EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

(YÜKSEK LİSANS TEZİ)

EZİNE / ÇANAKKALE GRANİT ALANININ RADYOLOJİK RİSK AÇISINDAN DEĞERLENDİRİLMESİ

Buket CANBAZ

Fizik Anabilim Dalı Bilim Dalı Kodu: 404.04.01 Sunuş Tarihi: 16.08.2007

1. Tez Danışmanı: Doç. Dr. N. Füsun ÇAM

2. Tez Danışmanı: Doç. Dr. Günseli YAPRAK

BORNOVA-İZMİR

Sayın **Buket CANBAZ** tarafından **YÜKSEK LİSANS TEZİ** olarak sunulan **"Ezine/Çanakkale Granit Alanının Radyolojik Risk Açısından Değerlendirilmesi"** başlıklı bu çalışma E.Ü. Lisansüstü Eğitim ve Öğretim Yönetmeliği ile E.Ü. Fen Bilimleri Enstitüsü Eğitim ve Öğretim Yönergesi'nin ilgili hükümleri uyarınca tarafımızdan değerlendirilerek savunmaya değer bulunmuş ve 16.08.2007 tarihinde yapılan tez savunma sınavında aday oybirliği/oyçokluğu ile başarılı bulunmuştur.

<u>Jüri Uyeleri</u> :		<u>Imza</u>
Jüri Başkanı	:	
Raportör Üye	:	
Üye	:	
Üye	:	
Üye	:	

••

ÖZET

EZİNE / ÇANAKKALE GRANİT ALANININ RADYOLOJİK RİSK AÇISINDAN DEĞERLENDİRİLMESİ

CANBAZ, Buket

Yüksek Lisans Tezi, Fizik Bölümü Tez Yöneticileri: Doç. Dr. N. Füsun ÇAM, Doç.Dr. Günseli Yaprak

Ağustos 2007, 73 sayfa

Dünya üzerinde birçok alan, toprakların jeolojik ve jeokimyasal yapısı, termal kaplıcaların ve mineral suların içerdiği yüksek radyoaktivite ve/veya teknolojik olarak zenginleşmiş doğal radyoaktivite ve kozmik ışınlar nedeni ile yüksek doğal radyasyon seviyesi göstermektedir. Yüksek seviyeli doğal radyasyon alanları (HLNRA) olarak bilinen bu alanlar radyo korunum açısından oldukça önemlidir. Bu doğrultuda sunulan çalışmada, yüksek radyoaktivite içerdiği bilinen Ezine Çanakkale bölgesi radyolojik risk açısından değerlendirilmiştir. Bu amaçla, granit masifinden 10 granit kayaç, 14 plaj kumu ve 46 yüzey toprağı örneklenmiştir. Yüksek oranda radyoaktif/ağır mineral içerdiği bilinen plaj kumlarında doğal radyonüklit ortalama aktivite konsantrasyonlarının ²²⁶Ra için, ²³²Th için ve ⁴⁰K için, sırasıyla, 131 Bgkg⁻¹, 208 Bgkg⁻¹ ve 1279 Bgkg⁻¹ değerlerini aldığı gözlenmiştir. Ezine masifinde karasal radyasyondan kaynaklanan ortalama doz hızı 179 nGyh⁻¹ ve etkin doz esdeğeri 0.22 mSvy⁻¹ olarak tahmin edilmistir. Sonuc olarak, bu radyolojik incelemede elde edilen bulgular, calışma alanının HLNRA sınırı olan 5 mSvy⁻¹'ı aşmadığını ve bölgenin yüksek seviyeli radyasyon alanı olarak karakterize edilemeyeceğini ortaya koymuştur.

Anahtar Kelimeler: Ezine granit/siyenit masifi, plaj kumları, ²³⁸U, ²³²Th, ⁴⁰K, yüksek seviyeli doğal radyasyon alanları, doğal radyoaktif materyal.

