall p, € [(H\{px})U{pi}]- Then, iterated separable preferences imply that
{pe} =p, (H U {p;}) forall p, € H,, which is the desired contradiction. Hence, there
does not exist H = H,UH,, where H; C T™* and H, ; {pi+1,- -, pn}, which strongly
Nash blocks the top-segment partition 7* by joining {p;}, where p; € N \ (T* U H,).

Since the four cases cover all possibilities it is concluded that there does not exist
a subset of players ) # H C N which strongly Nash blocks the top-segment partition

m*. Hence 7 is strongly Nash stable. 0J

Based on Proposition 2, one can argue that Burani and Zwicker (2003) were study-
ing the wrong solution concept; they really should have been applying their methods to
strong Nash stability. We have constructed examples showing that preferences are de-

scending separable and the weak top-choice properties are independent of each other.

Burani and Zwicker (2003) also studied hedonic games on additively separable and

symmetric domain of preferences where players’ preferences are purely cardinal.

18SO, ™ = {T* \ Hl,H U {pl},{{pj} | pj S [N \ (T* U H2 U {pz})]}} if H1 g T*, and T =
{HU{p:},{{p;} | p; € [N\ (T* U Hy U {p;})]}}if Hi = T*. Note that H; # () by case 2 and
H; # () by case 3.
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Definition 13 A hedonic game G = (N, >) is additively separable if for any i €
N, there exists a function v; : N — R such that for any H,T € ¥;,, H =; T &

ZjeH vi(j) > ZjeT v;(j), where v;(j) = 0 fori = j.

Definition 14 An additively separable hedonic game satisfies symmetry if for any

i,j € N, vi(j) = v;(i).

Definition 15 A profile of additively separable and symmetric preferences is purely
cardinal if there exists an assignment of individual weights w(7) to the players for

which the following vector v represents the profile: for all 7, 7 € N,

(i) = w(i) 4+ w(j) ifi#j
’ 0 ifi=j

For any player 4, her individual weight w() represents the fixed individual contri-
bution that she brings to any member of the coalition that she belongs. Purely cardinal
preferences are descending separable, where the reference ranking (2.1) of agents is the
permutation that ranks them in non-increasing order of their weights. Hence, a hedo-
nic game with purely cardinal preferences always has a strongly Nash stable partition.
However, we have provided an example showing that purely cardinal preferences is

not a necessary condition for a game to have a strongly Nash stable partition.

We have constructed examples showing that preferences being purely cardinal and
the weak top-choice property are independent of each other. Note that players’ prefer-

ences need not be purely cardinal for a separable'® and anonymous game.

A hedonic game G = (N, ) satisfies anonymity if for any i € N, forany H,T €
Yywith | H |=|T |, H~;T.

19 A hedonic game is separable if players’ preferences satisfy Condition 3 (SP).
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Lemma 4 [f a hedonic game is anonymous, additively separable and symmetric, then

players’ preferences are purely cardinal (hence has a strongly Nash stable partition).

Proof Let G = (N, ) be an anonymous, additively separable and symmetric hedonic
game. Anonimity and additive separability imply that for any ¢ € N and any j, k €
(N\{i}) with j # k we have v;(j) = v;(k). This fact, together with symmetry, implies
that for any pair ¢, j € N and any k € (N \ {4, j}) we have v;(k) = v;(k). So, players’

preferences for this game is represented by the functions v = (v;);e v illustrated below:

11213 n—2|n—1|n

v | 0|lx|x x T |

vy |lx | 0| T T|x

v3|lx|x|0 T T | x
Upn—1 | T | x| T 0

I I A A T z |0

where z € R.

Players’ preferences are purely cardinal, i.e., there exists an assignment of individ-
ual weights w(7) to the players, where for any player i € N, w(i) = §. So, for any
i,7 € N,vi(j) =v;(i) =w(i) +w(j) =xifi # j,and v;(j) = 0if i = j.

It is clear that = 0 if and only if w(i) = 0 for all ¢ € N, x > 0 if and only if
w(i) > 0foralli € N, x < 0if and only if w(i) < 0 forall i € N. So, any partition
m € II(N) is strongly Nash stable if w(i) = 0 for all ¢ € N. The partition { N} is
strongly Nash stable if w(i) > 0 for all i € N and the partition {{i} | i € N}, which
contains all singletons, is strongly Nash stable if w(i) < 0 forall i € V. U

It is clear by the proof of Lemma 4 that if a hedonic game is anonymous, additively
separable and symmetric then it satisfies the top-choice property.?’ However, we have
given an example showing that a hedonic game which satisfies the top-choice property

may not be additively separable and symmetric.

201f 7 = 0, then every partition is a top-coalition of N. If z < 0, then {{i} | i € N'}, which contains
all singletons, is the top-coalition of N. If z > 0, then the grand coalition is a top-coalition of itself.
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The strong Nash stability for hedonic games is not the unique stability notion which
has not been studied earlier. In fact, two other stability notions for hedonic games can
be defined.

Definition 16 Let G = (NN, ) be a hedonic game and 7 € II(/N) a partition. We say
that a subset of players 7' C N coalitionally Nash blocks  if there exists a coalition
H € (w U {0}) such that for each player i € T, (H UT) »; m(i). A partition is
coalitionally Nash stable if there does not exist a subset of players which coalitionally
Nash blocks it.

Definition 17 Let G = (N, =) be a hedonic game. A partition 7 € II(N) is core-
exchange stable if it is core stable and there does not exist a subset of players 7' C N
such that individual players in 7" or subsets of 7' (strongly Nash) block 7 by exchanging

their current coalitions under 7.

It is clear that these two concepts are independent of each other, and each of these
concepts is weaker than strong Nash stability. Moreover, a partition is both coalition-

ally Nash stable and core-exchange stable if and only if it is strongly Nash stable.

We have constructed an example showing that neither the weak top-choice property
nor the preferences being descending separable is necessary for a hedonic game to have
a strongly Nash stable partition. Hence, it is an open question to find a condition which

is both necessary and sufficient for the existence of a strongly Nash stable partition.

2.1.5 Strong Nash stability under different membership rights

Different societies may have different membership rights, and a designer employs a
certain rights structure to achieve some aims. This section studies how the concept
of strong Nash stability changes under different membership rights. We will see that

strong Nash stability under different membership rights fits with the earlier concepts.

FX-FE strong Nash stability is what has been called strong Nash stability in previ-

ous sections. Now, its strict version is defined.
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Definition 18 Let G = (N, ) be a hedonic game. A partition 7 € II(N) is free exit-
free entry strictly strongly Nash stable (FX-FE strictly strongly Nash stable) if there
does not exist a pair (7, H) (where 7 € (II(N) \ {n}) and ) # H C N) such that

1) LN (7 is reachable from 7 by movements of H),
(ii) forall ¢« € H, 7 (i) =; 7(i), and for some i € H, 7 (i) »; m(i).

Definition 19 Let G = (N, =) be a hedonic game. A partition 7 € II(V) is free
exit-approved entry strongly Nash stable (FX-AE strongly Nash stable) if there does

not exist a pair (7, H) such that
(i) r 2L 7,
(ii) for all i € H, #(i) =; 7(i), and
(iii) for all i € H, for all k € (#(i) \ {i}), #(k) =4 7 (k).

Definition 20 Let G = (NN, ») be a hedonic game. A partition 7 € II(N) is approved
exit-approved entry strongly Nash stable (AX-AE strongly Nash stable) if there does

not exist a pair (7, H) such that
Q) 2 7,
(i) forall i € H, (i) >; 7(i), and
(iii) forall k € (N \ H), 7(k) = 7(k).

Definition 21 Let G = (NN, =) be a hedonic game. A partition 7 € [I(N) is approved
exit-free entry strongly Nash stable (AX-FE strongly Nash stable) if there does not
exist a pair (7, H) such that

i 5 1,
(ii) forall ¢ € H, 7 (i) =; 7(i), and

(iii) forall i € H, for all j € (w (i) \ {i}), 7(j) =; 7(j).
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Strict versions of concepts given in definitions 19-21 are defined by replacing item
(ii) with [for all i € H, 7(i) =; (i), and for some ¢ € H, 7(i) >; 7(7)].

Lemma 5 Let G = (N, >=) be a hedonic game. If a partition 1 € II(N) is FX-AE

strongly Nash stable, then it is core stable.

Proof Let G = (N, *>) be a hedonic game and 7 € II(/V) be an FX-AE strongly
Nash stable partition. Suppose that 7 is not core stable. Then, there is a coalition
T C N suchthatforalli € T, T >; n(i). Let # = {T,{{H\T} | H € 7 and
H\ T # (}} denote the partition that is obtained from coalition 7"s blocking of 7.
Now, it is shown that the pair (7, T) satisfies the three conditions of FX-AE strong
Nash stability. First, it is clear that 7 is reachable from 7 by 7', i.e., 7 l> 7. Second,
since it is supposed that 7" blocks m, i.e., forany ¢« € T, T" = 7(i) >=; (). Third,
forany i € T, 7(i) \ {i} = T\ {i}. So, forall i € T, forall k£ € (7(i) \ {i}), we
have 7 (k) = m(k). Hence, the pair (7, 7") satisfies the three conditions of FX-AE
strong Nash stability, in contradiction with 7 being FX-AE strongly Nash stable, i.e.,
coalition 7" would block the partition 7 under FX-AE membership rights. Hence, 7 is

core stable. O

Note that this lemma implies that if a partition is FX-AE strictly strongly Nash
stable, then it is strictly core stable. Now, it is shown that the converse of this lemma

is true under the assumption that players have strict preferences.

Lemma 6 Let G = (N, ) be a hedonic game where players have strict preferences.
If a partition m € 1I(N) is core stable, then it is FX-AE strongly Nash stable.

Proof Let G = (N, ) be a hedonic game where players have strict preferences. Let
7w € II(NV) be a core stable partition. Suppose that 7 is not FX-AE strongly Nash
stable. Then, there exists a pair (7, H) such that players in H strongly Nash block the
partition 7 by inducing 7 under FX-AE membership rights.

Since 7 is core stable, H cannot block 7. So, H strongly Nash blocks the parti-
tion 7 by either players in H (or subsets of ) exchange their current coalitions that

they belong under 7 or all players in H leave their current coalitions and join another

31



coalition of the partition 7. In either case, there exists a coalition 7' € 7 such that
TN H # (). Since the membership rights is FX-AE and players have strict preferences,
we have 7(j) >; m(j) for all players j € (1" \ H). This result, together with the fact
that H strongly Nash blocks the partition 7, implies that 7 (i) >; 7 (i) forall ¢ € T.
However, this is in contradiction with 7 being core stable, i.e., coalition 7" would block

the partition 7. Hence, 7 is FX-AE strongly Nash stable. 0

This lemma is not true without the assumption of strict preferences.

Example 2 Let G = (N, =), where N = {1, 2} and players’ preferences are as fol-
lows: {1,2} ~; {1}, and {1, 2} >, {2}.

The partition 7 = {{1},{2}} is core stable. However 7 is not FX-AE strongly
Nash stable, since player 2 strongly Nash blocks the partition 7 by joining {1} under
FX-AE membership rights, i.e., 7 N {{1,2}}, and 7(2) =2 7(2) and 7(1) ~;
m(1).

Lemma 6 implies, if a partition is strictly core stable, then it is FX-AE strictly

strongly Nash stable. The following proposition is an implication of lemmata 5 and 6.

Proposition 3 Let G = (N, =) be a hedonic game. A partition 1 € II(N) is FX-AE
strictly strongly Nash stable if and only if it is strictly core stable.

Note that if players have strict preferences then a partition is FX-AE strictly
strongly Nash stable if and only if it is FX-AE strongly Nash stable, and a partition
is strictly core stable if and only if it is core stable. Proposition 3 shows that core

stability entails an FX-AE rights structure.

Let G = (N, >) be a hedonic game. A partition 7 € II(N) is contractual core
stable (defined in Sung and Dimitrov (2007)) if there does not exist a coalition 7' C N
such that
(i)foralli € T, T »=; m(i) and
(i) forall j € (N \ 7). 7(j) \ T =, ().
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Let G = (N, =) be a hedonic game. A partition 7 € II(N) is contractual strictly
core stable (defined in Sung and Dimitrov (2007)) if there does not exist a coalition
T C N such that
() foralli e T, T »=; w(i),

(ii) for some i € T, T >; (i), and
@iii) forall j € (N\T), 7(4)\ T =; 7(j).

Lemma 7 Let G = (N, =) be a hedonic game. If a partition 7 € II(N) is AX-AE

strongly Nash stable, then it is contractual core stable.

Proof LetG = (N, ) be ahedonic game and w € II(/V) be an AX-AE strongly Nash
stable partition. Suppose that 7 is not contractual core stable. Then, there is a coalition
T C Nsuchthatforalli € T, T >; w(i) and forall j € (N \T), w(§) \ T >=; 7(j).

Let# = {T,{{r(j)\T} | j € (N\T)and 7(j) \ T # (0} } denote the partition
that is obtained from coalition 7”’s blocking of 7. Now, it is shown that the pair (7, T")
satisfies the three conditions of AX-AE strong Nash stability. The first two conditions

are trivially satisfied, i.e., 7 L # andforalli € T, T = 7(7) =i m(1).

Let H={j€N|j¢Tandj € n(i)forsomei € T}and H ={j € N | j ¢
7(i) forany i € T'}. Note that H, H and T are pairwise disjoint,and N = HU H UT.
Since it is supposed that 7" blocks 7 and this blocking does not hurt any player, for any
j € H we have 7(j) =; 7(j). Note that H = {j € N | #(j) = n(j)}, so for any
j € H wehave 7(j) ~; 7(j). Hence, for any k € (N'\ T) we have 7 (k) = 7(k), i.e.,
the third condition of AX-AE strong Nash stability is also satisfied by the pair (7, 7).
Hence, the pair (7, 7") satisfies the three conditions of AX-AE strong Nash stability,
this contradicts with 7 being AX-AE strongly Nash stable. That is, 7" would strongly
Nash block the partition 7 under AX-AE membership rights. Hence, 7 is contractual

core stable. 0
By this lemma, it can be said that if a partition is AX-AE strictly strongly Nash

stable, then it is contractual strictly core stable. Now, it is shown that the converse of

lemma 7 is true under the assumption that players have strict preferences.
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Lemma 8 Let G = (N, ) be a hedonic game where players have strict preferences.
If a partition 1 € 1I(N) is contractual core stable, then it is AX-AE strongly Nash
stable.

Proof Let G = (N, ) be a hedonic game where players have strict preferences. Let
7 € TI(N) be a contractual core stable partition. Suppose that 7 is not AX-AE strongly
Nash stable. Then, there exists a pair (7, H) such that H strongly Nash blocks the
partition 7 by inducing 7 under AX-AE membership rights.

Let "= {i € N | (i) # (i)} denote the set of agents whose coalitions changed
from 7 to 7. Note that 7' # (). Now, for any i € T' we have 7 (i) >=; 7 (i), since players
have strict preferences and it is supposed that 7 is not AX-AE strongly Nash stable.

However, each player in 7' leaves her current coalition under 7, and forms the
coalitions 71, ..., Tk which are pairwise disjoint and their union is equal to 7" such
that for any k € {1,..., K}, Ty € #. Now, forany k € {1,..., K}, we have, for all
i € Ty, Ty, >; m(i) and forall j € (N \T}), m(j) \ Tx =; m(j). This is in contradiction
with 7 being contractual core stable, i.e., forany k € {1,..., K}, a coalition T} would
block the partition 7 without hurting other players. Hence, 7 is AX-AE strongly Nash
stable. O

Lemma 8 may fail to be true if the assumption that players have strict preferences
is relaxed.?! By lemma 8, it can be said that, if a partition is contractual strictly core
stable, then it is AX-AE strictly strongly Nash stable. The next proposition follows

from lemmata 7 and 8.

Proposition 4 Let G = (N, =) be a hedonic game. A partition m € 1I(N) is AX-AE

strictly strongly Nash stable if and only if it is contractual strictly core stable.

Sung and Dimitrov (2007) showed that for any hedonic game a contractual strictly
core stable partition always exists. This result together with Proposition 4 implies that

an AX-AE strictly strongly Nash stable partition always exists for any hedonic game.

2IConsider example 2. The partition 7 = {{1},{2}} is contractual core stable. However, it is not
AX-AE strongly Nash stable, since 7 =0 # = {{1,2}}, and #(2) »» 7(2) and #(1) ~; 7(1).

34



Note that, if a partition is AX-FE strongly Nash stable, then it is AX-AE strongly
Nash stable. This fact and lemma 7 imply, if a partition 7 € II(N) is AX-FE strongly

Nash stable then it is contractual core stable. However, the converse is not true.

Example 3 Let G = (N, >), where N = {1,2} and players’ preferences are as fol-
lows: {1} =1 {1,2}, and {1, 2} >, {2}.

The partition 7 = {{1},{2}} is contractual core stable. However 7 is not AX-FE
strongly Nash stable, since player 2 strongly Nash blocks the partition 7 by joining
{1} under AX-FE membership rights, i.e., 7 B s = {{1,2}}, and 7(2) >4 7(2) and
7(2) \ {2} = 0, i.e., there is no player that player 2 needs to get a permission to leave

from the coalition 7(2).%

2.1.6 Conclusion

In this section, we studied hedonic coalition formation games where each player’s pref-
erences rely only upon the members of her coalition. A new stability notion under free
exit-free entry membership rights, referred to as strong Nash stability, is introduced
which is stronger than both core and Nash stabilities studied earlier in the literature.
Strong Nash stability has an analogue in non-cooperative games and it is the strongest
stability notion appropriate to the context of hedonic coalition formation games. The
weak top-choice property is introduced and shown to be sufficient for the existence of
a strongly Nash stable partition. It is also shown that descending separable preferences
guarantee the existence of a strongly Nash stable partition. Strong Nash stability under

different membership rights is also studied.

22The partition 7 = {{1,2}} is AX-FE strongly Nash stable since player 2 does not permit player
1 to leave from {1,2}. However, 7 is not individually rational, since {1} =; #(1). So, there is no
individually rational and AX-FE strongly Nash stable partition for this game.
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2.2 Cover formation games

2.2.1 Introduction

In this section, we define cover formation games as an extension of hedonic coalition
formation games. A collection of coalitions is referred to as a cover if its union is equal
to the set of players. Thus, a player can be a member of several different coalitions in a
cover formation game, whereas a player can be a member of only one coalition under
a hedonic coalition formation game. For instances, a researcher can be a member
of several research teams at the same time, and an individual may be a member of
several clubs or she may have more than one nationalities. A country possibly has

memberships of some free trade agreements.

A cover formation game consists of a finite set of players, each of whom is en-
dowed with preferences over nonempty collections of coalitions each of which con-
tains herself. We define stability concepts based on individual movements as well as

movements by a subset of players under different membership rights.

Although purely cardinal preferences guarantee the existence of an FX-FE strongly
Nash stable partition for hedonic coalition formation games (by Proposition 2), purely
cardinal preferences do not even guarantee the existence of an FX-FE Nash stable
cover for cover formation games (Lemma 9). We introduce the notion of a top-choice
property for cover formation games and show that it suffices for the existence of an

FX-FE strongly Nash stable cover (Proposition 5).

We show that if players have additively separable preferences, then there exists an
FX-AE Nash stable cover (Proposition 6). We also show that there always exists an
AX-AE strictly strongly Nash stable cover for any cover formation game (Proposition
7).

This section is organized as follows: Section 2.2.2 presents the basic notions. Re-

sults are given in Section 2.2.3, and Section 2.2.4 concludes.
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2.2.2 Basic notions

Let N = {1,2,...,n} be a nonempty finite set of players. A nonempty subset H of N
is called a coalition. Let i € N be a player, and 0; = {H C N | i € H} denote the set
of all coalitions each of which contains player i. For any player i, let ¥; = (277\ {0})
denote the non-empty power set of o;. Each player 7 has a reflexive, complete and
transitive preference relation =; over ;. So, a player’s preferences depend only on
the members of her coalitions, i.e., each player considers only who will be her partners
in the coalitions that she belongs, and she is not interested in what other coalitions her

partners belong.

The strict and indifference preference relations associated with >; will be denoted
by >~; and ~;, respectively, and defined as follows: For all X' (i), Y(i) € %,
[X (i) =; Y(i)] if and only if [X (i) =; V(i) and not Y (i) =; X(7)], and
[X(i) ~ Y(i)] if and only if [X'(i) =; V(i) and V(i) =, X (i)}

Let == (>1,...,>,) denote a preference profile for the set of players.

Definition 22 A pair £ = (N, ) denote a cover formation game.

Given a cover formation game we are interested in the coalitions that might form.
We require that the union of the coalitions be equal to the set of agents, i.e., we require

that the set of coalitions be a cover of V.

Definition 23 We say that a set of coalitions © = {H | H € (2V\{0})} is a cover of
Nif Uyyeo H = N.

Let U(N) denote the set of all covers of N.** Givenany © € ¥(N)andany i € N,
welet©(i) = {H € O | i € H} denote the set of all coalitions each of which contains
the player ¢ under cover ©. The preference relation >~; of player ¢ over YJ; can be

extended over the set of all covers ¥ (V) in a usual way: For any covers ©, 0 € ¥(N),
[© =, O] if and only if [O(i) =; O(3)].

23We abuse notation that we also use >=; to denote preferences of agent i over %;.
24We note that a partition is also a cover since the union of the coalitions in a partition is equal to the
set of agents. So, II(N) & ¥(N).

37



Given a cover formation game, our concern is the existence of covers which are
stable in some sense. We will define some stability concepts based on individual as

well as coalitional deviations under different membership rights.

Definition 24 Let £ = (IV, =) be a cover formation game. A cover © € V¥(N) is
individually rational for player i if ©(i) =; {i} and is individually rational if it is

individually rational for every player: € N.

A cover is individually rational if each player prefers the set of coalitions that she

belongs to being single, i.e., each agent i prefers O(i) to {i}.

We will employ two approaches while defining FX-FE strongly Nash stable cover.
In the first one, we will use the non-cooperative game induced by a cover formation

game.
Every cover formation game induces a non-cooperative game as defined below.

Let E = (N, ) be a cover formation game with | N |= n players. Consider
the following induced non-cooperative game I'? = (N, (S;)ien, (R;)ien) which is

defined as follows:

e The set of players in 'Y is the player set N of E.

o Let L ={Ly,...,L,} be a finite set of labels such that m = 2". We take L to
be the set of strategies available to each player, so S; = £ foreach i € N. Let
S = [Licn Si denote the strategy space. A strategy profile s = (sq,...,5,) € S
induces a cover O, of N as follows: a coalition H belongs to O if and only if all
agents in [ choose the same label as part of their strategies under s, i.e., there

exists L € Lsuchthat L € s; foralli € H.

e Preferences for I'* is defined as follows: a player i prefers the strategy profile s
to the strategy profile $, sR;$, if and only if O4(i) =; ©4(7), i.e., player i prefers
the coalitions of ©,(7) to which she belongs to the coalitions of ©,() that she is

a member of.
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We now define FX-FE Nash and strong Nash stable covers by using the induced

non-cooperative game approach.

Definition 25 Let £ = (IV, =) be a cover formation game. A cover © € V(N) is
FX-FE Nash stable (respectively, FX-FE strongly Nash stable) if it is induced by a
strategy profile which is a Nash equilibrium (respectively, strong Nash equilibrium) of

the induced non-cooperative game I'Z.

Thus, the Nash equilibria of I'? correspond to the Nash stable covers of F, and the

strong Nash equilibria of I'® correspond to the strongly Nash stable covers of E.

If the strategy profile s which induces the cover Oy is not a Nash equilibrium (re-
spectively, strong Nash equilibrium) of I'?, then there is a player i € N (respectively, a
subset of players H C N) which deviates from s (according to s) and this deviation is
beneficial to agent i (respectively, all agents in H). In such a case, it is said that © Nash
blocks (respectively, H strongly Nash blocks) the cover ©, under FX-FE membership
rights.

The second approach is posed in terms of movements and reachability.

We first explain what we mean by individual movements. Let ©, be a cover which
is induced by the strategy profile s, and ¢« € N be a deviating agent. The deviation of
player < from s can be explained as movements among the coalitions of the cover ©; as
follows: Player ¢ leaves some of her current coalitions and joins some coalitions that
she does not belong under ©,. We let Bo_ (i) C ({B € O, | i € B} U {0}) ** denote
the set of coalitions that player i leaves, and Tg_ (i) C ({T € O, | i ¢ T} U {0}) %
denote the set of coalitions that player ¢ joins by her individual movements among the

coalitions of ©,. Note that following cases are possible:

(i) Bo, (i) # 0 and He_ (i) # (), that is player i leaves some coalitions that she is
a member of under O, and joins some coalitions that she is not in under O, by her

individual movements.

BThat is, Be, (i) C (04(i) U {0}).
®That is, Te, (i) C [(Os \ Os(i)) U {0}].
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(i) Be, (i) = 0 and He, (i) # 0, that is player ¢ does not leave any coalition that
she is in under ©4 and joins some coalitions that she is not a member of under O by

her individual movements.

(i) Be, (i) & ©(i) and He, (i) = 0, that is player i leaves some coalitions that
she is in under O and does not join any coalition that she is not in under O by her

individual movements.

So, it is not possible to have both Be_ (i) = () and He, (i) = () by individual

movements of player ¢ € V.

Secondly, we will define what we mean by movements of a subset of players () #
H C N among the coalitions of a cover ©,. Given a cover O, and a subset of players
H C N, agents of H coordinate among themselves, and some players of / leave some
of their current coalitions and some players of H join some coalitions that they are not
in under ©,. Note that movements of H are simultaneous. Again we use the notation
that for any i € H, Be, (i) C ({B € O, | i € B} U {(}) denote the set of coalitions
that player ¢ € H leaves, and 7o, (i) C ({T € ©, | i ¢ T} U {(}) denote the set of

coalitions that player ¢ € H joins by movements of  among the coalitions of ©;.

We note that it is possible that for all i € H, Be,(i) = 0 and To,(i) = 0 by
movements of a subset of players I C N. That is, each agent in /7 keeps her existing
coalitions ©,(7) and does not join any coalition that she is not in under Oy, but agents

in H form new coalitions 1, . .., Hx among themselves such that U]Zif H, = H and
forany k € {1,..., K}, H, ¢ O;.

Given a cover O and a subset of players H C N, by any movements of H among
the coalitions of ©, players of H obtain a new cover © € (¥(N)\ {©}), and it is said

that © is reachable from the cover © via H.

Definition 26 Let £ = (N, =) be a cover formation game and © € W(NV) be a cover.
Another cover © € (U(N) \ {©}) is said to be reachable from © by movements of
a subset of players H C N, denoted by © A, O, if, for any j,k € (N \ H) and any
coalition T" € © with j, k € T there exists a coalition T € © such that J, k€ T.
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Reachability by movements of a subset of agents says that a non-deviating agent
remains with all former mates who are not deviators. Notice that a subset of players
H D H can do all movements that H can. Note that for any covers ©, O € U(N) we

N 7’
have © — ©O.

In the sequel we use the notation that Be (i) C ({B € © | i € B}U{(}) denote the
set of coalitions that player ¢ leaves, with a generic coalition B € Bg(i) and a generic
player b € B, and To(i) € ({T € © | i ¢ T} U {0}) denote the set of coalitions to

which player ¢ joins, with a generic coalition 7' € Hg (i) and a generic player t € T

We now define FX-FE strong Nash stability of a cover in terms of movements and

reachability.

Definition 27 Let £ = (NN, >=) be a cover formation game. A cover © € V(N) is FX-
FE strongly Nash stable if there does not exist a pair (0, H ) (where © € (U(N)\{0})
and () # H C N) such that

(1) © ENYS) (© is reachable from © by movements of H), and

(i) forall i € H, ©(i) =; O(i).
If such a pair (©, H) exists, then it is said that H strongly Nash blocks © under FX-
FE membership rights (by inducing 0).

Given a cover formation game, note that a cover is FX-FE Nash stable if there is no
singleton coalition that blocks it in the above sense, i.e., a cover is FX-FE Nash stable if
there is no player such that it is beneficial for her to make individual movements among
the coalitions of the given cover without taking into account that her movements may

hurt some of other players.?’

?"Note that the two definitions of FX-FE (strongly) Nash stable covers are equivalent (definitions 25
and 27).
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We now define strong Nash stability under other membership rights.

Definition 28 Let £ = (IV, =) be a cover formation game. A cover © € V(N) is
FX-AE strongly Nash stable if there does not exist a pair (©, H) such that

e e,
(i) for all i € H, ©(i) =; O(i), and

(iii) for all s € H,all T € To(i) and all t € T, O(t) =, O(1).
If such a pair (©, H) exists, then it is said that H strongly Nash blocks © under FX-
AE membership rights (by inducing 0).

Definition 29 Let £ = (IV, =) be a cover formation game. A cover © € W(N) is
AX-AE strongly Nash stable if there does not exist a pair (6, H) such that

i e e,
(i) forall i € H, ©(i) =; O(i), and

(iii) for all j € (N'\ T), ©(j) =, O(j).
If such a pair (©, H) exists, then it is said that H strongly Nash blocks © under AX-
AE membership rights (by inducing 0).

Definition 30 Let £ = (IV, =) be a cover formation game. A cover © € W¥(N) is
AX-FE strongly Nash stable if there does not exist a pair (@, H) such that

i e Lo,
(i) for all i € H, ©(i) =; O(i), and

(iii) for all i € H, all B € Bo(i) and all b € B, O(b) =, O(b).
If such a pair (@, H) exists, then it is said that H strongly Nash blocks © under AX-
FE membership rights (by inducing 0).
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Since movements of a deviating subset of players / are simultaneous, we assume
for above definitions that complete movements of H are first announced, then know-
ing these movements, players of the coalitions that members of H leave and/or join
approve or disapprove these movements if they are entitled with such a right. There
may exist a player j € (N \ H) such that for some i,h € H (possibly i = h), j € B
for some B € Bg(i) and j € T for some T € Tg(h), i.e., movements of H may affect

player j via both coalition B that 7 leaves and coalition 7" to which h joins.

If we restrict our attention to singleton coalitions for the concepts given in defini-

tions 28-30, we obtain corresponding Nash stable notions.

We can define strict versions of concepts given in definitions 27-30 by replacing
item (ii) with [for all i € H, ©(i) =; ©(i), and for some i € H, O(i) =; O(i)].

2.2.3 Results

We will study the existence of (strongly) Nash stable covers under different member-

ship rights.

Bogomolnaia and Jackson (2002) showed that for hedonic coalition formation
games if players’ preferences are additively separable and symmetric?® then there ex-
ists an FX-FE Nash stable partition. We know by Proposition 2 that for hedonic coali-
tion formation games if players have purely cardinal preferences® then there always
exists an FX-FE strongly Nash stable partition. A question arises that whether these

results hold for cover formation games.

2These properties are given in definitions 13 and 14, respectively. Since we are working with cover
formation games, if players’ preferences are additively separable, then a player ¢ compares two col-
lections of coalitions X (i), V(i) € % as follows: [X(1) =; V(i)] <= [ ex.xexn)vili) =
2 jevivey( Vi(4)], where v; : N — R is a function.

2See definition 15 and recall that purely cardinal preferences are descending separable.
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Lemma 9 Purely cardinal preferences do not guarantee the existence of an FX-FE

Nash stable cover for cover formation games.

Proof We will provide a cover formation game where players have purely cardinal

preferences, but has no FX-FE Nash stable cover.

Let E = (N,>), where N = {1,2,3} and individual weights are w(1) = —15,
w(2) = —65 and w(3) = 115. So, additively separable and symmetric preferences of

players are represented by the following functions v = (v;);en:

1 2 3
U1 0| —80 | 100
vy | —80 0| 50
vy | 100 50 0

We will show that there does not exist an FX-FE Nash stable cover.>° Suppose that
there exists a cover © which is FX-FE Nash stable.

Note that any cover including {1, 2,3} (respectively, {1,2}) is not FX-FE Nash
stable, since player 2 benefits by leaving {1, 2, 3} (respectively, {1,2}). So, {1,2,3} ¢
©and {1,2} ¢ ©.

If {2,3} € O, then we must have that {1,2, 3} € O, otherwise player 1 benefits by
joining {2, 3}. However we know that {1,2,3} ¢ ©,s0{2,3} ¢ O.

If {2} € ©, then we must have that {2,3} € O, otherwise player 3 benefits by
joining {2}. However we know that {2,3} ¢ ©, so {2} ¢ ©.

So, we have that {1,2,3} ¢ ©, {1,2} ¢ ©, {2,3} ¢ O and {2} ¢ ©O. This means
that there is no coalition in © which contains player 2, in contradiction with that © is

a cover of V. Hence there does not exist a cover which is FX-FE Nash stable. O

39Note that the partition 7 = {{1,3}, {2}} is the unique FX-FE Nash stable partition.
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Although purely cardinal preferences property suffices for the existence of an FX-
FE strongly Nash stable partition for hedonic coalition formation games, it does not

even guarantee the existence of an FX-FE Nash stable cover for cover formation games.

We introduce following notation.
Given a nonempty set of players 7' C N withi € T, let Chy(T) = {¥ € 2T N %) |
Y =; X forall X € (27’ N %;)} denote the set of best alternatives of player i on
(27 N X;) under =;. Thus, for any player i, Ch;(N) denote the set of best alternatives
of player i over 3J; under =;, i.e., Chi(N) ={Y € %; | Y =; X forall X € %;}.

Definition 31 A cover formation game £ = (N, =) satisfies the top-choice property

if the following two conditions are satisfied:

(i) forall: € N,

Ch;(N) |=1, and
(i) forall i € N, all T € Ch;(N) and all j € T, T € Ch;(N).

Proposition 5 If a cover formation game E = (N, =) satisfies the top-choice prop-
erty, then it has a unique FX-FE strongly Nash stable cover, ©*, where for each player
i € N we have ©*(i) = Ch;(N).

Proof Let E = (N,>) be a cover formation game which satisfies the top-choice
property. Let ©* = J,.y Chi(N) = {Hi,..., Hg}. It is clear that ©* is a cover
of N. Note that ©*(:) = Ch;(N) for every player i € N. This fact, together with
the top-choice property, implies that for all © € N we have ©* >~; O for any © €
(U(N)\ {©*}). Hence ©* is an FX-FE strongly Nash stable cover.

Since for any covers O, CR= U(N) we have © Y, © and the game satisfies the
top-choice property, any FX-FE strongly Nash stable cover must include H;,. .., Hx_1
and Hy. Hence, ©* is the unique FX-FE strongly Nash stable cover. 0

We note that the top-choice property is not necessary for a cover formation game

to have an FX-FE strongly Nash stable cover.
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Proposition 6 Let E = (N, >) be a cover formation game. If players have additively

separable preferences, then there always exists an FX-AE Nash stable cover.

Proof Let E = (N, =) be a cover formation game where players have additively
separable preferences. We will construct a cover, ©*, and show that it is FX-AE Nash

stable.

For any player i, let #*(i) = {H € ¥; | >_,cvi(j) > 0} denote the set of
all coalitions each of which gives a non-negative payoff to player :. We define ©* as
follows: ©* = {H C N |foralli € H, H € H*(i)}. That is, a coalition H is in
O~ if each player in H gets a non-negative payoff from being a member of H, and ©*

contains all such coalitions.

We note that ©* is a cover of N.3! Suppose that ©* is not FX-AE Nash stable. Then
there exists a player ¢ € N who Nash blocks ©* under FX-AE membership rights.

Claim I: Te+ (i) = 0, i.e., for any coalition T' € ©* with i ¢ T, there exists a player

t € T such that she disapproves player ¢’s joining to coalition 7.

Proof of Claim 1. Let T € ©* with i ¢ T. Since (T'U {i}) ¢ ©O*, there exists
a player t € T such that (T'U {i}) ¢ H*(1), i.e., 32 jc(rupy) ve(d) < 0. This fact,
together with FX-AE membership rights, implies that player ¢ disapproves player i’s
joining to T'. Hence, 7o« (i) = 0, i.e., player i cannot join any coalition T € ©* such
thati ¢ 7.

Claim 2: Be- (i) = 0, i.e., player 7 does not leave any coalition that she is a member

of under ©*.

Proof of Claim 2. Note that for all H € ©*(i), we have ), vi(j) > 0. So, if
player ¢ leaves a coalition that she belongs under ©*, then she gains at most nothing.
So, it is not a profitable movement for player ¢ to leave a coalition that she is a member
of under ©*. Hence, player ¢ does not leave any coalition that she is in under ©%, i.e.,

Bo- (i) = 0.

3For all i € N we have {i} € H*(i) as v;(i) = 0. So, ©* contains all singleton coalitions, and
hence J; o« H = N.
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By claims 1 and 2, T+ (7) = () and Be-«(i) = (), which is the desired contradiction.
Hence ©* is FX-AE Nash stable.* O

Ballester (2004) showed that there always exists an AX-AE Nash stable partition
for hedonic coalition formation games. Sung and Dimitrov (2007) defined contractual
strict core stability and showed that every hedonic coalition formation game has such
a partition. We know by Proposition 4 that a partition is AX-AE strictly strongly Nash
stable if and only if it is contractual strictly core stable. Hence, an AX-AE strictly

strongly Nash stable partition always exists for any hedonic game.

Following result shows that for cover formation games there always exists an AX-

AE strictly strongly Nash stable cover.®

Proposition 7 There always exists an AX-AE strictly strongly Nash stable cover for

any cover formation game.

Proof Let E = (N, ) be a cover formation game and ©; € V() be an individually

rational cover.>* Now we will define an algorithm.

Period 1. Start with cover O, and search for a pair (O3, H;) (Where O, € (V(N)\
{©1}) and () # H; C N) such that following conditions are satisfied:

@ 61 1 0,
(i) for all i € Hy, ©4(7) >=; ©1(¢), and for some j € Hy, ©2(j) >; ©1(j), and
(iii) for all 1 € (N \ H;), Os(1) =1 6, (1).

