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ABSTRACT

A New Image Cipher Using Color Space Transform and
Lorenz Map

Fatıma Yeşim İKİKAT

Department of Computer Engineering

Master of Science Thesis

Advisor: Assoc. Prof. Dr. Sırma YAVUZ

Information security has been an important issue for humanity in every age.

But nowadays, the diversification of communication facilities, especially the rapid

development of the Internet, has made it possible for this need to reach the highest

level.

Cryptography is one of the most important tools to meet the need for information

privacy. Since it was invented, cryptography techniques are constantly changing

in parallel with the change in the communication channel used and the type of

information transmitted. Nowadays, a wide range of secure cryptographic methods

are developed and used.

However, standard encryption algorithms show different efficiencies according to the

type of encrypted data and the compatibility of these methods with different file types

are discussed. Especially multimedia files have different features than text files and

these features have several advantages and disadvantages in encryption. For this

reason, cryptography of image files is examined as one of the special subdivisions

of cryptology.

Image data can be encrypted with conventional block encryption or chain encryption

algorithms. But this is not efficient enough due to the large size of the data, the

strong correlations between the pixel values and the high redundancy. For this reason,

different methods for image encryption have been proposed over the years. The

chaotic methods have been tried and tested since it is more than adequate for image

xiv



encryption.

Chaotic functions can be integrated into image encryption in a variety of ways and

can be used for a variety of purposes. One of them is the mixing of the picture with

a chaotic map. Researchers have observed that confusion and diffusion requirements

in encryption can be met by using chaotic maps and have shown particular interest in

this technique.

In this thesis, a new algorithm is proposed using Lorenz maps and YCbCr color space

transformation for encrypt a colored image. Algorithm was constructed to cover

encryption and decryption processes and reliability was examined with various tests.

It is also proposed what can be done for efficiency and development. Thus, a unique

method that can be used for image encryption has been try to developed.

Keywords: Chaotic cryptography, image encryption, lorenz map, color space

transform

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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ÖZET

Renk Uzayı Dönüşümü ve Lorenz Haritaları ile Yeni Bir
Görüntü Şifreleme Algoritması

Fatıma Yeşim İKİKAT

Bilgisayar Mühendisliği Anabilim Dalı

Yüksek Lisans Tezi

Danı̧sman: Doç. Dr. Sırma YAVUZ

Bilgi güvenliği her çağda insanlık için önemli bir konu olmuştur. Ama günümüzde

ileti̧sim olanaklarının çeşitlenmesi, özellikle de internetin hızlı geli̧simi bu ihtiyacın

olabileceği en yüksek düzeye ulaşmasını sağlamı̧stır.

Kriptografi, bilgi mahremiyeti ihtiyacını karşılamada en önemli araçlardan biridir.

İcat edildiği günden bu güne, kriptografik teknikler, kullanılan ileti̧sim kanalları ve

aktarılan bilgi türüne paralel olarak sürekli deği̧smektedir. Günümüzde geni̧s bir

yelpazede güvenli kriptografik yöntemler geli̧stirilmekte ve kullanılmaktadır.

Ancak standart şifreleme algoritmaları, şifrelenen datanın türüne göre farklı

verimlilikler göstermekte ve bu yöntemlerin farklı dosya tiplerine uygunluğu

tartı̧sılmaktadır. Özellikle multimedya dosyaları, metin dosyalarından farklı

özelliklere sahiptir. Bu özellikler şifrelemede çeşitli avantajlar ve dezavantajlar

getirmektedir. Bu sebeple görüntü şifreleme kriptolojinin özel altdallarından biri

olarak incelenmektedir.

Görüntü verileri, klasik blok şifreleme veya zincir şifreleme algoritmaları ile

şifrelenebilir. Ama bu, verinin büyük olması, piksel değerleri arasında güçlü

korelasyonlar bulunması ve kritik olmayan verinin fazlalığı gibi sebepler dolayısıyla

yeterince verimli değildir. Bu nedenle, yıllar içinde görüntü şifreleme için farklı

metodlar önerilmi̧stir. Kaotik metodlar, görüntü şifrelemeye fazlasıyla uygun olduğu

için denenmi̧stir ve denenmeye devam etmektedir.

Kaotik fonksiyonlar görüntü şifrelemeye çok çeşitli şekillerde entegre edilebilmekte
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ve çeşitli amaçlarla kullanılabilmektedir. Bunlardan biri de resmin bir kaotik yer

deği̧stirme haritası ile karı̧stırılmasıdır. Araştırmacılar, kaotik yer deği̧stirme haritaları

kullanarak şifrelemedeki karı̧stırma ve yayılma gerekliliklerinin karşılanabileceğini

görmüş ve bu tekniğe özel bir ilgi göstermi̧slerdir.

Bu tezde renkli bir resmi şifrelemek için Lorenz haritaları ve YCbCr renk uzayı

dönüşümünden faydalanılarak yeni bir algoritma önerilmi̧stir. Algoritma şifreleme ve

şifre çözme süreçlerini kapsayacak şekilde oluşturulmuş ve çeşitli testlerle güvenilirliği

incelenmi̧stir. Ayrıca verimliliği ve geli̧stirilmesi için yapılabilecekler de önerilmi̧stir.

Böylece görüntü şifreleme için kullanılabilecek özgün bir yöntem geli̧stirilmesine

çalı̧sılmı̧stır.

Anahtar Kelimeler: Kaotik kriptografi, görüntü şifreleme, lorenz haritaları, renk

uzayı dönüşümü

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
Introduction

Communication is the ability to transfer knowledge, that is one of the most basic skills

not just people, but all living things have. This knowledge can sometimes be the

location of a food, sometimes an enemy warning. Communication is vitally important

in all cases, and in most situations, it may be critical to ensure the continuity of

information transfer.

The three main elements of communication are source, receiver and message. These

three elements need to be reliable in order to information transfer to take place in a

healthy manner. Broadly speaking, the source should be able to control the message is

sending to which receiver or receivers, the receiver should be able to verify the source

of the message, and both should be able to trust that the content of the message is

correct. Long story short, wherever there is communication, privacy emerge as a major

problem.

As the natures of the communication channel and transferred knowledge changes,

the proposed solutions to this problem also change. In the centuries when people

communicated with paper and pen, a simple encryption was enough to secure

information. But nowadays, while digital communication networks enter every part

of life, these simple encodings have been replaced by complex encryption algorithms.

1.1 Literature Review

Thanks to the improvements in cryptography, we can use a number of strong

encryption algorithms such as DES, AES and RSA. But not all requirements in the

encryption area have been met. At the beginning of these needs comes encryption of

media files such as image, audio and video files.

Most of the information transferred on digital networks today is media data. According

to HTTP Archive, as of November 2018, images make up on average 21% of a total

webpage’s weight [1]. This fact means that images can now be considered one of
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the most used forms of information. Therefore, it is important to ensure the privacy

of the image files. Image encryption have applications in various fields, including

wireless communications, multimedia systems, medical imaging, telemedicine, and

military communications. For this reason, having a secure and reliable means for

communicating with images becomes a necessity, and its related issues must be

carefully considered [2].

Surely, images can be encrypted with traditional methods that used to encrypt

text. However, these methods are not efficient enough due to they have different

qualities than text data. Images has some specific features like; they have

bigger amount of data, higher redundancy and stronger correlation between pixels.

Sometimes, image ciphers have to meet some specific requirements, like real-time

processing, fidelity reservation, image format consistency, data compression for

transmission. Simultaneous fulfillment of these requirements along with high-security

and high-quality demands has presented great challenges to real-time imaging practice

[2]. Hence standard stream or block cipher algorithms may not be suitable to meet

all those needs.

Today, researchers are turning to alternative ways of encrypting images. But before

look at these alternative ways, it is necessary to analyze the differences between image

data and text data encryption applications. Basically, these differences can be listed

as:

• When a text is encrypted, it must be decrypted to the original plaintext in a

full lossless manner. But for decrypted image, containing small corruption is

acceptable because of human perception is limited.

• Text data are sequences of characters. They can be encrypted directly by using

block or stream ciphers. However, digital images are usually represented as

two-dimensional arrays. For enciphering 2-D arrays of data with text cipher

algorithms, they must be converted to 1-D arrays.

• Because the storage space of an image file is very large, encrypt or decrypt

images directly may not be an ideal solution. Besides, traditional cryptosystems

take so much time to encrypt the image data. Therefore, it would be more

advantageous to use a method specific to image encryption only.

These differences in image encryption also bring with unique challenges. Unlike

weaknesses in text encryption, image encryption has its own difficulties like; the value

that each pixel can take is limited to a small range, there is pixel correlation and

2



the fact that the breaking of encrypted data at a certain rate is sufficient to extract

meaningful information. Therefore, the techniques to be used in image encryption

should be examined in a different way than text encryption. The methods that are

predicted to be highly successful in theory can cause unnoticeable weaknesses at first

sight.

Over the years, computer scientists have experimented with different methods to

encrypt image files in a more optimal way such as homomorphic image processing,

chaotic functions, ECB mode, Fourier transform, OFDM and so on. In some methods,

the information stored by all pixels is encrypted; when the image file is requested to

be transferred easily, or has size as small as possible, only the information used during

image compression is encrypted.

Naturally, each method has its own advantages and handicaps. For example,

chaotic ciphers, which are one of the most preferred methods in the field of image

encryption in recent years, have a lot of disadvantages in practice, despite the fact

that they provide theoretically security requirements. Cryptanalysis studies on image

encryption methods using chaotic functions and maps reveal that many algorithms

have failed in the face of basic attacks.

1.2 Objective of the Thesis

One of the most useful ways to eliminate an image encryption algorithm is chosen

plaintext attack. And most of the proposed chaos-based algorithms, especially that

using chaotic maps, are not as robust against this attack adequately. In his Ph.D.

thesis [3] Özkaynak has managed to break the selected chaotic encryption algorithms

with using chosen plaintext attack and some other algebraic techniques in just a few

steps. Özkaynak’s this study showed that, no matter how complex a chaotic system is,

the important issue is how to implement the algorithm.

In this thesis, a new chaotic image encryption algorithm that can be capable of

withstanding to chosen plaintext attack has been tried to be proposed.

1.3 Hypothesis

The most direct way to make an encryption algorithm resistant to plain text attack is to

guarantee that most of the pixels in the cipher image will change even if a single pixel

of the plain image changes. Although this may seem to be easily solved by adding noise

to the image during encryption process, knowing the added noise makes it possible

to remove the noise from the image. So, despite the addition of noise, the plain text

3



attack can succeed.

The most important feature of the method proposed in this thesis is that the plain

image is passed through certain processes and the result is used as noise. Thus, the

noise added to the picture cannot to be eliminated and plain text attack cannot be

used.

1.4 Organization of the Thesis

This thesis consists of five chapters. The first section is the introduction section you

are currently reading.

The second chapter, called Cryptography and Chaos, contains adequate information

about cryptography and chaos theory. In this chapter, the first subsection is devoted

to the history of cryptography, the second subsection to the basic principles of

modern cryptography, and the third to the chaos theory and the relationship between

cryptography and chaos.

The third chapter, called Chaotic Image Encryption, there is a literature review about

chaotic image encryption. In this chapter, various studies on chaotic image encryption,

and techniques are discussed.

The fourth chapter is devoted to the proposed method, which is the reason why this

thesis is written. In this section, basic information about the techniques included in

the method is given; how these techniques are implemented, and process steps of the

algorithm is explained in detail.

The fifth section contains the test results of the proposed algorithm and discussions on

its success. In this section, the results of different tests applied to the outputs produced

by the algorithm are examined.

In the sixth and last chapter, the results of the thesis, suggestions on the development

of the algorithm and the contributions it can make are emphasized.

I hope this thesis will be useful for those who want to work in this field.
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2
Cryptography and Chaos

The etymology of the word “cryptography” or “cryptology” based on the Greek words:

“kryptós” (κρυπτς), “hidden, secret”; and “graphein” (γραφειν), “to write”, or “-logia”

(-λγια), “study” [4].

Cryptography is the study and practice of mathematical techniques for secure

communication in the presence of adversaries. The basic goals of cryptography are

privacy and reliability. Thus, it is intended to ensure that the information transmitted

between the parties is inaccessible to a third party and both parties can rely on the

information coming from each other, not from another source.

The cryptographers propose and test different methods for the realization of these

objectives, and in doing so benefit from the facilities of mathematics and computer

science. The proposed methods may vary depending on the nature of the network

they will use, the structure of the information they transfer, and the capacity of the

platform on which they will run the encryption method. Therefore, according to needs,

dozens of cryptography methods have been proposed and broken to date.

In 1976 Diffie and Hellman proclaimed: “We stand today on the brink of a revolution

in cryptography” [5]. The revolution they mentioned today took place, but did not

end. Today, studies on cryptography still continue to expand with the contribution

of many sciences; especially mathematics, computer science, electrical engineering,

communication science, and physics.

2.1 History of Cryptography

It is said that cryptography is a young science. Indeed, cryptography as a science

has almost a century of history. But as an art, there are actually thousands of years.

Because not only in our century, but in every age, information security is an important

problem need to be solved; so that many times it has changed the history. The famous

story of ENIGMA is evidence from recent history to this. For the same reason, if we
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want to talk about cryptography, it is necessary to look centuries ahead.

The known history of cryptography dates back to 2000 BCE, the Ancient Egypt. David

Kahn, the writer of The Codebreakers that one of the most comprehensive studies

on cryptography history, narrates this situation as follows: “ON A DAY nearly 4,000

years ago, in a town called Menet Khufu bordering the thin ribbon of the Nile, a master

scribe sketched out the hieroglyphs that told the story of his lord’s life—and in so doing

he opened the recorded history of cryptology” [6].

Today, Menet Khufu was located in the Beni Hasan, an Ancient Egyptian cemetery

site, near the city of El Minye in Egypt. And there are still some cryptic epitaphs

in the tombs continue to appear. But the archaeological relics that found here and

the rest of the Egypt do not refer to a complete cryptographic system used to hide

information. According to researchers, these first codes that were created with writing

some unusual hieroglyphic symbols here and there in place of the more ordinary

ones, were probably effort to create mystery, intrigue, or even amusement for literate

onlookers.

In its first 3000 years, cryptography did not grow stably. It appeared in many places

and in most of them it died with the deaths of its civilizations. In some places

it survived and embedded in literature. After all, more was lost than retained.

Only toward the Western Renaissance, the accreting knowledge began to gain an

acceleration. According to the Kahn, “the story of cryptology during these years is,

in other words, exactly the story of mankind” [6].

One of the earliest examples of encryption in the sense that we know was found in

Mesopotamia. It is clearly seen that some cryptic clay tablets belonging to the period

are for purpose of hiding information. It has been found that one of these tablets,

which date back to around 1500 BCE, is probably encoded in a handicraft recipe for

commercially valuable pottery secrets.

The Holy Scriptures themselves have not escaped a touch of cryptography, or

proto-cryptography, to be precise, for the element of secrecy is lacking. When we reach

around 500-600 BCE, we see that Hebrew scholars used simple mono-alphabetical

substitution ciphers such as Atbash cipher. Although Hebrew tradition offers at least

two such conversions in the Old Testament; today, simple scribal manipulations like

Atbash that can be found in different cultures are considered as ancient scribes for

amusing themselves with word and alphabet games.

Different examples of mono-alphabetical substitution ciphers are also found in China,

India, Egypt, Mesopotamia and Ancient Greek. Through researches we know that
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Spartan military used the scytale transposition cipher, Herodotus tells us about the

stenography by describing the secret messages physically concealed beneath wax on

wooden tablets or as a tattoo on a slave’s head concealed by regrown hair, another

Greek, Polybius, developed the “Polybius square”, also the Romans used the “Caesar

cipher” and its variations.

It is clear from this historical process that when a culture reaches a certain level,

especially in the literacy rate, cryptography is spontaneously emerging and starts to

be used because of the different demands and needs of people. This situation also

explains the development of cryptography in many different civilizations and places

independently. But of course, there are long periods in which this development slows

down or even stops.

With the collapse of Roman Empire, Medieval that today we call it the “Dark Ages”

began in Europe. In this period, the decline in literacy rate and suppression of

cultures brought along scientific and artistic deprivation. Naturally, cryptography

also got its share. For about a thousand years, between CE 500-1400, cryptography

not only stopped in the western civilization; but also started to be associated with

occultism. Further, it was seen as black magic on its own. This view was based on the

superficial similarity in the context of “seeing what is hidden” between cryptography

and prophecy. These effects are so profound that, even today, cryptography gives a

mysterious impression and it acquires an esoteric place in popular culture.

In the middle of the 8th century, the first examples of modern cryptography were given

by Arabs [6], [7]. In the Muslim world that including North Africa, Mesopotamia and

the Arabian peninsula, it is seen that there are two different branches which are called

“muamma” that sets out the rules and procedures for resolving a ciphered text and

“ta‘miye” that means writing a text with a secret code.

As a result of the formation of various divans and offices of Islamic states, the necessity

of hiding some of the information in official correspondence necessitated learning of

the techniques of encryption and decryption methods. As a matter of fact, writers such

as Al-Kindi, Ibn Tabatabai and Ibn ‘Adlan stated that they wrote the books about this

subject on the request of the administrators [7].

It is said that, the first work called “Kitabîl-Mu’ammâ” was written by the famous

Arabian philologist Khalil b. Ahmed [7]. Al-Qalqashandi’s encyclopedic work

“ubu’l-aşâ fî ınâati’l-inşâ” which talks about secret correspondence techniques in the

fifth chapter [8], and the books that he cites; “Miftâu’l-künûz fî îżâi’r-rumûz” that

were writed by Ibn al-Durayhim, and “Îżâu’l-mübhem fî alli’l-mütercem” which has

not survived but has summarized in Miftâu’l-künûz, are important examples for works
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about cryptography around in the 1300s [9].

The first cryptanalysis studies are also based on this period. Frequency analysis, which

is the only known technique for breaking mono-alphabetical substitution ciphers

until the World War II, was found by an Arab mathematician, Al-Kindi in sometime

around 800. He also described the first cryptanalytic techniques that including

some for polyalphabetic ciphers, cipher classification, Arabic phonetics and syntax,

and collected these works in his book on cryptography; “Risâle fi’stirâci’l-muammâ”

(Manuscript for the Deciphering Cryptographic Messages) [10].

As an example of a ciphertext method that is much closer to our geography, “siyākath”

(siyâkat) can be mentioned [11]. Siyākath is an old type of writing which is used in

archival documents and records, very difficult to read, intricate, and does not carry art.

In the emergence of this type of cipher writing, the need to security of the state, fast

writing of the records and to keep a shorter space have been effective. It is accepted

that the Siyākath comes up in the time of the Abbasids, and it is used in the Seljuks

and other Islamic states, through Iran through the Ottomans, especially through the

Ilkhanates.

The official financial records of the Ottoman Empire, from the period of Sultan

Mehmed the Conqueror to Sultan Abdülaziz, especially the destruction and accounting

books, and the notes from them, were written with the siyākath by using Persian

patterns. As a reflection of the Ilkhanate tradition, especially the books containing

the tax records are written in the style of the siyākath which has become more and

more stylized in time and even their numbers are indicated as the siyākath numbers.

The numbers used in the writings of siyākath are also written in a special system.

Instead of the Indian numerals, the Arabic numerals were ciphered by abbreviating

the letters of their names and called them divan numbers because of the use of the

court in the financial and accounting records of the divan. It is known that the divan

numbers, which were estimated to have emerged in the time of the Umayyads, were

passed to the Seljuks and then to the Ilkhanate and Ottomans [11].

The rise of cryptography in Europe began with the Renaissance. During this age,

which was directly linked to the emergence of modern bureaucracy, almost every state

and institution used and developed secret correspondence methods. So that, fulltime

cipher secretaries were employed for encryption, decryption, generation of new keys

and solving intercepted dispatches. In some places, apart from these secretaries, there

were also cryptanalysis specialists or were called upon in need.

In this period, the first examples of the homophonic substitution ciphers that a bit
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more resistant ciphers against frequency analysis were also used by the officers in

Mantua [12]. Ciphers which make the frequency analysis useless, and that also will

be the basis of enigma in the future, was polyalphabetic ciphers. Leon Battista Alberti

explained the first polyalphabetic cipher in twenty-five-page manuscripts in Latin in

1466 or early 1467, constitutes the West’s oldest extant text on cryptanalysis. Alberti’s

three remarkable firsts—the earliest Western exposition of cryptanalysis, the invention

of polyalphabetic substitution, and the invention of enciphered code—make him the

“Father of Western Cryptology” [6].

