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ABSTRACT 

DYNAMIC STABILITY ANALYSIS OF FUNCTIONALLY GRADED  

SANDWICH MICRO-BEAMS 

 

Mohammed Al-SHUJAIRI 

 

Department of Civil Engineering 

Ph.D Thesis 

 

Adviser: Assist. Prof. Dr. ÇAĞRI MOLLAMAHMUTOĞLU 

 

In this thesis, the static, buckling analysis, free vibration and dynamic stability of size-

dependent sandwich functionally graded micro-beam under the action of parametric excitation 

loads resting on elastic Winkler and Pasternak foundations with temperature change is 

investigated. Based on the nonlocal strain gradient theory (NLSGT) in conjunction with the 

various higher-order deformation beam theories (HOBTs), Timoshenko beam theory (TBT) 

and Euler beam theory (EBT) with Hamilton's principle, the governing equations of motion 

and corresponding various boundary conditions were obtained. The material properties of the 

FG part of sandwich micro-beam are varied gradually through the thickness of the micro-

beam are calculated by using the Mori-Tanaka homogenization scheme and classical rule of 

mixture. The dynamic stability, transverse deflection, critical buckling and fundamental 

frequency can be determined with various boundary conditions (i.e. C-C, C-S, and S-S) by 

using the generalized differential quadrature method (GDQM). The sandwich FG micro-beam 

is considered with three different models and various cross section shapes. The Models are 

functionally graded material (FGM) homogeneous microbeam (Model I), a sandwich beam 

with FGM core and two homogeneous ceramic and metal skins (Model II) and a sandwich 

beam with homogeneous core with ceramic and FGM top and bottom skins (Model III). The 

influence of the dimensionless nonlocal parameter
 ( ) , the dimensionless length scale 

parameter ( ) , slenderness ratio ( )L h , material property gradient index ( ),k  static load 

factor
 ( ),s

  temperature change ( )T  and various cross section shapes on the dynamic 

stability, static bending, buckling and free vibration of the sandwich micro-beam are 
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discussed. To verify the present formulation and the present results (dynamic stability, static, 

buckling and free vibration), some of the current results are compared with the previously 

published results. Good agreement is observed. 

 

Keywords: Generalized differential quadrature (GDQ) method; functionally graded material; 

size dependent sandwich micro-beam; nonlocal strain gradient theory, higher-order shear 

deformation beam theory ; Dynamic stability. 
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ÖZET 

 

FONKSİYONEL DERECELENDİRİLMİŞ SANDVİÇ MİKRO 

KİRİŞLERİN DİNAMİK STABİLİTE ANALİZİ 

 

Mohammed Al-SHJUAIRI 

 

İNŞAAT MÜHENDSİLİĞİ BÖLÜMÜ 

Doktora Tezi 

 

Tez Danışmanı: Dr. Öğr. Ü. ÇAĞRI MOLLAMAHMUTOĞLU 

 

Bu çalımada Winkler ve Pasternak tipi elastik zeim üzerine mesnetlenmiş mikro sandviç 

kirişlerin statik, serbest titreşim burkulma ve dinamak stabilite analizleri termal etkiler altında 

incelenmiştir. Yerel olmayan birim şekil değiştirme gradyeni teorisi bağlamında değişik kiriş 

teorileri kullanılarak (Euler- Bernoulli, Timoshenko ve diğer yüksek mertebeden teoriler) 

Hamilton prensibinin uyarlanması sonucunda hareket denklemleri ve sınır koşulları elde 

edilmiştir. Mikro sandviç kirişin malzeme özellikleri yükseklik boyunca sürekli değiştiği 

varsayılmış ve eşdeğer özellikler Mori Tanaka ve klasik karşım kurallarına göre 

hesaplanmıştır. Elde edilen denklemlerin genelleştirilmiş diferansiyel quadratür metodu ile 

çözümü neticesinde değişik sınır koşulları altında (ankestre, serbest, basit) mikro kirişin statik 

eğilme, serbest titeşim trakansı ve kirik burkulma yükleri bulunmuştur. Sandviç yapısı olarak 

üç değişik form model kabul edilmiştir. Bunlar sandviç yapıya sahip olmayan her yeri 

fonksiyonel derecelendirilmiş baz Model I, orta kısmı fonksiyonel derecelendirilmiş alt ve üst 

kısmı homojen metal veya seramik Model II ile orta kısmı homojen seramik olup alt ve üst 

kısmı fonksiyonel derecelendirilmiş Model III' tür. Yerel olmayan teoriye ait parametre ( ) , 

karakteristik malzeme parametresi ( ) , boy/yükseklik oranı ( )L h , malzeme karışım oranı 

( )k , statik yük katsayısı ( )s
, ve sıcaklık değişimi ( )T  gibi parametrelerin statik  eğmeil, 
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serbest titreşim frekansı, kritik burkulma yükü ve dinamik stabilite üzerine etkileri 

irdelenmıştır. Formülasyonun bu sonuçlar için mükemmel çözümler ürettiği görülmüştür. 

 

Anahtar Kelimeler: Genelleştirilmiş diferansiyel quadratür metodu; Fonksiyonel 
derecelendirilmiş malzeme; Boyut etkisi olan sandviç mikro kiriş; Yerel onamayan şekil 

değiştirme gradyeni teorisi; Yüksek mertebe kayma kirişi teorisi; Dinamik stabilite. 
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CHAPTER 1 

INTRODUCTION 

1.1  Literature Review 

A new category of composite material name functionally graded material, have been broadly 

explored in the past few years due to their distinct features. FGMs are materials consisting of 

a combination of two different separate components with continuous gradient characteristics; 

both mechanical and physical. FGMs have numerous benefits compared to other material 

structures due to their continuous gradient characteristics. Normally these features change 

along particular directions for example along the thickness or axial directions. Generally 

FGMs are composed of metal and ceramic; metal prevents material from breaking when 

subjected to heat stress while ceramic which high thermal resistance-low strength and offers 

resistance at extreme temperatures. Together these materials are characterized by toughness, 

high strength and resistance to high temperature and corrosion. The idea of FGM was 

suggested at the first in 1984 during the space plane project in Japan by an association of 

material scientists. In conventional composite materials the distinct property differences of 

constituent materials stress may sometimes occur at the interfaces between two different 

constituent materials due to mismatches in the material properties. FGMs overcome this 

problem make composites applicable in airplanes, vehicles, military and defense projects, 

space crafts, biomedical field, electronics, energy and engineering constructions. Due to the 

numerous benefits of FGMs, in recent years there has been research and scientific 

publications on the dynamic stability, dynamic, and buckling properties of FGM. Additionally 

there have also been efforts to better understand the mechanical performance of FGM. 

Among various configurations, one of the important specific forms of composite structures is 

so called sandwich form. Because of their high strength-weight ratio, sandwich structures 

have extensively been employed in may engineering applications like airplanes, space crafts, 
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marine and many other fields. Normal sandwich structures consist of a soft core bonded to 

two skins usually made from tough material. These structures usually exhibit delamination 

failures at the bond interfaces where the integration of different constituent materials causes 

abrupt changes in material properties. To overcome this problem, the sandwich FG structure 

are used. In sandwich FG structures, either the core or skins are formed from FGMs. In this 

case the characteristics of the composite materials change smoothly from one surface to the 

another, hence avoiding concentrated stress levels usually developed in layered materials. 

Sandwich structures made of FGMs exhibit improved characteristics for example higher 

stiffness, long fatigue life, and thermal resistances, etc. For this reason FG sandwich materials 

are vastly used in aerospace, civil and automotive industries. To realize more durable and 

economically friendly structures it is necessary to consider the properties of FG sandwich 

structures. This is due to the sandwich functionally graded micro-beam have been of great 

interest in the past few years. Despite this fact, minimal research has been undertaken on the 

properties of sandwich functionally graded micro-beam. 

In kinematical aspect there are many beam theories which have been widely used to examine 

the behavior of FG beam structures. First of all the Euler-Bernoulli beam theory (EBBT) is 

based on the assumption that the plane cross sections of beam remain plane and normal to the 

deformed axis of the beam after bending. This theory is very useful for a thin beam (slender 

beam). On the other hand as the beam becomes thicker, then EBBT should be modified to 

include the ever increasing effect of the transverse shear. For moderately deep FG beam 

structure, CBT overestimates fundamental frequencies and buckling loads and underestimates 

deflection due to neglecting the effect of transverse shear deformation. In order to include this 

effect, Timoshenko beam theory (TBT) or the first order shear deformation beam theory 

(FSDBT) was suggested. Due to FSBDT cross-sections remain plane but no longer remain 

normal to the mid-plane after deformation. FSBDT assumed shear deformation with relaxing 

the kinematics with an additional rotation of the cross-section due to shear deformation. This 

corresponds to constant shear deformation through the depth of the beam hence a shear 

correction factor is required in order to take into account the shear stress variation on the cross 

section. An additional improvement can be introduced by assuming the variation of shear 

stress distribution. Higher-order shear deformation beam theories consider this effect as they 

take into account the warping of the cross-section and they satisfy the zero transverse shear 

stress boundary conditions of the beam’s top and bottom free surfaces. There are various 

higher order theories depending on the assumption they made for the nature of the shear stress 

distribution. The well-known higher order beam theories are the parabolic shear deformation 
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beam theory (PSDBT) [74], trigonometric shear deformation beam theory (TSDBT) [75], 

hyperbolic shear deformation beam theory (HSDBT) [76], exponential shear deformation 

beam theory (ESDBT) [77], and a recently published shear deformation beam theory (ASDBT) 

[78]. 

Micro-beams are most prevalent structures in Micro-Electromechanical Systems (MEMS) and 

Nano-Electromechanical Systems (NEMS). They make up the elements structured as thin film 

Shape Memory Alloys of micro and nano scale [86], electrically excited MEMS devices [87] 

and Atomic Force Microscopes [88]. Size effect is very important in these applications and 

therefore studies should be conducted to understand the characteristics of these small scale 

configurations. The classical continuum theory is not able to take into account the size effect 

seen in microstructures since it does not have any additional micro scale considerations to 

define structures of this scale. It is therefore necessary to revise the traditional elasticity 

theory to deal with the size dependent behavior. A number of higher order continuum theories 

have been initiated in the past few years to developed size dependent elastic models. In order 

to take into consideration the size effect, Eringen[79] suggested the nonlocal theory of 

elasticity which is among the size dependent theories of continuum. According to Eringen's 

theory stress field at a reference point does not depend on the strain at this point but also 

depends on the strains at the neighbor points in the continuum. For the last decade the theory 

of Eringen have been particularly utilized to examine the behavior of size dependent beams to 

investigate the static, buckling and also free vibration analysis of micro structures [11-29]. 

Although the theory of nonlocal elasticity by Eringen's has been extensively applied in the 

design of microstructures this theory only represents the softening behavior of structures and 

is not able to show the effect of stiffness enhancement. As another approach to the problem 

Aifantis[84] came up with the strain gradient theory. This theory consists of a single 

microscale parameter making it better than the strain gradient theory by Mindlin[81] that has 

five additional parameters. Aifantis theory has been utilized for various microstructural 

analysis problems. For example, K. G. Tsepoura et al [113] have solved the problem of a bar 

under static loading, wave propagation analysis and forced longitudinal vibrations based on 

the Aifantis's strain gradient theory. S. Papargyri-Beskou et al [114] studied the bending and 

buckling of Bernoulli–Euler beams based on the Aifantis Strain gradient theory. The 

governing equations of equilibrium for both bending and buckling problems were derived 

both by combining the corresponding basic equations and by using a variational statement. At 

the end Aifantis's theory has the ability of reflecting micro-structural stiffness enhancement 

unlike the Eringen's nonlocal theory. 
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Recently Lim, Zhang, and Reddy [47] published a paper in which the theory of Eringen is 

used together with strain gradient theory by Aifantis to come up with a hypothesized hybrid 

theory known as nonlocal strain gradient theory. This suggested theory depends on the 

structure of thermodynamics on wave propagation in TBT and EBBT. The NLSGT asserts 

that stress accounts for both non-gradient nonlocal stress field [79] and higher order pure 

gradient stress field [80]. The model for nonlocal strain gradient consists of two separate 

small length-scale specifications; the nonlocal parameter ( )ea and the material length scale 

parameter ( )ml for the material. The ( )ml takes into account the impact of strain gradient field 

while ( )ea accounts for nonlocal elastic stress field. 

 Another important class of problems for MEMS development is concerning the dynamical 

stability of micro structures. One of the most common type of dynamic stability arises when 

the beam is under axially pulsating normal force which can be assumed harmonic in nature. 

The interaction between the frequency of the axial load and the beam’s lateral vibration 

frequency may result in parametric instabilities and usually failure which can occur at much 

lower load levels than the static buckling load. Thus determining the regions of safe operation 

conditions so that beam is operating outside of the instability regions is utmost importance in 

the design of micro-beam structures under the effect of a variable axial load. 

1.2 Objective of the Thesis 

The objectives of thesis will be:  

1- Investigation of the dynamic stability of sandwich micro-beam in the frame work of 

HOBTs. 

2- Study of the static bending, free and buckling analysis of sandwich FG micro-beam by 

using different HOBTs based on NLSGT. 

3- Examination the effect of the dimensionless nonlocal parameter ( ) , the dimensionless 

material length scale parameter ( ), aspect ratio ( ) ,L h  power law index ( ),k  dimensionless 

elastic foundation with Winkler and Pasternak springs ( ),P WK K , temperature change ( )T , 

static load factor ( )s and various the cross section shapes on the dynamic stability, static, 

free and buckling analysis of a sandwich FG micro-beam. 
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4- Using the GDQ method, different boundary conditions (i.e. Simply-Simply, Clamped-

Simply, Clamped-Clamped) and several types of Model with different cross section shapes 

will be considered to illustrate the effects on the dynamic stability, buckling analysis, free 

vibration and static bending, of sandwich FG micro-beam in detail. 

 

1.3 Hypothesis 

This study investigates the static, buckling analysis, dynamic stability and free vibration of 

size dependent sandwich FG microbeam based on the various higher order beam theories 

(HOBTs) is conjunction with nonlocal strain gradient theory (NLSGT) resting on two elastic 

foundation including Winkler and Pasternak shear layer springs and thermal effect. 

Studies of the dynamic instability problem, static bending, buckling and free vibration of the 

sandwich FG micro-beams are very limited when compared these with the ordinary 

(homogeneous) FG micro-beams. In addition, to the best of authors’ knowledge, there is not 

any reported study related with the dynamic stability of FG sandwich microbeam which is 

based on the NLSGT formulation in conjunction with the HOBTs with different boundary 

conditions. 

 1.4 Structure of the thesis  

The thesis is arranged in five chapters. Chapter one presents a general introduction to the 

functionally graded material, sandwich FG and micro-structures and enlists the main 

objectives of the thesis. Chapter two provides a literature review of the former research in 

compliance with the investigated categories of the thesis. Previous researches about the 

sandwich FG beam, the nonlocal elasticity, the Strain gradient, nonlocal strain gradient 

theories and dynamic stability were explained in this chapter. Chapter three includes details 

of the governing equations and associated B.Cs of sandwich FG micro-beam and solved with 

numerical and analytical solutions. Chapter four presents and discusses the results which 

were obtained from the numerical solutions. Chapter five provides the summary and the 

conclusions of the work, and a number of recommendations for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

The subject of the present thesis investigates the static, buckling, free analysis and dynamic 

stability of the size-dependent sandwich FG micro-beam subjected to parametric excitation 

with the NLSGT in conjunction with different HOBTs with resting on two elastic foundations 

including Winkler and Pasternak shear layer springs and thermal effect, the literature review 

contain the five main parts. 

 

2.1 Sandwich FG beam structures 

Nguyen T.K. et al [1] have investigated free vibration and buckling analysis of sandwich FG 

beam based on the HOBTs. The equations of motion and also the corresponding B.Cs can be 

derived by using the Lagrange's equations and solved these equations analytical to give the 

buckling loads and natural frequency for sandwich FG beam structure in conjunction with 

various boundary conditions. There are many parameter influences on the fundamental 

frequency ( ) and buckling loads ( )P of the sandwich FG beam are investigated such as 

different boundary conditions, aspect ratio, material property gradient index and different 

cross-section shape (the ratio of core to the skins). The properties of  material for sandwich 

FG beam changing smoothly through the thickness direction [1]. 

Nguyen T.K. et al [2] have illustrated free vibration and buckling analysis of sandwich FG 

beams structures based on the Quasi-3D shear deformation beam theory with various 

boundary conditions. The governing equation and the relate B.Cs can be derived via the 

Lagrange’s equations. These equations can be solved by a Ritz-type analytical solution in 

order to obtain the buckling loads and natural frequency. There are two kinds of the sandwich 

FG beam, firstly Model A with FG two skins and ceramic core and the second one is FG core 

and homogenous skins. The influence parameters with different boundary conditions and 
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various cross-section shapes on the buckling loads and the fundamental frequency of 

sandwich FG beam are investigated [2]. 

Vo T.P. et al [3] have investigated the static of sandwich FG beam structure based on the 

Quasi-3D shear deformation beam theory with finite element model. There are many types of 

different cross-section shapes with symmetric and non-symmetrically FG sandwich beam 

under the action of the point and uniform load. Three kinds of sandwich FG beam (I.) full FG 

beam, (II.) FG skins and ceramic core and (III.) FG core with homogenous skins. Using the 

principle of total potential energy to derive the equations of motion and the corresponding 

boundary conditions and solve analytically by Navier solutions to obtain the deflection and 

stresses of sandwich FG beam with different gradient index and various core section shape 

[3]. 

Vo T.P. et al [4] have presented buckling analysis and free vibration of sandwich FG beam 

conjunction with HOBTs conjunction with finite element model. The skins of the FG 

sandwich beam structure is the functionally graded material and the core is ceramic or metal. 

According to the Hamilton’s principle, the governing equations and the corresponding B.Cs 

are derived. The effect of aspect ratio, power-law index, different boundary conditions and 

various cross-section shapes on the buckling load and the fundamental frequency of sandwich 

FG beams, are illustrated [4].  

Yang Y. et al [5] have studied free vibration of the sandwich FG beams based on meshfree 

boundary-domain integral equation method with finite element method. There are two types 

of sandwich FG beam, I. homogeneous skin sheets with FG core, II. FG skin sheets and 

homogeneous core are developed. The material properties such as the stiffness modulus and 

the density of the material are changing smoothly in the transverse direction by using the 

exponential function. The equations of motion and the corresponding B.Cs are derived based 

on the two-dimensional elasticity theory. The influence of power-law index, different 

boundary conditions, slenderness ratio and cross-section types on the free vibration of 

sandwich FG beams are discussed [5]. 

Tossapanon P. et al [6] have illustrated the buckling and free analysis of the sandwich FG 

beams structure with the FSDBT with Winkler and Pasternak elastic foundations. The 

structure of sandwich FG beam consists of top and bottom faces made of functionally graded 

material and core with the ceramic material. The governing equations and the related B.Cs 

can be derived by using the Chebyshev collocation (CC) method and then used to obtain the 

fundamental frequency and critical buckling loads with several boundary conditions of FG 
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sandwich beams. The material properties like Young’s modulus is changed gradually across 

the thickness direction by using the Mori–Tanaka scheme [6].  

Şimşek M. et al [7] investigated the static, forced and free analysis of sandwich FG beams 

with TBT subjected to two successive moving harmonic loads with constant velocity. There 

are three types of sandwich FG beam I. FGM isotropic beam, II. FGM core with the 

homogeneous skins and III. FGM skins with the homogeneous core (ceramic). A corroding to 

the rule of mixture method the material properties of FG part of sandwich FG beam will vary 

gradually across the thickness. The governing equations and the related different B.Cs are 

derived by Lagrange's equations, and solved these equations to find the dimensionless 

transverse deflection and the fundamental frequency via implicit time integration method of 

Newmark-  . The influences of several parameters such as power-law index, different 

models, various cross-section shapes, different boundary conditions and the distance between 

the two double harmonic forces on the static, free and forced of FG sandwich beam is 

discussed [7]. 

Luan T. et al [8] investigated the free vibration of FG sandwich beam in conjunction with 

EBBT, TBT and HOBTs. According to Hamilton’s principle the governing equations and 

different classical and non-classical B.Cs are derived and using the analytical solution to solve 

these equations and find the natural frequency of FG sandwich beam. The effect of the power-

law index, slenderness ratio, various boundary conditions and core to the skins ratio on the 

fundamental frequency are investigated [8]. 

Thuc V. et al [9] have examined the buckling and free vibration of the functionally graded 

sandwich beam with finite element model based on a quasi-3D shear deformation beam 

theory. The governing equations and relate B.Cs are derived by using Hamilton’s principle. 

The sandwich FG beam is considered with two types, firstly with ceramic core and 

functionally graded faces and the other one the FG core with the ceramic and metal material 

for the top and bottom faces, respectively. The influence of power-law index, different 

boundary conditions, mode shape and cross-section shape on the fundamental frequency and 

buckling load of sandwich FG beam are examined  [9]. 

Huu-Tai T. et al [10] have examined buckling analysis, free vibration and static of small size 

FG sandwich microbeam based on the modified couple stress theory (MCST) with TBT 

theory. According to the Mori–Tanaka homogenization the material properties vary gradually 

through the thickness direction for FG part of sandwich FG microbeam. FG core with 

homogenous faces and FG faces with ceramic core are considered for sandwich FG micro-
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beam. The analytical solution is utilized to find the deflection, critical buckling and natural 

frequency for sandwich FG micro-beam with S-S boundary conditions [10]. 

 

2.2 The nonlocal elasticity theory 

Reddy J. [11] presented buckling, free vibration and static analysis of simply supported beam 

with various beam theories, EBBT, TBT and Reddy beam theory in conjunction with the 

nonlocal elasticity theory. The Hamilton principle is used to drive the governing equations 

and associated B.Cs of nonlocal beam theories. The bending deflection, critical buckling load, 

and the natural frequency are solved analytically. When the nonlocal parameter decreasing of 

nonlocal beam structure, the bending deflecting decrease and the buckling load and 

fundamental frequency increase [11].   

 Adali S. [12] have utilized the semi-inverse method to drive the variational principles for 

multi-walled carbon nanotubes subject to buckling loads based on the nonlocal theory of 

elasticity on an elastic foundation conjunction with the Euler–Bernoulli beams. As well as the 

natural and geometric various B.Cs are derived by using semi-inverse method [12]. 

Murmu T. et al [13] illustrated the dynamic stability of a single-walled carbon nanotube 

(SWCNTs) with Timoshenko beam theory sbjected to elastic foundations with Winkler and 

Pasternak foundation based on  nonlocal elasticity theory. A differential quadrature (DG) 

method is used to solve the equations of motion and associated B.Cs and obtain the numerical 

solution of buckling load. The effect of the nonlocal parameter, Winkler and Pasternak shear 

modulus and slenderness ratio on the buckling load for SWCNT are discussed. it can be 

observed that the buckling load increase with an increase of the Winkler and Pasternak 

parameters [13]. 

Buckling analysis for the single-walled carbon nanotube is studied by Pradhan S.C. et al [14] 

based on the nonlocal elasticity theory conjunction with differential transformation method 

(DTM) with different B.Cs embedded in the elastic foundation (Winkler foundation). The 

influence of many parameters on critical buckling force are discussed like nonlocal parameter 

and Winkler elastic modulus. It can be noticed the critical load ratio's decrease when the 

Winkler modulus decrease for three boundary conditions (C-C, S-S, C-H) because the more 

stiffness-hardening for the beam can be obtained with increase the Winkler modulus, but the 

load ratio increases with  Winkler modulus decrease for C-F boundary condition [14].   

R Ansari. et al [15] presented axial buckling behavior of small scale nonlocal elastic shell 

structure with single-walled carbon nanotubes (SWCNTs) subjected to the effect of 

temperature change. The Rayleigh-Ritz technique is used with the nonlocal elasticity theory 
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to solve the equation of motion and associated the various B.Cs. The effect of temperature 

change on SWCNTs by making softer and harder depending on low or high-temperature 

conditions. The effect of aspect ratio, thermal effect, various boundary conditions and 

nonlocal parameter on the axial buckling are discussed [15]. 

The static and buckling analysis of a small-scale FG nano-beam with EBBT and TBT are 

presented by  Şimşek M. et al [16] based on a nonlocal elasticity theory. The minimum total 

potential energy principle is used to drive the governing equations and the relate B.Cs. 

Analytical solution of the FG nanobeam is obtained by using the Navier-type solution with 

simply-supported boundary condition. The power-law form is used to show the changing of 

the properties of small-scale FG nano-beam across the thickness direction. There are many 

parameters are influence on the static and buckling behavior of size-dependent FG nano-beam 

like slenderness ratio and nonlocal parameter are investigated [16]. 

Aydogdu M. [17] investigated static, buckling analysis and free vibration of small scale 

nanobeam with various beam theories, EBBT, TBT and HOBTs including Reddy, Levinson 

and Aydogdu beam theories based on the local elasticity and nonlocal elasticity Eringen 

theory. The influence of length of the beam and nonlocality on the static, buckling and free 

vibration size dependent nanobeam are investigated for each case [17]. 

Murmu T. et al [18] illustrated free vibration of small scale single-elastic walled carbon 

nanotubes (SWCNT) with thermal effect based on the nonlocal elasticity Eringen theory with 

EBBT. The SWCNT are embedded in the elastic foundation with Winkler foundation. 

Differential quadrature (DQ) method is utilized to solve the equation of motion and the 

corresponding boundary condition with simply supported ends for small scale carbon 

nanotubes. The effect of temperature variation, nonlocal parameter, shape modes and Winkler 

elastic constant on the free vibration of SWCNT is investigated [18]. 

Şimşek M. [19] studied forced vibration of size dependent an elastic single-walled carbon 

nanotube (SWCNT) subjected to a moving load based on the nonlocal Eringen theory 

conjunction with classical beam theory with a simply supported boundary condition. Using 

the modal superposition method and the Newmark’s direct method to obtain the time-domain 

responses. Influence of nonlocal size-dependent effects, aspect ratio, velocity of the moving 

load on the fundamental frequency and static deflection of the elastic single-walled carbon 

nanotube, is presented. It can be observed that when the nonlocal parameter increases the 

static deflections of the SWCNT increase. In the other hand for free vibration, the influence of 

nonlocal parameter increases at the higher mode [19]. 
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Şimşek M. [20] studied the forced vibration of two identical carbon nanotubes system 

engagement together by elastic spring subjected to a moving nanoparticle in conjunction with 

the nonlocal elasticity theory based on EBBT. The analytical solution of the equations of 

motion and the B.Cs can be solved by using the Galerkin method and the direct integration 

method of Newmark-  . The effect of slenderness ratio, nonlocal small scale, elastic spring 

constant and the moving nanoparticle on the force vibration are investigated. The deflections 

with the classical theory are always less than the deflection obtained by the nonlocal elasticity 

theory because of the nonlocal parameter. Here unlike a single carbon nanotubes system, there 

are two values of critical velocity for double carbon nanotubes system subject to a moving 

nanoparticle [20]. 

Eltaher M. et al [21] examined free vibration of small scale FG nano-beam with EBBT based 

on the nonlocal elasticity Eringen's theory. According to the rule of mixture method the 

material properties of small scale FG nano-beam change smoothly across the thickness. 

Hamilton's principle is used to drive the equations and relate B.Cs. The finite element method 

has solved the equation of motion and to discretize the model [21]. 

Thai H. [22] illustrated the static, buckling and free vibration of size dependent nano-beam 

based on the nonlocal elasticity Eringen's theory conjunction with the classical beam theory, 

the TBT and the HOBTs (Reddy’s beam theory). Hamilton’s principle is used to drive the 

equations of motion and the corresponding B.Cs. The transverse deflection,buckling load and 

the fundamental frequency are proposed with S-S boundary condition. It can be seen when 

increasing of nonlocal parameter, the buckling load and natural vibration decreasing, while as 

the deflection increase of particularly with the higher value of small nonlocal parameter [22]. 

Şimşek M. [23] Investigated the free vibration of small scale FG axial nanorod with the 

variable cross-section with the Eringen’s elasticity theory. The fundamental frequency of 

axial FG tapered nanorod can be obtained by using the Galerkin method with different B.Cs. 

Using the rule of mixture, the   material properties like modulus of elasticity and density of 

material are changing continues along the length direction of the size dependent FG tapered 

nanorod. The effect of many parameters on the free longitudinal vibration of AFG nanorod is 

illustrated such as taper ratio, different change of the cross-sectional area and small nonlocal 

parameter. For clamped-clamped boundary condition the influence of nonlocal parameter is 

more clear for size dependent AFG nanorod than the clamped- free boundary condition [23]. 

Rahmani O. et al [24] have presented the free vibration of FG nano-beam with TBT based on 

nonlocal Eringen’s elasticity theory. The equations of motion and the relate B.Cs are derived 

via Hamilton’s principle. According to the rule of mixture method, the material properties of 
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small scale FG nanobeam varies smoothly across the thickness but the Poisson ratio is 

constant across the thickness. Using the principle of minimum potential energy to solve the 

equation of motion and corresponding the boundary condition of small scale FG nano-beam. 

The influence the effect the parameters (aspect ratio, nonlocal parameter, and gradient index) 

on the fundamental frequency of FG nano-beam with S-S B.C are investigated [24]. 

Buckling analysis and free vibration of small scale FG micro-beam with thermal effect is 

investigated by Ebrahimi F. et al [25] based on the nonlocal elasticity theory with TBT. The 

analytical solution with Navier approach are used to solve the governing equations and the 

corresponding S-S B.Cs. The material properties with temperature change are changed 

gradually across the thickness of the small size FG micro-beam according to the rule of 

mixture. Hamilton’s principle are used to drive the equations of motion and the relate B.Cs 

for the thermal buckling and free vibration of FG micro-beam. The influence of many 

parameters like nonlocal parameter, slenderness ratio, gradient index and temperature change 

on the on the buckling load and the fundamental frequency of size dependent FG micro-beam 

with thermal effect are investigated [25]. 

Also, Ebrahimi F. et al [26] studied free vibration of small scale FG microbeam with the 

EBBT based on nonlocal Eringen's elasticity theory. The governing equations and the 

corresponding B.Cs are derived by Hamilton's principle. The Navier approach are used to 

solve the governing equations and the relate B.Cs for size dependent FG microbeam. The 

material properties vary smoothly through the thickness by using the Mori-Tanaka 

homogenization. There are many parameters will be the influence on the natural frequency of 

size dependent FG microbeam such as length to the thickness ratio, small nonlocal parameter, 

the number of modes and different boundary conditions are presented [26]. 

Again Ebrahimi F. et al[27] illustrated the free vibration analysis of small scale FG nano-

beam with temperature change based on the nonlocal Eringen's elasticity theory with the 

EBBT. The equations of motion and relate B.Cs are derived by Hamilton's principle. 

Differential transformation method (DTM) with a Navier approach is used to solve the 

equations of motion and the related various B.Cs (C-C) and (S-S). The effect of the 

temperature change, various boundary conditions, gradient index and mode number on the 

small scale FG microbeam are presented [27]. 

Mohammad N. et al [28] illustrated the buckling analysis of FG nano-beam with classical 

beam theory (CBT) based on the Eringen's elasticity theory. Here the properties of material of 

small scale FG nanobeam vary continuously through two directions with axial (length) and 

the thickness. The principle of minimum potential energy is used to drive the equations of 
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motion and the relate B.Cs. According to the Generalized differential quadrature method 

(GDQM), the governing equation can be solved and obtained the critical buckling load for 

size dependent FG nanobeam. In the end, there are many parameter effects on the buckling 

load like nonlocal parameter and gradient index [28]. 

Ansari R. et al [29] investigated the free vibration of size dependent FG nano-beam in the 

postbuckling domain with FSDBT based on the nonlocal elasticity theory. Hamilton principle 

is used to drive the equations and the relate different B.Cs (C-C), (C-S) and (S-S) for small 

size FG nanobeam. According to the generalized differential quadrature (GDQ) method, the 

nonlinear governing equation von Karman geometric nonlinearity and associated B.Cs are 

solved and then using the Newton Raphson technique to obtain the value of fundamental 

frequency [29]. 

 

2.3 The Strain gradient elasticity theory  

Shengli K. [30] studied static and dynamic analysis of small scale beam with EBBT based on 

the strain gradient elasticity theory. According to the variational principle the governing 

equations and the related B.Cs are solved. There are three material length scale parameters 

and two classical material constant for this model [30].  

Akgöz B. et al [31] illusrtated static and the free vibration of micro-beam in conjunction with 

the HOBTs based on the modified strain gradient theory (MSGT). According to Hamilton’s 

principle the governing equations and boundary condition with simply supported are derived. 

Analytical solutions with Navier approach are used to obtain the value of static deflection 

under the action of point load and distributed load and the fundamental frequency of the size 

dependent micro-beam. There are several parameters effects such as aspect ratio and material 

length scale parameter on the static deflection and natural frequency of microbeam are 

presented [31].  