ABSTRACT

EVALUATION OF EZINE/CANAKKALE GRANIT AREA IN TERMS OF RADIOLOGICAL RISK

CANBAZ, Buket

MSc in Physics Supervisor: Assoc. Prof. Dr. N. Füsun ÇAM, Assoc. Prof. Dr. Günseli Yaprak

August 2007, 73 pages

Many areas in the world have elevated NORM caused either by the geological and geochemical structure of the soil, or by the radioactive content of the water flowing from hot springs and/or due to technologically enhanced radioactivity as well as due to cosmic rays. Some of the areas with with elevated NORM are usually known as high level natural radiation areas (HLNRAs). In this regards, Ezine region known to contain high level natural radioactivity was evaluated for radiological risk. For this purposes, 14 beach sand, 10 granits and 46 soil samples were taken from Ezine granit pluton. The high-activity concentrations measured in beach sands due to the presence of radioacive/heavy minerals are 131 Bgkg⁻¹ for ²²⁶Ra, 208 Bgkg⁻¹ for ²³²Th and 1279 Bgkg⁻¹ for ⁴⁰K. Furthermore, the absorbed gamma dose rate and annual effective dose equivalent for the region were estimated to be 179 nGy h⁻¹ and 0.22 mSvy⁻¹, respectively. As a result, obtained data in this radiological research pointed out that the study area doesn't exceed the HLNRA limit of 5 mSvy⁻¹ and can not be characterized as a HLNRA.

Keywords: Ezine granit/syenite massif, beach sands, ^{238}U , ^{232}Th , ^{40}K , high level natural radiation areas, naturally occuring radioactive materials .

TEŞEKKÜR

Yüksek lisans çalışmalarım süresince her türlü olanağı sağlayarak, değerli bilgi ve tecrübeleriyle bu çalışmanın gerçekleşmesinde önemli katkıları olan ve hedeflediğim yolda desteğini her zaman hissettiğim değerli hocam Sayın Doç. Dr. N. Füsun ÇAM'a sonsuz teşekkürlerimi sunarım.

Alanındaki derin bilgi, tecrübe ve görüşlerini benimle paylaşan değerli hocam Sayın Doç. Dr. Günseli YAPRAK'a ilgi ve sabırlarından dolayı içten teşekkürlerimi sunarım.

Bilgi ve görüşlerinden yararlandığım, mevcut laboratuar olanaklarını kullanmama izin veren Dokuz Eylül Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü Öğretim Üyesi Sayın Prof. Dr. Osman CANDAN'a teşekkür ederim.

Çalışmamın her aşamasında benimle birlikte büyük bir titizlik ve özveri ile çalışan değerli hocam Sayın Arş Gör. Dr. Ercan Turan'a, laboratuvar çalışmalarım sırasında yardım ve desteklerini esirgemeyen hocam Sayın Arş. Gör. Dr. Filiz Gür'e, sevgili arkadaşlarım Sayın Arş. Gör. H. Şengül Alihanoğlu'na ve Doktora öğrencisi Sayın Nasuf Sönmez'e gönülden teşekkürlerimi sunarım.

Arazi çalışmalarımız süresince bize her türlü kolaylığı sağlayan Ayvacık Belediye Başkanı Sayın Mehmet Ünal Şahin'e teşekkür ederim.

Hayatımın her aşamasında olduğu gibi bu tez çalışması boyunca sabır, anlayış ve desteklerini esirgemeyen sevgili AİLEM'e sonsuz teşekkürlerimi sunarım. Х