The most elaborate organization on this subject was probably belong to Venice’s.

Venice was owed this success to Giovanni Soro, who was appointed as secretary of

cryptanalysis in the 1506, and the first major cryptanalyst in the West. In fact, even

the Papacy was sending the ciphers that no one could solve in Rome.

Johannes Trithemius, a German lexicographer, chronicler, cryptographer and occultist,

published the first printed book on cryptography; “Poligraphia” in 1518 and according

to some researchers, its other part, “Steganographia” in 1606. He invented the “tabula

recta”, that is a critical component of the “Vigenère cipher” that would be developed

later. But these two works were not exactly scientific, they were related to occultism

and witchcraft.

In contrast to Germany, cryptic communication techniques were no longer seen as

a black art, but rather found place itself in political intrigues in Britain and France.

Thomas Phelippes, England’s first great cryptanalyst, helped uncover the evidence for

the execution of Mary, Queen of Scots, and thus protect the Elizabeth I of England

by deciphering the letter including the assassination plan for the throne of Mary in

1586. Also, François Viète, known today as the “Father of Algebra”, did cryptanalysis

for King Henry IV of France in 1589. Although he failed to solve the cryptic letter of

the King of Spain, who was planning to attack France until Henry was defeated with

it, this delay did not affect his luck. Because the solution he developed would enable

him to resolve all subsequent letters [6].

Although the “Vigenère cipher”, which is one of the most important polyalphabetic

encryption techniques of the period, has been incorrectly attributed to the French

cryptographer Blaise de Vigenère, it was first introduced by an Italian cryptologist;

Giovan Battista Bellaso in 1553. But in 1586, Vigenère developed this method into a

more powerful and autokey cipher.

The cryptography, which attracted attention again and began to be used without

fear, did not show much progress until the 19th century. However, with a clearer

understanding of the relationship between mathematics and cryptography in the 19th
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century, specific developments are gradually replaced by systematic developments, so

that cryptography begins to gain momentum as a science. Furthermore, the journey

of communication facilities from paper to electrical signals was the reason for the

fundamental change and acceleration in cryptography.

Among those who worked on cryptography during this period were Charles Babbage

that known as “the Father of the Computer”, the Dutch linguist and cryptographer

Auguste Kerckhoffs, the Prussian infantry officer, cryptographer and archeologist

Friedrich Kasiski and even the famous gothic literature writer Edgar Allan Poe [6].

Kerckhoffs and Kasiski are particularly important from these people. Because,

Friedrich Kasinski proposed a new technique of cryptanalysis and was the source of

an important test in his book “Die Geheimschriften und die Dechiffrir-Kunst” (Secret

writing and the Art of Deciphering) in 1863. This technique that known as “Kasiski

examination” now, relied on the analysis of gaps between repeated fragments in the

ciphertext and can give hints as to the length of the key used.

Auguste Kerckhoffs has defined six principles of practical cipher design in his

two significant essays that published in 1883 in “Le Journal des Sciences

Militaires” (Journal of Military Science) entitled “La Cryptographie Militaire” (Military

Cryptography). The most famous of these rules is the second one, called “Kerckhoffs’s

Principle”, and says: “The design of a system should not require secrecy, and

compromise of the system should not inconvenience the correspondents”. This rule

can be understood as the idea that the security of a cryptosystem must to be dependent

on only to the secrecy of the key, not on the confidentiality of any part of the

system. And it is the most important and unchangeable condition of creating a safe

cryptographic algorithm today.

In the late 19th century, the importance and use of cryptography had increased day by

day. The reasons such as the widespread of telegraph lines, the fact that political

developments caused the need for intelligence, increase the importance of secret

communication capability. Eventually in the First World War, this capability began to

turn into an important weapon in the war of superiority between states and become

effective in determining the outcome of battles.

Along with the World War I, decoded texts changed the fate of many battles. But

of course, its most important contribution was the inclusion of U.S.A in the battle

and its direct effect on the result. The decoding by British Naval intelligence of the

Zimmermann Telegram, a cable from the German Foreign Office sent via Washington

to its ambassador Heinrich von Eckardt in Mexico, played a major part in bringing

the United States that remained neutral until then into the war, on the side of Allied
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Powers.

Eventually, the importance of having secure secret communication systems was well

understood. In the short term between the first and the second world wars, the states

have accelerated their work on this issue. The establishment of the Signals Intelligence

Service by U.S.A in 1927 and the support that Polish naval-officers gave to the Japanese

military with code and cipher development in 1920s can be given as obvious examples

[6].

From now on, encryption and decryption processes needed to be automatic, error-free

and fast. In 1917, Gilbert Vernam’s invention of a teleprinter cipher in which used

a previously prepared key kept on paper tape and combined character by character

with the plaintext message to produce the cyphertext, led to the development of

electromechanical devices as cipher machines, and to the only unbreakable cipher, the

one-time pad. In the period before the Second World War, the use of mathematical

methods in cryptography was also increased. The American engineer and US

Army cryptographer William F. Friedman’s application of statistical techniques to

cryptanalysis and cipher development was an important event.

The most important cryptographic development of the Second World War was the

development and breakdown of encryption machines. In this respect, the Second

World War can be called a cryptography war. Mechanical and electromechanical

encryption machines were widely used during the Second World War. Therefore, the

development and cryptanalysis of these machines were important works for states.

The most of the different electro-mechanical cipher machines used for military

intelligence such as: the ENIGMA used by the German Army, the Type B Cipher

Machines that called codenames PURPLE and RED by the United States, used by the

Japanese Foreign Office, TypeX that British adaptation of the Enigma used by the

British armed forces, SIGABA that used by United States Army and Navy were the

products of this short period of six years [6].

In the same period, a lot of institutions were established to perform cryptography and

cryptanalysis studies like SIS by U.S., The Government Communications Headquarters

(GCHQ) by U.K., OKW/Chi (Cipher Department of the High Command of the

Wehrmacht) by Germans. There were numerous cryptography and cryptanalysis

projects conducted in these institutions. Lots of important brains of 20th century

like chess masters, mathematicians, logicians, linguists, engineers were working in

these projects as cryptographer or cryptanalyst. Gordon Welchman, Max Newman,

Wolfgang Franz and Alan Turing who is the conceptual founder of modern computing

were among these people [6].
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At the end of the two world wars, knowing that knowledge was a great power was also

telling us that the rise of cryptography would never stop. In fact, the invention and

spread of the computer, the development of cryptography also took a dizzying speed.

And today, cryptography is an important and inseparable part of information security,

computer science and mathematics.

2.2 Basics of Modern Cryptography

The main purpose of modern cryptography is to ensure that the parties communicate

safely in an unsafe communication channel. In this context, one of the basic

concepts of cryptography is the secure channel. The secure channel is defined as

a communication channel where parties can transfer information safely without the

possibility of overhearing and tampering.

The perfectly secure channel in real life is impossible. The sender and the receiver

are generally obliged to transfer data via channels that are accessible by third parties

such as the Internet. Therefore, cryptographic methods attempt to emulate a secure

channel in an unsafe environment and provide the same facilities to the user.

R. L. Rivest listed the properties that sought in a reliable communication system in

[13] as follows:

• Privacy: An adversary learns nothing useful about the message sent.

• Authentication: The recipient of a message can convince himself that the

message as received originated with the alleged sender.

• Signatures: The recipient of a message can convince a third party that the

message as received originated with the alleged signer.

• Minimality: Nothing is communicated to other parties except that which is

specifically desired to be communicated.

• Simultaneous exchange: Something of value (e.g., a signature on a contract)

is not released until something else of value (e.g., the other party’s signature) is

received.

• Coordination: In a multi-party communication, the parties are able to

coordinate their activities toward a common goal even in the presence of

adversaries.
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• Collaboration threshold: In a multi-party situation, the desired properties hold

as long as the number of adversaries does not exceed a given threshold.

Some aspects in information security such as data confidentiality, data integrity,

authentication, and non-repudiation are central to modern cryptography and these

are properties of the secure channel. In the information security jargon, these three

basic components of information security are called “CIA Triad”.

Data confidentiality is the privacy of transmitted data. In order to provide this

condition, the transmitted data should not be understood by anyone other than the

authorized person. Data integrity is guaranteed to ensure that the transmitted data

is not exchanged during the communication. Authentication is intended to make

sure that incoming data is received from the trusted source, not from a third-party

adversary. The purpose of non-repudiation is to be guaranteed that the sender cannot

deny the sent message.

Cryptography provides several protocols for users to fulfill all these security

requirements. These protocols are actually a collection of various algorithms and

softwares. Some of these are executed by the sender and some of them by the receiver.

As a result, it is intended to provide a reliable and confidential data stream.

The encryption models used today can be grouped under two main headings:

symmetric key ciphers and asymmetric key ciphers. The cryptography literature often

uses the name Alice (A) for the sender, Bob (B) for the intended receiver, and Eve (E;

eavesdropper) for the adversary. While explaining these models we will also follow

this usage in the literature for easier understanding.

2.2.1 Symmetric Key Ciphers

The phenomenon that gives its name to the symmetric key ciphers is that the sender

and the receiver use the same key for encryption and decryption. When evaluating the

security of the encryption method, it is assumed that the key value is not and cannot

known by the attacker. Except this, the Kerckhoffs’s Principle applies; every step of

the cipher algorithm is open to the attacker.

Let us assume that the two users, Alice and Bob, want to transfer data in a secure way.

They agree on a common key value that Eve does not know, by using a secure channel

before they start transmitting data. This key value must be a uniformly distributed

random collection of characters. The structure of this encryption model is given in

Figure 2.1. In the figure, P is plaintext, C is ciphertext, E is encryption algorithm, D
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is decryption algorithm, and K is the secret key. AES algorithm is one of the most

common symmetric key cipher.

Figure 2.1 Diagram of secret-key or symmetric ciphers

A major problem in symmetric ciphers is the decision process of the secret key that

be used by Alice and Bob. To agree on the key, Alice and Bob must begin by

communicating with each other before using symmetric encryption. Therefore, this

process cannot be protected by the symmetric cipher. This fundamental difficulty is

known as the “key distribution problem” [14].

There are several ways to solve this key distribution problem like sending the key

accompanied with armed guards before each message is transmitted, but of course this

will not be a practical solution. A more practical approach is to evaluate alternatives

to the symmetric key procedure and asymmetric key ciphers can be one of them.

2.2.2 Asymmetric Key Ciphers

The main question that asked to solve the key distribution problem is: can the receiver

and sender parties encrypt and decrypt data using two independent keys, so that

neither of them needs to know the other’s key?

Asymmetric encryption systems are intended to make this possible. Asymmetric

encryption methods can be explained as follows: Bob has two keys, private key and

public key. Public key can be known by everyone including the adversary, but private

key is known only by Bob. When Alice wants to send a message to Bob, she encrypts

it with Bob’s public key. And Bob decrypts the encrypted message with his private key.

So, Eve can send a message to Bob, but she can’t decipher Alice’s message without she

gets to Bob’s private key. This model also known as “public key cryptography”.

The structure of this encryption model is given in Figure 2.2. In the figure, P is

plaintext, C is ciphertext, E is encryption algorithm, D is decryption algorithm, Ks is
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private key and Kp is public key. RSA algorithm is one of the most common asymmetric

key cipher.

Figure 2.2 Diagram of public-key or asymmetric ciphers

Whether asymmetrical or asymmetric, there are some conditions that a safe

cryptographic model must provide. The first and the most important one is the

elimination of the attacker’s effect only through the designed protocols. All other

methods that can be used for this purpose are not interested with the cryptography

science.

The second most important requirement is that there is no secret protocol in the

proposed cipher. There are several different reasons for this. The first reason is, if the

proposed protocol is intended to be used in many different platforms, to try to hide

the protocol definition is not only unreasonable, but also very costly. Furthermore,

hiding protocol design prevents the control of the proposed cryptographic system’s

reliability. It is assumed that there is nothing hidden other than key in a reliable and

secure cryptosystem. The reason for this distinction is that the protocols are algorithms

and the key is the data used in the algorithm.

2.2.3 Complexity Theory

Modern cryptography is heavily based on mathematical theory and computer science

practices. Cryptographic algorithms are designed on the basis of calculation hardness

assumptions; thus, it is hard to break in practice by any adversary. It is theoretically

possible to break such a system, but it is infeasible to do so by any known practical

means. These systems are called computationally secure.

If the maximum computational power available to the attacker is less than the

minimum computational power required to break the cryptography system, then

it would be pointless to perform an attack. In order to make this evaluation, a
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comparison of the source to be obtained by the attacker and the resource needed

to break the system should also be done.

Cryptography must be interactive with the complexity theory to ensure this

requirement. Complexity theory is an interdisciplinary theory that grew out of systems

theory in the 1960s. Computational complexity theory evaluated under computer

science focuses on classifying computational problems according to their inherent

difficulty, and relating the resulting complexity classes to each other.

Complexity theory is rooted in chaos theory and uses complex systems. A complex

system is the system in which the entire behavior of the system cannot be predicted

even if its parts are perfectly understood because of the dependencies, relationships,

or other interactions between their parts.

2.2.4 Principles of Shannon

In 1945, a Ph.D. mathematician who was not even 30 years old, published a paper

called “A Mathematical Theory of Cryptography” [15]. The author of this article, which

would later form the basis of cryptography was Claude Shannon.

Claude Elwood Shannon was an American mathematician, electrical engineer, and

cryptographer known as “the father of information theory”. He is best known for his

landmark paper that having founded information theory, “A Mathematical Theory of

Communication” published in 1948. The most important contributions of him to the

field of cryptography is the article in 1945 and the “Communication Theory of Secrecy

Systems” published in 1949 [16]. In these two articles, Shannon has revealed two

basic principles for a mathematical cryptographic method to be safe against statistical

and other attacks: confusion and diffusion.

Confusion means that each bit of encrypted text is linked to more than one different

part of the key. So even if a single bit of the key changes, the change in encrypted text

will be in all parts of the text, not in a single region. The fulfillment of the confusion

condition makes it hard to find the key even if there are too many plain text - encrypted

text pairs to obtain with the same key. Because changing a bit of the key causes a

homogeneous change in all of the encrypted text, and all resulting encrypted texts are

statistically similar. Thus, it becomes difficult to capture a relationship between the

key and the encrypted text.

Diffusion is that even the change in a single bit of plain text can be spread all over

the encrypted text, or vice versa. More precisely, when a bit changes in the plain

text, half of the bits in the encrypted text must be changed. The input bits and the
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output bits must be connected to each other in a very complex manner so that a cipher

provides the diffusion property. In a well-diffused cipher, when a randomly selected

input bit changes, the probability of change of any bit in the output is half a half. This

condition is called the “Strict Avalanche Criterion” (SAC). It is the formalized version

of “Avalanche Effect” and it builds in Webster and Tavares in 1985 [17]. “Avalanche

Effect” term was first used by Horst Feistel who is a German-born cryptographer, in

1973 [18] and that means wherein if an input is changed slightly, the output changes

significantly. It is the desirable property of cryptographic algorithms, typically block

ciphers and cryptographic hash functions.

In the original definitions of Shannon in two articles, confusion is to make the

relationship between key and cryptic text as complex as possible; diffusion is that

changes in the statistics of plain text affect all of the statistics of the encrypted text.

The simplest way to achieve these two conditions is a substitution-permutation system.

In these algorithms, the plaintext and the key have a very similar role in producing

the cipher text, therefore the same mechanism ensures both diffusion and confusion.

2.3 Fundamentals of Chaotic Cryptography

We have already mentioned that many cryptography methods have been proposed

and broken from the invention of the writing up to this day. The development of

the computer and the invention of the Internet also increased the need for secure

information transfer. Powerful, practical and secure encryption protocols are proposed

and used at the present time, but the needs are not fully met. Computer scientists

continue to work in many areas to fill these gaps. And chaotic cryptography is one of

these areas.

2.3.1 Chaos Theory

The origin of the term chaos is based on the ancient Greek word “khaos” (χαoς).

In the Greek creation myths, “khaos” is the name of a “gap” that refers to the void

state preceding the creation of the cosmos or to the initial emptiness created by the

separation of heaven and earth. So, in a way, “khaos” is the origin of the universe

which carries all the potential that can compose it. Use of chaos in the meaning of

“disorder” first appears in Elizabethan Early Modern English. “Chaos” in the sense of

confuse system is in turn derived from this usage.

For both meanings, it is possible to say that a very suitable name is given to the theory

of chaos. Because the behavior modeled by chaos theory is the most fundamental

phenomenon that can be observed all over the known cosmos. In this respect, it is
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possible to say that chaos is the root of the universe. On the other hand, chaotic

behavior is apparently complex. It does not follow a specific order or does not repeat

itself. Hence, maybe it was given the most appropriate name to its nature.

Chaos theory is a branch of mathematics that focuses on the behavior of dynamic

systems that are highly sensitive to initial conditions. In these systems, the very small

differences in initial conditions can have very different results. The behavior of chaotic

systems is strictly dependent on their initial conditions and there are no random items;

hence it is deterministic. But although they are deterministic, their behaviors are not

predictable. The theory was summarized by Edward Lorenz as [19]:

“Chaos: When the present determines the future, but the approximate present does not

approximately determine the future.”

Chaos theory began in the field of ergodic theory. The first proponent of it was French

mathematician, theoretical physicist, engineer, and philosopher of science, Henri

Poincaré. In the 1880s, while studying the three-body problem, he found that there

can be orbits that are non-periodic, and yet not forever increasing nor approaching a

fixed point. In 1898, Jacques Hadamard published a study of a free particle’s motion

that move on a frictionless surface of constant negative curvature. Hadamard showed

that all trajectories are unstable and diverge exponentially from each other, with a

positive Lyapunov exponent. Later this system was called “Hadamard’s billiards” and

it was the first dynamical system to be proven chaotic.

Subsequent works were on the topic of nonlinear differential equations. These

studies were all directly inspired by physics like the three-body problem, turbulence,

astronomical phenomenon’s and radio engineering. Despite these studies, chaos

theory became formalized as such only after middle of the twentieth century. The

main thing that the development of chaos theory owed was the electronic computers.

Electronic computers made repeated calculations practical, while figures and images

made it possible to visualize these systems.

The American mathematician and meteorologist Edward Norton Lorenz was the

pioneer of Chaos theory in 1963 with his paper on the feasibility of very-long-range

weather predictions [20]. Lorenz is also the introducer of the notion of strange

attractors and the creator of the term butterfly effect.

Edward Lorenz’s interest on chaos began with a small mistake he made in his studies

on weather forecasting in 1961. He was using a simple digital computer to run his

weather simulation. He wanted to see a sequence of data again but also wanted

to save the time. In order to achieve this, he entered the data that corresponds to
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the results in the middle of the simulation to the system as initial conditions. The

difference was tiny, and it should have no practical effect. However, to his surprise,

the weather predictions was completely different from the previous calculation. Thus,

Lorenz discovered that small changes in initial conditions produced large changes

in long-term outcome. Lorenz’s discovery that called “Lorenz attractors”, showed

that even detailed atmospheric modelling cannot make precise long-term weather

predictions.

The studies on chaos gained momentum after this date. The Polish-born, French and

American mathematician and polymath Benoît Mandelbrot started to work in the

field of chaos with the article he published on the change in cotton prices in 1963

[21] and introduced the two important term “Noah effect” and “Joseph effect” to the

scientific world. His article named “How Long Is the Coast of Britain?” [22] that

published in 1967 revealed the important phenomenon in chaos; self-similarity. In

this article he showed that a coastline’s length varies with the scale of the measuring

instrument, resembles itself at all scales, and is infinite in length for an infinitesimally

small measuring device. In 1975, he would call this self-similarity as “fractal”. In

1982, Mandelbrot published “The Fractal Geometry of Nature” [23], which became a

classic of chaos theory, and he proved that many biological systems fit a fractal model.

In 1977, the New York Academy of Sciences organized the first symposium on chaos,

attended by David Ruelle, Robert May, Robert Shaw, Edward Lorenz and James A.

Yorke who is coiner of the term “chaos” as used in mathematics. The following

year, independently Pierre Coullet-Charles Tresser, and Mitchell Feigenbaum described

logistic maps. They notably discovered the universality in chaos, permitting the

application of chaos theory to many different phenomena.

Chaotic behavior can be observed in many natural systems from macro levels to micro

levels. In fact, many systems with artificial components occur spontaneously. These

behaviors can be predicted for a while, then “randomness” occurs. This predictable

duration is called the “Lyapunov time” that named after the Russian mathematician

Aleksandr Lyapunov. Its length depends on three things: how much uncertainty can

be tolerated in the forecast, how accurately the current state can be measured, and

the time scale depending on the dynamics of the system. Lyapunov times of some

systems are as follows: the solar system, 5 million years; weather systems, a few days;

chemical chaotic oscillations, 5.4 minutes; 1 cubic cm of argon at room temperature,

3.7×10-11 seconds.