If there exists such a pair (9, H;), then we go to next period, and next period starts
with ©,. If there does not exist such a pair, then we stop and we say that the result of

the algorithm is ©);.

32We note that ©* need not to be FX-AE strongly Nash stable.

33We note that our proof is similar to the one given in Sung and Dimitrov (2007) to show the existence
of a contractual strictly core stable partition.

34 An individually rational cover always exists for any cover formation game, e.g., a cover consisting
of only all singleton coalitions is individually rational.
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In general, we have following in Period k:

Period k. Start with O and search for a pair (O, H) such that following con-

ditions are satisfied:
. Hy,
(1) Or — Oky1,

(ii) for all ¢ € Hy, O41(2) =; Ok(i), and for some j € Hy, Op11(j) =, Or(4),

and
@iv) forall [ € (N \ Hk), @k+1(l) >~ @k(l)

If there exists such a pair (O 1, Hy), then we go to next period, and next period
starts with O ,. If there does not exist such a pair, then we stop and we say that the

result of the algorithm is Oy.
Claim. The algorithm stops in a finite period.

Proof of Claim. Note that while passing from one period to another period at
least one player is made strictly better off and no player is made worse off. This
fact, together with AX-AE membership rights, implies that a cycle never occurs in the
algorithm. Note that | o; |= 2""! and let 2! — 1 = c. A player ¢ € N can be better
off at most | ¥; | —1 = 2° — 1 times without being worse off. Hence the algorithm
stops at most at period n2° — n which is finite since n is finite. Hence the algorithm

stops in a finite period.

Let the algorithm stops at period k and Oy, is the result of the algorithm. Clearly
Oy, is an AX-AE strictly strongly Nash stable cover, otherwise the algorithm would not
stop at period k. O

2.2.4 Conclusion

We introduced cover formation games, and for each membership rights we defined
corresponding Nash and strongly Nash stable covers. We showed that purely cardinal

preferences are not sufficient for the existence of an FX-FE Nash stable cover. We
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introduced the top-choice property and showed that it suffices for the existence of an
FX-FE strongly Nash stable cover. We also proved that additively separable prefer-
ences guarantee the existence of an FX-AE Nash stable cover. We also showed that for
any cover formation game there always exists an AX-AE strictly strongly Nash stable

COVET.
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CHAPTER 3

NASH IMPLEMENTATION OF SOCIAL CHOICE
RULES WHICH ARE IMPLEMENTABLE VIA
RECHTSSTAAT

3.1 Introduction

We consider an environment with a finite non-empty set of agents and a finite non-
empty set of alternatives. Each agent has preferences over the set of alternatives where
indifferences are allowed and a list of agents’ preferences is called a preference profile.
A social choice rule (SCR) is a rule which chooses a nonempty subset of the set of
alternatives at each preference profile. An SCR can be seen as a reflection of some
social planner’s values at each preference profile, it gives the list of alternatives which
are considered as desirable for the society, i.e., it makes a choice in the name of the
society. Therefore there may be, and generally will be information problem in the
society and the question of how a planner can learn individuals’ information in order

to implement an SCR, is an interesting one (Hurwicz (1972)).

If the planner has all relevant information, then her problem would just to choose
the alternatives indicated by the SCR. The implementation problem arises when the
preferences of individuals are private information; if the social planner does not know
the preferences of the individuals, so the preference profile of the society, how can she

decide on the alternatives which should be chosen?

50



The planner’s problem is to design a mechanism in order to get the necessary infor-
mation in the process of choosing an alternative. The simple approach to mechanism
design is to ask agents to reveal their preferences. However this approach will gen-
erally be unsatisfactory, because agents will be able to benefit by misreporting their
preferences. As their preferences are private information, this misreporting will not be
detectable. So we can take a more general approach to mechanism design and ask each
individual to send an abstract “message” to the planner and the planner’s problem is to
determine an outcome function, i.e., an appropriate relation between the messages sent
by the agents and the set of alternatives. Hence, a mechanism (game form) consists
of a nonempty strategy set (messages) for each agent and an outcome function which
maps from joint messages into alternatives. A mechanism with a preference profile on
the set of alternatives induces a game in strategic form. A mechanism is said to im-
plement an SCR according to a game theoretic solution concept ¢ if the o-equilibrium
outcomes of the induced game coincide with the set of alternatives assigned by the
SCR at each preference profile of the society. At this point implementation theory is
on a different footing from game theory. Whereas game theory is concerned with how

a given game will be played, implementation theory deals with the design of games.

Maskin (1999) gave a partial characterization of Nash implementability in terms of
two conditions called Maskin monotonicity and no veto power. Maskin monotonicity
turns out to be a necessary condition (which is not sufficient) for Nash implementabil-
ity. In a society with at least three agents, Maskin monotonicity combined with no veto
power is a sufficient condition for Nash implementability, although no veto power con-
dition is not necessary. Danilov (1992) introduced essential monotonicity and showed
that with at least three agents, essential monotonicity is both necessary and sufficient
for an SCR to be Nash implementable when agents have strict preference relations
over the set of alternatives, and Yamato (1992) extended this result to weak domain of
preferences, i.e., agents are allowed to have indifferences over alternatives. Moore and
Repullo (1990) introduced a condition, referred to as Condition i, and showed that
when there are at least three agents in the society, an SCR is Nash implementable if

and only if it satisfies Condition .

Sertel (2002) studied designing rights by introducing the notion of a Rechtsstaat.

A Rechtsstaat is a pair w = (,7), where  and v are functions, called a benefit
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and a code of rights, respectively. Given a pair (z,y) of alternatives and a preference
profile, a benefit gives us the set of all coalitions that strictly prefer y to = at the given
preference profile. Given a pair (x, y) of alternatives, a code of rights specifies a family
v(z,y) of coalitions in which each coalition is given the right to approve the alteration
of x to y. Given a preference profile, a coalition in (z, y) approves the alteration of =
to y if all members of the coalition strictly prefer y to x at the given preference profile.
An alternative x is said to be an equilibrium of a Rechtsstaat at a given preference
profile if, there is no coalition which is given the right to approve the alteration of x
to some other alternative y such that every agent in the coalition strictly prefers y to x.
Sertel (2002) investigated Rechtsstaats which posses invisible hand property and the
preservation of the best public interest which are parallel to the first and the second

theorems of welfare economics.

Koray and Yildiz (2008) studied implementation via a Rechtsstaat. An SCR is
said to be implementable via a Rechtsstaat if, at every preference profile, alternatives
which are chosen by the SCR coincide with the equilibria of the Rechtsstaat. They
characterized the SCRs which are implementable via Rechtsstaats. Moreover, they
identified some properties of a Rechtsstaat which guarantee Nash implementability of
an SCR which is implementable via Rechtsstaat. We note that in the model of Koray
and Yildiz (2008), every agent has strict preference relations over alternatives, and an
SCR may be empty-valued at some preference profiles. However, we allow agents to
have weak preference relations over alternatives, and in our context an SCR is non-

empty valued. Hence, our results are not comparable with the results of Koray and
Yildiz (2008).

We will study Nash implementation of social choice rules which are implementable
via a Rechtsstaat in this chapter. We will introduce a property, called as the intersec-
tion property, and show that every Rechtsstaat satisfying this property has non-empty
equilibria at each preference profile (Proposition 8). We will then show that if an SCR
is implementable via a Rechtsstaat then it is is weakly Pareto optimal and Maskin

monotonic (Proposition 9).

We say that a Rechtsstaat w satisfies equal treatment of equivalent alternatives

(ETFEA), if for any alternatives x and y, and any preference profile such that all agents
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are indifferent between = and y, then x being an equilibrium of w implies that y is
also an equilibrium of w. However, there exists an SCR which is implementable via
a Rechtsstaat that violates ET'E' A, but it is not Nash implementable (Example 5).
We will show that, when there are at least three agents, if an SCR is implementable
via some Rechtsstaat satisfying £T'E'A then it is essentially monotonic, hence Nash
implementable by Yamato (1992) (Theorem 1). We will also show that a Rechtsstaat
w = (B, ) satisfies ET E A if and only if for any alternative = and any alternatives y
and z (different from x) we have v(y, ) = v(z, ) (Proposition 11).

We will define oligarchic Rechtsstaats and show that if an SCR is implementable
via an oligarchic Rechtsstaat then it is Nash implementable when there are three or

more agents, and we will prove that such an SCR also satisfies neutrality.

This chapter is organized as follows. Section 3.2 presents the basic notions. The
notion of Rechtsstaat is introduced in section 3.3. Main results are given in section 3.4.

Section 3.5 introduces oligarchic Rechtsstaats. Section 3.6 concludes.

3.2 Basic notions

For any non-empty finite set 7, we let P(T) = 27, Po(T) = P(T) \ {0}, and #T
denote the cardinality of 7.

Alternatives

Let A denote a non-empty finite set of alternatives, and we assume that # A > 2.

Agents

Let N = {1,...,n} denote a non-empty finite set of agents, and we assume that n > 2.

Preferences
A preference on B C A is a complete, reflexive and transitive binary relation on B.
Let W (B) denote the set of all preferences on B. An n-tuple Ry € W(A)Y is called
a preference profile. For a coalition H € Py(N), Ry € W(A)# denote a preference

profile for coalition . For any 7 € N, let P, denote the strict preference relation
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associated with R; and I; denote the indifference relation associated with R;. For any
R € W(A), let top(R) = {z € A | xRy for all y € A} denote the set of best

alternatives at R.

Social Choice Rules
A social choice rule (SCR) is amap F : W(A)N — Py(A), i.e., for every preference
profile Ry € W(A)"™, an SCR F assigns a non-empty subset F/(Ry) of A.

Mechanism and Implementation
A mechanism (or game form) is an (n + 1)-tuple G = (51, ..., S,; g) where
(i) for each 7 € N, S; is a nonempty set of strategies for player i,

(i)g: SN =8 x--- xS, — Aisamap called the outcome function.

For H € Py(N), S" = [[,.y Si» and an element sy of S is called a strategy
profile for coalition H. A mechanism G = (S, ..., S,;g) at each preference profile

Ry € W(A)Y induces a game (in strategic form) (G, Ry).

A strategy profile sy € SV is called a Nash equilibrium of (G, Ry) if for every
i € N, g(sn)Rig(5;, sn\fiy) for any 5, € S;. Let NE(G, Ry) denote the set of all
Nash equilibria of the game (G, Ry).

Let F' : W(A)Y — Py(A) be an SCR and G = (S5,...,S,;g) a mechanism.
We say that G implements ' in Nash equilibrium if g(NE(G, Ry)) = F(Ry) for
all Ry € W(A)N. We say that F' is Nash implementable if there is a mechanism G

which implements it in Nash equilibrium.
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3.3 Rechtsstaat

Sertel (2002) studied designing rights by introducing Rechtsstaat. We will follow Ser-
tel (2002) to define a Rechtsstaat.

Given N and A, a Rechtsstaat is a pair w = (3,), where /3 and  are functions,

called a benefit and a code of rights, respectively, which are defined as follows:!

e A function 8 : Ax Ax W(A)N — P(Py(N)) is called a benefit and defined as
follows: For any (z,y) € A x Awithx # y, H € Py(N) and Ry € W(A)V,
H € p(x,y; Ry) if and only if y P,z for all i € H. Let f(x, y; Ry) gives us the
set of all willing coalitions for an alteration of z to y at Ry, i.e., f(x,y; Ry) =
{H € Po(N) | yPxforalli € H}.

e A code of rights is a function v : A x A — P(Py(N)) which specifies for every
x,y € Awith x # y, v(x,y) of family of coalitions in which each coalition is
given the right to approve the alteration of alternative x to alternative y, that is,
forany H € Py(N), H € ~(z,y) if and only if the coalition H is given the
right to approve the alteration of x to y. Given any Ry € W (A)Y, we say that
coalition H € v(x,y) approves the alteration of = to y at Ry if and only if y P;x
forall i € H. For any x,y € A, we let y(w,y) denote the set of all minimal
coalitions each of which has the right to approve the alteration of x to y, i.e., for
any H € Py(N), H € y(x,y) ifand only if H € v(x,y) and there does not exist

H S H such that H e ~(x,y).

In the sequel, we assume that a code ~ satisfies following axioms:

(Al)Forall 2,y € Aand all H € Py(N), if H € ~(x,y), then for all H D H we
have H € ~(x,y).2

(A2) For all z,y € A, there exists H € Py(N) such that H € ~(z,y).

!The original definition of Rechtsstaat given in Sertel (2002) also contains a function o : A x A —
P(Po(N)) which is called ability. For any x,y € A with x # y, the ability « gives a family a(x, y) of
coalitions which are able to bring the alteration of alternative x to alternative y. We assume that for any
x,y € Awithz # y, a(z,y) = Po(N). So, we do not include ability in the definition of Rechtsstaat.

2By axiom Al, y is monotonic with respect to the players.
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Axioms Al and A2 imply that for all x,y € A, N € v(z,y), i.e, forall z,y € A,

the grand coalition NV has the right to approve the alteration of x to y.

Given N and A, we let €) denote the set of all Rechtsstaats (on N and A) each of

which satisfies the axioms A1 and A2.

An alternative © € A is an equilibrium of Rechtsstaat w at Ry (defined in Sertel
(2002)) if and only if for ally € (A \ {z}), B(x,y; Rxn) Nvy(z,y) = 0.

Let e(w, Ry) denote the set of equilibria of Rechtsstaat w at Ry € W (A)V.
Following example shows that e(w, Ry) = ) for some w € ) at some Ry €
W (AN,

Example 4 Let N = {1,2,3} and A = {a,b,c}. Letw = (3,7), where 7 is defined
as follows:

ﬁ(% b) = {{1}7 {17 2}7 {17 3}’ {N}}’ ?(av C) = {{2}7 {17 2}7 {27 3}7 {N}}’

Y(b,a) = {{3},{1,3},{2,3}, {N}}. 7(b,c) = {{2}, {1, 2}, {2, 3}, {NV} },

;\7/(07 CL) = {{3}7 {17 3}7 {27 3}7 {N}}’ ?(Cv b) = {{1}7 {1’ 2}7 {17 3}7 {N}}

We consider following profile Ry € W (A)V:

Ry | Ry | Rs
a | b | c
c | a
c | a

Now, a ¢ e(w, Ry) since S(a,c; Ry) N 7(a,c) = {2,3}, b ¢ e(w, Ry) since
B(b,a; Ry) N7(b,a) = {1,3}, and ¢ ¢ e(w, Ry) since (¢, b; Ry) N7(c,b) = {1, 2}.

Hence, ¢(w, Ry) = 0.

We now define another Rechtsstaat & = (3,7), where for any pair x,y € A and a
coalition H € Py(N), H € §(x,y) ifand only if # H > 2. Hence, for every pair z, y €
A we have y(z,y) = {{1,2},{1,3},{2,3},{/N}}. We again consider the profile
Ry € W(A)N. Now, a ¢ (&, Ry) since B(a, c; Ry)N7(a,c) = {2,3},b ¢ ¢(©, Ry)
since 5(b,a; Ry) N7 (b,a) = {1,3}, and ¢ ¢ (i, Rx) since B(c,b; Ry) N7(c,b) =
{1,2}. Hence, (@, Ry) = 0.
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Let Q* C Q) denote the set of Rechtsstaats such that for every w € Q, e(w, Ry) #
() forall Ry € W(A)V.

We will introduce a property, called intersection property, and show that any
Rechtsstaat satisfying this property has non-empty equilibria at every preference pro-
file.

Definition 32 Let w = (3, 7) be a Rechtsstaat. We say that w satisfies the infersection
property if there exists T' € Py(NN) such that for all z,y € A, and all H € y(z,y),

T - H, i.e., m(x,y)E(AXA) 7(3:7 y) 7& @

Proposition 8 Letw = ([, ) be a Rechtsstaat. If w satisfies the intersection property,
then w € Q.

Proof Letw = (B3,7) be a Rechtsstaat which satisfies the intersection property. We
will show that w € Q*. Since w satisfies the intersection property, there exists 7' €
Po(N) such that ' = (", ,ye(axa) 7(x,y). We will show that for all Ry € W(A)Y,
allj € Tandall z € A, if x € top(R;), then = € e(w, Ry).

Let Ry € W(A)N, j € T and x € A be such that € top(R;). Suppose
that + ¢ e(w, Ry). Then, there exist y € (A \ {z}) and H € Py(N) such that
H € [B(z,y; Ry) N y(z,y)l. Since T = (, ,)c(axa) V(@ y), we have T C H.
However, since j € T and x € top(R;), forany y € (A \ {z}) we have zR;y. So,
j ¢ H forall H € 5(z,y; Ry). This contradicts with that H € §(z,y; Ry). That is,
agent j does not approve the alteration of x to y since = € top(R;). So, x € e(w, Ry).
Hence, w € Q*. OJ

Definition 33 An SCR F : W(A)Y — Py(A) is said to be implementable via
Rechtsstaat w (defined in Koray and Yildiz (2008)) if for all Ry € W (A)Y, F(Ry) =

e(w, Ry).

We note that since F'(Ry) # ) for every Ry € W(A)", if F' is implementable via
a Rechtsstaat w, then w € Q*.

57



For example, a dictatorial SCR F'¢ is implementable via dictatorial Rechtsstaat w?.?

3.4 Results

In this section, we will study what properties of a Rechtsstaat implementing an SCR

ensure that the SCR is also Nash implementable.

Definition 34 We say that alternative = strongly Pareto dominates alternative y at
Ry € W(A)N,if x Py foralli € N. For any Ry € W(A)Y, let SPO(Ry) denote
the set of all strongly Pareto undominated alternatives at R. We say that an SCR F'is
weakly Pareto optimal if for all Ry € W(A)N, F(Ry) C SPO(Ry).

Let L(z, R;) = {y € A | zR;y} denote the lower counter set of R, at x € A.
A preference profile Ry € W (A)N is obtained by a monotonic transformation of
Ry € W(AN atz € A, if L(z, R;) C L(x,R;) forall i € N. We let MT(Ry, x)
denote the set of preference profiles which are obtained by a monotonic transformation
of Ry atx € A.

Definition 35 We say that an SCR F' : W (A)"N — Py(A) is Maskin monotonic if for
all Ry, Ry € W(A)YN andall z € F(Ry), if Ry € MT(Ry, x) then z € F(Ry).

Maskin (1999) showed that if an SCR is Nash implementable then it is Maskin
monotonic. He also showed that when #/N > 3, if an SCR satisfies Maskin mono-

tonicity and no veto power condition,* then it is Nash implementable.

The next proposition shows that an SCR which is implementable via a Rechtsstaat

is both weakly Pareto optimal and Maskin monotonic.

3An SCR F¢ : W(A)YN — Py(A) is dictatorial if there exists d € N such that for all Ry €
W(A)N, FY(Ry) = top(Rq), and a Rechtsstaat w? = (3,~9) is dictatorial if there exists d € N such
that for all pairs ,y € A, y(z,y) = {{d}}, where d € N is called the dictator.

*We say that an SCR F : W(A)N — Py(A) satisfies no veto power condition if for all Ry €
W(A)YN and all # € A such that there isi € N, forall j € (N \ {i}), L(z, Rj) = A, thenx € F(Ry).
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Proposition 9 Let F' : W(A)Y — Py(A) be an SCR. If F is implementable via

Rechtsstaat w = (B, 7), then F is weakly Pareto optimal and Maskin monotonic.

Proof Let F: W(A)Y — Py(A) be an SCR which is implementable via Rechtsstaat
w = (B,7). So, forall Ry € W(A)N, F(Ry) = ¢(w, Rn).

Let 2,y € A, Ry € W(A)Y be such that zPy for all i € N. By axiom A2,
we have y(y,z) # 0. So, B(y,z; Ry) N y(y,z) # 0, ie, y ¢ e(w, Ry). As F is

implementable via w, we have y ¢ F'(Ry). Hence, F' is weakly Pareto optimal.

We will now show that F is Maskin monotonic. Let Ry, Ry € W (AN,
2 € F(Ry)and Ry € MT(Ry,z). We will show that z € F(Ry). Since F is imple-
mentable via w and 2 € F(Ry), we have 2 € ¢(w, Ry). Suppose that = ¢ (w, Ry).
So, there exist z € A and H € Py(N) such that H € [3(x, z; Ry) N ~(x, 2)]. Since
EN € MT(Ry,x), ie., foralli € N, L(x,R;) C L(x,ﬁi), we have that the set
of agents who prefer x to z under Ry continues to prefer x to z under Ry. Now,
this fact together with H € f(z, z; EN) implies that for all 7+ € H we have zP;x,
ie., H € B(x,z;Ry). So, H € [B(x,z; Rn) N 7(z, z)], which is in contradiction
with € e(w, Ry). Hence, x € ¢(w, EN) As F' is implementable via w, we have

reF (EN) Hence, F' is Maskin monotonic. O

Let ' : W(A)N — Py(A) be an SCR, and B € Py(A). We say that an alternative
r € Ais essential for i € N in B for F if there exists Ry € W(A)"™ such that
L(z,R;) C Bandx € F(Ry). Let Ess(F, i, B) denote the set of essential alternatives
foriv € N in B for F.

Definition 36 Let /' : W(A)Y — Py(A) be an SCR. We say that F is es-
sentially monotonic if for all Ry, Ry € W(A)N and for all z € F(Ry), if
Ess(F,i, L(z,R;)) C L(z, R;) foralli € N, then z € F(Ry).

Danilov (1992) showed that when # N > 3 and players have strict preference rela-
tions over alternatives, an SCR F' is Nash implementable if and only if it is essentially
monotonic. Yamato (1992) extended this result and showed that when #/N > 3 and
players have weak preferences over alternatives, essential monotonicity is both neces-

sary and sufficient for an SCR to be Nash implementable.
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We now define a new condition on a Rechtsstaat, referred to as the equal treatment

of equivalent alternatives.

Definition 37 Letw = (3, y) be a Rechtsstaat. We say that w satisfies the equal treat-
ment of equivalent alternatives (ETEA) if for all z,yy € A, and all Ry € W (A)Y
with x[;y forall i € N, then [z € e(w, Ry) implies y € e(w, Ry)].

We note that a dictatorial Rechtsstaat satisfies £7T E' A, but it violates no veto power

condition.’

Another example of Rechtsstaat which satisfies £7'E'A but violates no
veto power condition is the weakly Pareto optimal and individually rational Rechtsstaat
wir-wro = (B,vir—wpo) wWith respect to some ag € A, where forany b € (A\{ap}),
Yir—wpo(b,ag) = Po(N), yir—wpo(ao,b) = {{N}}, and for any b,c € (A \ {ao})
with b # ¢, vir—wpo(b,c) = {{N}}. Thus, for any Ry € W (A)N we have () #
e(wrr—wpo, Ry) = {b € A | bR;ap for all i € N} N SPO(Ry), and wrr_wpo

satisfies £'T E A® but it violates no veto power condition.

We now state a lemma which will be useful while determining essential sets of a
subset of alternatives for an SCR that is implementable via a Rechtsstaat, and we will

provide its proof in the Appendix.

Lemma 10 Let F' be an SCR which is implementable via Rechtsstaat w = (3, 7). For
anyi € N, any B € Py(A) and any x € B,

(i)if B# Aand {i} ¢ vy(z,y) forally € (A\ B), then x € Ess(F,i,B),

(ii) if B # A and {i} € v(x,y) for somey € (A\ B), then x ¢ Ess(F,i, B),

(iii) if B = A, then Ess(F,i, B) = A.

An SCR which is implementable via a Rechtsstaat violating £T F'A may not be

Nash implementable as shown by the following example.

Example 5 Let A = {z,y,2}, N = {1,2,3} and w = (3,7) where 7 is as follows:
Yy, 2) =(z,2) = {{3}}, and (2, y) = (2, 2) = 7y, ) = (2, 9) = {{N}}.

SWe say that a Rechtsstaat w satisfies no veto power condition if for all Ry € W (A)Y andallz € A
such that there is ¢ € IV, forall j € (N \ {i}), L(z, R;) = A, then z € ¢(w, Rn).

5So, when #N > 3, an SCR which is implementable via w;r_w po is Nash implementable by
Theorem 1.
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Note that w satisfies the intersection property since for every pair a,b € A and any
coalition H € 7(a,b) we have 3 € H. Hence, w € 2* by Proposition 8. However, w
violates ET'EA.” Consider the profile R y:

Ry Ry R

I?ZJVZ x?y?’z z

T,y

Now, = € e(w, Ry) and xl;y for all i € N. However y ¢ e(w, Ry), since
By, z By) Ny, z) = {3}

We define an SCR F“ as follows: F*(Ry) = e(w, Ry) for all Ry € W(A)N.
We will now show that F“ is not essentially monotonic, hence it is not Nash imple-

mentable. Consider following profiles Ry and }AfN:

Ry | Ry | Rs| Ry | Ry | Rs
Yy Yy 'y Yy Yy T

T,z |\ X, 2| Yy |x, 2| T2 %

We have y € F¥(Ry). Now, Ess(F¥,1,L(y, R)) = Ess(F“,2,L(y, Ry)) =
A by Lemma 10-(iii) since L(y,Rl) = L(y, Rg) = A. By Lemma 10-(ii),
z ¢ Ess(F“3,L(y,Ry)) since + ¢ L(y,Rs) and y(z,2) = {{3}}. So,
Ess(F“,3,L(y, Rs)) = {y}. Note that for all i € N we have Ess(F“, i, L(y, R;)) =
L(y, ]%) However, y ¢ F“’(]fZN) since B(y, z; Ry) N (y, 2) = {3}. Hence, F“ is not

essentially monotonic.

Proposition 10 Let F': W(A)YN — Py(A) be an SCR. If F is implementable via some
Rechtsstaat w = (3,7) satisfying ETEA, then for anyi € N, any Ry € W(A)N and
any x € Awithz € F(Ry), we have Ess(F,i, L(z, R;)) = L(z, R;).

Proof Let F : W(A)N — Py(A) be an SCR that is implementable via some
Rechtsstaat w = (f3,) satisfying ETEA. Let Ry € W(A)Y and z € A be such
that z € F(Ry). We will show that Fss(F,i, L(z, R;)) = L(z, R;) for all i € N.

"Hence, a Rechtsstaat w satisfying the intersection property may violate ETEA.
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It is clear that for all ¢ € N, Ess(F,i, L(z, R;)) C L(z, R;). So, suppose that there
exist j € N andy € L(z, R;) such thaty ¢ Ess(F,j, L(x, R;)), i.e., alternative y is
not essential for agent j in L(xz, R;) for F. So, there is no Ry € W(A)Y such that
L(y,R;) C L(z,R;) and y € F(Ry), that is

forall Ry e W(A)YN, if L(y,R;)C L(z,R;) then y¢ F(Ry). (3.1)

We now consider the preference profile Ry € W(A)N , where for any : € N, R; is
obtained from R; by putting y indifferent to x without changing the ordering of other
alternatives, i.e., for alli € N, 21y, and for any z, ¢ € (A \ {y}), zR;% if and only if

Now, for all i € N we have L(z, R;) U {y} = L(z,R;). So, foralli € N we
have L(z, R;) C L(x, R;), i.e., Ry € MT(Ry,z). Therefore, z € F(Ry) since
x € F(Ry) and F is Maskin monotonic.

Since y € L(z, R;), we have L(z, R;) = L(x, R;). Moreover, since 1 ;, we have
L(z, R;) = L(y, Rj). So, L(y, R;) = L(z, R;) = L(x, R;), e, L(y, R;) = L(z, R;).
This fact, together with the statement in (3.1), implies that y ¢ F'(Ry). However, x1;y
foralli € N and 2 € F(Ry) imply that y € F(Ry), since w satisfies ETEA,
which is the desired contradiction. So, there do not exist j € N and y € L(z, R;)
such that y ¢ Ess(F,j, L(x, R;)). Therefore, for all i € N we also have L(x, R;) C
Ess(F,i, L(z, R;)), and hence E'ss(F,i, L(z, R;)) = L(z, R;). O

We now show that an SCR which is implementable via some Rechtsstaat satisfying

ETE A is essentially monotonic.?

Theorem 1 Let F' : W(A)N — Py(A) be an SCR. If F is implementable via some
Rechtsstaat w = (B,7) satisfying ETEA, then F is essentially monotonic (hence
Nash implementable, when #N > 3).

Proof Let F : W(A)Y — Py(A) be an SCR that is implementable via some
Rechtsstaat w = (3, ) satisfying ETEA. We will show that F' is essentially mono-

tonic.

8For similar results in matching problems, see Kara and Sénmez (1996), Kara and Sonmez (1997)
and Sonmez (1996).
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Let Ry,Ry € W(AN and 2 € A be such that 2 € F(Ry) and
Ess(F,i,L(z,R;)) C L(z,R;) forall i € N. We will show that z € F(Ry).
By Proposition 10, for all i € N we have Fss(F,i, L(x, R;)) = L(x, R;). Hence,
L(z,R;) C L(z, R;) for all i € N. This fact combined with Maskin monotonicity (by
Proposition 9) implies that x € F (ﬁN) So, F'is essentially monotonic. Hence, when
#N > 3, F' is Nash implementable by Yamato (1992)’s result. 0J

Moore and Repullo (1990) showed that when # N > 3, an SCR F' is Nash imple-

mentable if and only if it satisfies Condition .

Definition 38 We say thatan SCR £ : W (A)Y — Py(A) satisfies Condition 1. if there
isa set B C A and for all triplets (i, Ry,a) € N x W(A)" x A such thata € F(Ry),
there is a set C; = C;(a, Ry) such that a € C; C L(a, R;) N B, and conditions (7), (i)

and (7i7) are satisfied:
(i). Let Ry € W(A)N,if C; C L(a, R;) forall i € N, then a € F(Ry).

(ii). Let Ry € W (A)Y, if there exist i € N and ¢ € A such that c € C; C
L(¢,R;),and B C L(c, R;) forall j € (N \ {i}), then ¢ € F(Ry).

(iii). Let Ry € W(A)N, if there exists ¢ € A such that ¢ € B C L(c, R;) for all
i € N, then ¢ € F(Ry).
Next result follows from Theorem 1 and its proof is given in the Appendix.

Corollary 1 Let F : W(A)Y — Py(A) be an SCR. If F is implementable via some
Rechtsstaat w = ((,7) satisfying ETE A, then F satisfies Condition y (hence, when
#N > 3, F'is Nash implementable).

The question of how much KT E A does impose a restriction on a Rechtsstaat is an

interesting one.
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Proposition 11 A Rechtsstaat w = (3, ) satisfies ET E A if and only if v has follow-
ing property:

Forany €A, any yze(A\{z}), (y.2)=v(z2). (2
Proof “=" Letw = (f,7) be a Rechtsstaat which satisfies £T EF'A. Suppose that
~ violates property (3.2). Then there exist x € A and y,z € (A \ {z}) such that

Y(y,x) # 7v(2,2). So, we have that v(y,z) # 7(z,2). Then, at least one of the

following cases occur:
Case 1. There exists H € 7(y, x) such that for all H € Po(H), H ¢ (2, ).
Case 2. There exists H € (2, ) such that for all H € Po(H), H ¢ (Y, x).

If case 1 occurs, then we consider following profile EN:

~

Ry Ry g

‘1.7y7z

AN{z} | A\ {2y, 2}

Now, z € s(w,EN) and yfiz for all i € N. However y ¢ e(w,}A%N) since H €
[8(y, z; Ry) N y(y, )], which is in contradiction with that w satisfies ET EA.

If case 2 occurs, then we consider following profile Ry:

Ry Ry g
T .I,y,Z

AN{z} | A\ {2y, 2}

Now, y € e(w, Ry) and yl;z for all i € N. However z ¢ (w, Ry) since H €
1B(z, z; EN) N ~(z, x)], which contradicts with that w satisfies FT'EA.

“<"Let w = (3, 7) be a Rechtsstaat such that -y satisfies property (3.2). Suppose
that w violates ET EA. Then, there exist z,y € A and Ry € W(A)N with xl,y for
alli € N such that z € e(w, Ry) buty ¢ e(w, Ry). Since y ¢ (w, Ry), there exist
z € (A\ {x,y}) and H € Py(N) such that H € [B(y, z; Rx) N y(y, z)]. The fact
that H € ((y, z; Ry), together with z/;y for all i € N, implies that H € ((x, z; Ry).

64



Since H € 7(y, z) and +y satisfies property (3.2), we have that H € ~(x, z). Hence,
H € [B(z,z; Ry) N y(x, z)] which is in contradiction with that z € £(w, Ry ). O

We note in here that Rechtsstaats w and & given in Example 4 satisfy property (3.2),
so w and @ satisfy ET'E'A. However, as shown in Example 4 that w, o ¢ Q*. Hence,

for a Rechtsstaat w satisfying ET F A we may have w ¢ Q*.

3.5 Oligarchic Rechtsstaats

In this section, we will define oligarchic Rechtsstaats and show that if an SCR is im-
plementable via an oligarchic Rechtsstaat then it is Nash implementable when there

are at least three agents in the society.

Definition 39 We say that a Rechtsstaat w = (3,7%) is oligarchic if there exists
K € Py(N) such that for all pairs ,y € A, 7 (x,y) = {{K}},1e.,v"(x,y) consists

of the coalition K and all of its supersets.

Such a coalition K € Py(N) is called an oligarchy.® For example, for a dictatorial
Rechtsstaat w? we have K = {d}. We note that K = {N'} is also possible.

It 1s clear that an oligarchic Rechtsstaat satisfies the intersection property. So, for

K ¢ Q* by Proposition 8. It is also clear

any oligarchic Rechtsstaat w® we have w
that for an oligarchic Rechtsstaat w® = (3,~v%), v satisfies property (3.2). So, an
oligarchic Rechtsstaat satisfies ETEA.'° Hence, when #N > 3, if an SCR F is
implementable via an oligarchic Rechtsstaat w’ then I is Nash implementable by

Theorem 1.

Definition 40 We say that an SCR F' : W (A)N — Py(A) satisfies neutrality if for any
permutation 7 : A — A and any Ry € W(A)N, we have F((Ry)") = 7(F(Rw)),
where for eachi € N and z,y € A, 7(z)R[7(y) < xR;y.

Note that Rechtsstaats @ and @ given in Example 4 are not oligarchic.
1'Note that an oligarchic Rechtsstaat w’ = (3,7%) satisfies following stronger version of ET E A:
forall z,y € A, all Ry € W(A)N with iy forall k € K, if z € e(w’, Ry) then y € e(w’, Ry).
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Moulin (1983) showed that when #/N > 3, if an SCR F' is Maskin monotonic and
satisfies neutrality then it is Nash implementable. We now show that an SCR which is

implementable via an oligarchic Rechtsstaat satisfies neutrality.

Proposition 12 Let F' : W(A)Y — Py(A) be an SCR. If F is implementable via an
oligarchic Rechtsstaat w* = (3,7%), then F satisfies neutrality.

Proof Let F be implementable via an oligarchic Rechtsstaat w® = (3,7%), Ry €
W(A)N, and v € F(Ry). Let 7 : A — A be a permutation such that 7(z) = .
We will show that y € F((Ry)"). Suppose that y ¢ F((Ry)7). Then, there exist
z € (A\ {y}) and H € Py(N) such that H € [B(y,z; (Rx)") N y(y, z)]. Since wX
is oligarchic with the oligarchy K, we have K C H. So, for all © € K we have 2P y.
Note that {i € N | zPTy} = {i € N | 77 !(2)Pix}. So, for all i € K we have
7Y (2) P, ie., K € B(x, 77 (2); Ry). So, K € [B(z, 77! (2); Rn) Nv(z, 77 1(2))],
which contradicts with that z € F(Ry). Hence, 7(z) = y € F((Ry)"), ie., F

satisfies neutrality. U

Propositions 9 and 12, together with Moulin (1983)’s result, imply that when
#N > 3, if an SCR F is implementable via an oligarchic Rechtsstaat w’ then F

is Nash implementable.

3.6 Conclusion

We studied Nash implementation of an SCR which is implementable via a Rechtsstaat.
We introduced a condition on a Rechtsstaat which is referred to as the equal treatment
of equivalent alternatives (E'T'E'A), and showed that if an SCR is implementable via
some Rechtsstaat satisfying £T E A then it is essentially monotonic, hence Nash im-
plementable via a mechanism when there are at least three agents in the society. We
defined oligarchic Rechtsstaats and showed that if an SCR is implementable via an
oligarchic Rechtsstaat then it is Nash implementable, and we also showed that such an

SCR also satisfies neutrality.
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CHAPTER 4

A CHARACTERIZATION OF THE BORDA RULE
ON THE DOMAIN OF WEAK PREFERENCES

4.1 Introduction

We consider an environment with a non-empty finite set of alternatives and variable
number of finite sets of agents (voters). Each voter is endowed with weak preferences
over the set of alternatives, 1.e., indifferences are allowed. The set of all such preference
profiles of a finite society of voters is referred to as the weak domain of preferences. A
social choice rule (SCR) chooses a nonempty subset of the set of alternatives at each

preference profile for a finite set of voters.

Many different social choice rules have been established to determine which alter-
native(s) should be selected when a preference profile of a society is considered. One
rule that has received a great deal of attention in the literature is attributed to Borda,

Borda (1781), which is also our line of interest in this chapter.

Young (1974) provided an axiomatic characterization of the Borda rule. He showed
that when players’ have strict preferences over alternatives, the Borda rule is charac-
terized by neutrality, reinforcement, faithfulness and Young’s cancellation property.
Hansson and Sahlquist (1976) provided another proof for Young’s characterization of

the Borda rule, again assuming that voters have strict preferences.

67



The main purpose of this chapter is to give a characterization of the Borda rule
on the domain of weak preferences. We introduce a new property, referred to as the
degree equality, that an social choice rule (SCR) satisfies degree equality if, for any
two profiles of a finite set of voters, equality between the sums of the degrees of every
alternative under the two profiles implies that the same alternatives get chosen by the

SCR at these two profiles.