İÇİNDEKİLER

<u>Sayfa</u>
ÖZETV
ABSTRACTVII
TEŞEKKÜR IX
ŞEKİLLER DİZİNİXV
ÇİZELGELER DİZİNİ XVII
1. GİRİŞ
2. GENEL BILGILER
2.1 Doğal Radyasyon Kaynakları (NORM)5
2.1.1 Kozmik Orijinli Doğal Radyasyon6
2.1.2 Karasal Orijinli Doğal Radyasyon7
2.1.2.1 Karasal Gama Radyasyonuna Dışsal
Maruz Kalma7
2.1.2.1.a Bina Dışı Ortamda Dışsal Maruz Kalma7
2.1.2.1.b Bina İçi Ortamda Dışsal Maruz Kalma9
2.1.2.2 Karasal Gama Radyasyonuna İçsel
Maruz Kalma ve Radon13
2.1.2.3 Karasal Radyasyondan Kaynaklanan
Etkin Doz Eşdeğerleri15
2.1.3 Radyasyondan Korunma ve Güvenliği Alanında
Yetkili Uluslararası Organizasyonlar ve
Radyasyondan Korunma Standartları16

XII

İÇİNDEKİLER (devam)

<u>Sayfa</u>

	2.2 Yüksek Seviyeli Doğal Radyasyon Alanları (HLNRA)
	Tanımı
	2.3 Dünya Üzerinde Yüksek Seviyeli Doğal Radyasyon Alanları
3.	MATERYAL VE YÖNTEM
	3.1 Çalışılan Bölgenin Genel Jeolojik Yapısı
	3.2 Ezine Plüton Alanında Örnekleme ve Örnek Hazırlama
	3.2.1 Örnekleme
	3.2.2 Örnek Hazırlama
	3.3 HPGe Gama Spektrometre Sistemi ile Doğal
	Radyonüklit Analizi
	3.3.1 Radyoaktif Denge
	3.3.2 Radyometrik Uranyum ve Toryum Tayini
	3.3.3 Çalışmada Kullanılan Radyometrik Standartlar44
	3.3.4 Çalışmada Kullanılan Gama Spektrometre
	Sistemi
	3.4 Dağılımların Haritalanması ve Veri Analizi

XIII

İÇİNDEKİLER (devam)

<u>Sayfa</u>

4. DENEYSEL BULGULAR VE TARTIŞMA	47
4.1 Ezine/Çanakkale Plüton Alanında Doğal Radyasyon	
Seviyesi	47
4.1.1 Granit Kayaçların Doğal Radyonüklit Aktivite	
İçeriği	47
4.1.2 Sahil Kumlarının Doğal Radyonüklit Aktivite	
İçeriği	51
4.1.3 Yüzey Topraklarının Doğal Radyonüklit Aktivite	
İçeriği	55
4.2 Doğal Radyasyondan Kaynaklanan Karasal Gama Doz	
Hızları	60
4.3 Karasal Kaynaklardan Alınan Etkin Doz Eşdeğeri	62
5. SONUÇLAR VE ÖNERİLER	65
KAYNAKLAR DİZİNİ	67
ÖZGEÇMİŞ	73

XIV

XV

ŞEKİLLER DİZİNİ

<u>Şekil</u>		<u>Sayfa</u>
Şekil 2.1	Radyasyondan korunma standartlarının oluşturulması	16
Şekil 3.1	Ezine granit plüton alanı	32
Şekil 3.2	Çalışma alanının topografya haritası	34
Şekil 3.3	Örnekleme Noktaları	35
Şekil 3.4	Çalışma alanı yüzey radyoaktivite dağılım haritası	36
Şekil 3.5	Radyoaktif denge durumuna göre 238U serisinin	
	gruplandırılması	41
Şekil 3.6	Aladağ granit örneğinin 5000 s süre ile alınan gama	
	spektrumu ve aktivite hesaplarında kullanılan	
	enerjileri	46
Şekil 4.1	Granit örneklerinde gözlenen 226Ra, 232Th ve 40K	
	aktivite konsantrasyonları	48
Şekil 4.2	Granit örneklerinde gözlenen 226Ra, 232Th ve 40K	
	aktivite konsantrasyonları frekans dağılımları	50
Şekil 4.3	Plaj kumu örneklerinde gözlenen 226 Ra, 232 Th ve 40 K	
	aktivite konsantrasyonları	52
Şekil 4.4	Plaj kumu örneklerinde gözlenen 226 Ra, 232 Th ve 40 K	
	aktivite konsantrasyonları frekans dağılımları	54
Şekil 4.5	Toprak örneklerinde gözlenen ²²⁶ Ra, ²³² Th ve ⁴⁰ K	
	aktivite konsantrasyonları	55