In chaotic systems, the uncertainty in a forecast increases exponentially depending

on time. Therefore, mathematically, doubling the forecast time increases more than
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squares the uncertainty in the forecast. In practice, this means that, over an interval of

more than two or three times the Lyapunov time, a meaningful prediction cannot be

made. And when no meaningful prediction can be made, the system appears random.

The word chaos is often used in the sense of “confusion and disorder”, as in the

Elizabethan Early Modern English. Although there is no universal definition of chaos

in mathematics, to call that “chaotic” to a system as mathematically, some conditions

must be proved. According to Carmen and Ricardo [24] these are:

• Dynamic instability: It describes how a small change in initial conditions of a

chaotic system can result in large differences in a later state.

• Topologically mixing: It means that the system evolves over time. So that any

given region of its phase space eventually overlaps with any other given region.

• Aperiodicity: The system evolves in an orbit that never repeats on itself.

• Dense periodic orbits: To have dense periodic orbits means that system follows

a dynamic that can arbitrarily closely approach every possible asymptotic state.

• Ergodicity: In a chaotic system, the dynamics shows similar statistics when

measured over time or space.

• Self-similarity: The evolution of the system shows the same appearance at

different scales of observation in time or space.

Sensitivity to initial conditions is popularly known as the “butterfly effect”, because of

the title of a paper given by Edward Lorenz in 1972; “Predictability: Does the Flap of

a Butterfly’s Wings in Brazil set off a Tornado in Texas?” [25]. The butterfly flapping

its wings represents a small change in the initial condition of the system, which causes

a chain of events that be caused to explicit difference in a large-scale phenomenon.

Poincaré briefly explains this situation as follows: “A very small cause, which escapes

us, determines a considerable effect which we cannot ignore, and we then say that this

effect is due to chance” [26].

The consequence of sensitivity to initial conditions, when we start with a limited

data about the system, then after a certain time the system is no longer predictable.

In more mathematical terms, the Lyapunov exponent measures the sensitivity to

initial conditions. The Maximal Lyapunov Exponent (MLE) determines the overall

predictability of the system. A positive MLE is taken as an indication that the system

is chaotic.
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However, just sensitiveness on initial conditions does not give chaos. For example,

let’s think a simple dynamical system that repeatedly doubling a starting value. It

is sensitive to initial conditions, because any pair of nearby points in it eventually

becomes widely separated. But its behavior is not chaotic; all points except zero tend

to positive or negative infinity.

To be able to call a system chaotic, it must be topological mixing. If the system is a

topological mixing or topological transitivity, it is only a matter of time the system

conflicts with any phase region for any initial condition. The mathematical concept

of “mixing” appears in ergodic theory. According to probability theory, an ergodic

dynamical system has the same statistical measurements with averaged of all the

system’s states in its phase space.

Finite-dimensional linear systems are never chaotic; for a dynamical system to display

chaotic behavior, it must be either nonlinear or infinite-dimensional. One could define

the term chaotic system as a nonlinear dynamical system that have at least a chaotic

strange attractor [24].

Figure 2.3 Lorenz attractor
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Some dynamical systems like the logistic map are chaotic everywhere, but in many

cases chaotic behavior is found only in a subset of phase space. When the chaotic

behavior takes place on an attractor, a large set of initial conditions leads to orbits

that converge to this chaotic region. The Lorenz attractor that can be seen in Figure

2.3, is perhaps one of the best-known strange attractor diagrams; because it was not

only one of the first and most complex, but also has a very interesting pattern that

looks like the wings of a butterfly.

Strange attractors occur in both continuous dynamical systems such as the Lorenz

system and in some discrete systems like the Hénon map. Other discrete dynamical

systems have a repelling structure called a Julia set. Both strange attractors and Julia

sets typically have a fractal structure. Apart from those mentioned below, Arnold’s cat

map, Horseshoe map, Rössler attractor, Duffing equation and Standard map can be

given as examples to chaotic systems.

Chaos is an interdisciplinary theory and has applications in various disciplines such

as meteorology, anthropology, sociology, physics, environmental science, computer

science, engineering, economics, biology, ecology and philosophy. The availability of

cheaper, more powerful computers is broadening the applicability of it and currently,

chaos theory is an active area of research, involving many different areas.

2.3.2 Relationship between Chaos and Cryptography

The fact that the internet is accessible from many different devices, anywhere and at

any time, significantly increases the need for information security. The need to transfer

more information faster and more secure forces cryptography to evolve. Therefore,

researchers are constantly trying to propose, test and break new cryptographic

methods. One of the branches of these works is chaotic cryptography.

The relationship between chaos and cryptography has been studied since the 1990s.

But in fact, it is possible to find traces of this relationship even in Shannon’s the cult

article published in 1949 [16]:

“Good mixing transformations are often formed by repeated products of two simple non-

commuting operations. Hopf has shown, for example, that pastry dough can be mixed by

such a sequence of operations. The dough is first rolled out into a thin slab, then folded

over, then rolled, and then folded again, etc.”

The mixing process referred to by Shannon here is in fact to achieve chaos through

stretching and folding that well known in today’s chaos theory. After all, the dough

example he given afterwards also is a chaotic system.
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In recognition of this relationship, chaotic cryptography was also born. Since

then, chaotic systems have been used in the design of hundreds of cryptographic

protocols for many different aims like image encryption algorithms, hash functions,

secure pseudo-random number generators, stream ciphers, watermarking and

steganography.

The basic characteristics of the chaos and cryptography and relationships between

them can be seen in Table 2.1 [27].

Table 2.1 Comparison between chaos and cryptography properties

Chaotic property Cryptographic property Description
Ergodicity Confusion The output has the same

distribution for any input
Sensitivity to initial
conditions / control
parameter

Diffusion with a small
change in the plaintext /
secret key

A small deviation in the
input can cause a large
change at the output

Mixing property Diffusion with a small
change in one plain-block of
the whole ciphertext

A small deviation in the
local area can cause a large
change in the whole

Deterministic
dynamics

Deterministic
pseudo-randomness

A deterministic process
can cause a random-like
(pseudo-random) behavior

Structure
complexity

Algorithm (attack)
complexity

A simple process has a very
high complexity

Additionally, there are many advantages that chaotic cryptosystems may provide to

cryptography. First of all, chaotic systems occur spontaneously in nature and can

be directly applied to security processes, as it is the case of physical devices used

in communications. Those show naturally non-linear and chaotic behaviors that

can be straightforwardly used to secure communications. Also, chaotic non-linear

dynamical systems have the advantage of being implemented with simple computable

deterministic algorithms. Additionally, these algorithms may refer to N-dimensional

equations or to several systems combined at a time. They could be subject of

implantation with parallel computing and become faster algorithms [24].

There exist two main approaches of designing chaos-based cryptosystems; analog and

digital.

Most analog chaos-based cryptosystems are secure communication schemes designed

for noisy channels, based on the technique of chaos synchronization. In

chaos-synchronization-based cryptosystems, the information can be transmitted by

one or more chaotic signals in number of ways like chaotic masking, chaotic switching

or chaos shift keying, chaotic modulation, chaos control methods, and inverse system
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approach [27].

In these systems which are mostly used to create a secure communication channel for

sender and receiver, the plain text is masked with a chaotic signal at physical. The

natural non-linearity of electric and optical communication devices is controlled to

produce a chaotic waveform that modulates the message. At the receiver, the signal

is demodulated with using chaotic synchronization techniques and produce the plain

text. To provide a synchronous performance of sender and receiver, a chaotic control

signal is used.

Because of chaotic signals are deterministic and intrinsically correlated although they

appear to be random, analog systems are not completely secure. Therefore, patterns

that may allow to decipher the message can be found in the communication signals.

But their technical complexity and high transmission rates makes them useful for

communications that require security for a limited time [24].

On the other hand, digital chaos-based cryptosystems or digital chaotic ciphers are the

protocols that one or more chaotic maps are implemented in finite computing precision

to encrypt the plain-message in a number of ways such as; stream ciphers that uses

chaos-based pseudo-random number generators, chaotic stream ciphers via inverse

system approach, block ciphers based on chaotic round function or S-Boxes, block

ciphers based on forward/backward chaotic iterations, and chaotic ciphers based on

searching plain-bits in a chaotic pseudo-random sequence [27].

Basically, digital chaotic ciphers are algorithms implemented in digital circuits. In

these algorithms, after the production of chaotic series that are based in iterative

computations of chaotic functions, basic cryptographic operations such as substitution

and mixing are used to encrypt the plain text. Digital chaotic cryptosystems involve

one or more chaotic systems and use the secret key as their initial conditions and/or

control parameters.

One of the weaknesses of digital chaotic cryptosystems is that: chaos implemented on

digital system might diverge from real-precision chaos because of computers has finite

precision. This is the reason it is called “pseudo chaos”. It is possible to minimize their

dynamical degradation of pseudo chaotic systems and using high dimensional chaotic

systems might also be helpful. Still, only a detailed study of the dynamical system can

guarantee their performance [24].

Another method of design a digital chaos-based cryptosystem is to use chaotic function

as a pseudo-random number generator. Since 1990s, the proposals of chaos based

PRNG have demonstrated a significant increase.

24



To build a chaotic PRNG, a deterministic discrete-time dynamical system and construct

an algorithm that transforms the states of the system into binary numbers are used.

The binary sequence generated by chaotic PRNG is used as a keystream and to encrypt

the plain text, the keystream is added to it through a binary XOR operation. The secret

key is used as initial conditions and the vector of parameters [24].

The details of these methods can be examined from Table 2.2 [24].

Table 2.2 Different kinds of chaos-based cryptosystems proposed in literature

Category Method Description

Analog
cryptosystems

Additive chaos
masking A chaotic signal is added to the message

Chaotic shift
keying

A digital message signal switches among different
chaotic systems to be added to the message

Chaotic
modulation

A message signal is used to change the parameters
or the phase space of the chaotic transmitter

Chaotic Control
A message signal is ciphered in a classical way and
used to perturbate the chaotic system

Digital
cryptosystems

Stream ciphers
Chaotic PRNG

A chaotic signal generates a
pseudorandom sequence
(keystream) to XORed the
message

Chaotic Inverse
System approach

A message signal is added to
the output of the chaotic signal,
which has been feeded by the
ciphered message signal in
previous instants

Block ciphers

Backwards
iterative

A block of a clear message is
ciphered using of inverse
chaotic systems

Forwards
iterative

A block of ciphered message
is obtained by pseudoramdom
permutations obtained from a
chaotic system

S-Boxes
An S-Box is created from the
chaotic system. There can be
dynamic or static S-Boxes

Miscellaneous
Searching based
chaotic ciphers

A table of characters is
generated from a chaotic
system. The table is used to
cipher the characters
of the message text

Cellular
Automata

The chaotic system is
a Cellular Automata
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2.3.3 Implementation of Chaos-Based Cryptosystems

In many papers on chaos-based cryptosystems, basic concepts are described but

detailed practical issues are ignored. However, the encryption speed and the

application cost depend on implementation details which are very important to

appraise the security of a cryptosystem. Therefore, the lack of implementation details

makes it difficult to evaluation of the reliability and importance of the proposed

cryptosystem.

As mentioned before there are two basic approaches to the design of chaos-based

cryptosystems: analog and digital. For an analog implementation, the detailed

information about the circuitry responsible for chaos generation, at least the explicit

form of the differential equation system should be given. For a digital implementation,

the following details should be provided: the finite computing precision, the

adopted digital arithmetic (fixed-point or floating-point), the hardware/software

configuration, etc. [27]

Álvarez et al. have proposed the following three rules [27] for the digital

implementation of chaotic systems:

• Suggested Rule 1: A thorough description of the implementation of the chaotic

systems involved should be provided.

• Suggested Rule 2: For chaotic systems implemented in digital form, the

negative effects of dynamical degradation should be taken into consideration

with careful evaluation.

• Suggested Rule 3: Without loss of security, the cryptosystem should be easy to

implement with acceptable cost and speed.

When chaotic systems are completely or partially implemented in digital form,

dynamical degradation will occur, and the dynamical properties of digital chaotic

systems may become non-ideal. The most well-known problem is the existence of

many short-length chaotic orbits, which may weaken the desired statistical properties

and lower the security of the ciphers. To overcome the problems like these, some

methods should be used to improve the dynamical degradation of digital chaotic

systems such as to timely perturb the underlying chaotic system with a small

pseudo-random signal [27].

There is a well-known saying between cryptographs: “there is nothing easier than

design a secure but very slow cipher or a secure but very large cipher”. Even if a
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digital chaotic cipher is extremely safe, it will be impossible to use it in practice if

it lacks operating efficiency. Therefore, level of security, performance, and ease of

implementation are the three main criteria to evaluate new cryptosystems.

In his Ph.D. thesis, S. Li make some basic suggestions that given for the design of fast

and low-cost digital chaotic ciphers [28]:

• The simpler the employed chaotic system is, the simpler the realization will be

and the smaller the cost will be.

• The fixed-point arithmetic is better than the floating-point one since the latter

needs much more cost and computation complexity.

• For hardware implementations supporting parallel computation, (coupled or

independent) multiple chaotic systems will be useful to promote the encryption

speed dramatically and add complexity of possible attacks.

• Another desired requirement is the extensible security and accessional functions

with considerably extra cost and complexity.

There may many other suggestions to design a powerful and efficient digital chaotic

cipher. Each user group, each type of data to be encrypted and each platform to

which the data will be transferred has its own characteristics. Therefore, the designer

should be decided which solutions will be used according to the features and needs of

the system.
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3
Chaotic Image Encryption

Image encryption is one of the most appealing areas of chaotic cryptography. There

are several reasons for this. Firstly, cryptographic image encryption algorithms

have high randomness, unpredictability, sensitivity and topological transitivity. The

second, chaos-based image encryption algorithms have shown some remarkably good

properties in many concerned aspects like security, complexity, performance, speed.

The third, methods that can be applied to use a chaotic system for image encryption are

very diverse and they are easy to implement. A chaotic system in the image encryption

algorithm can be used as a PRNG (pseudo-random number generator) or displacement

map, or in generating a mask sequence or S-Box.

For all these reasons, researchers have proposed different methods to encrypt images

with chaotic cryptography for years. As mentioned before, there are many ways to

use chaotic systems in image encryption. Before proceeding to the method used in the

proposed algorithm, we will give a few examples of various techniques.

One of the popular methods of design a chaotic image cipher is designing S-Box with

using chaotic systems like Farwa et al. did [29]. They proposed an image cipher that

utilizes a composition of chaotic substitution based on tent map with the scrambling

effect of the Arnold transform. The proposed algorithm uses an S-box that is based

on 1-D chaotic tent map. They partially encrypt the image using this S-box and then

apply certain number of iterations of the Arnold transform to attain the fully encrypted

image.

Choi et al. follows a different method to take advantage of chaotic systems [30]. Their

proposed algorithm is also based on the lightweight and fast block cipher published

by Hong et al., called LEA [31]. It uses simply three operations: modular addition,

bitwise rotation, and bitwise XOR (ARX). Also, in the proposed scheme, the encryption

process comprises three phases: XOR phase, round phase, and rotation phase. The

XOR and rotation phases are used to satisfy the confusion property, while the round

phase is used to satisfy the diffusion property. In the confusion process, two key

28



sequences that used in rotation and XOR are calculated via two logistic maps using

two key pairs.

Li et al. used a combination of Tent and Lorenz chaotic systems for image encryption

[32]. First, they produce and normalize three Lorenz sequences. After this process,

average of these sequences was used for generating the Tent sequence. And as the last

step, an initial key was produced with using Tent sequence and Lorenz sequences and

pixels enciphered with this key.

Another popular method of chaotic image encryption is to use fractals. For example,

Rozouvan uses the fractals as key in the encryption and decryption process [33]. In

this method, a unique image is generated on a fractal set like Mandelbrot or Julia

with some parameters such as coordinate, iterations, zoom etc. obtained from the

encryption key. Then the image to be encrypted with the parts taken from this unique

image is subjected to modulo operation. Advantage of this method is the fractal key

needs very small memory space because of a few numbers can represent a unique

fractal image.

Sun et al. are following a similar method in their article [34]. They generate a Julia

set and scramble it with the Hilbert curve in bit-level, and calculate modulo of this

Julia set and plain image. Secret key used as parameters of Julia set, forward step and

backward step along the Hilbert curve and diffusion keys.

Naturally, there are many more researchers who try different methods for designing a

chaotic image cipher. But we do not need to examine all methods. Since an algorithm

that uses chaotic displacement map and color space transformation is proposed in this

thesis, similar encryption methods are examined in more detail in the following two

headings.

3.1 Chaotic Maps in Image Encryption

One of the earliest examples of the use of chaotic maps for image encryption was

given by Pichler and Scharinger [35]. Aim of their study was introduce a new product

cipher which encrypts large blocks of plain-text such as images by repeated intertwined

application of substitution and permutation operations. Their approach involves

parameterizable permutations on large data-blocks induced by specific chaotic system

that called Kolmogoroff-flow.

Jiri Fridrich took this approach a step further and did important works by many

researchers working on image encryption by using chaotic maps [36], [37]. Therefore,
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we will explain how chaotic maps are used for image encryption by using Fridrich’s

article [36]. In his paper, Fridrich summarized the process of developing a chaos-based

cipher can be as follows:

“First, a chaotic map is generalized by introducing parameters into the map. Geometrical

arguments are often used at this stage. Then, the map is modified so that its domain

and range are both the same square lattices of points (pixels, or some other general data

items). The map is extended to three dimensions so that the values of the pixels (the

gray levels) can be changed. A diffusion step is introduced by composing the generalized

discretized map with a simple diffusion mechanism.”

Although the methods used today do not follow the road map drawn by Fridrich, the

steps he mentioned give important information about how chaotic maps can be used.

But let’s talk a little bit about chaotic maps before giving more details.

Chaotic maps are displacement maps that can be one or more dimensions. In these

maps, the input and output of the chaotic system is considered to be a coordinate

value. If the chaotic system equation or equations used have a single variable, then

the chaotic map produced using these equations is one dimensional, and if it has two

variables, it is two dimensional etc. For example, Logistic map and Tent map are 1-D,

Arnold’s cat map and Baker’s map are 2-D, Lorenz and Lotka–Volterra are 3-D maps.

Chaotic maps can be used to mix the pixels of an image or to change their value.

Fridrich worked on gray scale images and used Baker map in his study. But he

generalized and discretized Baker map, and after that, it was extended to three

dimensions with using an invertible function in order to mix the gray levels. So, with

the Baker map, he changed not only the pixel positions, but also the values. This

procedure used can be applied to any 2-D chaotic map. The resulting substitution

cipher can create a random looking image with uniform histogram in only a few

iterations [36], [37].

Fridrich’s articles paved the way for more work using chaotic maps to encrypt images.

The researchers tried to integrate chaotic maps into their encryption systems in

different ways and eliminate their weaknesses.

Chen et al. tried to implement the idea of obtaining a three-dimensional map from

two-dimensional map that set by Fridrich on the Arnold’s cat map [38]. For the

purpose of diffusion, XOR and modulo operation applied in the scheme, to each pixel

in between every two adjacent rounds of the 3-D cat map and this method render the

discretized chaotic map non-invertible.
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Like a single chaotic map can be used for image encryption, more than one chaotic

map can also be used in a sequential or alternate format. For example, Taneja et al.

used Hénon and Arnold’s Cat map in their study [39]. The suggested cryptosystem is

based on permutation-substitution architecture, where the permutation operation is

performed using Arnold cat map, while substitution is performed using Hénon map.

The Arnold iterations and the initial condition of Hénon map generated form the

security keys.

And some researchers preferred to use 3-D maps instead of 3-D maps generated from

2-D maps. Steffi and Sharma suggested an image cipher based on Baker map and

Lorenz system [40]. At the confusion stage, the position of the pixels is scrambled

over the entire image without disturbing the value of the pixels and the image becomes

unrecognizable. And in the diffusion stage, the pixel values are modified sequentially

by the sequence generated from one of the two chaotic systems selected by external

key. The whole confusion-diffusion round repeats for several times. In both stages,

one of the chaotic maps is selected and used according to the value in the secret key.

Also, all of the initial conditions and control parameters generated from it.

As seen, it is not enough only confusing the pixels to design a secure image encryption

system. The common feature of encryption systems that use a chaotic map for image

encryption is to change the pixel values in addition to being replaced with these

maps. For reach to this goal, different methods can be used. Generally, chaotic image

encryption algorithms are hybrid systems where variety of techniques and multiple

procedures are performed.