The static and the free vibration of size dependent microbeam with TBT is investigated by 

Binglei W. et al [32] based on strain gradient elasticity theory. Hamilton’s principle is used to 

drive the equations of motion and relate boundary condition [32]. 

Akgöz B. et al [33] have investigated static analysis of small size micro-beam with the EBBT 

based on the modified strain gradient elasticity and modified couple stress elasticity theories. 

According to the variational principles the static deflection and rotation of small scale 

microbeam are used to drive the governing equations and corresponding with four B.Cs. 

These equations and the boundary conditions can be solved analytically to obtain the value of 

static deflection and rotation of microbeam. The effect of many parameters on the static 
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bending of the size dependent microbeam are illustrated like material length scale parameter 

and aspect ratio [33]. 

Yuming H. et al [34] illustrated the free vibration of the small size of FG cylindrical micro-

shells based on the strain gradient elasticity theory with TBT. According to Mori–Tanaka 

scheme the properties of size dependent FG cylindrical micro-shells change continuously 

across the thickness direction. The governing equation and the related B.Cs are derived by 

Hamilton’s principle. Using double trigonometric series method is used to solve these 

equations and related B.Cs with S-S and C-C to predict the fundamental frequency of 

cylindrical FG micro-shells. Moreover, there are several parameters effect on the free 

vibration analysis of small scale micro-shells such as power law index, different boundary 

conditions, material length scale parameter and slenderness ratio with length and radius with 

thickness are investigated [34]. 

Wu J. [35] have illustrated the flexural waves propagating of multi-walled carbon nanotubes 

with FSDBT based on the gradient elasticity beam theory embedded in an elastic foundation 

with Pasternak foundation. The influences of the many parameters like Pasternak foundation 

constant and material length scale parameters on the transverse waves propagating of size 

dependent multi-walled carbon nanotubes are investigated [35]. 

Thai S. et al [36] studied the static, buckling and free analysis of small scale FG microplates 

based on the modified strain gradient elasticity theory in conjunction with the HOSDT with 

Reddy. The properties of material of FG microplate are assumed to change smoothly through 

the thickness direction according to the rule of mixture method. The equations of motion and 

related B.Cs are derived by Hamilton’s principle. There are many parameters influence on the 

static, buckling load and fundametal frequency of small size FG microplates such as power 

law index, various boundary conditions and shear deformation effect [36]. 

Akgöz B. [37] have investigated buckling analysis of size dependent nanobeam with the 

EBBT based on the modified couple stress (MCST) and modified strain gradient elasticity 

theory. The governing equations and the corresponding boundary condition with S-S and C-F 

of nano-beam are derived by the variational principle [37]. 

Kahrobaiyan M. et al [38] have studied small size non-classical beam elements with EBBT  

and the non-classical finite element method to capture the small scale dependent of nano or 

micro-beam based on the strain gradient theory. The mass matrices and stiffness matrices of a 

size-dependent beam with EBBT are derived by using the Galerkin’s method [38]. 

Bo Z. et al [39] have illustrated static bending, buckling analysis and free vibration of small 

scale micro-beam with Timoshenko beam theory based on the strain gradient elasticity theory. 
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the non-classical theory such as the strain gradient theory with three material length scale 

parameters to capture the size effect of the Timoshenko beam element [39]. 

The elastic bending of the bilayered size dependent microbeam with Clamped-Free boundary 

condition under the action of a moment at the free end in conjunction with the Euler- 

Bernoulli is investigated by Anqing L. et al [40] based on the strain gradient elasticity theory. 

According to the variational principle, the governing equations and the related B.Cs are 

derived [40]. 

Ansari R. et al [41] have illustrated the free vibration of small scale FG micro-beam with 

Timoshenko beam theory based on the strain gradient theory. By using the Mori–Tanaka 

homogenously scheme, the properties of material of small scale FG microbeam are change 

smoothly across the thickness direction. The equations of motion and the related B.Cs are 

derived by using Hamilton’s principle of size dependent FG microbeam. The effect of several 

parameters on the natural frequency of FG micro-beam are investigated like aspect ratio, 

gradient index and material length scale parameter [41]. 

Ansari R. et al  [42] have investigated the nonlinear free vibration analysis of small scale FG 

microbeam with EBBT and TBT based on the strain gradient elasticity theory with von 

Karman geometric nonlinearity. According to the rule of the mixture, the material properties 

of FG microbeam is change continuously across the thickness direction. The equations of 

motion and the corresponding B.Cs are derived according to Hamilton’s principle. On the 

other hand, these equations and the related B.Cs can be solved by the (GDQ) method. There 

are many parameters are influence on the nonlinear free vibration of size dependent 

microbeam such as aspect ratio, gradient index and the material length scale parameters [42]. 

Ansari R. et al  [43] have presented free vibration analysis of small size FG micro-beam based 

on the strain gradient theory in conjunction with HOBTs. The governing equations and the 

related B.Cs are employed on the basis of Hamilton’s principle and solved these equations 

analytical by using the Navier approach. The influence of material length scale parameter, 

power law index and aspect ratio on the fundamental frequency of small size FG micro-beam 

are presented [43].  

Amin S. et al [44] have illustrated the free vibration of small scale of FG microbeam with 

variable section carrying microparticles subjected to thermal effect based on the FSDBT in 

conjunction with modified strain gradient theory. The Chebyshev-Ritz method is used to 

derive the equations of motion and the related B.Cs to obtained the natural frequency of small 

scale FG microbeam. There are many parameters are used to show the influence of these 

parameters on the fundamental frequency of small scale FG microbeams such as material 



16 
 

length scale parameter, width taper ratio, gradient index and thermal effect. The material 

properties of size dependent FG microbeam with thermal effect are varied continuously 

through the thickness direction [44]. 

Hamid Z. et al [45] have presented free vibration of axial small scale FG nano-beam with 

EBBT based on the strain gradient elasticity theory with the elastic foundation as the visco-

Pasternak foundation. The governing equations and the related S-S and C-C B.Cs are derived 

by using Hamilton’s principle, and these equations are solved with the differential quadrature 

(DQ) method. The influence of the radius of the beam, material length scale parameter and the 

stiffness of the visco-Pasternak foundation on the fundamental frequency are studied [45]. 

Bo Z. et al [46] have illustrated static, buckling analysis and free vibration of the small size of 

FG microplates with the elastic foundation with Winkler–Pasternak foundation based on the 

strain gradient elasticity theory and HOBTs. According to the classical rule of the mixture, the 

properties of material for small scale FG microplate are changed smoothly across the 

thickness direction. According to Hamilton’s principle, the equations of motion and the 

associated B.Cs with simply supported are derived. Many parameters are investigated on the 

static, buckling load and fundamental frequency of small scale FG microplate with material 

length scale parameter, power law index, slenderness ratio and elastic foundation constant 

[46]. 

 

2.4 Nonlocal strain gradient theory (NLSGT) 

Lim C. & Reddy J. [47] combined the Eringen’s elasticity theory and strain gradient theory 

(Aifantis’s model) to present a new hybrid theory is called nonlocal strain gradient theory. 

Also developed the wave propagation with EBBT and TBT for carbon nanotubes (CNTs). For 

nonlocal strain gradient theory, the increase or decrease the stiffness model depending on the 

nonlocal parameter ( )ea and material length scale parameter ( )ml  [47]. 

Lu L. et al [48] investigated the free vibration of nano-beam structure with sinusoidal shear 

deformation beam theory based on the NLSGT with two parameters to capture the size 

dependent, a nonlocal parameter ( )ea and a material length scale parameter ( )ml . Hamilton’s 

principle is used to derived the equations of motion and the related B.Cs. The fundamental 

frequency with analytical solutions can be obtained by using the Navier’s method. The 

fundamental frequencies portended with the NLSGT are higher than those obtained by 

nonlocal theory and lower than those predicted by strain gradient theory. The size dependent 
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nano-beam exerts a stiffness-softening or a stiffness-hardening effect dependent on the 

nonlocal parameter and length scale material parameter [48]. 

Li L. et al [49] proposed the free vibration of small scale FG microbeam with EBBT and TBT 

based on the NLSGT. The Hamilton principle is employed to drive the equation of motions 

and related B.Cs. The analytical solutions of free vibration problem for S-S boundary 

condition will be solved with the Navier's solution. There are two parameters which the FG 

microbeam model contains, the first is material length scale parameter ( )ml  and the other one 

is nonlocal parameter ( ).ea The fundamental frequency of FG microbeam decrease with 

decrease in the ( )ml or increase the ( ).ea The size dependent model exerts a stiffness-

hardening effect when the ( )ea is less than the ( )ml , and the FG microbeam exerts stiffness-

softening effect when the ( )ea is larger than the ( )ml  [49]. 

Li L. et al [50] presented static, buckling and free vibration analysis for small scale FG micro-

beam conjunction with EBBT based on NLGRT. The properties of material of axial FG 

micro-beam change smoothly according to the rule of mixture along the length of the FG 

micro-beam. Using the (GDQ) method to obtain the critical buckling force and fundamental 

frequency with various B.Cs for FG micro-beam. The equations of motion and the 

corresponding B.Cs are derived via Hamilton principle. Two parameters are considered 

material length scale parameter and the nonlocal parameter for small scale FG axial 

microbeam structure to investigate designation of nonlocal elastic and strain gradient stress 

field respectively. Depending on the value of the ( )ea and ( )ml the critical buckling force and 

fundamental frequency of axial size dependent FG micro-beam exert a stiffness-hardening 

and stiffness- softening [50].   

Li L. et al [51] studied longitudinal vibration analysis of small scale rod based on the NLSGT. 

The analytical solutions are used to predict the fundamental frequency and mode shapes of 

small scale rod with various B.Cs. The Hamilton's principle is employed to drive the 

governing equation and the related B.Cs for size dependent rods. The longitudinal vibration 

analysis can be obtained by using the finite element method with classical and non-classical 

B.Cs [51].  

Again Li L. et al [52] have investigated analytical solutions for the nonlinear post-buckling 

deflection and critical buckling loads of simply supported small scale axially FG nonlinear 

with EBBT based on NLSGT. The equations and the corresponding B.Cs can be derived by 

using Hamilton's principle. The critical buckling load increased with two way first via the 
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( )ea decreasing when the ( )ml is less than the ( )ea and in other words by increasing the ( )ea

when the ( )ml is larger than the ( )ea  [52].  

 Li L. et al [53] developed the flexural wave propagation analysis for small scale FG beam in 

conjunction with EBBT based on the NLSGT. The relations between phase velocity and wave 

number are derived via the analytical solution. When the nonlocal parameter ( )ea decreasing 

or the material length scale parameter ( )ml  increasing the acoustical phase velocity increase. 

The material properties of small scale FG micro-beam grade continue through the thickness 

[53]. 

Farzad E. et al [54] illustrated damping vibration of size dependent FG viscoelastic nano-

beam embedded in the viscoelastic foundation with HOBTs based on NLSGT subjected to 

hygro-thermal effects. The material properties with thermal effect various smoothly across the 

thickness of small scale FG nanobeam with Winkler-Pasternak and a viscous layer of infinite 

parallel dashpots. The equations and different B.Cs (S–S, C–S, and C–C) of size dependent 

FG nano-beam are solved by using Hamilton’s principle with an analytical solution [54]. 

The nonlinear free vibration of a FG nano-beam with simple supports boundary condition was 

investigated by Şimşek M. [55] based on the NLSGT with the von-Kármán’s geometric 

nonlinearity in conjunction with classical beam theory. Using Hamilton’s principle to drive 

the governing equations and associated boundary condition. The material properties such as 

modulus of elasticity and density will change smoothly in the deep direction according to the 

simple rule of mixture. The Galerkin's method is utilized to reduce the nonlinear partial 

differential equations to the ordinary nonlinear differential equation with assuming the 

negligible of axial inertia. It can be observed that the nonlinear frequency ratio increase with 

the decrease of the dimensionless nonlocal parameter
 ( ) and the increase with increase of 

the dimensionless material length scale parameter ( )  [55]. 

Farzad E. et al [56] illustrated the wave propagation analysis for small scale FG nano-beam 

based on NSGT with thermal effect and assumed the properties of material change smoothly 

across the thickness of the FG nanobeam according to Mori-Tanaka homogenization. The 

wave frequencies and phase velocities of the size dependent FG nano-beam are found by 

applying an analytical solution. Also, it can be seen that the phase velocities decreasing and 

stiffened-softening with increase the nonlocal parameter ( )ea and the phase velocities 

increasing and stiffened-hardening with increase the material length scale parameter ( )ml  

[56]. 
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As well as Farzad E. et al [57] investigated buckling analysis of size dependent curve FG 

nano-beam conjunction with a HOBTs based on the NLSGT. Using Hamilton’s principle to 

drive the equations of motion and corresponding boundary condition and solved analytically 

for S-S and C-C B.Cs. The rule of the mixture is used to graduate the material properties 

through the radial direction for size dependent curve FG microbeam. The critical buckling 

load decreasing with increasing opening angle. With increasing the nonlocal parameter ( )ea

leads to decreasing critical buckling load of curved FG nano-beam. Moreover, increasing the 

material length scale parameter ( )ml enhances the buckling loads. As well as, it can be 

observed that the effect of the two parameters on the small scale FG nanobeam conjunction 

with the lower opening angles is more significant than size dependent FG curved nanobeam 

with higher opening angles [57]. 

Farzad E. et al [58] have illustrated free vibration of FG curved nano-beam based on the 

NLSGT in conjunction with EBBT theory. The FG curved nanobeam resting on Winkler– 

Pasternak elastic foundation with different boundaries (C-C, C-S, and S-S) are illustrated. 

According to the Mori-Tanaka homogenization, the material properties of curved FG 

nanobeam vary gradually in the thickness direction. The equation of motion and the related 

B.Cs are derived by Hamilton’s principle and solved analytically to find the natural frequency 

of curved FG nano-beams. There are several parameter effects on the fundamental frequency 

such as material length scale parameter
 ( )ml , nonlocal parameter ( )ea , Winkler– Pasternak 

elastic medium, different B.Cs, aspect ratio and power law index are examined [58]. 

Li L. et al [59] have examined nonlinear bending and free vibration of FG micro-beam with 

EBBT and TBT based on the NLSGT. The Hamilton’s principle is used to derive the 

governing equations and the related boundary condition. The analytical solution is used to 

solve these equations to obtain the bending deflection and natural frequency of size dependent 

nonlinear FG microbeam by using Navier solution and He’s variational method. The material 

properties of FG microbeam are varied smoothly through the thickness via the rule of mixture 

method. The effect of gradient index, nonlocal parameter ( ),ea  material length scale 

parameter ( )ml on nonlinear FG microbeam are examined [59]. 

The free vibration of viscoelastic FG nano-beam resting on a Winkler–Pasternak layer with 

the viscous layer is investigated by Farzad E. et al [60] based on the NLSGT conjunction with 

EBBT subjected to thermal and surface effect. The material properties vary gradually through 

the thickness direction according to the rule of mixture method. Hamilton’s principle is used 

to solved the governing equation and the related B.Cs and solved analytically to obtain the 
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fundamental frequency of viscoelastic FG nano-beam with (C-C, S-S) B.Cs. The influence of 

Winkler– Pasternak elastic, viscous layers foundation, nonlocal parameter
 ( ),ea  material 

length scale parameter ( )ml , surface effect, thermal effect, power law index and aspect ratio 

on the viscoelastic size dependent  FG nanobeams are discussed [60]. 

 

2.5 Dynamic stability 

Liang L. et al. [61] presented the dynamic stability, free vibration and buckling analysis of a 

FG micro-beam with FSDBT with modified couple stress theory. They utilized the Mori–

Tanaka homogenization scheme to show the material properties of FG micro-beam change 

continuously through the thickness direction. The governing equations and related B.Cs are 

derived by using Hamilton’s principle and solved these equations via differential quadrature 

(DQ) method. There are many effective parameters to show the influences on the critical 

buckling, fundamental frequency and dynamic stability of FG microbeams, such as gradient 

index, slenderness ratio, material length scale parameter and various boundary conditions 

[61]. 

Saffari S. et al. [62] illustrated the dynamic stability of FG nano-beam under the action of 

dynamic axial and thermal effect loading based on nonlocal elasticity theory conjunction with 

TBT and embedded in Pasternak elastic foundation. They utilized Gurtin-Murdoch theory to 

investigate the effect of surface stress on the dynamic instability region of FG nano-beam. 

The equations of motion and related B.Cs are derived by Hamilton's principle. According to 

the rule of mixture method, the material properties change smoothly across the thickness 

direction. They have investigated the effect of power law index, nonlocal parameter, aspect 

ratio, Pasternak elastic constant, and surface effect on the dynamic stability of S-S size 

dependent FG nanobeam [62]. 

Helong W. [63] presented the thermal buckling, free vibration and dynamic instability of FG 

multilayer graphene nanoplatelet-reinforced composite (GPLRC) beam subjected to thermal 

effect and a periodic axial loading based on the TBT. According to the rule of mixture, the 

effective material properties of FG (GPLRC) beams are assumed to vary gradually across the 

thickness direction. The differential quadrature (DQ) method with Bolotin’s method is 

examined to find the dynamic instability region of FG (GPLRC) beams [63]. 

Sahmani S. et al [64] have investigated the dynamic stability of FG micro-shells based on the 

modified couple stress theory with higher-order shear deformation shell theory. According to 

the Mori-Tanaka homogenization the effective material properties of the size dependent FG 
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micro-shells vary smoothly through the thickness direction. The dynamic governing equations 

and corresponding B.Cs are derived via Hamilton’s principle. In order to estimate the 

dynamic instability region, the equation of motion is written with the Mathieu–Hill equations 

in conjunction with Bolotin’s method. The influences of material length scale parameter, 

static load factor and gradient index on the dynamic stability analysis are examined for FG 

micro-shells are studied [64]. 

Ansari R. et al. [65] have investigated the dynamic stability behavior of embedded multi-

walled carbon nano-tubes based on the nonlocal elasticity theory with FSDBT under the 

action of thermal effect with (S-S) B.Cs. The effect of aspect ratio, nonlocal parameter, static 

load factor, various of temperature and spring constants of the Pasternak elastic medium on 

the dynamic stability analysis of embedded multi-walled carbon nanotubes are presented [65]. 

Ansari R. et al [66] have illustrated the dynamic stability, buckling and free vibration of 

single-walled carbon nanotubes (SWCNTs) based on the nonlocal elasticity theory with 

EBBT and TBT subjected to axial compression load with thermal effect. It is assumed that the 

single-walled carbon nanotubes (SWCNTs) are resting on a Winkler type elastic foundation 

with S-S B.Cs. The effect of static load factor, thermal effect, nonlocal elastic parameter, 

aspect ratio and spring constant of the Winkler type elastic medium on the dynamic stability 

behavior of the single-walled carbon nanotubes are investigated [66]. 

Raheb G. et al [67]  have investigated the dynamic stability and the buckling analysis of FG 

micro-shell based on the modified couple stress theory with Timoshenko shell theory. 

According to Hamilton's principle, the governing equations and related B.Cs can be derived. 

Navier solution is used to predict the critical buckling load of FG micro-shell with S-S B.C. In 

order to obtain the dynamic instability region, the equations of motion are written in the form 

of  Mathieu–Hill equations and solved these equations by Bolotin's method. The effect of 

material length scale parameter, gradient index, aspect ratio, length to radius ratio and static 

load factor on the dynamic stability and critical buckling load are illustrated for FG micro-

shell are studied [67]. 

Liao L. et al [68] have presented the buckling, free vibration and dynamic stability behavior 

of size dependent FG nano-composite beams reinforced by single-walled carbon nano-tubes 

based on the first order shear beam theory. The effective material properties are assumed 

change smoothly across the thickness direction for FG carbon nano-tube-reinforced 

composites by using the rule of mixture method. They utilized the DQ method to solve the 

dynamic equation of motion and written these equations in the form of Mathieu–Hill 
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equations to obtained the dynamic instability region and solved these equations by Bolotin's 

method [68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

 

CHAPTER 3 

THEORY AND FORMULATION OF FG SANDWICH MICRO-BEAM 

 

3.1 Introduction 

The sandwich functionally graded micro-beam are present with one core between two skins 

for two different Model with the length of the sandwich FG micro-beam ( )L  in axial x-

direction, the width ( )b in the y-direction, and thickness ( )h in the z-direction. The sandwich 

FG micro-beam structure with the (Winkler and Pasternak) elastic foundation with spring 

constants WK  and PK  are subject to thermal effect as observed in Fig.(3.1). The sandwich 

FG micro-beam under the action of the axial excitation load ( )P t . There are three different 

kinds of the FG sandwich microbeams are considered in this thesis 

 

1. Model I, homogeneous FG micro-beam. 

2. Model II, sandwich FG micro-beam with the core made of FG material and the top 

skin with metal and the bottom skin with ceramic.  

3. Model III, sandwich FG micro-beam with the core is made from the ceramic and the 

two skins are FG material. 
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Figure 3.1 A sandwich FG micro-beam subjected to an axial compressive excitation load

( )P t . 

For Model I  FG homogeneous micro-beam which is made of the metal (m) and the ceramic 

(c). The metal and ceramic are varying from one surface at the bottom to the other surfaces at 

the top respectively, it can be noticed in Fig.(3.2a). The volume fraction of the ceramic 

constitutive ( )cV z for Model I is obtained as 

( )
1

2

k

c

z
V z

h

 
= + 
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                    (3.1) 

where ( )k is the non-negative variable parameter (gradient index) which presents the material 

changing across the thickness direction of the FG part micro-beam. 

 

On the other hand for Model II as shown in Fig.(3.2b) with the core made of FG material and 

the skins are made from the metal and ceramic at the top and the bottom of the sandwich FG 

micro-beam respectively. Moreover, ( )cV z  of this Model can be obtained as bellow 

 

( )

3 4

2

2 3

3 2

1 2

0 for

for

1 for

  
 
 − 

=    
−  

  
 

k

c

h z h

z h
V z h z h

h h

h z h

                 (3.2) 

where the thickness values (
1 2 3 4, , ,h h h h ) are shown on Fig. (3.1). 

Finally the last Model with the core is ceramic and the skins are made from the FG material, 

the top skin of FG part the ceramic in the bottom and the metal in the top, Moreover, the 

Cross-section 

4h 

1h 

2h 

 

3h 

b 

Ceramic 
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L 

( )P t ( )P t 

Metal 

Metal 

Shear layer 

 Winkler layer 

Ceramic 
O 
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bottom FG part is conversely, it can be observed in Fig. (3.2c). ( )cV z  of Model III for both 

skins can be obtained as follow 

 

( )

( )

( )

( )

1
1 2

2 1

2 3

4
3 4

3 4

for ,

1 for ,

for ,

  −
  

−  
 

=  
 
 − 

  −  

k

c

k

z h
z h h

h h

V z z h h

z h
z h h

h h

               (3.3) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Sandwich FG micro-beam a. Model I, b. Model II, c. Model III 

The ceramic and the metal of the FG part of the sandwich FG micro-beam for Model I and 

Model II in the bottom and the top surfaces respectively. on the other hand, for Model III 

there are two FG part, one of them of the top face is the same for Model I,II and conversely 

for bottom face with the top surface with ceramic and for bottom surfaces with metal. The 

local effective materials of sandwich FG micro-beam is consider with metal and ceramic, and 

the effective material properties for example Poisson’s ratio ( ) , Young’s modulus ( )E , 

density ( ) , thermal expansion coefficient ( )  and the shear modulus ( )G  vary smoothly a 
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cross the thickness direction can be calculated by using so called homogenization techniques 

here we consider two used: Mori-Tanaka homogenization and the rule of mixture method. 

First of all Mori-Tanaka homogenization is used for calculating the effective material 

properties of sandwich FG micro-beam. The shear modulus rG  and the Bulk Modulus rK are 

calculated with the Mori-Tanaka scheme  

 

( )

( ) ( )1 4 3

−
= +

+ − +  

c c m

r m

m c m m m

V K K
K K

V K K K G
                (3.4) 

( )

( ) ( ) ( )( )1 * 9* 8* 6* 2*

−
= +

 + − + + + 

c c m

r m

m c m m m m m m m

V G G
G G

V G G G G K G K G           
(3.5) 

 

where m indicate the metal and c indicate ceramic,  

 ( )

( )

( )( )
,

,

,
2 1

=
+

m c

m c

m c

E
G

v
                    (3.6) 

( )

( )

( )( )
,

,

,
3 1 2

=
−

m c

m c

m c

E
K                     (3.7) 

Where ( )V z is the volume fraction of the phase materials and ,m cG  is the shear modulus,

,m cK  is the bulk modulus of sandwich FG micro-beam.
 
The relation between the volume 

fractions of the metal and the ceramic constituents as follows 

( ) ( ) 1+ =m cz zV V                     (3.8) 

The Young's modulus of sandwich FG micro-beam with the Mori-Tanaka homogenization is 

written as 

( )
9

3
=

+

r r

r r

K G
E z

K G
                    (3.9) 

Also, the poisson's ratio ( ) z  of the sandwich FG micro-beam can be calculated as 

( )
3 2

6 2


−
=

+

r r

r r

K G
z

K G
                  (3.10) 

In case of the mass density ( ) z of FG part of the sandwich FG microbeam, the variation of 

mass density is expressed as
 

( ) ( )( )   = + −m c c mz V z                            (3.11) 
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The thermal expansion coefficient ( ) z
 

( ) ( )
1 1 1 1

   
   

= − − − +   
   

c m m

e m c m

z
K K K K

              (3.12) 

The second method for using to calculate the local effective properties of sandwich FG micro-

beam is the rule of mixture method, the local effective properties of material R , can be 

written as follow 

= +m m c cR R V R V                   (3.13) 

where mR  and cR  are the local effective properties of material with the metal and ceramic 

respectively. 

 

The Young modulus and poisson's ratio, mass density and the thermal expansion coefficient 

can be calculate according to the classical rule of mixture in the following equations 

 

( ) ( )( )= + −m c c mE z E V z E E                                                                                           (3.14) 

( ) ( )( )= + −m c c mv z v V z v v                                                                                               (3.15) 

( ) ( )( )   = + −m c c mz V z                                                                                              (3.16) 

( ) ( )( )   = + −m c c mz V z
                                            

 (3.17) 

The effect of the power law index on the volume fraction of the ceramic across the thickness 

of the sandwich FG micro-beam for each Model (I, II, III) is present in Fig. (3.3). 
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Figure 3.3 Variation of  cV  cross the thickness of a FG micro-beam with different of gradient 

index ( )k with cross-section types of (1,1,1) and (1,2,1) for Models II, III. 
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Various cross-sectional shapes type (1-1-1), (1-2-1), (1-8-1), (2-1-2) can be assumed for the 

thickness ratios of the core and skin regions. This representation can be directly given by 

dividing a region’s (bottom skin, core, top skin) thickness with the greatest common divisor 

(GCD) of the regions’ thicknesses. Thus according to Fig.1 if we denote the thicknesses of 

bottom skin, core and top skin with 
1 2 1h h h= − , 

2 3 2h h h= −  and 
3 4 3h h h= −  respectively then 

ratios (r1,r2,r3) are simply obtained by 
1 2 3 1 2 3( , , ) / { , , }h h h GCD h h h . 

The layer depth ratio of sandwich functionally graded microbeam from bottom to top, it is 

mean from  ( )1 2= = −z h h to
 
( )4 2= =z h h  is (1-1-1), (1-2-1), (1-8-1) and (2-1-2) 

respectively. 

2 3h h 6; h h 6;= − =   with cross section (1-1-1) FG sandwich microbeam, in this type of 

cross section the core and the skins have the same thickness. 

 2 3h h 4; h h 4;= − =   with cross section (1-2-1) FG sandwich microbeam, it can be seen 

from this type, the core thickness is twice the face thickness. 

2 3h 2h 5; h 2h 5;= − =   with cross section (1-8-1) FG sandwich microbeam, the core depth 

is eight times as great than skin thickness. 

2 3h h 10; h h 10;= − =   with cross section (2-1-2) FG sandwich microbeam, here the core 

thickness is half  the face thickness of sandwich FG micro-beam. 

 

3.2. Non-local sandwich FG micro-beam strain gradeint Model (NLSGT) 

 

The general NLSGT equations can be obtained as Lim et al. [47] 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 22 2 2 2 2 2

1 0 0 11 1 1 1        −  − −   = −  − 
       xx m xx xxE z e a E z l e a e a e a t

                               
(3.18a) 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 22 2 2 2 2 2

1 0 0 11 1 1 1        −  − −   = −  − 
       xz m xz xzG z e a G z l e a e a e a t    

                             (3.18b) 

where 
2

2

2x


 =


, 

 the total stress tensor of the NLSGT  is indicated as follow 
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(1)

 = −xz xz xzt                            (3.19a)

(1)

 = −xx xx xxt                            (3.19b) 

where xxt and xzt are the total stress and total shear stress respectively,  is defined as  x   

is the one-dimensional differential operator, xz and xx  is the shear and classical stress 

respectively, ( )1
 xz

and ( )1xx
is the higher-order shear stress and stress respectively, that is: 

( ) ( ) ( )0 0

0

, ,

L

xx xxE z x x e a x dx     =                          (3.20a) 

( ) ( ) ( )0 0

0

, ,

L

xz xzG z x x e a x dx     =                                     (3.20b) 

( ) ( ) ( ) ( )1 2

1 1 ,

0

, ,     = 
L

xx m xx xl E z x x e a x dx                                    (3.20c) 

( ) ( ) ( ) ( )1 2

1 1 ,

0

, ,     = 
L

xz m xz xl G z x x e a x dx                         (3.20d) 

Here L is the length of the beam, ( )E z is the Young's modulus, ( )G z  is the shear modulus, 

xx  and ,xx x  are the strain and the strain gradient, respectively , xz and ,xz x  are the shear 

strain and the shear strain gradient, respectively , 0e a  and 1e a  denote the nonlocal parameters 

introduced to consider the significance of nonlocal elastic stress field, ml  is a material 

characteristic parameter (known as the material length scale parameter) introduced to consider 

the significance of higher-order strain gradient stress field.
 

The classical stress and shear stress and the higher-order stress and shear stress can be written 

as the form 

( ) ( )
2 2

01   −  =
  xx xxe a E z                                        (3.21a) 

( ) ( )
2 2

01   −  =
  xz xze a G z                          (3.21b) 

( ) ( ) ( )
2 12 2

01   −  = 
  xx m xxe a l E z                            (3.22a) 

( ) ( ) ( )
2 12 2

11   −  = 
  xz m xze a l G z                           (3.22b) 
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 The generalized NLSGT relation can be achieved as Lim et al.[47] by assuming that 

0 1e e e= = ,
 

( ) ( ) ( )
2 2 2 21 1xx m xxea t l E z  −  = − 

 
             (3.23a) 

( ) ( ) ( )
2 2 2 21 1xz m xzea t l G z  −  = − 

 
             (3.23b) 

first of all for the Eringen nonlocal theory can be achieved by setting 0ml = in  Eqs.(3.23) 

.That is: 

( ) ( )
2 21 xx xxea t E z  −  =

 
               (3.24a) 

( ) ( )
2 21 xz xzea t G z  −  =

 
               (3.24b) 

Moreover, the Aifantis strain gradient theory can be achieved by letting ( ) 0ea =  in 

Eqs.(3.23), that is: 

( ) ( )2 21xz m xzt l G z = −                 (3.25a) 

( ) ( )2 21xx m xxt l E z = −                 (3.25b) 

 

3.3  The governing equations for sandwich FG micro-beams 

3.3.1 Higher-order beam theories (HOBTS) 

 

Based on higher-order beam theory that contains different other theories is used, the 

displacement field takes the form: 

( )


= − +


x

w
u u z z

x
               (3.26a) 

0=yu                   (3.26b) 

=zu w                  (3.26c) 

Here ( )u is the axial displacement,  ( )w is the transverse displacement on the neutral axis,
 


is the transverse shear strain on the mid axis. 