We show that the Borda rule is characterized by the conjunction of weak neutrality,
reinforcement, faithfulness and degree equality on the domain of weak preferences
(Theorem 2). Moreover, the Borda rule is the unique scoring rule which satisfies the
degree equality (Proposition 13). We also introduce a new cancellation property and

show that it characterizes the Borda rule among all scoring rules (Proposition 17).

This chapter is organized as follows: Section 4.2 introduces basic notions. Our
characterization result and its proof are provided in section 4.3. We introduce a new

cancellation property in section 4.4. Section 4.5 concludes.

4.2 Basic notions

Let A be a non-empty finite set of alternatives with #A = m > 3. The universal set
of voters is denoted by positive integers N, and we let A/ denote all finite subsets of N
and N = {1,2,...,n} € N afinite set of voters.

Each voter « € N has a complete, reflexive and transitive preference relation R;
over A. Let W(A) denote the set of all preference relations over A. An n-tuple,
RN = (Ry,...,R,) € W(A)" denote a preference profile for a finite set of voters N,
where #N = n.

For any 7 € N, let P; denote the strict preference relation associated with R; and I;
denote the indifference relation associated with R;,. We let L(A) denote the set of all
strict preference relations over A. An n-tuple, PV = (P;,..., P,) € L(A)" denote a

strict preference profile for a finite set of voters /V.
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Given any z € A and any R € W(A), we let

e U(x,R) ={y € A|yRx} denote the upper contour set of z at R, and

e SU(z,R) ={y € A | yPz} denote the strict upper contour set of = at R.

Forany R € W(A), lettop(R) = {x € A | xRy forally € A} denote the best

alternatives at R.

Definition 41 A social choice rule (SCR) is a map F : |Jy o W(A)N — 24\ {0},
i.e., for every preference profile R € W (A)Y of a finite set of voters N, an SCR F'
assigns a nonempty subset F'(RY) of A.

Thus, our social choice rule operates on a fixed set of alternatives and every finite

set of voters.

For any alternative x and any R € W (A), we let d(x, R) € R, denote the degree

of = at R and is defined as follows:!

_ #SU(z,R) + #U(z,R) +1

dlz, R
( Y ) 2

Let s = (s1,82,...,58n) € R™ denote a score vector, where s; > so > ... > s,
and s; > s,,.

Given a score vector s = (S1,S2,...,8m), ¢ € Aand R € W(A), we determine

the score of = at R, s(z, R) € R, as follows:

Sd(x if d X, R)eZ
s(z,R) = () (z, R) = 2ot
(SLd(m,R)J + SLd(x,R)Hl)/? otherwise
where for any 6 € R, |§] denote the maximal integer which is smaller than or equal to
J.

Given any N € N and any profile RV € W (A)", the total score of x € A at RV,
S(x, RY),is defined by S(z, RY) = 3.y s(z, R;).

'T am grateful to my friend Serhat Dogan for suggesting this definition.
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A scoring rule selects the alternatives with the maximal total score. Plurality rule
is a scoring rule defined by the scoring vector (1,0, ...,0). Inverse plurality rule is a
scoring rule defined by the scoring vector (1,1,...,1,0). Borda rule is a scoring rule
defined by the scoring vector s = (s1, S2, ..., Sy) suchthat s; — sy = sp —s3 = ... =

Sm—1 — Sm» 1.6, Sg — Sk41 = Sgp+1 — Sgao forall 1 <k <m — 2.
We will now define some axioms.

Definition 42 We say that an SCR F’ satisfies neutrality (N) if for any finite set of
voters N, any R € W(A)" and any permutation 7 : A — A, we have F((Ry)7) =
7(F(Ry)), where foreach i € N and z,y € A, 7(z)R[7(y) < zRy.

Definition 43 We say that an SCR F' satisfies weak neutrality (WN) if for any finite
set of voters N, any RY € W(A)N, any x € F(RY) and any permutation 7 : A — A
such that 7(z) = z, we have = € F((Ry)7).

Definition 44 We say that an SCR F’ satisfies anonymity (A) if for any finite set
of voters N, any RY € W(A)" and any permutation o : N — N, we have

F((Ro@))ien) = F((Ri)ien).

Definition 45 We say that an anonymous SCR F’ satisfies continuity (CO) if for any
finite sets of voters N and H, any R € W (A)Y with #F(RY) = 1 and any R €
W (A)H, there exists an integer k (k is sufficiently large) such that F'(R*Y + RY) =
F(RY), where RFN denote the k copies of RY.

Definition 46 We say that an SCR F’ satisfies reinforcement (RE) if for any finite sets
of voters N and H with N N H = (), any RN € W(A)" and any R € W(A)",
F(RN)N F(R") # ( implies that F(RY + R¥) = F(RY) N F(R™), where (RN +
RT) e W(A)NVH,

Definition 47 We say that an SCR F’ satisfies Young’s cancellation (Y-Ca) property
if for any finite set of voters N, any R € W/(A)" such that for all pairs x and y,
#{i € N | xPy} = #{i € N | yP,x}, then we have F(R") = A.

Definition 48 We say that an SCR F satisfies faithfulness (F) if whenever N = {i},
then for any R; € W(A), F(R;) chooses agent i’s most preferred alternative(s), i.e.,
F(R;) = top(R;).
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We now give Young’s characterizations of scoring rules and the Borda rule.

e Theorem (Young (1975)). An SCR F : |Jycp L(A)N — 24\ {0} is a scoring
rule if and only if it satisfies anonymity (A), neutrality (N), reinforcement (RE)

and continuity (CO), where agents have strict preference relations.

e Theorem (Young (1974), Hansson and Sahlquist (1976)). An SCR F
Unen LAY — 24\ {0} is the Borda rule if and only if it satisfies neutral-
ity (N), reinforcement (RE), faithfulness (F) and Young’s cancellation (Y-Ca)

property, where agents have strict preference relations.

For any finite set of voter N, any RY € W (A)Y andany x € A, welet D(z, RY) =
> r,erv d(7, R;) denote the total degree of x at RN,

We now define our degree equality axiom.

Definition 49 We say that an SCR F’ satisfies degree equality (DE) if, for any finite
sets of voters N and N with #N = #N and any RN, RY € W(A)Y, D(z, RN) =
D(z, RN) for all z € A implies F(RY) = F(RY).

An social choice rule (SCR) satisfies degree equality if, for any profiles of two
finite sets of voters with equal cardinality, equality between the total degree of every
alternative under these two profiles implies that the same alternatives get chosen by the

SCR at these two profiles.

Lemma 11 If an SCR satisfies degree equality (DE) then it satisfies anonymity (A).

Proof Let F be an SCR satisfying degree equality (DE). We will show that F' satisfies
anonymity (A). Let RY € W(A)" be a profile for a finite set of voters N and ¢ :
N — N be a permutation of N. Let R7™) = (R,))ien € W(A)N denote the
profile that is obtained from R" by the permutation o. Now, for any € A and any
i € N we have d(z, R;) = d(x, Ry(;)) because R; = R,(; for any i € N. So, we
have D(z, RV) = D(z, R°™)) for all = € A. Since F satisfies degree equality (DE),
F(RU(N)) = F(RY), i.e., F satisfies anonymity (A). O
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We note that an SCR satisfying degree equality (DE) may violate Young’s can-
cellation property (Y-Ca). For instance, let F denote the constant social choice rule
which is defined as follows: For any finite set of voters N and any RY € W (A)V,
F(RN) = {a}, where a € A. Itis clear that F satisfies degree equality (DE), but it
violates Young’s cancellation property (Y-Ca).? Similarly, an SCR satisfying Young’s
cancellation property (Y-Ca) may violate degree equality (DE), such an SCR is pro-
vided in the Appendix.

We now show that degree equality (DE) characterizes the Borda rule among all

scoring rules.

Proposition 13 A scoring rule satisfies degree equality (DE) if and only if it is the

Borda rule.

Proof 1t is clear that the Borda rule satisfies degree equality (DE). For the other part
of the proof, let /" be a scoring rule which satisfies degree equality (DE). Suppose that

F' 1s not the Borda rule.
Let A = {a,b,c} and N = {1,2, 3}. We consider following profiles R~ and R
El EQ §3 Rl RQ RS

a | bclab|abc|abc|ab

b,c| a c c

Note that for all z € A we have D(z, RN) = D(x, RY). So, F(RN) = F(RN)
since F’ satisfies degree equality (DE).

Let s = (s, S2, 83), where s; > sy > s3 and s; > s3. Since it is supposed that F’
is not the Borda rule, we have, s; — sy # s9 — s3. Let t15 = 51 — S and to3 = s9 — S3.

SO, 81 = S3 + t12 + t23 and So = S3 + t23.

The constant social choice rule also satisfies reinforcement (RE) and weak neutrality (WN), and
violates faithfulness (F) and neutrality (N).
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We calculate the total score of every alternative at RY and RV

S(a, RN) = s1 + s5+ 2322 = 355 + 3115 + 213,
S(b, RN) = s2tsa 2(81+S2> = 353+ tig + Stos,
S(c, RN) = 52“3 ot sy = By Lty + St
S(a, RN) = 2(51+52+33) + 8E82 = 3y 4ty + Ttos,
S(b, RN) = (sutsztsay 4 sitss — 30 4 ¢y, 4 Ttog,
S(e, RN) = 2(2t2tn ) | gy = 353 + 2ty + St

Note that S(a, RN) = S(b, RN). This fact, together with s; > s, > s3 and
s1 > s3, implies that S(a, RN) = S(b, RN) > S(c, RN). Then, F being a scoring rule
yields that F(RY) = {a,b}. Hence, F(RY) = {a,b}. Since F is a scoring rule and
F(RY) = {a,b}, we have S(a, RN) = S(b, RY) which in turn yields that t,5 = t,3, a

contradiction. Hence, F' is the Borda rule. OJ

4.3 Main theorem and its proof

We now state our main result which is a characterization of the Borda rule on the

domain of weak preferences, and provide its proof.

Theorem 2 An SCR F : |Jyopy W(A)N — 24\ {0} satisfies weak neutrality (WN),
reinforcement (RE), faithfulness (F) and degree equality (DE) if and only if it is the

Borda rule.

It is clear that the Borda rule satisfies weak neutrality (WN), reinforcement (RE),
faithfulness (F) and degree equality (DE). For the other part, let /' be an SCR satisfying
the given axioms. We will show that F' is the Borda rule. First, we will show that such
an SCR completely depends on the Borda scores. Second, we will show that the SCR
depends on the Borda scores in the right way, i.e., it chooses the alternatives with the
highest Borda score. Hence, our proof is similar to the one given in Hansson and
Sahlquist (1976).
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We take the Borda score s = (m—1,m—3,...,—(m—3), —(m—1)) as in Young
(1974) and Hansson and Sahlquist (1976),% i.e., sf — sf,; =2foralll <k <m —1

m B _ 4
and Y7, sf = 0.

Notice that when the Borda score vector is sZ, then for any R € W(A) we have
> seas(z, R) = 0. So, for any finite set of voters N and any R" € W (A)" we have
> pen S(x, RY) = 0. It is straightforward to check that for any finite set of voters N
with #N = n, any RN € W(A)" and any z € A, we have,’

S(x, RN) = 0if and only if D(x, RY) = [(m + 1)n]/2, 4.1)
S(x, RN) > 0if and only if D(x, RY) < [(m + 1)n]/2, 4.2)
S(z, RN) < 0if and only if D(x, RY) > [(m + 1)n]/2. (4.3)

We will prove that our SCR completely depends on the Borda scores without using
weak neutrality (WN).

For any x € A, let ¥, denote the set of all permutations 7 : A — A such that

7(x) = z, i.e., x is kept fixed.

For any finite set of voters N and any RY € W (A)N, we let RN € W (A)Y denote

the preference profile obtained from R" by reversing each voter’s preferences.

3So0, if mis even then % = (m — 1,...,3,1,—1,-3,..., —(m — 1)), and if m is odd then s¥ =
(m—1,...,2,0,-2,...,—(m —1)).

“Note that any positive affine transformation of s? is also a Borda score vector.

SForany R € W(A) and any x € A,

e if m is even, then we have

- s(z,R) > Oif and only if d(x, R) < 7,
- s(z,R) =0ifand only if d(z, R) = [2 + (% +1)]/2 = =L,
- s(x, R) < Oifandonly if d(z, R) > 3 +1,
e if m is odd, then we have
- s(z,R) > 0ifand only if d(z, R) < L,
- s(z,R) = 0if and only if d(z, R) = =L
m+1

s(z, R) < 0if and only if d(z, R) > ™.
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Lemma 12 Let F' be an SCR which satisfies faithfulness (F), reinforcement (RE) and
degree equality (DE). For any finite set of voters N, any RN € W (A)N and any x € A,
(i) F(RN + RN) = A, and

(i) F( 3, cq. (RN + RY)7) = A,

Proof 1t is given in the Appendix. 0J

Lemma 13 Let F' be an SCR which satisfies faithfulness (F), reinforcement (RE)
and degree equality (DE). For any finite set of voters N and any RN € W(A)N, if
D(z,RN) = Wforallx € A, then F(RN) = A.

Proof Let F' be an SCR which satisfies faithfulness (F), reinforcement (RE) and degree
equality (DE). Let RN € W(A)" be such that forany x € A, D(z, RY) = @ We
will show that F(RY) = A. Consider 2(m — 1)! copies of RV ,® denoted by RN ("1,

Note that by reinforcement (RE) we have F'(RY) = F(R*N(m=Dh),

For any R € W(A) and any z € A, we have d(z,R) + d(z,R) = m + 1.
So, for any z € A and any RY € W(A)Y we have D(z, RY) + D(z,RN) =
(m + 1)n. For any x € A, we now consider the profile > ., (RY + RNy =
> rew, (RY) + ZTE%(}A%N)T — R, +R.,. Forevery a € A, we have D(a, R, +R.)
= D(a, R*N™=DY =(m —1)!(m + 1)n. Then degree equality (DE) implies that
F(R, + R,) = F(RNM-DY By Lemma 12-(ii), we have F(R, + R,) = A.
So, F(R¥Nm=DY = A = F(RN). O

We now show that our SCR completely depends on the Borda scores.

®We note that each copy is taken on a different voter set.
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Lemma 14 Let ' be an SCR satisfying reinforcement (RE), faithfulness (F) and
degree equality (DE). Now, for any finite sets of voters N and H, any RN € W (A)Y
and any R € W(A)H, if for all v € A, S(z,RYN) = S(z, R), then we have
F(RYN) = F(RT).

Proof Let N and H be finite voter sets with ##N = nand #H = h,and RY € W (A)Y
and R € W(A)H be such that for all z € A, S(z, RY) = S(z, RY). We will show
that F(RY) = F(RY).

We know that for any 2 € A, S(z, RN + RN) = S(z, RN) + S(x, RN) = 0.
Since for all z € A, S(z,RY) = S(z, R"), we have S(z, R") + S(z, RY) = 0
forall z € A. So, S(z, R® + RN) = 0 for all z € A. Then, by (4.1), we have
D(z, R" + RN) = [(m 4 1)(n + h)]/2 for all z € A, where there are n + h voters at
the profile R + RN . This fact together with Lemma 13 implies that F(RN +R7) = A,

Now we have that

FRYY = F((RM)NnA,
— F(RY)NF(RN 4+ R™),

—_——
A

— F(RY +RY + R™),
= F(RN + RY)nF(R™),

—_——
A

= ANF(RY),
= F(R"),

where F(RY + RY) = A by Lemma 12-(i). Hence, F(RY) = F(RH). O

Hence, an SCR satisfying reinforcement (RE), faithfulness (F) and degree equality
(DE) completely depends on the Borda scores.

It is left to prove that an SCR satisfying weak neutrality (WN), reinforcement (RE),
faithfulness (F) and degree equality (DE) depends on the Borda scores in the right way.

We will first prove some lemmata without using the weak neutrality axiom.

76



Lemma 15 Let ' be an SCR satisfying faithfulness (F), reinforcement (RE) and
degree equality (DE). For any finite set of voters N, any RN € W (A)N and any
x € A, followings are true:

(i) If D(z, RN) = "FU% then F( . (RY)) = A.

(ii) If D(z, RN) < m“)" Lthen F(Y, .y (RY)) = {z}.

(iii) If D(z, RN) > m+l> Lthen (Y, g (RV)) C A\ {a}.

Proof It is given in the Appendix. 0

For any =,y € A with z # y, let ¥, denote the set of all permutations 7 : A — A
such that 7(z) = z and 7(y) = v, i.e., x and y are kept fixed.

Lemma 16 Let F' be an SCR which satisfies reinforcement (RE), faithfulness (F) and
degree equality (DE). Now, for any finite set of voters N, any RN € W(A)N and any
z,y € A, if D(w, RY) = D(y, RN) < "% then (3, oy, (RY)7) = {z,y}.

Proof It is given in the Appendix. 0

Lemma 17 Let F' be an SCR which satisfies reinforcement (RE), faithfulness (F) and
degree equality (DE). Now, for any finite set of voters N, any RN € W(A)Y and
any ,y € A, if D(z, RN) < D(y,RY) < (mH) , then y ¢ F(ZTG\I/”(RN)T) and
v € F( Zrexpzy(RN)T)'

Proof It is given in the Appendix. U

We will now have some results by using weak neutrality (WN).

Proposition 14 Let F' be an SCR which satisfies weak neutrality (WN), reinforcement
(RE), faithfulness (F) and degree equality (DE). Now, for any finite set of voters N,
any RN € W(A)YN and any x € A, if D(z, RV) > mH) then v ¢ F(RY).

Proof Let F' be an SCR which satisfies weak neutrality (WN), reinforcement (RE),
faithfulness (F) and degree equality (DE). Let N be a finite set of voters. Let RV €
W (A)N and x € A be such that D(z, RY) > ™" Suppose that = € F(RY).
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Since D(z, RY) > "tV we have z ¢ F(Y .y (RY)7) by Lemma 15-(iii).
However, x € F ((RN )T) for each 7 € ¥, by weak neutrality (WN). Then, = €
F(Y, ey, (RY)7) by reinforcement (RE), a contradiction. Hence, z ¢ F(RY). O

Lemma 18 Let ' be an SCR which satisfies weak neutrality (WN), reinforcement
(RE), faithfulness (F) and degree equality (DE). Now, for any finite set of voters
N, any RN € W(A)Y and any x € A, ifz € F(RY) and F(RY) # A then
D(z, RN) < (m+1 and hence F( >, (RN)") = {a}.

Proof Let F' be an SCR which satisfies weak neutrality (WN), reinforcement (RE),
faithfulness (F) and degree equality (DE). Let N be a finite set of voters. Let
RN € W(A)N and z € A be such that x € F(RY) and F(R") # A. Suppose

that D(z, RV) > U Then Proposition 14 implies that D(z, RY) = 0",

(RN)™ = R,. Since D(z, RN) = {mtln
we have F'(R,) = A by Lemma 15-(i). The profile R, can be written as a sum of
the profiles R, \ RV and RV, ie, R, = (R, \ R") + R". Since F(R,) = A
and F(RY) # A, F(R, \ RN) N F(RY) = (. Then, z € F(R") yields that z ¢
F(R, \ RY). However, z € F((RY)") for any 7 € ¥, by weak neutrality (WN),
and then reinforcement (RE) implies that x € F (Rx \ RN ) a contradiction. Hence,

D(z, RV) < U Then, F( Yy (RY)") = {«} by Lemma 15-(ii). O

We now consider the profile »

Lemma 19 Let F' be an SCR which satisfies weak neutrality (WN), reinforcement
(RE), faithfulness (F) and degree equality (DE). Now, for any finite set of voters N,
any RN € W(A)N and any x € A, ifv € F(RY) and D(z,RY) = @, then for
all y € A we have D(y, RY) = "1™ and hence F(RN) = A.

Proof Let N be a finite set of voters. Let RY € W (A)Y and 2 € A be such that
x € F(RY) and D(z, RY) = ™" Suppose that D(y, RY) # D" for some
y € (A\ {z}). Then, there exists at least an alternative z € (A \ {x}) such that
D(z, RN) > ™" proposition 14 implies that z ¢ F(RY), so F(RY) # A. Now,
since z € F(RY) and F(RN) # A, we have, F'( > . (R")") = {x} by Lemma 18.

That is, Ry \ RN = 3 g\ (BY)7 and RY = (RV)7, where 7 € W, is the identity
permutation over alternatives.
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However, the fact that D(x, RV) = W together with Lemma 15-(i), implies that

F(ZTE%(RN)T) = A, a contradiction. So, for all y € A we have D(y, RY) =
mthn Hence, F(R") = A by Lemma 13. O

For any finite set of voters N, any RY € W (A)Y, we let
M(RN)y={z € A| D(z,R") < D(y, RY) forally € A}.

Proposition 15 Let F' be an SCR which satisfies weak neutrality (WN), reinforcement
(RE), faithfulness (F) and degree equality (DE). Now, for any finite set of voters N,
any RN € W(A)YN and any z,y € A, if D(y, RY) > D(x, RN) theny ¢ F(R").

Proof Let F' be an SCR which satisfies weak neutrality (WN), reinforcement (RE),
faithfulness (F) and degree equality (DE). Let N be a finite set of voters. Let R ¢

W (A)Y and z,y € A be such that D(y, RY) > D(x, RY). Suppose that y € F(RY).

Then, we have D(y, RY) < WFTI)” by Proposition 14. We will consider two cases.

Case 1. D(y, RV) = (thn,

Since y € F(RY) and D(y, RN) = "tV for all z € A we have D(z, RV) =
mtn by Lemma 19. However, since ™" = D(y, RN) > D(z, RY), we have

D(x, RN) < 20" 5 contradiction. Hence, y ¢ F(RY).

Case 2. D(y, RY) < (tln,

We consider the profile > . ( RN)T = R,,. Weak neutrality (WN) and re-
inforcement (RE) imply that y € F(R,,). However, Lemma 17 implies that y ¢
F(R.y), a contradiction. Hence, y ¢ F(RY). O

Proposition 15 implies that for an SCR F' satisfying weak neutrality (WN), rein-

forcement (RE), faithfulness (F) and degree equality (DE), we have F/(RY) C M(RY)
for any finite set of voters N and any R € W (A)".
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Proposition 16 Let F' be an SCR which satisfies weak neutrality (WN), reinforcement
(RE), faithfulness (F) and degree equality (DE). Now, for any finite set of voters N, any
RN e W(A)N and any v,y € A, ifv € M(RY) andy € F(R") then x € F(RY).

Proof Let F' be an SCR which satisfies weak neutrality (WN), reinforcement (RE),

faithfulness (F) and degree equality (DE). Let N be a finite set of voters. Let RY €

W (A)N and z,y € Abe such that x € M(RY) andy € F(RY). Since y € F(RY),

we have y € M (RY) by Proposition 15. Hence, D(y, RY) = D(z, RY). Note that, by
m+1)n

Proposition 14, we have D(y, RY) < (T since y € F(RY). We will consider two

cases.

Case 1. D(y, RY) = (tln,

Since y € F(RY) and D(y, RV) = 21" we have F(R") = A by Lemma 19.
Hence, z € F(RY).

(m4+1)n
Case 2. D(y, RV) < (tln,

We consider the profile 7, (RY)" = Ry,. Since D(y, R) = D(z,R") <
mtln we have FI(R,,) = {z,y} by Lemma 16. Since y € F(RY), y € F((RY)")
for all 7 € V¥,, by weak neutrality (WN). Hence, ﬂTE\I,M(RN )™ # (. This fact,
together with F(R,,) = {z,y}, implies that z € F ((R")") for each 7 € ¥,,. Hence,

r € F(RN). O

Proposition 16 implies that for any finite set of voters N and any RY € W (A)Y, we
have M(RY) C F(R"). Propositions 15 and 16 imply that for an SCR F' satisfying
weak neutrality (WN), reinforcement (RE), faithfulness (F) and degree equality (DE),
we have F(RY) = M(R") for any finite set of voters N and any R" € W (A)".

For any finite voter sets N, any R € W(A)"N and any z,y € A, S(z,RY) >
S(y, RN) if and only if D(x, RN) < D(y, RY), and S(x, RN) = S(y, RY) if and only
if D(x, RY) = D(y,RY). So, M(RY) = {x € A | D(z,RN) < D(y, R") for all
ye Ay ={x e A|S(z,RY) > S(y, RN) for all y € A}. By Propositions 15 and 16
we have F(RY) = M(RY) showing that our SCR depends on the Borda scores in the
right way, completing the proof of Theorem 2.
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In order to show that the axioms used in Theorem 2 are independent, we need to
provide four SCRs at each of which it violates the given axiom but satisfies the other
three axioms. However, we could not provide an SCR which violates weak neutrality

and satisfies the other axioms.

(1) Degree equality (DE)
The plurality rule satisfies weak neutrality (WN), faithfulness (F) and reinforcement

(RE). However, plurality rule does not satisfy degree equality (DE) by Proposition 13.

(2) Faithfulness (F)
For any finite set of voters N, any RN € W(A)Y, we define F(RY) = A, ie., F
always chooses the set of all alternatives. It is clear that F violates faithfulness (F),

and satisfies weak neutrality (WN), reinforcement (RE) and degree equality (DE).

(3) Reinforcement (RE)
We define I as follows:
For #N = 1, F'(R) = top(R) for any R € W (A),
for #N > 2, F(RN) = Aforany RN € W(A)N.
It is clear that F' satisfies faithfulness (F), weak neutrality (WN), and degree equality

(DE). However, F violates reinforcement (RE).

4.4 The cancellation property
In this section, we will introduce a new cancellation property and show that the Borda
rule is the unique scoring rule which satisfies this property.

For any positive integer h, 1 < h < m, let 7, (R;) denote the h'" level best alterna-

tives at R;.}

8For any R;, any 1 < h < m and any alternative x € rn(R;), an alternative way to determine the
score of x at R; is as follows:

Zk:#SU(I,Ri)+#Th(Ri)
R — S#SU(x,R)+1 T -+« T S#SU(w,R)+#rn(R) _ 2<k=#SU(a,R;)+1
s(z, R;) = #r1.(Ry) o #rn(R;)
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Let RN € W(A)Y be a profile such that there exist i,5 € N and o, 3 €
{1,...,m — 1} such that ro(R;) = rg41(R;) and ro11(R;) = rp(R;), i.e.,

RN :
R ... R; R; .| R,
T T’1<R1) N Tl(Ri> N (8] (R7> . Tl(Rn)
Ta Ta(Rl) . roz(Ri) = Tﬂ+1(Rj) ce T'Q(Rj) ce T'Q(Rn)
Ta+1 Ta+1(R1) e Ta-‘rl(Ri) = TB(RJ) e T(¥+1(Rj) Ce Ta+1(R7L)
T8 rg(Ry) | ... rg(R;) o | ma(Ry) = rar1(R) | ... | m5(Rn)
TB+1 Tﬁ+1(R1) e T'ﬁ+1(Ri) e 7“5+1(Rj) = TQ(RZ') . 7”5+1(Rn)

Now, we derive BN from R" as follows:

e forall voters [ € (N \ {i,j}), R, = Ry,

o for voter i, 7o (R;) = ro(R;) U rasi(R;),
forall b < a, r(R;) = r(Ry),

s

forallh > a+ 1, 7, (R;) = rpe1(Ry),

e for voter j, 75(R;) = 75(R;) Ursy1(R;),
forall h < B, ri(R;) = ri(R;),

’

forall h > B+ 1, ri(R;) = rp41(R)),
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ie., RV :

Vie (N\{i,j}): R =R,

T ri(R) = ri(Ry) ri(1) = ri(R) (1) = r(R;)
Ta—1 7dafl(Rl) = Tufl(RZ) T(xfl(Ri) = Tufl(Ri) rafl(Rj) = T(yfl(Rj)

T T(x(Rl) = Tu(Rl) Ta(R’i,) = Ta(Ri) U Tu+1(Ri) Tu(Rj) = T(J/(Rj)
Ta+1 7’(1+1(R1) = Ta+1 (Rz) Ta+1 (Rz) = Tu+2(Rz‘) Ta+1 (RJ) = T’a+1(PLj)
rpo1 | rpa(R) =rea(R) rs_1(Ri) = rs(R) rpo1(Ry) = rg1(R))

T ra(1) = 15(Ry) ra(Ry) = 11 (R) rp(1y) = rs(R;) Urgii(R))
TB+1

e () = rap(Ry)

1 (1) = rp12( ;)

7541(R;) = 1542(R;)

Given any profile RN € W(A)Y, let R(RY) denote the set of all profiles which
are derived from R" foranyi,j € N andany o, 3 € {1,...,m — 1} as defined above.

Definition 50 We say that an SCR F" satisfies the cancellation property (CA) if for any

finite set of voters N, any RN € W(A)" and any RN € R(R"), we have F(RN)

F(RN).

Proposition 17 A scoring rule satisfies the cancellation property (CA) if and only if it

is the Borda rule.

Proof 1t is clear that the Borda rule satisfies the cancellation property (CA). For the

other part of the proof, let /" be a scoring rule which satisfies the cancellation property

(CA). Suppose that ' is not the Borda rule.

Let A = {a,b,c} and N = {1,2,3}. We consider following profile R":

Ry | Ry | R
a | ¢ |ab
b c
c | a
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We now consider RN € 7@(RN) for voters 1 and 2, and o = 1, 8 = 2, i.e., RV is

as follows:

Rl RQ Rg - Rg

a,b| c a,b

c |ab c

Since F is a scoring rule satisfying cancellation property (CA), we have F(RY) =
F(RN) Let s = (s1, So, $3), where 57 > s > s3 and s; > s3. Since we supposed that
Fis not the Borda rule, we have s; — s # s9 — s3. Let t1o = $1 — $g and ta3 = So — S3.

SO, 81 = S3 + t12 + t23 and S9 = S3 + t23.

We calculate the total score of every alternative at RV and RN:

S(a, RN) = s1 + 55+ 2322 = 355 + 3115 + 213,

S(b, RN) = 255 + 2132 = 353 + $t15 + 3ta3,

S(c, RN) = s1 + 283 = 383 + t12 + to3,

S(a, RN) = 2(2522) 4 255 = 355 + 41, + Bty

S(b, RN) = 2(2tk22) 4 stbss = 355 4 15 + St
(¢, RY)

Note that S(a, RY) = S(b, RY). We will now show that S(a, BY) = S(b, R) >
S(c, RN) Since F' is a scoring rule, we do not have t15 = to3 = 0. If {15 = 0 and
ta3 > 0, then we have S(a, RN) = S(b, RN) > S(c, RN). If t15 > 0 and t53 = 0, then
we have S(a, RN) = S(b, RN) = S(c, RN) which implies that F(RY) = {a,b,c}.
Hence, we have F'(RY) = {a, b, c}. Therefore, S(a, RY) = S(b, RY) = S(c, RV) im-
plying that ¢,, = to3 = 0, a contradiction. Hence, S(a, RY) = S(b, RN) > S(c, RN).

The fact that S(a, RV) = S(b, RY) > S(c, RY), together with F being a scoring
rule, implies that F(RN) = {a,b}. So, F(RN) = {a,b}. Hence, we have S(a, RN) =
S(b, RN ) which implies that t15 = o3, a contradiction. Hence, F’ is the Borda rule. [J

Propositions 13 and 17 imply that when we restrict ourselves to scoring rules
degree equality (DE) is equivalent to cancellation property (CA). However, in general,

degree equality (DE) is stronger than cancellation property (CA).
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Lemma 20 (i) If an SCR satisfies degree equality (DE) then it also satisfies the can-

cellation property (CA).

(ii) There exists an SCR which satisfies the cancellation property (CA) but violates
degree equality (DE).

Proof 1t is given in the Appendix. OJ

4.5 Conclusion

We studied a characterization of the Borda rule on the domain of weak preferences. We
introduced a new property which is referred to as degree equality, and showed that the
Borda rule is characterized by weak neutrality, reinforcement, faithfulness and degree
equality on the domain of weak preferences. We also showed that the Borda rule is the
unique scoring rule which satisfies degree equality. We introduced a new cancellation

property and shown that it characterizes the Borda rule among all scoring rules.
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CHAPTER 5

GRADUATE ADMISSIONS PROBLEM WITH
QUOTA AND BUDGET CONSTRAINTS

5.1 Introduction

A typical two-sided matching market consists of two disjoint finite sets, for example a
set of men and a set of women; colleges and students; firms and workers. A matching
is called a one-to-one matching if a member of one set is allowed to match with at
most one member of other set, for example a man (woman) can match with only one
woman (man). However, a firm hires many workers, but a worker works for one firm

only. This type of matching is called a many to one matching.

There is a rich literature on matching theory (see Roth and Sotomayor (1990b)
for an excellent survey for a period covering all classical results in the field and Roth
(2008) for a recent survey) including both theoretical and empirical studies. Even
though there is an extensive literature on matching theory, there were no study con-
sidering both quota and budget constraints simultaneously until Karakaya and Koray
(2003). There were studies where colleges (or firms) have either quota constraint or
budget constraint but not both. Karakaya and Koray (2003) studied the graduate ad-
missions problem under quota and budget constraints. There is a set of departments

belonging to one university and a set of students (applicants) who wish to enter these
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departments. Each department faces both quota and budget constraints which are de-

termined by the university.

Gale and Shapley (1962) described a model for college admissions problem.! A
college admission problem consists of a finite set of students and a finite set of col-
leges where each college faces a quota constraint. Each student has a linear preference
relation over colleges and each college has a linear preference relation over sets of
students. A student matches with a college or with herself (i.e., stays unmatched) and
a college matches with a group of students whose size does not exceed its quota. A
matching is blocked by a student if and only if she prefers to match with herself to
getting matched with the college that she is assigned under that matching. A matching
is blocked by a college if and only if it prefers a proper subset of the group of students
that it matched under the given matching. A matching is blocked by a student-college
pair if and only if the student prefers that college to her match and the college prefers
the union of a subset of its match with the student to its present match. A matching is
stable if and only if it is not blocked by a student, by a college and by a student-college
pair. From each given set of students a college selects its most preferred such set of
students obeying the quota constraint. This most preferred set of students is referred as
the choice of that college from among the group of students it faces. A stable matching
is students-optimal if and only if each student likes this matching at least as well as
any other stable matching. A stable matching is colleges-optimal if and only if each

college likes this matching at least as well as any other stable matching.

The following algorithm is referred as the Gale-Shapley student optimal algorithm:
Step 1: Each student proposes to her most preferred college. Each college rejects all
but those who comprise its choice among its proposers.

In general, at step £,

Step k: Each student who was rejected in the previous step proposes to her next pre-
ferred college. Each college rejects all but those who comprise its choice within the
students it has been holding together with its new proposers.

The algorithm stops if there is no student such that her proposal is rejected. Then each

student is matched with a college that she proposed at the last step and was not rejected

'See Abdulkadiroglu et al. (2005a), Abdulkadiroglu et al. (2005b), Abdulkadiroglu and Sénmez
(2002), Balinski and S6nmez (1999), Roth (1985), Roth (1986) and Roth and Sotomayor (1990a).
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by that college. The Gale-Shapley college optimal algorithm is similarly defined with

colleges proposing to group of students by obeying their quota constraints.

A college has substitutable preferences if it regards students as substitutes rather
than as complements, i.e., the college prefers to enroll a student who is in its choice
set even if some of the other students in its choice set become unavailable. When col-
leges have substitutable preferences the set of stable matchings is non-empty. That is
the Gale-Shapley student optimal algorithm produces a stable students-optimal match-
ing (similarly the Gale-Shapley college optimal algorithm produces a stable colleges-

optimal matching).?

Kelso and Crawford (1982) considered a model for labor markets as a many to one
matching market.> There are a finite set of workers and a finite set of firms. Firms do
not face quota or budget constraints. It is assumed that all workers are gross substitutes
from the viewpoint of each firm. This assumption is referred as the gross substitutes
condition which states that “all workers be (weak) gross substitutes to each firm, in
the sense that increases in other workers’ salaries can never cause a firm to withdraw
an offer from a worker whose salary has not risen.” Thus the production technology
is such that workers are not complements. Kelso and Crawford (1982) showed the
existence of a core stable matching by an extension of the Gale-Shapley algorithm.
That is, there is a matching such that there is no subgroup consisting of firms and
workers which blocks that matching. They also showed that there is a firms-optimal
core stable matching, i.e., there is a core stable matching that each firm likes at least as

well as any other core stable matching.*

Mongell and Roth (1986) considered the model of Kelso and Crawford together
with budget constraints for firms. They showed by an example that the set of core
stable matchings may be empty. They also gave an example to show that if the set of

core stable matchings is non-empty, it is possible that there be no firms-optimal core

2The Gale-Shapley algorithm has been used since 1951 in the United States to match medical resi-
dents to hospitals. See Crawford (2008), Roth (1984a), Roth (2002), Roth and Peranson (1999) for this
matching program.

3See also Crawford and Knoer (1981).

4Roth (1984b) considered the same labor market model as many to many matchings and showed that,
under the assumption that both firms and workers preferences satisfy the gross substitutes condition, the
set of core stable matchings is non-empty and there exist firms-optimal and workers-optimal core stable
matchings.
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stable matching.

Karakaya and Koray (2003) considered the graduate admissions problem as a two
sided many to one matching market. There are a set of students and a set of departments
which belong to one university. Each department faces quota and budget constraints
which are determined centrally by the university. Students apply to these departments
for their graduate studies and each student has a value added to each department. If
a student matches with a department she may be paid by the department or she may
pay to the department. If a student pays for her graduate study, that payment is not
added to the department’s budget for graduate admissions. That payment goes to the
university which gives some percentage of that payment to the department for its office
expenditures. Departments use their budgets for the payments to graduate students, and
if a department has some of its budget left after these payments, the remaining part is
used for office expenditures by the department. Each department gets a benefit from its
accepted students and its office expenditures. The total benefit of a department from its
accepted students is the sum of each accepted student’s value added to the department.
Each department wants to maximize its total benefit which is sum of the benefits from
accepted students and from office expenditures. It is assumed that, for any department,
the largest benefit from office expenditures is less than any qualified student’s benefit
to the department no matter how large the office expenditures are. Therefore, each
department wants to maximize its total benefit by accepting more qualified students
at a minimum cost. Each student wants to make graduate study at her most preferred

department.