3.2 Image Ciphers Based on JPEG Algorithm

Although image compression techniques are not directly related to chaotic image

encryption, since they can be used to strengthen the chaotic ciphers, they deserve

the attention of researchers that study in this field. However, within the scope of this

thesis, we will only examine the encryption studies based on the JPEG compression

algorithm.

JPEG is a digital image encoding format standardized by the Joint Photographic

Experts Group and the name of the algorithm is an acronym of it [41]. It is a complex

compression method that can be applied to color or grayscale images lossy or lossless.

It does not work very well in black and white images but works best on continuous-tone

images, where adjacent pixels have similar colors. An important feature of JPEG is its

use of many parameters, allowing the user to adjust the amount of the data lost and

thus also the compression ratio over a very wide range. Often, the eye cannot see any
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image degradation even at high compression factors. There are two operating modes,

lossy and lossless. Most implementations support just the lossy mode [42].

The JPEG compression algorithm includes various steps such as RGB into

luminance/chrominance (YCbCr) color space conversion, downsampling process,

Discrete Cosine Transform (DCT), quantization and entropy coding. According to

Salomon et al. [42], the compression steps of the jpeg algorithm can be listed as

follows:

• Step 1: Color images are transformed from RGB into a luminance/chrominance

(YCbCr) color space. This step is optional but important. Without transforming

the color space, none of the three color components will tolerate much loss,

leading to worse compression.

• Step 2: Color images are downsampled by creating low-resolution pixels from

the original ones. The downsampling is not done for the luminance component.

This procedure will be explained in detail in section 4.2.

• Step 3: The pixels of each color component are organized in groups of 8×8

pixels called data units, and each data unit is compressed separately. If the

number of image rows or columns is not a multiple of 8, the bottom row and the

rightmost column are duplicated as many times as necessary. The fact that each

data unit is compressed separately is one of the downsides of JPEG. If the user

asks for maximum compression, the decompressed image may exhibit blocking

artifacts due to differences between blocks.

• Step 4: The discrete cosine transform (DCT) is then applied to each data unit

to create an 8×8 map of frequency components. They represent the average

pixel value and successive higher-frequency changes within the group. Since

DCT involves the transcendental function cosine, it must involve some loss

of information due to the limited precision of computer arithmetic, but it is

normally small.

• Step 5: Each of the 64 frequency components in a data unit is divided by a

separate number called its quantization coefficient (QC), and then rounded to

an integer. This is where information is irretrievably lost. In practice, most JPEG

implementations use the QC tables recommended by the JPEG standard for the

luminance and chrominance image components.

• Step 6: The 64 quantized frequency coefficients (which are now integers) of

each data unit are encoded using a combination of RLE and Huffman coding.
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An arithmetic coding variant known as the QM coder can optionally be used

instead of Huffman coding.

• Step 7: The last step adds headers and all the required JPEG parameters to the

output, and gives the result.

First and second steps are always skipped for grayscale images.

JPEG is currently one of the most common image compression algorithms in the world.

Therefore, image encryption methods based on the JPEG algorithm are tried to be

designed.

One of them is the algorithm proposed by Lian et al [43]. According to the method

they suggest, the DCT blocks in luminance and chrominance plane are confused by

pseudo-random SFCs (Space Filling Curves). In each DCT block, DCT coefficients

are confused according to different frequency bands and their signs are encrypted by

a chaotic stream cipher. They claim that, the algorithm is of high security and low

cost and it supports direct bit-rate control or recompression, which means that the

encrypted image can still be decrypted correctly even if its compression ratio has been

changed.

In another proposed algorithm, the objective of Niu et al. is to keep the file size for

JPEG image after encryption and do not affect the signal processing of JPEG [44].
DCT coefficients are composed of DC and AC. DC coefficient is the coefficient with

zero frequency in both dimensions and represents the average color of the 8×8 region.

AC coefficients are remaining 63 coefficients with non-zero frequencies and represent

color change across the block. In the algorithm, the DC differential residues are

encrypted through XOR with the key that is the same length with the data stream. After

that, DCT blocks are scrambled using a key-controlled chaotic map. The information

of pre-steps is encrypted by cipher and embedded in the second category of AC

coefficients.

In their paper, Zhang et al. proposed two different ciphers that based on JPEG

algorithm and compare them [45]. In the first algorithm, two one-dimensional

chaotic sequences generated by arbitrarily selecting two sets of initialization are used

to scramble row and column positions of all the data of a two-dimensional data

matrix. The two one-dimensional chaotic sequences combine together, and scramble

the row and column positions of all the 8×8 data blocks of three two-dimensional

data matrices of the color image. Because every two-dimensional data matrix of three

two-dimensional data matrices is scrambled by two chaotic sequences in the same

way, the color of every pixel of the encrypted image is the same as the one of the every
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corresponding pixel of the original image.

In the second algorithm they suggested, arbitrarily select six sets of initialization and

respectively generate six one-dimensional chaotic sequences, every two sequences

combine, in this way, three groups of assembled sequences respectively scramble the

row and column positions of all the 8×8 data blocks of three two-dimensional data

matrices of the original image. The row and column positions of all the 8×8 data

blocks of very two-dimensional data matrix corresponding to every component of the

color image is scrambled by a group of assembled sequences respectively, therefore,

the color of every pixel of the encrypted image is reset, the encrypted image looks

disorganized, the encrypting effect is better. As a result of the analysis, Zhang et al.

observed that the second algorithm was more successful.

Although the use of encryption methods based on JPEG algorithm seems to be

narrower than their equivalent, some of the suggested ideas can be used to develop

image encryption algorithms.

While there are several advantages and disadvantages to all the chaotic image ciphers,

very few have been fully capable of security. Efforts to find a secure chaos-based

encryption method for image encryption is still ongoing.
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4
Proposed Algorithm

The proposed algorithm in this thesis is a chaotic map-based image cipher with using

color space transform. The purpose of this study is to develop a method that can

withstand plain text attack that is the weakness of a large proportion of chaotic

image encryption algorithms. But before going into the details of it, let us give some

information about the methods used in the algorithm.

4.1 Lorenz System and Lorenz Map

As stated in Section 2.3.1, Edward Lorenz was the person who is a pioneer of chaos

theory and brings the “strange attractor” notion and term “butterfly effect” to the world

of mathematics. At the origin of all these studies, there was a simplified mathematical

model of atmospheric convection that developed by him in 1963. This model was the

first chaotic system; it has chaotic solutions for certain parameter values and initial

conditions. In particular, the “Lorenz Attractor” is a set of chaotic solutions of it, and

when plotted it resembles a butterfly or figure eight (Figure 2.3).

The mathematical model of Edward Lorenz is a system of three ordinary differential

equations now known as the “Lorenz Equations” that given below:

x ′ = σ(y − x) (4.1)

y ′ = ρx − y − xz (4.2)

z′ = x y − βz (4.3)

In fact, these simple-looking equations (1-3) relate the properties of a two-dimensional

fluid layer uniformly warmed from below and cooled from above. The three variables

x, y, and z are respectively proportional to the rate of convection, the horizontal

temperature variation, and the vertical temperature variation. The constants σ, ρ,

and β are system parameters proportional to the Prandtl number, Rayleigh number,

and certain physical dimensions of the layer itself. The Lorenz model arise not
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only in atmospheric convection, but also in simplified models for lasers, dynamos,

thermosyphons, brushless DC motors, electric circuits, chemical reactions and forward

osmosis.

From a technical standpoint, the Lorenz system is nonlinear, non-periodic,

three-dimensional and deterministic. But most importantly, when σ = 10, ρ = 28

and β = 8/3, it exhibits chaotic behavior for these (and nearby) values. The famous

Lorenz attractor are thus also revealed.

As it seen, the Lorenz system takes three inputs and produces three outputs with

the solution of the equations (1-3). This data corresponds to the coordinates of a

three-dimensional coordinate system. When constants are in their chaotic values,

these coordinate relationships would create a 3-D chaotic map at the end of the

process.

4.2 YCbCr Color Space and Downsampling

The YCbCr color system is a color space especially used in video encoding and is a

scaled and offset version of the YUV color space.

YCbCr color space is defined by a mathematical coordinate transformation from an

associated RGB color space. In this color system, Y is the luma component, Cb and Cr

are the blue-difference and red-difference chroma components. Y in the YCbCr color

system is different from Y value in the YUV color system which is luminance, meaning

that light intensity is nonlinearly encoded based on gamma corrected RGB primaries.

There are several YCbCr sampling formats, such as 4:4:4 (default), 4:2:2, 4:1:1 and

4:2:0. These are downsampled versions of 4:4:4 format [46].

The transformation equations between RGB and YCbCr color spaces are as follows:

Y = 0.299R+ 0.587G + 0.114B (4.4)

C b = −0.172R− 0.339G + 0.511B + 128 (4.5)

C r = 0.511R− 0.428G − 0.083B + 128 (4.6)

The RGB to YCbCr color conversion is also used in JPEG compression as a preparation

to compress the data.

The downsampling operation is a compression process with assuming that the Cb

and Cr values of the pixel blocks are the same. The reason of choosing Cb and Cr

values for compression is the fact that these values contain less critical information
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for the pixel color. The human eye is sensitive to small changes in luminance but

not in chrominance, so the chrominance part can highly compressed, without visually

impairing the overall image quality much and since the luminance component is not

touched, there is no noticeable loss of image quality [42]. Figure 4.1 shows a diagram

about downsampling.

Figure 4.1 Diagram of different downsampling types

In downsampling process, the Cb and Cr values of each pixel at the same place in the

two adjoining pixel blocks are averaged. In this way, the size of the Cb and Cr values

is halved. Then this average value is written instead of both values in both pixels.

Although there is some loss of data, it is possible to get a result that is very close to

the original picture after the inverse conversion to YCbCr to RGB.

4.3 How the Algorithm Works

The proposed algorithm in this thesis is based on the Lorenz equations and the

color space transformation. The chaotic displacement map obtained from the Lorenz

equations was used in mixing operations, and the color space transformation was used

to change the pixel values.

The idea of changing the color space was inspired by the JPEG compression algorithm.

The algorithm proposed in this thesis uses the steps of RGB into YCbCr color space

transform and downsampling process.

The algorithm consists of two parts; encryption and decryption. The decryption

process is essentially the opposite of the encryption process. Therefore, the encryption

process will be explained in detail and the decryption process will be explained with

reference to these explanations.
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4.3.1 Using the Key

The algorithm uses a 128-bit key. From this key three double values for constants of

Lorenz equations and one boolean value for downsampling direction are generated.

For this purpose, the key is divided into three 42-bits and two 1-bit parts. Figure 4.2

shows how the key is fragmented.

Figure 4.2 Use of secret key bits

First double value started from first bit and ended with 63rd bit, second double started

from 43rd bit and ended with 106th bit, third double started from 86th bit and ended

with 21st bit. The two single-bit pieces that are 42nd and 85th bites also seen in the

figure are XORed and stored as the downsampling direction value.

Each of the three double numbers obtained from these 64-bit bit-array pieces are

added to chaotic sigma, beta and rho values that 10, 8/3 and 28 respectively, and

saved for use in the Lorenz equations as constants. For this aim, "0," is added to the

beginning of the three double numbers obtained with 64 bits, for making them smaller

than 1. Thus, sigma, beta and rho numbers to be used in encryption are close to 10,

8/3 and 28 values. Thus, the Lorenz map to be obtained is guaranteed to be chaotic.

The following pseudocode can be used to examine how to calculation of sigma, beta

and rho values is done:

for (int i = 0; i < 64; i++){
sigmaBits.Set(i, keyBits.Get(i));
betaBits.Set(i, keyBits.Get(i + 43));
rhoBits.Set(i, keyBits.Get((i + 86) % 128));
}
direction = keyBits.Get(42) ∧ keyBits.Get(85);
rhoBits.Set(63, direction);
//tempInt: a positive integer that extracted from the encryption key

//reduction number

cryptexData.ReductionIteration = 16 + (4 * (tempInt % 5));

38



//lorenz iteration number

cryptexData.LorenzIteration = 4 + (tempInt % 5);
//suffle number

cryptexData.SuffleIteration =
cryptexData.ReductionIteration / 8;

As can be seen, the ReductionIteration and LorenzIteration numbers can be

at least 16 and 4 and the maximum is 32 and 8. These numbers are the optimal

iteration values that chosen according to the results obtained from the tests. The

processes that these variables are used is discussed in the following sections.

The use of the key is the same for encryption and decryption operations. In the

experiments, the AES algorithm key generating methods in the standard C# library

were used.

4.3.2 Encryption Process

The encryption section is the most processing part of the algorithm and has a lot

of different layer. In this section, all process steps will be explained in detail with

separate subheadings. Additionally, the flow-chart diagram of the encryption part can

be examined in Figure 4.3.

Figure 4.3 The flow-chart diagram of the encryption part
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As mentioned earlier, the proposed algorithm uses a 3-D displacement map derived

which is obtained by solving the Lorenz equations for pixel mixing. But just changing

of pixels location is not enough to satisfy the security requirements. To make the

algorithm safe enough, it is necessary to also change the pixel values.

Even if these two conditions are met, an image encryption algorithm may not resist

some attacks. Plaintext attack is one of them and many image encryption methods

can be broken by it. In this thesis, it was aimed to design an algorithm resistant to

plaintext attack.

4.3.2.1 Creating the Lorenz Map

Because of producing Lorenz map step forms the chaotic part of the algorithm, this

process is particularly important. But as in all chaotic cryptography algorithms,

the pseudo chaos caused by the conversion of irregular numbers into integers is an

important problem in this algorithm. Furthermore, in order to obtain a Lorenz map,

the results obtained from the Lorenz equations (4.1-4.3) must be in a specific range

and correspond to a pixel position.

The biggest problem in obtaining a Lorenz map is that the multiple solutions of Lorenz

equations show the same pixel. Therefore, repetitive values must be rearranged to

refer to different pixel positions. While designing the algorithm, different ways to

solve this problem have been tried, and it is decided in the following way in order not

to decrease performance.

While the Lorenz equations are solved once for all pixel values, the repetitive values are

stored in memory and assigned to the remaining pixels after the solution is completed.

To reduce the effect of this placement, the map creation process was repeated more

than once using the previous Lorenz map. The LorenzIteration variable is the

value that indicates how many times this procedure is repeated.

4.3.2.2 Color Space Conversion

The first step of the proposed algorithm is to convert the plain image from RGB color

space to YCbCr color space. The equations in (4.4-4.6) are used for this conversion.

RGB to YCbCr color space transformation is used to prepare the ground for

compression in the downsampling process. In this respect, the proposed algorithm

has a common direction with the JPEG algorithm. The advantage of this translation

is that Cb and Cr values contain less important information than the Y value. Thus,

downsampling can be performed on Cb and Cr values, but data loss can be minimized
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when converted to RGB space again.

4.3.2.3 Downsampling Process

The downsampling process is also inspired by the JPEG algorithm but there are some

differences. Although conventional downsampling is applied to pixel blocks, the

proposed algorithm is applied vertically or horizontally on a pixel basis to minimize

data loss. After this process, the Cb and Cr values of the pixels next to each other are

the same and the Y values are preserved.

Because of the downsampling operation is applied to image on pixel based, the

resulting data loss is less than the eye can perceive. The direction is selected according

to the key. In the Section 4.3.1, we mentioned that a boolean direction value obtained

by XORing the two bits of the key is stored for downsampling. If this boolean value is

true then downsampling is done in the vertical direction, if its false then it’s done in

the horizontal.

Additionally, since the downsampling process can cause problems with the images

that have width and height values as odd numbers; before the start of this process, if

necessary, the image is cut off at its edges, so its sizes become even numbers.

The following pseudocode can be used to examine how vertical downsampling is done:

for (int i = 0; i < Width; i++){
for (int j = 0; j < Height; j += 2){
Set pixel1 to inputImage(i, j);
Set pixel2 to inputImage(i, j + 1);
cb = (pixel1.G + pixel2.G) / 2;
cr = (pixel1.B + pixel2.B) / 2;
Set pixel3 with color values pixel1.R, cb, cr;
Set pixel4 with color values pixel1.R, 0, 0;
Set newImage(i, j) to pixel3;
Set newImage(i, j + 1) to pixel4;
}
}

As it seen, in the downsampling process, the cb and cr values of some pixels are left

as 0, which is shown as pixel4 in pseudocode. These zero values will be filled using

the noise value in next step.
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4.3.2.4 Noise Adding

After these two steps, some noise is added to the Cb and Cr values of the one of the

downsampled pixels. The added noise can be any picture or value. But the noise used

in the proposed algorithm is produced from plain image.

To produce this noise, each color value that the original image can retrieve is reduced

using a map. The map used is made of key. Each byte value in the key is converted to

an unsigned integer value between 0-256 and is written to a 16×16 matrix in a loop

format. This matrix is then mixed using a 16×16 Lorenz map and then transformed

into vector. The resulting vector is the reduction map to be used. The number of times

this reduction map is applied to the image is stored in the ReductionIteration
variable.

After the map is generated, the R, G and B values of each pixel in the original image are

replaced with their counterparts in this map. In this way, noise is also produced. The

values that left in 0 in the downsampling process are replaced by the values of noise

pixels in same location. Thus, noise adding step is completed and the pixel values are

changed.

Noise insertion is the basic procedure that will make the proposed algorithm strong

against plain text attack. Even if the attacker chooses a completely 0 plaintext, the

resulting image will not give Lorenz map or noise, so an encrypted picture cannot be

broken by removing the chaotic map.

Because there are repetitive values in map, it is also difficult to determine which map

value corresponds to which color value in the image. Moreover, while generating

noise, map and mixing operations are repeated more than once. It means that, even

the plaintext is completely black or white, it can be transformed into a complex color

vortex. The number of times the process is repeated also depends on the key.

In the Figure 4.4, these three steps of algorithm summarized.

Figure 4.4 First three steps of algorithm in pixel level
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4.3.2.5 Pixel Mixing

The noise added picture is mixed several times using a Lorenz map. The

number of times to be mixed depends on the key and this number is kept in the

SuffleIteration variable.

In the proposed algorithm, the mixing process is done on bit basis, not on pixel basis.

Because of size of each pixel value is 3 bytes, the size of the chaotic map to be used for

an image of M×N dimensions is M×N×24. This is the step of the algorithm that needs

the most time and memory. Repeating calculation of the Lorenz equations repeatedly

increases processing time. As a result, the processing time is proportional to the size

of the plain image.

4.3.3 Decryption Process

The same steps are followed in the decryption process except one part. The noise is

completely ignored in the decryption, and the color space conversion is performed

after noise values on the image has been deleted. This image is the same image

obtained after the downsampling process.

Unfortunately, the downsampling process is not a reversible process. What is done at

this stage is to accept that the Cb and Cr values of the pixels side by side are close.

Since these values are averaged and stored in the downsampling process, the empty

parts are filled with the same average value after the noise is removed. Naturally,

there is some loss of data, but it is so low that the human eye cannot see it.

Now, the image is ready for inverse color space transformation. Finally, the image in

the YCbCr color space is converted back to the RGB color space and the decryption

process is completed. The flow-chart diagram of the decryption part of algorithm can

be examined in Figure 4.5

Figure 4.5 The flow-chart diagram of the decryption part
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5
Results And Discussion

To prove that an image encryption algorithm is safe, it must be proved that it is

successful according to some evaluation metrics. Some of the tests performed in order

to make a good image encryption system successful are explained and evaluations of

the proposed system are given in the subheadings of this section. But before that, to

observe whether the algorithm causes a significant loss of data, we can examine an

example of the encrypted image and then decrypted.

Figure 5.1 Plain, cipher and deciphered versions of a sample image

As can be seen in Figure 5.1, the proposed algorithm does not cause a change in the

image that can be noticed by the human eye. The memory sizes of plain, cipher and

deciphered image are 64.6 KB, 763 KB and 80.0 KB respectively. Although the size of

the cipher image is larger than the plain image, the size of deciphered image is fairly

close to the plain image.

5.1 Histogram Analysis

The histogram analysis is to examine how much the histogram of the encoded image

differs from the original picture. For image encryption algorithms, the histogram of

the encrypted image must be totally different from the histogram of the original image

and have a uniform distribution, it means that the probability of occurrence of any

grayscale value is the same.
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Whether the system meets these conditions, the histogram graph can be seen by

examining it with the naked eye. For a more measurable analysis, the histograms

of plain and cipher images are calculated first. Then the absolute difference between

these two histograms is taken and the area under its curve is divided by the total area

of the image [2]. In Figure 5.2, histogram analysis of a sample color image and its

cipher image can be observed as; upper left –plain image; upper right – cipher image;

lower left – histogram of plain image; lower right – histogram of cipher image.