 


= −


w

x
                   (3.27) 

where  is the rotation of the cross-sections on the mid axis, ( ) z is a function of .z  ( ) z

is a function of z that characterizes the transverse shear and stress distribution along the 
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thickness of the beam. The displacement fields of different beam theories can be  obtained by 

choosing ( ) z as follows: 

 

EBBT: 
  

( ) 0 =z                         (3.28a) 

FSDBT: ( ) =z z                                      (3.28b) 

 PSDBT: ( ) ( )2 21 4 3 = −z z z h                                    (3.28c) 

TSDBT: ( ) sin




 
 =  

 

h z
z

h
                                    (3.28d) 

 HSDBT: ( )
1

sinh cosh
2

   
 = −   

   

z
z h z

h
                        (3.28e) 

ESDBT: ( ) ( )
2

2−
 =

z h
z ze                                (3.28f) 

 ASDBT: ( )
( )

2
2

ln 3 

−

 = =

z h

z z with                           (3.28g) 

 

The equations of motion and the corresponding boundary conditions are derived by using the 

Hamilton's principle and written as the form 

 

( )
0

0 − + − + =  
t

K S ef thU U U W U dt                            (3.29) 

Where ( )kU is the kinetic energy, ( )sU is the strain energy,
 
( )efU is the strain energy due to 

elastic foundations , ( )thU
 
is the strain energy with effect of temperature change and  ( )W is 

the work done subjected to external applied loads. Thus, the formula of the strain of Higher-

order micro-beam theories (HOBTS) can be written as 

( )
2 2

2 2




    
= − + − 
    

xx

u w w
z z

x x x x
             (3.30a) 

0yy zz xy yz   = = = =                (3.30b) 

( )
 

  
= − 

  
xz

z w

z x
                  (3.30c) 

The strain energy of sandwich FG micro-beam can be written as follows 

( ) ( )( )1 1

0 0

        = + +  +   
t t

S xx xx xz xz xx xx xz xz

V

U dt dv dt                        (3.31) 
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using Eq. (3.19) and few mathematical operations that the Eq.(3.31) becomes 

( ) ( )1 1

0 0 0 0 0

      
 

= + + + 
 

       

L
t t t t

S xx xx xz xz xx xx xz xz

V V A A

U dt t dv dt t dv dt dA dA dt            (3.32) 

 The stress resultants of FG sandwich micro-beam can be obtained as follow 

=  xx

A

N t dA                   (3.33a)   

      

=  xx

A

M z t dA                 (3.33b)  

     

 
( )= h xx

A

M z t dA                    (3.33c) 

 


=
h xz

A

Q t dA
z

                    (3.33d) 

( ) ( )1 1
=  xx

A

N dA                  (3.33e)   

  

 

( ) ( )1 1
=  xx

A

M z dA                   (3.33f) 

( ) ( ) ( )1 1
= h xx

A

M z dA                 (3.33g) 

  

( ) ( )1 1



=

h xz

A

Q dA
z

                (3.33h) 

The Eq. (3.32) can be rewritten with the stress results in Eqs. (3.33) in the following form 

( ) ( ) ( ) ( )

2 2

2 2

0 0 0

2 2
1 1 1 1

2 2

0 0

    
 

    


       
= − + − + − +    

       

       
− + − + −    

       

  



t t L

S h h

L
t

h h

u w w w
U dt N M M Q dx dt

x x x x x

u w w w
N M M Q dt

x x x x x

          (3.34) 

And the strain energy due to temperature change is given as 

0 0 0




 
= − 

   
t t L

T

th

w w
U dt C T dx dt

x x
               (3.35) 

in which 

 
( )

( )
1 2




=
−

T

A

E z
C z dA  
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where T is temperature change and ( ) z is the thermal expansion coefficients. 

Moreover, the strain energy with elastic foundations is given as 

0 0 0 0 0


 

 
= +

     
t t L t L

ef w P

w w
U dt k w w dx dt k dx dt

x x
             (3.36) 

Here wk is spring constant of the Winkler elastic foundation and Pk is the spring constant of 

the Pasternak elastic medium. 

Also virtual work done by the external applied loads is given as follow

( ) ( )
0 0 0 0 0

 
  

   
= + + + 

   
    
t t L t L

u w w
W dt f u q w dx dt P t dx dt

x x x
           (3.37) 

Where ( )f and ( )q  are the x and z  components of the body forces per unit length 

respectively. And ( )P t is an axial compressive excitation load. 

The virtual kinetic energy  KU  can be obtained as follow 

( ) ( )
0 0 0

 
  

   
= +

       
t t t

x x z z
K

V V

u u u u
U dt z dv dt z dv dt

t t t t
            (3.38) 

( )
2 2      

= − + − 
       

xu u w w
z z

t t t x t x t
             (3.39a) 

 
=

 

zu w

t t
                 (3.39b)  

Where ( )z is the mass density of the functionally graded microbeam. By using Eqs.(3.39) 

sub. in Eq.(3.38), the virtual kinetic energy  KU  is given as follow 

 

2 2

0 1

0 0 0

2 2 2 2

3 2

2 2 2 2

4

   


   


  

          
= + − +               

          
+ + − + −    

              

      
− − + − 

         

  
t t L

K

u u w w u w w u
U dt I I

t t t t t x t x t t

w w u w u w
I I

x t x t t x t t x t t

w w w w
I

x t x t t x t x t

2 2

5

              
+ − −        

              

w w
I dx dt

t x t t x t t

                    (3.40) 

Where 

( ) ( )( )2

0 1 3, , 1, ,= 
A

I I I z z z dA  
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( ) ( ) ( ) ( )( )2 4 5, , 1, ,=  
A

I I I z z z z dA                (3.41) 

By substituting Eqs.(3.34-3.37) and (3.40) into equation (3.29) and implementing the 

integration and the coefficients of u , w and   are gathered, the governing equations with 

the higher-order micro-beam theory in conjunction with NLSGT can be obtained by 

( )0 x L  : 

( )
2 3 2

0 1 2 22 2 2

   
− = − − −

    

N u w
f I I I I

x t x t t
               (3.42) 

( ) ( ) ( )

22 2 2

0 02 2 2 2

3 4 3

1 2 5 4 3 4 52 2 2 2

( )

2


   
− + − − +  − − =

   

  
+ − − − + + −

     

h h

P w

M QM w w
q P C T k k w I

xx x x t

u w
I I I I I I I

x t x t x t

           (3.43) 

( )
2 3 2

2 4 5 52 2 2

   
− = − + − +

    

h
h

M u w
Q I I I I

x t x t t
              (3.44) 

Moreover, the associated boundary conditions is given as follows with 0x = and x L=  

0( ) 0
  

− + + +  − =  
   

h

h P

MM w
w Q P C T k

x x x

0( )
 

− + + +  −
  

h

h P

MM w
Q P C T k

x x x
                 or 0w =  

( ) 0 = u N 0=N                                                      or 0u =  

( )1
( ) 0


= 



u
N

x

( )1
0=N                                                        or 0


=



u

x
 

( ) 0


− = 


h

w
M M

x
=hM M                                    or 0


=



w

x
 

( )
2

1

2
( ) 0



  

− =  
  

h

w
M

x x

( )1
0=hM                                      or 

2

2
0

  
− = 

  

w

x x
 

( )
2

1

2
( ) 0


= 



w
M

x

( )1
0=M                                                   or 

2

2
0


=



w

x
 

( )1
( ) 0 

 
− + =  

 
h h

w
Q M

x

( )1
0+ =h hQ M                          or 0

 
− = 

 

w

x
 

 

the equations of motion can be written in term of the displacements, in Eqs.(3.33) the stress 

resultant can be expressed by displacement. Substituting Eq.(3.23) and (3.30) into Eqs.(3.33) 

we can obtains 
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( ) ( ) ( )
2 2 2 2

2 2

0 2 1 22 2 2

2

1


−

      
= = + − + − −  

      


h

xx m

h

N u w
N b t z dz ea l A A A A

x x x x x
          (3.45) 

( ) ( ) ( )
2 2 2 2

2 2

0 4 3 42 2 2

2

1


−

      
= = + − + − −  

      


h

xx m

h

M u w
M b z t z dz ea l A A A A

x x x x x
 

                    (3.46) 

( ) ( )
2 2 2

2 2

02 2

2

1 
−

    
= = + − −   

     


h

h
h xz m

h

Q w
Q b z t dz ea l G

z x x x
            (3.47) 

( ) ( ) ( ) ( )
2 2 2 2

2 2

2 5 4 52 2 2

2

1


−

      
=  = + − − − −  

      


h

h
h xx m

h

M u w
M b z t z dz ea l A A A A

x x x x x

                    (3.48)           

where 

( ) ( )( )
2

2

0 1 3

2

, , 1, ,
−

= 
h

h

A A A b E z z z dz  

( ) ( ) ( ) ( )( )
2

2 4 5

2

, , 1, ,
−

=  
h

h

A A A b E z z z z dz                          (3.49) 

( )
( )

22

0

2−

 
=  

 


h

h

z
G b G z dz

z
                (3.50) 

Eqs.(3.44)-(3.48) can be rewritten in term of  the displacement based on the Eqs.(3.42)-(3.44), 

( ) ( )

( )

3 4 3
2

0 1 2 22 2 2 2

2 2
2

0 2 1 22 2
1





    
= + − − − 

       

     
+ − + − −  

     
m

u w f
N ea I I I I

t x t x t x x

u w
l A A A A

x x x x

                        (3.51) 

( ) ( )

( )

2 3 4 3 2
2

0 1 4 3 4 02 2 2 2 2 2

2 2
2

1 4 3 42 2

( )

1





     
= + + − − − + +  − + 

        

     
+ − + − −  

    

P w

m

w u w w
M ea I I I I I q P C T k k w

t t x t x t x x

u w
l A A A A

x xx x

                               (3.52) 
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( ) ( )

( )

3 4 3
2

2 5 4 52 2 2 2

2 2
2

2 5 4 52 2
1





   
= + + − − 

      

     
+ − + − −  

     

h h

m

u w
M ea Q I I I I

t x t x t x

u w
l A A A A

x x x x

                        (3.53)

( ) ( )

( )

4 5 4
2

2 5 4 52 2 3 2 2 2

2 2 3 2
2

2 5 4 5 02 2 3 2
1






   
− = − − − + 

      

       
+ − − − − + + −   

       

h h

m

u w
Q M ea I I I I

x t x t x t

u w w
l A A A A G w

x x x x x

                      (3.54)

      

In view of Eqs.(3.42)-(3.44) and (3.51)-(3.54), it can be obtain the governing equations for a 

small size FG higher-order microbeam theory (HOBT) using NLSGT 

( ) ( )

( )

2 2 3 2
2

0 1 2 22 2 2 2

2 2 3 2
2

0 2 1 22 2 3 2

1

1 0





     
− − + − + +  

      

     
+ − + − − =  

     
m

u w
ea I I I I f

x t t x t

u w
l A A A A

x x x x

                        (3.55)

   

( ) ( )

) ( )

2 2 3 4 3 2
2

0 1 4 3 4 02 2 2 2 2 2 2

2 3 4 3
2

1 4 3 42 3 4 3

1 ( )

1 0





      
− − − − − + + − +  − 

         

     
− + − + − − =  

     

P

w m

w u w w
ea I I I I I q P C T k

x t x t x t x t x

u w
k w l A A A A

x x x x

                               (3.56) 

( ) ( )

( )

2 2 3 2
2

2 5 4 52 2 2 2

2 2 3 2
2

2 5 4 5 02 2 3 2

1

1 0






     
− + − −  

      

       
+ − − − − + + − =   

       
m

u w
ea I I I I

x t x t t

u w w
l A A A A G

x x x x x

   

                               (3.57) 

 

It can be seen when putting the 0=ml , in the equations (3.55-3.57), then can be obtained the 

Nonlocal continuum equations for nonlocal sandwich FG higher-order microbeam 

( ) ( )

( )

2 2 3 2
2

0 1 2 22 2 2 2

2 3 2

0 2 1 22 3 2

1

0





     
− − + − + +  

      

  
+ + − − =

  

u w
ea I I I I f

x t t x t

u w
A A A A

x x x

                                   (3.58)
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( ) ( )

( )

2 2 3 4 3 2
2

0 1 4 3 4 02 2 2 2 2 2 2

3 4 3

1 4 3 43 4 3

1 ( )

0





       
− − − − − + + − +  − −  

          

  
+ + − − =

  

P w

w u w w
ea I I I I I q P C T k k w

x t x t x t x t x

u w
A A A A

x x x

                               (3.59) 

( ) ( )

( )

2 2 3 2
2

2 5 4 52 2 2 2

2 3 2

2 5 4 5 02 3 2

1

0






     
− + − −  

      

    
− − − + + − = 

    

u u
ea I I I w I

x t x t t

u w w
A A A A G

x x x x

                        (3.60)

         

Additionally, the governing equations of sandwich FG higher-order microbeam based on the 

Aiffantis theory, it given when the 0=ea  in Eqs.(3.55-3.57). 

( ) ( )

( )

2 2 3 2
2

0 1 2 22 2 2 2

2 3 2

0 2 1 22 3 2

1

0





     
− − + − + +  

      

  
+ + − − =

  

u w
ea I I I I f

x t t x t

u w
A A A A

x x x

                        (3.61) 

( ) ( )

) ( )

2 2 3 4 3 2
2

0 1 4 3 4 02 2 2 2 2 2 2

3 4 3

1 4 3 43 4 3

1 ( )

0





      
− − − − − + + − +  − 

         

  
− + + − − =

  

P

w

w u w w
ea I I I I I q P C T k

x t x t x t x t x

u w
k w A A A A

x x x

                               (3.62) 

( ) ( )

( )

2 2 3 2
2

2 5 4 52 2 2 2

2 3 2

2 5 4 5 02 3 2

1

0






     
− + − −  

      

    
− − − + + − = 

    

u u
ea I I I w I

x t x t t

u w w
A A A A G

x x x x

                                   (3.63) 

Whereas for the classical continuum theory, the governing equations is given by putting 

0=ea and 0=ml  in Eqs.(3.55-3.57), as follow 

( ) ( )
2 3 2 2 3 2

0 1 2 2 0 2 1 22 2 2 2 3 2
0

      
− + − + + + + − − =

      

u w u w
I I I I f A A A A

t t x t x x x
  

                                          (3.64) 

( )

( )

2 3 4 3 2

0 1 4 3 4 02 2 2 2 2 2

3 4 3

1 4 3 43 4 3

( )

0





    
− − − − + + − +  −

       

  
− + + − − =

  

P

w

w u w w
I I I I I q P C T k

t x t x t x t x

u w
k w A A A A

x x x

  

                               (3.65) 
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( )

( )

2 3 2

2 5 4 52 2 2

2 3 2

2 5 4 5 02 3 2
0






  
+ − −

   

    
− − − + + − = 

    

u u
I I I w I

t x t t

u w w
A A A A G

x x x x

                        (3.66) 

 

The non-classical counterparts of the stress resultants can be obtained by using Eqs.(3.23) 

,(3.42)- (3.44), (3.51)-(3.53) and (3.54) together.  

( ) ( )

( )
( )

( )

( )
( )

4 2 4 5 4 2
1

0 2 1 22 2 2 3 2 2 2 22

2 2 2 2 3 2
2

0 2 1 22 2 2 3 22
1





    
= + − − − 

      −  

     
+ − + − −      −   

m

m

m

m

m

ea l u w f
N I I I I

x t x t x t xea l

ea l u w
l A A A A

x x x xea l

                      (3.67) 

 

( ) ( )

( )
( )

( )

( )

( )
( )

4 4 3 4 5 4
1

0 1 4 3 42 2 2 2 3 2 2 22

2 3

02 3

2 2 2 2 3 2
2

1 4 3 42 2 2 3 22
1





    
= + + − −

       − 

  
− + +  − − 

  

     
 + − + − −     −   

m

m

P w

m

m

m

ea l w u w
M I I I I I

x t x t x t x tea l

q w w
P C T k k

xx x

ea l u w
l A A A A

x x x xea l

                        (3.68) 

Stress resultants hM , hQ ,
( )1

hM ,
( )1

hQ

 

are inherently coupled and no feasible way seems to 

resolve them separately. In fact the number of equations are not enough for the number of 

undetermined resultants. Nevertheless we can still obtain some boundary conditions involving 

these coupled resultants. For example it is possible to obtain the following condition which is 

equivalent to the boundary condition  
( ) ( )1 1

0+ =h hQ M  by using Eqs. (3.19), Eq. (3.47), 

Eq.(3.48) and Eq. (3.54). 

 

( ) ( )

( )

( )
( ) ( )

(1)

2 3 4 3
2

2 5 4 52 2 2 2 2

2 2 2 2
2

0 02 2 2 2

2 2 2
22

2 5 4 52 2 2 2

0

1

1

1
1 1

h h

m
m

m

Q M

u w
ea I I I I

x x t x t x t

l w w
G l G

x x x x xea

u w
l ea A A A A

x x x x xea



 



+ = 

     
− + − −  

        

         
+ − + − −     

         

       
+ − − + − − =   

       
0

                      (3.69) 
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Eqs. (3.55)-(3.57) can be written in term of the dimensionless quantities with the non-

dimensional quantities as given as follow 

x
x

L
= ,     

( ),
,

u w
u w

L
= ,   = ,       

h

L
 = ,    

ea

L
 = ,   ml

L
 =  
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0 0 0 1 2 3 4 5 2 2 3 3 3
, , , , , , , , , , , , , ,

 
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E bh G bh E bh E bh E bh E bh E bh E bh
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, , , , , , , , , ,

     

 
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 m m m m m m

I I II I I
I I I I I I

bh bh bh bh bh bh
 

m

m

Et
t

L 
= , 

m

P
P

E bh
= ,  ( , ) ,

/ /m m

q f
q f

E bh L E bh L

 
=  
 

, ( )
2

, ,
 

=  
 

WP

p W

m m

k Lk
K K

E bh E bh
 

 

Here mG is the shear modulus for metal part of sandwich FG micro-beam. The equations of 

motion can be rewritten by using the above dimensionless variables as 

 

( )

( )

2 2 3 2
2
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2 2 3 2
2
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
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                         (3.70) 
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w u w
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                               (3.71) 
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                               (3.72)         

Similarly in dimensionless form classical stress resultants and non-classical counterparts of 

the stress resultants becomes 
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( )

( )

3 4 3
2

0 2 1 22 2 2 2

2 2
2

0 2 1 22 2
1


  


  

    
= + − − − 

       

     
+ − + − −  

     

u w f
N I I I I

x t x t x t x

u w
A A A A

x x x x

                       (3.73) 
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                               (3.74) 
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                      (3.75) 
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u w
A A A A

x x x x

               (3.76) 

The related boundary conditions involving the higher order stress resultant (3.69) can be 

given in dimensionless form as well 
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                  (3.77) 
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( ), ,
 

=  
 m m

N M
N M

E bh E bhL
 , ( )

(1)(1) (1)
(1) (1) (1)

2
, , , ,

 +
+ =  

 

h
h h

m m m

Q MN M
N Q M M

E bhL E bhL E bhL
 



42 
 

3.3.2 Timoshenko beam theory (TBT) 

The equation of motion and corresponding boundary conditions of TBT can be obtained in the 

same procedure of HOBTS. It can be seen for TBT, the shape function ( ) =z z in Eqs. 

(3.26). The displacement field with TBT in the following form 

 

( ) ( ), ,= −xu u x t z x t                           (3.78a) 

0=yu                                   (3.78b) 

( ),=zu w x t                             (3.78c) 

 

The virtual strain energy and virtual kinetic energy for First order shear deformation beam 

theory are given explicitly in Appendix A1. The equations of motion for TBT as follow 

 

2 2

0 12 2

  
− = −

  

N u
f I I

x t t
                            (3.79) 

2 2

0 02 2
( )

  
− − +  − − =

  
P w

Q w w
q P C T k k w I

x x t
                         (3.80) 

2 2

2 12 2

  
− = −
  

M u
Q I I

x t t
                            (3.81) 

for ( )0 x L  . The classical and non-classical boundary conditions at 0x =  and x L=

become 
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Q
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x
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− = 
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( )1
( ) 0


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 
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M

x
        

( )1
0=M  or 0

x


=


 

The force and moment resultants of FSDBT are given below with (3.23), (3.30), and (3.33): 

( ) ( )
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The following rigidities are defined as 

( ) ( )
2

2

0 1 2
2

, , ( ) 1, ,
h

h
A A A b E z z z dx

−
=   

Also 0G is the shear coefficient and can be calculated as 

( )
2

0

2

h

h

G b G z dz
−

=            

In view of Eqs.(79)- (81) classical normal force, classical moment and classical shear force 

can be written with the displacements and rotations 

 

( )
3 3 2

2 2

0 1 0 12 2 2
1

          
= − + + − −    

           
m

u f u
N ea I I l A A

x t x t x x x x
                      (3.85) 

( )
2 3 3 2

2

0 1 2 02 2 2 2

2
2

1 22

( )

1





    
= + − + + +  − + 

      

    
+ − −  

    

P w

m

w u w
M ea I I I q P C T k k w

t x t x t x

u
l A A

x xx

          (3.86) 
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(3.87) 
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The equations of motion for FSDBT in conjunction with the nonlocal strain gradient theory 

(NLSGT) can be given by utilize Eqs.(3.79), (3.80), (3.81) with Eqs. (3.85-3.87) in term of 

the displacements are written below  
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22
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                               (3.90) 

When setting 0=ml , in the equations (3.88-3.90), then can be obtained the Nonlocal 

continuum equations for nonlocal sandwich FG first shear deformation  microbeam 

 

( )
2 2 2 2 2

2

0 1 0 12 2 2 2 2
1 0

   
  
  

    
− − − − + =

    

u u
A A ea I I f

x x x t t
                       (3.91) 

( )
2 2 2 2

2

0 0 02 2 2 2
1 ( ) 0

        
− − − − − +  − − =    
       

s P W

w w w
k G ea I q P C T k k w

xx x t x
  

                               (3.92) 
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Additionally, the governing equations of sandwich FG microbeam with TBT based on the the 

Strain gradient (Aiffantis) theory, it given when the 0=ea  in Eqs.(3.88-3.90). 
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Whereas for the classical continuum theory, the governing equations is given by putting 

0=ea and 0=ml  in Eqs.(3.88-3.90), as follow 
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The non-classical counterparts of the stress resultants can be obtained by using Eqs.(3.23) 

,(3.42)- (3.44), (3.51)-(3.53) and (3.54) together.  
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Eqs. (3.88)-(3.90) can be written in term of the dimensionless quantities with the non-

dimensional quantities as given as follow 
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Here mG is the shear modulus for metal part. The equations of motion can be rewritten by 

using the above dimensionless variables as 
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2 2 2
2 2

0 1 22 2 2

2 2 2
2 2

1 22 2 2

1

1 0

w u
A A A

x x x x

u
I I

x t t


    


  

      
− − − +   

      

    
+ − − =  

    

                      (3.105) 



47 
 

Similarly in dimensionless form classical stress resultants becomes 
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                                (3.107) 
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                             (3.108) 
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                                                       (3.109) 

( )
4 2 3 4 4 3

1 2

0 1 2 02 2 2 2 2 2 2 3

2 2 2 2 2
2 2

1 22 2 2 2 2

( )

1

  
 

 

  
  

 

      
= + − + + +  − + 

 −        

    
+ − −  

−     

P W

w u q w w
M I I I P C T K K

x xx t x t x t x

u
A A

x x x

                                  (3.110) 
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3.3.3 Euler- Bernoulli beam theory (EBBT) 

 

 For EBBT the shape function ( ) 0 =z  in Eqs.(3.26), then the displacement equations can 

be taking in the following  form 

( ),


= −


x

w
u x z u z

x
                         (3.112a) 

( ), 0=yu x z                           (3.112b) 

( ), =zu x z w                           (3.112c) 

The virtual of the SU  and KU for Euler- Bernoulli micro-beam theory are obtained explicitly 

in Appendix A2. Therefore the governing equations EBBT can be derived as follows: 
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Moreover, the associated boundary conditions is given as follows with 0x = and x L=  
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The force and moment resultants of EBBT are given below 
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( ) ( )
2 2 2 2

2 2

1 22 2 2

2

1
−

     
= = + − −  

     


h

xx m

h

M u w
M b z t z dz ea l A A

x x x x
                    (3.116) 

Where 
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h
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−
=   

In view of Eqs.(3.113)-(3.114) classical normal force, classical moment and classical shear 

force can be written with the displacements and rotations 
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        (3.118) 

The non-classical counterparts of the force and the moment are obtained by using Eqs.(3.23), 

(3.113)- (3.114), and (3.115)-(3.116) together 
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                                         (3.120) 

The equations of motion for  EBBT can be obtained in the same procedure as follow 
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when putting 3 4 5 0 0= = = =A A A G in the governing equations HOBTs, the governing 

equations EBBT is obtained . 

When setting 0=ml , in the Eq.(3.121) and Eq.(3.122), then can be obtained the Nonlocal 

continuum equations for nonlocal sandwich FG Euler- Bernoulli microbeam as follows 
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                             (3.124) 

Additionally, the governing equations of sandwich FG microbeam with EBBT based on the 

Aiffantis theory, it given when the 0=ea  in Eqs.(3.121-3.122). 
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Whereas for the classical continuum theory, the governing equations is given by putting 

0=ea and 0=ml  in Eqs.(3.121-3.122), as follow 
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The non-classical counterparts of the stress resultants can be obtained by using Eq.(3.23) 

,Eqs.(3.113)- (3.114), and Eqs. (3.117-3.118) together 
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Eqs. (3.121)-(3.122) can be written in term of the dimensionless quantities with the non-

dimensional quantities as given as follow 
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The Eqs. (121)- (122) can be rewritten in a dimensionless form 
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The stress resultants can be rewritten in dimensionless form 
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= − + + − −    

          

u w f u w
N I I A A

x t x t x x x x
                    (3.131) 

2 3 2
2 2

0 1 2 02 2 2 2

2 2
2 2

1 22 2

( )

1


  

  

    
= + − + + +  − + 

      

    
+ − −  

    

P W

w u w
M I I I q P C T K K w

t x t x t x

u w
A A

x x x

       (3.132) 

( )
4 2 4 5 2

1

0 12 2 2 2 3 2 2

2 2 2 2 3
2

0 12 2 2 2 3
1

 


 

 
 

 

   
= − + 

−      

    
+ − −  

−     

u w f
N I I

x t x t x

u w
A A

x x x

                        (3.133) 
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( )

3 5 4
2

4 2 0 1 22 3 2 2 2
1

2 2 3

0 3

2 2 2 2 3
2 2

1 22 2 2 2 2

( )

1

 
 

 

 
  

 

   
+ − 

      =
−   
+ + +  − + 
  

    
+ − −  

−     

P W

w w w
I I I

x t x t x t
M

q w w
P C T K K

x xx

u w
A A

x x x

             

                             (3.134) 

With 

( ), ,
 

=  
 m m

N M
N M

E bh E bhL
 , ( ) ( )( )

( ) ( )1 1
1 1

2
, ,

 
=   
 m m

N M
N M

E bhL E bhL
 

 

3.4  Analytical Solution of sandwich FG micro-beam 

The equations of motion are analytical solved for buckling analysis, static bending, and free 

behavior of a S-S sandwich functionally graded micro-beam based on the nonlocal strain 

gradient theory. In this thesis, the Navier approach is utilized to given the analytical solution. 

For this investigation, the displacement fields are explicit are result of the coefficients which 

are unknown and trigonometric functions, the displacement field for analytical solutions are 

assumed in the following as 

( )
1

, cos 


=

= i t

n

n

u x t U e x                           (3.135) 

( )
1

, sin 


=

= i t

n

n

w x t W e x                           (3.136) 

( )
1

, cos 


=

= i t

n

n

x t G e x                           (3.137) 

( )  is the fundamental frequency, the  , ,n n nU W G are the coefficients which are 

undetermined ,and n L = . It can be seen in the EBBT that nG is equal to zero. 

 

3.4.1  Bending of the sandwich FG micro-beam 

For the this section of the thesis, the derivatives of the time must be equal to zero and the 

external load represented by f vanish. On the other hand the transverse force represented by 

q is presented as follow 
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( )
1

sin 
=

=
N

m

m

q x Q x                            (3.138) 

( )
0

2
sin = 

L

mQ q x x dx
L

                          (3.139) 

where mQ  coefficients are given for uniform forces is represented in the following equation 

( ) oq x q= ; 
4


= o

m

q
Q

m
   1,3,5,....=m  

where oq is the intensity of the uniformly distributed load. 

 

3.4.1.1 Euler Bernoulli Beam Theory (EBBT) 

Substituting Eqs.(3.135),(3.136) and (3.138) into Eqs.(3.121),(3.122) to obtain the following 

equations 

( )
( )( )

2 2

0 1 22

2 2 2

1 3 0

0

1

0

 


  

  
 −     

= +     
− + −  +      

    

n

n n

p w

n

U
CA CA

W ea Q
CA CA k C T Z k Z

G

                (3.140) 

where ( )2 21 mC l= +          
 

( )2 21Z ea= +  

Equation (140) can be solved to obtain the Fourier coefficients for EBBT. 

 

( )( )( )
( )( ) ( )( ) ( )

22

1

24 2 2 2 2 2 2

0 3 1 0 0

1

1 1

 

    

+
=

+ − + + + − 

n

n

m w p

Q A ea
U

l A A A ea A k k C T
              (3.141) 

 

( )( )( )
( )( ) ( )( ) ( )

22

0

24 2 2 2 2 2 2

0 3 1 0 0

1

1 1



    

+
=

+ − + + + − 

n

n

m w p

Q A ea
W

l A A A ea A k k C T
              (3.142) 

 

3.4.1.2  Timoshenko Beam Theory (TBT) 

Substituting Eqs.(3.135)-(3.137) and (3.138) into Eqs.(3.88)-(3.90) to obtain the following 

equations 
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( ) ( )( )

2 2

0 1

22 2 2

0 0 0

2 2

1 0 3 0

00

0 1

0

 

   

  

  −  
      

+ −  + = +    
    

− +       

n

s p w s n n

ns s

CA CA U

Ck G k C T Z k Z Ck G W ea Q

GCA Ck G CA Ck G

                             (3.143) 

where ( )2 21 mC l= +          
 

( )2 21Z ea= +  

Eq.(3.143) can be solved to obtain the Fourier coefficients for Timoshenko micro-beam 

theory 

( )( )( )22

0 1 1  +
=

n

n

Q G A ks ea
U

T
                         (3.144) 

( )( ) ( )( )22 2 2

0 3 1 0 01 + − +
=

n s

n

Q ea A A A k A G
W

T
                       (3.145) 

( )( )( )22

0 0 1  +
=

n

n

Q G A ks ea
G

T
                         (3.146) 

Where 

 

( )( )( )( )

( ) ( )

22 2 2 2 2

0 0 3 2 0 0

2 2 2 4

0 3 1 0

1

1

   

 

= + −  + − +

+ − +

p w s

m s

T ea k C T k A A A k A G

A G A G l k

 

 

3.4.1.3 Higher order Beam Theories (HOBTs) 

Substituting Eqs.(3.135)-(3.137) and (3.138) into Eqs.(3.55)-(3.57) lead to the following  

system of algebraic equations       

 

( )

( )

( )( )

( ) ( )

( )( )

2 3 2

0 2 1 2

4

3 4 23 3 2

1 42 2

0

2 2 2 2

2 4 5 0 5 0

0

1

0

  


  

 

    

 − −
      −       − == +   

  + − +  + +           
 − − − +
 

n

n n

p w
n

CA C A A CA

U
C A A

C A CA W ea Q
P C T k k Z

G

CA C A A G C A G

                                  (3.147) 
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where ( )2 21 mC l= +          
 

( )2 21Z ea= +  

Eq.(3.147) can be solved to obtain the Fourier coefficients for Higher order micro-beam 

theory 

 

( )2 2

1 0 1 5 2 4  + −
=

n

n

Q Z A G A A A A
U

R
                                    (3.148) 

( )( )2 2

0 5 2 0 0 − +
=

n

n

Q Z A A A A G
W

R
                                               (3.149) 

( )2 2 2 2 2

0 0 2 0 4 1 2 0 5    − − + +
=

n

n

Q Z A G A A A B A A A
G

R
                                 (3.150) 

 

Where  

( )

( )( )( )( )

2 2 2 2 2 2

5 1 0 1 1 2 4 3 22 2 4

2 2 2

0 4 0 3 5 0 0 3

22 2 2 2 2

0 0 0 5 2 0

2
1

1

  
 

 

   

 + − +
= +   + − + 

− + + − + − 

m

w p

A A G A A A A A A
R l

A A A A A A G A

ea A G A A A k k C T

 

 

3.4.2  Buckling Problem 

For the buckling analysis, the external forces
 ( ),f q is equal to zero and all time derivatives 

are set to zero. The critical buckling load of the FG sandwich micro-beam is calculated for the 

different beam theories with S-S boundary conditions according to the Navier solution 

approach.  