This model differs from the previous models in the sense that departments face both
quota and budget constraints. Karakaya and Koray (2003) constructed the departments
proposing algorithm which is an extension of the Gale-Shapley algorithm and showed
that, if the algorithm stops then the resulting matching is core stable (and thus Pareto
optimal). They showed that the algorithm may not stop while there is a core stable
matching. They proved that the departments proposing algorithm stops if and only if
no cycle occurs in the algorithm, i.e., a finite sequence of matchings does not repeat
itself infinitely many times in the algorithm. The existence of either a departments-
optimal or a students-optimal matching is not guaranteed in the graduate admissions

problem with both quota and budget constraints.
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In this chapter, we will continue to study graduate admissions problem with quota
and budget constraints. Here we construct the students proposing algorithm, and show
that the students proposing algorithm ends up with a core stable matching if the al-
gorithm stops. However, there exist graduate admissions problems for which there
exist core stable matchings, while neither the departments proposing nor the students
proposing algorithm stops. We showed that the students proposing algorithm stops if
and only if no cycle occurs in the algorithm. Moreover, we show that there is no ran-
dom path to core stability for the graduate admissions problem, i.e., starting from an
arbitrary matching and satisfying a randomly chosen blocking coalition at each step,
a core stable matching can not be reached. We will also consider the model with the
assumption that the students care only about their reservation prices and do not derive

any further utility from money transfers over and above their reservation prices.

This chapter is organized as follows: We present the model and definitions in sec-
tion 5.2. Section 5.3 defines the algorithms and related results. Section 5.4 shows the
nonexistence of random paths to core stability in our model. Section 5.5 studies the
model where the students consider only their reservation prices. Section 5.6 concludes

the chapter.

5.2 Basic notions

We denote the finite non-empty set of departments of our university by D =
{di,ds,...,dn}. Afinite nonempty set of students denoted by S = {s1, s9,...,8,},1s
regarded as comprising the applicants to this university for graduate programs offered

by its departments.

Each department d € D has a quota g; and a budget b, for its graduate program;
both of which are determined centrally by the university. A student can enroll to at
most one department, and each department accepts a group of students obeying its

quota and budget constraints.

We assume that each student s € S has a qualification level for each department

d € D. The qualification level of student s for department d is an integer and denoted
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by aj. The qualification levels of student s for the departments are denoted by a vector
ap = (ay,,ay,,. .., ay ). Also we assume that each department has a minimal quali-
fication level as a threshold for accepting students. The minimal qualification level of

department d is a positive integer and denoted by a?.

Each student yields a benefit (or adds a value) to each department if accepted to
that department. These values are independent of who the other accepted students are,
i.e., there are no externalities in this regard. The benefit of department d obtained
from accepting a group of students S C & is denoted by y¢(S¢). We assume that
department d’s benefit y%(S¢) is additive, i.e., it is the sum of the accepted students’
benefits to the department. We assume that the benefit student s provides to department
d is equal to her qualification level for department d, i.e., y¢({s}) = a. Therefore the

total benefit of department d from accepting a group of students S? C S is y?(S?) =

ZseSd CLZ.

If a student gets enrolled to a department for graduate study, she may be paid by
the department or she may pay to the department. The amount of payment made by
department d to student s is an integer mg,. In other words, student s is paid by
department d the amount my if mg; > 0; there is no payment if m,; = 0; student s
pays to department d the amount my if mgy < 0. If an accepted student pays for her
graduate study at department d, this payment is not added to department d’s budget.
That payment is taken by the university and the university gives some fixed percentage

of this payment to department d, solely to be used, say, for its office expenditures.

We assume that each student s has a reservation price for each department d (the
lowest amount of money that student s will accept from department d) which will
be denoted by an integer o,y. We assume that for all s € § and for all d € D,
0sq < bg. Student s’s reservation prices for departments will be denoted by a vector
0° = (0sqy, - - -, 0sa,, ). Note that a reservation price may also be negative, representing
the level of willingness on the part of the student to pay to the department in question

to get accepted.

If department d has some remaining budget after payments, the remaining money
is only used for office expenditures by the department. Let B be the total budget of

the university, and let student s be the least qualified student for department d among
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all students who are qualified for department d, i.e., a5 > a® and for all h € (S '\ {s})
with alj > a?, we have a < aj. Let ¢ be the benefit of department d if it uses the
university’s entire budget B for its office expenditures. We assume that y*({s}) > eZ.
Therefore, the benefit which is gained by spending B for the office expenditures is
less than any qualified student’s benefit to department d. This means that one can take

adzland0<ed§<1foreachd€D.

The total benefit of department d is denoted by Y'¢ and it is the sum of benefits from
accepted students and office expenditures. Therefore when S? C S is the accepted
group of students by department d and € is the benefit that department d gets from
office expenditures, we have that Y4(S%, e?) = y4(S?) + 2.

Definition 51 A graduate admission problem is a list (D, S, q, b, a®, o) where

1. D is a finite nonempty set of departments,

2. S is a finite nonempty set of students,

3. ¢ = (qa)aep is the departments’ quotas with g; € N for each d € D,

4. b = (bg)4ep is the departments’ budgets with b; € Ny for each d € D,

5. a® = (a3)ses is the students’ qualification levels for departments with o € Z
foreachs € §,d € D,

6. 0 = (0%)ses is the students’ reservation prices for departments with o,y € Z and
0q < bgforeachs € §,d € D.

Now, we will define the preferences of departments and students.

Let 2° x RISl = {S x RISl | S € 25} denote the set of all pairs where a pair
consists of a group of students S = {s;,...,s,} € 2% and an associated transfer

vector mf = {mg,a, ..., ms,q} € RIS of students S for department d € D.

The strict preference relation of department d is denoted by P,. For any d € D, Py
is a linear order ¢ on 25 x RIS!,

SNO =NuU {0}
A linear order on a set X is a complete, transitive and antisymmetric (binary) relation.
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Consider two group of students 7 = {s,...,sp} and T = {51,...,35,} with
associated transfer vectors m% = {mgq, ..., ms,q} and mdf = {ms,4,...,mzq} for
department d, respectively, where | T |= hand | T |= k. Let ¢l denote the cost of
group of students 7" to department d when the associated transfer vector is m?, i.e.,
ch =3 .crmsawithT = {s € T | my > 0}, and cf the cost of group of students
T to department d when the associated transfer vector is md, ie, ¢l = ZAGT Mid
with T = {§€T | ms > 0}. Let ¢! denote the benefit of office expenditures that
department d obtains by accepting the group of students 7" with transfers m} at cost
cl’, and edf the benefit of office expenditures that department d obtains by accepting the

group of students 7' with transfers m? at cost ¢

Now we can define P, formally as follows: For any (T, mZ), (T, m7) € 25 x RIS

with T £ T', we have [(T, mg)Pd(f, mf)} if and only if
o UT, D) > VT, )], or

o YT, ) = YUT,el) and ¢f < cI], or

o YUT, Ty = YT, eT), & = T and T leximin preferred’ to 7).

That is, department d strictly prefers 7' (with m2) to T (with mdf) if YYT,el) >
YT, ef). IfYYT,el) = YT, eg) then department d considers the associated costs
of T and T'. That is, whenever V(T edT) = YT, T), department d strictly prefers T

(with m?) to 7 (with m3) if 7 < ¢I. It YUT, L) = YT, €l) and ¢ = I, then
department d strictly prefers T' (with m2) to T (with mdf) if T" leximin preferred to T.

Let R, denote a preference relation of department d induced from F,, and defined
as follows: For any (T, m7), (T, m7) € 25 x RIS,

o (T, md)Rd(T md)] if and only if [not (7, md)Pd(T mI)].

TIf YT, €D) = YT, eT), and ¢ = I, then department d makes a lexicographic comparison
among T and 7 in the following way: Remember that | T |= hand | T |= k. Let f: {1,...,h} —
{i | s; € T} be a function such that f(1) < f(2) < ... < f(h). Letg : {1,...,k} = {j | 5; € ZA“}
be a function such that g(1) < ¢(2) < ... < g(k). We say that department d leximin prefers T to
T if and only if f(1) < g(1) or there exists k € {1,...,7} where #i < min{h,k} such that for all
te{l,...,n}, f(t) =g)but f(t+1) < g(t+1).
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We note that for any (T, m?), (T, mI) € 25 x RIS with T # T, we have either
(T, mg) Pa(T, mq)] or [(T,mg) Pa(T, mg)].

The strict preference relation of student s is denoted by P;. For all s € S, P is a
linear order on (D x R) [ J{(0,0)}.

We assume that, given any s € S, 0y = o 7if and only if d = d. We also assume
that (d, o44)Ps(0,0) for all s € S and all d € D, where ((), 0) stands for the situation

that student s is unmatched (or she is matched with herself).®

For all s € S, P, is defined as follows:
For any (d, m.q), (d, m.) € (D xR)UJ{(0,0)},
[(d, mesa) Ps(d, m,7)| if and only if

® [Myg— 05q >mj— 0], 0r
o Mgy —0sq=mg— o 5and 0,9 < 03]

Let s denote a preference relation of student s induced from P and defined as
follows: For any (d, m.q), (d,m_7) € (D x R) J{(0,0)},

o [(d,ma)Rs(d,m ;)] if and only if [not (d, m_3) Py(d, )]

Note that for any (d, mq), (d, m.3) € [(D x R)U{(0,0)}] with d # d, we have
either [(d, m,q) P, (d, m,3)] or [(d, m,_5) Ps(d, msq)]. And being unmatched is not the
worst situation for a student s € &, because for any student s € S, any department

d € D and any transfer mgy < 054 we have [((), 0) Ps(d, msq)] -

8We assume that for all s € S, 0,5 = 0.
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Now we will define what we mean by a matching.

Definition 52 By a matching we mean a function 1 : S — (D x R)J{(0,0)}
which matches each student s with a member 1 (s) of D J{0} and also specifies the

amount of transfer 1i5(s) made from 1 (s) to s such that the following are satisfied:

1. (Quota constraint) For all d € D, | ST |< qq, where ST = {s € S | p1(s) = d},

2. (Budget constraint) For all d € D, ¢ < by, where CZ = > se Sd msd with

i
mk, = ps(s) for pu1(s) = d and §Z:{s e St| ml, > 0}.

Student s is matched with a department if 141 (s) € D, she is unmatched if y;(s) = )
under g Let p(s) = (pa(s), m" 1 (s)) denote the department that student s is matched

and the associated transfer under .

Let Yud denote the total benefit of department d under p. Let yﬁ denote the benefit of
department d that it obtains by accepting the group of students Sﬁ and efb the benefit of

department d that it gets from office expenditures under ;.. When Sﬁ ={s1,...,sn},

"

we let md = (m" ,,... m" ) denote the associated transfer vector.
12 s1d? ) spd

Department d’s preference relation R, induces a preference relation R/ over

matchings in a natural fashion as follows: For any matchings 7 and ji,
e 7iR}fi if and only if (SZ, m%) R4(Sg, m%).

We abuse notation and we use R, for R’.

Students s’s preference relation 12, similarly induces a preference relation R* over

matchings as follows: For any matchings 77 and ji,

o ERYfif and only if (1, (s), m%, ) Rs(in(s), mbs ,))-

We abuse notation and we use R, for R¥.
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To present a matching p, we will use a matrix consisting of three rows and n
columns, where n =| S |. The first row lists the set of students respecting their original
labelling; the second row specifies the departments the students are assigned to and the

third row consists of the associated money transfers. That is,

S1 So e Sn
H= pa(s1) p(s2) .. pm(sn)
" " "
m51M1(81) m82u1(52) e msnﬂl(sn)

Now, we define what we mean for a matching to be individually rational.

Definition 53 A matching p is individually rational if and only if it satisfies the fol-

lowing properties

1. Foralls € S, (M1(8), mt ))RS (@, 0), that is mgm(s) > Oy (s)» and

spi(s

2. Foralld € D, forall S G S¢, (54, m{)Ry(S,m3),ie., Y (S, el) > YS,e),
where m; denote the transfer vector for S with m*, for each s € S and € denote
the benefit that department d gets from office expenditures by accepting set of

students S with m5.

We say that a matching p is not individually rational for student s, or student s

blocks 1, if (0, 0) Py (p1(s), m” m(s))' So, student s blocks p if the associated transfer
n

Mg, (s) between student s and department i, (s) is smaller than her reservation price
for department p4(s), i.e., mgm (s) < Osu(s)- Hence, we say that p is individually

rational for student s if m{, > 0y (s)-

We say that a matching p is not individually rational for department d, or depart-
ment d blocks f, if (S, m§)Py(S%, m) for any S & S¢. We note that for each stu-
dent s € S with whom department d does not break its tie, the amount of transfer
mk, between student s and department d which is determined by matching ;1 does
not change. So, department d blocks p if for any set of students S ; Sff we have
V(ST el) < Y(S,€). Hence, we say that 4 is individually rational for department d

W tp
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if Y(S%, el) > Y%S,e) forany S G 4.7

We say that a matching p is individually rational if and only if it is individually

rational for all students and all departments.

Definition 54 We say that a matching y is blocked by a student - department pair
(s,d) € § x D with py(s) # d if and only if there exists a transfer m, such that

1. (d, msd) P, (#1 (s), mf:ul(s)) , and

2. [(SI\T) U {s}, m|Py[Sg, mf], for some T' C S,
where /¢ denote the transfer vector for the set of students [(S¢ \ T') U {s}] with
mj,, for each student h € (S¢\ T') and 74 for student s, such that the group
of students [(S¢ \ T) U {s}] with transfers m¢ satisfies the quota and budget
(SI\NT)U {s} |< ga and ¢ < by, where

constraints of department d, i.e.,

<Zhe(§j\T) m’,fd) + Myg ifmgg >0

ot =
1 .
§ he (gi \T) My otherwise.

A pair (s, d) that satisfies above two conditions is called a blocking pair for matching

L.

Thus, a matching 1 is blocked by a pair (s, d) where student s and department
d is not matched under p, if there exists a transfer m,; between s and d such that
student s strictly prefers d with transfer 7,4 to her match p(s) = (ui(s), m” " (S)),
and department d strictly prefers the set of students [(S¢ \ T') U {s}] with m? to S
with m{ such that the group of students [(S¢ \ T') U {s}] with transfers m¢ satisfies
its quota and budget constraints. Note that department d may break its ties with a set
of students 7' C Sff in order to form a blocking pair with student s. For each student
h e (SZ \ T') with whom department d does not break its tie while forming a blocking
pair with student s, the amount of transfer m/,, between student / and department d

which is determined by matching 1 does not change.

°So, a matching y is not individually rational for department d if there exists a student s € Sﬁ such
that [af < 0] or [a = 0 and m, > 0].
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Definition 55 A matching p is pairwise stable if and only if it is individually rational

and there does not exist a pair (s,d) € S x D which blocks it.

Now we will define group blocking of a matching .

Definition 56 We say that a matching p is blocked by a group (15, S ) with () # DC
Dand () # S C Sifand only if the following two conditions are satisfied:

1. Foralls € S4C S, (d, ﬁ@sd)PS (,ul(s),mgm(s)),
where d € D, Sd C S denote the group of students who matched with depart-
ment d € D by group blocking of x with for all s € 5¢, p1(s) # d, such that
U 4D - , and my denote the transfer between department d € D and a
student s € §d - §

2. Foralld € D, [(SI\T)U 5e m? Py[S¢, m¢], for some T' C S,
where 74 denote the transfer vector for the set of students [(S¢ \ T') U 59 with
miy, for each student h € (S¢ \ T') and i, for each student s € 5, such that
the group of students [(S¢ \ T') U 54) with transfers m? satisfies the quota and
budget constraints of department d, i.e., | (S5\T) US? |< ggand & < by, where
Ga

—=d ~
= e Mha + 2z Mg With § = {5 € 5| 7 > 0.

Definition 57 We say that a matching p is core stable if and only if 1 is individually

rational and there does not exist a group (5, §) which blocks .

Since a student can match with at most one department, whenever a matching p is
blocked by a group (D, S), we can consider the group (D, S) as a collection of groups,
where each group consists of a department d € D and a set of students 5% C S who
matched with department d € D by group blocking of y such that | J, 5 S?=S. So,
if the group (IN), S ) blocks a matching p then each group (d, S 4) also blocks p. That
is, as shown in Karakaya and Koray (2003), an essential coalition for group blocking

of a matching consists of a department and a group of students.

e Proposition (Karakaya and Koray (2003)). A matching p is core stable if and
only if y is individually rational and there does not exist a group (consisting of a
department d and a group of students S C S) (d, §) which blocks f.
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We say that a core stable matching is departments-optimal if every department
likes it at least as well as any other core stable matching, and a core stable matching
is students-optimal if every student likes it at least as well as any other core stable

matching.

Karakaya and Koray (2003) showed that there exists neither a departments-optimal
nor a students-optimal matching for the graduate admissions problem with quota and

budget constraints.

Definition 58 We say that a matching p is Pareto dominated by another matching  if
and only if

1. foralli € (SUD), uR;u, and
2. forsome i € (SUD), nP;pu.

Definition 59 A matching p is Pareto optimal if and only if there does not exist

another matching which Pareto dominates .

Relations between core stability, pairwise stability and Pareto optimality

It is clear that if a matching is core stable then it is both pairwise stable and Pareto
optimal. However, a matching which is both pairwise stable and Pareto optimal may
not be core stable. We note that a pairwise stable matching need not be Pareto optimal,

and a Pareto optimal matching need not be pairwise stable.

5.3 Graduate admission algorithms

Karakaya and Koray (2003) constructed the departments proposing graduate admis-
sion algorithm (DPGAA), and showed that when the algorithm D PG AA stops then
the resulting matching is core stable. They proved that the departments proposing al-
gorithm stops for a given problem if and only if no cycle occurs in the algorithm, i.e.,
a finite sequence of matchings does not repeat itself infinitely many times in the algo-

rithm. They also showed that the algorithm D PG AA may not stop while there exists
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a core stable matching.

In this section we will define the students proposing algorithm, to which we will
refer to as the students proposing graduate admission algorithm (SPGAA). We note
that the departments proposing and the students proposing algorithms are extensions
of the Gale-Shapley algorithm for the graduate admissions problem. Each algorithm is
a centralized algorithm, i.e., the departments’ and students’ preferences are assumed to
be known to a planner (or to a computer program) who matches students with depart-
ments according to the rule of the algorithms. Hence, there is no agent who behaves

strategically to manipulate the algorithm.

We will show that when the algorithm S PG AA stops then the resulting matching
is core stable (Proposition 19). However the departments proposing and the students
proposing algorithms may not stop for some graduate admissions problems. To clarify
this situation, we will give three examples. In Example 6, the algorithms D PG'AA and
SPGAA do not stop and there is no core stable matching. In Example 7, the algorithm
D PG AA does not stop, but the algorithm S PG AA stops (hence there is a core stable
matching). In Example 8, the algorithm SPGAA does not stop, but the algorithm
D PG AA stops (hence there is a core stable matching).

We will show that the students proposing algorithm stops for a given problem if and
only if no cycle occurs in the algorithm (Proposition 21). We will also show that the
algorithms D PG AA and S PG AA are not complementary in the sense that for a given
graduate admission problem if its core is non-empty then at least one of the algorithms
stops, i.e., there exist graduate admissions problems for which there are core stable

matchings, while neither of the two algorithms stops (Example 9).

We will also define another algorithm which is a mix of the algorithms DPGAA
and SPGAA, referred to as the mix algorithm. We show that there exists a graduate
admission problem with non-empty set of core stable matchings, but by using the mix
algorithm we reach a matching which is not core stable (Example 10), and there is a
graduate admission problem such that by using the mix algorithm we reach a problem
at some period which is equal to the one that we have from previous period, but there

is a core stable matching for the given problem. (Example 11).
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5.3.1 The departments proposing graduate admission algorithm

We will now define the departments proposing algorithm following Karakaya and Ko-
ray (2003).

Time is measured discretely in the algorithm. Let mg4(¢) denote the offer that

department d makes to student s at time ¢.

According to the scenario behind the algorithm, given a graduate admission prob-
lem and what offers are permitted, at each time ¢, department d will maximize its
total benefit Y, = y?(S¢) + €! when it makes a permitted offer to a group of stu-
(S9) |< qq and

Zse 5 msq(t) < bg. Students who have taken offer(s) accept at most one offer and

dents Sf such that its quota and budget constraints are satisfied, i.e.,

reject the others. Then, at the end of time ¢, department d is tentatively matched with

the group of students who accepted its offers.
Now we can give the details of how the algorithm D PG AA works.

t = 1. a) Each department d determines the group of students S¢ that maximizes
its total benefit subject to its quota and budget constraints with m(1) = o4 for all

s € S¢. That is, department d offers to students in S¢ first their reservation prices.

b) Each students who has taken one or more offers accept at most one offer and

reject the others.

¢) Each department d tentatively accepts the group of students who accepted its
offers. Let T denote the group of students who accepted department d’s offers at time
f=1,T¢ C 5410

Now, at the end of time t = 1 we have a matching ;; with S¢ = T for all d € D.

H1

t = 2. a) Again each department d determines the group of students S¢ that maxi-

mizes its total benefit subject to its constraints where the offers now be of the form:

mu(2) = osq+1 ifse (S{l\Tld)
° Osd otherwise.

1084\ T¢ is now the group of students who took an offer from department d and rejected it at = 1.
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b) Students who have taken one or more offers accept at most one offer and reject

the others.

c) Department d tentatively accepts the group of students T C S¢ who accepted

its offers.
In general, at time £,

t = k. a) Consider a student s to whom department d made offers before period
k the last of which took place in period £, < k. In case this offer was rejected by s
because she accepted department @’s offer with which she got again matched at the end

of period k — 1, i.e., s € S call such a student a rejector of d prior to k. Let F

Hr—12
denote the group of all rejectors of d prior to k.!!

Each department d determines the group of students S¢ solving the same kind of

optimization problem as before, where the offers are now of the following form:

Tsd its ¢ UZ) Sy
msa(k) = ¢ mgq(ty) +1 if s € F¢

Mesa(ts) otherwise

b) Students who have taken one or more offers accept at most one offer and reject

the others.

c) Department d tentatively accepts the group of students T2 C S¢ who accepted

its offers.
Stopping Rule

t = t*. The algorithm stops at time ¢* if each department d makes offers to exactly
the set of students who accepted its offers in the preceding period, i.e., if we have for

alld € D, S& = T¢ | then the algorithm stops at time ¢*.

If the algorithm stops at ¢* the final matching p;+ is regarded as the outcome of the

algorithm.

"Note that at ¢ = 1, we have F! = () for all d € D, and at t = 2, we have F§ = S{ \ T{ for all
deD.
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Proposition 18 (Karakaya and Koray (2003)). If the algorithm D PG AA stops, then
the final matching of the algorithm is core stable (and thus Pareto optimal).

5.3.2 The students proposing graduate admission algorithm

Time is measured discretely in the algorithm. Let m4(¢) denote the offer that student

s makes to department d at time .

First note that the algorithm S PG AA does not permit a student s to make offers to
department d if [a5, < 0] or [a5 = 0 and 044 > 0].

Second, let us make a distinction between a new offer and a holding offer.

Let student s offered m,(t) to department d at period ¢ and department d accepted
this offer. At the next period ¢ + 1, if s makes an offer m,(t + 1) = mg,(t) to depart-
ment d, this offer is called a new offer. Let student s offered m4(t) to department d
at period ¢ and department d rejected this offer. At the next period ¢ + 1, if s makes an
offer m_z(t + 1) to a department d € (D\ {d}), this offer is called a new offer, and
student s’s offer m,(t) made to department d and got rejected remains valid at this

period ¢t + 1 as a holding offer 7,4(t + 1) = m4(t) to department d.

Let us explain why student s makes a new offer m _3(¢ + 1) to department d but not
to department d at period ¢ + 1. If student s would make a new offer my(t + 1) to
department d at period ¢ + 1, the algorithm S PG AA may require that mgy(t + 1) =
msq(t) — 1. However, student s may prefer department d with m_;(t+1) to department
d with mg(t + 1), i.e., [d, m_;(t + 1) Pud, ma(t +1)]." So, in such a case, student s
makes a new offer m_;(t + 1) to department d but not to department d at period ¢ + 1.

Hence, student s makes following offers at period ¢ + 1:
- Student s makes a new offer m_;(t 4 1) to department d e (D\ {d}), and

- her last new offer m,(#) made to department d and got rejected remains valid as

a holding offer 1i,4(t + 1) = m,q(t) to department d.

12Also note that we have [d, ivsq(t + 1)) Ps[d, m (t + 1)] where 7igq(t + 1) = mgq(t) is a holding
offer to department d at period ¢ + 1.
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According to the scenario behind our algorithm SPGAA, given what offers are
permitted, at each time ¢, students s makes at most one new offer to a department
which is best for her given the permitted offers, and her last new offer made to a
different department and got rejected stays valid as a holding offer. Note that a student
s does not make an offer m4(t) to department d at any time ¢ in the algorithm if
msq(t) < 0sq. So, the minimal offer if student s makes to department d is equal to
0sq4- Note that if student s made offers to all departments her reservation prices and got

rejected, then her last new offer remains valid as a holding offer.

Once students made offers to departments, each department d considers the group
of students S¢ who made offers to department d at period ¢, and accepts the offers
of the group of students 71 C S¢ that maximizes its total benefit subject to its quota
and budget constraints. Note that department d does not have any discrimination be-
tween new offers and holding offers. Then, each student s who has taken acceptance(s)

tentatively accepts at most one of them and rejects the others.
Now we can give the details of how the algorithm SPGAA works.

t = 1. a) Each student s makes an offer to her most preferred department d to
which she is permitted to make offers, where myy(1) = b,. That is, student s offers
mea(1) = by to department d, where (d,by) P.(d, b;) for any d # d to which she can
make offers. Note that at ¢ = 1, there is no holding offer and each student s makes a

new offer.

b) Let S¢ denote the group of students who offered department d at t = 1. Each
department d accepts the offers of the group of students 7 C S¢ that maximizes its

total benefit subject to its quota and budget constraints.

As we have m4(1) = b, if s offers to d at t = 1, department d accepts the offer of
student s € S{ with (s, bg) P4(5, bg) for any 5 € (S¢\ {s}).

¢) Student s who has taken acceptance(s) tentatively accepts at most one of them

and rejects the others.

Now, at the end of time ¢ = 1 we have a matching p; with Sff e Te. We have

Sﬁl = Tdforalld € D atperiod t = 1, since a student s can get at most one acceptance
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att = 1.

t = 2. a) Each student s makes at most one new offer where the new offers be of

the form:

msd(Q) =

bg—1 ifse (S¢\ T
ba otherwise

Note that if student s offered to department d and was rejected at period ¢ = 1,
and now (at ¢ = 2) if she offers to another department d, her offer msq(1) made to d
and got rejected remains valid at period ¢t = 2 as a holding offer m4(2) = m4(1) to

department d.

b) Each department d considers the group of students S¢ who made new and hold-
ing offers to department d at period 2, and accepts the offers of the group of students

T¢ C S¢ that maximizes its total benefit subject to its quota and budget constraints.

¢) Each student s who has taken acceptance(s) tentatively accepts at most one of

them and rejects the others.

Now, at the end of period ¢ = 2 we have a matching p» such that for each depart-
ment d, SzQ C Ty

In general, at time £,

t = k. a) Consider a department d that student s made some offers before period
k, and the last new offer was made at period ty by s to d, ty < k. In case this offer
was rejected by department d because of the group of students T;Ei and department d

matched with ch(ll at the end of period k — 1,i.e., S¢ = Tici

Hk—1

We call such a department d a rejector of student s prior to period k. Let F; denote

all rejectors of student s prior to period k.'3

Each student s makes at most one new offer where the new offers be of the form:

d ifse (S¢\TH
0 otherwise.

BForall s € S, Ff = (), and F = {
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ba if s ¢ UZy S
msa(k) = maa(ty) — 1 ifd € F¢

msa(tq) otherwise

Note that the last new offer student s made to some department and got rejected
remains valid as a holding offer if she makes a new offer to another department at this

period k.

b) Each department d accepts the offers of the group of students 78 C S¢ that

maximizes its total benefit subject to its quota and budget constraints.

¢) Each student s who has taken acceptance(s) tentatively accepts at most one of

them and rejects the others.
Now, at the end of time ¢ = k we have a matching p, with S¢ C T}/
Stopping Rule

t = t*: The algorithm stops at time t* if each student s makes same offer(s) (new
and/or holding) to exactly the same department(s) that she offered in the preceding
period. That is the algorithm stops at t* if for all d € D we have S = S, with for
any s € S%, mg(t*) = meq(t* — 1) if s made new offers to d at periods t* — 1 and ¢*,

and Mg, (t*) = Msa(t* — 1) if s made holding offers to d at periods t* — 1 and ¢*.

If the algorithm stops at ¢* the final matching p;+ is regarded as the outcome of the

algorithm.

Proposition 19 If the algorithm SPGAA stops, then the final matching of the algo-

rithm is core stable (and thus Pareto optimal).

Proof Assume that the algorithm SPGAA stops. Let the algorithm stop at time ¢*
with 1+ denoting the final matching of the algorithm. So we have that, for all d € D,
Sé =S4 such that forany d € D and forany s € S we have mq(t*) = mq(t*—1)
if s made new offers to d at periods t* — 1 and t*, and 144 (t*) = Mmgq(t* — 1) if s made

holding offers to d at periods t* — 1 and ¢*. We abuse notation that we use p* for z4s.
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It is clear that p* is individually rational. Now suppose that ;* is not core stable.

So, there is a group (d, S) which blocks 1*. So we have that

1. forall s € S, yi(s) # d,

*

2. forall s € S, (d, eq) Ps(pit(s), mg,q(s))’

3. [(S4\T)U S, m? Py[S¢., md.] for some T C S..

Note that the algorithm requires that each student s € S make the offers Mg tO

department d at period t*. Now, there are three possible cases.

Case 1. If there is a student s € S such that s ¢ Uz?_l S?, then we have

Msd — bd.

Case 2. If d € F} (that is department d is a rejector of student s € S prior to
period t*), and let £, denote the period that student s made a new offer to department d
the last time before period t*. Now m,q = msd(fd) — 1 if s makes a new offer to d at

t* and Mgy = myq(ty) if s makes a holding offer to d at t*.

Case3. If d ¢ F; and let s € S made a new offer to d at period £, the last time

before t*. Now, Mieq = mq(tq).

Therefore each student s € S would make the offers Msq to department d (by 2),
and department d would accept the offers of the group of students (S¢. \ T') U S
(by 3),ie., TE = (Sff* \T)U S, and each student in T would accept department d’s
acceptance. So, the group of students S and department d would match at the end of

period t*, in contradiction with (1). Hence u* is core stable. O

Proposition 18 (and respectively, Proposition 19) shows that if the algorithm
D PG AA stops (respectively, if the algorithm S PG A A stops) then the resulting match-
ing is core stable. However, Karakaya and Koray (2003) provided a graduate admis-
sion problem for which the algorithm DPGAA does not stop. We will now see that
for the same problem the algorithm SPGAA does not stop. Hence, there is a gradu-
ate admission problem that neither the algorithm D PG A A nor the algorithm SPGAA
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stops. The following example taken from Karakaya and Koray (2003) demonstrates

this situation.'*

Example 6 Neither DPGAA nor SPGAA stops and there is no core stable

matching

Let D = {A, B}, S = {1,2,3}, qa = 1, g5 = 2, by = 440, by = 1075, and the

qualification levels and reservation prices of the students are as given in table 5.1.

a= 7 ap= 11
= 0 ak= 15
ad= 8 ab= 12

0'1A:400 O1B=— 300
0'2A2440 0’2321075
034=400 osp= 700

Table 5.1: Qualification levels and reservation prices of students for example 6

If we apply either the algorithm D PG AA or the algorithm S PG AA, then follow-
ing finite sequence of matchings (uz, fi711, is2, f743) Tepeats itself infinitely many
times in the algorithms (for different periods ¢ for DPGAA and SPGAA):"S

1 2 3 1 2 3
g = A 0 B |l = A B 01,
435 0 741 435 1075 0
1 2 3 1 2 3
pire=10 B A s Hits = B 0 B
0 1075 440 334 0 741

Hence neither the algorithm DPGAA nor the algorithm SPGAA stops in this

example. We note that there is no core stable matching in this example, since there

14This example is a modification of the example of Mongell and Roth (1986).
SHow the algorithm D PG AA works for this example can be found in Karakaya and Koray (2003),
and how the algorithm S PG AA works for this example is provided in the Appendix.
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exists neither a core stable matching such that student 2 is matched with a department,

nor a core stable matching under which she is unmatched.

In Example 6, both the algorithms DPGAA and SPGAA do not stop since a finite
sequence of matchings repeats itself infinitely many times in the algorithms, that is a
cycle occurs both in DPGAA and SPGAA.

Definition 60 We say that a cycle occurs in the algorithm if there is a finite sequence
of matchings (fi4y, ftgt1, - - -, 1) (to < t) such that, for every t > o, iy = figtrs
where 0 <r <t —tyandt = r (mod t — ty).

Proposition 20 (Karakaya and Koray (2003)). The algorithm DPGAA stops if and

only if no cycle occurs in the algorithm.

We have seen it is possible that the algorithm SPGAA does not stop. But is it
also possible that the algorithm SPGAA does not stop while no cycle occurs in the

algorithm?

Proposition 21 The algorithm SPGAA stops if and only if no cycle occurs in the

algorithm.

Proof 1t is obvious that if the algorithm SPGAA stops, then no cycle occurs in the

algorithm.

For the other part of the proof, assume that the algorithm SPGAA does not stop.
Let M°P944 denote the set of all matchings that occur in the algorithm. Since the
set of all individually rational matchings for a given graduate admission problem is
finite and we have an individually rational matching in the end of every period in the
algorithm S PG AA, we have M°P¢44 s finite.

Let O%7944 denote the set of all pairs (s,d) € S x D such that s makes an offer
to d in the algorithm. In the algorithm, there is a period ¢ such that for any (s, d) € O,
student s proposes its minimal offer to department d at any ¢ < ¢ such that s makes

an offer to d in period ¢. We let m,; denote the minimal offer that student s makes to
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department d in the algorithm. So, for any ¢ > ¢, we have mg,(t) = m,,, if s makes an

offer to d at period t.

Since M°P¢44 is finite and the algorithm does not stop, there is a matching 7 such

that it occurs infinitely many times in the algorithm. Let ¢;, be a period such that ¢, > ¢

and 1, = .
Claim 1. It is impossible that for all periods ¢t > ty, (; = .

Proof of claim 1. Suppose not, i.e., suppose that for all times ¢ > ¢, p1, = . Since
the algorithm does not stop, at each period ¢, there is at least one department d such
that S¢ # S¢ |. Moreover, for all times t > t;, we have, for any (s,d) € O°7%44,
msa(t) = myg, if d gets an offer from s at ¢. However, this fact together with the
finiteness of D and S implies that there is some time t* > ¢, such that for all d €
D, S¢ = S&_,, in contradiction with that the algorithm does not stop. Hence it is

impossible for all times ¢ > ;. to have p; = . This completes the proof of Claim 1.

Claim 1 implies that there is a matching g which is different than 7z such that
e, +1 = fi. A claim for j similar to Claim 1 can be proved, so we can say that it is
impossible for all times ¢t > t; + 1 to have p; = . So, there is another matching 1
which is different than g such that y;, 1o = fi. As matching 7z occurs infinitely many
times in the algorithm, at some further time, again we have matching 7. That is, there
is a time t; > t; such that 1, = 7. Hence, we get a finite sequence of matchings

(T sty - opir,—1). Let C denote this finite sequence of matchings.
Claim 2. Hi+1 = [7

Proof of claim 2. Note that y;, = i and ;1 = o such that g is different than
7i. So, there exists at least a department d and a student s such that 7z, (s) # d but
f1(s) = d. That is, student s makes an offer to department d at period t; + 1 and d
accepts this offer, i.e., s € Td(tk +1), and student s accepts department d’s acceptance,

so that we have fi;(s) = d in the end of period ¢ + 1.

We will show that the algorithm requires that student s makes an offer to depart-
ment d at period ¢; + 1. We have two cases to consider that either student s makes a

new offer or a holding offer to department d at period ¢, + 1.
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If student s makes a new offer to department d at period ¢; + 1, then we have
d ¢ Fy . Since yy, = py, = pandd ¢ F; , wehave d ¢ Fy,, i.e., the algorithm
requires that student s makes a new offer to department d at period ¢; + 1. So, student
s makes a new offer to department d at period ¢; + 1 and d accepts this offer, i.e.,

s € T(t; + 1), and student s accepts department d’s acceptance.

If student s makes a holding offer to department d at period ¢, + 1, then we have
d € Fy . Since juy, = jy, = pand d € Fy ,,, we have d € Fy |, i.e., the algorithm
requires that student s makes a holding offer to department d at period ¢; + 1. So, at
period ¢; + 1, student s makes a holding offer to department d and d accepts this offer,

i.e., s € T%(t; + 1), and student s accepts department d’s acceptance.

Note that this is true for all pairs (s, d) such that 7z, (s) # d but fi;(s) = d. So, we

have p,+1 = ft4,+1 = ft, which completes the proof of Claim 2.

A claim for each matching in C' similar to Claim 2 can be proved. Hence, C' repeats
itself infinitely many times in the algorithm SPGAA. This completes the proof of

proposition. O

In Example 6, the algorithm DPGAA does not stop and there is no core stable
matching. The following example taken from Karakaya and Koray (2003) shows that
it is possible the algorithm D PGAA does not stop but the algorithm SPGAA stops

and hence there is a core stable matching.

Example 7 The algorithm DPGAA does not stop but the algorithm SPGAA

stops

Let D = {A, B,C, D} be the set of departments, S = {1,2,3,4,5,6} the set of
students, where the quotas and budgets of the departments are as follows: g4 = 1,
g8 = 2, qc = 1, qp = 2; by = 440, bp = 1075, bo = 440, bp = 1075. The

qualification levels and reservation prices of the students are as given in table 5.2.