Figure 5.2 Histogram analysis of the sample image and its cipher image

5.2 Correlation Analysis

For correlation analysis, correlation coefficient between plain and cipher images

is calculated. The correlation coefficient is a numerical measure of a statistical

relationship between two variables. Several types of correlation coefficient exist,

but all of them assume values in the range from -1 to +1, where +1 indicates the

strongest agreement and -1 the strongest disagreement. A result of zero indicates no

relationship at all.

It is also a useful metric to assess the encryption quality of any image cryptosystem.

The correlation coefficient is calculated with using numerical difference between
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pixels at the same indices in the plain image and the cipher image [2]. What is

expected of a good cryptography algorithm is that the correlation between plain and

encrypted image is 0.

In addition, the correlation analysis can be used to measure that the pixels of the

generated cipher image are completely random. For this purpose, similarities of the

adjacent pixels of the picture are examined horizontally, vertically and diagonally. The

correlation coefficient calculated on adjacent pixels should be high for plain image

and low for cipher image. Also, these results can be visualized with a graph for better

understanding.

Table 5.1 Correlation analysis results of a sample image

Iteration Numbers Horizontal Vertical Diagonal
Plain image Lorenz: 4

Suffle: 16
0.96333 0.96411 0.94566

Cipher image -0.0019281 -0.016545 0.012841
Correlation between Plain and Cipher Image 0,025027
Plain image Lorenz: 8

Suffle: 32
0.96406 0.96748 0.94363

Cipher image -0.011906 -0.0078374 -0.014297
Correlation between Plain and Cipher Image -0.046985

Figure 5.3 Correlation graphs of the sample image

Horizontal, vertical, diagonal correlation and correlation between the sample plain

and cipher image graphs can be examined in Table 5.1 and Figure 5.3 Upper graphs are

about correlation between adjacent pixels of plain image, lower graphs about cipher

image; graphs in different columns show respectively horizontal, vertical and diagonal

in both row.
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5.3 Avalanche Effect

The Avalanche effect that mentioned in Section 2.2.4 can be used as an effective metric

to test the efficiency of the diffusion mechanism. The Avalanche effect metric is the

percentage of different bits between the two cipher images. If they are different from

each other in half of their bits, it can said that the encryption algorithm possesses good

diffusion characteristics.

To measure the influence of this effect, a single pixel of a plain image is modified, and

both images are encrypted with the examined encryption algorithm. The same test

should be done on the keys as well. The plain image is encrypted with two separate

keys with a single bit different and the resulting cipher images are compared with each

other. It is important that the test is performed in both cases. Because when the key is

changed, the measured difference also helps to evaluate the success of the confusion

mechanism.

In Figure 5.4, there are two cipher images and the difference that occurs when a pixel

is changed on the top line; and two cipher images and the difference occurs when a

bit of the key changes on the bottom line.

Figure 5.4 Avalanche effect test results

5.4 Performance and Optimization

In order to implement the tests described in the first three sections of the chapter;

three different data sets have been formed.
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The first data set contains 10 images: an RGB and a grayscale human picture;

completely black, white, pure blue, red and green single-color images; two simple

pictures with a black circle and square frame on a white background; and a picture

with a yellow text on a black background. Also, only one pixel in different versions of

all of these images are also available in the dataset. The total number of images is 20.

The second data set contains first data set and 90 more .bmp, .jpg and .png images

of different sizes and specifications: 5 of them are the pictures are grayscale, 15 of

them are synthetic images and 80 of them are color photographs that have different

color tones and densities. Images vary in size from 363×420 to 1544×1368.

And lastly, the third data set contains square-shaped versions with different edge

lengths of a sample RGB image with complex colors, such as; 16, 32, 64, 128, 256,

512 and 1024. This data set was used for obtaining the changing of process time

according to image size.

Table 5.2 Process time changing according to iteration numbers

Iteration Number Time (for Lorenz) Time (for Reduction)
1 4.752 4.752
2 5.932 5.483
4 9.523 7.392
8 18.935 11.435
16 48.444 19.167
32 134.126 34.217
64 453.203 64.694

Figure 5.5 Time - Iteration Graph according to Table 5.2
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First, the algorithm has been tested for process speed and time. In the Table 5.2, it

can be observed how the number of iterations affects the process time. The chart is

shown in Figure 5.5.

All calculations were made on a single example RGB image with using the same key.

The first column shows how the process time changes when the number of Lorenz

iterations increases while the reduction iteration number is one. In the second column,

Lorenz iteration number is one.

As can be easily seen in the graph, in both cases the increase in process time is

exponential but the Lorenz line increases faster. This indicates that the increase in the

number of Lorenz iterations is more effective than the increase in reduction iterations.

Table 5.3 The relationship between process time and image size for different
iteration values

File Name Image Size
Cipher time (seconds)

R16 L4 32 L8 Substitution
16.png 16×16 0.041 0.078 0.037
32.png 32×32 0.143 0.205 0.062
64.png 64×64 0.384 0.715 0.331
128.png 128×128 1.418 2.991 1.573
256.png 256×256 5.979 12.74 6.761
512.png 512×512 25.279 54.019 28.74

1024.png 1024×1024 107.748 214.958 107.21

Figure 5.6 Time - Size Graph according to Table 5.3
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The relationship between process speed and image size can also be observed in Table

5.3. This test was performed using the data set three and the determined optimal

range of iteration numbers.

As the graph shows that the increase is exponential; when the edges sizes of image is

doubled, the process time is also almost doubled. In this case, it can be said that the

size of the picture directly affects the process time.

After the time tests, the relationship between the number of iterations and correlation

was investigated. Tables in Appendix-C show the results of these tests. In the below,

Table 5.4, 5.5 and 5.6 summarize the results of these tests for some selected images.

In Figures 5.7, 5.8 and 5.9, these results are given graphically.

The first three rows of Table 5.4; horizontal, vertical and diagonal correlation test

results of the ciphered RGB sample image. The values in the fourth row are correlation

between plain and cipher versions of same image. The fifth row is about the Avalanche

test results of same image; the correlation between cipher image of original sample

image and cipher image of one pixel changed version of sample image. The last three

rows are also about Avalanche effect tests, in order; for a gray-scale image, for a

completely black or single colored image and for an image with yellow characters on

black background. Since the data in the table are selected data from the tables that in

Appendix-C, more data can be examined in there.

As seen in the graphs at Figure 5.7, there is no difference in the correlation analysis

between determining the number of Lorenz iterations as one or more while the

reduction iteration number is one. Applying Lorenz iteration number as one or more

for sample RGB image downs the correlation between plain image and cipher image to

around 0. The correlation between cipher image of original sample image and cipher

image of one pixel changed version of sample image is 0.5 while the Lorenz iteration

number is one or more. As a result, the correlation tests performed on a color image

showed that the correlation was independent of the number of Lorenz iterations.

Tests to measure the effect of avalanche were performed for a completely black image,

a grayscale image and an image that contains single color characters on a black

background, and similar results were obtained. The number of Lorenz iterations

for the grayscale image and the completely black image did not cause any change

in the correlation, but for the image that contains single color characters on a black

background, it showed a changing effect in the 0.5 - 0.8 band. Although, the fact that

the number of Lorenz iterations increased but the correlation did not change is same.
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Table 5.4 The relationship between correlation and Lorenz iteration number

Plain L1 L2 L4 L8 L16
horizontal correlation 0.98321 -0.022833 -0.012399 0.024133 -0.065212 0.062569
vertical correlation 0.95632 -0.009507 -0.041898 0.0027197 -0.021608 -0.018595
diagonal correlation 0.96768 -0.009507 -0.06934 -0.013684 0.040258 0.04926
btw plain - cipher 0.96768 -0.012936 0.032288 0.0045708 0.043955 0.044601
btw original - pointed 0.96768 0.5371 0.58924 0.5551 0.61989 0.56032
original - pointed gray 0.98728 0.98447 0.99448 0.99415 0.98714 0.99237
original - pointed char 0.94586 0.7026 0.69694 0.65588 0.7361 0.68979
original - pointed black 1 1 1 1 1 1

Figure 5.7 Correlation - Lorenz Iteration Graphs according to Table 5.4
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Table 5.5 The relationship between correlation and Reduction iteration number

Plain R1 R2 R4 R8 R16 R32 R64
horizontal correlation 0.98321 -0.022833 0.039176 0.038197 -0.003112 0.066627 0.027361 0.014246
vertical correlation 0.95632 -0.009507 -0.02977 -0.048733 0.078402 -0.027458 -0.0026868 0.0024516
diagonal correlation 0.96768 -0.009507 0.013864 -0.024197 0.027009 0.038471 -0.053878 -0.015953
btw plain - cipher 0.96768 -0.012936 0.033095 0.058011 0.037177 -0.010488 0.049132 -0.082721
btw original - pointed 0.96768 0.5371 0.50402 0.47145 0.47257 0.49285 0.49292 0.011931
original - pointed gray 0.98728 0.98447 0.98608 0.89866 0.71488 0.64524 0.6672 0.031319
original - pointed char 0.94586 0.7026 0.55824 0.51458 0.50683 0.48465 0.49019 0.513368
original - pointed black 1 1 0.99947 1 0.97526 0.49153 0.50783 0.484136

Figure 5.8 Correlation - Reduction Iteration Graphs according to Table 5.5
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Table 5.6 The relationship between correlation and iteration numbers

Plain R1 L1 R16 L4 R32 L4 R16 L8 R32 L8 R64 L4
horizontal correlation 0.98321 -0.022833 -0.034536 0.048638 0.0069215 -0.013944 -0.035252
vertical correlation 0.95632 -0.009507 0.0010577 0.036172 0.0067443 0.0055503 0.046554
diagonal correlation 0.96768 -0.009507 0.023892 0.033337 -0.037288 0.016667 0.013884
btw plain - cipher 0.96768 -0.012936 0.020305 0.024883 -0.041751 0.0060137 -0.043453
btw original - pointed 0.96768 0.5371 0.015267 0.028768 0.045825 -0.030162 -0.0011326
original - pointed gray 0.98728 0.98447 -0.042448 0.029643 0.020411 -0.03698 0.012211
original - pointed char 0.94586 0.7026 0.0090348 -0.033806 -0.013197 0.0071253 -0.013363
original - pointed blue 0.99548 1 0.029258 -0.0082635 -0.060055 0.042641 0.031836

Figure 5.9 Correlation - Iteration Graphs according to Table 5.6
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Table 5.5 and Figure 5.8 shows the results when the same tests are performed for

the number of reduction iterations. The information in the rows is the same with the

previous table. As seen in the graphs, performing one or more reduction operations to

a RGB image does not cause much change in correlation; in each case the correlation

is close to 0. On the other hand, when the tests to measure the Avalanche effect

are examined, it is seen that while the number of iterations is between 1-32, the

correlation changes by about 0.5, and when the iteration is 64, correlation decreases

to 0.

When the Avalanche test is applied on the completely black image, the grayscale

image and the image that containing the characters; it is seen that the correlation

result of black image has only reached 0.5 in 16 iterations and it has not changed

for 64 iterations. The correlation of grayscale image decreased from 2 iterations to

32 iterations and reached to 0 in 64 iterations. Correlation of the image with the

characters was exponentially reduced until 16 iterations and then remained constant

at around 0.5.

As can be seen from all these data, although the Lorenz process has no effect on the

correlation results and Avalanche tests, the reduction process has a strong effect. The

high effect of avalanche makes it impossible to apply plain text attack to the algorithm.

In order to observe the effects of these two processes, the correlation results and

Avalanche effect for different Lorenz and reduction iteration values were examined

and the results are summarized in Table 5.6 and the graphs of these results can be

seen in Figure 5.9.

As shown in the graphs, when reduction iteration is 16 and Lorenz iteration is 4, the

correlation is very close to 0 for each case and the iterations are 0 even though the

iteration numbers change. Therefore, in order not to extend the processing time too

much, the optimum values as the range of 4-8 for Lorenz and as the range of 16-32

for reduction were chosen. The values to be taken in this range was determined by

the encryption key.

Assume that the pixel number of the plain image is n, Lorenz iteration number is l,

reduction iteration number is r and suffle iteration number is r/8; the complexity of

the proposed encryption algorithm is;

= l × n× 24+ l × 256+ r × n+ r/8× n (5.1)
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According to the values that l can vary from 4 to 8 and r can vary from 16 to 32;

O = (8× n× 24+ 8× 256+ 32× n+ 32/8× n) = (n) (5.2)

Ω= (4× n× 24+ 4× 256+ 16× n+ 16/8× n) = (n) (5.3)

The analysis shows that the complexity of the algorithm is (n).

5.5 Discussion

The tests described above were performed on 100 plain image – cipher image pairs

that grayscale, black–white and colored with different keys. The results were similar,

it was also seen that even in a completely black image, the algorithm made a large

amount of change. In Figure 5.4, upper left image is cipher image of a completely

black plain image and middle image is cipher image of a completely black except one

white pixel plain image.

Some periodic repetition is observed in the histogram tests. The reason of this is

reduction map that using for changing the color values of the pixels in the algorithm.

The same map is a reason why even a black picture can be encrypted successfully.

As seen, there is no difference between the deciphered image and the original image

that can be noticed by the human eye. This is because downsampling process is applied

to pixel pairs, not to the 8×8 pixel blocks, instead of the JPEG algorithm. That is,

almost no changes have been made in the image.

Apart from these, other important tests for image ciphers are performance and key

space tests. The key space test was not performed, because the AES key generator

was used when the algorithm was being tested. The length of the key used in the

algorithm is 128 bits. Although it is possible to use a 256-bit or 512-bit key, it is

doubtful that this will make a significant contribution to security.

One of the major problems faced by the proposed encryption algorithm was the

production of the Lorenz map. The both Lorenz equations solution time, and the

reduction of the results make the Lorenz map creation process critical. Because the

failure to properly implement these processes will also damage the chaotic structure of

the algorithm. Therefore, the creation of the Lorenz map is one of the most important

parts of the proposed algorithm and should be carefully analyzed.

The proposed algorithm has an advantage; it can be used in any type of image file.

But when the performance of the encryption system is evaluated, it is recognized that

the working time of the algorithm is long, also it increases exponentially as the picture
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grows.

The main reason of this is that, because of displacement maps are the same size as the

image, for each image and each key, Lorenz equations are solved from the beginning

to reveal a new map. On the other hand, the displacement and pixel value changing

can be performed more than once and not less than a certain threshold, according to

the key value. All these are factors that increase the processing time.

In addition, it should also be tested with different attacks to ensure the security. On the

other hand, the correlation tests show that, the desire to be plain text attack resistant

was successfully accomplished.

In light of all these results, it can be said that the proposed algorithm is promising,

open to development and needs to be evaluated. In future, it is planned to propose

different ways to improve its performance and to be subjected to stronger tests in

terms of security.
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A
Time and Correlation Test Results of First Dataset

This appendix contains the results of some tests applied to the first dataset. These

are process time changing according to iteration numbers test, the relationships tests

between; correlation and Lorenz iteration number, correlation and reduction iteration

number, correlation of plain and cipher images and Lorenz iteration, correlation of

cipher original images and cipher one pixel changed images and Lorenz iteration,

correlation of plain and cipher images and reduction iteration, correlation of cipher

original images and cipher one pixel changed images and reduction iteration.

The data in Tables 5.2, 5.4, 5.5, 5.6 are taken from these test results. The values below

are the values of the Lorenz parameters obtained from the switch and the key used in

the test.

Key: D6-50-38-57-8B-EA-09-AC-29-5E-B4-BC-80-D6-D1-DF

Lorenz Sigma: 9.394995326

Lorenz Beta: 2.494060414

Lorenz Rho: 27.7785174
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Table A.1 Encryption time for different iteration values and image sizes

File name
Cipher time (seconds)
Image Size L1 L2 L4 L8 L16

armiehammer.jpg 550×440 4.752 5.932 9.523 18.935 48.444
armiehammerpoint.jpg 550×440 4.735 5.979 9.542 19.502 49.014
black.png 594×514 5.792 7.353 11.854 25.247 59.271
blackpoint.png 594×514 5.775 7.402 11.987 28.442 58.87
blue.png 594×514 5.845 7.445 12.107 24.704 60.15
bluepoint.png 594×514 5.91 7.68 52.513 25.426 59.213
circle.png 594×514 5.914 7.522 11.765 25.935 58.851
circlepoint.png 594×514 5.735 7.48 11.945 24.558 58.382
clarkgable.jpg 600×400 4.595 7.508 9.619 20.316 53.846
clarkgablepoint.jpg 600×400 4.585 6.087 9.584 19.952 52.351
green.png 594×514 5.853 7.887 11.838 24.783 57.956
greenpoint.png 594×514 7.808 7.73 12.137 24.888 58.547
red.png 594×514 5.798 7.781 12.064 25.474 58.928
redpoint.png 594×514 5.899 7.555 12.031 25.168 58.57
square.png 594×514 5.974 7.808 11.897 24.111 58.279
squarepoint.png 594×514 5.857 7.545 12.081 24.248 57.582
starwars.jpg 540×352 3.474 4.567 7.536 14.917 35.009
starwarspoint.jpg 540×352 3.506 4.901 7.447 14.642 34.437
white.png 594×514 5.763 7.469 12.012 24.525 58.061
whitepoint.png 594×514 5.699 7.777 11.952 24.353 57.151
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Table A.2 Horizontal correlation results for different Lorenz iteration values

File name
Horizontal correlation
Plain L1 L2 L4 L8 L16

armiehammer.jpg 0.98321 -0.022833 -0.012399 0.024133 -0.065212 0.062569
armiehammerpoint.jpg 0.97048 -0.045262 0.017537 0.051891 0.00053952 0.075821
black.png 1 -0.043936 0.056853 0.0041359 -0.0060274 -0.015271
blackpoint.png 1 0.018913 0.043106 0.0074641 -0.0056522 -0.0021137
blue.png 1 0.015982 -0.0050117 0.0047388 0.0284 -0.024549
bluepoint.png 1 -0.0091526 -0.012462 0.031041 -0.013953 0.011136
circle.png 0.93911 0.042148 0.022206 -0.042289 -0.056425 0.053598
circlepoint.png 0.91315 -0.044096 -0.030931 0.016496 0.0019811 -0.047426
clarkgable.jpg 0.99186 -0.022829 0.0056608 -0.039026 0.059074 0.0018227
clarkgablepoint.jpg 0.98802 0.012882 0.017718 -0.045951 -0.0080103 -0.062589
green.png 1 -0.023181 -0.0080953 -0.020676 0.0077525 0.00031626
greenpoint.png 1 -0.0069084 -0.037386 0.00053291 -0.0047521 0.0014193
red.png 1 -0.068136 0.024713 0.034033 -0.04928 0.011891
redpoint.png 1 -0.05848 0.0031344 -0.016758 0.021632 -0.016782
square.png 0.99082 0.14241 0.047222 0.0067795 0.017157 0.023319
squarepoint.png 1 0.12217 0.11005 -0.0075865 0.06203 -0.017872
starwars.jpg 0.96297 0.067832 -0.0030479 -0.025665 0.031616 0.0093543
starwarspoint.jpg 0.93729 0.042715 -0.0030446 0.0035232 -0.013054 0.0018151
white.png 1 -0.036349 -0.0064069 -0.00025977 0.024962 -0.014568
whitepoint.png 1 -0.023665 0.018169 0.0027224 -0.0093152 0.061914
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Table A.3 Vertical correlation results for different Lorenz iteration values