 

3.4.2.1 Euler Bernoulli Beam Theory (EBBT) 

By sub. Eq.(3.135) and Eq.(3.136) into the equations of Eqs.(3.121)-(3.122), it can be 

obtained the following equation as follow 

 

 

                        (3.151) 

 

where ( )2 21 mC l= +          
 

( )2 21Z ea= +  

 

( )

2 3

0 1

3 4 2

1 3 0

0

0

 

  

 −    
=     

− − − +  +     

n

np w

C A C A U
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the critical buckling load can be obtained by setting the determinant of the matrix in Eq.(151) 

is to be zero. The smallest value eigenvalue is the critical buckling load. On the other hand the 

formulation is used to find the critical buckling load for the Euler Bernoulli micro-beam as 

follow 

( )
( ) ( ) ( )( ) ( )( )

( )( )

22 2 4 2 2 2

0 3 1 0 0

22 2

0

1 1

1

   

 

+ − + + + − 
= =

+

m w p

cr

l A A A ea A k k C T
P P n

A ea
 

                             (3.152) 

3.4.2.2 Timoshenko Beam Theory (TBT) 

The eigenvalue equation of the buckling analysis for sandwich FG microbeam with TBT can 

be obtained in the following equation  

 

( )

2 2

0 1

2 2

0 0 0

2 2

1 0 3 0

0 0

0 0

0

 

  

  

 −    
     
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                             (3.153) 

where ( )2 21 mC l= +          
 

( )2 21Z ea= +  

Also, the formulation is used to calculate the critical buckling load force is obtained as follow 

 

( )
( ) ( ) ( )( ) ( )( )

( )( ) ( )

22 2 4 2 2 2

0 0 3 1 0

22 2 2 2

0 3 1 0 0

1 1

1

   

  

+ − + + −  +
= =

 + − +
 

m s w p

cr

s

l k G A A A k k C T ea T
P P n

ea A A A k G A

                             (3.154) 

Where  ( )2 2

0 3 1 0 0 = − +
 sT A A A k G A  

 

3.4.2.3 Higher order Beam Theories (HOBTs) 

Substituting Eqs.(3.135)-(3.137) into Eqs.(3.55)-(3.57),  the following equations can be 

obtained 
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( )

( )

( ) ( )

2 3 2

0 2 1 2

4

3 43 3

1 42 2

2 2 2 2

2 4 5 0 5 0

0

0

0
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 

    

 − −
 

     −      − =   
  + − + +          
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n

n
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CA C A A CA

U
C A A

C A CA W
P k k Z

G

CA C A A G C A G

                       (3.155) 

( )
( ) ( )

( )

4 6 2

0 1 2 3

2 2 2

0 5 2 0 0
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 

 − + +
 

= =
 − +
 

w p

cr

C G S S k k Z S
P P n

Z A A A A G
                      (3.156) 

where 

where ( )2 21Z ea= +  and  ( )2 21 = + mC l        2

1 1 0 3= −S A A A                     

( ) ( )2 2

2 4 0 5 0 1 2 4 5 1 3 22= − − − +S A A A A A A A A A A A           ( )2 2

3 0 0 0 5 2= − − −S A G A A A  

3.4.3 Free vibration Analysis 

For the free vibration analysis, the all external forces
 ( ), ,f q P is equal to zero. When 

substituting Eqs. (3.135)-(3.137) into Eqs.(3.55)-(3.57) for HOBTs, the eigenvalue equation 

can be obtained as follow 

 

( )
11 12 13 11 12 13

2 2 2

21 22 23 21 22 23

31 32 33 31 32 33

0

1 0

0

n

n n

n

K K K M M M U

K K K ea M M M W

K K K M M M G

 

        
       

− + =       
               

                    (3.157) 

 

11 0= −M I , 
  

( )12 1 2 = −M I I   ,  13 31 2= =M M I ,  21 1=M I   

( )32 5 4 = −M I I  , 23 4=M I , 33 5= −M I , ( ) 2

22 0 4 3 = − + −M I I I  

 

The determinate of the coefficient matrix in Eq.(3.157) is equal to zero, then the characteristic 

values n can be obtained. The smallest eigenvalues ( )1  is the fundamental frequency. The 

eigenvalue free vibration equation for EBBT is given explicitly in Appendix B1 and TBT is 

given explicitly in Appendix B2. 

 

3.4  Generalized differential quadrature method (GDQM) 
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The GDQM is an extension of the well-known differential quadrature method (DQM) which 

is commonly utilized for the numerical solution of differential equations, under various initial 

and boundary conditions (BCs). In the regular differential quadrature method (DQM) only the 

primary variables are discretized and the differential equations are represented as algebraic 

equations of the primary unknowns of the problem. The domain is discretized by dividing it 

into a grid and unknowns are defined as the values of primary variables at these pre-selected 

grid points. The approximation is based on Lagrange interpolation functions defined for the 

grid points. Corresponding algebraic equations are written for grid points inside the domain 

whereas grid points on the boundary are reserved for the implementation of the boundary 

conditions. Most of the time differential equations with higher order derivatives involve 

boundary conditions with the derivatives of primary variables (Neumann BCs), both primary 

variables and their derivatives (mixed Dirichlet-Neumann) or linear combinations of primary 

variables and their derivatives (Robin BCs).  Thus speaking for a beam problem with two grid 

end points often requires additional interior points or some other extra points for the 

implementation of these kinds of BCs. Generalized differential quadrature method deals with 

these situations without involving other extra points. In this method approximation is not 

based on the primary variables only but also on their derivatives defined independently at the 

boundary points as well. This results in extra degrees of freedom (dof) for a boundary point 

which makes it sufficient to implement additional conditions involving the derivatives of the 

primary variables. A more robust system of equations are obtained albeit with a slightly larger 

linear system of unknown equations and sophisticated approximation functions of Hermite 

type. In the current study we opted to use the GDQM to determine the buckling and free 

vibration of sandwich functionally graded micro-beam. Here we briefly explain the utilization 

of the method for our problem. The primary variables of the system includes ( ),u x t , ( ),w x t

and ( ), . x t  For the steady-state nature of the eigenvalue problems we assume that

( ), ( ) i tu x t u x e = , ( ), ( ) i tw x t w x e = , ( ), ( ) i tx t x e  =  with the natural frequency of  . The 

beam’s length L  is divided into 1−N  regions with N  grid points. The variables selected for 

the an interior point i for 1 i N  can be represented with subscript i as ( )i iu u x=

( )i iw w x= and ( )i ix = . Here ix  is the thi  grid point’s coordinate with 0 x L  . The 

variables at the boundary points for 1=i and =i N are selected as
(1)

i ix x
u u x

=
=  

(1)

i ix x
x 

=
=   (1)

i ix x
w w x

=
=   (2) 2 2

i
ix x

w w x
=

=   . This selection makes the first derivatives 

of the axial displacement, rotation and first and second derivatives of the vertical 
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displacement independent variables of the numerical approximation. Thus at interior points 

we have defined three dof , and at the boundary points we have defined seven dof . Note 

that this is exactly the number of BCs we have at any boundary point. Also selections of the 

order of the derivatives for making independent variables are due to the nature of the 

boundary terms appeared at the end of the variational procedure. Following the procedure 

given in [50] closely, first we define the vector of unknowns
ud ,

wd , d 
 as 

 

 

 

 

(1) (1)

1 1 2

(1) (2) (1) (2)

1 1 1 2

(1) (1)

1 1 2

, , ,..., ,

, , , ,..., , ,

, , ,..., ,

, ,

u

N N

w

N N N

N N

u w

d u u u u u

d w w w w w w w

d

d d d d





    

=

=

=

=

                        (3.158) 

Now we can define the thr  derivative of a primary variable at thi  grid point as a linear 

combination of independent values at other points: 

( )

( )

( )

( )

1

( )

1

( )

1

1,2,.., 2

1, 2,.., 4

1, 2,.., 2

i

i

i

r N
rr u

i ij jr
jx x

r N
rr w

i ij jr
jx x

r N
rr

i ij jr
jx x

u
u G d j N

x

w
w H d j N

x

G d j N
x




==

==

==


= = = +




= = = +




= = = +









                        (3.159) 

Here 
( )r

G  and 
( )r

H are matrices with dimensions ( )2+N x N  and ( )4+N x N respectively. 

They involve weight coefficients which are based on the modified Hermite interpolation 

functions. 
( )0

G matrix’s 1st , 2nd , 
thN , ( )1+

th
N  and other columns can be respectively 

obtained from functions 10 ( )g x , ( )11g x , ( )0Ng x , ( )1Ng x , ( )0ig x  for 2,....., 1= −i N  and 

for 1,2,....,=j N which satisfy the following set of conditions which are briefly dictating that 

a variable’s “direct” influence to other points should be zero whereas should be unity for its 

own point: 
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10 10

0 0

11 11

1 1

0 0

(1) (1)

10 1 1

(1) (1)

0 1

(1) (1)

11 1

(1) (1)

1 1

(1) (1)

0 1

( ) ( ) 0 ( ) 0

( ) ( ) 0 ( ) 0

( ) 0 ( ) 1 ( ) 0

( ) 0 ( ) 0 ( ) 1

( ) ( ) 0 ( ) 0

N N

N N

i i

j j N

N j Nj N

j N

N j N

i j ij N

g x g x g x

g x g x g x

g x g x g x

g x g x g x

g x g x g x







= = =

= = =

= = = 

= = =

= = =

 

2

10 10 10 10 1

2

11 11 11 11 1

2

0 0 0 0

2

1 1 1 1

2

0 0 0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N N N N N

N N N N N

i i i i i

g x a x b x c l x

g x a x b x c l x

g x a x b x c l x

g x a x b x c l x

g x a x b x c l x

= + +

= + +

= + +

= + +

= + +

    

                             (3.160) 

Here ( )i il x  is the Lagrange interpolation functions and  ij is Kronecker’s delta with 

( ) =i i ijl x . These five set of conditions can be satisfied with the forms given next to them 

respectively for each set. The parameters inside functions are then found as: 

(1)
21 1

10 10 10 1 10 10 1 10 12

1 1 1

1 1
11 11 11

1 1 1

( )1 1
, ( ), 1

( ) ( ) ( )

( )1
, ,

( ) ( ) ( )

N

N N N

N N

N N N

l x
a b a x x c a x b x

x x x x x x

x x x x
a b c

x x x x x x

= − − = − + = − −
− − −

+
= = =

− − −

 

(1)
2

0 0 0 1 0 0 02

1 1 1

1 1
1 1 1

1 1 1

( )1 1
, ( ), 1

( ) ( ) ( )

( )1
, ,

( ) ( ) ( )

N N
N N N N N N N N N

N N N

N N
N N N

N N N

l x
a b a x x c a x b x

x x x x x x

x x x x
a b c

x x x x x x

= − − = − + = − −
− − −

+
= = =

− − −

 

1 1
0 0 0

1 1 1

1
, ,

( )( ) ( )( ) ( )( )

N N
i i i

i N i i N i i N i

x x x x
a b c

x x x x x x x x x x x x

+
= = − =

− − − − − −
 

A similar development can be given for 
( )r

H matrix. 
( )0

H matrix’s 1st , 2nd ,3rd
, 

thN , 1+ thN ,

2+ thN columns and the rest of the columns can be respectively obtained from functions 

10 ( )h x , ( )11h x , ( )12h x , ( )0Nh x , ( )1Nh x , ( )2Nh x , ( )0ih x  for 2,....., 1= −i N  and for 

1,2,....,=j N which satisfy the following set of conditions with the similar reasoning:  
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10 10 10 10

0 0 0 0

11 11 11 11

12 12

(1) (2) (1) (2)

10 1 1 1

(1) (2) (1) (2)

0 1 1

(1) (2) (1) (2)

11 1 1

(1) (

12 1

( ) ( ) 0 ( ) 0 ( ) 0 ( ) 0

( ) ( ) 0 ( ) 0 ( ) 0 ( ) 0

( ) 0 ( ) 1 ( ) 0 ( ) 0 ( ) 0

( ) 0 ( ) 0

N N N N

j j N N

N j Nj N N

j N N

j

h x h x h x h x h x

h x h x h x h x h x

h x h x h x h x h x

h x h x h





= = = = =

= = = = =

= = = = =

= =
12 12

1 1 1 11

2 2 2 2

0 0 0 0

2) (1) (2)

1

(1) (2) (1) (2)

1 1 1

(1) (2) (1) (2)

2 1 1

(1) (2) (1) (2)

0 1 1

( ) 1 ( ) 0 ( ) 0

( ) 0 ( ) 0 ( ) 0 ( ) 1 ( ) 0

( ) 0 ( ) 0 ( ) 0 ( ) 0 ( ) 1

( ) ( ) 0 ( ) 0 ( ) 0 (

N N N

N N N N

i i i i

N N

N j N N

N j N N

i j ij N

x h x h x

h x h x h x h x h x

h x h x h x h x h x

h x h x h x h x h

= = =

= = = = =

= = = = =

= = = = ) 0Nx



=

               (3.161) 

2
2

1 1 1 1 12

1

2
21

12

1

22

1
0 2 2

1

( ) ˆˆ ˆ( ) ( ) ( ) 0,1,2
( )

( ) ˆˆ ˆ( ) ( ) ( ) 0,1,2
( )

( )( )
( ) ( )

( ) ( )

N
S S S S

N

NS NS NS NS

N

N
i i

i i N

x x
h x a x b x c l x for s

x x

x x
h x a x b x c l x for s

x x

x xx x
h x l x

x x x x

−
= + + =

−

−
= + + =

−

−−
=

− −

 

These conditions give the following parameters of the approximation functions 

2
(1) (2)

(1) 1 1 1 1
10 1 1 2

1 1 1

(1)

10 1 1 10 1

1

2

10 10 1 10 1

(1)

11 1 1 11 11 1 11 1 11 1

1

12

2 ( ) ( )2 1
ˆ ( ) ,

( ) ( ) ( ) 2

2ˆ ˆ( ) 2 ,
( )

ˆˆ ˆ1 ,

2 ˆˆ ˆ ˆ ˆ( ) , 1 2 , ( 1)
( )

1
ˆ

N N N

N

N

l x l x
a l x

x x x x x x

b l x a x
x x

c a x b x

a l x b a x c x a x
x x

a

 
= + − − − 

− − − 

 
= − + − 

− 

= − −

 
= − + = − = − 

− 

=
2

1
12 1 12
ˆ ˆ, ,

2 2

x
b x c= − =

 

2
(1) (2)

(1)

0 2

1 1 1

(1)

0 0

1

2

0 0 0

(1)

1 1 1 1 1

1

2

2 ( ) ( )2 1
ˆ ( ) ,

( ) ( ) ( ) 2

2ˆ ˆ( ) 2 ,
( )

ˆˆ ˆ1 ,

2 ˆˆ ˆ ˆ ˆ( ) , 1 2 , ( 1)
( )

1
ˆ

N N N N
N N N

N N N

N N N N N

N

N N N N N

N N N N N N N N N N

N

N

l x l x
a l x

x x x x x x

b l x a x
x x

c a x b x

a l x b a x c x a x
x x

a

 
= − − + − 

− − − 

 
= − − − 

− 

= − −

 
= − − = − = − 

− 

=
2

2 2
ˆ ˆ, ,

2 2

N
N N N

x
b x c= − =
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Matrices 
( )r

G  and 
( )r

H include calculations based on derivatives of these functions and these 

in turn are depending on the derivatives of the Lagrange interpolation functions ( )il x . For 

the sake of completeness we also give the recurrence relations for the values of derivatives of 

Lagrange interpolation functions on grid points below. 

( )
( ) ( )

(1) ( ) , 1,2,...,
.i

j

j

j i i

M x
l x for i j N and i j

x x M x
= = 

−
 

( 1)

( ) ( 1) (1)
( )

( ) ( ) ( ) , 1,2,..., ; 2
( )

i

i j i

r

jr r

j j j

j i

l x
l x r l x l x for i j N i j and r

x x

−

−
 

= − =   
 − 

 

( ) ( )

1;
( ) ( ) , 1,2,..., 1

i j

Nr r

i ij i j
l x l x for i j N and r

= 
= − =   

where  

( ) ( )
1,

N

i i m

m m i

M x x x
= 

= −  

Now the components of 
( )r

G  and 
( )r

H can be obtained by calculating the values of thr

derivative of the associated approximation functions’ at grid points.  Finally it is essential to 

know that the number and distribution of the sampling points are the key factors defining the 

accuracy of the numerical results. In the present study, these interpolation points are being 

considered as Chebyshev-Gauss-Lobatto points:  

( )1
1 cos

2 1
i

iL
x

N

 − 
= −   −  

    for 1,.....,i N=                        (3.162) 

Appling the relationships in (60) and assuming the steady-state response for Eqs. (3.70), 

(3.71) and (3.72) one obtains the following eigenvalue system: 

       2K M P S d− +                           (3.163) 

Here   = m mL E  is the dimensionless natural frequency. Eq. (3.163) can be explicitly 

written for the K, M and S matrices which carry terms related with the stiffness, mass and 

stability respectively. One obtains a set of ordinary differential equations for higher order 

beam theories (HOBTs) 
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2 0

b u b w b b u b w b b u b w b

u

uu uw u uu uw u uu uw u

w

wu ww w wu ww w wu ww w

u w u w u w

K K K M M M S S S
d

K K K M M M S S S
P d

K K K M M M S S S
d

K K K M M M S S S

  

  

  


        



      
       
       − + =  

     
  
        
      

        (3.164) 

Components of the above matrices are then become 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2 4 3 5 2 42 2 2

0 2 1 2

3 5 3 52 2 2

1 4

4 6 2 4 0 22 2 2 2

4 3 0

2 42 2

2

, , ,

, ,

,

,

ij ij ij

ij ij

ij

ij ij

uu uw u

ij ij ij ij ij ij

wu w

ij ij ij ij

ww

ij ij P ij ij W ij ij

u w

ij ij

K A G G K A A H H K A G G

K A G G K A G G

K A A H H C T K H H K H H

K A G G K A





 

    

   

   

  

= − = − − = − −

= − = − −

= − − −  − − − −

= − − = − ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

3 5 1 32 2

5 4 0

2 4 0 22 2 2

5 0

,

ij

ij ij ij ij

ij ij ij ij

A H H G H H

K A G G G G G

 

  

− − + −

= − − −

 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

0 2 1 3 0 22 2 2

0 1 2 2

1 3 1 32 2 2

1 4

2 4 0 22 2 2

4 3 0

0 2 1 32 2 2

2 5 4

, , ,

, ,

,

, ,

ij ij ij

ij ij

ij

ij ij

ij

uu uw u

ij ij ij ij ij ij

wu w

ij ij ij ij

ww

ij ij ij ij

u w

ij ij ij ij

M I G G M I I H H M I G G

M I G G M I G G

M I I H H I H H

M I G G M I I H H

M





 



    

   

  

   

= − − = − − = −

= − − = −

= − − − − −

= − = − −

( ) ( )( )0 22 2

5 ij ijI G G  = − −

 

( ) ( )( )2 42

0,ij ij ij ij ij ij ij ij

ij

uu uw u wu w u w

ww

ij ij

S S S S S S S S

S H H

    



= = = = = = = =

= − −
 

Here ( )2,....., 1= −i N and ( )1,2,...., 2= +j N for 
ud and d 

. ( )1,2,...., 4= +j N for 
wd . 

The sub-system written for interior points has a dimension of (3N-6)x(3N+8). Remaining 14  

equations due to BCs are gathered in the terms with a left upper script " "b denoting boundary. 

For a simply supported ( )S end the nature of the BCs can be deduced from a Navier type 

solution suggestion: 

2 2

2 2 (1)

( ) cos( ) 0, 0

( ) sin( ) 0, 0, 0

( ) cos( ) 0, 0h h

u x x L N u x

w x x L w M w x

x x L w x x Q M





  

 =   =

 = =   =

   −  = + =

                      (3.165) 
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For a clamped (C) end we will assume that all geometrical type constraints are activated thus  

2 20, 0, 0, 0, 0, 0, 0u u x w w x w x x =   = =   =   = =   =              

(3.166) 

Discretization of the corresponding boundary conditions can be handled in the same way. For 

example a beam with C-S type supports, for the clamped end ( )1=i we have from Eq. (3.166) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6 7

0 1 0 1 2 0 1

1 1 1 1 1 1 1, , , , , ,j j j j j j j

b u b u b w b w b w b b

j j j j j j jK G K G K H K G K G K G K G = = = = = = =  

and for the simply supported end (i=N) we have from Eq. (165) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )

8 8 8 9 10

11 11 11

12 13 14

14

3 4 3 1 0

0 2 1 2

3 4 32 2 2 2 2

1 4 3 4

2 1 52 2 2 2 (3)

2

2 2

5 4

, , , , ,

, , ,

, , ( ) / ,

j j j j j

j j j

j j j

j

b u b w b b u b w

Nj Nj Nj Nj Nj

b u b w

Nj Nj Nj

b w b u

Nj Nj Nj Nj

b w

Nj

K A G K A A H K A G K G K H

K A G K A A H K A G

K H K G K A G G

K A A H







 

     

    

 

= = − = − = =

= = − = −

= = = − +

= −
( )( ) ( )

( )( ) ( )
14

6 42 2 2 (4) 2

0

5 32 2 2 2 2 (3) 2

5 0

( ) / ,

( ) /j

Nj Nj

Nj Nj Nj

H G H

K A G G G G

   

     

− + −

= − − + +

 

All the remaining components of boundary related sub K matrices are zero. Also  

0, 0b u b b u b b w b wM M S S M S = = = = = =  

On the other hand, for FSDBT, the Eqs. (3.88)-(3.90) can be given with the following set

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 4 2 42 2 2

0 0

1 1 1 1

2 4 2 42 2 2

1 1

1 1 1 1

0

  

    

= = = =

= = = =

    
− + −     

    

    
− − + − =     

    

   

   

N N N N

ij ij ij ij j

j j j j

N N N N

ij ij ij ij j

j j j j

A C C I C C u

A C C I C C

                     (3.167) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 4 0 22 2 2

0 0

1 1 1 1

2 4 02

0

1 1 1

1 32

0

1 1

( )
2

0

   


 

  

= = = =

= = =

= =

    
− + − −    

    
− 

    +  − − −      

 
+ − = 

 

   

  

 

N N N N

ij ij ij ij

j j j j

j
N N N

d

s cr P ij ij W ij

j j j

N N

ij ij j

j j

A C C I C C

w

P C T K C C K C

A C C

                    (3.168) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 4 2 4 1 32 2 2 2

1 1 0

1 1 1 1 1 1

2 4 1 32 2 2

2 0

1 1 1 1

2 42 2 2

2

1 1

     

   

  

= = = = = =

= = = =

= =

      
− − + − + −       

      

   
− − − +   

   
+


−



     

   

 

N N N N N N

ij ij ij ij j ij ij j

j j j j j j

N N N N

ij ij ij ij

j j j j

N N

ij ij

j j

A C C I C C u A C C w

A C C A C C

I C C

0

 
 
 

= 
 
 
 

j

 

                             (3.169) 

For N nodes there will be 3xN unknowns. There are always 6 boundary conditions at each 

end of the beam and 3 degrees of freedoms per node. Thus the first two and the last two nodes 

will be used to write the boundary conditions and remaining nodes will be used to write the 

governing equations (3.167, 3.168, 3.169). Thus i=3,4,…,N-2 and at the end there will be 3xN 

equations. For example for a simply supported end at i=1 or N boundary conditions can be 

discretized as below: 

( ) ( ) ( ) ( )1 3 1 32 2

0 1

1 1 1 1

0 0  
= = = =

    
=  − − − =     

    
   
N N N N

c

ij ij j ij im j

j j j m

N A C C u A C C
 

0 0=  =i iw w   

( ) ( ) ( ) ( )1 3 1 32 2 2

1 2

1 1 1 1

0 0    
= = = =

    
=  − − − =     

    
   
N N N N

c

ij ij j ij im j

j j j m

M A C C u A C C

 

( )1

1

0 0
=


=  =



N

ij j

j

u
C u

x
 

( )1

1

0 0



=


=  =



N

ij j

j

C
x

  

( ) ( ) ( ) ( )
2 2 2 2

2 4 1 32 2

0 22 2 2 2
1 1 1 1

0 0
   

   
   = = = =

    
=  − − − =     − −    

   
N N N N

nc

ij ij j ij im j

j j j m

Q A C C w A C C

 

Other type of boundary conditions like C-C and C-S can be generated in the same manner 

easily. 

and for Euler Bernoulli Beam Theory (EBBT) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 4 0 22 2 2

0 0

1 1 1 1

3 5 1 32 2 2

1 1

1 1 1 1

0

  

    

= = = =

= = = =

    
− + −     

    

    
− − − − =     

    

   

   

N N N N

ij ij ij ij j

j j j j

N N N N

ij ij ij ij j

j j j j

A C C I C C u

A C C I C C w   

                   (3.170) 
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( ) ( ) ( )
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 

N

j
N N

ij ij

j j

u

I C C

                    (3.171) 

The equations from (3.167) to (3.169) for FSDBT and (3.170) to (3.171) for EBBT can be 

rewritten also in matrix form the equation (3.163). 

       2K M P S d− +                           (3.163) 

where M is the mass matrix, K is the stiffness matrix and S is the geometric stiffness 

matrix.

 

M , K and S are 3 3N N matrices for FSDBT and 2 2N N matrices for EBBT. 

The general eigenvalue problem of (3.163) can be modified to give results for free vibration 

frequency with setting 0P =  Eq. (3.172) or for static buckling load with setting 0 = Eq. 

(3.173): 

2 0K M d − =                             (3.172) 

0K PS d + =                             (3.173) 

Extracting eigenvalues can be carried out with any suitable method.  

3.6  Dynamic Stability 

In order to find the instability conditions we assume a classical case where axial excitation 

force, ( )P t can be taken as harmonic in the following form 
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( ) ( )coss d crP t t P = +                              (3.174) 

where s is the static and d is the dynamic load ratios of P(t)with respect to the fundamental 

static buckling load crP ,  is the excitation frequency. Using dimensionless form with 

cr
cr

m

P
P

E bh
= ,          m

m

L
E


 =  

And denoting the vector of primary unknowns as ( )d  

, ,
T

d u w  =    

If static and dynamic parts of the axial excitation load are applied in the same manner ,the 

governing equations can be given in vector form 

    ( )  
..

0K ( cos ) S M 0s d crt P C T d d − +  +  + =                       (3.175) 

Where M  is the mass matrix,  S  is stability matrix and  K  stiffness matrix and they can 

be expressed explicitly as below  

 

(a) higher order beam theories (HOBTs) 

 
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( )
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 
     

= − − − − −         
 − −

  

I I I I
x

I I I I I
x x x x

I I I I
x

,                   

 
2 2

2

2 2

0 0 0

S 1 0 0

0 0 0

x x


 
 

   = − 
   
 
 
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 
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(b)  First shear deformation theory (FSDBT)  

 
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x x
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 
 
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(c)  Euler- Bernoulli beam theory (EBBT)  

 
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It is seen that Eq.(3.175) illustrates a system of second-order coupled differential equations 

which has periodic coefficients of the Mathieu-Hill type. Theory of linear equations with 

periodic coefficients dictates that the stable and unstable regions are separated by the periodic 

solutions of period T and 2T such that the relation with excitation frequency is T=2π/Ω. [69] 
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Of T and 2T periodic solutions, regions determined with 2T periodic solutions have more 

practical importance since they produce primary resonance behavior which is usually more 

dominant when compared to the periodic solutions with T as the beam vibrates laterally.   

Now if we assume a steady state response with dimensionless natural frequency of / 2 =   

( , ) ( ) i td x t d x e =  

a first approximation for the instability problem can be formulated as a general eigenvalue 

problem of the following form 

     
2

0K ( ) S M 0
2 4

d
s crP C T d




  
−  +  − =  
  

                       (3.176) 

This general eigenvalue formulation includes static buckling (with buckling load crP ) when 

one sets 1s = , 0d = , 0 = , free vibration (with natural frequency  ) when one sets 0s =

, 0d = , 2 = and dynamic stability in original form. In the solution for the dynamic 

stability, two conditions with plus-minus sign correspond to the two different sets of 

frequency values which defines the boundaries of the unstable regions. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Verification of the present results 

Before the extensive parametric analysis, result of the present formulation are validated by 

comparing with existing literature. 

4.1.1  Static and Buckling analysis 

The transverse deflection and the critical buckling loads analysis of the nanobeam Modal I 

responses are obtained and compared with the reference [16]. In [16] the following material 

properties of functionally graded nano-beam were used 

1 11 TPa, 0.3,= =E  

2 20.25 TPa, 0.3,= =E
 

5 6.=sk  

The results of Ref.[16] were obtained by using Timoshenko beam theories according to the 

nonlocal elasticity theory with different of aspect ratio, power law index and nonlocal 

parameter ( ).ea The nonlocal elasticity Eringen theory can be obtained from the nonlocal 

gradient strain theory when the material length scale parameter ( )ml  equal to zero. 

 The following dimensionless for transverse deflection and critical buckling loads are used in 

this section, can be defined as 

4100 mw E I qL w=  

2= mP PL E I  

The results of the dimensionless transverse deflection and the dimensionless critical buckling 

forces based on Timoshenko beam theory are given in table (4.1) and table (4.2) respectively. 
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Fairly well agreement between the present results and the results in Ref.[16] are observed. 

This clearly shows the reliability of the present solution method for the analysis of sandwich 

FG microbeam. 

Table 4.1 Non-Dimensional transverse deflection, ( )4100= mw E I qL w of the functionally 

graded nano-beam Model I with the distributed load 

  ea (nm) 

L h  k  
0 0.5 1 1.5 2 

ref. 16 present ref. 16 present ref. 16 present ref. 16 present ref. 16 present 

10 

0 5.3383 5.3383 5..4659 5.4659 5.8487 5.8487 6.4867 6.4866 7.3798 7.3798 

0.3 3.2169 3.2155 3.2938 2.2923 3.5245 3.5229 3.9090 3.9072 4.4472 4.4452 

1 2.4194 2.4194 2.4772 2.4772 2.6508 2.6508 2.9401 2.9401 3.3451 3.3451 

3 1.9249 1.9249 1.9710 1.9710 2.1091 2.1091 2.3393 2.3393 2.6615 2.6615 

10 1.5799 1.5799 1.6176 1.6176 1.7310 1.7310 1.9199 1.9199 2.1843 2.1843 

30 

0 5.2227 5.2227 5.2366 5.2367 5.2784 5.2784 5.3480 5.3480 5.4455 5.4455 

0.3 3.1486 3.1472 3.1570 3.1556 3.1822 3.1807 3.2241 3.2227 3.2829 3.2814 

1 2.3732 2.3732 2.3795 2.3795 2.3985 2.3985 2.4301 2.4101 2.4744 2.4744 

3 1.8894 1.8894 1.8944 1.8944 1.9095 1.9095 1.9347 1.9347 1.9700 1.9700 

10 1.5489 1.5489 1.5530 1.5530 1.5654 1.5654 1.5860 1.5860 1.6149 1.6149 

100 

0 5.2096 5.2096 5.2108 5.2105 5.2146 5.2146 5.2208 5.2208 5.2296 5.2296 

0.3 3.1408 3.1394 3.1416 3.1402 3.1438 3.1424 3.1476 3.1462 3.1529 3.1515 

1 2.3679 2.3679 2.3685 2.3685 2.3702 2.3702 2.3730 2.3730 2.3770 2.3770 

3 1.8853 1.8853 1.8858 1.8858 1.8871 1.8871 1.8894 1.8894 1.8926 1.8926 

10 1.5453 1.5453 1.5457 1.5457 1.5468 1.5468 1.5487 1.5487 1.5513 1.5513 
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Table 4.2 Dimensionless buckling load ( )2= mP PL E I of the functionally graded nano-

beam Model I 

  ea (nm) 

L h  k  
0 0.5 1 1.5 2 

ref. 16 present ref. 16 present ref. 16 present ref. 16 present ref. 16 present 

10 

0 2.4056 2.4056 2.3477 2.3477 2.1895 2.1895 1.9685 1.9686 1.7247 1.7247 

0.3 3.9928 3.9921 3.8977 3.8959 3.6351 3.6335 3.2667 3.2667 2.8621 2.8621 

1 5.3084 5.3084 5.1805 5.1805 4.8315 4.8315 4.3438 4.3437 3.8059 3.8059 

3 6.6720 6.6720 6.5114 6.5113 6.0727 6.0727 5.4596 5.4596 4.7835 4.7835 

10 8.1289 8.1289 7.9332 7.9332 7.3987 7.3987 6.5518 6.6518 5.8281 5.8281 

30 

0 2.4603 2.4603 2.4536 2.4536 2.4336 2.4337 2.4011 2.4011 2.3569 2.3569 

0.3 4.0811 4.0829 4.0699 4.0718 4.0368 4.0386 3.9828 3.9846 3.9096 3.9114 

1 5.4146 5.4147 5.3998 5.3998 5.3559 5.3559 5.2843 5.2843 5.1871 5.1871 

3 6.8011 6.8011 6.7825 6.7825 6.7273 6.7273 6.6373 6.6373 6.5153 6.5153 

10 8.2962 8.2962 8.2735 8.2735 8.2062 8.2062 8.0964 8.0964 7.9476 7.9476 

100 

0 2.4667 2.4667 2.4661 2.4661 2.4643 2.4643 2.4613 2.4613 2.4570 2.4570 

0.3 4.0915 4.0933 4.0905 4.0923 4.0874 4.0893 4.0824 4.0842 4.0754 4.0772 

1 5.4270 5.4270 5.4257 5.4257 5.4217 5.4217 5.4150 5.4150 5.4057 5.4057 

3 6.8161 6.8161 6.8144 6.8144 6.8094 6.8094 6.8010 6.8010 6.7893 6.7893 

10 8.3157 8.3157 8.3136 8.3136 8.3075 8.3075 8.2972 8.2972 8.2830 8.2830 
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4.1.2 Elastic foundation and cross-section shape 

The influence of the elastic foundation on the dimensionless buckling loads is presented in 

table (4.3) with different cross-section types, the aspect ratio ( )L h with classical theory 

( )0 , = =  without thermal effect ( )0 =T and power law index ( )0.5=k with using the 

different homogenization techniques. The following material properties are used : 

Aluminum (Al):
     

370 GPa, 2702kg m , 0.3m m mE  = = =  

Alumina(Al2O3):   
3380 GPa, 3960kg m , 0.3 = = =c c cE  

 

The following dimensionless are used 

2

= w

w

m

k L
K

E h
       , = P

P

m

k
K

E h
     

=
m

P
P

E bh
 

From this comparison a good agreement for the results in this thesis and the results in [6]. 