It is shown in Karakaya and Koray (2003) that if we apply the algorithm DPGAA,

then a cycle occurs consisting of the following three matchings:
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aly= 7 ap= 11 ag= 4 ap= 0
a%= 0 ap= 15 at= 0 ah= 2
a= 8 ay= 12 az= 0 ab= 1
ah= 4 ag= 0 ag= 7 ah= 11
ad= 0 ap= 2 az= 0 ah= 15
al= 0 a%= 1 al= 8 ab= 12
01A=— 400 01B— 300 0'10——500 O1p— 440
O2A— 440 O9B— 1075 O90— 400 O'QD:—500
o3a= 400 o3p= 700 o3c= 420 o3p=—500
044=—500 osp= 450 osc= 400 osp= 300
os4a= 400 o53=—500 osc= 440 osp= 1075
OgA— 420 0'63:—500 OgCc— 400 OgD— 700

Table 5.2: Qualification levels and reservation prices of students for example 7

1 2 3 4 5 6 1 2 3 4 5 6
M = A 0 B C 0 D y Myl = A D 0 C B 01,
435 0 741 435 0 741 435 =500 0 435 —500 O

1 2 3 4 5 6
pie2=10 D B O B D
0 =500 741 0 —500 741

So, the algorithm D PG A A does not stop for this problem. Although the algorithm
D PG AA does not stop, the algorithm S PG AA stops and the following matching /i is
the outcome of the algorithm SPGAA:

1 2 3 4 5 6
i=| ¢ D D A B B
440 1075 0 440 1075 0

Note that the matching 7 is core stable since there is no student who wants
to form a blocking coalition with any department, i.e., for all s € S we have
(ﬁl(s),msﬁﬁl(s))Ps(d, bg) for any d € (D \ {fi1(s)}). Hence, it is possible that the

112



algorithm D PG A A does not stop, but the algorithm S PG A A stops and hence there is

a core stable matching.

The algorithm SPGAA does not stop and there is no core stable matching in Ex-
ample 6. The following example shows it is also possible that the algorithm SPGAA
does not stop but the algorithm D PG A A stops and hence there is a core stable match-

ing.

Example 8 The algorithm SPGAA does not stop but the algorithm DPGAA

stops

Let D = {E, F, G, H} be the set of departments, S = {7,8,9,10, 11,12} the set
of students, where the quotas and budgets of the departments are as follows: gp = 1,
1075, bg = 440, by = 1075. The

qualification levels and reservation prices of the students are as given in table 5.3.

QFZQ,QGZ1,QH:2;bE=44O,bF=

ab= 7 ab= 6 al= 10 ab,= 0
at= 0 a%= 15 at= 6 a= 0
ay= 8 ay= 11 az= 0 ay= 27
ald= 10 aldl= 0 ad= T all= 6
all="6 all="0 agd= 0 all=" 15
ap= 0 ap= 27 ag= 8 ap= 11
O'7E:4OO O7p— 300 O'7G:440 0'7H:1075
08E2400 0_8F:1000 U8G:440 0'8H:1075
o9p=400 ogr= 700 09=440 oog=1075
O'10E2440 0'10F21075 O'10G:400 O10H— 300
O'11E:440 0'11F:1075 011G:400 O'11H:1000
0'12E:440 UI2F:1075 0'126':400 19— 700

Table 5.3: Qualification levels and reservation prices of students for example 8

If we apply the algorithm S PG AA, then a cycle occurs consisting of the following

four matchings:
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7 8 9 10 11 12 7 g8 9 10 11 12

Ui = E 0 F G 0O H y HE+1 = E F 0 G H 0
435 0 741 435 0 741 435 1001 0 435 1001 O
7 8 9 10 11 12 7T 8 9 10 11 12
,LL];_;'_Q — @ F E @ H G 7MZ;+3 - F @ F H @ H
0 1001 440 0 1001 440 334 0 741 334 0 741

However, if we apply the algorithm D PG AA it stops at the end of period two and
following matching /i is the outcome of the algorithm D PG AA:

7 8 9 10 11 12
G O H E 0 F
440 0 1075 440 0 1075

=
Il

Note that each department is matched with its best group of students among all
groups satisfying its constraints under matching i, so there is no department which

forms a blocking coalition with any set of students. Hence, i is core stable.

Hence, it is possible that the algorithm SPGAA does not stop, but the algorithm
DPGAA stops and hence there is a core stable matching. Therefore, we cannot say
that if the algorithm SPGAA does not stop, then the set of core stable matchings is
empty.

We have seen in Example 7 that the algorithm DPGAA does not stop but the
algorithm SPGAA stops (hence there is a core stable matching), and in Example 8
that the algorithm SPGAA does not stop but the algorithm DPGAA stops (hence
there is a core stable matching). Because of these examples we ask following question:
Whether the departments proposing (D PG AA) and the students proposing (SPGAA)
algorithms are complementary in the sense that for a given graduate admission problem
if there is a core stable matching then at least one of the two algorithms stops? The
next example answers this question that it is possible neither the algorithm DPGAA

nor the algorithm S PG A A stops and there is a core stable matching.
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Example 9 Neither DPGAA nor SPGAA stops and there is a core stable

matching

We will construct an example of a graduate admission problem where its set of
core stable matchings is non-empty and neither of the algorithms stops. Our ex-
ample will be a union of previously constructed two examples: Examples 7 and
8. That is, we let D = {A,B,C,D,E F,G,H} be the set of departments and
S =1{1,2,3,4,5,6,7,8,9,10, 11,12} the set of students, where the quotas and bud-
gets of the departments are as follows: g4 = 1, g5 = 2, qc = 1, qp = 2, qp = 1,
ar = 2, qc = 1, qg = 2; by = 440, bp = 1075, b = 440, bp = 1075, by = 440,
br = 1075, bg = 440, by = 1075. The qualification levels and reservation prices of
the students are as given at examples 7 and 8, and we assume that
forany s € {1,2,3,4,5,6} and any d € {E, F, G, H}, we have ¢, < 0, and
for any s € {7,8,9,10,11,12} and any d € {4, B, C, D}, we have a3 < 0.1

So, the qualification levels and reservation prices of the students are as given in
table 5.4.

Now we apply the algorithm D PG AA to this problem:
Note that a department d € {A, B,C,D} does not make any offer to a student
s € {7,8,9,10,11,12} since aj < 0 for any s € {7,8,9,10,11,12} and any
d € {A,B,C, D}, and a department d € {FE, F,G, H} does not make any offer to
a student s € {1,2,3,4,5,6} since a5 < 0 for any s € {1,2,3,4,5,6} and any
d € {E,F,G,H}. Therefore, applying the algorithm DPGAA to this problem is
equivalent to applying it to examples 7 and 8 separately. We know that the algorithm
DPGAA does not stop for Example 7 and it stops for Example 8. So, it does not stop
for this problem, i.e., if we apply the algorithm D PG AA to this problem then a cycle

occurs consisting of the following three matchings:

Note that for any s € {1,2,3,4,5,6} and any d € {E,F,G,H} (and for any s €
{7,8,9,10,11,12} and any d € {A, B,C, D}), we let os4 be any integer satisfying our model as-
sumptions that for each s € S and each d € D, 059 < by, and for any s € S, 0, = o_; if and only if
d=d.
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ay= 7 ap= 11 ag= 4  ap= 0
ad= 0 ajk= 15 ai= 0 a}= 2
= 8 ai= 12 a= 0 ah= 1
ai= 4 ap= 0 at= T ap= 11
ad= 0 aj= 2 at= 0 ap= 15
= 0 ad%= 1 al= 8 a%= 12
O1A— 400 O1B=— 300 0'10——500 O1p— 440
O9A— 440 O9B— 1075 09— 400 O'QD——500
o3a= 400 o3p= 700 o3c= 420 o03p=—500
04a=—500 oyp= 450 o4c= 400 oy4p= 300
O5A— 400 0'532—500 O50— 440 O5D— 1075
OgA— 420 0632—500 OgC— 400 OeD— 700
ah= 7 ab= 6 alf= 10 ah= 0
at= 0 ay= 15 ad= 6 a%= 0
ay= 8 a¥= 11 a= 0 a%= 27
ap= 10 aP= 0 af= T aP= 6
al= 6 af= 0 af= 0 af= 15
al?= 0 a¥= 27 aff= 8 a¥= 11
O7E— 400 Orp=— 300 orG— 440 O7H— 1075
O]/E— 400 OgFp— 1000 o8G— 440 O/H— 1075
ogp= 400 ogp= T00 o9g= 440 o9y= 1075
oe= 440 o10p= 1075 o106= 400 oog= 300
O11E— 440 O11F— 1075 011G— 400 O11H— 1000
O12E— 440 O19F— 1075 012G— 400 O19H— 700

Table 5.4: Qualification levels and reservation prices of students for example 9

12 3 4 5 6 7 8 9 10 11 12

wi=| A 0 B Cc 0 D ¢ 0 H E 0 F |,
435 0 741 435 0 741 440 0 1075 440 0 1075
1 2 3 4 5 6 7 8 9 10 11 12
Hiy1 = A D 0 C B ¢ G ¢ H FE O F

435 =500 0 435 —-500 0 440 0 1075 440 0 1075
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1 2 3 4 5 6 7 & 9 10 11 12
o =1 0 D B 0 B D G O H E ( F
0 —500 741 0 —500 741 440 0 1075 440 0 1075

Hence, the algorithm D PG AA does not stop for this problem.

We now apply the algorithm S PG AA to this problem:
A student s € {1,2,3,4,5,6} is not permitted to make an offer to a department d €
{E, F,G, H} in the algorithm SPGAA since for any s € {1,2,3,4,5,6} and any d €
{E,F,G,H} wehave ¢}, < 0,and astudent s € {7,8,9,10, 11, 12} is not permitted to
make an offer to a department d € {A, B,C, D} since for any s € {7,8,9,10, 11,12}
and any d € {A, B,C, D} we have a, < 0. Hence applying the algorithm SPGAA to
this problem is equivalent to applying it to examples 7 and 8 separately. We know that
the algorithm S PG AA stops for Example 7 and it does not stop for Example 8. So, it
does not stop for this problem, i.e., if we apply the algorithm S PG AA to this problem

then a cycle occurs consisting of the following four matchings:

1 2 3 4 5 6 7 8 9 10 11 12
uz=| ¢ D D A B B E § F G 0 H |,
440 1075 0 440 1075 0 435 0 741 435 0 741

1 2 3 4 5 6 7 8 9 10 11 12
wa=| C D D A B B E F 0 G H 0|,
440 1075 0 440 1075 0 435 1001 0 435 1001 0

1 2 3 4 5 67 8 9 10 11 12
mew2=| C D D A B BO® F E O H & |,
440 1075 0 440 1075 0 0 1001 440 0 1001 440
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1 2 3 4 5 6 7 8 9 10 11 12
uis=| ¢ D D A B B F 0 F H 0 H
440 1075 0 440 1075 0 334 0 741 334 0 741

Hence, the algorithm S PG AA does not stop for this problem.

Now, consider the following matching:

1 2 3 4 5 6 7 8 9 10 11 12
= ¢ D D A B B G O H FE 0 F
440 1075 0 440 1075 0 440 0 1075 440 0 1075

We will show that the matching . is core stable.!” Suppose that 1 is not core stable.
Then there is a group (cz S ) which blocks p, where d € Dand S C S. Note that each
department d € {E, F,G, H} is matched with its best group of students among all
groups satisfying its constraints under p. So, there is no department d € {F, F, G, H}
which forms a blocking coalition with any set of students. Hence, d ¢ {E, F,G, H}.
So, d € {A, B,C,D}. There is no department d € {A, B,C, D} which forms a
blocking coalition with any group of students S C {7,8,9,10, 11, 12}, since for any
s € {7,8,9,10,11,12} and any d € {A, B,C, D}, we have a} < 0. So, we have
that S C {1,2,3,4,5,6}. However, for each student s € {1,2,3,4,5,6} we have
(ul(s),m’;m(s))Ps(d, ba) for any d € ({A,B,C, D} \ {p1(s)}). So, there does not
exist a student s € {1,2,3,4,5,6} which forms a blocking coalition with any d €
{A, B,C, D}. Hence, we also have d ¢ {A, B, C, D}, contradiction. So, the matching

4 1s core stable.

Hence, the algorithms DPGAA and SPGAA are not complementary in the sense
that given a graduate admission problem if it has a core stable matching then at least
one of the two algorithms stops, i.e., it is possible that neither D PGAA nor SPGAA

stops for a given graduate admission problem while it has a core stable matching.

"Note that ;1 = 71 U = where i is the outcome of the algorithm SPG AA when applied to Example
7 and 1z is the outcome of the algorithm D PG AA when applied to Example 8.
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Notice that that for any student s € {7,8,9, 10, 11, 12} we have p;(s) = pi1(s) =
f1i12(s), and for any department d € {E, F,G, H} we have S = Sl = S |
where (1, p741, hiy2) is the set of matchings which repeats infinitely many times if
we apply the algorithm D PG AA to Example 9. That is, we can say that the positions
of the set of students {7,8,9,10, 11, 12} and the set of departments {E, F, G, H} are
constant in the cycle that occurs in the algorithm DPGAA. Let S ; S denote the
set of students such that their positions are constant in the cycle and S C S the set
of students such that their positions are inconstant in the cycle.'® In Example 9, we
have S = {7,8,9,10, 11,12} and S = {1,2,3,4,5,6} when we apply the algorithm
DPGAA. Similarly, we let D ;Cé D denote the set of departments such that their
positions are constant in the cycle and D C D the set of departments such that their

positions are inconstant in the cycle.!” In Example 9, we have D = {E, F,G, H} and
D = {A, B,C, D} when we apply the algorithm D PG AA.

When the algorithm SPGAA is applied to Example 9, we have S =
{1,2,3,4,5,6},S = {7,8,9,10,11,12}, D = {A, B,C, D} and D = {E, F,G, H}.

Hence, given a problem if D PG AA or S PG AA does not stop then we can partition
the given problem into the constant part (S, D) and the inconstant part (5 , 5) by using

the cycle that occurs in the algorithm.

We know that there is a core stable matching for Example 9, however both
DPGAA and SPGAA do not stop. Now observe that we can find the core stable
matching p by applying an algorithm which is a mix of the algorithms DPGAA and
SPGAA.

First, we apply the algorithm DPGAA to Example 9 which we know that it does

not stop, then we determine the constant part of the cycle that occurs in DPGAA.

181t is possible that S = () and S=38, e.g., Example 6.

There may exist a department d such that for some non-empty group of students S ; S we have
wi(8) = (d,msq(t)) for all 5 € S and all periods ¢ in the cycle, and for some periods # in the cycle
we also have S ;Cé Sl‘ft. That is, in all periods of the cycle department d is matched with a group
students such that their positions are constant, and at some periods of the cycle department d is matched
with some students whose positions are inconstant. If such a case occurs, we consider department d as
two departments d and d where the quotas and budgets are as follows: For department d, ¢; =| S |,
bj = sc5msa(t) where S = {5 € S | mzq(t) > 0}, and for department d, qj=qa—qgbj;=bi—bg.
Now, d € Dandd € D.
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The constant part consists of the set students S = {7,8,9,10,11, 12} and the set of
departments D = {E, F, G, H}, and this constant part has a matching

7T 8 9 10 11 12
o= G O H E @ F |. Note that the matching j is core stable

440 0 1075 440 0 1075
for the constant part (S, D), i.e., there is no department d € D and group of students

S C S such that (d, S) blocks the matching zi. Secondly, we determine the inconstant
part of the cycle which occurs in DPGAA. The inconstant part consists of the set
students S = {1,2,3,4,5,6} and the set of departments D= {A, B,C, D}. Now, we
apply the algorithm SPGAA to this inconstant part (g , 5) It stops and the resulting
1 2 3 4 5 6
matching is 11 = C D D A B B | which is core stable for the
440 1075 0 440 1075 0
inconstant part (S, D). Now, the union of the matchings 7i and /i gives us the matching
1 which is core stable for Example 9. That is, we found the core stable matching ;. by
using an algorithm which is a mix of the algorithms DPGAA and SPGAA.

Similarly, we can reach the core stable matching x by first applying S PG AA. That
is, we first apply the algorithm S PG AA to Example 9 and determine the constant part
of the cycle which consists of S = {1,2,3,4,5,6} and D = {A, B,C, D}.

1 2 3 4 ) 6
This constant part has a matching 1 = C D D A B B | which
440 1075 0 440 1075 0
is core stable for (S, D). Secondly, we determine the inconstant part of the cycle
which consists of S = {7,8,9,10,11,12} and D = {E,F,G, H}, and apply the
algorithm D PG AA to this inconstant part. It stops, and the outcome is the matching
7T 8 9 10 11 12
= G 0 H E (O F which is core stable for the inconstant part
440 0 1075 440 0 1075
(g, 15) Now, we have . = 1 U [i.

We formally define the mix algorithm at the next section.
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5.3.3 The mix algorithm

We know that for a given graduate admission problem if the algorithm DPGAA does
not stop then a cycle occurs in the algorithm, and a cycle consists of two parts, a con-
stant part (possibly empty) and an inconstant part. So, we construct another algorithm
which is a mix of the algorithms D PG AA and SPGAA, referred to as the mix algo-
rithm by applying DPGAA first, that works as follows: In the first period, we apply
the algorithm D PG AA to the given problem, if it stops then the mix algorithm stops,
and the resulting matching is core stable. If it does not stop, then a cycle occurs in the
algorithm DPGAA. We determine the constant part (with a matching for this part)
and the inconstant part of the cycle that occurs in D PG AA, and move to next period.
Now, in the second period, we apply the algorithm S PG AA to the inconstant part that
comes from the first period. If SPGAA stops for this inconstant part then the mix
algorithm stops, and the resulting matching for the mix algorithm is the union of the
matchings that we have from first period (the matching for the constant part of the cy-
cle which occurs in D PG AA) and second period (the matching we obtain by applying
S PG AA to the inconstant part). If SPGAA does not stop for the inconstant part, then
we determine the constant part (with a matching for this part) and the inconstant part of
the cycle that occurs in S PG AA. If this inconstant part is equal to the one that we have
from first period, then the mix algorithm stops. Otherwise, we move to next period.
In the third period, we apply the algorithm DPGAA to the inconstant part that we
have from second period. That is, in general, we apply the algorithms DPGAA and
S PG AA recursively to the problems that we have from inconstant parts of the cycles.
By this algorithm, we either end up with a matching which is the union of all matchings
that we have from constant parts, or a problem (inconstant part) which is equal to the
one that we have from previous period. Similarly, by applying the algorithm SPGAA
in the first period, we can define the mix algorithm by applying SPGAA first.

Now, we formally define the mix algorithm.

Let 0 = (D,S) simply denote a graduate admission problem. Given a graduate

admission problem 6 = (D, S), the mix algorithm works as follows:

t = 1. Apply the algorithm DPGAA to the problem 6 = (D, S). If it stops, then
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the mix algorithm stops and the resulting matching is core stable. If it does not stop

then we go to next period.

t = 2. From the first period, the original problem # = (D, S) is partitioned into
two problems which we get from constant and inconstant parts of the cycle that occurs
in DPGAA. Let 6, = (S, D) denote the problem that we get from constant part and
0, = (g , 15) from the inconstant part. Let also that j;; denote the matching for the
constant part f; = (S, D). Now we apply the algorithm SPGAA to the inconstant
part f; = (S, D) that we obtained from the cycle which occurs in DPGAA.

If SPGAA stops for 0; = (§ : 5), then the mix algorithm stops. Let jio denote the
resulting matching of the algorithm SPGAA for the problem 0, = (g , 75) Now we

have a matching 5 = fi; U 12 as an outcome of the mix algorithm.

If SPG AA does not stop for 0, = (g , 15), then a cycle occurs in the algorithm and
we determine the constant and inconstant parts of the cycle. Let #, denote the constant
part of the cycle with associated matching fi, and 52 the inconstant part. If 52 = 51

then the mix algorithm stops. Otherwise, we go to next period.

t = 3. We apply the algorithm DPGAA to the problem 0, that we get from
previous period. If DPGAA stops for 05, then the mix algorithm stops. Let j3 denote
the resulting matching of the algorithm D PG AA for the problem 6. Now we have a

matching p = fi; U fiz U i3 as an outcome of the mix algorithm.

If DPGAA does not stop for 0, then a cycle occurs in the algorithm. Let f5 denote
the constant part of the cycle that occurs in D PG A A with associated matching i3 and
53 denote the inconstant part. If 53 = 0, then the mix algorithm stops. Otherwise, we

go to next period.
In general, at period £ > 1 we have following:

t = k. If k is odd we apply the algorithm DPGAA to the problem 0 that we
get from previous period. If £ is even we apply the algorithm S PG AA to the problem
0}_1. If the applied algorithm stops for gk_l, then the mix algorithm stops. Let iy
denote the resulting matching of the applied algorithm for the problem gk_l. Now we

t=k—1 —

have a matching pf = (|J,—; /) U fix as an outcome of the mix algorithm. If the
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applied algorithm does not stop for 5k_1, then we determine the constant part 6, (with
associated matching fi;) and the inconstant part gk of the cycle. If gk = 5;9_1 then the

mix algorithm stops. Otherwise, we go to next period.

Note that in the above mix algorithm, we apply the algorithm D PG AA in the first
period, so we call it the mix algorithm applying D PG AA first. Similarly, we can
define the mix algorithm applying S PG A A first by applying the algorithm SPGAA
in the first period.

By using the mix algorithm, at some period ¢, we have, either obtain a matching
e = ( ij_l fi) U fif as an outcome, or a problem 0; such that 6; = 6;_,. For
instance, for Example 9 we obtain a core stable matching by using the mix algorithm
independent of which algorithm is applied first. For Example 6, if we use the mix
algorithm by applying first either D PGAA or SPGAA then at period ¢t = 2 we reach
a problem 52 which is equivalent to the given problem and note that there is no core

stable matching for Example 6. These observations lead us following conjectures:

Conjecture 1 If we obtain a matching pi; = (Uij_l fi;) U iz as an outcome of the mix

algorithm at some period t, then the matching (i is core stable.

Conjecture 2 If we reach a problem 5{ such that 5{ = 55_1 by using the mix algorithm

at some period t, then there is no core stable matching for the given problem.

Following example shows that Conjecture 1 is not correct.

Example 10 The mix algorithm produces a matching which is not core stable

We know that for Example 9 neither DPGAA nor SPGAA stops and there is
a core stable matching. We also know that for the same problem the mix algorithm
produces a core stable matching regardless of which algorithm is applied first. Now
we construct an example where neither DPGAA nor SPGAA stops, but the mix
algorithm produces a matching which is not core stable. The set of departments and
their quotas and budgets are as in Example 9. The set of students and their qualification
levels and reservation prices are again as in Example 9 except that the qualification
level of student 10 for department A is 5, i.e., a}f = 5, and the reservation price of
student 10 for department A is 420, i.e., 0194 = 420.
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We now apply the mix algorithm by applying D PG AA first.

t = 1. We apply the algorithm DPGAA to this problem. We will show that all
departments behave in this example as they behaved in Example 9. Note that this is
true for all departments other than department A since for this example everything is
same to that of Example 9 except that we now have a!¥ = 5 and 0194 = 420. So, we
only need to show that department A behaves in D PG'AA for this example as it did in
Example 9. To do so, we will show that department A never makes an offer to student
10 in DPG AA for this example. Note that in Example 9, department A makes offers
only to students 1 and 3 in D PG AA, and the maximal offer that department A makes
to student 1 is m;4 = 435 and the maximal offer that department A makes to student
3 is iga = 440. Now, for department A we have ({1},7,4)P4({10}, 0104) since
aly > a', and ({3}, m34)Pa({10}, 0104) since a® > a'l. So, department A never
makes an offer to student 10 for this example in D PG AA.

Hence, the algorithm DPGAA for this problem gives us the same result as that
of Example 9, i.e., DPGAA does not stop and a cycle occurs consisting of three

matchings pz, pz+1 and pgy o that are given in Example 9.

Since the algorithm D PG'AA does not stop, we determine the constant and incon-
stant parts of the cycle. We know that the constant part consists of the set of depart-
ments D = {F, F,G, H} and the set of students S = {7,8,9,10, 11,12} and this

7 8 9 10 11 12
constant part has a matching ;1 = G 0 H E O F . The incon-
440 0 1075 440 0 1075
stant part consists of the set students S = {1,2,3,4,5,6} and the set of departments
D ={A,B,C,D}.

t = 2. We apply the algorithm S PG AA to the inconstant part (§ ) 5) It stops and
1 2 3 4 5) 6
the resulting matching is ;i = ¢ D D A B B |. Hencethe mix

440 1075 0 440 1075 O
algorithm by applying first D PG'AA stops in the end of period 2, and its outcome is
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the union of the matchings 11 and iz which is the matching p given in example 9, i.e.,

1 2 3 4 5 6 7 8 9 10 11 12
= ¢ D D A B B G § H E 0 F
440 1075 0 440 1075 0 440 0 1075 440 0 1075

The matching p is not core stable for this example, i.e., (A,{10}) blocks
the matching g with 7jgsa = ba = 440 since (A4,440)P;(FE,440)* and
({10}7 44O)PA({4}7 440)21'

Hence, the mix algorithm by applying D PG AA first produces a matching which

is not core stable.
Now, let us see what happens if we apply the algorithm S PG AA first.

t = 1. We apply the algorithm SPGAA to this problem. We will show that all
students behave in this example as they behaved in Example 9. Note that this is true for
all students other than student 10. So, we only need to show that student 10 behaves in
S PG AA for this example as she behaved in Example 9, i.e., we will show that student
10 never makes an offer to department A in SPGAA for this example. Note that in
Example 9, student 10 makes offers only to departments H and G in SPGAA, and the
minimal offer that student 10 makes to department H is m,,; = 334 and the minimal
offer that student 10 makes to department G is m,,; = 435. For student 10 we have
(H,myo) Pro(A,04)** and (G, myoq)Pio(A,b4)*. So, student 10 never makes an
offer to department A for this example in SPGAA.

Hence, the algorithm SPGAA for this problem gives us the same result as that
of Example 9, i.e., SPGAA does not stop and a cycle occurs consisting of four
matchings piz, (g1 1, [r4o and py 5 that are given in Example 9. Since the algorithm
SPGAA does not stop, we determine the constant and inconstant parts of the cycle.
We know that the constant part consists of the set of departments D= {A,B,C,D}
and the set of students S = {1,2,3,4,5,6} and this constant part has a matching

20Since ba — o104 =440 — 420 = 20 > 0 = 440 — 440 = m’fOE — O10E-
ASince al) =5 >4 =a’

2Since my o — c1om = 334 — 300 = 34 > 20 = 440 — 420 = by — o104
BSince my o — o106 = 435 — 400 = 35 > 20 = 440 — 420 = by — o104.
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1 2 3 4 ) 6
o= ¢ D D A B B |. The inconstant part consists of the set
440 1075 0 440 1075 O
students S = {7,8,9,10,11, 12} and the set of departments D= {E,F,G,H}.

t = 2. We apply the algorithm DPGAA to the inconstant part (g , 25) It stops
7 8 9 10 11 12
and the resulting matching is i = G O H FE ( F |. Hencethe

440 0 1075 440 0 1075
mix algorithm by applying first SPGAA stops and its outcome is the union of the

matchings jz and @ which is again the matching p. We know that the matching p
is not core stable for this example. Hence, the mix algorithm by applying SPGAA
first produces a matching which is not core stable. However, the set of core stable

matchings is non-empty for this problem, e.g., the following matching /i is core stable:

1 2 3 4 5 6 7 8 9 10 11 12
= A D B D B C G O H E (O F
440 500 741 575 334 440 440 0 1075 440 0 1075

We will now show that Conjecture 2 is not correct, i.e., we will construct an ex-
ample where it has a core stable matching, but by using the mix algorithm we reach a
problem 55 such that 55 = 5;,1.

Example 11 The mix algorithm reaches a problem 5{ such that 5,; = 55_1 and

there is a core stable matching

Let D = {A,B,C,D,E,F,G, H} be the set of departments and the set of stu-
dents be S = {1,2,3,4,5,6,7,8,9,10,11, 12} where the quotas and budgets of the
departments are as follows: g4 = 1, g = 2, gc = 1, qp = 2, qg = 1, qr = 2,
gac = 1, qg = 2; by = 440, bg = 1075, b = 440, bp = 1000, b = 440,
bp = 1075, bg = 440, by = 1075. We assume that for any s € {1,2,3,4,5,6}
and any d € {E, F,G, H} we have a5 < 0, and for any s € {7,8,9,10,11, 12} and
any d € {A, B,C, D} we have a% < 0. So, the qualification levels and reservation

prices of the students are as given in table 5.5.

We apply the mix algorithm by applying D PG AA first.
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a= 7 ap= 11 ag= 1 ap= 0
ad= 0 a3= 15 a2= 0 abh= 5
ad= 8 ak= 12 al= 0 ab= 5
ah= 2 ap= 0 at= 10 ah= 0
ad= 0 a3= 2 al= 0 dabh= 15
= 0 &%= 2 db= 0 ab= 16

ap= 7 ab= 11 af= 10 afh= 0
at= 0 at= 15 ad= 0 a$;= 0
ay= 8 ay= 12 al= 0 ay= 15
ap=15 af= 0 o= T ap= 0
al}= 0 all= 0 ay= 0 al= 6
al?= 0 al?= 30 af= 0 alf= 6

O'7E:400 Orp=— 300 orG— 440 O7H— 1075
0’8E2440 0'8F:1075 08G— 400 OSH— 1075
o9p=400 o9p= 700 o9g= 440 ogy= 1075
o10p=440 010p=1075 o106= 100 o0g= 300
O'11E:440 0'11F:1075 J11G6— 400 O11H— 100
0'12E:440 012F:1075 012G— 400 O12H— 100

Table 5.5: Qualification levels and reservation prices of students for example 11

t = 1. We apply the algorithm DPGAA. It does not stop and a cycle occurs

consisting of following four matchings:

1 2 3 4 5 6 7 8 9 10 11 12
w=| A 0 B ¢ D D G ©® H E ¢ F |,
435 0 TAL 440 500 500 440 0 1075 440 0 1075

1 2 3 4 5) § 7T 8 9 10 11 12
M1 = A B ® ¢ D D G O H E (O F )
435 1075 0 440 500 500 440 0 1075 440 0 1075
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1 2 3 4 ) 6 7 8 9 10 11 12
Mrio2 = @ B A C D D G @ H FE @ F )
0 1075 440 440 500 500 440 0 1075 440 0 1075

1 2 3 4 5 6 7 8 9 10 11 12
H7t3 = B B C D D G O H E O F
334 0 741 440 500 500 440 0 1075 440 0 1075

The constant part consists of the set of departments D = {C, D, E, F, G, H} and
the set of students S = {4,5,6,7,8,9,10,11,12}. The inconstant part consists of the
set of departments D = {A, B} and the set students S = {1,2,3}, s0 6, = (D, S).

t = 2. We apply the algorithm SPGAA to the problem 6, = (15, S ). Note that 0,
is equal to the problem given in Example 6 and we know that the algorithm SPGAA
does not stop for that problem. So, SPGAA does not stop for 0, and a cycle occurs
consisting of the matchings p7, piz11, tir2, pirs that are given in Example 6. For the
cycle consisting of these four matchings we have D = () and S = (), and D= {A, B}
and S = {1,2,3}. So, 6 = 6, and the mix algorithm stops. Hence by using the mix
algorithm by applying DPGAA first, at the end of period 2 we reach a problem 0
such that 52 = 51.

We now apply the mix algorithm by applying S PG AA first.

t = 1. We apply the algorithm SPGAA. It does not stop and a cycle occurs

consisting of following four matchings:

1 2 3 4 5 6 7T 8 9 10 11 12
¢ D D A B B E O F G H H |,
440 500 500 440 538 537 435 0 741 440 538 537

My
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1 2 3 4 5 6 7 8 9 10 11 12
wma=| C D D A B B E F O G H H |,
440 500 500 440 538 537 435 1075 0 440 538 537

1 2 3 4 5 6 7 8 9 10 11 12
wmew=| C D D A B B O F E G H H |,
440 500 500 440 538 537 0 1075 440 440 538 537

1 2 3 4 5 6 7 8 9 10 11 12
wes=| Cc D D A B B F ¢ F G H H
440 500 500 440 538 537 334 0 741 440 538 537

The constant part consists of the set of departments D = {A, B,C, D, G, H} and
the set of students S = {1,2,3,4,5,6,10,11,12}. The inconstant part consists of the
set of departments D = {E, F'} and the set students S = {7,8,9}, s0 6, = (D, S).

¢t = 2. We apply the algorithm DPGAA to the problem 6, = (5, S). Note that
51 is equivalent to the problem given in Example 6 and we know that the algorithm
DPGAA does not stop for that problem. So, DPGAA does not stop for 0, and a
cycle occurs consisting of the matchings piz, pi11, ftir2, i3 that are given in Example
6.2* Wehave D =) and S = 0, and D = {E, F} and S = {7,8,9}. So, 6, = 6, and
the mix algorithm stops. Hence by using the mix algorithm by applying S PG A A first,

at the end of period 2 we reach a problem 52 such that 52 = 0,.

Now, consider the following matching:

1 2 3 4 5 6 7 8 9 10 11 12
= ¢c D D A B B G O H E 0 F
440 500 500 440 538 537 440 0 1075 440 0 1075

2We replace the names of A and B with E and F, respectively, and the names of 1,2 and 3 with 7, 8
and 9, respectively.
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We will show that the matching p is core stable. Suppose that p is not core
stable. Then there is a group (CZ §) which blocks 4, where d € D and S C S.
Note that each department d € {E, F, G, H} is matched with its best group of stu-
dents among all groups satisfying its constraints under . So, there is no department
d € {E, F,G, H} which forms a blocking coalition with any set of students. Hence,
givgé {E,F,G,H}. So, d € {A, B,C, D}. There is no department d € {A, B,C, D}
which forms a blocking coalition with any group of students S C {7,8,9,10, 11, 12},
since for any s € {7,8,9,10,11,12} and any d € {A, B,C, D} we have o} < 0. So,
we have S C {1,2,3,4,5,6}. However, for each student s € {1,2,3,4,5,6} we have
(ul(s),mgm(s))Ps(d, ba) for any d € ({A,B,C, D} \ {p1(s)}). So, there is no stu-
dent s € {1,2,3,4,5,6} which forms a blocking coalition with any d € {A, B, C, D}.
Hence, we also have d ¢ {A, B,C, D}, a contradiction. So, the matching p is core
stable.

5.4 Nonexistence of random paths to core stability

Gale and Shapley (1962) also described a one to one matching model which is known
as the marriage problem,* and showed by a centralized algorithm (the Gale-Shapley
algorithm) that the set of stable matchings is nonempty for any marriage problem (see

Sotomayor (1996) for a nonconstructive proof).?® Knuth (1976) gave an example that

LA marriage problem consists of a triplet (M, W, R), where M denote a finite set of men, W denote
a finite set of women, and R = (Ri)ie( muw) denote a preference profile for the set of agents. Every
man m € M has a complete, reflexive and transitive preference relation R, over (W U{m}), and every
woman w € W has a complete, reflexive and transitive preference relation R,, over (M U {w}).

26 A matching for the marriage problem is the function i : M UW — M U W such that

o forallm € M, pu(m) € (W U{m}),
e forallw € W, u(w) € (M U{w}), and
e forallm € M and all w € W, u(m) = w if and only if u(w) = m.

A matching p is blocked by an agent i € (M U W) at preference profile R if i P; (i), where P; denote
the strict preference relation of agent ¢ associated with R;. A matching p is individually rational at
preference profile R if it is not blocked by any agent, i.e., for all i € (M U W) we have u(i)R;i. A
matching p is blocked by a pair (m,w) € M x W at preference profile R if wP,,u(m) and m Py, pu(w).
A matching p is stable at preference profile R if it is individually rational and there is no pair which
blocks it at R. We note that for the marriage problem, the set of stable matchings coincide with the set
of core stable matchings (Roth and Sotomayor (1990b)).
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the process of allowing blocking pairs to match may have cycles and may not lead to a
stable matching, and raised the question that whether there exists a decentralized pro-
cedure which converges to a stable matching. Roth and Vande Vate (1990) solved this
question by showing that starting from an arbitrary matching and satisfying a randomly
chosen blocking pair at each step, we reach a stable matching.?’ That is, they showed
that given an arbitrary matching p for a marriage problem (M, W, R), there exists a
finite sequence of matchings i1, pio, . . ., i1, such that y = pq, i, is stable at preference
profile R, and for each j € {1,2,...,r — 1}, there is a blocking pair (m;, w;) for ;
such that 41, is obtained from 4; by satisfying the blocking pair (m;,w;). Such a

decentralized procedure is called as random paths to stability. ™

We will show that there does not exist a random path to core stability for the grad-
uate admissions problem. That is, we will provide an example of graduate admission
problem such that its set of core stable matchings is nonempty and an individually
rational matching for this problem, and show that starting with this matching and satis-
fying a blocking coalition at each step, a core stable matching can not be reached. Let

us first define what we mean by satisfying a blocking coalition.

Definition 61 We say that matching /; is obtained from matching ;. by satisfying a
blocking coalition (d, S), where d € Dand ) # S C S, withforall s € S, uy(s) # d,
if and only if

e forany s € S, fi(s) = (d, myq) with (d, M) Ps(pa(s), m” ).

sp(s)

2"Let (M, W, R) be a marriage problem and y be a matching with a blocking pair (1, w) € M x W.
We say that matching [1 is obtained from p by satisfying the blocking pair (1, ) if and only if
o i(m) = 1,
o forallm € [M\ {ri, u(w)}], i(m) = p(m), and for all w € [W \ {w, u(mh)}], i(w) = p(w),
and

o if u(w) = m for some m € M then fi(m) = m, and if u(th) = w for some w € W then
fi(w) = w.