ŞEKİLLER DİZİNİ (devam)

<u>Şekil</u>

<u>Sayfa</u>

Şekil 4.6	Yüzey topraklarında ve plaj kumlarında 226Ra	
	aktivite dağılımı	7
Şekil 4.7	Yüzey topraklarında ve plaj kumlarında 232Th	
	aktivite dağılımı	8
Şekil 4.8	Yüzey topraklarında ve plaj kumlarında 40K aktivite	
	dağılımı	8
Şekil 4.9	Toprak örneklerinde gözlenen 226Ra, 232Th ve 40K	
	aktivite konsantrasyonları frekans dağılımları 59	9
Şekil 4.10	Doğal radyasyondan kaynaklanan karasal gama doz	
	dağılımı60	0
Şekil 4.11	Karasal doz hızlarının frekans dağılımı6	1
Şekil 4.12	Doğal radyasyon kaynaklarından alınan etkin doz	
	eşdeğeri dağılımı	2

XVII

ÇİZELGELER DİZİNİ

<u>Çizelge</u>	<u>S</u>	<u>Sayfa</u>
Çizelge 2.1	Doğal Radyasyona Maruz Kalma Etkin Doz	
	Eşdeğerleri	5
Çizelge 2.2	Bina Dışı Ortamda Karasal Gama Radyasyonuna	
	Dışsal Maruz Kalma	8
Çizelge 2.3	Bina Dışı ve Bina İçi Ortamda Dışsal Gama Doz	
	Hızları	10
Çizelge 2.4	Bina Materyali ve Bina İçi Ortamda Dışsal Maruz	
	Kalma	11
Çizelge 2.5	Karasal Gama Radyasyonundan Kaynaklanan	
	Yıllık Etkin Doz Eşdeğerleri	15
Çizelge 2.6	Normal ve Yüksek Doğal Radyasyonlu Alanlar	
	İçin Yıllık Etkin Doz Eşdeğerleri	20
Çizelge 2.7	Doğal Radyasyon Alanlarının Sınıflandırılması	23
Çizelge 2.8	Yüksek Rakımlı Alanlarda Kozmik Işın Yıllık	
	Etkin Doz Eşdeğerleri	25
Çizelge 2.9	Dünya Üzerinde Yüksek Seviyeli Doğal	
	Radyasyon Alanları	26
Çizelge 2.10	HLNRA Olarak Tanımlanan Termal Kaplıcaların	
	ve Mineral Kaynak Sularının İçerdiği 226Ra ve	
	²²² Rn Konsantasyonları	28
Çizelge 2.11	Bina İçi Ortamda Gözlenen Yüksek Radon	
	Konsantrasyonları	29

XVIII

ÇİZELGELER DİZİNİ (devam)

<u>Çizelge</u>		<u>Sayfa</u>
Çizelge 3.1	Radyometrik U ve Th Tayininde Kullanılan Gama	
	Enerjileri	43
Çizelge 4.1	Granit Örneklerinde Gözlenen 226Ra, 232Th ve 40K	
	Aktivite Konsantrasyonları	48
Çizelge 4.2	Granitlerde Gözlenen Doğal Radyonüklit Aktivite	
	Konsantrasyonlarının İstatistik Analizi	50
Çizelge 4.3	Plaj Kumu Örneklerinde Gözlenen 226Ra, 232Th ve	
	⁴⁰ K Aktivite Konsantrasyonları	52
Çizelge 4.4	Ağır Mineral Kumlarında 232Th ve 238U Aktivite	
	Konsantrasyonları	53
Çizelge 4.5	Plaj Kumlarında Gözlenen Doğal Radyonüklit	
	Aktivite Konsantrasyonlarının İstatistik Analizi	54
Çizelge 4.6	Toprak Örneklerinde Gözlenen ²²⁶ Ra, ²³² Th ve ⁴⁰ K	
	Aktivite Konsantrasyonları	56
Çizelge 4.7	Yüzey Topraklarında Gözlenen Doğal Radyonüklit	
	Aktivite Konsantrasyonlarının İstatistik Analizi	59
Çizelge 4.7	Karasal Doz Dağılımlarının İstatistik Analizi	61
Çizelge 5.1	Granit, Kum ve Toprak Örneklerinin Radyolojik	
	Özellikleri	66