On the other hand, for the dimensionless fundamental frequency ( )  results with elastic 

foundation are obtained and can be compared with same properties of reference above [6], in 

table (4.4) dimensionless natural frequencies ( ) are shown for Timoshenko beam theory 

(TBT) and parabolic shear deformation beam theory (PSDBT) with generalized differential 

quadrature method (GDQM) and compared with Ref.(6) with Chebyshev collection method 

(CCM) for different boundary conditions.  

The dimensionless fundamental frequency can be given as follow 


 = m

m

L
E

 

 Again, fairly well agreement also between the thesis results and the results in Ref.[6] are 

observed.  
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Table 4.3 Dimensionless critical buckling load ( )= mP P E bh  of sandwich FG beam Model 

III with ,WK ,PK 10,=L h 0.5,=k 0 = , 0 =  and 0T =  

 

  
 

Mori-Tanaka homogenization 

scheme 
The simple rule of mixture 

B
.C

s
 

wK

 

p
K

 

Method 
1-1-1 2-1-2 1-5-1 1-1-1 2-1-2 1-5-1 

S
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 0 0 
Ref.(6) 0.0205 0.0186 0.0304 0.0280 0.0263 0.0351 

TBT(GDQM) 0.0205 0.0186 0.0303 0.0279 0.0263 0.0351 

PSDBT(GDQM) 0.0205 0.0186 0.0304 0.0280 0.0263 0.0351 

0.2 0 
Ref.(6) 0.0408 0.0389 0.0506 0.0482 0.0466 0.0554 

TBT(DQM) 0.0408 0.0388 0.0506 0.0482 0.0465 0.0553 

PSDBT(DQM) 0.0408 0.0389 0.0506 0.0482 0.0466 0.0554 

0.2 0.2 
Ref.(6) 0.2408 0.2389 0.2506 0.2482 0.2466 0.2554 

TBT(GDQM) 0.2408 0.2388 0.2506 0.2482 0.2465 0.2553 

PSDBT(GDQM) 0.2408 0.2389 0.2506 0.2482 0.2466 0.2554 

C
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 0 0 
Ref.(6) 0.0412 0.0373 0.0607 0.0559 0.0526 0.0699 

TBT(GDQM) 0.0412 0.0373 0.0606 0.0558 0.0525 0.0699 

PSDBT(GDQM) 0.0421 0.0382 0.0619 0.0571 0.0537 0.0713 

0.2 0 
Ref.(6) 0.0574 0.0535 0.0770 0.0722 0.0689 0.0863 

TBT(GDQM) 0.0574 0.0535 0.0770 0.0722 0.0688 0.0863 

PSDBT(GDQM) 0.0581 0.0541 0.0780 0.0731 0.0698 0.0874 

0.2 0.2 
Ref.(6) 0.2574 0.2535 0.2770 0.2722 0.2688 0.2863 

TBT(GDQM) 0.2574 0.2535 0.2770 0.2722 0.2688 0.2863 

PSDBT(GDQM) 0.2581 0.2541 0.2780 0.2731 0.2698 0.2874 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 0 0 
Ref.(6) 0.0783 0.0709 0.1147 0.1057 0.0995 0.1318 

TBT(GDQM) 0.0785 0.0711 0.1150 0.1060 0.0998 0.1322 

PSDBT(GDQM) 0.0819 0.0743 0.1193 0.1102 0.1038 0.1370 

0.2 0 
Ref.(6) 0.0933 0.0859 0.1297 0.1207 0.1145 0.1469 

TBT(GDQM) 0.0934 0.0860 0.1300 0.1209 0.1147 0.1472 

PSDBT(GDQM) 0.0964 0.0888 0.1339 0.1248 0.1184 0.1515 

0.2 0.2 
Ref.(6) 0.2933 0.2859 0.3297 0.3207 0.3145 0.3469 

TBT(GDQM) 0.2934 0.2860 0.3300 0.3209 0.3147 0.3472 

(GDQM)PSDBT 0.2988 0.2964 0.3339 0.3248 0.3184 0.3515 
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Table 4.4  Dimensionless natural frequency ( )  = m mL E  of sandwich FG beam III 

with ,WK ,PK 10,=L h 0.5,=k 0 = , 0 =  and 0T =  

 

  
 

Mori-Tanaka homogenization 

scheme 
The simple rule of mixture 

B
.C

s
 

wK

 

p
K

 

Method 
1-1-1 2-1-2 1-5-1 1-1-1 2-1-2 1-5-1 

S
-S

 B
o

u
n

d
a

r
y

 C
o

n
d

it
io

n
 0 0 

Ref.(6) 0.4486 0.4384 0.4920 0.3845 0.3687 0.4577 

TBT(GDQM) 0.4486 0.4384 0.4920 0.3844 0.3687 0.4577 

PSDBT(GDQM) 0.4490 0.4389 0.4923 0.3850 0.3692 0.4580 

0.2 0 
Ref.(6) 0.5891 0.5833 0.6178 0.5418 0.5329 0.5909 

TBT(DQM) 0.5890 0.5832 0.6178 0.5418 0.5328 0.5909 

PSDBT(DQM) 0.5894 0.5836 0.6180 0.5422 0.5332 0.5911 

0.2 0.2 
Ref.(6) 1.3363 1.3420 1.3267 1.3161 1.3209 1.3144 

TBT(GDQM) 1.3362 1.3420 1.3267 1.3161 1.3208 1.3144 

PSDBT(GDQM) 1.3364 1.3421 1.3268 1.3162 1.3210 1.3145 

C
-S

 B
o

u
n

d
a

r
y

 C
o

n
d

it
io

n
 0 0 

Ref.(6) 0.6887 0.6732 0.7539 0.5917 0.5676 0.7025 

TBT(GDQM) 0.6890 0.6736 0.7542 0.5922 0.5680 0.7030 

PSDBT(GDQM) 0.7028 0.6871 0.7683 0.6043 0.5798 0.7162 

0.2 0 
Ref.(6) 0.7874 0.7753 0.8414 0.7041 0.6856 0.7956 

TBT(GDQM) 0.7878 0.7756 0.8419 0.7045 0.6859 0.7961 

PSDBT(GDQM) 0.7997 0.7874 0.8543 0.7147 0.6957 0.8077 

0.2 0.2 
Ref.(6) 1.4844 1.4855 1.4937 1.4387 1.4368 1.4673 

TBT(GDQM) 1.4847 1.4858 1.4939 1.4397 1.4377 1.4683 

PSDBT(GDQM) 1.5016 1.5028 1.5109 1.4552 1.4532 1.4840 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 0 0 
Ref.(6) 0.9787 0.9570 1.0690 0.8434 0.8091 0.9980 

TBT(GDQM) 0.9790 0.9575 1.0694 0.8461 0.8118 1.0012 

PSDBT(GDQM) 1.0178 0.9957 1.1093 0.8785 0.8433 1.0362 

0.2 0 
Ref.(6) 1.0505 1.0314 1.1324 0.9257 0.8959 1.0656 

TBT(GDQM) 1.0509 1.0317 1.1328 0.9282 0.8982 1.0686 

PSDBT(GDQM) 1.0870 1.0674 1.1705 0.9578 0.9268 1.1015 

0.2 0.2 
Ref.(6) 1.6622 1.6572 1.6962 1.5837 1.5728 1.6519 

TBT(GDQM) 1.6627 1.6575 1.6966 1.5869 1.5759 1.6554 

SDBT(GDQM)P 1.7055 1.7003 1.7400 1.6128 1.6240 1.6938 
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4.1.3 Free vibration analysis 

The final verification with the present results with the free vibration, the fundamental 

frequency analysis responses obtained is compared with the reference [49]. The following 

material properties are utilized  

3 3

1 114.4 GPa, 12.2 10 kg mE = =   

3 3

2 11.44 GPa, 1.22 10 kg mE = =   

617.6 10 m, 2 , 20h b h L h−=  = =
 

1 1 13.6=sk G E , 2 2 13.6=sk G E  

 The functionally graded micro-beam is used with Model I, ( )0.1=ea h , ( )=ml h  without 

temperature change 0, =T  without elastic foundations 0= =p WK K  and various power-

law index ( )k  by using the rule of mixture method. In Fig.(4.1) and table (4.5) show that the 

first three fundamental frequencies with different values of the nonlocal parameter ( )ea and 

the material length scale parameter ( )ml . It can be seen from Fig.(4.1) and table (4.5) that the 

frequencies increase with decrease the nonlocal parameter ( )ea  at certain length scale 

parameter ( ).ml  This is due to the FG microbeam when ( )ea  is greater than ( )ml  exerts 

softening effect and on the other hand, when ( )ml  is greater than ( )ea  FG sandwich micro-

beam exerts stiffness hardening effect. Good agreement for compared the present results of 

the thesis and the relate results in Ref.[49]. 
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Table 4.5 First three natural frequency of FG micro-beam with various B.Cs under the effect 

of gradient index, k with 0.1ea h= and ml h=  

 
 S-S 

C-C S-C 
k  Present Ref. (49) 

0 

1ɷ 0.4431 0.4426 1.2199 0.7630 

2ɷ 1.8120 1.8089 3.3945 2.5145 

3ɷ 4.2125 4.2095 6.7668 5.1190 

2 

1ɷ 0.3785 0.3779 1.0469 0.6530 

2ɷ 1.5531 1.5524 2.9329 2.1627 

3ɷ 3.6292 3.6282 5.8941 4.6606 

4 

1ɷ 0.4006 0.4001 1.1064 0.6908 

2ɷ 1.6421 1.6416 3.0928 2.2840 

3ɷ 3.8307 3.8295 6.1988 4.9112 

6 

1ɷ 0.4285 0.4281 1.1811 0.7382 

2ɷ 1.7538 1.7532 3.2917 2.4357 

3ɷ 4.0822 4.0816 6.5743 5.2223 

 

8 

1ɷ 0.4494 0.4489 1.2368 0.7738 

2ɷ 1.8373 1.8368 3.4390 2.5486 

3ɷ 4.2690 4.2681 6.8498 5.4520 

10 

1ɷ 0.4640 0.4638 1.2754 0.7984 

2ɷ 1.8951 1.8945 3.5403 2.6266 

3ɷ 4.3979 4.3972 7.0381 5.6098 
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Figure 4.1 First three natural frequencies (MHz) as a function of different scale factor c 

Comparison with [49] (left) and present results (right). 
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4.2 Dynamic stability of Sandwich FG micro-beam 

In this section, numerical results of dynamic stability of FG sandwich micro-beam with 

various cross section shapes (1-1-1), (1-2-1), (1-8-1), (1-3-2), (3-2-1), (2-1-3)  and  (2-1-2) 

based on nonlocal strain gradient theory (NLSGT) in conjunction with higher-order beam 

theories (HOBTs) resting on Winkler and Pasternak elastic foundation and temperature 

change effect. There are three kinds of sandwich FG microbeam in this study (a.) 

Homogeneous (FGM) micro-beam (Model I), (b.) The core is made of FG material and the 

top skin with metal and the bottom skin with ceramic (Model II), (c.) The core is made from 

the ceramic and the two skins are FG material (Model III). It is assumed the constituents of 

the FG material part of the sandwich micro-beam used in this section of the present thesis 

composed of Aluminum (Al) and alumina ( 2 3Al O ). Their properties are 

 Aluminum (Al):             3 670 GPa, 2700kg m , 0.23, 23 10   −= = = = m m m mE  

Alumina(Al2O3):            
3 6380 GPa, 3800kg m , 0.23, 7.4 10   −= = = = c c c cE  

 

The following dimensionless can be used in the present thesis  

Dimensionless material length scale parameter      = ml L . 

Dimensionless nonlocal parameter       =ea L . 

Dimensionless Pasternak elastic foundation   =P P mK k E h b . 

Dimensionless Winkler elastic foundation
     

2=w w mK k L E h b . 

Dimensionless buckling load is           = mP P E h b . 

 

Fig. (4.2) plots the effect of aspect ratio ( ) = L h on the instability region for size dependent 

sandwich FG micro-beam (Modal III) for cross-section types (1-1-1) and (1-8-1) with 

0.5, 2, 0, = =  =s k T 0.5 ,ea h= 0= =P WK K and 
ml h= and for simply-supported 

boundary conditions. 
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Figure 4.2 Effect of ( )L h on the instability region for sandwich FG micro beam (Modal III) 

for cross-section types (1-1-1) and (1-8-1) with 0.5, 2, 0, = =  =s k T 0.5=ea h

0= =P WK K
 
and =ml h and for S-S boundary conditions. 

 

It can be seen from Fig. (4.2) at given dynamic load factor ( )d when the aspect ratio decrease 

leads to a larger dimensionless excitation frequency ( ) and It is also noticed when the 

decrease in aspect ratio, the width of the instability region increase (broader instability 

region). On the other hand for FG sandwich microbeam is more sensitive to dynamic 

instability in conjunction with a larger aspect ratio when comparing with a smaller aspect 

ratio at a lower value of ( )  due to the sandwich FG microbeam has lower bending 

resistance to bending deformation with larger slenderness ratios. It is observed also in Fig. 

(4.2) that the dimensionless excitation frequency is smaller with (1-1-1) comparison with (1-

8-1) and for FG sandwich microbeam with Model III the width of the instability region is 

larger for (1-8-1) comparison with (1-1-1), due to the (1-8-1) for model III  with ceramic core 

and it occupies 80 percent thickness of the sandwich FG micro-beam. Then it has larger 

effective elasticity modulus than for (1-1-1). 
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Figure 4.3 Effect of ( )L h on the instability region for sandwich FG micro beam (Modal II) 

for cross-section types (1-1-1) and (1-8-1) with 0.5, 2, 0, = =  =s k T 0.5 ,ea h=

0= =P WK K  and 
ml h= and for S-S boundary conditions. 

 

Moreover, it can be seen in Fig. (4.3) and Fig. (4.2) when the comparison between  Model III 

and Model II, Model III have a greater of the dimensionless excitation frequency ( )  than 

Model II at certain dynamic load factor. This due to the ceramic constitute of Model III is 

greater than of Model II at lower value of power law index ( )2=k , and it can be seen the  

core of Model III is fully ceramic. Moreover, the modulus of elasticity of Model II is less than 

that of Model III.  

 

For other boundary conditions for Model II, III in Figs. (4.4), (4.5) respectively. It can be 

observed that for C-C B.C, the dimensionless excitation frequencies ( ) is more than for S-S 

boundary conditions. Also, it can be observed for S-S boundary condition the width of the 

instability regions is lower than these for the other B.Cs (i.e. C-S, C-C) because the sandwich 

FG microbeam with S-S boundary condition more flexible compared to the other boundary 

conditions. 
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Figure 4.4 Effect of ( )L h  on the instability region for sandwich FG micro beam (Modal II) 

with 0.5, 2, 0, = =  =s k T 0.5 ,ea h= 0= =P WK K and 
ml h= for various B.Cs. 
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Figure 4.5 Effect of ( )L h on the instability region for sandwich FG micro beam (Modal III) 

with 0.5, 2, 0, = =  =s k T 0.5 ,ea h= 0= =P WK K and 
ml h= for various B.Cs. 
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The effect of gradient index ( )k  on the instability regions of sandwich functionally graded 

micro-beams Model III for (1-1-1) and (1-8-1) with 10,=L h 0.5, =s
0, =T 0.5 ,ea h=

0= =P WK K  and 
ml h=  for S-S supported boundary conditions is depicted in Fig.(4.6). 
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Figure 4.6 Effect of power law index ( )k on the instability region for sandwich FG micro-

beam Modal III with 0.5, 10, 0, = =  =s L h T 0.5 ,ea h= 0= =P WK K  and 
ml h= for S-S 

B.Cs. 

 

It is indicated that at given dynamic load factor ( )d , the dimensionless excitation frequency 

( )
 
increase when the power law index ( )k decrease. Also, it can be seen that the width of 

the instability region with small the gradient index is larger than that in the higher gradient 

index. It is noticed also from Fig. (4.6) when 0,=k the FG part of the sandwich FG 

microbeam is full ceramic then the whole sandwich FG microbeam become also ceramic for 

all cross section shape, therefore the dimensionless excitation frequency for both (1-1-1), (1-

8-1) is equal. 

  

The effect of gradient index ( )k  on the instability regions of sandwich FG micro-beams 

Model III with different B.Cs, it can be seen in Fig. (4.7). It is noted that the excitation 

frequencies of C-C sandwich FG micro-beam are higher than those of their C-S boundary 

condition this is due to the C-C is less flexible compared to a C-S configuration. 
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Figure 4.7 Effect of ( )k on the instability region for sandwich FG micro beam Modal III with

0.5, 10, 0, = =  =s L h T 0.5 ,ea h= 0= =P WK K and 
ml h= for C-S and C-C B.Cs. 

 

Fig.(4.8) demonstrates the influence of the static load factor ( )s on the instability region for 

S-S B.C and cross section type (1-8-1) sandwich FG microbeam Model II, III, for 

2, 10, 0,k L h T= =  = 0.5 ,ea h= 0= =P WK K  and .=ml h It can be noticed that when 

increasing the value of static load factor ( )s from 0 (without static axial force component) to 

0.5 =s  
tends to the instability region more wider and shifts closer to the coordinate origin. 

This is because an axial compressive force give rise to a compressive prestress in the 

sandwich FG microbeam and therefore weaken the microbeam stiffness. It is noted also from 

Fig.(4.8) that the excitation frequencies of Model III sandwich FG microbeam are higher than 

those of their Model II sandwich FG microbeam this is due to the Model III has  much greater 

bending rigidity than Model II.  
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Figure 4.8  Effect of static load factor ( )s on the instability region for sandwich FG micro 

beam Modal III, II with 2, 10, 0,= =  =k L h T 0.5 ,ea h= 0= =P WK K  and 
ml h= for S-

S B.Cs. 

It can be seen in Fig. (4.9) the effect of ( )s on the instability region for sandwich FG micro-

beam Modal III for other boundary conditions (C-S) and (C-C). 
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Figure 4.9 Effect of static load factor ( )s on the instability region for sandwich FG micro 

beam Modal III with 2, 10, 0,= =  =k L h T 0.5 ,ea h= 0= =P WK K and 
ml h= for 

different B.Cs. 

Fig. (4.10) presents the effect the different temperature gradients ( )T on the instability 

region for sandwich FG micro-beam with cross section shapes (1-1-1) and (1-8-1) for 

0.5, 10, 2, = = =s L h k 0.5=ea h  and =ml h . It is seen that an increase in the change of 

the temperature moves the origins of the instability regions to lower excitation frequencies 

and decrease the width of the instability region of  sandwich FG microbeams at a certain ( )d
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for both (1-1-1) and (1-8-1) cross section shapes ,which is due to an increase in temperature 

change leads to a negative value of the axial resultant force due to the thermal loading. This 

mean the sandwich FG microbeam has higher stiffness with lower temperature. 
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Figure 4.10 Effect of Temperature change ( )T on the instability region for sandwich FG 

micro beam Modal III with 2,=k 10=L h , =ml h , 0.5 =s , 0= =P WK K and 0.5=ea h

for S-S B.Cs. 

 

Moreover, it can be noticed in Fig. (4.11), that the dimensionless excitation frequencies of C-

C sandwich FG microbeam are larger than the dimensionless excitation frequencies of C-S 

boundary condition and wide of the instability region of C-C is close the each other than C-S  

for different temperature change because in C-C leads harder structure. 
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Figure 4.11 Effect of Temperature change ( )T  on the instability region for sandwich FG 

micro beam (Modal III) with 2=k ,
 

10=L h , =ml h , 0.5 =s , 0= =P WK K and 

0.5=ea h for C-S  and C-C B.Cs. 

 

The effect of temperature change ( )T  on the instability regions of sandwich FG micro-

beams Model II for (1-1-1) and (1-8-1) with 0.5, 10, 2, = = =s L h k 0.5 ,ea h=

0= =P WK K and 
ml h=  for S supported boundary condition is depicted in Fig.(4.12). 
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Figure 4.12 Effect of temperature change ( )T on the instability region for sandwich FG 

micro beam Modal II with 2=k ,
 

10=L h , =ml h , 0.5 =s , 0= =P WK K and 0.5=ea h

for S-S B.Cs. 

 

The effect of dimensionless material length scale parameter ( ) = ml L on the dynamic 

instability region of for (1-1-1) and (1-8-1) sandwich FG microbeam with a certain 

dimensionless nonlocal parameter ( )0.1 = =ea L , 0.5, = 10,=L h without elastic 

foundation 0= =P WK K and 0T =  for both cross section types (1-1-1) and (1-8-1) is 

shown in Fig.(4.13). Also can be noted from this figure that with increase in the  = ml L

leads to higher dimensionless excitation frequencies and also the width of the instability 

regions will be wider with increase the  = ml L because the strain gradient effect makes 

sandwich FG micro-beam stiffer. It means when the dimensionless material length scale 

parameter  ( ) = ml L  is larger than the dimensionless nonlocal parameter ( ), =ea L the 

size dependent sandwich functionally graded micro-beam exerts a stiffness-hardening effect 

(Aifantis theory). Moreover, when the , =ea L  is larger than  = ml L  (Eringen theory), 

the sandwich functionally graded micro-beam exerts a stiffness- softening effect. 
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Figure 4.13 Effect of ( ) on the instability region for sandwich FG micro beam (Modal III) 

with 0, =T  2,=k
 

10,=L h 0.5, =s
0= =P WK K and 0.1 = for S-S boundary 

conditions. 
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Figure 4.14 Effect of ( ) on the instability region for sandwich FG micro beam (Modal III) 

with 0, =T 2,=k
 

10,=L h 0.5, =s
0= =P WK K and 0.1 = for various boundary 

conditions. 

 

The effect of dimensionless material length scale parameter ( )  on the instability regions of 

sandwich FG micro-beams Model III for cross-section shape (1-1-1) with 0.5, =s 10=L h

2,=k 0= =P WK K  and 0.1 =  for C-S and C-C boundary conditions is seen in 

Fig.(4.14). On the other hand, for size dependent sandwich FG microbeam Model II with 



91 
 

various boundary conditions, the effect of ( )  on the instability regions with 10,=L h  

0, =T  0.5, =s  0= =P WK K and 0.1, =  is observed in Fig. (4.15) 
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Figure 4.15 Effect of ( ) on the instability region for sandwich FG micro beam (Modal II) 

with 0 =T , 2=k ,
 

10=L h , 0.5 =s , 0= =P WK K and 0.1 = for various boundary 

conditions. 

 

The effect of dimensionless nonlocal parameter ( ) =ea L on the dynamic instability region 

of for (1-1-1) and (1-8-1) sandwich FG microbeam with a certain dimensionless nonlocal 

parameter 0.1 = =ml L , 0.5, 10,L h = = 0= =P WK K and without temperature change 

0T =  for both (1-1-1) and (1-8-1) is shown in Fig.(4.16). Also it can be noticed from this 

figure that with increase in the  =ea L leads to lower dimensionless excitation frequencies 

and as well as the width of the instability regions will be decrease with increase the 
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dimensionless nonlocal parameter due to when the  =ea L is larger than  = ml L  (the 

nonlocal Eringen elasticity theory), the sandwich FG micro-beam exerts a stiffness- softening 

effect. 
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Figure 4.16 Effect of  =ea L on the instability region for sandwich FG micro beam (Modal 

III) with 0, =T 2,=k
 

10,=L h 0.5, =s
0= =P WK K & 0.1 = for S-S boundary 

conditions. 

The effect dimensionless nonlocal parameter ( ) =ea L  on the instability regions of 

sandwich FG micro-beams Model III for cross section shape (1-1-1) with 0.5 =s

2, 10,= =k L h 0= =P WK K and 0.1 =  for C-S and C-C boundary conditions is seen in 

Fig.(4.17). 
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Figure 4.17 Effect of  =ea L on the instability region for sandwich FG micro beam (Modal 

III) with 0, =T 10,=L h  0.5, =s
0= =P WK K and 0.1 =  for various boundary 

conditions. 
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Fig. (4.18) gives the influence of the dimensionless nonlocal parameter  ( ) =ea L  on the 

instability region for sandwich FG micro beam (Modal II) with different boundary conditions 

at certain dynamic load factor with fixed 0 =T , 10,=L h  
 

0.5 =s ,
 

0= =P WK K and 

0.1 = . Fig.(4.19) examines the effect of the various cross sectional shapes (1-1-1), (1-2-1), 

(1-8-1) and (2-1-2) on the instability region of sandwich FG microbeam with a certain 

dynamic load factor and fixed the parameters 0.5, 2, = =s k  0= =P WK K 0, =T

0.5 , 10= =ea h L h ,and ml h= for various B.Cs. It is noticed that the dimensionless 

excitation frequency for sandwich FG microbeam (Model III) in the left side is larger with 

cross sectional shape (1-8-1) and smaller for (2-1-2), and the width region decrease with the 

decrease the ratio of the core height to the total height of the sandwich FG microbeam for 

B.Cs. The reason for the (1-8-1) has the higher dimensionless excitation frequency is the core 

is ceramic and its occupy ( )8 10 from the height of the sandwich FG microbeam. 
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Figure 4.18 Effect of ( ) =ea L on the instability region for sandwich FG micro beam 

(Modal II) with 2,=k 0.5, =s 10,=L h  0, =T 0= =P WK K  and 0.1 =  
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Thus effective elasticity modulus is larger for this cross sectional shape (1-8-1) than the other. 

It can be noticed from Fig.(4.19)  that the value of the dimensionless excitation frequency are 

the highest for (1-8-1) cross sectional shape whereas they are lowest for sandwich FG micro-

beam with (2-1-2) cross sectional shape. On the other hand the figures in the right side for 

size dependent sandwich FG micro-beam with Model II, it can be noticed the dimensionless 

excitation frequency for each cross section shapes are close to each other when compare with 

Model III. 

Fig. (4.20) depicts the influence of various boundary conditions on the instability region for 

sandwich FG micro-beam with Model I,II,III of (1-1-1) and (1-8-1) at 0.5, =s

2, 0, 0.5 ,=  = =k T ea h 0= =P WK K  and ml h= . It is observed from Fig. (4.20) that the 

dimensionless excitation frequencies of C-C boundary condition is much more the other B.Cs. 

Moreover, the width of the instability regions of C-C sandwich FG microbeam is larger than 

those of the C-S and S- S. This is due to the fact that sandwich FG microbeam with C-C has 

more rigidity stiffness than those in C-S and S-S sandwich FG microbeam respectively. It is 

observed at a lower results for excitation frequency for S-S supported B.C for  the  size 

dependent sandwich FG micro-beam is more sensitive to the dynamic instability than the 

other boundary conditions with C-S and C-C respectively. 
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Figure 4.19 Effect of cross sectional types on the instability region for sandwich FG micro 

beam (Modal II,III) with 2,=k 0.5, =s 10,=L h ,=ml h 0, =T 0= =P WK K and 

0.5=ea h for various boundary conditions. 
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Figure 4.20 Effect of B.Cs various on the instability region for sandwich FG micro beam 

(Modals I, II, III) for (1-1-1) and (1-8-1) with 2=k , 0, =T 10,=L h 0.5, =s

0= =P WK K 0.5 ,=ea h and ml h= . 
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The effect of dimensionless Pasternak shear parameter ( )PK and dimensionless Winkler 

parameter ( )WK on the instability region for size dependent sandwich FG micro beam with 

(Modal II, III) for cross section shape (1-1-1) at certain dynamic load factor ( )d for fixed 

2, 0, 0.5=  = =k T ea h 0.5 =s , 10=L h and ml h=  with various boundary conditions 

(i.e. S-S, C-S, and C-C) is shown in Figs. (4.21) and (4.22) respectively. It is noticed from 

Figs. (4.21) and (4.22) the increase of dimensionless Winkler and Pasternak shear parameters 

leads to higher excitation frequencies ( ) and the width of the instability region for all types 

of sandwich FG micro-beam is increase with the increasing of ( )PK and ( )WK at given 

dynamic load factor. It can be seen also when sandwich FG micro-beam with soften elastic 

foundation is susceptible to the dynamic instability at the lower value of dimensionless 

excitation frequency ( ).  This is due to the lower bending resistance to bending 

deformation. Also it can be observed that the effect of dimensionless Pasternak shear 

parameter on the instability region of sandwich FG micro-beam is the same influence for the 

dimensionless Winkler parameter . However the excitation frequency on dimensionless 

Pasternak shear parameter is larger than that on the dimensionless Winkler parameter with all 

kinds of sandwich FG micro-beam. 
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Model II (1-1-1)
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Figure 4.21 Effect of dimensionless Pasternak shear parameter ( )PK on the instability region 

for sandwich FG micro beam (Modal II, III) for cross section shapes (1-1-1) with 2=k , 

0 =T , 10=L h , =ml h , 0.5 =s , 0=WK and 0.5=ea h for various boundary conditions. 
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Figure 4.22 Effect of dimensionless Winkler shear parameter ( )WK on the instability region 

for sandwich FG micro beam (Modal II, III) for cross section shapes (1-1-1) with 2=k , 

0 =T , 10=L h , =ml h , 0.5 =s , 0=PK and 0.5=ea h for various boundary conditions. 
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4.3 Static bending, Free and buckling analysis of Sandwich functionally graded micro-

beam 

The numerical results of static bending, buckling behavior and free vibration of small scale 

sandwich FG micro-beam with higher-order beam theories in conjunction with the nonlocal 

strain gradient theory (NLSGT) under the action of temperature change with elastic 

foundation (Winkler and Pasternak elastic foundation) is presented in this section of thesis.  

For sandwich FG micro-beam, there are many cross section shapes with different Models I,II, 

III. In this part of the thesis, the FG material part of the sandwich micro-beam is made of 

SuS304 constituent and alumina ( 2 3Al O ) constituent. Their properties are collected and 

presented in table (4.6). 

Table (4.6) Material properties of the FGM microbeam constituent 

Material Properties 
SuS304 alumina ( 2 3Al O ) 

Young’s modulus ( E ) GPa 210 GPa 380 GPa 

thermal expansion coefficient ( )T  
  

mass density ( ) 3 kg m  8166 3960 

Poisson’s ratio ( )  0.3177 0.3 

 

The following non-dimension are used in this section  

dimensionless nonlocal parameter       

 = ea L  

dimensionless material length scale parameter     

  = ml L  

dimensionless Winkler elastic foundation
     

 
2=W w mK k L E bh  

dimensionless Pasternak elastic foundation   

 =P p mK k E bh  

dimensionless transverse deflection for uniform load          
 

4100= m ow wE I q L  

dimensionless critical buckling load is   

612.33 10− 67.4 10−
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2= mP PL E I  

Dimensionless natural frequency
        

2  = m mL h E  

In the first aspect of this part of the present thesis is the static bending of size dependent 

sandwich FG micro-beam. In table 4.7. a comparison of the dimensionless transverse 

deflection ( )4

0100= mw w E I q L of size dependent FG microbeam for model II,III with 

cross section shape (1-1-1) and different dimensionless material length scale parameter ( )  

( )0, 0.05, 0.1, 0.15, 0.2 , dimensionless nonlocal parameter ( ) ( )0, 0.1, 0.2 , various 

gradient index ( )1, 5 ,=k  aspect ratio 10L h =  and different estimate method (Mori-Tanaka 

scheme and the rule of mixture) of the effective material properties. It is can be noted from 

this table that the dimensionless transverse deflection obtained by the Mori-Tanaka scheme 

are greater than that the results obtained by the rule of mixture. This is due to the size 

dependent FG sandwich microbeam becomes more flexible according to Mori-Tanaka scheme 

than with respect to classical rule of mixture for a constant material property gradient index 

and the different estimation of the effective material properties. 
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Table 4.7 Dimensionless transverse deflection 4100 mw E I qL w=  of sandwich beams 

subject to distributed load for / 10,=L h 0, =T 0= =W PK K  and Model II,III (1-1-1)
 
 

 

Model k  

The rule of mixture Mori Tanaka scheme 

      

M
o
d

el
 I

I
 

1 

 1.0068 1.1031 1.3920 1.0096 1.1065 1.3956 

 0.9832 1.0776 1.3608 0.9864 1.0803 1.3642 

 0.9180 1.0068 1.2733 0.9205 1.0105 1.2784 

 0.8260 0.9064 1.1475 0.8295 0.9098 1.1512 

 0.7240 0.7947 1.0068 0.7284 0.7986 1.0103 

5 

 1.0160 1.1131 1.4044 1.0193 1.1175 1.4089 

 0.9922 1.0874 1.3730 0.9965 1.0912 1.3772 

 0.9264 1.0160 1.2847 0.9289 1.0199 1.2883 

 0.8335 0.9146 1.1579 0.8364 0.9187 1.1612 

 0.7307 0.8020 1.0160 0.7348 0.8056 1.0197 

M
o
d

el
 I

II
 

1 

 1.0214 1.1192 1.4124 1.0252 1.1225 1.4153 

 0.9975 1.0933 1.3807 1.0025 1.0975 1.3849 

 0.9313 1.0214 1.2918 0.9357 1.0262 1.2965 

 0.8379 0.9195 1.1641 0.8412 0.9246 1.1685 

 0.7345 0.8062 1.0214 0.7387 0.8095 1.0248 

5 

 1.2252 1.3425 1.6944 1.2295 1.3478 1.6985 

 1.1965 1.3115 1.6564 1.1999 1.3166 1.6596 

 1.0761 1.1802 1.4927 1.0789 1.1853 1.4987 

 0.9682 1.0624 1.3452 0.9723 1.0654 1.3495 

 0.8487 0.9316 1.1802 0.8523 0.9368 1.1835 

 

Table 4.8 contains the influences of the various beam theories on the dimensionless transverse 

deflection of size dependent sandwich FG micro-beam for different boundary conditions (i.e. 