28See Ma (1996) and Klaus and Klijn (2007a) for a detailed explanation of random paths to stability
for the marriage problem. For other studies of random paths to stability, see Chung (2000), Diamantoudi
et al. (2004) and Inarra et al. (2008) for the roommate problem, Klaus and Klijn (2007b) for matching
markets with couples, and Kojima and Unver (2008) for many to many matching problems.
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for department d, S = [(Si \ T) U S] for some T C Sf, with
(84, m%)Py(S1,m¢), where the transfer vector m¢ is as follows: for any stu-

dent s € Sg, '
i — { ng ifs € (SE\T)
Msq ifses,
(of course, the quota and budget constraints of department d under matching
/i are satisfied, i.e., | S |< gq and ¢f < by, where ¢f = Zhe(?ﬁ\T) mh . +
o5 sa with S5 = {k € S| ml, > 0} and S = {s € S | fq > 0}),
for all students [ € T' C S¢ with whom department d break ties, /i(I) = (0, 0),

i.e., each student in 7" is unmatched under i,

for any student 5 € [S\ (SUT)], A(s) = u(S), i.e., each student not in (S UT)

is matched with the same department under /; as she was matched under g,

for any department d € (D \ {d}), Sg = (Sg\ S).

Example 12 There does not exist a random path to core stability for the graduate

admissions problem

Let D = {A, B, C, D} be the set of departments and S = {1, 2, 3,4, 5, 6} the set of
students. The quotas and budgets of the departments are as follows: ¢4 = 1, g = 2,
gc =1,qp = 2; by = 440, by = 1075, be = 440, bp = 1000. The qualification levels

and reservation prices of the students are as given in table 5.6.

The set of core stable matchings is non-empty for this problem, e.g., following

matching p* is core stable:

1 2 3 4 5 6
W= D ¢ A C D B
500 0 440 440 500 1075

We consider the following individually rational matching 1,

1 2 3 4 5 6
H1 = 0 B A C D D
0 1075 440 440 100 800
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al= 7 ap= 11 ag= 10 ab= 1
ad= 0 ap= 15 az= 0 ah= 0
a= 8 ab= 12 ai= 0 ab= 15
al= 15 ap= 0 ag= 11 ap= 0
a= 0 ap= 0 a= 0 ah= 9
ab= 0 a%= 30 al= 0 ab= 6
0'1A:434 0O1B— 334 0'102440 O1p— 500
O'QA:440 02321075 0'202400 0'2D21000
034=440 o3p= 740 03c=420 03p=1000
044=440 o4p=1075 04c=100 osp= 300
0'5A=440 0'5321075 0'502400 O5D— 100
0'6A2440 0'6321075 0'602400 OgD— 600

Table 5.6: Qualification levels and reservation prices of students for example 12

We will show that starting with this matching p; and at each time satisfying a

blocking coalition, a core stable matching can not be reached.

The unique coalition which blocks i is (B, {1,3}) where mp = o015 = 334 and

msp = 741. We reach matching p5 by satisfying this blocking coalition, where

1 2 3 4 5 6
Mo = B 0 B C D D
334 0 741 440 100 800

Now, the coalition (A, {1}) blocks ps with by = 440 > mya > 435, and there
is no other coalition which blocks 5. By satisfying this blocking coalition we reach
six different matchings for each integer value of the transfer m; 4. Let i3 denote these

matchings that we reach by satisfying this blocking coalition, so

1 2 3 4 5 6
ws=| A 0 B C D D
mi% 0 741 440 100 800

, where 440 > m/"% > 435.

The unique coalition which blocks p3 is (B, {2}) where maop = o9 = 1075.

When we satisfy this blocking coalition we reach matching 4,
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1 2 3 4 5 6
[y = A B 0 C D D |[,where440 > m}%y > 435.
m’fj 1075 0 440 100 800

‘We now consider two cases:
Case 1. 440 > m/" > 436.
Case 2. m{" = 435.

First, we consider case 1. When 440 > mﬁ > 436, we denote this matching by

Has

1 2 3 4 5 6
m,=| A B 0 C D D |,where440 > mi > 436.

mlt 1075 0 440 100 800

The unique coalition which blocks 7z, is (A, {3}) where m34 = 034 = 440.%

When we satisfy this blocking coalition for 71, we reach matching ;.

Second, we consider case 2 that m/{% = 435. We denote this matching by i,

1 2 3 4 5 6
.= A B O C D D
435 1075 0 440 100 800

There are two blocking coalitions for fiy. The pair (A, {3}) blocks jz4 with mzs =
o34 = 440, and when we satisfy this blocking coalition we reach matching 1. The
coalition (B, {1,3}) also blocks fi; with mp = 335 and m3p = o3 = 740. By

satisfying this blocking coalition we reach matching p5, where

1 2 3 4 5 6
M5 = B 0 B C D D
335 0 740 440 100 800

PNote that the coalition (B, {1,3}) cannot block fi,. If we suppose that mfj = 436, then the
minimal amount that department B should pay to student 1 is equal to m1p = 336, and department

B has to pay student 3 at least her reservation price msp = o3p = 740. However, m1p + msp =
336 + 740 = 1076 > 1075 = bp.
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The pair (A, {3}) blocks ps with m34 = 034 = 440. (See part I.)

The pair (A, {1}) blocks u5 with 440 > mq4 > 436. By satisfying this blocking

pair we reach matching

1 2 3 4 5 6
e = A 0O B C D D |,where440 > m/% > 436.
m 0 740 440 100 800

The pair (B, {2}) blocks ug with map = o9 = 1075, and by satisfying this
blocking pair we reach matching 7i,.
The pair (A, {3}) also blocks g with mzs = o034 = 440, and by satisfying this

blocking pair we reach

1 2 3 4 5 6
ur=|10 0 A C D D
0 0 440 440 100 800

Now we have following blocking coalitions for z7:
- The pair (B, {2}) blocks p7 with myp = 095 = 1075, and by satisfying this blocking
pair we reach matching ;.
- The coalition (B, {1, 3}) blocks 17 with m,p = 015 = 334 and msp = 741, and by
satisfying this blocking coalition we reach matching ji.
- The pair (B, {1}) blocks 7 with bg = 1075 > myp > 334 = 015. (See part 11.)
- The pair (B, {3}) blocks p7 with bp = 1075 > mgp > 741. By satisfying this

blocking pair we reach matching ps,

1 2 3 4 5) 6
ps=| 0 0 B C D D |,wherel075>mhi% > 741.
0 0 mhy 440 100 800
Following coalitions block pg:
- The pair (B, {2}) blocks g with map = 095 = 1075. (See part II1.)
- If m4}, = 741, then the pair (B, {1}) blocks us with m,p = 015 = 334. Note that

department B does not break its tie with student 3 while forming this blocking pair.

By satisfying this blocking pair we reach matching pis.

135



- The pair (A, {1}) blocks pg with 440 > my4 > 435. (See part IV.)
- The pair (A, {1}) blocks ug with m14 = 014 = 434. When we satisfy this blocking

pair we reach matching g,

1 2 3 4 5 6
g = A 0 B C D D |,wherel075>mky > 741.
434 0 mg?g 440 100 800

Blocking coalitions for fi9:
- If m§% = 741, then the pair (B, {1}) blocks pg with m;p = o015 = 334, and
department B does not break its tie with student 3 while forming this blocking pair.
By satisfying this blocking pair we reach matching 5.
- The pair (B, {2}) blocks jig with mop = 09 = 1075, and we reach matching 1119 by
satisfying this blocking pair where

1 2 3 4 5 6
Mo = A B O® C D D
434 1075 0 440 100 800

Blocking coalitions for ji;¢:

- The pair (A, {3}) blocks pi19 with 34 = 034 = 440, and by satisfying this blocking
pair we reach matching ;.

- The coalition (B, {1, 3}) blocks j19 with myp = 015 = 334 and m3p = 741, and by
satisfying this blocking coalition we reach matching jio.

- The coalition (B, {1, 3}) blocks 119 with m;p = 335 and m3p = o3 = 740, and by
satisfying this blocking coalition we reach matching 5.

- The coalition (B, {1, 3}) blocks p1o with myp = 015 = 334 and myp = o3 = 740,

and by satisfying this blocking coalition we reach matching 111, where

1 2 3 4 5 6
H11 = B ¢ B C D D
334 0 740 440 100 800

Blocking coalitions for ju;1:
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- The pair (A, {1}) blocks pi1; with 440 > my4 > 436, and by satisfying this blocking
pair we reach matching 4.

- The pair (A, {1}) blocks 17 with mi4 = 435. (See part V.)

- The pair (A, {3}) blocks p1; with 34 = 034 = 440, and by satisfying this blocking

pair we reach matching 115 where

1 2 3 4 5 6
U1z = B O A C D D
334 0 0 440 100 800

Blocking coalitions for ji;:
- The pair (B, {3}) blocks 1112 with m3p = 741 and department B does not break its
tie with student 1. By satisfying this blocking pair we reach matching .
- The pair (B, {3}) blocks 112 with 1075 > m3p > 741 and department B breaks its
tie with student 1 while forming this blocking pair. By satisfying this blocking pair we
reach matching g.
- The pair (B, {2}) blocks j115 with map = g9 = 1075, and we reach matching y; by
satisfying this blocking pair.

We now complete parts I, II, ITI, IV and V.

Part I. The pair (A, {3}) blocks matching p5 with m34 = 034 = 440, and we
reach matching ji4 by satisfying this blocking pair where

1 2 3 4 5 6
Is=| B 0 A ¢ D D
335 0 440 440 100 800

The pair (B, {3}) blocks fiz with 1075 > mgsp > 741 and department B breaks its
tie with student 1 while forming this blocking pair. By satisfying this blocking pair we

reach matching g.

The pair (B, {2}) also blocks fig with maop = 095 = 1075, and we reach match-
ing p; by satisfying this blocking coalition. We note that there is no other blocking

coalition for 7i4.
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Part II. The pair (B, {1}) blocks p; with bg = 1075 > myp > 334 = o1, and
by satisfying this blocking pair we reach matching 7ig,

1 2 3 4 5 6
Is=| B 0 A ¢ D D | wherel075>ml3 > 334
mi® 0 440 440 100 800

Blocking coalitions for fig:

- The pair (B, {2}) blocks fig with mop = 095 = 1075, and we reach matching y; by
satisfying this blocking pair.

- If m!®, = 334, then the pair (B, {3}) blocks Jig with fsp = 741, and department
B does not break its tie with student 1 while forming this blocking pair. By satisfying
this blocking pair we reach matching 5.

- The pair (B, {3}) blocks fig with 1075 > msp > 741 and department B breaks its
tie with student 1 while forming this blocking pair. By satisfying this blocking pair we

reach matching g.

Part III. The pair (B, {2}) blocks pg with maop = 095 = 1075, and by satisfying

this blocking pair we reach matching 71y, where

12 3 4 5 6
o = 0 B @ C D D
0 1075 0 440 100 800

Blocking coalitions for fiy:

- The pair (A, {1}) blocks 7y with 440 > m; 4 > 435, and by satisfying this blocking
pair we reach matching .

- The pair (A, {1}) blocks 71y with m14 = 014 = 434. When we satisfy this blocking
pair we reach matching y11.

- The coalition (B, {1, 3}) blocks Ji, with m;p = 015 = 334 and m3p = 741, and by
satisfying this blocking coalition we reach matching jis.

- The coalition (B, {1, 3}) blocks 71, with m;p = 335 and m3p = o3 = 740, and by
satisfying this blocking coalition we reach matching 5.

- The coalition (B, {1, 3}) blocks Ji, with mip = 015 = 334 and m3p = o35 = 740,

and by satisfying this blocking coalition we reach matching 1.
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Part IV. The pair (A, {1}) blocks pg with 440 > my,4 > 435, and by satisfying

this blocking pair we reach matching /i,

1 2 3 4 5 6
iv=| A ©® B ¢ D D |,
mb 0 ml% 440 100 800

where 440 > m/% > 435 and 1075 > mf3, > 74130

The unique coalition which blocks jig is (B, {2}) where myp = 095 = 1075, and

we reach matching 4 by satisfying this blocking coalition.

Part V. The pair (A, {1}) blocks 17 with m;4 = 435, and we reach matching 7,
by satisfying this blocking pair, where

1 2 3 4 5 6
EIQ — A @ B O D D
435 0 740 440 100 800

Blocking coalitions for 1i,,:
- The pair (A, {3}) blocks fi,, with m34 = 034 = 440, and we reach matching /7 by
satisfying this blocking pair.
- The pair (B, {2}) blocks 71,5, with mop = 095 = 1075, and we reach matching ji,4 by
satisfying this blocking pair.
- The pair (B, {1}) blocks i,, with m;5 = 335 and department B does not break its
tie with student 3 while forming this blocking pair. By satisfying this blocking pair we

reach matching 5.

Hence, for the graduate admissions problem with quota and budget constraints

there does not exist a random path to core stability (see figure 5.1).

30Note that if m%% = 741 then matching Jig is equal to matching 3.
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5.5 Students consider only their reservation prices

Karakaya and Koray (2003) also studied the model under restrictions on students’ pref-
erences. The main restriction they imposed to that end is the assumption that the stu-
dents care only about their reservation prices and do not derive any further utility from
money transfers over and above their reservation prices. They constructed another
departments proposing graduate admission algorithm (DE@ZA) by taking the reser-
vation prices of students equal to the money transfers from the department to which
they are accepted. They showed that if the algorithm DEE}/AA stops then the resulting
matching is core stable. However, like DPGAA, DYDE?/AA does not always stop, and
it is possible that there exists a core stable matching although DTDEZA does not stop.

In this section we will construct the students proposing graduate admission algo-
rithm (SﬁA) when students consider only their reservation prices. We will study
whether the mix algorithm works for this new model, i.e., we will check whether con-
jectures 1 and 2 are correct if students consider only their reservation prices. Random

paths to core stability will also be studied.

We will first define the departments proposing algorithm (DEEZA) following
Karakaya and Koray (2003).

The Departments Proposing Algorithm

The structure of DPGAA is the same as that of DPGAA, the only difference
being that a department d which makes an offer to a student s is ready to pay o4, to s no
matter at what stage of the algorithm this offer is made. In other words, mg;(t) = 04

forall s € S, all d € D and all times ¢ at which d makes an offer to s.

At each time ¢ in the algorithm DPGAA, each department d chooses a group of
admissible students S¢ satisfying its quota and budget constraints so as to maximize

its total benefit V2.
We now explain the details of how the algorithm DPGAA works.

t = 1. a) Bach department d determines a group of students S¢ C S as denoted
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above and offers to each student s € S¢.

b) Students who have taken one or more offers accept exactly one offer and reject

the others.

c) Department d accepts the group of students who accepted its offers. Let T
denote the group of students who accepted department d’s offers at time ¢ = 1, where
clearly T C S¢.

Now, at the end of period ¢ = 1 we have a matching i1, and so Sff L= Tld.

t = 2. a) Bach department d determines a group of students S§ C S\ (S¢\ T¥)

and makes an offer to each student s € Sg.

b) Students who have taken one or more offers accept exactly one offer and reject
the others.

c¢) Department d accepts the group of students who accepted its offers.
In general, at time k, the algorithm works as follows.

t = k. a) Now we will define an admissible group of students for department d, i.e,

we will define the set £} C S for department d at time k.

Assume that £ < k was the last time that d made an offer to s before time k where s
rejected d’s offer because of another department d’s offer. Department d cannot make
an offer to student s at time £, if s € Sgk_l. The set F¢ denote the group of all such
students for department d at time £, i.e., the group of students to whom department d

cannot make offers at time k.3!

Each department d chooses its group of students S¢ from S\ F} and offers to each

student s € S{.

b) Students who have taken one or more offers accept exactly one offer and reject
the others.

MAttime t = 1, F! = ) for all d € D, so each department d determines its group of students S
over the set of all students S. Attime t = 2, forall d € D, Fs = S{ \ T, so the admissible group for
department d at time 2is S\ (S¢ \ T¢).
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¢) Department d accepts the group of students T C S¢ who accepted its offers.
Stopping Rule

t = t*: The algorithm stops at time ¢* if each department d makes offers exactly to
the group of students who accepted its offers at t* — 1, i.e., if we have S& = T2 | for
alld € D.

If the algorithm stops at time ¢*, the matching j;~ is regarded as the outcome of the

algorithm.

Proposition 22 (Karakaya and Koray (2003)) If the algorithm DEEJZA stops, then
the final matching of the algorithm is core stable (and thus Pareto optimal).

We now define the students proposing graduate admission algorithm (S]/DE‘ZA).
The Students Proposing Algorithm

The structure of SPGAA is the same as that of SPGAA, the only difference is
that a student s offers her reservation price o, to a department d at any stages of the
algorithm if she makes an offer to department d. That is, for all s € S, all d € D and

all periods ¢t we have mgy(t) = 04q.

—~—

The algorithm SPGAA does not permit a student s to make offers to department
d if she is unqualified for department d. At every period in the algorithm, students s
makes at most one new offer to a department which is best for her, and her last new

offer made to a different department and got rejected stays valid as a holding offer.

t = 1. a) Each student s makes an offer to her most preferred department d to
which she is permitted to make offers. That is, student s offers o, to department d,
where (d, 0,4) P.(d, o,;) for any d # d to which she can make offers. Note that at

t = 1, there is no holding offer and each student s makes a new offer.

b) Let S¢ denote the group of students who offered department d at t = 1. Each
department d accepts the offers of the group of students 73 C S¢ that maximizes its

total benefit subject to its quota and budget constraints.
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¢) Each student s who has taken acceptance(s) tentatively accepts at most one of

them and rejects the others.

Now, at the end of time ¢ = 1 we have a matching y; with S¢ = T forall d € D

since a student s can get at most one acceptance at ¢ = 1.

t = 2. a) Each student s makes at most one new offer. Student s cannot make a
new offer to a department d if she offered to d and got rejected at time ¢ = 1. In such a
case, she makes a new offer to another department at this period, and her offer made to

d and got rejected in the preceding period remains valid at period 2 as a holding offer.

b) Each department d considers the group of students S¢ who made new and hold-
ing offers to department d at period 2, and accepts the offers of the group of students

T¢ C S¢ that maximizes its total benefit subject to its constraints.

c¢) Each student s who has taken acceptance(s) tentatively accepts at most one of

them and rejects the others.

Now, at the end of period ¢ = 2 we have a matching p, such that for each depart-
ment d, SjQ C T3

In general, at time k, the algorithm works as follows.
t = k. a) We will define the set F;; C D for student s at period k.

Assume that £ was the last period such that student s made a new offer to depart-
ment d before period k, where this offer was rejected by department d because of the
group of students de. Student s cannot make a new offer to department d at period £ if
Sffk_l = de. The set [} denote the set of all such departments for student s at period
k, i.e., student s cannot make a new offer to a department d € F};.

Each student s makes at most one new offer to a department d € (D \ F}), and the
last new offer student s made to some department and got rejected remains valid as a

holding offer if she makes a new offer to another department at this period k.

b) Each department d accepts the offers of the group of students 7% C S¢ that

maximizes its total benefit subject to its constraints.
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¢) Each student s who has taken acceptance(s) tentatively accepts at most one of

them and rejects the others.
Now, at the end of time ¢ = k we have a matching i, with S¢ C T}
Stopping Rule

t = t*: The algorithm stops at time t* if each student s makes offer(s) (new and/or
holding) to exactly the same department(s) that she offered in the preceding period.
That is the algorithm stops at ¢* if for all d € D we have S& = S | with for any
s € S&, if s made new offers to d at periods t* — 1 and ¢*, and if s made holding offers

to d at periods t* — 1 and ¢*.

If the algorithm stops at ¢* the final matching p;+ is regarded as the outcome of the

algorithm.

Proposition 23 [f the algorithm SE@ZA stops, then the final matching of the algo-

rithm is core stable (and thus Pareto optimal).

Proof Analogous to the proof of Proposition 19. [

Following example taken from Karakaya and Koray (2003) shows that there exists
a graduate admission problem when students consider only their reservation prices
such that neither D PG AA nor S PG AA stops and there is no core stable matching.

Example 13 Neither DPGAA nor SPGAA stops and there is no core stable

matching

LetD = {4,B}, S = {1,2,3}, g4 = 1, qg = 2, by = 50, by = 70, and the

qualification levels and reservation prices of the students are as given in in table 5.7.

As shown in Karakaya and Koray (2003), the algorithm DPGAA does not stop

and a cycle occurs consisting of following matchings /i1, 2, pt3 and f14:3

(123 (123 (123 (1203
M=\ oB)"™ \Boa)"™ \opa)™ \ano

32When writing a matching, we will not write the money transfers between matched agents, since all
money transfers between matched agents are the reservation prices of the students.
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al=10 ap=10
ai=1 a3=15
3 _ 8 3 _ 9
ax ap
0'1A24O 0'13230
O'QA:5O 0'23245
0'3,4:30 0'33:40

Table 5.7: Qualification levels and reservation prices of students for example 13

If we apply the algorithm SﬁA, it does not stop and a cycle occurs consisting

of following matchings i1, jio and ji3:
- (1 23 - (1 23 -~ (1 23
H1 @ B A ) M2 A B @ )y M3 B (Z) B .
Hence, neither DEEJZA nor S FGZA stops for this example. We note that there is
no core stable matching for this example, since there is neither a core stable matching

such that student 2 is matched with a department, nor a core stable matching under

which she is unmatched.

Karakaya and Koray (2003) showed that it is impossible that the algorithm

e~

DPGAA does not stop and no cycle occurs in the algorithm.

—_—

Proposition 24 (Karakaya and Koray (2003)) The algorithm DPGAA stops if and

only if no cycle occurs in the algorithm.
Following result shows that the same is also true for the algorithm S?C\J—ZA.
Proposition 25 The algorithm SEC\JZA stops if and only if no cycle occurs in the

algorithm.

Proof The proof is similar to that of Proposition 21. 0

The following example taken from Karakaya and Koray (2003) shows that it is
possible that the algorithm D PG AA does not stop but the algorithm SPGAA stops

and hence there is a core stable matching.
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Example 14 The algorithm DPGAA does not stop but the algorithm SPGAA

stops

Let D = {A, B,C, D} be the set of departments, S = {1,2,3,4,5,6} the set of
students and the quotas and budgets of the departments are given by g4 = 1, qg = 2,
gc = 1,qp = 2; by = 50, bg = 70, bc = 50, bp = 70. The qualification levels and

reservation prices of the students are as given in table 5.8.

aly=10 ap=10 ag= 5 ap= 0
a4=1 a%=15 at= 0 a= 3
ad= 8 at=9 at= 0 ab= 3
ay= 6 ak= 0 ag=10 ap=10
a’y= 0 ay= 3 az= 1 a=15
a= 0 a%= 3 al= 8 a%= 9
0'1A:50 0'13:30 0'10:20 UID—40
O-QA:E)O 0'23245 020240 UQD:30
O'3A:30 0'33:40 0'30:45 0'3D:28
O'4A:20 043240 040250 0'4D:30
054=40 os=30 o5c=50 o5p=45
06A245 063228 0'60:30 U6D:40

Table 5.8: Qualification levels and reservation prices of students for example 14

Karakaya and Koray (2003) showed that when the algorithm DYDE}’]A is applied,

a cycle occurs in the algorithm consisting of matchings i1, o, pt3 and pu4:
1 2 3 4 5 6 1 2 3 4 5 6
H1 = y 2 = )
B ® B D 0O D B O A DO C
(1 2 3 4 5 6 (1 2 3 4 5 6
o Baopc)™ \aBocopoe)

Hence, the algorithm DEEJZA does not stop for this example. When we apply the

e~

algorithm S PG AA, it stops at the end of period 2, and matching fz is the outcome of
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the algorithm, where
-~ (1 2 3 4 5 6
""\¢cpbopaBsB)
The matching 1 is core stable by Proposition 23. Hence, it is possible that the
algorithm D PG AA does not stop, but the algorithm S PG AA stops.

Example 15 The algorithm SPGAA does not stop but the algorithm DPGAA

stops

Let D = {E, F,G, H} be the set of departments, S = {7,8,9,10, 11,12} the set
of students and the quotas and budgets of the departments are given by gp = 1, qp = 2,
gc = 1, qg = 2; by = 50, bp = 70, b = 50, by = 70. The qualification levels and

reservation prices of the students are as given in table 5.9.

a,=10 at=10 al,=13 al;= 0
ay=1 a$=15 ag= 0 at;= 0
ay= 8 ay= 9 ag= 0 a$=28
ald=15 ald= 0 a=10 al¥=10
ald= 0 alt= 0 ag=1 al=15
a?= 0 al?=27 ai= 8 al?= 9
O'7E:4O O'7F=30 J7G:50 07H=45
0'8E250 0'8F245 O'gG:?)O 0'8H240
U9E:3O 09F:40 09G:45 O9H:50
o105=50 o10r=45 o106=40 o1or=30
o115=30 o11r=40 o116=50 orp=45
O125=45 012p=050 o126=30 o127=40

Table 5.9: Qualification levels and reservation prices of students for example 15

When we apply the algorithm SﬁA, a cycle occurs in the algorithm consisting

of three matchings i1, o and p3:

(78 9 10 11 12 (7 8 910 11 12
M=\ reowmc!™ \erocecuo)
78 9 10 11 12
M3 = .
FOFH O H
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So, the algorithm S ?C\}ZA does not stop for this example. However, the algorithm
D PG AA stops at the end of period 2, and matching i is the outcome of the algorithm,

(789 1011 12
"Neowmw e o r)

The matching 7 is core stable by Proposition 22. Hence, it is possible that the
algorithm S PG AA does not stop, but the algorithm D PG AA stops.

where

Example 16 Neither D PG AA nor SPGAA stops and there exists a core stable

matching

Our example is the union of examples 14 and 15. That is, we let D = {A, B, C,
D,E,F,G,H} be the set of departments and S = {1,2,3,4,5,6,7,8,9,10,11, 12}
the set of students, where the quotas and budgets of the departments are as follows:
ga =1L g =2,90c =1, qp = 2,98 = 1,qr = 2,95 = 1, qg = 2; by = 50,
bg = 70, b = 50, bp = 70, by = 50, bp = 70, b = 50, by = 70. The qualification
levels and reservation prices of the students are as given in examples 14 and 15, and we
assume that for any s € {1,2,3,4,5,6} and any d € {E, F,G, H} we have a5 < 0,
and for any s € {7,8,9,10,11,12} and any d € {A, B,C, D} we have a5 < 0. So,

the qualification levels and reservation prices of the students are as given in table 5.10.

ay=10 ah=10 at=5 ap=0 ap=10 a%b=10 al=13 al=0

=1 a4=15 a: =0 a%=3 dai=1 a}t=15 a}=0 a4=0

=8 ah=9 =0 ahb=3 a%=8 a%=9 at=0 a}=28

a=6 ap=0 at=10 aph=10 a=15 aP=0 =10 al¥=10

=0 a3=3 a=1 aHh=15 af=0 at=0 al=1 alt=15
6 12 12

=0 a%=3 ad=8 ab=9 af=0 a}}=27 af=8 a}}=9
UlA:50 013230 0'10:20 01D:40 O'7E:40 U7F:30 O'7G:50 U7H:45
094=50 0op=45 090=40 o09p=30 o03g=50 ogr=45 o0g3g=30 ogy=40
034=30 03=40 o03c=4> o03p=28 o09g=30 o09p=40 09g=45 o9y=50
0'4A:20 0'43240 0'40250 O'4D=30 0'10E:50 0'10F:45 0'10@:40 UIOH:30
O'5A=40 0'53230 0'50250 O'5D:45 O'11E:30 0'11F:40 0'11G:50 O'11H:45
UGA:45 0'63228 0'60230 0'6D:40 012E:45 012F:50 0'12@:30 0’12H:40

Table 5.10: Qualification levels and reservation prices of students for example 16
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When we apply the departments proposing algorithm DﬁA, a cycle occurs in

the algorithm consisting of matchings i1, o, pt3 and puy:

(123 456 789 10 11 12
m"=“\soeoBDODGOH E O F)

1 23 456 78 9 10 11 12
=\poapoccone o F)
(12345 6 789 10 11 12
“=\oBaobpDcacouHEe o F)
(123456789 10 11 12
M=\AaBocDOGoOHE O F

Hence, the departments proposing algorithm DYDEZA does not stop for this ex-

ample.

When we apply the students proposing algorithm SE(\JZA, a cycle occurs in the

algorithm consisting of three matchings /i1, fi2 and ji3:

N 1 2 3 45 678 9 10 11 12
mM=\ecppaBBOoFrEO® HCG)
(123456 7 8910 11 12
=\ebppDAaBBEFOGCHO)
~ 1 2 3 5 6 7 8 9 10 11 12
M=\ e D pDAaABBFOFH O H)

So, the students proposing algorithm SE(\?—ZA does not stop for this example.

Consider following matching p:

(12 3 45 6 789 1011 12
"“\epbpaBBCaow e o F)



Note that 4 = 1 U i, where i is the resulting matching of the algorithm SPGAA
when applied to Example 14, and /i is the resulting matching of the algorithm D PG AA
when applied to Example 15. It is easy to check that the matching p is core stable.

Hence, it is possible that neither DYDE‘ZA nor S]/DEZA stops, but there is a core
stable matching. So, the algorithms DPGAA and SPGAA are not complementary
in the sense that for a given graduate admission problem if the set of its core stable
matching is non-empty, then either DPGAA or SPGAA stops.

We note that for the graduate admission problem given in Example 16, the core
stable matching x can be reached by using the mix algorithm independent of whether
DEEJZA or S?C\;’ZA is applied first. Because of this observation, the question of
whether Conjecture 1 is correct when students consider only their reservation prices is

asked. Following example shows that it is not correct.
Example 17 The mix algorithm produces a matching which is not core stable

The set of departments and their quotas and budgets are as in Example 16. The set
of students and their qualification levels and reservation prices are again as in Example
16 except that the qualification level of student 10 for department A is now 7, and the

reservation price of student 10 for department A is now 42, i.e., ') = 7and o194 = 42.
We now apply the mix algorithm by applying first DPGAA.

t = 1. All departments behave in this example as they behaved in Example 16.%
Hence, the algorithm D PG A A does not stop and a cycle occurs consisting of match-
ings (41, o, 43 and py which are given in Example 16. The constant part consists of the
set of departments D = {E, F, G, H} and the set of students S = {7,8,9, 10,11, 12}

) N 7 8 9 10 11 12 . .
with a matching 1@ = . The inconstant part consists of the
GO HFE O F

set students S = {1,2,3,4,5,6} and the set of departments D= {A,B,C, D}.

33We note that department A makes offers only to students 1 and 3 in Example 16, and we now have
al? = 7 which is smaller than a!; = 10 and a% = 8. So, department A does not make any offer to
student 10 in this example, showing that department A behaves in this example as it behaved in Example
16.
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t = 2. We apply the algorithm SEC\JZA to the inconstant part (g , 25) It stops and
1 2 3 4 5 6

C D D A B B
by applying first DEE}EA stops at the end of period 2, and its outcome is the union of

the resulting matching is p = < ) . Hence the mix algorithm

the matchings 7 and ;& which is the matching p given in Example 16, i.e.,
(1 2 3 4 5 6 7 8 9 10 11 12
""\eppaBBGoHEWF)

However, the matching y is not core stable for this example, since (A, {10}) blocks

the matching j..34

Hence, the mix algorithm by applying first DEEJZA produces a matching which

is not core stable.
We now apply the mix algorithm by applying first SPGAA.

t = 1. All students behave in this example as they behaved in Example 16.%
Hence, the algorithm Sf’azA does not stop and a cycle occurs consisting of match-
ings i1, i1o and g3 which are given in Example 16. The constant part consists of the
set of departments D = {A, B, C, D} and the set of students S = {1,2, 3,4, 5,6} with
1 2 3 4 5 6
C D D A B B

students S = {7,8,9,10,11, 12} and the set of departments D= {E,F,G,H}.

a matching g = ( ) . The inconstant part consists of the set

t = 2. We apply the algorithm DEC\JZA to the inconstant part (g , 75) It stops and
7 8 9 10 11 12

GO H E 0 F
by applying first SEC\JZA stops, and its outcome is the union of the matchings ;& and

the resulting matching is ;i = ( ) . Hence the mix algorithm

i which is the matching x4 given in Example 16. We know that the matching y is not

core stable for this example.

3Note that ({10}, 0104)Pa({4},044) since al{ > a%, and (A, 0104)P1o(E, o10E) since oipa <
010E-

3We note that student 10 makes offers only to departments H and G in Example 16, and we now
have 0104 = 42 which is greater than o190 = 30 and 019c = 40. So, student 10 does not make any
offer to department A in this example, showing that student 10 behaves in this example as she behaved
in Example 16.
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Hence, it is possible that the mix algorithm produces a matching which is not core
stable, i.e., Conjecture 1 is not correct when students consider only their reservation

prices.

We note that for the graduate admission problem given in Example 13, by using
the mix algorithm regardless of which type of algorithm is applied first, we reach the
same problem, and we know that there is no core stable matching for Example 13. This
observation leads us to the question that whether Conjecture 2 is correct when students

consider only their reservation prices. Following example shows that it is not correct.

Example 18 The mix algorithm reaches a problem 55 such that 55 = 55_1 and

there is a core stable matching

Let D = {A B,C,D,E,F,G,H} be the set of departments and S =
{1,2,3,4,5,6,7,8,9,10,11, 12} the set of students, where the quotas and budgets of
the departments are as follows: g4 = 1, g5 = 2, qc = 1,qp = 2,qg = 1, qr = 2,
g =1,qy = 2;b4 = 50, b = 70, bc = 50, bp = 70, by = 50, by = 70, bg = 50,
by = 70. We assume that for any s € {1,2,3,4,5,6} and any d € {F,F,G, H} we
have a5 < 0, and for any s € {7,8,9,10,11,12} and any d € {A, B,C, D} we have
a3 < 0. So, the qualification levels and reservation prices of the students are as given
in table 5.11.

ay=10 ap=10 at=12 ap=0 =10 ak=10 al=18 al=
=1 a4=15 a.=0 aHh=5 af=1 ay=15 ad= 0 af;=
=8 ah=9 a=0 ah=5 a%=38 a%— 9 al=0 a%=10
ay=3 ap=0 at=5 ap=0 ap=12 aF— 0 af=5 ap=
a3=0 a%=3 al=0 ap=10 al=0 dal=0 aff=0 d}=
=0 a%=3 =0 a5=10 af=0 a¥=20 aF=0 a}=

0'1A:40 0'13:30 O'1c 20 O1Dp— 50 O'7EI40 U7F:30 U7G:50 U7H:70
0'2A=50 0'23245 0'20230 O'2D=20 O'8E=50 08F245 Ugg—40 08H=70
O'3A=30 0'33:40 0'30:50 0'3D:20 0'9E230 0'9F240 O'gG:50 0'9H260
0'4A:20 0'43230 0'40240 0'4D:50 010E:50 0’10F:40 0'10@:30 0’10H:45
054=45 o055=30 05¢=40 o05p=35 011g=40 011Fr=50 o011¢6=45 o0115=30
06a=40 o06=30 05c=50 0sp=35 0O12g=45 012Fr=70 0126=50 0o125g=35

Table 5.11: Qualification levels and reservation prices of students for example 18
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Now, we apply the mix algorithm by applying DﬁA first.

t = 1. We apply the algorithm Dﬁfl. It does not stop and a cycle occurs

consisting of following four matchings:

_1
251 B

10 11 12
E O F |’

=
oo w
Q &~
O o
O o
Q
= o
o ©

(12345 6 789 1011 12
=\ ovacpDpDCcoHn E O F)
(12345 6 789 1011 12
s " BACDDGE OHTE 0 F)’
(12345 6 789 10 11 12
M=\ABoocDDGCOHE O F

The constant part consists of the set of departments D = {C, D, E, F,G, H} and
the set of students S = {4,5,6,7,8,9,10, 11,12}. The inconstant part consists of the
set of departments D = {A, B} and the set students S = {1,2,3}, s0 6, = (D, S).

t = 2. We apply the algorithm SPGAA to the problem 6; = (D, S ). Note that 0,
is equal to the problem given in Example 13 and we know that the algorithm SE@ZA
does not stop for that problem. So, S?C\?ZA does not stop for 51 and a cycle occurs
consisting of the matchings /i3, /i and ji3 that are given in Example 13. For the cycle
consisting of these three matchings we have D = () and S = (), and D = {A, B}
and S = {1,2,3}. So, 0> = 6, and the mix algorithm stops. Hence by using the mix
algorithm by applying DEC\JZA first, at the end of period 2 we reach a problem 52
such that 52 = 51.

We now apply the mix algorithm by applying S EC\;’ZA first.

t = 1. We apply the algorithm SEC\?ZA. It does not stop and a cycle occurs

consisting of following three matchings:

(12345 678 9 10 11 12
M=\eppaBBorEGHUH)
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= O

(1234 5 6 7 8910 11 12
=\ e ppAaBBEFOGHH)

(1 2345 6 78910 11 12
B=\cppAaBBFOFGHUH)

The constant part consists of the set of departments D= {A,B,C,D,G, H} and
the set of students S = {1,2,3,4,5,6,10,11, 12}. The inconstant part consists of the
set of departments D = {E, F'} and the set students S = {7, 8,9}, s0 6, = (D, S).

t = 2. We apply the algorithm DPGAA to the problem 6; = (5, S ). Note that
0, is equivalent to the problem given in Example 13 and we know that the algorithm
DPGAA does not stop for that problem.*® So, DPGAA does not stop for 0, and a
cycle occurs consisting of the matchings i1, p2, pt3 and p4 which are given in Example
13. Wehave D = ) and S = 0, and D = {E, F} and S = {7,8,9}. So, 6, = 6, and
the mix algorithm stops. Hence by using the mix algorithm by applying .S ?C\JZA first,

at the end of period 2 we reach a problem 52 such that 52 = 0,.

We now consider matching p, where
(1 2 3 4 5 6 7 8 9 10 11 12
"\ecppaBBGoHE O F)

It is easy to check that the matching y is core stable. Hence, Conjecture 2 is not

correct when students consider only their reservation prices.