File name
Vertical correlation
Plain L1 L2 L4 L8 L16

armiehammer.jpg 0.95632 -0.009507 -0.041898 0.0027197 -0.021608 -0.018595
armiehammerpoint.jpg 0.94457 -0.029672 -0.024496 0.067915 0.00086945 -0.024719
black.png 1 -0.039084 -0.0041812 -0.0049078 -0.012759 -0.047666
blackpoint.png 1 -0.090028 -0.073071 -0.075406 -0.010663 -0.055837
blue.png 0.9976 0.044619 -0.017359 0.0093629 -0.040703 -0.049193
bluepoint.png 1 0.013964 -0.0073742 0.012439 -0.034292 0.023087
circle.png 0.93134 -0.06003 -0.021781 -0.021226 -0.062789 -0.0041974
circlepoint.png 0.77614 0.0053372 -0.015142 -0.049749 0.0030992 0.059185
clarkgable.jpg 0.97928 -0.017521 -0.044321 0.029174 0.048773 -0.020083
clarkgablepoint.jpg 0.98209 0.032581 0.017928 0.0068553 -0.0023812 -0.018852
green.png 0.99551 -0.033692 0.03034 -0.04997 -0.049342 0.031687
greenpoint.png 1 0.012334 -0.010225 0.028357 0.0031991 0.025849
red.png 1 0.053575 -0.063717 -0.038079 -0.032125 0.0081589
redpoint.png 1 0.003056 -0.0010858 -0.028885 -0.069002 -0.045794
square.png 0.99318 0.058219 0.13524 0.068328 0.09354 0.12276
squarepoint.png 0.99322 -0.012269 0.084003 0.10657 0.077745 0.090218
starwars.jpg 0.89457 -0.065962 0.01266 0.043792 0.011462 0.040126
starwarspoint.jpg 0.89205 0.016477 0.03398 0.029117 0.077764 0.014408
white.png 1 0.012401 -0.0136 -0.014131 -0.04328 -0.025283
whitepoint.png 1 -0.027617 -0.02041 -0.039957 0.0022537 0.0033125
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Table A.4 Diagonal correlation results for different Lorenz iteration values

File name
Diagonal correlation
Plain L1 L2 L4 L8 L16

armiehammer.jpg 0.96768 -0.009507 -0.06934 -0.013684 0.040258 0.04926
armiehammerpoint.jpg 0.9648 -0.029672 -0.020775 -0.044162 -0.0011602 -0.0029922
black.png 1 -0.039084 0.020275 0.0013537 -0.018833 0.030253
blackpoint.png 1 -0.090028 -0.034069 -0.051118 0.017165 0.051903
blue.png 0.99548 0.044619 0.0081596 0.060537 -0.0062841 0.047645
bluepoint.png 1 0.013964 0.017591 -0.011791 -0.042571 -0.026417
circle.png 0.97418 -0.06003 -0.02536 0.09628 0.010889 -0.017603
circlepoint.png 0.90105 0.0053372 0.1044 0.0088144 0.032523 0.0052521
clarkgable.jpg 0.98728 -0.017521 -0.017911 0.030068 0.0032848 -0.033353
clarkgablepoint.jpg 0.989 0.032581 -0.040174 0.042025 0.075604 -0.028038
green.png 1 -0.033692 -0.019052 0.0012912 0.039073 -0.012399
greenpoint.png 0.99772 0.012334 0.060169 0.029209 0.019466 -0.055096
red.png 1 0.053575 -0.013964 0.017454 -0.0092574 -0.032517
redpoint.png 0.99767 0.003056 -0.01819 -0.01565 -0.015233 -0.012359
square.png 0.99536 0.058219 0.072108 0.021031 0.059805 0.063421
squarepoint.png 0.99102 -0.012269 0.015393 0.042816 0.0055457 0.028211
starwars.jpg 0.94586 -0.065962 0.029025 -0.014731 0.011752 0.037456
starwarspoint.jpg 0.94777 0.016477 0.0022301 0.019925 0.0078421 0.047202
white.png 1 0.012401 0.0074026 0.035013 -0.012096 -0.0057429
whitepoint.png 1 -0.027617 0.015996 0.0063806 -0.014624 0.056634
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Table A.5 Correlation between plain and cipher image results for different Lorenz iteration values

File name
Correlation between plain – cipher images
Plain L1 L2 L4 L8 L16

armiehammer.jpg 0.96768 -0.012936 0.032288 0.0045708 0.043955 0.044601
armiehammerpoint.jpg 0.9648 0.016761 0.02299 -0.020574 0.023518 0.0027295
black.png 1 NaN NaN NaN NaN NaN
blackpoint.png 1 NaN NaN NaN NaN NaN
blue.png 0.99548 -0.010791 -0.0017823 0.011896 -0.070152 -0.062279
bluepoint.png 1 0.025307 -0.0088331 -0.05488 0.020411 0.0026482
circle.png 0.97418 0.03498 0.014683 0.061105 0.046613 -0.017393
circlepoint.png 0.90105 -0.03202 0.027688 -0.043683 0.013301 -0.0068105
clarkgable.jpg 0.98728 -0.0091124 0.020136 -0.0051012 -0.041295 -0.011512
clarkgablepoint.jpg 0.989 0.028396 0.011294 -0.057931 0.0020861 -0.021758
green.png 1 0.016774 0.017342 0.0092299 0.03761 -0.030973
greenpoint.png 0.99772 -0.010957 0.019635 -0.0012234 -0.0030371 -0.046945
red.png 1 0.02434 -0.0098895 -0.0020695 -0.0072381 -0.025401
redpoint.png 0.99767 -0.00057383 -0.0045497 -0.01546 -0.010025 0.020611
square.png 0.99536 0.069721 0.080981 0.10128 0.0042404 0.05253
squarepoint.png 0.99102 0.045297 0.042167 0.062838 0.1143 0.027748
starwars.jpg 0.94586 -0.021218 0.020042 0.014198 -0.0202 0.011825
starwarspoint.jpg 0.94777 -0.010651 -0.022522 -0.02363 -0.033813 -0.0026012
white.png 1 NaN NaN NaN NaN NaN
whitepoint.png 1 NaN NaN NaN NaN NaN
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Table A.6 Correlation between cipher original image and cipher one pixel changed image results
for different Lorenz iteration values

File name
Correlation between original – pointed images
Plain L1 L2 L4 L8 L16

armiehammer.jpg 0.96768 0.5371 0.58924 0.5551 0.61989 0.56032
armiehammerpoint.jpg 0.9648 0.5371 0.58924 0.5551 0.61989 0.56032
black.png 1 1 1 1 1 1
blackpoint.png 1 1 1 1 1 1
blue.png 0.99548 1 1 1 1 1
bluepoint.png 1 1 1 1 1 1
circle.png 0.97418 1 1 1 1 1
circlepoint.png 0.90105 1 1 1 1 1
clarkgable.jpg 0.98728 0.98447 0.99448 0.99415 0.98714 0.99237
clarkgablepoint.jpg 0.989 0.98447 0.99448 0.99415 0.98714 0.99237
green.png 1 1 1 1 1 1
greenpoint.png 0.99772 1 1 1 1 1
red.png 1 1 1 1 1 1
redpoint.png 0.99767 1 1 1 1 1
square.png 0.99536 1 1 1 1 1
squarepoint.png 0.99102 1 1 1 1 1
starwars.jpg 0.94586 0.7026 0.69694 0.65588 0.7361 0.68979
starwarspoint.jpg 0.94777 0.7026 0.69694 0.65588 0.7361 0.68979
white.png 1 1 1 1 1 1
whitepoint.png 1 1 1 1 1 1
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Table A.7 Encryption time for different reduction iteration values

File name
Cipher time (seconds)
Image Size R1 R2 R4 R8 R16 R32

armiehammer.jpg 550×440 4.752 5.483 7.392 11.435 19.167 34.217
armiehammerpoint.jpg 550×440 4.735 5.457 7.363 11.428 18.968 36.363
black.png 594×514 5.792 6.858 9.576 13.965 25.024 44.754
blackpoint.png 594×514 5.775 8.05 9.104 14.188 23.785 44.689
blue.png 594×514 5.845 7.539 8.994 15.494 24.178 43.809
bluepoint.png 594×514 5.91 7.565 9.25 14.421 23.46 44.17
circle.png 594×514 5.914 7.029 9.005 14.265 23.335 43.826
circlepoint.png 594×514 5.735 7.136 10.384 14.055 24.011 43.828
clarkgable.jpg 600×400 4.595 5.78 7.306 11.412 18.926 34.833
clarkgablepoint.jpg 600×400 4.585 7.355 7.304 11.301 18.615 34.127
green.png 594×514 5.853 7.299 9.263 14.156 24.194 44.235
greenpoint.png 594×514 7.808 6.795 9.054 14.503 23.258 43.601
red.png 594×514 5.798 6.804 9.172 14.245 23.865 43.467
redpoint.png 594×514 5.899 7.261 9.056 14.346 24.673 43.578
square.png 594×514 5.974 6.806 9.243 14.34 24.434 41.853
squarepoint.png 594×514 5.857 6.96 9.204 14.169 24.661 42.636
starwars.jpg 540×352 3.474 4.419 5.684 9.057 15.148 26.125
starwarspoint.jpg 540×352 3.506 4.398 5.87 8.818 14.755 26.16
white.png 594×514 5.763 7.196 9.47 14.359 23.836 42.529
whitepoint.png 594×514 5.699 7.011 8.901 14.082 23.948 42.753
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Table A.8 Horizontal correlation results for different reduction iteration values

File name
Horizontal correlation
Plain R1 R2 R4 R8 R16 R32

armiehammer.jpg 0.98321 -0.022833 0.039176 0.038197 -0.003112 0.066627 0.027361
armiehammerpoint.jpg 0.97048 -0.045262 -0.049041 -0.029849 0.0094775 0.02554 -0.0077215
black.png 1 -0.043936 -0.019948 0.052425 -0.018014 -0.0083516 -0.02804
blackpoint.png 1 0.018913 -0.015288 -0.035943 0.011788 -0.019606 -0.0044289
blue.png 1 0.015982 -0.01172 -0.029004 0.055341 0.030846 -0.079936
bluepoint.png 1 -0.0091526 0.028998 -0.024801 0.065118 0.012871 -0.016771
circle.png 0.93911 0.042148 0.014405 0.0064408 0.012569 0.012426 -0.024122
circlepoint.png 0.91315 -0.044096 -0.078851 -0.062971 0.035525 0.037772 -0.0035578
clarkgable.jpg 0.99186 -0.022829 0.057618 -0.028586 -0.0085902 0.040309 0.043716
clarkgablepoint.jpg 0.98802 0.012882 -0.012412 0.01636 0.016951 0.025029 0.042726
green.png 1 -0.023181 -0.015261 -0.017971 -0.049006 0.040263 0.058851
greenpoint.png 1 -0.0069084 -0.04136 0.033627 0.00316 0.03199 -0.024191
red.png 1 -0.068136 0.022793 0.031063 -0.0056595 0.027295 -0.072419
redpoint.png 1 -0.05848 -0.016382 0.017942 0.066082 0.015069 -0.000952
square.png 0.99082 0.14241 -0.028757 0.00089911 0.083413 0.051077 0.036311
squarepoint.png 1 0.12217 0.011833 0.065934 0.029006 -0.0083057 -0.015222
starwars.jpg 0.96297 0.067832 0.072921 0.018732 0.009219 -0.017585 0.060556
starwarspoint.jpg 0.93729 0.042715 0.0282 -0.016718 -0.023205 -0.0084037 0.045394
white.png 1 -0.036349 -0.003394 0.016495 -0.035934 -0.067344 -0.026969
whitepoint.png 1 -0.023665 -0.033953 0.0081872 0.0063876 -0.0092984 0.021315
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Table A.9 Vertical correlation results for different reduction iteration values

File name
Vertical correlation
Plain R1 R2 R4 R8 R16 R32

armiehammer.jpg 0.95632 -0.009507 -0.02977 -0.048733 0.078402 -0.027458 -0.0026868
armiehammerpoint.jpg 0.94457 -0.029672 0.019821 0.028399 -0.0046512 0.050028 -0.002568
black.png 1 -0.039084 -0.016661 -0.038564 -0.016005 0.075325 -0.066879
blackpoint.png 1 -0.090028 -0.058838 0.0057683 0.039164 0.028157 -0.026301
blue.png 0.9976 0.044619 -0.029208 0.018473 0.051897 -0.010691 0.0038677
bluepoint.png 1 0.013964 0.0076955 -0.024834 0.044838 -0.01965 -0.0027437
circle.png 0.93134 -0.06003 -0.035525 0.010263 -0.027022 -0.0175 0.023203
circlepoint.png 0.77614 0.0053372 0.00066225 0.0033007 0.038759 0.022152 0.059701
clarkgable.jpg 0.97928 -0.017521 0.023176 -0.0087862 0.0048705 -0.016671 0.021851
clarkgablepoint.jpg 0.98209 0.032581 -0.065886 -0.033263 0.0023971 0.0082535 0.040922
green.png 0.99551 -0.033692 0.034712 0.035131 0.032023 0.0085266 0.020029
greenpoint.png 1 0.012334 0.040944 -0.062467 0.029135 -0.022586 0.0069765
red.png 1 0.053575 -0.0015665 -0.034606 -0.044189 0.013882 0.02386
redpoint.png 1 0.003056 -0.020291 -0.059984 -0.058777 -0.017514 -0.027918
square.png 0.99318 0.058219 0.12416 0.0041984 0.020664 0.0082385 0.0044187
squarepoint.png 0.99322 -0.012269 0.044204 0.097445 -0.053082 -0.030391 -0.0073755
starwars.jpg 0.89457 -0.065962 0.042893 0.041504 -0.0007008 -0.035233 -0.065797
starwarspoint.jpg 0.89205 0.016477 0.0068192 0.02446 -0.0020076 0.028585 0.062435
white.png 1 0.012401 -0.023026 0.032639 0.032829 0.03097 0.025105
whitepoint.png 1 -0.027617 0.02399 -0.010553 -0.05866 -0.0014862 0.018682
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Table A.10 Diagonal correlation results for different reduction iteration values

File name
Diagonal correlation
Plain R1 R2 R4 R8 R16 R32

armiehammer.jpg 0.96768 -0.009507 0.013864 -0.024197 0.027009 0.038471 -0.053878
armiehammerpoint.jpg 0.9648 -0.029672 0.029044 -0.051299 0.011701 0.020905 0.015816
black.png 1 -0.039084 -0.013065 -0.048685 -0.0015426 0.036201 0.027732
blackpoint.png 1 -0.090028 0.029424 -0.045008 0.067622 0.032771 0.0049667
blue.png 0.99548 0.044619 0.02068 -0.019395 -0.058747 -0.031025 0.017109
bluepoint.png 1 0.013964 0.015854 0.038125 -0.019815 -0.012909 0.0046639
circle.png 0.97418 -0.06003 -0.001596 -0.022289 -0.034401 -0.014962 -0.039915
circlepoint.png 0.90105 0.0053372 0.026826 0.0086642 -0.049917 0.011964 -0.033184
clarkgable.jpg 0.98728 -0.017521 0.0092626 0.036282 0.030406 0.018368 -0.05064
clarkgablepoint.jpg 0.989 0.032581 0.030941 0.014171 -0.014021 0.019179 -0.054103
green.png 1 -0.033692 0.0020041 0.028116 0.032113 -0.024449 -0.014872
greenpoint.png 0.99772 0.012334 -0.053163 0.0025362 -0.035356 0.02098 -0.0012484
red.png 1 0.053575 -0.0054842 0.01716 0.031101 -0.010341 0.0042987
redpoint.png 0.99767 0.003056 -0.060794 -0.02121 0.0009422 0.013859 -0.029902
square.png 0.99536 0.058219 0.039759 0.024599 0.017364 -0.049266 -0.028395
squarepoint.png 0.99102 -0.012269 0.04002 0.073855 0.01915 0.0085832 -0.038634
starwars.jpg 0.94586 -0.065962 0.0021592 -0.011478 -0.024346 -0.0027723 -0.0072665
starwarspoint.jpg 0.94777 0.016477 -0.035228 -0.024741 -0.048843 0.027253 -0.002195
white.png 1 0.012401 0.032675 0.0029797 -0.043695 -0.027166 -0.0066384
whitepoint.png 1 -0.027617 -0.032126 0.067533 0.03097 0.0070524 0.010671
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Table A.11 Correlation between plain and cipher image results for different reduction iteration values

File name
Correlation between plain – cipher images
Plain R1 R2 R4 R8 R16 R32

armiehammer.jpg 0.96768 -0.012936 0.033095 0.058011 0.037177 -0.010488 0.049132
armiehammerpoint.jpg 0.9648 0.016761 0.025496 0.021832 -0.01374 -0.026264 0.022306
black.png 1 NaN NaN NaN NaN NaN NaN
blackpoint.png 1 NaN NaN NaN NaN NaN NaN
blue.png 0.99548 -0.010791 -0.0038305 0.0097315 0.042435 -0.010947 0.025292
bluepoint.png 1 0.025307 -0.016216 -0.030594 -0.021899 -0.013554 0.059515
circle.png 0.97418 0.03498 0.0054536 0.0015972 0.039222 0.065599 -0.017673
circlepoint.png 0.90105 -0.03202 0.0063169 0.0038933 -0.038995 -0.017881 0.059286
clarkgable.jpg 0.98728 -0.0091124 0.00066171 -0.017949 0.0091151 0.026435 -0.027689
clarkgablepoint.jpg 0.989 0.028396 0.031757 -0.035531 0.018702 -0.038702 -0.021519
green.png 1 0.016774 -0.015054 -0.030926 0.019219 -0.023834 0.0074724
greenpoint.png 0.99772 -0.010957 0.013164 -0.000539 -0.0038648 -0.024186 0.0062483
red.png 1 0.02434 0.044527 -0.0033309 -0.032066 -0.012356 0.045169
redpoint.png 0.99767 -0.0005738 0.015839 0.064281 0.007307 -0.021502 -0.035722
square.png 0.99536 0.069721 0.096749 0.039923 0.015049 -0.0009951 -0.012753
squarepoint.png 0.99102 0.045297 0.059711 0.051262 0.010626 -0.02217 -0.013518
starwars.jpg 0.94586 -0.021218 0.0065591 0.043271 0.047088 0.0068748 -0.0002169
starwarspoint.jpg 0.94777 -0.010651 0.011213 0.041956 0.042924 -0.018074 -0.010587
white.png 1 NaN NaN NaN NaN NaN NaN
whitepoint.png 1 NaN NaN NaN NaN NaN NaN
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Table A.12 Correlation between cipher original image and cipher one pixel changed image results
for different reduction iteration values

File name
Correlation between original – pointed images
Plain R1 R2 R4 R8 R16 R32

armiehammer.jpg 0.96768 0.5371 0.50402 0.47145 0.47257 0.49285 0.49292
armiehammerpoint.jpg 0.9648 0.5371 0.50402 0.47145 0.47257 0.49285 0.49292
black.png 1 1 0.99947 1 0.97526 0.49153 0.50783
blackpoint.png 1 1 0.99947 1 0.97526 0.49153 0.50783
blue.png 0.99548 1 1 1 0.98143 0.67975 0.7085
bluepoint.png 1 1 1 1 0.98143 0.67975 0.7085
circle.png 0.97418 1 0.99848 1 0.99267 0.64761 0.68282
circlepoint.png 0.90105 1 0.99848 1 0.99267 0.64761 0.68282
clarkgable.jpg 0.98728 0.98447 0.98608 0.89866 0.71488 0.64524 0.6672
clarkgablepoint.jpg 0.989 0.98447 0.98608 0.89866 0.71488 0.64524 0.6672
green.png 1 1 1 1 0.98401 0.66134 0.67854
greenpoint.png 0.99772 1 1 1 0.98401 0.66134 0.67854
red.png 1 1 1 0.9996 0.99285 0.71247 0.69175
redpoint.png 0.99767 1 1 0.9996 0.99285 0.71247 0.69175
square.png 0.99536 1 1 1 0.99241 0.67697 0.66621
squarepoint.png 0.99102 1 1 1 0.99241 0.67697 0.66621
starwars.jpg 0.94586 0.7026 0.55824 0.51458 0.50683 0.48465 0.49019
starwarspoint.jpg 0.94777 0.7026 0.55824 0.51458 0.50683 0.48465 0.49019
white.png 1 1 1 1 0.97548 0.63734 0.62946
whitepoint.png 1 1 1 1 0.97548 0.63734 0.62946
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Table A.13 Encryption time for different Lorenz and reduction iteration values

File name
Cipher time (seconds)
Image Size R1 L1 R16 L4 R32 L4 R16 L8 R32 L8

armiehammer.jpg 550×440 4.752 24.029 39.183 32.741 81.585
armiehammerpoint.jpg 550×440 4.735 24.082 54.575 34.325 90.621
black.png 594×514 5.792 31.372 49.674 40.841 113.248
blackpoint.png 594×514 5.775 29.574 48.676 41.169 111.451
blue.png 594×514 5.845 30.07 49.164 42.106 107.618
bluepoint.png 594×514 5.91 30.55 49.612 42.015 118.611
circle.png 594×514 5.914 29.892 48.358 41.845 95.947
circlepoint.png 594×514 5.735 30.095 47.662 40.05 63.105
clarkgable.jpg 600×400 4.595 23.517 38.346 33.11 48.756
clarkgablepoint.jpg 600×400 4.585 23.88 37.421 31.922 91.414
green.png 594×514 5.853 29.396 47.632 47.06 116.456
greenpoint.png 594×514 7.808 29.648 47.952 76.402 118.201
red.png 594×514 5.798 30.271 50.036 78.268 120.776
redpoint.png 594×514 5.899 30.581 48.489 76.38 117.593
square.png 594×514 5.974 30.018 48.666 78.361 102.689
squarepoint.png 594×514 5.857 30.335 50.577 77.65 99.657
starwars.jpg 540×352 3.474 18.46 31.333 48.792 36.303
starwarspoint.jpg 540×352 3.506 18.433 30.772 47.831 36.617
white.png 594×514 5.763 30.352 50.01 75.399 59.199
whitepoint.png 594×514 5.699 29.843 49.044 76.778 59.682
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Table A.14 Horizontal correlation results for different Lorenz and reduction iteration values