S-S, C-S, C-C) with various values of the dimensionless material length scale parameter 

( )0.1, 0.2, 0.3 = , aspect ratio
 
( )10, 20=L h ,both Models (II,III) and cross section shape 

(1-1-1) with certain dimensionless nonlocal parameter
 
( )0.1 , =  without the elastic 

foundation  ( )0= =W PK K  and no thermal effect ( )0 =T . It can be observed from table 

(4.8) the dimensionless transverse deflection with the higher order beam theories (HOBTs) is 


0 = 0.1 = 0.2 = 0 = 0.1 = 0.2 =

0 =

0.05 =

0.1 =

0.15 =

0.2 =

0 =

0.05 =

0.1 =

0.15 =

0.2 =

0 =

0.05 =

0.1 =

0.15 =

0.2 =

0 =

0.05 =

0.1 =

0.15 =

0.2 =
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greater than those in Euler theory (EBBT) and less than the dimensionless transverse 

deflection for First shear deformation theory (FSDBT). It mean the Euler Bernoulli beam 

theory is more stiffer than the other theories because neglect the shear deformation effect and 

the Timoshenko beam theory is the most flexible with constant shear 5/6.  It can be observed  

as well as, the effect of shear deformation is decrease with increase the aspect ratio from 10 to 

20 then the dimensionless transverse deflection is close each to other for all beam theory for 

aspect ratio 20 than aspect ratio 10. Moreover, the results for higher order deformation beam 

theories (HOBTs) are almost the same and for ASDBT and ESDBT theory the dimensionless 

transverse deflection are the same. Also the sandwich FG microbeam become more stiffer 

with C-C boundary condition, it can be seen for example with PSDBT, C-C B.Cs, Model III 

and ( )0.1, 10 = =L h the dimensionless transverse deflection is 0.0909 whereas for C-S is 

0.2881and for S-S is 1.0214. 
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Table 4.8 Dimensionless transverse deflection 4

0100= mw w E I q L  of sandwich micro-beams 

with B.Cs with a cross-section shape (1-1-1) for 
0.1, = 0, =T  1,=k

 
0= =W PK K  

  Model II Model III 

B.Cs Beam theory 
10=L h

 
20=L h

 
10=L h

 
20=L h

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 1.0060 0.7941 0.5859 0.9891 0.7805 0.5767 1.0209 0.8055 0.5947 1.0062 0.7942 0.5870 

FSDBT 1.0071 0.7950 0.5869 0.9895 0.7809 0.5771 1.0229 0.8074 0.5961 1.0066 0.7947 0.5872 

PSDBT 1.0068 0.7947 0.5864 0.9893 0.7808 0.5769 1.0214 0.8062 0.5951 1.0064 0.7944 0.5869 

TSDBT 1.0068 0.7947 0.5864 0.9894 0.7806 0.5769 1.0213 0.8061 0.5950 1.0064 0.7944 0.5869 

ASDBT 1.0067 0.7946 0.5863 0.9892 0.7807 0.5769 1.0212 0.8060 0.5950 1.0064 0.7943 0.5869 

ESDBT 1.0067 0.7946 0.5863 0.9892 0.7807 0.5769 1.0212 0.8060 0.5950 1.0064 0.7943 0.5869 

HSDBT 1.0067 0.7947 0.5864 0.9893 0.7808 0.5769 1.0214 0.8062 0.5951 1.0064 0.7944 0.5869 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 0.2618 0.1411 0.0801 0.2470 0.1302 0.0738 0.2872 0.1538 0.0799 0.2740 0.1452 0.0747 

FSDBT 0.2631 0.1420 0.0810 0.2472 0.1305 0.0742 0.2892 0.1551 0.0811 0.2745 0.1455 0.0752 

PSDBT 0.2622 0.1411 0.0805 0.2471 0.1304 0.0740 0.2881 0.1543 0.0805 0.2743 0.1454 0.0750 

TSDBT 0.2622 0.1411 0.0804 0.2471 0.1304 0.0740 0.2879 0.1542 0.0805 0.2743 0.1453 0.0750 

ASDBT 0.2621 0.1410 0.0804 0.2471 0.1304 0.0740 0.2877 0.1541 0.0804 0.2742 0.1453 0.0749 

ESDBT 0.2621 0.1410 0.0804 0.2471 0.1304 0.0740 0.2877 0.1541 0.0804 0.2742 0.1453 0.0749 

HSDBT 0.2622 0.1411 0.0805 0.2471 0.1304 0.0740 0.2881 0.1543 0.0805 0.2743 0.1454 0.0750 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 0.0910 0.0387 0.0198 0.0810 0.0335 0.0170 0.0900 0.0378 0.0190 0.0819 0.0339 0.0171 

FSDBT 0.0921 0.0399 0.0208 0.0813 0.0338 0.0173 0.0915 0.0395 0.0208 0.0822 0.0342 0.0174 

PSDBT 0.0915 0.0391 0.0202 0.0812 0.0337 0.0171 0.0909 0.0386 0.0199 0.0821 0.0340 0.0173 

TSDBT 0.0914 0.0390 0.0201 0.0812 0.0337 0.0171 0.0908 0.0386 0.0199 0.0821 0.0340 0.0173 

ASDBT 0.0912 0.0389 0.0201 0.0812 0.0336 0.0171 0.0907 0.0385 0.0198 0.0821 0.0340 0.0173 

ESDBT 0.0912 0.0389 0.0201 0.0812 0.0336 0.0171 0.0907 0.0385 0.0198 0.0821 0.0340 0.0173 

HSDBT 0.0915 0.0391 0.0202 0.0812 0.0337 0.0171 0.0909 0.0386 0.0199 0.0821 0.0340 0.0173 
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Fig.(4.23) shows the variation of the dimensionless transverse deflection with respect to 

material property gradient index ( )k  for different boundary conditions (i.e. S-S, C-S, C-C) 

of size dependent sandwich FG micro-beam with various cross section shapes (1-1-1, 1-2-1, 

1-8-1, 2-1-2) at fixed dimensionless nonlocal parameter ( )0.1 , = dimensionless material 

length scale parameter ( )0.2 =  without elastic foundation 0= =W PK K , no temperature 

change ( )0 =T  and  10=L h . One can observe that the increase dimensionless deflection 

with increase power law index ( )k for both Models II,III with various cross-section types. It 

can seen from this figure the sandwich FG microbeam with shape (2-1-2) has the Max. value 

of transverse deflection and (1-8-1) represented Min. value of these for Model III. Moreover 

the dimensionless transverse deflection for Model II is different, it can be observed from this 

when the gradient index is less than 1.53 for example simply support boundary condition, the 

( )w of (1-8-1) is less than ( )w for (2-1-2). In the other word, when the power law index is 

greater than 1.53 the dimensionless of transverse deflection for (1-8-1) is greater than the 

other cross section shapes and the results for (2-1-2) is lower than the other cross section 

shapes. This is due to the ceramic portion for (1-8-1) with increase gradient index ( )k is 

lower than for (2-1-2) then the sandwich FG microbeam become more flexible with (1-8-1) 

than (2-1-2) for ( )k greater than 1.53. 
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Figure 4.23 Variation of the dimensionless transverse deflection ( )w  with the power-law 

exponent k for different cross-section shape sandwich FG microbeam, / 10=L h , 0.1 = , 

0.2 = , and for different boundary conditions. 
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The effect of power law index ( )k with different symmetrical (1-1-1),(1-2-1),(1-8-1) and (2-

1-2) and un-symmetrical (1-2-3), (2-3-1) and (3-1-2) cross section shapes on the 

dimensionless transverse deflection of sandwich FG micro-beam is presented in table 4.9 at 

fixed / 10,=L h 0.2 = , 0.1 =  and 0.= =W PK K  It can be noticed that the 

dimensionless transverse deflection for Model III is less than these with Model II at lower 

value of power law index. On the other hand, with larger value of ( )k the dimensionless 

transverse deflection of Model II is larger than of these results with Model III except shape 

(1-8-1). The reason of this phenomena is that for the Model III the core is full ceramic then 

the ceramic portion in this model is more than the ceramic portion for Model II with low 

values of gradient index ( ),k for example when 0k =  this means the volume fraction of 

ceramic 1cV =  and 0mV =  then that the FG part of sandwich microbeam is made of whole 

ceramic then the sandwich FG microbeam have more effective elasticity modulus therefore 

the deflection is the smallest. On the other hand, when gradient index k goes to infinity the 

FG part of sandwich microbeam is becomes full metal then the results is conversely. This is 

due to the Model III have effective elasticity modulus is more than its for Model II for lower 

k and the results is different when power law index ( )k increase the Model II have effective 

elasticity modulus is more than Model III except shape (1-8-1). 
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Table 4.9 Dimensionless transverse deflection ( )4

0100= mw w E I q L  of sandwich FG 

microbeams (PSDBT) for various power law index / 10,=L h 0.2, = 0.1, =  and 

0= =W PK K  

 
 

 Symmetrical cross section   symmetrical cross section  -Un 

B.Cs Model k 1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 0.7732 0.7427 0.6558 0.7882 0.6990 0.7732 0.7984 

1 0.7947 0.7903 0.7793 0.7971 0.7624 0.8023 0.8011 

3 0.8008 0.8035 0.8200 0.7997 0.7869 0.8148 0.8025 

5 0.8020 0.8064 0.8324 0.8005 0.7925 0.8208 0.8030 

(metal)  0.8043 0.8152 0.8868 0.8014 0.7983 0.8435 0.8044 

 Model

III 

0 (ceramic) 0.5821 0.5821 0.5821 0.5821 0.5821 0.5821 0.5821 

1 0.8062 0.7602 0.6580 0.8365 0.7863 0.7547 0.8389 

3 0.9316 0.8632 0.6999 0.9709 0.8911 0.8521 0.9702 

5 0.9671 0.8956 0.7140 1.0046 0.9182 0.8819 1.0016 

(metal)  1.0137 0.9468 0.7400 1.0401 0.9514 0.9276 1.0339 

C
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 0.1348 0.1295 0.1151 0.1377 0.1222 0.1348 0.1403 

1 0.1397 0.1390 0.1373 0.1401 0.1332 0.1418 0.1417 

3 0.1417 0.1426 0.1458 0.1411 0.1377 0.1453 0.1425 

5 0.1422 0.1436 0.1486 0.1415 0.1388 0.1468 0.1428 

(metal)  0.1433 0.1459 0.1584 0.1420 0.1403 0.1511 0.1433 

 Model

III 

0 (ceramic) 0.1029 0.1029 0.1029 0.1029 0.1029 0.1029 0.1029 

1 0.1401 0.1324 0.1155 0.1453 0.1370 0.1315 0.1458 

3 0.1610 0.1494 0.1224 0.1679 0.1548 0.1477 0.1681 

5 0.1669 0.1548 0.1248 0.1737 0.1595 0.1527 0.1736 

(metal)  0.1751 0.1633 0.1291 0.1806 0.1657 0.1604 0.1801 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 0.0373 0.0358 0.0321 0.0382 0.0339 0.0373 0.0392 

1 0.0391 0.0389 0.0385 0.0392 0.0369 0.0399 0.0399 

3 0.0399 0.0403 0.0413 0.0396 0.0383 0.0413 0.0403 

5 0.0402 0.0407 0.0423 0.0398 0.0386 0.0418 0.0404 

(metal)  0.0407 0.0417 0.0451 0.0401 0.0392 0.0432 0.0407 

 Model

III 

0 (ceramic) 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 

1 0.0386 0.0366 0.0322 0.0400 0.0379 0.0364 0.0402 

3 0.0441 0.0410 0.0340 0.0460 0.0426 0.0406 0.0461 

5 0.0456 0.0424 0.0346 0.0476 0.0439 0.0419 0.0477 

(metal)  0.0479 0.0446 0.0357 0.0497 0.0458 0.0439 0.0498 
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The effects of the both dimensionless nonlocal parameter ( ) =ea L  and the dimensionless 

material length scale parameter ( ) = ml L with fixed 0, =T 10,=L h 1,=k  and

0= =W PK K  on the dimensionless transverse deflection for Modal II (1-1-1) and Modal III 

(1-1-1) for various B.Cs,
 
( )0, 0.05, 0.1, 0.15, 0.2 = and ( )0, 0.05, 0.1, 0.15, 0.2 =

presented in table (4.10). It is clear that the dimensionless deflection can decrease with 

increase dimensionless material length scale parameter ( ) because the strain gradient effect 

makes sandwich FG microbeam stiffness-hardening and they increase with increase the 

dimensionless nonlocal parameter ( )  due to softening effect observed in the nonlocal 

elasticity theory. It should be noted, the dimensionless transverse deflection of the classical 

elasticity theory can be obtained by setting 0 = = and when  =  for simply support 

boundary condition. On the other hand for other B.Cs (i.e. C-C, C-S) the classical theory can 

be achieved only when 0. = = Depending on the dimensionless nonlocal and material 

length scale parameters, the dimensionless transverse deflection value may be larger or 

smaller than that of classical values. 
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Table 4.10 Dimensionless transverse deflection ( )4

0100= mw w E I q L   of sandwich FG 

micro-beams Model II,III with various B.Cs with a cross-section shape (1-1-1) for 10,=L h

0, =T  1,=k
 

0= =W PK K  

 
 

Model II 

B.Cs  0 = 0.05 = 0.1 = 0.15 = 0.2 = 

S-S 

0 1.0068 1.0309 1.1031 1.2235 1.3920 

0.05 0.9832 1.0068 1.0776 1.1956 1.3608 

0.1 0.9180 0.9402 1.0068 1.1178 1.2733 

0.15 0.8260 0.8461 0.9064 1.0068 1.1475 

0.2 0.7240 0.7417 0.7947 0.8831 1.0068 

C-S 

0 0.4030 0.4088 0.4264 0.4556 0.4965 

0.05 0.3284 0.3337 0.3486 0.3739 0.4072 

0.1 0.2438 0.2478 0.2600 0.2798 0.3078 

0.15 0.1777 0.1808 0.1899 0.2053 0.2264 

0.2 0.1305 0.1329 0.1397 0.1512 0.1673 

C-C 

0 0.2043 0.2043 0.2043 0.2043 0.2043 

0.05 0.1450 0.1450 0.1450 0.1450 0.1450 

0.1 0.0914 0.0914 0.0914 0.0914 0.0914 

0.15 0.0584 0.0584 0.0584 0.0584 0.0584 

0.2 0.0391 0.0391 0.0391 0.0391 0.0391 

 
 

Model III 

B.Cs  0 = 0.05 = 0.1 = 0.15 = 0.2 = 

S-S 

0 1.0214 1.0458 1.1192 1.2413 1.4124 

0.05 0.9975 1.0214 1.0933 1.2131 1.3807 

0.1 0.9313 0.9538 1.0214 1.1341 1.2918 

0.15 0.8379 0.8583 0.9195 1.0214 1.1641 

0.2 0.7345 0.7524 0.8062 0.8959 1.0214 

C-S 

0 0.4060 0.4119 0.4297 0.4594 0.5009 

0.05 0.3305 0.3356 0.3510 0.3767 0.4125 

0.1 0.2450 0.2491 0.2612 0.2815 0.3098 

0.15 0.1783 0.1814 0.1907 0.2060 0.2276 

0.2 0.1308 0.1332 0.1401 0.1517 0.1679 

C-C 

0 0.2044 0.2044 0.2044 0.2044 0.2044 

0.05 0.1448 0.1448 0.1448 0.1448 0.1448 

0.1 0.0908 0.0908 0.0908 0.0908 0.0908 

0.15 0.0578 0.0578 0.0578 0.0578 0.0578 

0.2 0.0386 0.0386 0.0386 0.0386 0.0386 
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Figs.(4.24 and 4.25) examine dimensionless nonlocal parameter ( ) =ea L  and 

dimensionless material length scale parameter ( ) = ml L  of sandwich FG microbeam with a 

certain 0, =T  10L h =  , and
 

0= =W PK K  on the dimensionless transverse deflection for 

Modal II (1-2-1) and Modal III (1-2-1) for various B.Cs (i.e. S-S, C-S, C-C) and different 

gradient index respectively. It can be observed from Fig.(4.24) the 

influence of the dimensionless nonlocal parameter ( ) =ea L on the dimensionless 

transverse deflection ( )w of sandwich FG micro-beam with certain the dimensionless material 

length scale parameter ( )0.2 . = =ml L  It is explicit that when the dimensionless nonlocal 

parameter ( ) =ea L increase the dimensionless transverse deflection increase for both S-S 

and C-S boundary conditions because the sandwich FG micro-beam become more flexible 

with increase dimensionless nonlocal parameter (nonlocal elasticity theory). On the other 

hand for C-C boundary condition the dimensionless transverse deflection remain without 

change with increase the dimensionless nonlocal parameter. 

 

Fig.(4.25) depicts the effect of dimensionless material length scale  parameter ( ) = ml L on 

the dimensionless transverse deflection of sandwich FG micro-beam with certain the 

dimensionless nonlocal parameter ( )0.2 = =ea L . It can be noticed that the dimensionless 

transverse deflection decrease with increase the dimensionless material length scale parameter

( )  for various gradient index ( )k and different boundary conditions because the sandwich 

FG micro-beam become more stiffer with increase dimensionless material length scale 

parameter (pure strain gradient theory). 

 

From Fig.(4.26) it can be shows the three dimension plot of dimensionless transverse 

deflection of simply supported sandwich FG micro-beams with Model II, III for (1-1-1) cross 

section shape with the change of the dimensionless material length scale  parameter 

( ) = ml L  and the dimensionless nonlocal parameter ( ). =ea L  

 

( ). . 0, 1, 3, 5, 10=i e k
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Figure 4.24 Effect of the nonlocal parameter ( )  on the dimensionless transverse deflection 

w  of sandwich FG microbeam with a various boundary conditions (S-S, C-S, C-C) for 

different power law index ( )k with 10=L h ,
 

0= =P WK K , 0 =T , 
0.2 =  and cross 

section shape (1-2-1). 

 



113 
 

Material length scale parameter, 

0.0 0.1 0.2 0.3 0.4 0.5

D
im

e
n

s
io

n
le

s
s

 t
ra

n
s

v
e

rs
e

 d
e

fl
e

c
ti

o
n

, 
w

0.0

0.5

1.0

1.5

2.0
k=0

k=1

k=3

k=5

k=10

Model II (1-2-1)

S-S

Material length scale parameter, 

0.0 0.1 0.2 0.3 0.4 0.5

D
im

e
n

s
io

n
le

s
s

 t
ra

n
s

v
e

rs
e

 d
e

fl
e

c
ti

o
n

, 
w

0.0

0.5

1.0

1.5

2.0
k=0

k=1

k=3

k=5

k=10

Model III (1-2-1)

S-S

 

Material length scale parameter, 

0.0 0.1 0.2 0.3 0.4 0.5

D
im

e
n

s
io

n
le

s
s

 t
ra

n
s

v
e

rs
e

 d
e

fl
e

c
ti

o
n

, 
w

0.0

0.1

0.2

0.3

0.4

0.5

0.6
k=0

k=1

k=3

k=5

k=10

Model II (1-2-1)

C-S

Material length scale parameter, 

0.0 0.1 0.2 0.3 0.4 0.5

D
im

e
n

s
io

n
le

s
s

 t
ra

n
s

v
e

rs
e

 d
e

fl
e

c
ti

o
n

, 
w

0.0

0.1

0.2

0.3

0.4

0.5

0.6
k=0

k=1

k=3

k=5

k=10

Model III (1-2-1)

C-S

 

Material length scale parameter, 

0.0 0.1 0.2 0.3 0.4 0.5

D
im

e
n

s
io

n
le

s
s

 t
ra

n
s

v
e

rs
e

 d
e

fl
e

c
ti

o
n

, 
w

0.00

0.05

0.10

0.15

0.20

0.25
k=0

k=1

k=3

k=5

k=10

Model II (1-2-1)

C-C

Material length scale parameter, 

0.0 0.1 0.2 0.3 0.4 0.5

D
im

e
n

s
io

n
le

s
s

 t
ra

n
s

v
e

rs
e

 d
e

fl
e

c
ti

o
n

, 
w

0.00

0.05

0.10

0.15

0.20

0.25
k=0

k=1

k=3

k=5

k=10

Model III (1-2-1)

C-C

 

Figure 4.25 Effect of the material length scale parameter ( )  on the dimensionless transverse 

deflection w  of sandwich FG microbeam with a various boundary conditions (S-S, C-S, C-C) 

for different power law index ( )k with 10=L h , 0= =P WK K , 0 =T , 0.2 = and cross 

section shape (1-2-1). 
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Figure 4.26 Effect of the nonlocal parameter ( )  and the dimensionless material length scale  

parameter on the dimensionless transverse deflection w  of sandwich FG microbeam with a 

cross section shape (1-1-1) and S-S boundary conditions for 2=k , 10=L h , 0= =W PK K

and 0 =T . 

 

Table 4.11 present thermal effect on the dimensionless transverse deflection ( )w for various 

boundary conditions (i.e. S-S, C-S, C-C) with different (symmetrical and un-symmetrical) 

cross section shapes of size dependent sandwich Model II, III FG micro-beam at certain 

dimensionless nonlocal and material length scale parameters ( )0.2, 0.1 = = without elastic 

foundations 0= =W PK K  and 1=k with various values of temperature change 

( )0, 20, 40, 80 =T . The dimensionless transverse deflection increase when the temperature 

change increase from 0 to 20,40 and 80. This is due to when the temperature change T

increase make the sandwich FG microbeam stiffness decrease , lead to increase dimensionless 

transverse deflection for all cross section shapes and various boundary conditions. 

Figs.(4.27) depicts also the effect of temperature change ( )T on the dimensionless 

transverse deflection as a function of the various power law index ( )k  with fixed aspect ratio 

10,=L h 0.1, = 0.2, = Model III with cross section shape (1-2-1) and various 

boundary conditions (i.e. S-S, C-S, C-C) for sandwich FG micro-beam. For given value of a 

gradient index ( ),k the dimensionless transverse deflection increase with increase the 



115 
 

temperature change ( )T due to with larger thermal effect (temperature change) make 

sandwich FG microbeam with less stiffness and it is explicit that the temperature change is 

more significant for S-S boundary condition and insensitive to thermal effect for C-C 

boundary condition. It can be noticed also when the gradient index is less than 1 the thermal 

effect is slight on the dimensionless transverse deflection, while become more pronounces 

when ( )1k . 

Table 4.11 Dimensionless transverse deflection ( )4

0100= mw w E I q L  of sandwich FG 

microbeams (PSDBT) with 1=k , 10,=L h 0.2, = 0.1 =  and 0w pK K= =  

 
 

 Symmetrical cross section symmetrical cross section-Un 

B.Cs Model T 1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 0.7947 0.7903 0.7793 0.7971 0.7624 0.8023 0.8011 

20 0.8595 0.8556 0.8450 0.8612 0.8164 0.8727 0.8686 

40 0.9332 0.9299 0.9194 0.9343 0.8746 0.9548 0.9475 

80 1.1300 1.1291 1.1208 1.1283 1.0254 1.1787 1.1595 

 Model

III 

0 0.8062 0.7602 0.6580 0.8365 0.7863 0.7547 0.8389 

20 0.8698 0.8124 0.6914 0.9091 0.8466 0.8061 0.9129 

40 0.9383 0.8671 0.7248 0.9891 0.9115 0.8600 0.9949 

80 1.1219 1.0089 0.8066 1.2097 1.0838 0.9993 1.2220 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 0.1397 0.1390 0.1373 0.1401 0.1332 0.1418 0.1417 

20 0.1429 0.1422 0.1405 0.1432 0.1358 0.1452 0.1451 

40 0.1462 0.1456 0.1438 0.1465 0.1385 0.1488 0.1485 

80 0.1533 0.1527 0.1511 0.1536 0.1444 0.1567 0.1561 

 Model

III 

0 0.1401 0.1324 0.1155 0.1453 0.1370 0.1315 0.1458 

20 0.1432 0.1349 0.1172 0.1487 0.1399 0.1340 0.1493 

40 0.1463 0.1376 0.1189 0.1523 0.1430 0.1366 0.1530 

80 0.1463 0.1376 0.1189 0.1523 0.1430 0.1366 0.1530 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 0.0391 0.0389 0.0385 0.0392 0.0369 0.0399 0.0399 

20 0.0394 0.0392 0.0388 0.0395 0.0372 0.0402 0.0402 

40 0.0397 0.0395 0.0391 0.0398 0.0374 0.0406 0.0406 

80 0.0403 0.0402 0.0397 0.0404 0.0380 0.0413 0.0413 

 Model

III 

0 0.0386 0.0366 0.0322 0.0400 0.0379 0.0364 0.0402 

20 0.0389 0.0368 0.0324 0.0404 0.0382 0.0366 0.0405 

40 0.0392 0.0371 0.0325 0.0407 0.0385 0.0369 0.0409 

80 0.0398 0.0376 0.0329 0.0414 0.0390 0.0374 0.0416 
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Figure 4.27 Thermal effect on the dimensionless transverse deflection, ( )w  with 10,=L h

0,= =W PK K 0.1, 0.2, = = and cross section shape (1-2-1) sandwich FG micro-beam 

Model III. 

. 

In table 4.12, the effect of the dimensionless elastic foundation parameters on the 

dimensionless transverse deflection of size dependent sandwich FG micro-beam are given for 

different value of aspect ratio ( )L h ,various cross section shapes, dimensionless Winkler 

and Pasternak parameters constant ( )0, 0.2= =P WK K  and different boundary 

conditions for Models II, III. It can be observed that when PK  and WK increase from 0 to 0.2 

the dimensionless transverse deflection of sandwich FG microbeam with Models II, III 

decrease for all cross-section shapes and consider models. This is due to the fact that the 

sandwich FG microbeam becomes more stiffer when both WK and PK increase. It can be seen 

from this table when 0= =W PK K  with
 

10=L h  and cross section shape (1-2-1) for Model 

III with S-S boundary condition, the value of dimensionless transverse deflection is 0.8904 
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and decrease to 0.3304 when 0.2=WK and 0,=PK finally the dimensionless transverse 

deflection increase more when 0.2= =W PK K . As well as according to this results,  it can be 

seen that the boundary condition with C-C sandwich FG microbeam has largest value than 

other boundary conditions S-S and C-S of dimensionless transverse deflection. Another 

results from these figures is that the effect of the Pasternak shear modulus ( )PK  on the 

dimensionless transverse deflection is more significant than that of the Winkler elastic 

modulus ( )WK . 

 

Figs.(4.28) shows of the dimensionless elastic foundations parameters on the dimensionless 

transverse deflection of size dependent sandwich FG micro-beam for various value of power 

law index ( )0, 1, 3, 5=k  with fixed the aspect ratio ( )10=L h , 0.1 = , 0.2 = , Model III 

with cross section shape (1-1-1) and various boundary conditions (i.e. S-S, C-S, C-C). The 

left side of figure is for various  ( )PK  with constant ( )0=WK and the right side for various 

( )WK  with constant ( )0 .=PK  It can be noticed from Fig. (4.28) the dimensionless 

transverse deflection decrease with increase the dimensionless Winkler and Pasternak shear 

parameters. It is observed that for S-S boundary conditions the dimensionless transverse 

deflection is decrease rapidly with increase ( )WK and ( )PK  when ( )0.5WK and 

( )0.05 .PK
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Table 4.12 Dimensionless transverse deflection  of sandwich FG microbeams for 0, =T 0.2, = 0.1, = and 2,=k  

with different cross section, aspect ratio, various B.Cs and elastic foundations. 