Example 19 There does not exist a random path to core stability when students

consider only their reservation prices

Let D = {A, B,C, D} be the set of departments, S = {1,2,3,4,5,6} the set of
students and the quotas and budgets of the departments are given by g4 = 1, ¢gg = 2,
gc =1,qp = 2; b4 = 400, b = 1000, b = 400, bp = 1000. The qualification levels

and reservation prices of the students are as given in table 5.12.

3We replace the names of A and B with E and F, respectively, and the names of 1, 2 and 3 with 7,
8 and 9, respectively.
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ah= 8 ap= 8 ag= 0 ap= 8
a= 0 ap= 15 az= 0 ah= 0
a= 10 at= 10 ag= 0 ab= 0
ah= 0 ag= 0 ag= 5 ap= 15
a= 0 ap= 0 ag= 10 an»= 10
ab= 0 a%= 20 al= 7 ab= 12
O'1A:200 O1B— 300 0'10:150 0'1D—100
O'QA:3OO O9B— 900 0'202200 UQD—5OO
034=400 o3p= 300 03c=100 03p=600
044=200 osp= 600 04c=400 04p=900
054=100 osp= 800 050=300 o5p=200
0'6A2200 0'6321000 0'602400 06D:300

Table 5.12: Qualification levels and reservation prices of students for example 19

The set of core stable matchings is nonempty for this problem, e.g., following

matching p* is core stable:
. (1 23 4 5 6
"“\poabpcsn)
We consider the following individually rational matching jz:
~ (1 2 3 4 5 6
8 ® B ACDTD]
We will show that starting from this matching 7z and at each time satisfying a block-

ing coalition, a core stable matching will not be reached.

The unique coalition which blocks fi is (B, {1, 3}), and by satisfying this blocking

coalition we reach matching /i,
_ (1 23 45 6
""\BoBcopDD)
The unique coalition which blocks 71 is (A, {1}). We reach matching 7 by satisfy-

ing this blocking coalition, where

(123 4 5 6
"“\ao0oBcpop)
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The unique coalition which blocks i is (B, {2}), and by satisfying this blocking

coalition we reach matching /i,
, (1 23 4 5 6
""\aBowcobDD)

The unique coalition which blocks /i is (A, {3}), and by satisfying this blocking

coalition we reach the matching jz that we started with.

Hence for the graduate admission problem with quota and budget constraints when
students consider only their reservation prices, there does not exist a random path to

core stability.

We close this section by noting that Karakaya and Koray (2003) also showed that
there exists neither a departments-optimal matching nor a students-optimal matching

if students consider only their reservation prices.

5.6 Concluding remarks

As a continuation of Karakaya and Koray (2003), we studied the graduate admissions
problem with quota and budget constraints as a two sided many to one matching mar-
ket. We constructed the students proposing algorithm which is an extension of the
Gale-Shapley algorithm. We showed that the algorithm ends up with a core stable
matching if the algorithm stops. However, the algorithm may not stop for some grad-
uate admission problems. Also it is possible that the departments proposing algorithm
(constructed in Karakaya and Koray (2003)) or the students proposing algorithm does
not stop and there is a core stable matching. We proved that the students proposing
algorithm stops for a given problem if and only if no cycle occurs in the algorithm.
We showed that the departments proposing and the students proposing algorithms are
not complementary in the sense that for a given graduate admission problem if its core
is non-empty then at least one of the two algorithms stops, i.e., we showed that there
exist graduate admissions problems for which there exist core stable matchings, while

neither of the two algorithms stops. Moreover, we showed that there does not exist
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a random path to core stability for the graduate admissions problem. We continued
our study by modifying students’ preferences in such a way that the students care only
about their reservation prices. Under this model we got results similar to those obtained

in the general model.

Hence, we can say that for the model defined in this paper (two sided matching
market with quota and budget constraints), straightforward extensions of the Gale-
Shapley algorithm do not function as well as it works for college admissions and labor
market models without budget constraints. That is, the picture changes entirely when

one imposes the two constraints simultaneously.
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Figure 5.1: Nonexistence of random path to core stability (Example 12)
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CHAPTER 6

CONCLUSION

In the previous chapters, we dealt with different economic environments as hedonic
coalition formation games or cover formation games, implementation via codes of
rights, a characterization of the Borda rule or graduate admissions problem with quota
and budget constraints. Although the environments considered exhibit a wide variety,
what combines them is the efficiency-stability or the invisible hand-design axes along

which they are dealt with.

In the first main part, we introduced the framework of “membership rights” of Ser-
tel (1992) into the context of hedonic games. We proposed a new stability notion under
free exit-free entry membership rights, referred to as strong Nash stability, which had
not been studied earlier. We provided sufficient conditions for a hedonic game to have
a strongly Nash stable partition, and studied varying versions of strong Nash stabil-
ity under different membership rights. We gave a unitary flavor to our work using
the membership rights approach and thus classified all existing and newly proposed
stability concepts in terms of approved vs free entry or exit. This study completes
the picture on the myopic concepts of stability in hedonic games. We also extended
hedonic games to cover formation games where a player can be a member of several
different coalitions, and studied these games. In the second main part, we studied Nash
implementation of social choice rules which are implementable via a Rechtsstaat. We

showed that if a social choice rule is implementable via some Rechtsstaat satisfying
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equal treatment of equivalent alternatives then it is Nash implementable via a mech-
anism when there are three or more agents in the society. In the third main part, we
studied the question of which set of axioms characterizes the Borda rule when agents
have weak preferences over the set of alternatives. We showed that an social choice
rule satisfies weak neutrality, reinforcement, faithfulness and degree equality if and
only if it is the Borda rule. In the fourth main part, we studied the graduate admis-
sions problem with quota and budget constraints as a two sided many to one matching
market as a continuation of Karakaya and Koray (2003). Given a graduate admission
problem, the main concern is to determine whether the set of core stable matchings is
empty or not. If it is non-empty, then the natural question is how one can obtain a core
stable matching. We constructed algorithms which are extensions of the Gale-Shapley
algorithm and showed that if the algorithms stops then the resulting matchings are core
stable. However, there are problems for which there exist core stable matchings, while
none of the algorithms stops. Moreover, no random path to core stability exists, and
the existence of either a departments-optimal or a students-optimal matching is not

guaranteed in the graduate admissions problem.
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APPENDIX

We will provide omitted proofs and examples.

We now show that the weak top-choice property and the weak top-coalition prop-

erty are independent of each other.

Lemma 21 The weak top-choice property neither implies nor is implied by the weak

top-coalition property.

Proof [the weak top-choice property = the weak top-coalition property]
Let G = (N, >) where N = {1,2,3,4} and players’ preferences are as follows:
{1,2,3,4} =1 {1,2} =1 {1,3} =1 {1} »1 ...,
{1,2,3,4} =5 {2,3} =2 {2} »2 ...,
{1,2,3,4} =5 {1,3} =5 {2,3} =5 {3} =3 ...,
{1,4} =4 {2,4} =4 {3,4} =4 {1,2,3,4} =, {4} =4 .. ..

This hedonic game satisfies the weak top-choice property, i.e., W (N) = {{N}}
with H' = {1,2,3} and H? = {4}. However, it fails to satisfy the weak top-coalition

property, since there is no weak top-coalition of {1, 2, 3}.
[the weak top-coalition property - the weak top-choice property]
Let G = (N, =) where N = {1,2,3,4} and players’ preferences are as follows:

{1,4} =1 {1,3} =1 {1,2,4} >, {1,2} >y {1,2,3,4} =1 {1,2,3} >
{1,3,4} 1 {1},
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{2,3,4} ) {2,3} b {274} =9 {1,2} b {1,2,4} 9 {1,273,4} b
{17 2’3} 2 {2},

{2,3,4} —3 {1,3,4} —3 {2,3} 3 {3,4} —3 {1,2,3} —3 {1,3} >3
{1,2,3,4} =3 {3},

{1,4} =4 {2,4} =4 {3,4} =4 {2,3,4} =4 {1,2,3,4} =4 {1,2,4} =,
{1,3,4} =, {4}.

This hedonic game satisfies the weak top-coalition property, where
the weak top-coalition of {1,2,3,4} is {1,4} with H' = {1, 4},
the weak top-coalition of {1, 2,3} is {2, 3} with H' = {2, 3},
the weak top-coalition of {1,2,4} is {1,4} with H' = {1,4},
the weak top-coalition of {1, 3,4} is {1,4} with H' = {1, 4},
the weak top-coalition of {2, 3,4} is {2,3,4} with H! = {2,3} and H? = {4},
and for any remaining coalition N, the weak top-coalition of N is equal to itself with
H'=N!

However, this hedonic game fails to satisfy the weak top-choice property, since
W(N) = {{1,4}} which is not a partition for N = {1,2,3,4}.2 O

We introduce following notation:
For each i € N and H € o, let Ch;(H) = {T € (2" No;) | T =; T for each
T € (2 N 0;)} denote the set of maximals of  on H under >=;. Hence for any
player i, C'h;(IN) denote the set of best coalitions of player i over o; under =, i.e.,
Chi(N)={H €0, | H=; TforeachT € o;}.

"Note that that there is no top-coalition of {2, 3,4}, since for all i € {2,3} we have {2,3,4} =; T
forany T' G {2,3,4} with i € T, however {2,4} >4 {2,3,4}. Hence, this game does not satisfy the
top-coalition property.

The unique core stable partition for this game is 7 = {{1,4}, {2,3}}. However 7 is not strongly

Nash stable, since player 3 strongly Nash blocks the partition 7 by joining {1,4}, i.e., w ii}% T =

{{1,3,4},{2}}, and #(3) >3 7w(3). So, there does not exist a strongly Nash stable partition for this
game. Hence, the weak top-coalition property does not guarantee the existence of a strongly Nash stable
partition.
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We now construct a hedonic game such that players have strict preferences and
the weak top-choice property is satisfied, and such that the game has more than one

strongly Nash stable partition.

Example 20 Let G = (N, =) where N = {1,2,3,4,5,6} and players’ preferences

are as follows:
{1,2,3,4,5,6} >=1 {1,6} >=1 {1} >1 ...,
{1,2,3,4,5,6} =5 {2,5} »2 {1,2} =2 {2} »2 ...,
{1,3} =3 {2,3} =3{1,2,3,4,5,6} =3 {3,4} =3 {3} =5 ...,
{3,4} =4 {2,4} =4 {1,4} =, {1,2,3,4,5,6} =, {4} =4 ...,
{2,5} =5 {4,5} =5 {3,5} =5 {1,5} »5 {1,2,3,4,5,6} =5 {5} =5 ...,

{1,6} 6 {5,6} 6 {4, 6} 6 {3,6} 6 {2,6} 6 {1,2,3,4, 5,6} 6 {6} 6

Note that W(N) = {{N}} with H' = {1,2}, H? = {3}, H® = {4}, H* =
{5} and H® = {6}, i.e., this game satisfies the weak top-choice property. So, 7 =
W(N) = {{N}} is a strongly Nash stable partition.

Now we will show that the partition 7 = {{1,6},{2,5},{3,4}} is also a strongly
Nash stable partition. Suppose that 7 = {{1,6},{2,5},{3,4}} is not strongly Nash
stable. Then, there exist a nonempty set of players H C N and a partition 7 €
(II(N) \ {#}) such that 7 5 7, and (i) >, 7(d) for all i € H.

Note that Chy(N) = 7(4) = {3,4}, Ch5(N) = 7(5) = {2,5} and Chg(N) =
7(6) = {1,6}, so for any nonempty set of players H which strongly Nash blocks the
partition 7 we have H N {4,5,6} = (). So, the candidates for H which strongly Nash
blocks the partition 7 are {1}, {2}, {3}, {1,2}, {1,3}, {2,3} and {1, 2, 3}.

The only partition 7 € (II(N) \ {7}) for player 1 that satisfies 7(1) >=; 7(1) is
the partition 7 = {1, 2, 3,4, 5,6}, i.e., for all partitions 7 € (II(N) \ {7, 7}) we have
7(1) >; (1), and the only partition 7 € (II(V) \ {7}) for player 2 that satisfies
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7(2) »2 7(2) is the partition 7 = {1,2,3,4,5,6}.

Now, the partition 7 cannot be reachable from 7 by any of the candidates of H that
contains player 1 or player 2 or both of them which strongly Nash blocks the partition
7, that is 7 cannot be reachable from 7 by {1}, {2}, {1, 2}, {1, 3}, {2,3} and {1, 2, 3}.
Hence, 1 ¢ H and 2 ¢ H for any H which strongly Nash blocks the partition 7. So,

the only remaining candidate for H is the singleton {3}. Now, we have that
712 {{1,6}, {2,5}, {38}, {4}}. but 7(3) = {3,4} =5 {3}:
7 2 (41,3,6}, {2, 5}, {4}}, but 7(3) = {3,4} =5 {1,3,6};
7 25 ({1,6},{2,3,5}, {41}, but 7(3) = {3,4} =35 {2,3,5}.
So, H # {3}.

So, there is no subset of players H which strongly Nash blocks the partition 7,

contradiction. Hence, 7 is strongly Nash stable.

We will prove that if a hedonic game satisfies the top-choice property and every
player’s best coalition is unique then there exists a unique strongly Nash stable partition

which consists of the top-coalitions of N.

Proposition 26 If a hedonic game satisfies the top-choice property and | Ch;(N) |= 1
is satisfied for each player i € N, then there exists a unique strongly Nash stable
partition ™ with 7 = R(N), where R(N) denote the top-coalitions of the grand

coalition N.

Proof Let G = (N, >) be a hedonic game which satisfies the top-choice property
and | Ch;(N) |= 1 for each player i € N. Let R(N) = {H,,..., Hx} denote top-

coalitions of N. R(N) is a partition since the game satisfies the top-choice property.

Let R(N) = n*. We will show that 77* is strongly Nash stable. Since the game
satisfies the top-choice property and | Ch;(IN) |= 1 is satisfied for any player i € N,
each player is in her unique best coalition under 7*, that is we have C'h;(N) = 7*(i)
foralli € N. So, for all i € N, we have 7*(i) =, (i) for any = € II(/V). Hence 7*
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is strongly Nash stable.

For uniqueness, notice that a strongly Nash stable partition must include H, oth-
erwise H; blocks the partition since for all ¢« € H; we have that H; >; T for any
T € (0; \ {H:1}). With the same argument we say that a strongly Nash stable parti-
tion must include Ho, ..., Hx_; and Hg. Hence 7* is the unique strongly Nash stable

partition. 0J

We now show that the top-choice property and the top-coalition property are inde-

pendent of each other.

Lemma 22 The top-choice property neither implies nor is implied by the top-coalition

property.

Proof [the top-choice property - the top-coalition property]
Let G = (N, ) where N = {1,2, 3,4} and players’ preferences are as follows:
{1,2,3,4} =1 {1,2} »1 ...,
{1,2,3,4} =2 {2,3} 2 ..,
{1,2,3,4} =5 {1,3} 5 ...,
{1,2,3,4} =4 {4} =4 .. ..

This hedonic game satisfies the top-choice property, i.e., R(N) = {{1,2,3,4}}.
However, it fails to satisfy the top-coalition property, since there is no top-coalition of
N ={1,2,3}.

[the top-coalition property - the top-choice property]
Let G = (N, ) where N = {1,2,3} and players’ preferences are as follows:
{1} ~1 {172} ~1 {173} =1 {17273}9

{2} =2 {1,2} =2 {2,3} =2 {1,2,3},
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{1,2,3} ~3 {1,3} 3 {2,3} ~3 {3}

This hedonic game satisfies the top coalition property, where for any nonempty set
of players N C N with 1 € N and 2 ¢ N, the top coalition of N is {1}, and for any
nonempty set of players N C N with 2 € N and 1 ¢ N, the top coalition of N is {2}.
For any nonempty set of players NCN containing players 1 and 2, the top coalition
of N is both {1} and {2}.

However, this game does not satisfy the top-choice property, since R(N) =
{{1},{2}} which is not a partition for N = {1, 2, 3}.3 O

We now show that the top-choice property and the weak top-coalition property are

independent of each other.

Lemma 23 The top-choice property neither implies nor is implied by the weak top-

coalition property.

Proof [the top-choice property - the weak top-coalition property]
Let G = (N, =) where N = {1,2,3,4} and players’ preferences are as follows:*
{1,2,3,4} = {1,2} =1 {1,3} =1 {1} =1 {1,2,3} >1 ..,
{1,2,3,4} =2 {1,2,3} =2 {2,3} =2 {1,2} =2 {2} o ..,
{1,2,3,4} =3 {1,2,3} =35 {2,3} =3 {1,3} =3 {3} >3 ..,
{1,2,3,4} =4 {4} =4 .. ..

This hedonic game satisfies the top-choice property, i.e., R(N) = {{1,2,3,4}}.
However, it fails to satisfy the weak top-coalition property since there does not exist a
weak top-coalition of N = {1,2, 3}.

3The unique core stable partition for this game is 7 = {{1}, {2}, {3}}. However 7 is not strongly

Nash stable, since player 3 strongly Nash blocks the partition 7 by joining {1}, i.e., 7w ﬂ) T =
{{1,3},{2}}, and #(3) >3 m(3). So, there is no strongly Nash stable partition for this game. Hence,
the top-coalition property does not guarantee the existence of a strongly Nash stable partition.

4This example is a modification of an example given in Bogomolnaia and Jackson (2002).
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[the weak top-coalition property = the top-choice property]

Let G = (N, =) where N = {1,2,3} and players’ preferences are as follows:?
{1,2,3} =1 {1,2} =1 {1,3} > {1},

{2,3} =2 {1,2} =2 {1,2,3} =2 {2},

{1,3} =5 {1,2,3} =3 {2,3} >3 {3}.

This hedonic game satisfies the weak top-coalition property. A weak top-coalition
of N is {1,2,3} with corresponding partition ' = {1}, H> = {3} and H® = {2}. A
weak top-coalition of any N which is a strict subset of N is N with H' = N. However,

this game does not satisfy the top-choice property since R(N) = ().° 0J

We will show that preferences are descending separable and the weak top-choice

properties are independent of each other.

Lemma 24 Preferences being descending separable and the weak top-choice property

are independent of each other.

Proof [preferences being descending separable = the weak top-choice property]’

Let N = {1,2,3,4,5,6,7} and the profile of purely cardinal preferences gener-
ated by the following individual weights: w(l) = 6, w(i) = 1 for i = 2,3, and
w(j) = —2for j = 4,5,6,7. Players 1, 2 and 3 are each indifferent between coali-
tions {1,2,3,4,7} and {1,2,3,5,6}. Now, modify these agents’ preferences by mak-
ing {1,2,3,5,6} = {1,2,3,4,7} and {1,2,3,5,6} >3 {1,2,3,4,7}, and making
{1,2,3,4,7} =2 {1,2,3,5,6}, without changing any other relationships.

5This examle is taken from Bogomolnaia and Jackson (2002).

®The partition 7% = {{1,2,3}} is strongly Nash stable for this game. Hence, this example also
shows that the top-choice property is not necessary for a hedonic game to have a strongly Nash stable
partition.

"We will take the example of Burani and Zwicker (2003, page 43), and apply their methods (given
in page 42) to this example.
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The resulting preference profile is not purely cardinal,® but it is descending separa-

ble with the identity function p.

Now, the analysis of Burani and Zwicker (2003, page 43) given in the proof of their
proposition 4 applies here, to show that there is no weak top-coalition of N. Hence,

this game fails to satisfy the weak top-choice property.
[the weak top-choice property = preferences being descending separable]
Let G = (N, >), where N = {1, 2,3} and players’ preferences be as follows:
{1,2,3} =1 {1,3} =1 {1,2} > {1},
{1,2} =9 {1,2,3} =5 {2,3} =2 {2},
{2,3} =3 {1,3} =3 {1,2,3} >3 {3}.

This hedonic game satisfies the weak top-choice property, i.e., W(N) =
{{1,2,3}} with H' = {1}, H?> = {2} and H*® = {3}. Suppose that there exists a
reference ranking p such that CRI is satisfied. Then, {2,3} >3 {1, 3} implies that we
have 2 > 1 under p, and {1,3} >, {1,2} implies that we have 3 > 2 under p. So, p
is such that 3 > 2 > 1. However, for agent 2 we have {1,2} >, {2, 3}, a contradic-
tion. So, there is no p such that CRI is satisfied. Hence, players’ preferences are not

descending separable. [

We now provide an example showing that purely cardinal preferences are not nec-

essary for a hedonic game to have a strongly Nash stable partition.

Example 21 Let G = (N, >) where N = {1,2,3} and players’ preferences are as

follows:
{1,2} =1 {1,3} =1 {1,2,3} > {1},
{1,2} =9 {2} =2 {1,2,3} =5 {2,3},
{3} =3{2,3} =3 {1,2,3} >3 {1,3}.

8Since the resulting profile is not additively separable, i.e., for agent 2 we have {2,3,4,7} ~o
{2,3,5,6} and also {1,2,3,4,7} =2 {1,2,3,5,6}.
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Now, 7* = {{1, 2}, {3} } is a strongly Nash stable partition. Suppose that players’
preferences are purely cardinal. Since {1,3} >=; {1}, wehave v(1, 3) = w(1)4+w(3) >
0 =w(1,1). Since {3} >3 {1, 3}, we have that v(3,3) = 0 > w(1) + w(3) = v(1, 3),

a contradiction. So, players’ preferences are not purely cardinal.’

We now show that preferences being purely cardinal and the weak top-choice prop-

erty are independent of each other.

Lemma 25 Purely cardinal preferences neither implies nor is implied by the weak

top-choice property.

Proof [purely cardinal preferences - the weak top-choice property]

Let N ={1,2,3,4,5,6,7} and players’ preferences are purely cardinal with indi-
vidual weights w(1) = 6, w(i) = 1 fori = 2,3, and w(j) = —2 for j = 4,5,6,7.1°
Now, additively separable and symmetric preferences is represented by the following

functions v = (v;)ien:

1 2 3

(%} 0 7 7 4 4

v [T 0] 2] 1| —-1|-1]-1
vs [T 2] 0] —=1|—=1]|-1]-1
vy | 4] 1] -1 0|—4|—-4] -4
vs |4 =1 —-1|—4 0|—-4|-4
v |4 —-1]—-1|—-4] -4 0| —4
vy |4 -1 -1|—-4|-4| -4 0

Each of the following partition is a top-segment partition and is strongly Nash
stable:

™ = {{17 2,3, 4}7 {5}7 {6}7 {7}}’ Ty = {{17 2,3, 5}’ {4}’ {6}’ {7}}’
m3 = {{17 2,3, 6}7 {4}7 {5}7 {7}}’ Ty = {{17 2,3, 7}7 {4}7 {5}? {6}}

°In fact, this hedonic game is not representable with additively separable and symmetric preferences,
since for player 1 we have {1,3} > {1} and for player 3 we have {3} >3 {1, 3}.

10This example is taken from Burani and Zwicker (2003) which is used to show that a game with
purely cardinal preferences need not satisfy the weak top-coalition property.
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Burani and Zwicker (2003) showed that there is no weak top-coalition of N for
this game, so we have that W (N) = (). Hence, this game fails to satisfy the weak
top-choice property.

[the weak top-choice property = purely cardinal preferences]

Let G = (N, >) where N = {1, 2,3} and players’ preferences are as follows:
{1,2,3} =1 {1} =1 {1,2} =1 {1,3},

{1,2} =5 {1,2,3} = {2} =» {2,3},

{2,3} =3 {1,3} =3 {1,2,3} >3 {3}.

This game satisfies the weak top-choice property, i.e., W(N) = {{1,2,3}} with
H' = {1}, H* = {2} and H® = {3}.

Suppose that players’ preferences are purely cardinal. We have {1} >; {1,2},
sov(l,1) =0 > w(l) + w(2) = v(1,2). Since {1,2} =2 {2}, we have v(1,2) =
w(l) +w(2) > 0 = v(2,2), a contradiction. So, players’ preferences are not purely

cardinal. O

We will now construct an example showing that neither the weak top-choice prop-
erty nor the preferences being descending separable is necessary for a hedonic game

to have a strongly Nash stable partition.

Example 22 Let G = (N, =), where N = {1, 2, 3,4, 5} and the preferences of players

are as follows:

{1,3,5} ~1 {1,2,3} ~1 {1,4} ~1 {1,3} ~1 {1,2} ~1 {1,2,5} ~1 {1} ~1
{N} 1 e

(1,2,5) 39 {1,2} =5 {N} =5 {2,3,4,5} =5 {1,2,3) =5 {2,3)} > {2,4,5} =,
{2,4} 9 {2} =9 ...,

{172a3} ~3 {273} ~3 {17375} >3 {273a475} ~3 {173} >3 {374} >3
{3,4, 5} 3 {3} 73 ey
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{2,3,4,5} ~4 {4, 5} 4 {N} 4 {3,4} 4 {2,4} ~4 {4} bV B

{N} ~5 {273,4,5} -5 {1,2,5} ~5 {1,3,5} ~5 {2,4, 5} 5 {4,5} -5 {5} -5

Claim 1. The partition 7* = {{1, 2,3}, {4,5}} is strongly Nash stable.

Proof of Claim 1. Notice that Ch3(N) = {1,2,3} = 7*(3), so player 3 is not a
member of any subset of players H that strongly Nash blocks the partition 7*.

Also note that 7* is Nash stable, that is for all i € N we have 7*(¢) >=; H U {i} for
any H € (7* U {0}).

Now, we will show that 7* is core stable. Since 3 ¢ H for any H that blocks 7*, we
have that neither the grand coalition /N nor the coalition {2, 3,4, 5} blocks the partition
7*. Note that Chy(N) = {2,3,4,5} and 7*(4) = {4, 5} is the second best alternative
for player 4. So, we have that 4 ¢ H for any H that blocks 7*. Remaining candidates
of coalitions that block 7* are as follows:

H ={1,2,5} cannot block 7*, since we have {1,2,3} >, {1,2,5} for player 1;
H = {1, 2} cannot block 7*, since we have {1,2,3} > {1, 2} for player 1;

H = {1,5} cannot block 7*, since we have {1,2,3} >, {1,5} for player 1;

H = {2,5} cannot block 7*, since we have {4,5} =5 {2,5} for player 5.

So, there is no coalition which blocks 7*, that is 7 is core stable.

Hence, the partition 7 is both Nash and core stable. Now, we will check other
cases to show that 7* is also strongly Nash stable.
Players 1 and 2 cannot strongly Nash block the partition 7* by joining {4, 5}, 7* %
{{1,2,4, 5}, {3}}, since {1,2,3} >, {1,2,4,5}.
Players 4 and 5 cannot strongly Nash block the partition 7* by joining {1,2,3},
o U5 LN, since {4,5) =4 {N).
Players 1 and 4 cannot strongly Nash block the partition 7* by exchanging their current
coalitions, 7+ -2 {{1,5},{2,3,4}}, since {4,5} >4 {2,3,4}.
Players 1 and 5 cannot strongly Nash block the partition 7* by exchanging their current
coalitions, 7 =7 11,4}, {2, 3,5}, since {1,2,3} = {1,4}.

Players 2 and 4 cannot strongly Nash block the partition 7* by exchanging their current
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coalitions, 7 =2 {1, 3,4}, {2,5}}, since {1,2,3} =» {2,5}.
Players 2 and 5 cannot strongly Nash block the partition 7* by exchanging their current
coalitions, 7 =7 11,3, 5}, {2,4}}, since {1,2,3} »» {2,4}.
H = {1,2,4} cannot strongly Nash block the partition 7* that players 1 and 2
leave from their current coalition and move to player 4’s coalition, and player 4

. , . 1,24
leaves from her current coalition and moves to players 1 and 2’s coalition, 7* u>

{{1,2,5},{3,4}}, since {4,5} =4 {3,4}.
H = {1,2,5} cannot strongly Nash block the partition 7* that players 1 and 2
leave from their current coalition and move to player 5’s coalition, and player 5

. , . 1,2,5
leaves from her current coalition and moves to players 1 and 2’s coalition, 7* u>

{{1,2,4},{3,5}}, since {4,5} =5 {3,5}.
Hence, 7* is strongly Nash stable.

Claim 2. This hedonic game does not satisfy the weak top-choice property.

Proof of Claim 2. We will show that the weak top-coalitions of the grand coalition

is not a partition of N.

Note that for player 1 we have {1} >=; {INV}, so N is not a weak top-coalition of

itself for any ordered partition.

Also notice that {1,2, 3} is a weak top-coalition of N with H' = {3}, H? = {1}
and H? = {2}.

Now, we will show that {4,5} is not a weak top-coalition of N for any ordered
partition.
{4,5} is not a weak top-coalition of N with H* = {4, 5}, since for player 5 we have
Chs(N) # {4,5},i.e., {N} =5 {4,5};
{4,5} is not a weak top-coalition of N with H' = {4} and H? = {5}, since Chy(N) #
{4,5} and also notice that {1,2,5} C N, {1,2,5} >=5 {4,5} and {1,2,5} N {4} = 0;
{4, 5} is not a weak top-coalition of N with H! = {5} and H? = {4}, since for player
5, we have Chs(N) # {4,5}.

So, W(N) = {{1, 2,3}} which is not a partition for N. Hence, this game does not
satisfy the weak top-choice property.

177



Claim 3. None of the conditions of descending separable preferences is satisfied.

Proof of Claim 3. Condition 1 (CRI). Suppose that there exists a reference ranking
p such that CRI is satisfied. Under p, either 3 > 4 or 4 > 3 holds. 3 > 4 does not
hold, since we have {1,4} >, {1, 3} for agent 1. 4 > 3 does not hold, since we have
{2,3} =2 {2,4} for agent 2. So, there is no p such that CRI is satisfied.

Condition 2 (DD). Suppose that there exists a reference ranking p such that DD is
satisfied. Then, either 1 > 2 or 2 > 1 holds under p. If 1 > 2 holds, then {2, 3,4,5} =
{2} for agent 2 implies that {1,3,4,5} >; {1} must hold for agent 1. However, for
agent 1 we have {1} >=; {1,3,4,5}. So, 1 > 2 does not hold. If 2 > 1 holds, then
{1,3,5} >y {1} for agent 1 implies that {2,3,5} >» {2} must hold for agent 2.
However, for agent 2 we have {2} =5 {2,3,5}, so 2 > 1 does not hold. Hence, there
is no p such that DD is satisfied.

Condition 3 (SP). If SP holds, then {4,5} >5 {5} for agent 5 implies that
{1,3,4,5} »5 {1,3,5}. However, we have {1,3,5} »5 {1,3,4,5}. Hence, SP is

violated.

Condition 4 (GSP). If GSP holds, then {1,2,5} =5 {2} for agent 2 implies that
{1,2,3,5} =5 {2,3}. However, we have {2,3} >2 {1,2,3,5}. Hence, GSP is vio-
lated.

Condition 5 (RESP). If RESP holds, then {1, 2} >, {2, 5} for agent 2 implies that
we must have {1,2,3,4} =5 {2,3,4,5}. However, we have {2,3,4,5} =5 {1,2,3,4}.
Hence, RESP is violated.

Condition 6 (REP). Suppose that there exists a reference ranking p such that REP
is satisfied. Then, either 3 > 5 or 5 > 3 holds under p. If 3 > 5 holds, then { N} >3
{5} for agent 5 implies that { N} >3 {3} must hold for agent 3. However, we have
{3} =3 {N}. So, 3 > 5 does not hold. If 5 > 3 holds, then {3,4,5} >3 {3} for
agent 3 implies that we must have {3,4,5} =5 {5} for agent 5. However, we have
{5} =5 {3,4,5}. So, 5 > 3 does not hold. Hence, there is no p such that REP is

satisfied.
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We now provide omitted proofs of Chapter 3.

Proof of Lemma 10 Let F' be an SCR which is implementable via Rechtsstaat
w=(8,7). Leti € N, B € Py(A) and = € B.

(i) Let B # A and {i} ¢ ~(z,y) forall y € (A\ B). We will show that
r € Ess(F,i,B), ie., we will show that there exists Ry € W(A)Y such that
L(z,R;) C Band z € F(Ry). We consider profile Ry where for agent i, R; is
any weak ordering such that L(z, R;) = B, and any agent j € (N \ {i}) is in-
different among all alternatives under Ry, i.e., top(R;) = A. We will show that
x € F(Ry). Since top(R;) = Aforall j € (N \ {i}), forany y € (A \ B) we have
B(x,y; Ry) = {i}. This fact, together with {i} ¢ v(z,y) forall y € (A \ B), implies
that 8(x,y; Ry) Ny(z,y) = @ forany y € (A \ B). So, z € e(w, Ry). As F is

implementable via w, we have x € F(Ry). Hence, x € Ess(F,i, B).

(ii) Let B # A and {i} € y(z,y) for some y € (A \ B). We will show that = ¢
Ess(F,i, B). Suppose not. Then, there exists Ry € W(A)Y such that L(z, R;) C B
and z € F(Ry). Since B G Aand L(z, R;) C B, forally € (A\ B) we have yP.x.
So, {i} € B(x,y; Ry) forally € (A\ B). This fact combined with {i} € y(z,y) for
some y € (A\ B) implies that there exists at least an alternative y € (A \ B) such
that {i} € [8(z,y; Ry) N~(x,y)], which is in contradiction with z € F(Ry). Hence,
x ¢ Ess(F,i, B).

(iii) Let B = A. We will show that E'ss(F,i, B) = A. Let x € A. We consider
profile Ry where top(R;) = {x} for agent 4, and top(R;) = Aforall j € (N \ {i}).
Now, S(z,y; Ry) = 0 for all y € (A \ {z}) implying that z € F(Ry). Hence
x € Ess(F,1,B), and since = was arbitrary we have Fss(F,i, B) = A.

We now prove Corollary 1 which states that if an SCR is implementable via some
Rechtsstaat satisfying ET E A, then it satisfies Condition p of Moore and Repullo
(1990).

Proof of Corollary 1: Let ' : W(A)" — Py(A) be an SCR that is implementable
via some Rechtsstaat w = (f3,7) satisfying ETEA. We will show that F' satisfies
Condition p.
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Let Ry € W(A)Y and a € A be such that a € F(Ry). We take B = A and
Ci(a, Ry) = L(a, R;), and show that conditions (i), (#¢) and (7i7) are satisfied.

(i) Let Ry € W(A)YN be such that L(a, R;) C L(a,ﬁi) foralli € N. Then, a €
F (E ~) since F satisfies Maskin monotonicity (by Proposition 9). Hence, condition (i)

is satisfied.

(ii) Let Ry € W(A)N,i € Nandc € Abesuchthatc € L(a, R;) C L(c, R;), and
L(c,R;) = Aforall j € (N \ {i}). We will show that ¢ € F(Ry).

Let Ry € W(A)N be such that cl;a for alli € N, and for any 2,7 € (A \ {c}),
zR;% if and only if zR;%. That is, for each i € N, R; is obtained from R; by placing
c indifferent to a without changing the ordering of other alternatives. Note that for all
i € N we have L(a, R;) U {c} = L(a, R;), i.e., L(a, R;) C L(a, R;) forall i € N.
So, a € F(Ry) since a € F(Ry) and F is Maskin monotonic (by Proposition 9).
This result, together with cI;a for all i € N, implies that ¢ € F(Ry) since F satisfies
ETFEA.

We will now show that forall i € N, L(c, R;) C L(c, R;). Since L(c, R;) = A for
all j € (N\ {i}), L(c, R;) C L(c, ﬁj) = A is trivially satisfied for all j € (N \ {i}).
For the agent i we have L(a, R;) = L(c, R;) because ¢ € L(a, R;) and cl;a. This fact,
together with L(a, R;) C L(c, R;), implies that L(c, R;) € L(c, R;). Hence, for all
i € N, we have L(c, R;) C L(c, R;). Then, ¢ € F(Ry) by Maskin monotonicity of

F'. Hence, condition (ii) is satisfied.

(iii) Let Ry € W(A)Y and ¢ € A be such that L(c, R;) = Aforall i € N. Since
L(c,R;) = Aforalli € N, forallb € (A\ {c}) we have 8(c,b; Ry) = 0. So,
¢ € e(w, Ry). Hence, ¢ € F(Ry), showing that condition (iii) is satisfied.

Hence, F' satisfies Condition . So, F'is Nash implementable by Moore and Re-

pullo (1990)’s result when there are at least three agents in the society.
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We now provide omitted proofs of Chapter 4.

We first provide an SCR which satisfies Young’s cancellation property (Y-Ca) but
violates degree equality (DE).

Example 23 Let A = {a,b,c}. The set of all weak preference orderings over A is

given below.

Ry | Ry |R3| Ry | Rs | Rg | Ry | Rs | Ry | Rio | Ri1 | Ria | Rus
a,bc| a | a | b | b c | c a b ¢ |ab|ac|bec
b c | a | c| a b,c|a,c|ab| c b a
c| b | c| a a

We define I as follows:

o for #N =1, F(Ry) = top(Ry) forall k € {1,...,13},

e for #N = 2, ﬁ(Ru + Ru) = {C}, ﬁ(Rm + R12) = {b}, ﬁ(Rli% + R13) = {a}’
and for any other profile (R; + Rj,) we have ﬁ(Rj + Ry) = A,

o for #N >3, F(RN) = Aforall RN € W(A)V.

It is clear that F' satisfies Young’s cancellation property (Y-Ca). For all x € A we
have D(xz, Ry + Ry) = D(x, Ry; + Ri1), however f(Rg + Ry) # ﬁ(RH + Ryy).
Hence, F violates degree equality (DE).!!

Proof of Lemma 12 Let F' be an SCR which satisfies faithfulness (F), reinforce-
ment (RE) and degree equality (DE). Let RN € W(A)Y and z € A.

(i) Note that for any R € W (A) and any = € A, we have d(z, R)+d(z, R) = m+1.
So, for any z € A we have D(z, RY) + D(z, RN) = (m + 1)n.