File name
Horizontal correlation
Plain R1 L1 R16 L4 R32 L4 R16 L8 R32 L8

armiehammer.jpg 0.98321 -0.022833 -0.034536 0.048638 -0.013944 -0.035252
armiehammerpoint.jpg 0.97048 -0.045262 0.018789 0.01184 -0.0060183 0.013163
black.png 1 -0.043936 -0.0090728 -0.00024259 -0.025702 -0.0037037
blackpoint.png 1 0.018913 -0.00815 -0.010353 0.020486 -0.010324
blue.png 1 0.015982 -0.0092672 0.040303 -0.030561 -0.058874
bluepoint.png 1 -0.0091526 0.053895 0.044847 0.011537 0.034297
circle.png 0.93911 0.042148 -0.018182 0.014306 0.0084524 -0.01533
circlepoint.png 0.91315 -0.044096 0.029197 0.02569 -0.0080372 0.002365
clarkgable.jpg 0.99186 -0.022829 -0.010894 0.020105 -0.0078399 0.022577
clarkgablepoint.jpg 0.98802 0.012882 0.031556 -0.017924 -0.0041408 -0.076282
green.png 1 -0.023181 -0.039918 -0.0082785 -0.0074962 0.056212
greenpoint.png 1 -0.0069084 -0.00384 0.0040922 0.0082995 -0.036978
red.png 1 -0.068136 -0.033151 0.018905 -0.027891 0.031919
redpoint.png 1 -0.05848 0.031713 -0.052572 0.005331 -0.033189
square.png 0.99082 0.14241 -0.0078204 -0.0066693 -0.006736 0.020821
squarepoint.png 1 0.12217 0.031166 0.005669 0.001205 0.044466
starwars.jpg 0.96297 0.067832 -0.023384 -0.002707 -0.0054858 -0.02897
starwarspoint.jpg 0.93729 0.042715 0.014125 -0.0069917 -0.039887 0.0082197
white.png 1 -0.036349 -0.030236 0.016512 -0.036731 0.035107
whitepoint.png 1 -0.023665 -0.011311 0.015633 -0.03595 -0.01116
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Table A.15 Vertical correlation results for different Lorenz and reduction iteration values

File name
Vertical correlation
Plain R1 L1 R16 L4 R32 L4 R16 L8 R32 L8

armiehammer.jpg 0.95632 -0.009507 0.0010577 0.036172 0.0055503 0.046554
armiehammerpoint.jpg 0.94457 -0.029672 0.015951 0.0058533 0.011609 0.030453
black.png 1 -0.039084 -0.0067532 0.10645 -0.047344 -0.0068621
blackpoint.png 1 -0.090028 -0.013794 0.013415 -0.019612 0.0065913
blue.png 0.9976 0.044619 -0.048601 0.017861 -0.023238 -0.039534
bluepoint.png 1 0.013964 -0.012289 0.0034428 -0.04482 -0.037615
circle.png 0.93134 -0.06003 0.013704 -0.038755 -0.0081498 -0.027752
circlepoint.png 0.77614 0.0053372 -0.0098134 0.035027 -0.032398 0.059091
clarkgable.jpg 0.97928 -0.017521 -0.0052007 0.022446 -0.032837 -0.015887
clarkgablepoint.jpg 0.98209 0.032581 -0.033276 0.0024592 0.060596 -0.015574
green.png 0.99551 -0.033692 -0.0086472 0.023638 -0.055838 0.030993
greenpoint.png 1 0.012334 -0.0080423 -0.014563 0.068273 -0.016894
red.png 1 0.053575 0.0071499 -0.037529 -0.056159 0.012435
redpoint.png 1 0.003056 0.034123 0.023859 -0.010792 0.002539
square.png 0.99318 0.058219 -0.021969 0.072879 0.00036518 -0.0032655
squarepoint.png 0.99322 -0.012269 -0.0013508 0.0044403 0.041685 0.041548
starwars.jpg 0.89457 -0.065962 0.012616 0.037108 0.040196 -0.0097071
starwarspoint.jpg 0.89205 0.016477 0.0092271 0.015002 -0.036723 -0.013595
white.png 1 0.012401 -0.035798 -0.046019 -0.056867 0.01161
whitepoint.png 1 -0.027617 -0.0021178 0.01271 -0.040577 0.034182

72



Table A.16 Diagonal correlation results for different Lorenz and reduction iteration values

File name
Diagonal correlation
Plain R1 L1 R16 L4 R32 L4 R16 L8 R32 L8

armiehammer.jpg 0.96768 -0.009507 0.023892 0.033337 0.016667 0.013884
armiehammerpoint.jpg 0.9648 -0.029672 0.04535 0.050746 -0.0036287 0.021877
black.png 1 -0.039084 -0.0094551 -0.017274 0.011638 -0.0296
blackpoint.png 1 -0.090028 -0.060841 -0.0028129 0.00066461 0.00034049
blue.png 0.99548 0.044619 -0.026893 0.0063296 0.02297 -0.0413090
bluepoint.png 1 0.013964 -0.01235 0.035451 -0.0051413 0.035548
circle.png 0.97418 -0.06003 -0.067441 -0.0661 -0.087327 -0.0026801
circlepoint.png 0.90105 0.0053372 0.039066 0.041722 -0.020471 -0.016755
clarkgable.jpg 0.98728 -0.017521 -0.076593 -0.061427 0.044199 -0.036117
clarkgablepoint.jpg 0.989 0.032581 -0.0094444 -0.036805 -0.042715 0.030285
green.png 1 -0.033692 0.010916 0.0033064 0.0063996 0.0093297
greenpoint.png 0.99772 0.012334 0.020766 0.030318 -0.013827 0.020098
red.png 1 0.053575 -0.019138 0.029185 0.033726 0.0093219
redpoint.png 0.99767 0.003056 0.050552 0.0042605 0.0076269 -0.01698
square.png 0.99536 0.058219 0.0030057 0.041621 0.00067334 0.0053444
squarepoint.png 0.99102 -0.012269 0.032576 0.010746 -0.031991 -0.025595
starwars.jpg 0.94586 -0.065962 0.063418 0.01446 -0.014531 -0.00074958
starwarspoint.jpg 0.94777 0.016477 0.040883 -0.0074928 -0.039443 -0.0095675
white.png 1 0.012401 0.0081949 0.048084 -0.021178 0.036014
whitepoint.png 1 -0.027617 0.042036 -0.0025259 -0.032448 0.01224
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Table A.17 Correlation between plain and cipher image results for different Lorenz and reduction iteration values

File name
Correlation between plain – cipher images
Plain R1 L1 R16 L4 R32 L4 R16 L8 R32 L8

armiehammer.jpg 0.96768 -0.012936 0.020305 0.024883 0.0060137 -0.043453
armiehammerpoint.jpg 0.9648 0.016761 -0.062331 0.042994 0.039412 0.017927
black.png 1 NaN NaN NaN NaN NaN
blackpoint.png 1 NaN NaN NaN NaN NaN
blue.png 0.99548 -0.010791 0.017769 0.00066421 0.043456 -0.027429
bluepoint.png 1 0.025307 -0.021526 -0.030704 0.0017209 -0.011705
circle.png 0.97418 0.03498 -0.027538 -0.015097 0.027274 0.0026059
circlepoint.png 0.90105 -0.03202 -0.0086741 -0.031874 0.022296 0.025138
clarkgable.jpg 0.98728 -0.0091124 -0.010326 -0.03673 -0.023413 -0.013283
clarkgablepoint.jpg 0.989 0.028396 0.053919 0.020311 0.0012155 -0.0087354
green.png 1 0.016774 -0.02707 0.013095 -0.023614 -0.024123
greenpoint.png 0.99772 -0.010957 -0.045113 0.057999 -0.054424 0.019152
red.png 1 0.02434 0.0051881 0.052721 0.031271 -0.044213
redpoint.png 0.99767 -0.00057383 -0.021671 -0.027901 -0.0035804 0.0027865
square.png 0.99536 0.069721 0.0028025 -0.018279 -0.006962 0.036696
squarepoint.png 0.99102 0.045297 -0.021537 0.087692 -0.067688 -0.019512
starwars.jpg 0.94586 -0.021218 0.038358 -0.00098637 -0.026597 0.0040371
starwarspoint.jpg 0.94777 -0.010651 0.029645 -0.032959 -0.048909 0.029505
white.png 1 NaN NaN NaN NaN NaN
whitepoint.png 1 NaN NaN NaN NaN NaN
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Table A.18 Correlation between cipher original image and cipher one pixel changed image results
for different Lorenz and reduction iteration

File name
Correlation between original – pointed images
Plain R1 L1 R16 L4 R32 L4 R16 L8 R32 L8

armiehammer.jpg 0.96768 0.5371 0.015267 0.028768 -0.030162 -0.0011326
armiehammerpoint.jpg 0.9648 0.5371 0.015267 0.028768 -0.030162 -0.0011326
black.png 1 1 NaN NaN NaN NaN
blackpoint.png 1 1 NaN NaN NaN NaN
blue.png 0.99548 1 0.029258 -0.0082635 -0.060055 0.042641
bluepoint.png 1 1 0.029258 -0.0082635 -0.060055 0.042641
circle.png 0.97418 1 -0.048172 -0.067046 0.021385 0.0055362
circlepoint.png 0.90105 1 -0.048172 -0.067046 0.021385 0.0055362
clarkgable.jpg 0.98728 0.98447 -0.042448 0.029643 0.020411 -0.03698
clarkgablepoint.jpg 0.989 0.98447 -0.042448 0.029643 0.020411 -0.03698
green.png 1 1 -0.021102 0.075039 0.034551 0.033908
greenpoint.png 0.99772 1 -0.021102 0.075039 0.034551 0.033908
red.png 1 1 -0.03287 0.0095098 -0.045258 0.031225
redpoint.png 0.99767 1 -0.03287 0.0095098 -0.045258 0.031225
square.png 0.99536 1 0.051776 -0.036482 0.0085466 0.040617
squarepoint.png 0.99102 1 0.051776 -0.036482 0.0085466 0.040617
starwars.jpg 0.94586 0.7026 0.0090348 -0.033806 -0.013197 0.0071253
starwarspoint.jpg 0.94777 0.7026 0.0090348 -0.033806 -0.013197 0.0071253
white.png 1 1 NaN NaN NaN NaN
whitepoint.png 1 1 NaN NaN NaN NaN
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B
Encryption Times and Correlation Test Results of

Second Dataset

This appendix contains the results of some tests applied to the second dataset. These

are process time changing according to iteration numbers test, the relationships tests

between; correlation and Lorenz and reduction iterations, correlation of plain and

cipher images and Lorenz and reduction iterations.

Lorenz and reduction iteration values selected for the test are the Reduction

Iteration=16 and Lorenz Iteration=4, and Reduction Iteration=32 and Lorenz

Iteration=8 values determined as optimal values. The data below are the values of

the Lorenz parameters obtained from the switch and the key used in the test. The first

key is used for the values Reduction Iteration=16 and Lorenz Iteration=4, and the

second for the values Reduction Iteration=32 and Lorenz Iteration=8.

Key: E8-79-61-80-2D-68-96-26-85-CD-A4-91-C5-BD-77-DC

Lorenz Sigma: 10.27805244

Lorenz Beta: 2.409767347

Lorenz Rho: 27.12021164

Key: 28-90-84-C5-19-53-6A-B2-0D-71-32-4D-2E-37-66-9A

Lorenz Sigma: 9.440943538

Lorenz Beta: 2.572226881

Lorenz Rho: 27.20918576
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Table B.1 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 4 and Reduction Iteration = 16

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

1 airplane.png 512×512 26.439 0.95793 -0.006434 0.95565 0.012387 0.93747 -0.045427 -0.0070332
2 apple.jpg 460×460 20.784 0.99567 0.024657 0.99715 0.018112 0.99429 -0.014556 -0.0067896
3 armiehammer.jpg 550×440 28.805 0.96333 -0.001928 0.96411 -0.016545 0.94566 0.012841 0.0250270
4 baboon.png 512×512 24.711 0.90609 0.045000 0.85347 -0.030188 0.82679 -0.010636 0.0293970
5 bacteria.jpg 750×500 35.005 0.97579 -0.050559 0.97647 0.036441 0.96492 0.021439 0.0426040
6 balls.jpg 800×600 45.322 0.99447 0.012588 0.99396 0.009421 0.98827 0.022432 -0.0209990
7 barbara.png 512×512 24.853 0.88087 -0.007051 0.96115 -0.052622 0.86824 0.007828 -0.0192520
8 bee.jpg 728×424 29.069 0.99294 0.051102 0.99191 -0.035933 0.98809 -0.044190 -0.0238390
9 bird.jpg 716×478 32.049 0.99473 -0.034288 0.98602 -0.035685 0.98460 0.002699 -0.0112830
10 black.png 594×514 28.448 1.00000 0.023011 1.00000 -0.012498 1.00000 -0.027602 NaN
11 blue.png 594×514 30.271 1.00000 0.032565 1.00000 -0.040292 1.00000 -0.050033 0.0436630
12 book.jpg 620×412 25.846 0.86994 0.002438 0.88761 -0.000375 0.78324 0.048252 -0.0223080
13 calibration.jpg 900×674 61.366 0.99475 -0.016841 0.99362 0.041591 0.99378 -0.001681 -0.0266100
14 candy.jpg 700×420 29.309 0.99100 0.017176 0.99253 0.012577 0.98872 0.026544 0.0289550
15 capuchin.jpg 640×426 26.962 0.97808 -0.044456 0.97729 -0.020686 0.96793 -0.036836 -0.0436600
16 cat.png 490×732 35.608 0.98219 0.020523 0.96966 0.042311 0.95164 -0.005390 -0.0002289
17 chair.jpg 710×710 50.582 0.98481 -0.033700 0.98923 0.010051 0.97373 -0.008607 -0.0240860
18 china.jpg 800×400 31.301 0.98579 -0.010261 0.98580 0.021194 0.97246 -0.040535 -0.0095828
19 chocolate.jpg 650×488 31.553 0.99265 -0.013788 0.98941 0.008711 0.98346 0.032085 -0.0124830
20 circle.png 594×514 30.589 0.85496 0.021399 0.89958 0.024744 0.88841 -0.010881 -0.0476020
21 city.jpg 590×350 19.878 0.95804 -0.016899 0.94687 0.061116 0.90590 0.019943 -0.0221420
22 clarkgable.jpg 600×400 23.462 0.98355 0.003239 0.98806 -0.029481 0.97746 0.052456 -0.0059357
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Table B.1 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 4 and Reduction Iteration = 16 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

23 coral.jpg 618×410 23.97 0.95462 -0.001566 0.95899 0.030289 0.93248 0.016936 -0.0340830
24 david.jpg 760×985 72.954 0.99357 0.022418 0.99315 0.004860 0.98707 0.026588 -0.0524930
25 desert.jpg 800×600 46.388 0.99002 0.051594 0.98219 0.044623 0.97439 -0.034433 0.0074091
26 dinosaur.jpg 662×366 23.13 0.93381 -0.002952 0.93470 -0.045180 0.87457 -0.010661 0.0348270
27 dolphin.jpg 768×514 38.249 0.98327 -0.025868 0.97681 -0.000986 0.97098 -0.011356 0.0123230
28 drop.jpg 916×610 52.696 0.98801 0.003029 0.99143 -0.003353 0.98350 0.013833 -0.0456680
29 duck.jpg 500×500 23.096 0.99823 -0.010363 0.99562 -0.038362 0.99584 0.004180 0.0375870
30 eagle.jpg 600×600 36.803 0.99006 0.015319 0.99357 0.004733 0.98416 -0.023733 -0.0129860
31 eggplant.jpg 400×400 15.824 0.97944 -0.013268 0.99361 -0.010490 0.98413 0.000508 0.0529670
32 egypt.jpg 800×600 54.06 0.84135 -0.000716 0.73864 0.076846 0.70613 0.021817 -0.0334420
33 food.jpg 538×360 19.73 0.98981 -0.008839 0.98782 -0.067629 0.97365 0.036237 -0.0311390
34 forrest.jpg 550×366 19.995 0.83399 0.016188 0.85741 -0.036000 0.74886 -0.035451 0.0322240
35 fruits.png 512×512 26.799 0.98270 0.043937 0.98162 -0.045301 0.97374 -0.068751 0.0063428
36 frymire.jpg 1100×1100 123.963 0.91490 -0.031004 0.88414 0.021568 0.81599 -0.072076 -0.0124520
37 girl.png 768×512 39.612 0.98390 0.057945 0.99450 0.050963 0.98481 0.046778 0.0011088
38 girlface.bmp 512×512 26.464 0.98275 -0.023147 0.98890 -0.063021 0.97393 0.009791 0.0232870
39 grass.jpg 590×350 20.499 0.96823 -0.007566 0.96757 -0.017711 0.94263 -0.021429 -0.0044638
40 green.png 594×514 30.284 0.99775 0.071528 1.00000 -0.028788 1.00000 -0.003753 0.0396230
41 horse.jpg 640×640 42.106 0.99556 0.043242 0.99698 0.040761 0.99550 0.034040 -0.0189490
42 hotdog.jpg 780×438 34.4 0.98764 -0.020413 0.97725 -0.016017 0.99409 -0.001716 0.0565490
43 india.jpg 800×436 34.504 0.92392 0.055076 0.91162 0.028277 0.88587 0.006666 0.0005569
44 juice.jpg 749×468 35.211 0.99560 0.040306 0.99228 0.048289 0.99192 -0.019925 0.0031366
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Table B.1 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 4 and Reduction Iteration = 16 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

45 lena.png 512×512 25.573 0.97340 0.008862 0.99084 0.008521 0.97113 0.027309 -0.0045884
46 library.jpg 300×458 13.373 0.70861 -0.003247 0.88700 0.004964 0.58112 0.056065 -0.0067344
47 lichtenstein.png 512×512 26.119 0.96530 -0.004982 0.96850 0.010007 0.94913 -0.011943 -0.0265800
48 lion.jpg 860×644 56.154 0.98875 0.035514 0.98902 0.004206 0.98000 0.041948 -0.0104020
49 map.jpg 642×600 38.484 0.92388 0.070277 0.91500 0.009099 0.86382 -0.003617 -0.0001988
50 marilyn.jpg 798×904 72.819 0.99748 -0.000661 0.99583 0.000925 0.99601 -0.009508 -0.0186050
51 monalisa.jpg 686×1024 130.423 0.94671 -0.010559 0.94440 0.031404 0.92877 0.008088 -0.0057367
52 monarch.png 768×512 76.127 0.96199 0.029732 0.97340 0.003360 0.96512 0.024696 0.0080283
53 monk.jpg 600×400 46.465 0.96884 -0.007381 0.97627 0.024231 0.94787 0.041006 -0.0236630
54 mountain.png 640×480 56.017 0.86045 -0.033837 0.86242 0.004769 0.81820 0.013622 -0.0561460
55 musketeers.jpg 590×350 39.458 0.93414 0.052271 0.90582 0.060681 0.88099 -0.001622 0.0159110
56 northlights.jpg 750×472 67.465 0.99541 -0.043842 0.98926 0.026355 0.98974 -0.007397 -0.0069723
57 norvegia.jpg 480×328 30.784 0.95880 -0.022653 0.93762 -0.044249 0.91272 0.020384 -0.0989550
58 orchestra.jpg 900×598 105.506 0.91702 -0.062556 0.94233 0.031279 0.88351 0.033870 -0.0216100
59 orchid.jpg 726×408 57.397 0.99144 0.021257 0.99156 0.027458 0.98545 -0.029065 -0.0241460
60 orhun.png 598×346 25.329 0.97330 0.010271 0.93362 -0.024244 0.93200 0.073242 -0.0442460
61 ottoman.jpg 768×432 29.555 0.92429 0.004489 0.91582 -0.028513 0.88355 -0.017429 0.0233930
62 owl.jpg 550×366 17.648 0.98246 0.029141 0.98148 -0.005271 0.97424 -0.010662 0.0012667
63 paint.jpg 530×376 18.142 0.91333 0.002744 0.90861 -0.021743 0.90383 -0.016911 0.0326960
64 parrotfish.jpg 363×420 23.741 0.94587 -0.017311 0.93901 -0.019893 0.92408 0.029986 0.0190070
65 peacock.jpg 1544×1368 194.936 0.91447 0.023501 0.90072 0.016331 0.85933 -0.022365 0.0096988
66 peas.jpg 1280×1024 117.938 0.98957 -0.021350 0.98823 0.060916 0.98846 -0.031331 0.0171490
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Table B.1 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 4 and Reduction Iteration = 16 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