 

Model II Model III 
B

.C
s

 PK
 

WK 
Cross-

section 

shape 
5=L h 10=L h 20=L h

 
50=L h 5=L h 10=L h 20=L h

 
50=L h 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 
1-1-1 0.8525 0.7977 0.7841 0.7803 0.9358 0.8904 0.8790 0.8759 
1-8-1 0.8647 0.8067 0.7923 0.7883 0.7267 0.6847 0.6743 0.6713 
2-1-2 0.8512 0.7977 0.7844 0.7807 0.9761 0.9286 0.9167 0.9134 

0 0.2 
1-1-1 0.6056 0.3167 0.1118 0.0193 0.6469 0.3304 0.1134 0.0193 
1-8-1 0.6117 0.3180 0.1119 0.0193 0.5394 0.2973 0.1094 0.0194 
2-1-2 0.6050 0.3167 0.1118 0.0193 0.6659 0.3355 0.1140 0.0192 

0.2 0.2 
1-1-1 0.1562 0.0450 0.0116 0.0018 0.1590 0.0453 0.0116 0.0018 
1-8-1 0.1565 0.0450 0.0116 0.0018 0.1516 0.0446 0.0116 0.0018 
2-1-2 0.1562 0.0450 0.0116 0.0018 0.1601 0.0453 0.0116 0.0018 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 
1-1-1 0.1827 0.1411 0.1304 0.1273 0.1892 0.1543 0.1454 0.1428 
1-8-1 0.1872 0.1432 0.1319 0.1287 0.1523 0.1201 0.1119 0.1095 
2-1-2 0.1816 0.1408 0.1304 0.1274 0.1975 0.1609 0.1516 0.1489 

0 0.2 
1-1-1 0.1664 0.1079 0.0607 0.0158 0.1717 0.1154 0.0638 0.0160 
1-8-1 0.1701 0.1091 0.0611 0.0158 0.1407 0.0951 0.0564 0.0155 
2-1-2 0.1654 0.1077 0.0607 0.0158 0.1784 0.1190 0.0649 0.0160 

0.2 0.2 
1-1-1 0.0774 0.0268 0.0079 0.0014 0.0814 0.0288 0.0086 0.0015 
1-8-1 0.0783 0.0269 0.0080 0.0014 0.0738 0.0273 0.0084 0.0015 
2-1-2 0.0771 0.0268 0.0079 0.0014 0.0829 0.0291 0.0086 0.0015 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 
1-1-1 0.0614 0.0396 0.0339 0.0323 0.0607 0.0423 0.0375 0.0361 
1-8-1 0.0634 0.0404 0.0344 0.0326 0.0504 0.0334 0.0290 0.0277 
2-1-2 0.0608 0.0395 0.0339 0.0323 0.0634 0.0441 0.0391 0.0377 

0 0.2 
1-1-1 0.0595 0.0366 0.0264 0.0119 0.0588 0.0384 0.0285 0.0123 
1-8-1 0.0614 0.0372 0.0266 0.0119 0.0491 0.0312 0.0233 0.0112 
2-1-2 0.0589 0.0364 0.0264 0.0119 0.0613 0.0404 0.0294 0.0125 

0.2 0.2 
1-1-1 0.0389 0.0155 0.0053 0.0010 0.0384 0.0158 0.0054 0.0010 
1-8-1 0.0397 0.0156 0.0053 0.0010 0.0340 0.0144 0.0051 0.0010 
2-1-2 0.0386 0.0154 0.0053 0.0010 0.0395 0.0160 0.0054 0.0010 

4

0100= mw w E I q L



119 
 

  

  

  

Figure 4.28 Effect of the Winkler and Pasternak shear parameter on the dimensionless 

transverse deflection, ( )w  for 10,=L h  and 1, 2 = = of SS sandwich microbeam for 

Model III (1-1-1) .(a) 0=WK  (b) 0=PK  with various boundary conditions. 
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In the second aspect of this part of the present thesis is the buckling and free vibration 

analysis  of small scale sandwich FG micro-beam. Tables 4.13 and 4.14 contain the effect of 

the various beam theories on the dimensionless fundamental frequency and critical buckling 

load of sandwich FG micro-beam for various boundary conditions (i.e. S-S, C-S, C-C) with 

different values of the dimensionless material length scale parameter ( )0.1, 0.2, 0.3 , =  

aspect ratio ( )10, 20 ,=L h Models II and Model III and cross-section types (1-1-1) with 

certain dimensionless nonlocal parameter
 
( )0.1 = without the elastic foundation  

( )0= =w pK K  and no temperature change ( )0 =T . It can be observed  from tables 4.13 

and 4.14 the dimensionless fundamental frequency and buckling load with the higher order 

beam theories (HOBTs) are less than these in Euler theory (EBBT) and greater than these for 

Timoshenko beam theory (TBT). Also as expected the Euler Bernoulli beam theory is more 

stiffer than the other theories because neglect the shear deformation effect and the 

Timoshenko beam theory is most flexible with constant shear 5/6.  It can be explicit also the 

effect of shear deformation is decrease with increase the aspect ratio from 10 to 20 then the 

dimensionless fundamental frequency and critical buckling load is close each to other for all 

beam theory for aspect ratio 20 than aspect ratio 10. Moreover, the results for higher order 

deformation beam theories are almost the same and for ASDBT and ESDBT theory the 

dimensionless fundamental frequency and critical buckling load are the same. Also the 

sandwich FG microbeam become more stiffer with C-C boundary condition, it can be seen for 

example with PSDBT, C-C B.Cs, Model III and ( )0.1, 10 = =L h  the dimensionless 

natural frequency and critical buckling load is 12.5915 = , 66.6820=P whereas for C-S is

6.7038 = , 27.3493=P  and for S-S is 3.9494 = , 12.5753=P . 
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Table 4.13 Dimensionless natural frequency
2  = m mL h E  of sandwich micro-beams 

with various B.Cs with a cross-section shape (1-1-1) for 0, =T  1,=k
 

0.= =w pK K   
 

  Model II Model III 

B.Cs Beam theory 
10=L h

 
20=L h

 
10=L h

 
20=L h

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 3.7873 4.2735 4.9053 3.7951 4.4722 4.9615 3.9848 4.4939 5.2283 3.9999 4.5108 5.2489 

FSDBT 3.7400 4.2140 4.9040 3.7877 4.2679 4.9656 3.9426 4.4462 5.1734 3.9891 4.4985 5.2343 

PSDBT 3.7413 4.2154 4.9044 3.7880 4.2680 4.9659 3.9494 4.4498 5.1769 3.9934 4.4995 5.2352 

TSDBT 3.7414 4.2155 4.9044 3.7881 4.2680 4.9659 3.9495 4.4500 5.1771 3.9935 4.4995 5.2352 

ASDBT 3.7416 4.2157 4.9048 3.7881 4.2681 4.9660 3.9498 4.4503 5.1774 3.9935 4.4996 5.2352 

ESDBT 3.7416 4.2157 4.9048 3.7881 4.2681 4.9660 3.9498 4.4503 5.1774 3.9935 4.4996 5.2352 

HSDBT 3.7413 4.2154 4.9043 3.7880 4.2680 4.9659 3.9494 4.4498 5.1769 3.9934 4.4995 5.2352 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 6.7854 9.1325 12.2935 6.9905 9.5030 12.7971 6.7215 9.0684 13.0265 6.8902 9.3499 13.5116 

FSDBT 6.7677 9.1241 12.2592 6.9869 9.5018 12.7959 6.6989 9.0486 13.0085 6.8885 9.3481 13.5101 

PSDBT 6.7680 9.1256 12.2614 6.9873 9.5021 12.7963 6.7023 9.0539 13.0185 6.8896 9.3492 13.5121 

TSDBT 6.7680 9.1256 12.2635 6.9873 9.5021 12.7970 6.7038 9.0563 13.0214 6.8900 9.3499 13.5129 

ASDBT 6.7687 9.1269 12.2674 6.9875 9.5024 12.7980 6.7057 9.0595 13.0257 6.8906 9.3508 13.5141 

ESDBT 6.7687 9.1269 12.2674 6.9875 9.5024 12.7980 6.7057 9.0595 13.0257 6.8906 9.3508 13.5141 

HSDBT 6.7680 9.1256 12.2613 6.9873 9.5021 12.7964 6.7022 9.0537 13.0183 6.8896 9.3492 13.5129 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 11.8725 18.1624 25.2358 12.6024 19.5567 27.3984 12.6958 19.3758 26.9939 13.3157 20.7012 28.9954 

FSDBT 11.7336 18.0302 25.0750 12.5762 19.5392 27.3785 12.4588 19.1802 26.6978 13.2879 20.6664 28.9578 

PSDBT 11.8097 18.0899 25.1747 12.5849 19.5487 27.3844 12.5865 19.3303 26.9337 13.3049 20.6854 28.9893 

TSDBT 11.8138 18.0989 25.1894 12.5859 19.5509 27.3881 12.5915 19.3408 26.9505 13.3062 20.6882 29.9939 

ASDBT 11.8206 18.1130 25.2117 12.5877 19.5547 27.3941 12.5985 19.3552 26.9732 13.3081 20.6922 29.0002 

ESDBT 11.8206 18.1130 25.2117 12.5877 19.5547 27.3941 12.5985 19.3552 26.9732 13.3081 20.6922 29.0002 

HSDBT 11.8095 18.0893 25.1738 12.5849 19.5485 27.3842 12.5862 19.3295 26.9325 13.3048 20.6852 28.9890 
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Table 4.14 Dimensionless critical buckling load ( )2= mP PL E I  of sandwich micro-beams 

with various B.Cs with a cross-section shape (1-1-1) for 0, =T  1,=k
 

0.= =w pK K   

  Model II Model III 

B.Cs Beam theory 
10=L h

 
20=L h

 
10=L h

 
20=L h

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

0.1 =

 

0.2 =

 

0.3 =

 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 13.0412 16.5860 22.4544 13.0404 16.5825 22.4337 12.8058 16.2859 22.0486 12.8058 16.2859 22.0486 

FSDBT 12.7492 16.1878 21.9151 12.9829 16.4835 22.3154 12.5306 15.9360 21.5742 12.7359 16.1971 21.9276 

PSDBT 12.7552 16.1926 21.9174 12.9853 16.4847 22.3160 12.5743 15.9630 21.6054 12.7542 16.2040 21.9357 

TSDBT 12.7558 16.1933 21.9185 12.9855 16.4849 22.3163 12.5753 15.9642 21.6071 12.7544 16.2043 21.9361 

ASDBT 12.7573 16.1953 21.9212 12.9859 16.4854 22.3170 12.5770 15.9664 21.6099 12.7548 16.2048 21.9368 

ESDBT 12.7573 16.1953 21.9212 12.9859 16.4854 22.3170 12.5770 15.9664 21.6099 12.7548 16.2048 21.9368 

HSDBT 12.7552 16.1926 21.9174 12.9853 16.4847 22.3160 12.5743 15.9629 21.6054 12.7541 16.2040 21.9356 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 30.1968 53.0568 91.5864 31.5898 56.2687 97.2103 27.3403 48.1848 90.8051 28.4095 50.3902 95.7856 

FSDBT 30.1705 53.0206 91.2710 31.5858 56.2594 97.1310 27.3308 48.1712 90.7924 28.3921 50.3624 95.6958 

PSDBT 30.1771 53.0295 91.2970 31.5866 56.2609 97.1368 27.3403 48.1848 90.8051 28.3968 50.3756 95.7084 

TSDBT 30.1750 53.0253 91.2939 31.5860 56.2599 97.1320 

1320 

27.3496 48.2040 90.8311 28.3967 50.3809 95.7158 

ASDBT 30.1787 53.0328 91.3339 31.5870 56.2622 97.1436 27.3621 48.2300 90.8728 28.4001 50.3880 95.7275 

ESDBT 30.1787 53.0328 91.3339 31.5870 56.2622 97.1436 27.3621 48.2300 90.8728 28.4001 50.3880 95.7275 

HSDBT 30.1777 53.0309 91.2913 31.5866 56.2610 97.1364 27.3397 48.1836 90.8041 28.3941 50.3752 95.7080 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

EBBT 66.7958 153.587 296.654 73.4120

7 

172.213

6 

335.768 66.6998 155.021 299.254 72.5624 170.235 332.256 

FSDBT 65.9797 152.653 294.554 73.2783 172.015 335.468 66.6427 152.287

0 

294.242 71.7245 169.664 331.019 

PSDBT 66.5526 152.859 295.109 73.3847 172.057 335.574 66.6820 153.775 297.463 72.4624 170.105 331.972 

TSDBT 66.5723 152.922 295.530 73.3899 172.074 335.611 66.7115 153.864 297.659 72.4706 170.130 332.027 

ASDBT 66.6180 153.056 295.548 73.4029 172.112 335.696 66.7598 154.005 297.965 72.4843 170.170 332.115 

ESDBT 66.6180 153.056 295.548 73.4029 172.112 335.696 66.7598 154.005 297.965 72.4843 170.170 332.115 

HSDBT 66.5520 152.857 295.103 73.3846 172.057 335.573 66.6802 153.770 297.450 72.4619 170.103 331.968 
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Figs.(4.29 and 4.30) show the variation of the dimensionless buckling load and fundamental 

frequency for different boundary conditions (i.e. S-S, C-S, C-C) with respect to gradient index

( )k  of sandwich FG micro-beam with different cross section shapes (1-1-1, 1-2-1, 1-8-1, 2-

1-2) at certain dimensionless nonlocal parameter ( )0.1 , = dimensionless material length 

scale parameter ( )0.2 =  without elastic foundation ( )0w pK K= = , no temperature change

( )0 =T  and aspect ratio  ( )10=L h . It is explicit that dimensionless buckling load and 

fundamental frequency will be decrease with increase material property gradient index 
 
( )k  

for all cross section shapes with both Model II and Model III. It can seen also from this 

figures the sandwich FG microbeam with shape (1-8-1) and (2-1-2) represented maximum 

and minimum values of dimensionless critical buckling load and natural frequency 

respectively for Model III. In addition the dimensionless buckling load and fundamental 

frequency for Model II, it can be seen when the gradient index is less than 1.53 for example 

simply support boundary condition, the ( ), P of (1-8-1) is greater than ( ), P for (2-1-2). 

Moreover when the gradient index is greater than 1.53 the dimensionless of ( ), P  for (1-8-

1) is less than the other cross section shapes and the results for (2-1-2) is greater than the other 

cross section shapes. This is due to the ceramic portion for (1-8-1) with increase gradient 

index ( )k is lower than for (2-1-2) then the sandwich FG microbeam become more flexible 

with (1-8-1) than (2-1-2) for ( )k greater than 1.53. 
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Figure 4.29 Variation of the dimensionless fundamental frequency ( )  with the power-law 

exponent k for different cross-section shape sandwich FG microbeam, / 10,=L h  0.1, =  

0.2 =  and for different boundary conditions. 
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power law index, k
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Figure 4.30 Variation of the dimensionless buckling load ( )P  with the power-law exponent 

k for different cross-section shape sandwich FG microbeam, / 10,=L h , 0.1, = 0.2, =

and for different boundary conditions. 
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Tables (4.15), and (4.16) show the influence of power law index ( )k on the dimensionless 

critical buckling load ( )P  and fundamental frequency ( )  of size dependent sandwich FG 

micro-beam with various cross section shapes (symmetrical and un-symmetrical) and 

different boundary conditions (i.e. S-S, C-S, C-C) at certain aspect ratio / 10=L h , 

dimensionless nonlocal parameter ( )0.1 , = dimensionless material length scale parameter 

( )0.2 = , ( )0= =w pK K and 0 =T . It can be observed at lower values of power law index 

( )k  the dimensionless critical buckling load ( )P  and fundamental frequency ( )  for Model 

III is greater than the dimensionless of ( ), P  of Model II. Moreover, when the power law 

index ( )k increase for example with cross section shape (1-1-1) the dimensionless of ( ), P  

with Model II is greater than the dimensionless of ( ), P  at ( )1k  except with cross 

section shape (1-8-1). This is due to the core of the Model III is full ceramic, then with cross 

section shape (1-8-1) has ceramic portion is greater than for the (1-8-1) of Model II with FG 

core until with greater value of power law index ( )k . Moreover the size dependent of FG 

sandwich micro-beam with Model III becomes more stiffer than with Model II for lower 

values of the gradient index ( )k but when increasing the gradient index ( )k  the ceramic 

portion of sandwich FG micro-beam decrease and then the Model II have effective elasticity 

modulus is more than Model III except shape (1-8-1). Therefore the sandwich FG micro-beam 

with Model II has more rigidity stiffness than those Model III with higher value of ( )k .  
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Table 4.15 Dimensionless natural frequency
2  = m mL h E  of sandwich FG micro-

beams (PSDBT) for different gradient index / 10,=L h  0.1, =  0.2, = 0 =T and 

0= =P WK K . 

 
 

 Symmetrical cross section symmetrical cross section-Un 

B.Cs Model k 1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 Model 

II 

0 (ceramic) 4.5429 4.7946 5.4600 4.3866 5.1258 4.5429 4.2053 

1 4.2154 4.2274 4.2580 4.2090 4.5756 4.0804 4.0830 

3 4.0839 4.0230 3.8913 4.1310 4.3634 3.8937 4.0254 

5 4.0445 3.9638 3.7865 4.1067 4.3044 3.8319 4.0064 

(metal)  3.9729 3.8505 3.5416 4.0629 4.2106 3.6959 3.9706 

 Model

III 

0 (ceramic) 6.0991 6.0991 6.0991 6.0991 6.0991 6.0991 6.0991 

1 4.4498 4.7401 5.4510 4.2589 4.5059 4.7573 4.2268 

3 3.8928 4.2311 5.1618 3.6880 3.9805 4.2586 3.6600 

5 3.7494 4.0896 5.0716 3.5501 3.8481 4.1213 3.5252 

(metal)  3.5412 3.8677 4.9122 3.3612 3.6556 3.9077 3.3399 

C
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 10.1017 10.6615 12.1090 9.7458 11.3853 10.1017 9.3197 

1 9.3404 9.3653 9.4286 9.3273 10.1668 9.0225 9.0231 

3 9.0252 8.8801 8.5813 9.1396 9.685 8.5765 8.8820 

5 8.9289 8.7364 8.3365 9.0804 9.5531 8.4305 8.8357 

(metal)  8.7540 8.4667 7.7959 8.9731 9.3323 8.1244 8.7484 

 Model

III 

0 (ceramic) 13.4889 13.4889 13.4889 13.4889 13.4889 13.4889 13.4889 

1 9.9096 10.5460 12.0884 9.4869 10.0226 10.5812 9.4128 

3 8.6910 9.4379 11.4626 8.2316 8.8672 9.4943 8.1634 

5 8.3745 9.1287 11.2673 7.9239 8.5721 9.1935 7.8610 

(metal)  7.9089 8.6408 10.9222 7.4906 8.1340 8.7219 7.4318 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 19.6659 20.7555 23.4785 18.9499 22.1272 19.6659 18.0548 

1 18.0899 18.1321 18.2405 18.0676 19.7701 17.4205 17.4086 

3 17.4129 17.1027 16.5035 17.6626 18.8218 16.4673 17.0984 

5 17.2020 16.7906 15.9946 17.5333 18.5458 16.1598 16.9967 

(metal)  16.8186 16.2169 14.9520 17.2970 18.0819 15.5526 16.8066 

 Model

III 

0 (ceramic) 26.0465 26.0465 26.0465 26.0465 26.0465 26.0465 26.0465 

1 19.3303 20.5432 23.4350 18.5125 19.5162 20.6030 18.3601 

3 17.0166 18.4561 22.2665 16.1093 17.3044 18.5516 15.9588 

5 16.4078 17.8700 21.9018 15.5070 16.7279 17.9793 15.3620 

(metal)  15.4916 16.9361 21.2567 14.6236 15.8456 17.0709 14.4763 

 












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Table 4.16 Dimensionless critical buckling load  of sandwich FG microbeams 

(PSDBT) for different power law index / 10,=L h  0.1, =  0.2, = 0 =T and 

0.= =P WK K  

 
 

 Symmetrical cross section symmetrical cross section-Un 

B.Cs Model k 
1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 16.6435 17.3267 19.6233 16.3270 18.4117 16.6435 16.1174 

1 16.1926 16.2828 16.5129 16.1447 16.8804 16.0404 16.0630 

3 16.0699 16.0159 15.6936 16.0871 16.3531 15.7927 16.0352 

5 16.0456 15.9576 15.4584 16.0746 16.2386 15.6780 16.0243 

(metal)  15.9983 15.7845 14.5097 16.0575 16.1209 15.2550 15.9960 

 Model

III 

0 (ceramic) 22.1051 22.1051 22.1051 22.1051 22.1051 22.1051 22.1051 

1 15.9630 16.9297 19.5570 15.3850 15.3660 17.0521 15.3411 

3 13.8155 14.9092 18.3873 13.2555 14.4427 15.1033 13.2651 

5 13.3085 14.3698 18.0236 12.8114 14.0167 14.5928 12.8488 

l)(meta  12.6968 13.5930 17.3903 12.3728 13.5268 13.8751 12.4473 

C
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 55.2714 57.5394 64.8864 54.1483 61.0329 55.2714 53.2388 

1 53.4719 53.7515 54.4662 53.3237 55.9894 52.7923 52.8209 

3 52.8444 52.5653 51.4283 52.9964 54.1830 51.6581 52.5999 

5 52.6788 52.2513 50.5244 52.9050 53.7629 51.1872 52.5208 

(metal)  52.3629 51.4904 47.4060 52.7505 53.2893 49.7360 52.3507 

 Model

III 

0 (ceramic) 72.7518 72.7518 72.7518 72.7518 72.7518 72.7518 72.7518 

1 53.1315 56.2668 64.6622 51.2272 54.3706 56.6477 51.0579 

3 46.1639 49.7551 60.9318 44.2701 48.0939 50.3614 44.2523 

5 44.5000 48.0068 59.7702 42.7862 46.6727 48.7030 42.8468 

(metal)  42.4433 45.4700 57.7459 41.2200 44.9576 46.3458 41.3657 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

Model 

II 

0 (ceramic) 159.409 165.952 185.894 155.842 175.537 159.409 152.264 

1 152.859 153.575 155.417 152.481 161.168 150.131 150.018 

3 150.087 148.850 145.278 150.940 155.705 145.522 148.826 

5 149.244 147.430 142.150 150.459 154.316 143.786 148.415 

(metal)  147.655 144.452 133.291 149.592 152.362 139.404 147.601 

 Model

III 

0 (ceramic) 206.941 206.941 206.941 206.941 206.941 206.941 206.941 

1 153.775 162.480 185.225 148.348 156.896 163.463 147.752 

3 134.434 144.605 175.147 128.809 139.290 146.176 128.525 

5 129.728 139.763 172.003 124.488 135.160 141.562 124.363 

(metal)  123.675 132.646 166.519 119.442 129.809 134.885 119.409 

2= mP P L E I












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Tables (4.17) and (4.18) show the effects of the dimensionless nonlocal parameter 

( ) =ea L  and the dimensionless material length scale parameter ( ) = ml L  on the 

dimensionless buckling load and fundamental frequency for Modal II (1-1-1) and Modal III 

(1-1-1) of size dependent sandwich FG micro-beams for different boundary conditions (i.e. S-

S, C-S, C-C), without elastic foundation ( )0= =P WK K different dimensionless material 

length scale parameter ( ), various dimensionless nonlocal parameter ( ) and without 

thermal effect ( )0 . =T It is observed that the dimensionless buckling load and fundamental 

frequency increase when the material length scale parameter ( ) increase due to the size 

dependent sandwich FG microbeam have more stiffness-hardening with the strain gradient 

influence (strain gradient theory). On the other hand the size dependent sandwich FG 

microbeam with more stiffness-softening with the increase the dimensionless nonlocal 

parameter ( )  (nonlocal elasticity theory). Similar to the bending static analysis, the 

dimensionless critical buckling load and fundamental frequency of sandwich FG micro-beam 

with the classical elasticity theory can be achieved by putting 0 = = and also when  =  

for simply supported  boundary condition. On the other hand the classical elasticity theory can 

be obtained only when 0 = = with other boundary conditions (i.e. C-C, C-S). The value of 

the dimensionless buckling load and fundamental frequency of sandwich FG micro-beams 

may be larger or smaller than that the values of the dimensionless buckling load and 

fundamental frequency with the classical theory.  
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Table 4.17 Dimensionless critical buckling load ( )2= mP PL E I  of sandwich micro-beams 

with various B.Cs with a cross-section shape (1-1-1) for 0, =T  1,=k
 

0= =P WK K  

  
Model II 

B.Cs  

0 = 0.05 = 0.1 = 0.15 = 0.2 = 

S-S 

0 12.7552 12.4480 11.6094 10.4374 9.1449 

0.05 13.0699 12.7552 11.8958 10.6949 9.3705 

0.1 14.0141 13..6766 12.7552 11.4675 10.0475 

0.15 15.5877 15.2123 14.1874 12.7552 11.1757 

0.2 17.7907 17.3623 16.1926 14.5579 12.7552 

C-S 

0 25.8789 24.6149 21.4028 17.5496 13.9933 

0.05 29.3223 27.8544 24.2196 19.8593 15.8350 

0.1 37.0033 35.1341 30.4112 24.8420 19.7343 

0.15 48.9449 46.4188 40.1249 32.6712 25.9219 

0.2 65.2120 61.9253 53.4719 43.5211 34.4649 

C-C 

0 49.5896 45.0072 34.7363 25.0095 17.8565 

0.05 63.2802 57.1786 44.1302 31.7730 22.6855 

0.1 96.3064 86.7388 66.6527 47.8057 34.1343 

0.15 148.8720 133.983 102.778 73.8001 52.6977 

0.2 221.475 199.292 152.859 109.722 78.501 

  
Model III 

B.Cs  

0 = 0.05 = 0.1 = 0.15 = 0.2 = 

S-S 

0 12.5743 12.2715 11.4448 10.2894 9.0152 

0.05 12.8846 12.5743 11.7271 10.5433 9.2376 

0.1 13.8153 13.4827 12.5743 11.3049 9.9050 

0.15 15.3666 14.9966 13.9863 12.5743 11.0172 

0.2 17.5385 17.1161 15.9630 14.3515 12.5743 

C-S 

0 25.6289 24.3839 21.1882 17.3742 13.8567 

0.05 29.0704 27.6223 24.0022 19.6817 15.6971 

0.1 36.7443 34.8548 30.1922 24.6392 18.5731 

0.15 48.6321 46.0941 39.8372 32.4647 25.7294 

0.2 64.9507 61.5342 53.1315 43.2346 34.2683 

C-C 

0 49.4274 44.8682 34.6380 24.9649 17.8546 

0.05 63.2243 57.1259 44.1010 31.7852 22.7324 

0.1 96.8573 86.9226 66.7825 47.9087 34.2246 

0.15 149.613 134.614 103.218 74.1045 52.9205 

0.2 223.002 200.6010 153.775 110.341 78.9375 
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Table 4.18 Dimensionless natural frequency
2  = m mL h E  of sandwich micro-beams 

with various B.Cs with a cross-section shape (1-1-1) for  
0, =T  1,=k

 
0= =P WK K  

  
Model II 

B.Cs  

0 = 0.05 = 0.1 = 0.15 = 0.2 = 

S-S 

0 3.7413 3.7413 3.5693 3.3843 3.1678 

0.05 3.7872 3.7413 3.6131 3.4258 3.2067 

0.1 3.9216 3.8741 3.7413 3.5474 3.3205 

0.15 4.1359 4.0858 3.9458 3.7413 3.5019 

0.2 4.4186 4.3650 4.2154 3.9969 3.7413 

C-S 

0 5.8409 5.7575 5.5271 5.1967 4.8187 

0.05 6.4073 6.3087 6.0437 5.6643 5.2345 

0.1 7.3251 7.2461 6.9248 6.4756 5.9682 

0.15 8.5642 8.4246 8.0450 7.5083 6.9122 

0.2 9.9512 9.7867 9.3404 8.7134 8.0110 

C-C 

0 8.4284 8.2985 7.9405 7.4318 6.8564 

0.05 8.4284 8.2985 7.9405 7.4618 6.8564 

0.1 12.6593 12.4342 11.8168 10.9586 10.0162 

0.15 15.8700 15.5798 14.7931 13.7072 12.5123 

0.2 19.4164 19.0587 18.0899 16.7518 15.2908 

  
Model III 

B.Cs  

0 = 0.05 = 0.1 = 0.15 = 0.2 = 

S-S 

0 3.9494 3.9015 3.7678 3.5725 3.3440 

0.05 3.9978 3.9494 3.8140 3.6163 3.3850 

0.1 4.1397 4.0895 3.9494 3.7447 3.5051 

0.15 4.3659 4.3130 4.1652 3.9494 3.6967 

0.2 4.6643 4.6078 4.4498 4.2192 3.9494 

C-S 

0 6.1843 6.0959 5.8514 5.5009 5.1001 

0.05 6.7873 6.6847 6.4012 5.9985 5.5424 

0.1 7.8041 7.6801 7.3416 6.8615 6.3228 

0.15 9.0827 8.9345 8.5308 7.9639 7.3270 

0.2 10.5593 10.3846 9.9096 9.2426 8.4999 

C-C 

0 8.9575 8.8186 8.4361 7.8931 7.2798 

0.05 10.6510 10.4694 9.9711 9.2750 8.5021 

0.1 13.4983 13.2545 12.5941 11.6746 10.6663 

0.15 16.9483 16.6361 15.7903 14.6246 13.3440 

0.2 20.7586 20.3732 19.3303 17.8920 16.3241 
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Figs.(4.31 and 4.32) examine dimensionless nonlocal parameter ( ) =ea L  on the 

dimensionless critical buckling load ( )P  and fundamental frequency ( ) respectively of 

sandwich FG microbeam with a various gradient index ( ). . 0, 1, 3, 5, 10=i e k and different 

boundary conditions (i.e. S-S, C-S, C-C) at certain aspect ratio ( )10=L h , without elastic 

foundation
 
( )0= =w pK K  and no temperature change ( )0 =T  for Modal II (1-2-1) and 

Modal III (1-2-1). It is observed from Figs. (4.31 and 4.32) that when the dimensionless 

nonlocal parameter ( )  increase with fixed the dimensionless material length scale parameter 

( )0.2 = =ml L , the dimensionless buckling load and natural frequency of sandwich FG 

microbeam decrease for all cross section shapes and  different boundary conditions due to the 

sandwich FG micro-beam become more flexible with increase dimensionless nonlocal 

parameter (nonlocal elasticity theory).  

 

On the other hand for Figs. (4.33-4.34) present the effect of ( ) = ml L on the dimensionless 

buckling load ( )P and natural frequency ( ) of size dependent sandwich FG micro-beam 

with fixed the dimensionless nonlocal parameter ( )0.2 = =ea L  aspect ratio ( )10 ,=L h   

( )0= =w pK K  and ( )0 =T  for Modal II and Modal III with cross section (1-2-1). It can 

be noticed that the dimensionless critical buckling load ( )P and natural frequency ( )  

decrease with decrease the ( )  for different power law index ( )k and different boundary 

conditions.  
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Figure 4.31 Effect of the nonlocal parameter ( )  on the dimensionless buckling load P  of 

sandwich FG microbeam with a various boundary conditions (S-S, C-S, C-C) for different 

power law index ( )k with 10=L h , 0= =P WK K , 0 =T , 0.2 =  and cross section shape (1-

2-1). 
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Figure 4.32 Effect of the nonlocal parameter ( )  on the dimensionless fundamental frequency 

  of sandwich FG microbeam with a various boundary conditions (S-S, C-S, C-C) for 

different power law index ( )k with 10,=L h 0,= =P WK K 0, =T 0.2 = and cross section 

shape (1-2-1). 
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Figure 4.33 Effect of the material length scale parameter ( )  on the dimensionless buckling 

load P  of sandwich FG microbeam with a various boundary conditions (S-S, C-S, C-C) for 

different power law index ( )k with 10,=L h 0,= =P WK K 0, =T 0.2 = and cross section 

shape (1-2-1). 
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Figure 4.34 Effect of the material length scale parameter ( )  on the dimensionless 

fundamental frequency   of sandwich FG microbeam with a various boundary conditions (S-

S, C-S, C-C) for different power law index ( )k with 10,=L h 0,= =P WK K 0, =T 0.2 =

and cross section shape (1-2-1). 
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From Fig.(4.35 and 4.36) it can be shows the three dimension plot of the dimensionless 

buckling load P   and the dimensionless fundamental frequency ( )  of simply supported 

sandwich FG micro-beams with Model II, III for (1-1-1) cross section shape with the change 

of the dimensionless material length scale parameter ( ) = ml L  and the dimensionless 

nonlocal parameter ( ) =ea L .  

 

 

Figure 4.35 The nonlocal parameter ( )  and the dimensionless material length scale 

parameter on the dimensionless buckling load P   of sandwich FG microbeam with a cross 

section shape (1-1-1) and S-S boundary conditions for 2=k , 10=L h , 0= =P WK K and

0 =T . 

 

In Tables 4.19 and 4.20, the first three dimensionless frequencies of the size dependent 

sandwich micro-beams are given for various values of material property gradient index  ( )k , 

symmetrical and un- symmetrical cross section shapes, various boundary conditions (i.e. S-S, 

C-S, C-C) and length to thickness ratio ( )10=L h for Model II and Model III. It can be 

observed that the dimensionless frequency of sandwich FG micro-beams decrease when the  

gradient index ( )k increase for all model with different cross section shapes. 
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Figure 4.36 The nonlocal parameter ( )  and the dimensionless material length scale  

parameter on the dimensionless fundamental frequency   of sandwich FG microbeam with a 

cross section shape (1-1-1) and S-S boundary conditions for 2=k , 10=L h , 0= =P WK K

and 0 =T . 

 

The reason of this, the size dependent sandwich FG microbeams become more stiffer with 

increase of effective elasticity modulus with decrease of gradient index ( )k . It can be seen 

from tables (4.19 and 4.20) The Model II gives the dimensionless fundamental frequency 

smaller than Model III of sandwich FG micro-beams due to the core of the Model III is fully 

ceramic then the ceramic fraction of Model II is less than the ceramic fraction of Model III. 

Moreover the Model III of sandwich FG micro-beam has the effective elasticity modulus is 

larger than that of the effective elasticity modulus Model II. 
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Table 4.19 The three dimensionless natural frequency
2  = m mL h E  of sandwich FG 

microbeams Model II with C-C B.C for 10,=L h 0.2, = , 0.1, = and 0= =P WK K . 

B.Cs k  
Symmetrical cross section symmetrical cross section-Un 

1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

0 

1 

(cera

mic) 

4.5424 4.7941 5.4592 4.3861 5.1252 4.5424 4.2050 

2 20.9987 22.1632 25.1987 20.2631 23.6776 20.9987 19.3880 

3 54.0852 57.1970 63.5204 51.7682 60.5832 54.0852 48.5424 

1 

1 

(cera

mic) 

4.2151 4.2271 4.2577 4.2086 4.5751 4.0801 4.0827 

2 19.4337 19.4886 19.6284 19.4046 21.1398 18.7843 18.7831 

3 48.5557 48.5709 48.6063 48.5473 54.0943 46.0821 46.0572 

3 

1 

(cera

mic) 

4.0836 4.0228 3.8911 4.1307 4.3629 3.8936 4.0251 

2 18.7879 18.4925 17.8800 19.0206 20.1473 17.8710 18.4955 

3 46.0599 44.8817 42.8481 47.0316 51.2158 42.7379 44.8705 

5 

1 

(cera

mic) 

4.0442 3.9636 3.7864 4.1064 4.3040 3.8318 4.0062 

2 18.5913 18.1988 17.3768 18.8998 19.8674 17.5719 18.4012 

3 45.2630 43.7259 41.0952 46.5396 50.3026 41.9745 44.4828 

 

1 

(cera

mic) 

3.9727 3.8504 3.5416 4.0626 4.2102 3.6959 3.9704 

2 18.2348 17.6473 16.2582 18.6811 19.4137 16.9414 18.2235 

3 43.6111 42.1245 38.8878 45.6319 48.6446 40.4455 43.7645 

C
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

0 

1 

(cera

mic) 

10.1017 10.6615 12.1090 9.7458 11.3853 10.1017 9.3197 

2 33.8480 35.7221 40.4444 32.6224 38.0943 33.8480 31.0973 

3 69.6876 73.5553 83.0866 67.0966 78.3622 69.6876 63.7740 

1 

1 

(cera

mic) 

9.3404 9.3653 9.4286 9.3273 10.1668 9.0225 9.0231 

2 31.1616 31.2390 31.4380 31.1207 34.0355 30.0262 30.0018 

3 63.9021 64.0570 64.4596 63.8205 70.0218 61.4464 61.3353 

3 

1 

(cera

mic) 

9.0252 8.8801 8.5813 9.1396 9.685 8.5765 8.8820 

2 30.0098 29.4847 28.4667 30.4323 32.4068 28.4050 29.4759 

3 61.3543 60.2096 58.1011 62.2929 66.6102 57.8845 60.1574 

5 

1 

(cera

mic) 

8.9289 8.7364 8.3365 9.0804 9.5531 8.4305 8.8357 

2 29.6516 28.9544 27.5989 30.2127 31.9344 27.882 29.3034 

3 60.5524 59.0302 56.2330 61.8016 65.6012 56.7509 59.7717 

 

1 

(cera

mic) 

8.7540 8.4667 7.7959 8.9731 9.3323 8.1244 8.7484 

2 29.0015 27.9799 25.8132 29.8122 31.1434 26.8459 28.9811 

3 59.1014 56.9068 52.6205 60.9031 63.8760 54.6132 59.0566 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

0 

1 

(cera

mic) 

19.6659 20.7555 23.4785 18.9499 22.1272 19.6659 18.0548 

2 50.1759 52.9665 59.7187 48.2825 56.3889 50.1759 45.8253 

3 91.2935 96.3657 108.3970 87.7805 102.4830 91.2935 83.1161 

1 

1 

(cera

mic) 

18.0899 18.1321 18.2405 18.0676 19.7701 17.4205 17.4086 

2 45.9098 46.0118 46.2772 45.8560 50.3907 44.0888 44.0072 

3 83.2618 83.4389 83.9050 83.1690 91.6226 79.8200 79.6147 

3 

1 

(cera

mic) 

17.4129 17.1027 16.5035 17.6626 18.8218 16.4673 17.0984 

2 44.0202 43.1686 41.6244 44.7210 47.9147 41.4532 43.1294 

3 79.6404 78.0220 75.1934 80.9884 87.0644 74.7933 77.9192 

5 

1 

(cera

mic) 

17.2020 16.7906 15.9946 17.5333 18.5458 16.1598 16.9967 

2 43.4235 42.2934 40.2529 44.3551 47.1758 40.6175 42.8421 

3 78.4883 76.3403 72.6148 80.2820 85.6826 73.2144 77.3651 

 

1 

(cera

mic) 

16.8186 16.2169 14.9520 17.2970 18.0819 15.5526 16.8066 

2 42.3433 40.7231 37.6485 43.6852 45.9012 39.0617 42.3101 

3 76.4073 73.3616 67.9383 78.9865 83.2617 70.3748 76.3437 
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Table 4.20 The three dimensionless natural frequency
2  = m mL h E  of sandwich FG 

microbeams Model III (PSDBT) for 10,=L h 0.2, = , 0.1, = and 0= =P WK K . 