1'We note that F' also satisfies neutrality (N) and faithfulness (F), and violates reinforcement (RE).
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We now consider the profile R € W (A):

R
A

For every v € A, d(z, R) = mT“ Consider 2n copies of R, denoted by R*". So,
for every z € A we have D(x, R?") = (m+1)n. So, forall x € A, D(z, RN+}A2N) =
D(x, R*) = (m + 1)n. Then, degree equality (DE) implies that F(RY + RY) =
F(R?"). Faithfulness (F) and reinforcement (RE) imply that F'(R?") = A. Hence,
F(RN + RN) = A.

(ii) We know that for any z € A, D(z, RN + RY) = (m + 1)n. We now consider

the profile >y (RN + RV)" =3 (RN + 3,y (RY) =R, + R..

We find the total degree of every alternative at R, + ﬁx For alternative x, we have
D(z, Ry +Ry) = (m —1)!(m + 1)n, and for any y € (A \ {z}) we have
D(y, Ry +Ry) = (m—2)[m(m+ Dn— (m+ 1)n]
= (m—=2)![(m+ 1)n(m —1)]
= (m—1)l(m+1)n.

Hence, for every a € A we have D(a, R, + ﬁx) = (m—1)!(m+ 1)n.

Now, consider following profile, R € W (A):

R
A

The degree of = at R is (m + 1)/2. Consider 2n copies of R, denoted by R*". We
now consider the profile R2" = >~ _, (R?")". For alternative z we have
D(z,R2") = (m — 1)12n™ = (m — 1)In(m + 1). Forany y € (A \ {z}), we have
D(y, R*) = (m — 2)![m(m + D)n — n(m + 1)] = (m — 2)![(m + D)n(m — 1)] =
(m—1D)l(m+ )n.

Hence, for every a € A we have D(a, R?") = (m — 1)!(m + 1)n. So, for every
a € A we have D(a, R, + R,) = D(a,R2"). Then degree equality (DE) implies
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that F(R, + ﬁx) = F(R*). Faithfulness (F) and reinforcement (RE) imply that
F(R2") = A. So, F(R, + R,) = A.

Proof of Lemma 15 Let /' be an SCR satisfying faithfulness (F), reinforcement
(RE) and degree equality (DE). Let N be a finite set of voters, RY € W(A)N
and z € A. Consider two copies of RY, denoted by R*¥. Let D(x, R*N) =

ZRiesz d(ac7 Ri) =t,and R, = ZTE%(RM)T_

(i) Since D(x, RN) = m+1) , we have t, = (m-+1)n. We will show that F'(R,) =
A. Let us first find the total degree of every alternative at the profile R ,:
D(z,R;) = (m — Dt, = (m— 1)![(m+ 1)n],
and forany y € (A \ {z}),

D(y.R.) = (m—2)!fm(m+1)n —t,
— (m—lm(m+ o — (m+ 1))
= (m—=2)![(m+ 1)n(m—1)]
= (m—D!(m+1)n].

Hence, forall a € A, D(a,R.) = (m — )![(m + 1)n].

We now consider the profile R € W (A):

R

A
The degree of x at R is m+1 . Consider 2n copies of R, denoted by R?". Consider the
profile R2" = ZTE%(RQ”) . Now,

D(z,R2") = (m —1)2n(Z) = (m — Dl(nm +n) = (m — 1){(m + 1)n,

and forany y € (A \ {z}),
D(y,R*) = (m—2)!m(m+ 1)n — (nm + n)]
= (m—=2)!m(m+ 1)n— (m+ 1)n]
= (m—1!(m+1)n.

Now, forall @ € A we have D(a,R,) = D(a,R*") = (m—1)!(m+1)n. Then, de-
gree equality (DE) implies that F'(R,) = F(R2"). Faithfulness (F) and reinforcement
(RE) imply that F(R2") = A. Hence, F(R,) = A.
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(i) Since D(z, RY) < mH) ,wehave t, < (m+1)n. We will show that F(R,) =
{z}.

Let k = (m + 1)n — t,. Note that & € Z, .. We find the total degree of every

alternative at R,
D(z,R;) = (m —1lt, = (m—D![(m+ 1)n — k],
and for any y € (A \ {z}),
D, Ry) = (m—2)m(m+ n—t,
= (m=2)[m(m +1)n —((m + 1)n — k)]
= (m—=2)![(m+ n(m—1) + k.

Now, consider following profile, R € W (A):

=

s

The degree of x at R is mil e, d(z, R) = m+l. Consider 2k copies of R, denoted

by R?*. Consider the proﬁle R, = ZTG%(R%) ). Now
D(a,Ry) = (m — 1)12k(*%2) = (m — Dl(km + )
and forany y € (A \ {z}),

D(y,R,) = (m = 2)!im(m + 1)k — (km + k)].

We now consider the profile R, + R.. Note that the total number of voters is
(m — 1)!(2n + 2k) at the profile R, + R, and
D(z,R, +R.) = (m—1D(m+1)n—k+ (m—1!(km+k)
= (m=D!(m + n + km],
and forany y € (A \ {z}),
Dy, Re +Re) = (m—2)![(m+Dn(m—1)+k]+ (m —2)![m(m+ 1)k — (km + k)]
= (m—2)![(m+ Dn(m—1)+m(m+ 1)k — km].

Consider following profile R € W(A):
R
ANy}
Yy
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where iy € (A \ {z}). Now, the degree of z at R is e, d(z, R) = . Consider 2k
copies of R, denoted by R2*. Consider the profile R, = >___, (&?*)7). We have,
D(x,R,) = (m — 1)12k(2) = (m — 1)lkm,

and forany y € (A \ {z}),

’

D(y,R;) = (m — 2)![m(m + 1)k — km).

TE‘III

We again consider the profile R € W (A):

R
A

The degree of x at R is mT“ Consider 2n copies of R, denoted by R?". Consider the
profile R2" = >~ __, (R*")". Now,

D(z,R?") = (m — 1)2n(Z) = (m — Dl(nm + n) = (m — 1){(m + 1)n,

and forany y € (A \ {z}),

D(y,R") = (

-
= (m—2)!(m+ 1)n(m—1).

—2)![m(m + 1)n — (nm + n)]

3

—2)l[m(m + 1)n — (m + 1)n|

3

We now consider the profile R, + R2". Note that the total number of voters at
Ry + R¥is (m — 1)!(2n + 2k) which is equal to the number of voters at R, + R,
and for every a € A we have D(a, R, + R2") = D(a, R, + R,), that is,
for alternative x we have,

D(z, Ry +R2") = D(x,R,) + D(x, R>")
= (m—Dkm+(m—-1(m+1)n
= (m—D!(m+ 1)n+ km]
= D(z,R;+R.),
and for any y € (A \ {z}) we have,
D(y, R, +R2") = D(y,R.)+ D(y,R2")

= (m—=2)m(m+ Dk —km]+ (m —2){(m+ 1)n(m —1)

= (m—=2)!m(m+ 1)k —km+ (m+ L)n(m — 1)

= D(y,Rs +Ra).
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Since F satisfies degree equality (DE), we have F(R, + R,) = F(R, + R2").

We now have that F'(R2") = A and F(R,) = {x}'? because F satisfies faithful-
ness (F) and reinforcement (RE). So, F(Rx) N F(R2") = {z}, then reinforcement
(RE) implies that F(R, + R>") = {xz}.

Hence, F(R, + R.) = {z}. By faithfulness (F) and reinforcement (RE), we have,
F(R,) = A. Then, {z} = F(R, +R,) = F(R,)NF(R,) = F(R,)NA = F(R,).

(iii) Since D(z, RN) > @ we have t, > (m + 1)n. We will show that

F(R,) € A\ {z}. Lett, = (m+ 1)n + k. Note that k € Z, ;. We calculate the total
degree of every alternative at R,

D(z,Rz) = (m — Dty = (m —D![(m+ 1)n + &,

and forany y € (A \ {z}),

D(y,R.) = (m—=2)[m(m+ 1)n —t,]

= (m=2)!m(m+1n—((m+ 1)n+ k)
= (m—=2)![(m+1n(m—1) — k.

Consider following profile Re W(A):
R
A\ {y}

Y

where y € (A \ {z}). Now, the degree of x at R is % . Consider 2k copies of R,
denoted by R2*. Consider the profile R, = >___, (R?*)7). Now,

D(x,R,) = (m — 1)I12k(2) = (m — 1)lkm,

and forany y € (A \ {z}),

7

D(y,R.) = (m —2)![m(m + 1)k — km)].

TEWV,

We now consider the profile R, + Rz Note that the total number of voters is

12Since € topR, for every 7 € W, we have = € topR”, and for every y € (A \ {x}) there exists

7 € U, such that i ¢ topR”. Hence, Nrew, topR™ = {x}.
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(m — 1)!(2n + 2k) at the profile R,

+ Rw and

D(z,Re+Ry) = (m—D[(m+Dn+k+ (m—1Dlkm

and for any y € (A \ {z}),

— 1) + k(m+ 1)(m — 1)]

Now, consider following profile, R € W (A):

The degree of x at R is mT“ Co

R
A

nsider 2n + 2k copies of R, denoted by R?"+2F,

Consider the profile R2"2F = 3~ (R*"+2*)7 Note that the total number of voters
is (m — 1)!(2n + 2k) at R2"+2% which is equal to the number of voters at R, + R,
and for every a € A we have D(a, R, + R,) = D(a, R22%), that is,

for alternative x we have,

D(l’, 722n+2k)

m—1 v(2n+2k>(m7“)
l(n+k)(m+1)

( )
= (m—1)
= (m—Dlnm+n+km+ k|
= (m—D![(m+ )n+km+ k|
D(x, Ry + Ra),

and for any y € (A \ {z}) we have,

D(y’ﬁin-&-%) — (m_
= (m—

Qlm(m+1)(n+k) — (n+k)(m+1)]
2)[(m+1)(n+k)(m —1)]

= D(y,Re + Ra)

187



Since F satisfies degree equality (DE), we have F(R, +R,) = F(R2"*2*). Faith-
fulness (F) and reinforcement (RE) imply that F'(R2"+2%) = A. So, F(R,+R,) = A.

7

We have that F'(R,) = {z} since I satisfies faithfulness (F) and reinforcement (RE).

If we suppose that € F(R,), then F(R, + R,) = {«} which contradicts with
that F(R, + R,) = A. Hence, = ¢ F(R,),ie., F(R,) C A\ {z}.

Proof of Lemma 16 Let /' be an SCR satisfying faithfulness (F), reinforcement
(RE) and degree equality (DE). Let N be a finite set of voters, RN € W(A)Y
and 7,y € A. Consider two copies of RY, denoted by R?". Let D(z, R*) =
D(y,R*™) =t < (m+ 1)n and Ry, = Y (R*N)™. We will show that
F(R.,) = {x.y).

TE\I}zy

Let k = (m + 1)n — t. Note that k € Z . We calculate the total degree of every
alternative at R,
D(z,Ruy) = D(y, Ray) = (m —2)It = (m — 2)![(m + 1)n — k],
and for any z € (A \ {z,y}),
D(2,Ruy) = (m—3)[m(m+1)n—2t] = (m—3)[m(m+1)n—(2(m+1)n—2k)] =
(m = 3)[(m + )n(m — 2) + 2k]|.

Now, consider following profile, R € W (A):

G s |

Note that d(z, R) = d(y, R) = ™. Consider 2k copies of R, denoted by R?*.
Consider the profile R, = >, oy (R**)". We have,

D(z, Ray) = D(y, Ray) = (m — 2)12k™ = (m — 2)I(km + k),

and for any z € (A \ {z,y}),

D(2,Ryy) = (m — 3)![m(m + Dk — 2(km + k)].

We now consider the profile R,, + R.,. See that the total number of voters is
(m — 2)!(2n + 2k) at the profile R, + R, and
D(x,Ray + Ray) = D(y Ray + Ray)
= (m—=2![(m+1n—k]+ (m—2)(km+ k)
= (m=2)![(m+1)n + kml,
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forany z € (A\ {z,y}),

D(2,Ruy + Ruy) = (m—3)[(m+ )n(m —2) + 2k]
+(m — 3)!m(m + 1)k — 2(km + k)]
= (m = 3)[(m+ Dn(m — 2) + 2k + m(m + 1)k — 2km — 2k]
= (m=3)![(m+ n(m—2)+m(m+ 1)k — 2km)].

Consider following profile R € W(A):
R
ANz}

z

where z € (A\ {z,y}). Now, d(z, R) = d(y,R) = %&. Consider 2k copies of R,
denoted by R?*. Consider the profile R, = > rew,, (R?*)T. We have,

D(z,Ryy) = Dy, Ray) = (m — 2)12k2 = (m — 2)lkm,

and for any z € (A\ {z,y}),

D(2,Ryy) = (m — 3)![m(m + 1)k — 2km].

We again consider the profile R € W (A):

R
A

where, d(z, R) = d(y, R) = ™. Consider 2n copies of R, denoted by R*". Consider
the profile R2 = ZTE\IJW(RQ")T Now,

D(z,R%) = D(y, RZ) = (m—2)12n2 = (m—2)!(nm+n) = (m—2)!(m+1)n,
and for any z € (A \ {z,y}),

D(z,R2) = (m = 3)![m(m + 1)n — 2(m + 1)n] = (m — 3)!/(m + 1)n[m — 2].

We now consider the profile 7é$y + 7232 Note that the total number of voters is
(m — 2)!(2n + 2k) which is equal to the number of voters at R, + R, and for every
a € A wehave D(a, Ry, + R?) = D(a, Ryy + Ray), that is,
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for alternatives x and y we have,

D(z,Ruy + RZ) = D(y, Ry +RZ)
= (m—=2)lkm+ (m —2)!(m+1)n
= (m—=2)![(m+ 1)n+ km)|
= D(z,Rauy + Ruy)
= D(y,Ruy + Ray),

and for any z € (A \ {z,y}) we have,

D(2,Ryy +RZ) = (m—3)![m(m+ 1)k — 2km] + (m — 3)!(m + L)n[m — 2|
= (m—=3)![(m+ Dn(m—2)+m(m+ 1)k — 2km]
= D(z,Ruy + Ruy)-

Since F satisfies degree equality (DE), we have F(R,, + Ry,) = F(Ray + RZ.

Now, F(R?%) = Aand F(R,,) = {z,y}" because F satisfies faithfulness (F)
and reinforcement (RE). So, F(Rzy) N F(RZ) = {x,y}, then reinforcement (RE)
implies F(R,, + R2) = {z,y}.

Hence, F(R., + R.,) = {z,y}. Faithfulness (F) and reinforcement (RE) imply
that F(R.y) = A. So, F(Ry,) N F(Ryy,) # 0. Then, {z,y} = F(Ryy + Ruy) =
F(Ray) NF(Ryy) = F(Ryy) N A = F(Ry,).

Proof of Lemma 17 Let /' be an SCR satisfying faithfulness (F), reinforcement
(RE) and degree equality (DE). Let N be a finite set of voters, RY € W (A)"Y and
x,y € A.

Let D(z,RY) = t, < @ Dy RY) = ¢, < @ and ¢, < ¢,. Let

ky = W“Tl)” —t, and k, = W —t,. Since t, < t,, we have k, > k,. Let

k= ky — k,.

Consider two copies of R, denoted by R*", and consider R, = >
We will show that y ¢ F(R,,) and z € F(R,,).

TEW 4y (R2N)T'

BSince z,y € topR, for every T € U, we have z,y € topR™, and for every z € (A \ {x,y}) there
exists 7 € W, such that z ¢ topR™. Hence, Nrew,, topR™ = {x,y}.
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We find the total degree of every alternative at R .
D(z,Ryy) = (m—2)12t, = (m—2)![(m~+1)n—2k,| = (m—2)![(m+1)n—2k,—2k|.
D(y, Ryy) = (m —2)12t, = (m — 2)![(m + 1)n — 2k,).
Forany z € (A\ {z,y}),
D(2,Ryy) = (m — 3)!m(m + 1)n — 2t, — 2t,] = (m — 3)![m(m + 1)n — 2(m +
D)n + 4k, + 2k].

Note that 2k € Z , and 4k, € Z ;.

We now consider the profile R € W (A), where

R
A

Note that d(z, R) = d(y,R) = ™. Consider 2k + 4k, copies of R, denoted by
R4k Consider the profile Ry, = 3y, (R**4")7. We have,

D(z,Ray) = D(y, Ray) = (m—2)!(2k+4k,) L = (m—2)!(km+k+2k,m+2k,),
and for any z € (A \ {z,y}),

D(2,Ruy) = (m = 3)[m(m + 1)(k + 2k,) — 2(km + k + 2k,m + 2k,)].

We now consider the profile Re W(A), where

R
Y

A\ {z,y}
Note that d(z, R) = d(y, R) = 2 Consider 2k copies of R, denoted by R2*. Consider

the profile R, = ZTe%y(ézk)T. We have,

D(x,Ruy) = D(y, Rauy) = (m — 2)!(2k)2 = (m — 2)!3k,
forany z € (A\ {z,y}),

D(z,Ryy) = (m — 3)[m(m + 1)k — 2(3k)].

We now consider the profile R, + R, + ﬁxy. Note that the total number of voters
is (m — 2)!(2n + 4k + 4k,) at the profile Ry, + Ry + Ray» and
D(2,Ray + Ray + Ray) = (m—2)[(m + 1)n — 2k, — 2]
+(m —2)l(km + k + 2k,m + 2k,) + (m — 2)!3k
= (m—=2)![(m+ 1)n + 2k,m + km + 2k],
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D(y, Ray + Roy + Ray) = (m—2)[(m+ 1)n — 2k,]
+(m — 2)!(km + k + 2k,m + 2k,) + (m — 2)!3k
= (m—=2)![(m+ 1)n+ 2k,m + km + 4k],
forany z € (A\ {z,y}),
D(2,Ruy + Ray + Ray) = (m—3)[m(m+ 1)n—2(m + 1)n + 4k, + 2k]
+(m = 3)[m(m + 1)(k + 2k,)
—2(km + k + 2kym + 2k,)]
+(m — 3)![m(m + 1)k — 2(3k)]
= (m—=3)[(m+1)n(m—2)+m(m+1)(k + 2k,)

—2(km + 2k,m) + m(m + 1)k — 6k].

Note that faithfulness (F) and reinforcement (RE) imply that F'(R,,) = A and
F(Ray) = {z,y}.

Now, we will construct another profile (with (m — 2)!(2n + 4k + 4k, ) number of
voters) such that the total degree of every alternative is equal to its total degree at the
profile R, + 7_€xy + ﬁxy and such that under this profile alternative y is not chosen
and alternative x is chosen by the SCR F'.

Again, consider the profile R € W (A):
R
A

where d(z, R) = d(y,R) = ™. Now, consider 2n copies of R, denoted by R*".
Consider the profile R2! = > rew., (R*™)". We have,

D(e, R2) = D(y, R20) = (m — 2)!(2) 22 = (m — 2)![(m + )n,

and for any z € (A \ {z,y}),

D(z,R2) = (m —3)![m(m + 1)n — 2(m + 1)n] = (m — 3)!(m + 1)n(m — 2).
We now consider the profile Re W(A):
R
AN\ {z}

z
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where z € (A \ {z,y}). Note that d(z, R) = d(y, R) = . Consider 2k + 4k, copies
of R, denoted by R%*+4*v_Consider the profile 7u€xy = ZTe%y (R2E+4%4)T Now,
D(2,Ryy) = D(y, Ray) = (m — 2)1(2k + 4k,)2 = (m — 2)!(km + 2k,m),

and for any z € (A \ {z,y}),

D(2,Ryy) = (m — 3)[m(m + 1)(k + 2k,) — 2(km + 2k,m)].

Consider the profile R € W (A):
R
T

Y

A\ {z,y}

where d(x,R) = 1 and d(y,R) = 2. Consider 2k copies of R, denoted by R2*.
Consider the profile R, = P (R?)". Now,

D(x,Ray) = (m — 2)12k, D(y, Ryy) = (m — 2)\4E,

and for any z € (A \ {z,y}),

D(z,Ray) = (m — 3)[m(m + 1)k — (2k + 4k)] = (m — 3)![m(m + 1)k — 6k].

We now consider the profile 7@% + 7u€zy + Rw. Note that the total number of voters
is (m—2)!(2n+ 4k +4k,) at the profile R + R4y + Ry Which is equal to the number
of voters at the profile R,, + R, + ﬁxy.

We now show that D(a, R + Ry + Ray) = D(a, Ruy + Ry + Ray) for every
a€c A

For alternative z,

D(z, R + Ry + Ray) = (m—2)![(m + L)+ (km + 2k,m) + 2K]
= D(2,Ray + Ry + Ray).

For alternative vy,

D(y, R% + Ry + Ruy) = (m—2)/[(m+ L)n + (km + 2k,m) + 4k]
= D(y,Ruy + 72’L"y + 7Aécry)
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For any z € (A\ {z,y}),

D(z,R¥ + Ry + Ryy) = (m—3)[(m+ Ln(m — 2) +m(m + 1)(k + 2k,)
—2(km + 2k,m) + m(m + 1)k — 6k]
= D(2,Ray + Ruy + Ray)-

Hence, degree equality (DE) implies that (R, + Ry +Ray) = F(ﬁig%—?imy FRay)-

Faithfulness (F) and reinforcement (RE) imply that F(R2) = A, F (ﬁmy) =
{z,y} and F(R,,) = {x}. Then, reinforcement (RE) implies that F (R2n + Ray +
Ray) = {x}. Hence, F(R, + R, + Ray) = {x}. This result, together with the facts

that F(R,,) = Aand F(R,,) = {z,y}, implies, y ¢ F'(R,,) and x € F(R,,).

We now show that degree equality (DE) is stronger than cancellation property
(CA).

Proof of Lemma 20 (i) Let F' be an SCR which satisfies degree equality (DE). We
will show that F’ satisfies cancellation property (CA).

Let RY € W(A)Y be such that there exist 7,5 € N and o, 3 € {1,...,m — 1}
such that 7o (R;) = 1541 (R;) and 7o 1(R;) = r3(R;). Let RV (derived from R") be

as follows:

e forall voters [ € (N \ {7,j}). B, = Ry,

o for voter i, 7o (R;) = ro(R;) U rasi(R;),
forall h < a, rh(Ri) = rp(R;),

’

forall h > a+ 1, 7, (R;) = rp1 (Ry),

’

o for voter j, 75(R;) = r3(R;) Ursr1(R;),
forall h < 3, rh(R]—) =rp(R;),
forall h > 5+ 1, rh(Rj) = rp41(Rj).

In order to show that F’ satisfies cancellation property (CA), we need to show that
F(RN) = F(RN). It is enough to show that for all « € A we have D(a, RY) =
D(a, RN), since F satisfies degree equality (DE).
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Letz € ro(R;) = 1341(R;) and y € rop1(R;) = 13(R;).

Since R, = R, foralll € (N \ {i,j}), for any a € A we have D(a, RN\ii}) =
D(a, RN\iY). So, we will show followings:

1-d(z, R;) + d(x, R;) = d(z, R;) + d(z, R}),

s ’

2-d(y, R;) + d(y, R;) = d(y, R;) + d(y, R;), and
3-forany z € [A\ (ro(R;)Uras1(R))], d(z, R)) +d(2, R;) = d(z, i) +d(z, R;).

For voter i, we have SU (x, R;) = SU(z, R;), U(x, R;) = Uz, R;) Urqi1(R;) and
U(x, R;) N 7er1(R;) = 0. For voter j, we have U(x, R;) = Uz, R;), SU(x, R;) =
SU(x, R;) Urg(R;) and SU(z, R;) N rs(R;) = 0. Now,

d(z,R;) +d(z,R;) = (#SU(z,R))+ #U(x,R;) +1)/2

#SU(@,Ri)  #U(z,Ri)—#rar1(Ri)
+( #S5U(z, Ry) +#U(z, B;) +1)/2,
BSUG Ry s (R HUGR,)
= [#SU(x, R) + #U(x, R) +1]/2
F[#SU(x, Ry) + #U(x, R;) + 1]/2,

= d(x,R;) + d(z, R;).

’ ’

For voter i, we have U(y, R;) = U(y, R;), SU(y, R;) = SU(y, R;) U r,(R;) and
SU(y, R;) N r4(R;) = 0. For voter j, we have SU(y, R;) = SU(y, R;), U(y, R;) =
Uy, R;) Urgr1(R;) and U(y, R;) Nrgp1(R;) = 0. So,

——— —_——

#SU (y,R:)+#ra(R:) #U (y,Ri)
N——— N——

#SU (y,R;) #U (y,Rj)—#rp11(R;)
= [#SU(y, Ri) + #U(y, Bi) +1]/2
H#SU(y, By) + #U (y, Ry) +11/2,
= d(y, Ri) +d(y, R;).

Notice that for any z € [A\ (ra(R:) U7as1(R:))], we have U(z, R)) = U(z, Ry),
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SU(z, R;) = SU(z, R;), U(z,R;) = U(z, R;) and SU(z, R,) = SU(z, R;). So, for
any 2 € [A\ (ro(Ri) Urey1(R;))] we have d(z, R;) +d(z, R;) = d(z, R;) +d(z, R;).

So, for all « € A we have D(a, RN) = D(a, RY). Then, we have F(RY) =
F (RN ) by degree equality (DE). Hence, F' satisfies cancellation property (CA).

(i) We now provide an SCR which satisfies cancellation property (CA) but violates

degree equality (DE).

Let A = {a, b, c}. The set of all weak preference orderings over A is given below.

Ry | Ry |R3| Ry | Rs | Rg | Ry | R | Ro | Rio | R11 | Ri2 | Rus
a,bc| a | a | b | b c | c a b ¢ |ab|ac|bec
c | a | c| a b,c|a,c|ab| c b a
c c | a b | a
We define F as follows:

o for #N =1, F(Ry,) = Aforall k € {1,...,13},

o for #N = 2, F(Ry + Rs) = {c}, F(R, + Ry) = {b}, and for any other profile
(R; + R),) we have F(R; + Ry,) = A,

o for #N >3, F(RN) = Aforall RN € W(A)N.

It is clear that I satisfies cancellation property (CA). For all z € A we have
D(x,Ry + Rs) = D(x, Ry + Ry), however F(Ry + Rs) # F(Ry + R,). Hence,
F violates degree equality (DE).
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The Algorithm SPGAA for Example 6
We apply the algorithm S PG AA to the problem given in Example 6.

Note that student 2 is not permitted to make offers to department A in the algorithm
SPGAA, since a% = 0.

t = 1. a) Student 1 offers by = 1075 to department B, student 2 offers by = 1075
to department B and student 3 offers by = 1075 to department 5, since for each
student s € {1,3} we have (B,bp)P;(A,bs) and student 2 can make offers only to
department B.

b) Department A has no offer, so Si* = T:* = (). Department B has offers from the
group students SP = {1,2,3} and it accepts student 2’s offer and rejects the others,
since ({2}, bp)Pp({s},bp) for any s € (SP\ {2}). So, TZ = {2}.

c¢) Student 2 accepts department 5B’s acceptance, students 1 and 3 have no accep-

tances.

So, we have following matching at the end of period 1:

1 2 3
p=1|10 B 0
0 1075 O

t = 2. a) Student 1 makes a new offer mi5(2) = bp — 1 = 1074 to department
B, student 2 offers by = 1075 to department B and student 3 makes a new offer
msp(2) = bp — 1 = 1074 to department B. Note that there is no holding offer at
period 2.

b) Department A has no offer, hence S3' = T3' = (). Department B has offers from
S ={1,2,3} and it accepts student 2’s offer and rejects the others, so T = {2}.
2 P ) 2
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¢) Student 2 accepts department B’s acceptance, students 1 and 3 have no accep-

tances, yielding the matching

1 2 3
=10 B 0
0 1075 0

Note that at further periods students 1 and 3 decrease their offers to department
B, and student 2 continues to offer by = 1075 to department B. So, at some further

period ¢ = [ we have following:

t = [. a) Student 1 makes a new offer m5(l) = 741 to department B, student 2
offers mop(l) = mop(1l) = bp = 1075 to department B, and student 3 makes a new
offer msp(l) = 741 to department B. Note that there is no holding offer at this period
l.

b) Department A has no offer, so S = T/ = (). Department B has offers from
SB = {1,2, 3} and it accepts student 2’s offer and rejects the others, hence 77 = {2}.

¢) Student 2 accepts department B’s acceptance, students 1 and 3 has no accep-

tances, which yields the matching

1 2 3
w=10 B 0
0 1075 0

t = 1+ 1. a) Student 1 makes a new offer mg(l + 1) = myp(l) — 1 = 740 to
department B. Student 2 offers map(l + 1) = mop(1) = bg = 1075 to department B.
Student 3 makes a new offer mz4(l + 1) = by = 440 to department A, and her last
new offer msp(l) = 741 made to department B and got rejected remains valid at this

period as a holding offer 35 (I + 1) = msp(l) = 741.1

14Let us make clear that why student 3 makes a new offer to department A but not to department B.
Note that if student 3 would make a new offer to department B at this period the algorithm SPGAA
requires that it has to be msp(l) — 1 = 740. However, for student 3 we have (A, 440)P5(B, 740),
so student 3 makes a new offer to department A and her last new offer made to department B and got
rejected remains valid at this period as a holding offer.
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b) Department A has an offer from student 3 and accepts her offer, i.e., S;f‘H =
17, = {3}. Department B has offers from SZ | = {1, 2,3} and it accepts student 2s

offer and rejects the others, so T}%, = {2}.

c¢) Student 1 has no acceptance, student 2 accepts department B’s acceptance and

student 3 accepts department A’s acceptance.

So, at the end of period [ + 1 we have matching

1 2 3
1=\ 0 B A
0 1075 440

At further periods, student 1 decreases her offers to department B, student 2 con-
tinues to offer by = 1075 to department B, and student 3 continues to make offers
ba = 440 to department A and her last new offer msp(l) = 741 made to department B
and got rejected remains valid as a holding offer. Hence, at some further period h we

have following:

t = h. a) Student 1 makes a new offer mjya(h) = by = 440 to department A
and her last new offer m;g(h — 1) = 340 made to department B and got rejected
remains valid as a holding offer 1;5(h) = m;g(h — 1) = 340."5 Student 2 offers
maop(h) = maop(l) = b = 1075 to department B. Student 3 offers msa(h) =
mza(l + 1) = ba = 440 to department A, and her last new offer msp(l) = 741
made to department B and got rejected remains valid at this period as a holding offer
msp(h) = msp(l) = 741.

b) Department A has offers from S;' = {1,3}, and it accepts student 3’s offer and
rejects 1’s offer, i.e., T/* = {3}. Department B has offers from S = {1,2, 3} and it

accepts student 2’s offer and rejects the others, so T)” = {2}.

¢) Student 1 has no acceptance, student 2 accepts department B’s acceptance and

5Student 1 makes a new offer to department A, since for student 1 we have (A,440)P; (B, 339),
where if she would make a new offer to department B at this period & the algorithm SPGAA requires
that mlB(h) = m13(h — 1) —1=2339.
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student 3 accepts department A’s acceptance, yielding the matching

1 2 3
Wty = 0 B A
0 1075 440

At further periods student 1 decreases her offers to departments A and B, and we

have following at some further period k:

t = k. a) Student 1 makes a new offer m; 4(k) = 435 to department A and her last
new offer m,g(k — 1) = 335 made to department B and got rejected remains valid as
a holding offer 772, g(k) = mi5(k — 1) = 335.1° Student 2 offers myp(k) = map(1) =
bp = 1075 to department B. Student 3 offers msa(k) = maza(l + 1) = by = 440
to department A and her last new offer m3p(l) = 741 made to department B and got

rejected remains valid at this period as a holding offer 73p(k) = map(l) = 741.

b) Department A has offers from Sli;‘ = {1, 3}, and it accepts student 3’s offer and
rejects 1’s offer, i.e., 7' = {3}. Department B has offers from S = {1,2,3} and it

accepts student 2’s offer and rejects the others, so, TEB = {2}.

¢) Student 1 has no acceptance, student 2 accepts department B’s acceptance and

student 3 accepts department A’s acceptance.

So, at the end of period k we have matching

1 2 3
=10 B A
0 1075 440

t = k + 1. a) Student 1 makes a new offer m;z(k + 1) = mip(k — 1) — 1 = 334
to department B and her last new offer m4(k) = 435 made to department A and
got rejected remains valid as a holding offer 772, 4(k + 1) = mya(k) = 435. Student
2 offers myp(k + 1) = myp(1) = bp = 1075 to department B. Student 3 offers
maa(k +1) = msa(l +1) = by = 440 to department A and she also has a holding

offer 7z (k + 1) = msp(l) = 741 to department B.

'Since for student 1 we have (A,435) Py (B, 334), where if she would make a new offer to depart-
ment B at this period k the algorithm S PG A A requires that m1p(k) = mip(k—1) — 1 = 334.
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b) Department A has offers from S: ]‘:‘H = {1, 3}, and it accepts student 3’s offer and

rejects 1’s offer, hence T2 = = {3}. Department B has offers from SB ={1,2,3}

k+1
and it accepts students 1 and 3’s offers and rejects 2’s offer, so T2 1 {1 3}.

¢) Student 1 accepts department B’s acceptance. Student 2 has no acceptance.
Student 3 has acceptances from departments A and B, and she accepts B’s acceptance
and rejects A’s acceptance since (B, 741) P3( A, 440).

So, we have following matching at the end of period &k + 1:

1 2 3
Hi+1 = B 0 B
334 0 741

t = k + 2. a) Student 1 makes a new offer m;z(k + 1) = mip(k — 1) — 1 = 334
to department B and her last new offer m; 4 (k) = 435 made to department A and got
rejected remains valid as a holding offer 7o 4(k + 2) = mya(k) = 435. Student 2
has no new offer and his last offer mop(k + 1) = 1075 made to department B and
got rejected remains valid as a holding offer 7,5(k + 2) = map(k + 1) = 1075."7
Student 3 offers mzp(k + 2) = msp(l) = 741 to department B, and note that there is
no holding offer for student 3 at this period.

b) Department A has an offer from student 1 and accepts her offer, i.e., S;:‘+2 =

T, = {1}. Department B has offers from S , = {1,2,3} and it accepts students 1

and 3’s offers and rejects 2’s offer, so 7%, = {1,3}.

c¢) Student 1 accepts department A’s acceptance and rejects B’s acceptance, since
for student 1 we have (A, 435)P;(B,334). Student 2 has no acceptance. Student 3

accepts B’s acceptance and rejects A’s acceptance, which yields the matching

1 2 3
Hiy2 = A 0 B
435 0 741
'7Note that at this period department B is a rejector of student 2, i.e., F,f o = = { B}, since department

B rejected student 2’s offer because of the group of students TkBJrl = {1, 3} and B matched with T]fﬂ
at the end of period k + 1.
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= k + 3. a) Student 1 makes a new offer mi4(k + 3) = mya(k) = 435 to
department A, student 2 makes a new offer myp(k + 3) = mop(k + 1) = 1075 to
department B,'® and student 3 offers msp(k + 3) = 741 to department B. Note that

there is no holding offer at this period.

b) Department A has an offer from student 1 and accepts her offer, i.e., S§+3 =
T ];4+3 = {1}. Department B has offers from S7 , = {2,3} and it accepts students 2’s

offer and rejects 3’s offer, so T)7 , = {2}.

c¢) Student 1 accepts department A’s acceptance. Student 2 accepts B’s acceptance.

Student 3 has no acceptance.

So, at the end of period k + 3 we have matching

1 2 3
Hi+3 = A B 0
435 1075 0O

= k + 4. a) Student 1 makes a new offer mi4(k + 4) = mya(k) = 435 to
department A. Student 2 makes a new offer myp(k + 4) = mop(k + 1) = 1075 to
department B. Student 3 makes a new offer mz4(k + 4) = maa(k + 1) = 440 to
department A and her last new offer mspz(k +3) = 741 made to department B and got
rejected remains valid at this period as a holding offer 13 (k+4) = map(k+3) = 741.

b) Department A has offers from Sk ", = {1,3}, and it accepts student 3’s offer
and rejects 1’s offer, hence 77! '+ = {3}. Department B has offers from SP , = {2,3}

and it accepts students 2’s offer and rejects 3’s offer, so Tkig = {2}.

c¢) Student 1 has no acceptance, student 2 accepts B’s acceptance, and student 3

accepts department A’s acceptance, which yields the matching

1 2 3
tea=| 0 B A
0 1075 440
¥Note that student 2 can make this offer to department B since F2 ., = (.

k+3
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t = k + 5 a) Student 1 makes a new offer mip(k + 5) = mig(k + 1) = 334 to
department B and her last new offer m, 4 (k 4 4) = 435 made to department A and got
rejected remains valid as a holding offer 77, 4(k 4+ 5) = mya(k + 4) = 435. Student
2 offers myp(k + 5) = 1075 to department B. Student 3 offers mz4(k + 5) = 440 to
department A, and she also has a holding offer 735 (k + 5) = map(k + 3) = 741 to
department 5.

b) Department A has offers from S,—?ﬁ = {1, 3}, and it accepts student 3’s offer
and rejects 1’s offer, so T/,—CAJr5 = {3}. Department B has offers from S§+5 ={1,2,3}

and it accepts students 1 and 3’s offers and rejects 2’s offer, hence 7} l?i5 = {1, 3}.

¢) Student 1 accepts department B’s acceptance. Student 2 has no acceptance.

Student 3 accepts B’s acceptance and rejects A’s acceptance.

So, we have following matching at the end of period &k + 5:

1 2 3
Hi+s = B 0 B
334 0 741

Note that p5,5 = ppyq and if we continue we get following matchings at further

periods: (g6 = Hit2s Mhyr = Wit3s Mess = Mhids Hivo = MEys = M1 and so on.

Hence, the algorithm SPGAA does not stop and a cycle occurs consisting of fol-

lowing four matchings:

1 2 3 1 2 3
tipi=| B 0 B |.me=] A 0 B [,
334 0 741 435 0 741
1 2 3 1 2 3
ia=| A B 0 [, pma=]0 B A
435 1075 0 0 1075 440
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