67 pencil.jpg 1024×768 82.855 0.99720 0.010976 0.99620 0.045389 0.99455 -0.018665 -0.0140490
68 penguin.jpg 600×400 22.4 0.98493 0.008487 0.97266 0.009178 0.96321 0.013759 -0.0413370
69 peppers.png 512×512 24.566 0.97912 -0.035132 0.98587 -0.049621 0.98031 -0.023436 0.0560420
70 pharaoh.jpg 750×498 34.563 0.96143 -0.050503 0.94743 0.036169 0.93812 -0.033020 -0.0247550
71 pixar.jpg 740×416 28.795 0.98457 0.042483 0.99317 0.022934 0.98336 0.007800 0.0264320
72 pool.png 510×382 17.788 0.95908 -0.052235 0.98115 0.002204 0.95390 -0.014697 0.0271250
73 power.jpg 864×434 35.14 0.97358 0.012174 0.96399 -0.016889 0.95425 -0.026613 0.0015942
74 ratatouille.jpg 1558×1458 213.099 0.99551 -0.004680 0.99660 -0.002493 0.99507 0.048927 -0.0206510
75 red.png 594×514 27.088 0.99778 0.020216 1.00000 0.006251 1.00000 -0.002000 -0.0476420
76 river.png 532×346 16.813 0.95207 0.017322 0.95249 0.022280 0.91845 -0.011016 -0.0096595
77 rogue.jpg 606×850 46.074 0.98504 0.024535 0.98545 -0.049796 0.97626 -0.002881 -0.0299620
78 sails.png 768×512 37.392 0.91435 0.002090 0.92472 0.003954 0.88104 0.008835 0.0010806
79 sea.jpg 782×604 47.305 0.99423 0.010716 0.93005 -0.011307 0.92306 0.069184 -0.0078715
80 serrano.png 628×794 48.203 0.94700 0.033601 0.94355 0.013682 0.94523 0.004277 0.0601630
81 shawshank.jpg 928×522 46.224 0.98485 -0.019834 0.98810 -0.003287 0.97719 -0.041551 -0.0153360
82 ship.jpg 1024×656 63.705 0.88793 -0.038767 0.75330 -0.044983 0.71275 -0.020578 0.0181720
83 slave.jpg 768×512 36.971 0.97236 0.004964 0.98709 -0.007741 0.95959 0.050958 0.0221940
84 snake.jpg 652×436 26.684 0.99494 -0.040067 0.99502 0.010816 0.99125 -0.001319 -0.0533720
85 spaceship.jpg 450×336 14.427 0.98984 0.013035 0.99138 0.029783 0.98510 -0.044202 -0.0076570
86 square.png 594×514 30.049 0.99777 0.025176 0.99082 0.032781 0.98450 -0.020945 -0.0379670
87 starwars.jpg 540×352 18.233 0.94202 -0.046844 0.94884 -0.011643 0.88358 -0.015273 0.0774290
88 sunflower.jpg 720×480 34.94 0.99079 -0.019216 0.99101 -0.087610 0.97869 0.034940 0.0244890
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Table B.1 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 4 and Reduction Iteration = 16 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

89 tiger.jpg 640×480 29.516 0.97344 0.015511 0.96747 -0.003511 0.94706 0.022439 0.0110150
90 toddler.png 934×630 57.641 0.99765 0.005552 0.99758 -0.057516 0.99679 0.025535 0.0714440
91 town.jpg 758×422 31.099 0.93382 -0.042834 0.94350 0.076269 0.91233 -0.040798 0.0066932
92 toy.jpg 666×666 43.033 0.99780 0.002875 0.99580 0.013309 0.99395 0.014100 -0.0073478
93 tree.jpg 658×438 27.74 0.91659 0.002171 0.92289 -0.032563 0.90882 0.002891 0.0008062
94 triangle.png 650×304 19.182 0.79666 -0.032754 0.78544 -0.033624 0.58226 0.067564 -0.0004005
95 tukan.jpg 800×570 44.122 0.99246 0.017674 0.97896 -0.022171 0.97823 -0.041272 0.0017194
96 tulips.png 768×512 772.323 0.98257 -0.045139 0.98379 0.004233 0.97186 -0.022503 -0.0396740
97 victorhugo.jpg 628×304 19.384 0.98967 -0.034204 0.99414 0.075189 0.97890 0.026425 0.0107210
98 village.jpg 700×442 28.816 0.94153 -0.008038 0.93062 0.026116 0.90943 -0.008171 -0.0127610
99 white.png 594×514 28.209 1.00000 0.012499 1.00000 0.014360 1.00000 -0.047333 NaN
100 wine.jpg 650×366 21.979 0.95439 -0.014778 0.96765 -0.017715 0.93174 -0.012882 -0.0206840
Average: 48.7876 0.96045 0.001491 0.95922 0.001757 0.93669 0.000211 -0.0026736
Median: 31.099 0.98219 0.002171 0.97896 0.004233 0.97098 -0.001716 -0.0059357
Total time: 4878.76
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Table B.2 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 8 and Reduction Iteration = 32

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

1 airplane.png 512×512 48.648 0.94584 0.018926 0.95195 0.003964 0.92255 -0.053451 -0.0257330
2 apple.jpg 460×460 40.829 0.99706 0.026324 0.99739 0.041584 0.99434 0.048582 -0.0008920
3 armiehammer.jpg 550×440 44.354 0.96406 -0.011906 0.96748 -0.007837 0.94363 -0.014297 -0.0469850
4 baboon.png 512×512 48.245 0.90766 -0.015957 0.86668 0.019916 0.81752 -0.016742 -0.0025910
5 bacteria.jpg 750×500 70.615 0.97437 -0.025889 0.97798 0.007772 0.96919 -0.016560 -0.0147800
6 balls.jpg 800×600 89.261 0.99233 0.023852 0.99255 -0.026077 0.98697 -0.056551 -0.0168250
7 barbara.png 512×512 48.427 0.89593 -0.010317 0.95944 -0.037250 0.87763 -0.010789 -0.0273410
8 bee.jpg 728×424 61.333 0.99394 0.005457 0.99092 0.024061 0.98743 -0.020660 0.0241180
9 bird.jpg 716×478 64.298 0.99330 0.018071 0.99171 -0.040538 0.97247 -0.016948 -0.0324660
10 black.png 594×514 56.905 1.00000 -0.004973 1.00000 0.019539 1.00000 -0.058987 NaN
11 blue.png 594×514 56.445 1.00000 -0.059342 1.00000 -0.046727 0.99778 -0.004780 -0.0427060
12 book.jpg 620×412 47.153 0.85611 0.001413 0.86571 0.012035 0.77270 0.059961 0.0416530
13 calibration.jpg 900×674 107.511 0.99448 0.023455 0.99805 -0.005818 0.99172 0.027026 -0.0128270
14 candy.jpg 700×420 52.772 0.99584 -0.043279 0.99405 -0.017434 0.98732 0.001489 0.0009408
15 capuchin.jpg 640×426 49.553 0.98067 -0.049934 0.96716 -0.027462 0.97174 -0.016245 -0.0033946
16 cat.png 490×732 64.276 0.98223 0.050552 0.96818 0.014692 0.95863 0.034711 0.0250010
17 chair.jpg 710×710 89.607 0.98536 -0.012612 0.98138 -0.016599 0.98038 -0.002669 -0.0052269
18 china.jpg 800×400 56.776 0.98723 0.015936 0.98973 -0.024519 0.97867 0.013784 0.0255690
19 chocolate.jpg 650×488 60.998 0.99221 0.011319 0.98934 -0.003065 0.98350 0.001646 0.0080346
20 circle.png 594×514 57.671 0.85789 -0.010614 0.78700 -0.033174 0.89559 0.025097 -0.0670780
21 city.jpg 590×350 39.389 0.94558 0.028911 0.94317 -0.007764 0.91121 -0.012155 0.0502060
22 clarkgable.jpg 600×400 45.927 0.98583 -0.046643 0.98727 0.004690 0.96586 0.004542 -0.0047477
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Table B.2 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 8 and Reduction Iteration = 32 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

23 coral.jpg 618×410 47.6 0.94999 -0.004685 0.94118 0.015837 0.93681 0.022079 0.0160430
24 david.jpg 760×985 147.009 0.99476 0.014619 0.99494 -0.012202 0.98985 -0.038805 0.0529480
25 desert.jpg 800×600 94.524 0.99089 0.075086 0.98099 -0.053118 0.97712 -0.001890 -0.0131430
26 dinosaur.jpg 662×366 47.621 0.93947 -0.007181 0.95009 -0.049120 0.90430 0.048815 0.0316390
27 dolphin.jpg 768×514 78.247 0.98626 0.000643 0.97981 0.023364 0.95645 0.019502 0.0186720
28 drop.jpg 916×610 109.877 0.99353 -0.020939 0.98661 0.048337 0.98780 -0.055516 0.0198430
29 duck.jpg 500×500 48.718 0.99150 0.005030 0.99722 -0.018772 0.99429 0.003646 0.0033059
30 eagle.jpg 600×600 68.989 0.98878 -0.039286 0.98967 -0.021670 0.98765 -0.000862 -0.0652550
31 eggplant.jpg 400×400 31.842 0.98204 -0.027998 0.99256 0.023342 0.97835 0.008702 -0.0343630
32 egypt.jpg 800×600 92.202 0.83425 0.016598 0.72181 0.008154 0.70881 0.039069 0.0271040
33 food.jpg 538×360 38.254 0.98998 0.012827 0.98898 0.015468 0.97918 -0.025429 0.0145820
34 forrest.jpg 550×366 38.447 0.82421 -0.009643 0.86495 -0.034494 0.79629 0.009748 -0.0283120
35 fruits.png 512×512 49.821 0.98509 0.037028 0.97529 0.010428 0.97872 0.005201 0.0722370
36 frymire.jpg 1100×1100 235.56 0.89852 0.011719 0.85830 -0.040540 0.81056 -0.002079 -0.0138200
37 girl.png 768×512 80.346 0.98952 0.011772 0.99248 -0.027428 0.98673 -0.001441 0.0231490
38 girlface.bmp 512×512 52.948 0.98371 0.022021 0.98970 -0.004616 0.97122 -0.004705 0.0138530
39 grass.jpg 590×350 41.204 0.97094 -0.035242 0.96431 0.040776 0.94400 0.015024 -0.0019134
40 green.png 594×514 62.642 1.00000 0.012017 1.00000 -0.014408 1.00000 -0.047334 0.0467970
41 horse.jpg 640×640 82.913 0.99513 -0.031072 0.99693 0.001985 0.99095 -0.022709 0.0030326
42 hotdog.jpg 780×438 68.262 0.99581 0.049807 0.98702 0.006112 0.98320 0.020290 -0.0095107
43 india.jpg 800×436 68.988 0.90867 0.035328 0.94280 -0.031014 0.88687 0.032118 0.0034823
44 juice.jpg 749×468 69.48 0.99596 -0.014194 0.99352 0.007072 0.98775 0.000032 -0.0241710
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Table B.2 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 8 and Reduction Iteration = 32 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

45 lena.png 512×512 52.777 0.97761 -0.055165 0.98924 -0.074067 0.97601 0.040532 0.0342540
46 library.jpg 300×458 27.826 0.69678 0.051672 0.88076 0.057547 0.62666 -0.018996 -0.0154760
47 lichtenstein.png 512×512 51.753 0.97648 0.047056 0.98330 0.053928 0.94746 0.012227 -0.0053655
48 lion.jpg 860×644 122.499 0.98631 0.020711 0.98959 0.082717 0.97584 0.016941 0.0393100
49 map.jpg 642×600 75.56 0.92901 0.022895 0.91138 -0.019811 0.86736 -0.013899 0.0309330
50 marilyn.jpg 798×904 143.463 0.99748 -0.015327 0.99703 0.009321 0.99496 -0.032111 -0.0147450
51 monalisa.jpg 686×1024 126.031 0.94276 -0.027662 0.95237 0.020468 0.93076 -0.019815 0.0057992
52 monarch.png 768×512 70.036 0.96807 0.035163 0.95261 -0.021392 0.95316 0.022753 -0.0183710
53 monk.jpg 600×400 42.046 0.95474 0.039403 0.96424 0.026002 0.94221 0.006292 0.0096568
54 mountain.png 640×480 55.736 0.84477 -0.000445 0.85901 0.019266 0.80739 0.050959 -0.0659120
55 musketeers.jpg 590×350 36.247 0.94290 -0.034594 0.91648 0.027309 0.89202 0.045346 -0.0021551
56 northlights.jpg 750×472 65.84 0.99662 -0.017515 0.98657 0.026120 0.97942 -0.004995 0.0189690
57 norvegia.jpg 480×328 28.594 0.95680 -0.014406 0.94982 -0.002571 0.92160 -0.027711 0.0201080
58 orchestra.jpg 900×598 94.424 0.92846 -0.032681 0.94949 0.041127 0.86520 -0.001779 -0.0199880
59 orchid.jpg 726×408 52.809 0.99232 -0.034234 0.99345 -0.018990 0.98640 0.060436 0.0419890
60 orhun.png 598×346 35.952 0.97936 0.038090 0.93815 0.042616 0.93781 -0.082616 -0.0136460
61 ottoman.jpg 768×432 58.256 0.91692 -0.042170 0.90747 0.039638 0.88060 -0.038041 -0.0432820
62 owl.jpg 550×366 34.566 0.98118 -0.000838 0.97499 0.019959 0.97197 0.005873 0.0010162
63 paint.jpg 530×376 35.137 0.92821 -0.010739 0.90717 -0.015530 0.89116 0.052977 0.0324780
64 parrotfish.jpg 363×420 47.648 0.95219 -0.014442 0.94253 -0.027538 0.92050 0.003300 0.0013319
65 peacock.jpg 1544×1368 433.666 0.90144 -0.015410 0.91504 0.017474 0.86029 -0.044909 -0.0195130
66 peas.jpg 1280×1024 268.625 0.98447 0.004227 0.99510 0.025982 0.98944 0.030993 0.0581670
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Table B.2 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 8 and Reduction Iteration = 32 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

67 pencil.jpg 1024×768 159.392 0.99748 0.015106 0.99589 0.006490 0.99518 0.006660 -0.0053869
68 penguin.jpg 600×400 47.016 0.98843 0.017453 0.98585 -0.073941 0.96530 -0.000075 0.0065555
69 peppers.png 512×512 51.559 0.98087 -0.053260 0.97849 0.014425 0.96602 0.009071 -0.0212180
70 pharaoh.jpg 750×498 74.534 0.95625 -0.020017 0.95320 -0.014864 0.92212 -0.059670 -0.0223120
71 pixar.jpg 740×416 60.312 0.98848 -0.006964 0.99329 -0.001084 0.97842 -0.015990 0.0405360
72 pool.png 510×382 37.824 0.98957 -0.011905 0.97644 0.040721 0.97475 -0.015783 -0.0255270
73 power.jpg 864×434 74.344 0.95922 0.024706 0.97091 0.017679 0.94298 0.007610 -0.0225500
74 ratatouille.jpg 1558×1458 451.289 0.99649 0.030389 0.99566 0.025866 0.99098 0.004310 0.0606030
75 red.png 594×514 55.539 1.00000 -0.026423 1.00000 0.027523 1.00000 0.008268 -0.0248540
76 river.png 532×346 33.58 0.95476 0.035218 0.94663 0.026189 0.92934 0.037234 -0.0005069
77 rogue.jpg 606×850 98.942 0.98644 0.000588 0.98749 0.027657 0.97029 0.006120 -0.0262280
78 sails.png 768×512 75.773 0.93993 -0.029340 0.92161 -0.000274 0.87192 -0.014410 0.0468180
79 sea.jpg 782×604 91.235 0.99327 -0.047816 0.92667 -0.030082 0.92095 -0.046780 -0.0048165
80 serrano.png 628×794 95.758 0.95115 -0.014630 0.96269 0.021041 0.93749 0.026458 -0.0388350
81 shawshank.jpg 928×522 93.824 0.98979 -0.030993 0.99169 0.005932 0.98479 -0.017961 0.0607720
82 ship.jpg 1024×656 133.228 0.89518 -0.022572 0.75649 0.017478 0.69798 0.051341 0.0227980
83 slave.jpg 768×512 76.209 0.98480 0.024145 0.98773 -0.006998 0.97398 -0.027893 -0.0050700
84 snake.jpg 652×436 56.824 0.99585 -0.018451 0.99419 0.033978 0.99170 -0.018902 -0.0222790
85 spaceship.jpg 450×336 29.154 0.99210 -0.008344 0.99122 0.028269 0.98657 -0.002758 0.0380970
86 square.png 594×514 58.167 1.00000 0.011155 0.99323 -0.018804 0.99091 0.010942 0.0338060
87 starwars.jpg 540×352 35.874 0.93842 -0.015460 0.94774 -0.012078 0.88438 0.021998 -0.0358290
88 sunflower.jpg 720×480 67.063 0.99280 0.008622 0.98973 -0.047886 0.98655 -0.003636 -0.0073921
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Table B.2 Encryption times and correlation analysis results of one hundred sample image
for Lorenz Iteration = 8 and Reduction Iteration = 32 (continues)

# File name
Image
size

Cipher time
(seconds)

Horizontal Vertical Diagonal Corr between
plain - cipherPlain Cipher Plain Cipher Plain Cipher

89 tiger.jpg 640×480 60.609 0.96917 -0.036952 0.97132 0.049845 0.94455 0.016245 0.0163000
90 toddler.png 934×630 110.421 0.99816 -0.006864 0.99830 -0.056507 0.99717 0.020104 0.0459260
91 town.jpg 758×422 58.05 0.94888 -0.031767 0.93182 -0.059133 0.91444 0.009823 -0.0062787
92 toy.jpg 666×666 85.526 0.99773 -0.025252 0.99388 -0.017445 0.98746 -0.024792 -0.0346420
93 tree.jpg 658×438 57.178 0.93216 0.053032 0.92806 -0.012967 0.88438 -0.009441 0.0510190
94 triangle.png 650×304 38.677 0.79449 0.050207 0.80979 0.003074 0.59247 -0.021777 0.0177220
95 tukan.jpg 800×570 90.165 0.98838 -0.005151 0.98229 -0.006472 0.97636 0.008271 -0.0122030
96 tulips.png 768×512 78.045 0.98076 0.009964 0.98678 0.018844 0.97647 -0.005376 -0.0181390
97 victorhugo.jpg 628×304 37.499 0.99173 -0.022823 0.99229 0.007215 0.98184 0.046993 -0.0012640
98 village.jpg 700×442 62.17 0.93034 -0.008710 0.93145 -0.061230 0.89910 -0.039162 -0.0180430
99 white.png 594×514 60.327 1.00000 -0.022625 1.00000 -0.037118 1.00000 0.024116 NaN
100 wine.jpg 650×366 47.48 0.93301 0.032685 0.97112 -0.071811 0.93288 0.022980 -0.0224390
Average: 76.59565 0.96088 -0.001625 0.95856 -0.000794 0.93672 0.000174 0.0016883
Median: 60.312 0.98297 -0.006007 0.98040 0.003519 0.97076 0.000760 -0.0020343
Total time: 7659.565

86



References

[1] B. Jackson. (2019). How to optimize images for web and performance. (2019,
April 01), [Online]. Available: https://kinsta.com/blog/optimize-
images-for-web/.

[2] O. S. Faragallah, F. E. A. El-Samie, H. E. H. Ahmed, I. F. Elashry, M. H. Shahieen,
E.-S. M. El-Rabaie, and S. A. Alshebeili, Image encryption: a communication per-
spective. CRC Press, 2013.
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[7] T. D. Vakfı. (2016). İslam ansiklopedisi - muamma. (2018, November 29),
[Online]. Available: https://islamansiklopedisi.org.tr/muamma.
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