B.Cs k  
Symmetrical cross section symmetrical cross section-Un 

1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

0 

1 

(cera

mic) 

6.0981 6.0981 6.0981 6.0981 6.0981 6.0981 6.0981 

2 28.1141 28.1141 28.1141 28.1141 28.1141 28.1141 28.1141 

3 67.6113 67.6113 67.6113 67.6113 67.6113 67.6113 67.6113 

1 

1 

(cera

mic) 

4.4493 4.7395 5.4502 4.2584 4.5055 4.7567 4.2263 

2 20.6059 21.9293 25.1582 19.7299 20.8449 22.0038 19.5776 

3 49.8501 52.9864 60.5987 47.7566 50.3618 53.1501 47.3759 

3 

1 

(cera

mic) 

3.8925 4.2307 5.1611 3.6877 3.9801 4.2582 3.658 

2 18.0684 19.6158 23.8424 17.1203 18.4392 19.7343 16.9814 

3 43.8440 47.5272 57.4878 41.5511 44.6283 47.7852 41.1848 

5 

1 

(cera

mic) 

3.7490 4.0892 5.0709 3.5498 3.8478 4.1208 3.5250 

2 17.4118 18.9722 23.4325 16.4836 17.8279 19.1082 16.3562 

3 42.2816 46.0074 56.5207 40.0177 43.1548 46.3024 39.6692 

 

1 

(cera

mic) 

3.5410 3.8673 4.9116 3.3610 3.6553 3.9074 3.3397 

2 16.4501 17.9599 22.7091 15.5919 16.9249 18.1304 15.4736 

3 39.9611 43.6077 54.8162 37.8053 40.9331 43.9728 37.4557 

C
-S

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

0 

1 

(cera

mic) 

13.4889 13.4889 13.4889 13.4889 13.4889 13.4889 13.4889 

2 44.9433 44.9433 44.9433 44.9433 44.9433 44.9433 44.9433 

3 92.1600 92.1600 92.1600 92.1600 92.1600 92.1600 92.1600 

1 

1 

(cera

mic) 

9.9096 10.5460 12.0884 9.4869 10.0226 10.5812 9.4128 

2 33.2736 35.3598 40.3708 31.8719 33.6010 35.4653 31.6129 

3 68.7075 72.9128 82.9431 35.3595 35.3595 35.3595 65.2955 

3 

1 

(cera

mic) 

8.6910 9.4379 11.4626 8.2316 8.8672 9.4943 8.1634 

2 29.2881 31.7538 38.3345 27.7398 29.7918 31.9214 27.4856 

3 60.6913 65.6895 78.8547 57.4901 61.5391 65.9844 56.9134 

5 

1 

(cera

mic) 

8.3745 9.1287 11.2673 7.9239 8.5721 9.1935 7.8610 

2 28.2440 30.7450 37.7003 26.7091 28.8036 30.9366 26.4648 

3 58.5762 63.6668 77.5845 55.3706 59.5058 64.0012 54.7984 

 

1 

(cera

mic) 

7.9089 8.6408 10.9222 7.4906 8.1340 8.7219 7.4318 

2 26.6791 29.1432 36.5809 25.2038 27.2977 29.3791 24.9559 

3 55.3501 60.4375 75.3465 52.1676 56.3352 60.8406 51.5530 

C
-C

 B
o

u
n

d
a

ry
 C

o
n

d
it

io
n

 

0 

1 

(cera

mic) 

26.0465 26.0465 26.0465 26.0465 26.0465 26.0465 26.0465 

2 66.0697 66.0697 66.0697 66.0697 66.0697 66.0697 66.0697 

3 119.7690 119.7690 119.7690 119.7690 119.7690 119.7690 119.7690 

1 

1 

(cera

mic) 

19.3303 20.5432 23.4350 18.5125 19.5162 20.6030 18.3601 

2 49.4930 52.5071 59.6095 47.4303 49.8648 52.6333 47.0198 

3 90.2223 95.5942 108.1870 86.5099 90.7796 95.7957 85.7392 

3 

1 

(cera

mic) 

17.0166 18.4561 22.2665 16.1093 17.3044 18.5516 15.9588 

2 43.7644 47.3733 56.7330 41.4290 44.3256 47.5712 40.9950 

3 80.0365 86.4970 103.0600 75.7780 80.8430 86.8031 74.9275 

5 

1 

(cera

mic) 

16.4078 17.8700 21.9018 15.5070 16.7279 17.9793 15.3620 

2 42.2401 45.9277 55.8376 39.8908 42.8537 46.1519 39.4565 

3 77.3096 83.9361 101.4700 72.9864 78.1702 84.2780 72.1165 

 

1 

(cera

mic) 

15.4916 16.9361 21.2567 14.6236 15.8456 17.0709 14.4763 

2 39.8901 43.6041 54.2574 37.5341 40.5329 43.8726 37.0641 

3 73.0348 79.7997 98.6710 68.5798 73.8717 80.1936 67.6067 
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The effect of the dimensionless Winkler ( )WK and Pasternak shear parameters ( )PK on the 

dimensionless buckling load and fundamental frequency of sandwich FG micro-beam are 

given in table (4.21) for various values of aspect ratio ( )5, 10, 20, 50 ,=L h different cross 

section shapes, and various boundary conditions (i.e. S-S, C-S, C-C) for Model II and Model 

III. It can be seen from these tables that the dimensionless buckling load and fundamental 

frequency increase with increase  the Winkler and Pasternak shear parameters from 0 to 0.2 

for consider models of sandwich FG microbeam for Model II , III because the fact that the 

size dependent sandwich FG microbeam have more effective elasticity modulus and make 

sandwich FG microbeam more stiffer when increase the ( )WK and ( )PK . It is observed that 

for example when the dimensionless Winkler ( )WK and Pasternak shear parameters ( )PK

equal to zero (without elastic foundation) with Model III (1-2-1) cross section shape and 

simply supported boundary condition. The value of dimensionless critical buckling load ( )P is 

0.0120 when sandwich FG micro-beam without elastic foundation and increase to 0.2322 

when the 0.2= =P WK K . As well as for dimensionless fundamental frequency ( )  is 0.4057 

when sandwich FG micro-beam without elastic foundation and increase to 1.7832 when the  

0.2= =P WK K . Also it is explicit that the effect of the Pasternak shear modulus ( )PK  is more 

pronounced than that of the Winkler elastic modulus ( )WK on the dimensionless buckling load 

and fundamental frequency the size dependent of sandwich FG microbeams. Also as expected 

C-C sandwich FG micro-beam has greatest value of dimensionless buckling load and natural 

frequency when compared with other boundary conditions with S-S and C-S. 
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Table 4.21 Dimensionless natural frequency  = m mL E  of sandwich FG microbeams for 0, =T 0.2, = , 0.1, =  and 2=k with different 

cross section, aspect ratio, different B.Cs and elastic foundations. 

  

  
Model II Model III 

B
.C

s
 

PK
 

WK
 

Cross-

section 

shape 
5=L h 10=L h 20=L h

 

50=L h 5=L h 10=L h 20=L h
 

50=L h 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 

1-1-1 0.7868 0.4125 0.2089 0.0838 0.7797 0.4057 0.2050 0.0822 

1-8-1 0.7625 0.4000 0.2026 0.0813 1.0053 0.5254 0.2658 0.1067 

2-1-2 0.7931 0.4155 0.2104 0.0844 0.7405 0.38522 0.1946 0.0781 

0 0.2 

1-1-1 0.9329 0.6535 0.5499 0.5165 0.9373 0.6648 0.5670 0.5355 

1-8-1 0.9060 0.6360 0.5358 0.5038 1.1663 0.7962 0.6565 0.6103 

2-1-2 0.9401 0.6584 0.5540 0.5199 0.8960 0.6396 0.5482 0.5189 

0.2 0.2 

1-1-1 1.8293 1.7213 1.6899 1.6808 1.8833 1.7832 1.7549 1.7466 

1-8-1 1.7837 1.6783 1.6477 1.6388 2.1929 2.0411 1.9969 1.9841 

2-1-2 1.8426 1.7340 1.7026 1.6934 1.8202 1.7271 1.7007 1.6931 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 

1-1-1 1.5985 0.9125 0.4751 0.1923 1.6245 0.9053 0.4674 0.1887 

1-8-1 1.5427 0.8837 0.4606 0.1865 2.0631 1.1664 0.6052 0.2447 

2-1-2 1.6147 0.9200 0.4786 0.1937 1.5427 0.8595 0.4437 0.1791 

0 0.2 

1-1-1 1.6749 1.0435 0.6958 0.5442 1.7054 1.0469 0.7054 0.5618 

1-8-1 1.6182 1.0123 0.6767 0.5303 2.1459 1.3105 0.8522 0.6488 

2-1-2 1.6914 1.0519 0.7010 0.5483 1.6227 0.9993 0.6776 0.5433 

0.2 0.2 

1-1-1 2.4707 2.1380 1.9782 1.8944 2.5629 2.2066 2.0484 1.9658 

1-8-1 2.4008 2.0816 1.9275 1.8465 3.0535 2.5701 2.3519 2.2412 

2-1-2 2.4924 2.1546 1.9932 1.9086 2.4644 2.1308 1.9823 1.9044 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 

1-1-1 2.8206 1.7630 0.9557 0.3923 2.9362 1.7708 0.9440 0.3853 

1-8-1 2.7093 1.7036 0.9260 0.3805 3.6690 2.2644 1.2194 0.4994 

2-1-2 2.8554 1.7794 0.9632 0.3952 2.7877 1.6811 0.8962 0.3657 

0 0.2 

1-1-1 2.8652 1.8342 1.0824 0.6427 2.9821 1.8471 1.0817 0.6545 

1-8-1 2.7536 1.7737 1.0503 0.6254 3.7166 2.3418 1.3589 0.7812 

2-1-2 2.9001 1.8510 1.0908 0.6475 2.8332 1.7566 1.0321 0.6299 

0.2 0.2 

1-1-1 3.5421 2.8131 2.3940 2.1730 3.6879 2.8923 2.4699 2.2519 

1-8-1 3.4209 2.7318 2.3305 2.1175 4.4567 3.4456 2.8735 2.5802 

2-1-2 3.5797 2.8369 2.4126 2.1895 3.5287 2.7813 2.3852 2.1799 



143 
 

Table 4.22 Dimensionless critical buckling load ( )= mP P E bh  of sandwich FG microbeams for 0, =T 0.2, = , 0.1, =  and 2=k with different 

cross section, aspect ratio, different B.Cs and elastic foundations. 

  

  
Model II Model III 

B
.C

s
 

PK
 

WK 
Cross-

section 

shape 
5=L h 10=L h 20=L h

 

50=L h 5=L h 10=L h 20=L h
 

50=L h 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 

1-1-1 0.0499 0.0134 0.0034 0.0005 0.0455 0.0120 0.0030 0.0004 

1-8-1 0.0491 0.0132 0.0033 0.0005 0.0585 0.0156 0.0039 0.0006 

2-1-2 0.0499 0.0134 0.0034 0.0005 0.0436 0.0115 0.0029 0.0004 

0 0.2 

1-1-1 0.0701 0.0336 0.0236 0.0082 0.0658 0.0322 0.0225 0.0079 

1-8-1 0.0694 0.0335 0.0236 0.0082 0.0788 0.0358 0.0242 0.0087 

2-1-2 0.0702 0.0336 0.0236 0.0082 0.0639 0.0317 0.0218 0.0077 

0.2 0.2 

1-1-1 0.2701 0.2336 0.2236 0.2082 0.2658 0.2322 0.2225 0.2079 

1-8-1 0.2694 0.2335 0.2236 0.2082 0.2788 0.2358 0.2242 0.2087 

2-1-2 0.2702 1.7340 1.7026 1.6934 0.2639 0.2317 0.2218 0.2077 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 

1-1-1 0.1437 0.0441 0.0117 0.0019 0.1368 0.0401 0.0104 0.0017 

1-8-1 0.1406 0.0435 0.0115 0.0018 0.1716 0.0517 0.0136 0.0022 

2-1-2 0.1445 0.0442 0.0117 0.0019 0.1311 0.0384 0.0100 0.0016 

0 0.2 

1-1-1 0.1572 0.0572 0.0242 0.0098 0.1502 0.0531 0.0229 0.0092 

1-8-1 0.1542 0.0566 0.0240 0.0097 0.1851 0.0648 0.0262 0.0107 

2-1-2 0.1580 0.0572 0.0242 0.0098 0.1445 0.0514 0.0224 0.0090 

0.2 0.2 

1-1-1 0.3572 0.2572 0.2242 0.2098 0.3502 0.2531 0.2229 0.2092 

1-8-1 0.3542 0.2566 0.2240 0.2097 0.3851 0.2648 0.2262 0.2107 

2-1-2 0.3580 0.2572 0.2242 0.2098 0.3445 0.2514 0.2224 0.2090 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

0 0 

1-1-1 0.3437 0.1258 0.0356 0.0059 0.3434 0.1167 0.0320 0.0052 

1-8-1 0.3336 0.1236 0.0351 0.0058 0.4181 0.1486 0.0415 0.0068 

2-1-2 0.3469 0.1261 0.0356 0.0059 0.3291 0.1119 0.0307 0.0050 

0 0.2 

1-1-1 0.3539 0.1355 0.0451 0.0147 0.3535 0.1264 0.0415 0.0139 

1-8-1 0.3438 0.1333 0.0447 0.0146 0.4282 0.1584 0.0511 0.0158 

2-1-2 0.3571 0.1359 0.0451 0.0147 0.3391 0.1216 0.0402 0.0136 

0.2 0.2 

1-1-1 0.5539 0.3355 0.2451 0.2147 0.5535 0.3264 0.2415 0.2139 

1-8-1 0.5438 0.3333 0.2447 0.2146 0.6282 0.3584 0.2511 0.2158 

2-1-2 0.5571 0.3359 0.2451 0.2147 0.5391 0.3216 0.2402 0.2136 
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The effect of the dimensionless Winkler and Pasternak shear parameters ( ),P WK K on the 

dimensionless buckling load and fundamental frequency of sandwich FG micro-beam with 

different gradient index ( )0,1,3,5=k  are presented in Figs.(4.37 and 4.38) respectively for a 

certain the aspect ratio ( )10 ,=L h dimensionless nonlocal parameter ,dimensionless 

material length scale parameter 0.2 =  and cross section type (1-1-1) of Model III with 

different boundary conditions (i.e. S-S, C-S, C-C). It can be observed that the dimensionless 

buckling load and fundamental frequency increase with increasing the dimensionless Winkler 

parameter ( )WK and  Pasternak shear parameter ( )PK  in the right when ( )0=PK  and left side 

when ( )0=WK  of figure respectively. 
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Figure 4.37 Effect of the Winkler and Pasternak shear parameter on the dimensionless 

fundamental frequency, ( )
 
for 10=L h  and 0.1, 0.2 = = of S-S sandwich microbeam 

for Model III (1-1-1) .(a)  0=WK   (b) 0=PK  with various boundary conditions. 
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Figure 4.38 Effect of the Winkler and Pasternak shear parameter on the dimensionless 

buckling load, ( )P for 10=L h  and 0.1, 0.2 = = of SS sandwich microbeam for Model 

III (1-1-1) .(a)  0=WK   (b) 0=PK  with various boundary conditions. 
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The effect of temperature change ( )T  on the dimensionless critical buckling load ( )P  and 

fundamental frequency ( )
 
with different value of thermal effect ( )0, 20, 40, 80 =T and 

various cross section shapes (symmetrical and un-symmetrical) of size dependent FG micro-

beams respectively, for certain ( )0= =W PK K power law index 1,=k  0.2, = dimensionless 

nonlocal parameter 0.1, = ,and various boundary conditions can be observed in tables 4.23 

and 4.24 respectively. . 

 

Table 4.23 Dimensionless natural frequency ( )2  = m mL h E  of sandwich FG 

microbeams (PSDBT) with 1,=k 10,=L h 0.2, = 0.1, =  and 0.= =W PK K  

 
 

 Symmetrical cross section symmetrical cross section-Un 

B.Cs Model T 
1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 4.2154 4.2274 4.2580 4.2090 4.5756 4.0804 4.0830 

20 4.0499 4.0593 4.0855 4.0457 4.4181 3.9086 3.9175 

40 3.8907 3.8980 3.9209 3.8884 4.2727 3.7410 3.7551 

80 3.5080 3.5080 3.5186 3.5120 3.9094 3.3418 3.3737 

 Model

III 

0 4.4498 4.7401 5.4510 4.2589 4.5059 4.7573 4.2268 

20 4.2810 4.5816 5.3129 4.0825 4.3393 4.5994 4.0490 

40 4.1255 4.4388 5.1945 3.9172 4.1859 4.4572 3.8819 

80 3.7734 4.1156 4.9246 3.5428 3.8393 4.1354 3.5033 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 9.3404 9.3653 9.4286 9.3273 10.1668 9.0225 9.0231 

20 9.2338 9.2569 9.3173 9.2221 10.0654 8.9118 8.9163 

40 9.1258 9.1472 9.2047 9.1155 9.9281 8.7996 8.8081 

80 8.9055 8.9232 8.9748 8.8984 9.7542 8.5703 8.5874 

 Model

III 

0 9.9096 10.5460 12.0884 9.4869 10.0226 10.5812 9.4128 

20 9.8011 10.4440 11.9993 9.3736 9.9154 10.4796 9.2986 

40 9.6913 10.3409 11.9096 9.2588 9.8069 10.3769 9.1829 

80 9.4675 10.1314 11.7278 9.0245 9.5860 10.1681 8.9467 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 18.0899 18.1321 18.2405 18.0676 19.7701 17.4205 17.4086 

20 18.0192 18.0603 18.1668 17.9978 19.7030 17.3470 17.3370 

40 17.9481 17.9881 18.0926 17.9277 19.6356 17.2731 17.2664 

80 17.8051 17.8427 17.9434 17.7867 19.5000 17.1242 17.1228 

 Model

III 

0 19.3303 20.5432 23.4350 18.5125 19.5162 20.6030 18.3601 

20 19.2587 20.4758 23.3759 18.4377 19.4453 20.5358 18.2848 

40 19.1867 20.4081 23.6167 18.3626 19.3741 20.4684 18..2090 

80 19.0419 20.2720 23.1977 18.2113 19.2309 20.3327 18.0565 
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The dimensionless critical buckling load and natural frequency decrease with the increase of 

temperature change ( )T  from 0 to 20, 40 and 80. The effective elasticity modulus of 

sandwich FG micro-beam decrease when the temperature change increase and make sandwich 

FG micro-beam more softening. This lead to lower dimensionless fundamental frequency and 

buckling load for all cross section shapes and various boundary conditions. 

 

Table 4.24 Dimensionless critical buckling load ( )2= mP PL E I  of sandwich FG microbeams 

(PSDBT) with 1,=k 10,=L h 0.2, = 0.1, = and 0= =W PK K . 

 
 

 Symmetrical cross section nsymmetrical cross sectio-Un 

B.Cs Model T 
1-1-1 1-2-1 1-8-1 2-1-2 1-2-3 2-3-1 3-1-2 

S
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 16.1926 16.2828 16.5129 16.1447 16.8804 16.0404 16.0630 

20 14.9456 15.0128 15.2015 14.9161 15.7379 14.7183 14.7869 

40 13.7943 13.8442 14.0015 13.7788 14.7190 13.4833 13.5868 

80 11.3961 11.4055 11.4902 11.4129 12.5576 10.9262 11.1105 

 Model

III 

0 13.7208 14.8464 17.7595 13.0158 14.1238 14.9688 12.9401 

20 14.7745 15.8164 18.5785 14.1363 15.1774 15.9388 14.0772 

40 13.7208 14.8464 17.7595 13.0158 14.1238 14.9688 12.9401 

80 11.4786 12.7630 15.9621 10.6465 11.8817 12.8854 10.5390 

C
-S

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 53.4719 53.7515 54.4662 53.3237 55.9894 52.7923 52.8209 

20 52.2280 52.4845 53.1575 52.0983 54.8509 51.4726 51.5474 

40 50.9841 51.2175 51.8491 50.8728 53.7124 50.1529 50.2739 

80 48.4963 48.6835 49.2320 48.4220 51.4355 47.5135 47.7269 

 Model

III 

0 53.1315 56.2668 64.6622 51.2272 54.3706 56.6477 51.0579 

20 51.9468 55.1579 63.6898 49.9819 53.1859 55.5389 49.7974 

40 50.7622 54.0491 62.7174 48.7366 52.0013 54.4300 48.5370 

80 48.3929 51.8314 60.7726 46.2460 49.6320 52.2123 46.0160 

C
-C

 B
o

u
n

d
a

ry
 

C
o

n
d

it
io

n
 

Model 

II 

0 152.859 153.575 155.417 152.481 161.168 150.131 150.018 

20 151.615 152.308 154.108 151.255 160.030 148.812 148.744 

40 150.371 151.041 152.800 150.030 158.891 147.492 147.471 

80 147.884 148.507 150.183 147.579 156.614 144.853 144.924 

 Model

III 

0 153.775 162.480 185.225 148.348 156.896 163.463 147.752 

20 152.591 161.371 184.253 147.103 155.711 162.354 146.492 

40 151.4060 160.2620 183.2800 145.8580 154.5260 161.2450 145.2310 

80 149.0370 158.0450 181.3360 143.3670 152.1570 159.0270 142.7100 
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Figs.(4.39) and (4.40) present the effect of temperature change ( )T on the dimensionless 

buckling load and fundamental frequency as a function of the various aspect ratio ( )L h  with 

a certain power law index ( )2=k , 0.1, =  0.2, = Model III with cross section shape (1-2-1) 

and various boundary conditions (i.e. S-S, C-S, C-C) for sandwich FG micro-beam. For given 

value of an aspect ratio ( )L h , the dimensionless critical buckling load ( )P and fundamental 

frequency ( )  decrease with increase the temperature change ( )T due to with larger 

temperature change ( )T make sandwich FG microbeam with less stiffness. Therefore the 

sandwich FG micro-beam become flexible and it can also explicit that the temperature change 

is more significant for S-S boundary condition and insensitive to for C-C boundary condition. 

It can be noticed also when the aspect ratio is less than 15 the dimensionless buckling load 

and fundamental frequency decrease rapidly with increase the aspect ratio for all boundary 

conditions. Then ( )P  and ( ) are insignificant to thermal effect when the aspect ratio less than 

15 and more significant after that.  
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Figure 4.39 Thermal effect on the dimensionless fundamental frequency,   = m mL E  

with 2,=k 0,= =W PK K 0.2, = 0.1, = and cross section shape (1-2-1) sandwich FG micro-

beam. 
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Figure 4.40 Thermal effect on the dimensionless critical buckling load ( )= mP P E bh  with 

2,=k 0,= =W PK K 0.2, = 0.1, = and cross section shape (1-2-1) sandwich FG micro-

beam. 
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Fig. (4.41) gives the influence of various boundary conditions on the dimensionless critical 

buckling load and fundamental frequency of size dependent sandwich FG microbeam Model 

III with cross section shape (1-1-1) for fixed 0.2, = 0.1, = 10,=L h without elastic 

foundation ( )0= =W PK K and 0. =T  It is observed that the dimensionless buckling load and 

fundamental frequency of C-C boundary condition is much more C-S and S-S respectively. 

This is due to the fact that sandwich FG microbeam with C-C has more rigidity stiffness than 

those in C-S and S-S sandwich FG microbeam respectively. 

 

power law index, k

0 1 2 3 4 5 6 7 8 9 10

N
o
n
-d

im
e
n
si

o
n
a
l 

b
u
ck

li
n
g
 l

o
a
d
 ,
P

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
C-C

C-S

S-S

Model III

 

Figure 4.41 Variation of the dimensionless fundamental frequency ( )  and buckling load ( )P

with the power-law exponent ( )k for cross-section shape (1-1-1) sandwich FG microbeam, 

10,=L h 0.2, = 0.1, = and for different boundary conditions. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, the static, free vibration, buckling analysis, and dynamic stability of size-

dependent sandwich FG micro-beam subjected to the parametric excitation resting on elastic 

Winkler and Pasternak foundations with temperature change is illustrated. According to the  

different higher-order deformation micro-beam theories (HOBTs), Timoshenko beam theory 

(TBT) and Euler beam theory (EBT) in conjunction with the nonlocal strain gradient theory 

(NLSGT) with the Hamilton's principle, the governing equations and associated various 

boundary condition (i.e. simply-simply, clamped-clamped, and clamped-simply) can be 

obtained for sandwich FG micro-beam structure. The effective material properties of the 

functionally graded part of sandwich FG micro-beam are varied gradually through the 

thickness are calculated by using the Mori-Tanaka homogenization and the rule of mixture 

method. The dynamic stability, static bending, buckling and fundamental frequency can be 

determined with various boundary conditions (i.e. simply-simply, clamped-clamped, and 

clamped-simply) by using GDQM. The sandwich functionally graded micro-beams is 

considered with three different models and various cross section shapes. The influence of the 

dimensionless nonlocal parameter ( ),  the non-dimensional material length scale parameter

( ), aspect ratio ( ) ,L h power law index ( ),k  static load factor ( ),s  temperature change ( ) ,T   

and various cross section shapes on the dynamic stability, static, free and buckling analysis of 

the sandwich micro-beam are discussed. 

Beside that following conclusions are derived 

1. The dimensionless buckling load and fundamental frequency increase of the sandwich 

functionally graded micro-beams structure with the increase of elastic foundation of both 

Winkler and Pasternak shear layer, moreover, the dimensionless transverse deflection 
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decrease with increase of the elastic foundations. It can be also observed that Pasternak 

shear layer has the greater effect than Winkler elastic foundation. 

2. The dimensionless buckling load and fundamental frequency decrease when the material 

property gradient index ( )k  increase for all the boundary conditions of size-dependent 

sandwich FG micro-beams and conversely for dimensionless transverse deflection. 

3. When the decrease in the gradient index ( ),k the instability region moves to higher 

excitation frequency and these regions become more wider. 

4. When dimensionless Winkler and Pasternak shear parameters increase leads to higher 

excitation frequencies ( ) ,  and the width of the instability region is increased for all types 

of sandwich FG micro-beam at given dynamic load factor and the excitation frequency on 

dimensionless Pasternak shear parameter is larger than that on the dimensionless Winkler 

parameter with all kinds of sandwich FG micro-beam. 

5. At lower value power law index ( ),k  the dimensionless transverse deflection for Model 

III is lower than those with Model II and the dimensionless buckling load and the 

fundamental frequency is greater for Model III than these of Model II. 

6. The size-dependent sandwich FG micro-beam with different cross-section shapes will be 

the effect on the dimensionless transverse deflection, the critical buckling forces and 

fundamental frequency as the relative volumes of phase materials are changing. 

7. The dimensionless transverse deflection with the higher-order beam theories (HOBTs) is 

lower than those of Timoshenko theory (FSDBT) and greater than those of Euler theory 

(EBBT). On the other hand for dimensionless buckling loads and fundamental frequency 

the behavior is conversely. The results for TBT and HOBTs are slight differences and 

when the slenderness ratio decreases ( )L h these results are close to each other. 

8. Dimensionless nonlocal parameter and material length scale parameter can be used in 

combination for refined calibration of experimental results as stiffness is proportional to 

the ( )  whereas it is inversely proportional to the ( ).  

 

9. When the dimensionless nonlocal parameter is lower than the dimensionless material 

length scale parameter, the sandwich FG micro-beams have a stiffness-hardening effect. 
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Moreover, when the ( )  is smaller than the ( ),  the sandwich FG micro-beams have a 

stiffness-softening effect.  

10. The dimensionless buckling load and fundamental frequency increase and 

dimensionless transverse deflections decrease with the increase of ( )  or the decrease of

( ).  

11. When the ( ) = ml L increase, the higher dimensionless excitation frequencies and also 

the width of the instability regions will be wider. Moreover, for dimensionless nonlocal 

parameter ( ) = ea L  the behavior is conversely. 

12. For clamped-clamped boundary condition (stiffer configurations) tend to have higher 

excitation frequencies and wider instability regions when compared to simple-simple 

boundary condition (flexible configurations). 

13. For larger values of aspect ratio, the influence of temperature change ( )0 =T  on the 

dimensionless fundamental frequencies and critical buckling forces of sandwich FG 

microbeam is more significant. On the other hand, with small values of aspect ratio ( )L h   

,the temperature changeT on ( )P  and ( )   is slight. 

14. The dimensionless transverse deflection ( )w  increase with increasing the temperature 

change , while the dimensionless critical buckling forces ( )P  and natural frequencies 

( )  decrease with increase ( ).T  

15. The instability regions shifts to lower (higher) excitation frequencies with the increase 

(decrease) in the temperature change and the instability region no change in the width with 

the increase in temperature change ( )T  a certain dynamic load factor for size dependent 

sandwich FG micro-beam with all boundary conditions.  

 

5.2 Future Work 

The current illustration presents some of the very essential sides of the static, free, buckling 

analysis and dynamic stability of the sandwich FG micro-beam. Otherwise, some aspects of 

the sandwich FG micro-beams with dynamic stability, static, buckling and free vibration are 

not studied in the present thesis. Therefore the research topics of the sandwich FG micro-

beams which deserve further investigation in future are presented at some point 

( )T
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• The nonlinear static, buckling analysis, dynamic stability and vibration analysis of size 

dependent sandwich FG micro-beams. 

•  Static, free, buckling analysis and dynamic stability of Bi-directional sandwich FG 

micro-beams structure.  

• Experimental analysis of dynamic stability, static, buckling analysis and free vibration 

of sandwich FG micro-beam can be study in a future to compare the experimental 

results in conjunction with theoretical results. 

• The present thesis can be extended to study static, buckling, free vibration and the 

dynamic stability of other structural elements such as sandwich FG micro-plates and 

micro-shells. 
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APPENDIX-A 

VIRTUAL STRAIN AND KINETIC ENERGY 

 

A.1 First order shear deformation beam theory (FSDBT) 

 

The strain field of Timoshenko beam theory 
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The first variation of the internal strain energy of first shear deformation beam theory can be 

taken as follows 
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The classical and non-classical stress resultants in above can be defined as 
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The first variation of the kinetic energy can be written as the form 

 

           (A1f) 

 

 

A.2 Euler- Bernoulli beam theory (EBBT) 

 

The strain field of Euler- Bernoulli beam theory 
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The first variation of the internal strain energy of Euler- Bernoulli beam theory can be taken 

as follows 
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The classical and non-classical stress resultants in above can be defined as: 
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The first variation of the kinetic energy of Euler- Bernoulli beam theory can be written as the 

form 
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APPENDIX-B 

FREE VIBRATION WITH  ANALYTICAL SOLUTION 

 

B.1 Euler- Bernoulli beam theory (EBBT) 
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, ,  

 

B.2 First shear deformation beam theory (FSDBT) 
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