1.GİRİŞ

ICRP-60 Raporunda, müsaade edilebilir yıllık etkin doz eşdeğeri 5mSvy^{-1} verilmekte ve insanların doğal radyasyon kaynaklarından alacakları dozun 1 mSvy^{-1'}ı geçmemesi önerilmektedir (ICRP,1990). UNSCEAR 2000 Raporunda, dünya coğrafyası ve jeolojik koşullarının normal dozlar ürettiği ve etkin doz eşdeğerinin, dünya nüfusunun %65'i için 1-3 mSvy⁻¹, %25'i için <1 mSvy⁻¹ ve %10'u için \geq 3 mSvy⁻¹ olduğu bildirilmektedir. Dünya nüfusunun %90'ının yıllık etkin doz eşdeğerinin \leq 3 mSvy⁻¹ olduğu normal alanlarda yaşadığını ifade eden bu sonuca karşın, dünya üzerinde birçok ülkede; Brezilya (Atlantik sahili), Hindistan (Kerala), Çin (Yangjiang), İran (Ramsar ve Mahallat), Avusturya (Badgastein), Sudan (Miri Gölü), Kanada, Almanya, İsveç ve Bolivya (yüksek rakımlı, 3900m)'da yüksek seviyeli doğal radyasyon alanları (HLNRA) olarak tanımlanan bölgeler mevcuttur.

Normal alanlarda, toplam yıllık etkin doz eşdeğerinin ¹/₃'ünü dışsal maruz kalma, ²/₃'ünü ise içsel maruz kalma oluşturmaktadır. Ancak bu eğilim, HLNRA alanlarında yüksek radyoaktivite üreten doğal radyasyon kaynaklarına bağlı olarak değişebilmektedir. Örneğin; dışsal maruz kalma, yüzey topraklarının jeolojik yapısına (granit yapılar, volkanik alanlar, monozit içeren sahil kumları, vb.), içsel maruz kalma, Ra-Rn içeren sıcak veya soğuk kaynak suları ve/veya bina materyallerine dayalı olarak artarken, kozmik ışın dozları, deniz seviyesinden yüksekliğe bağlı olarak yüksek değerler göstermektedir. Radyolojik incelemeler için doğal bir laboratuar olarak ele alınan bu alanlar;

- yüksek radyasyon seviyesi oluşturan jeolojik yapının ve buna dayalı olarak jeokimyasal olayların incelenmesini,
- doğal radyasyon dozlarının insanlar üzerindeki etkilerinin doğrudan gözlenmesini,
- radyasyon-risk hipotezleri ile ilgili tartışmayı çözecek gerçek radyasyon- etki cevaplarının belirlenmesini,
- radyobiyolojik ve epidemiyolojik çalışmalardan sağlanan veriler ile insanların radyasyon fobilerinin giderilmesini,
- doğal radyoaktivitenin detaylandırılmasını ve
- istenmeyen radyasyon dozlarından insanların korunması ve çözüm olabilecek kalıcı önlemlerin alınabilmesini

sağladığı için radyasyon korunmasında oldukça önemlidir. Bu doğrultuda sunulan tez çalışmasında, jeolojik yapısı gereği yüksek radyoaktivite içerdiği bilinen Ezine/Çanakkale granit pluton alanında (Andaç, 1973), doğal radyasyon seviyesinin belirlenmesi ve bu jeolojik yapıya dayalı olarak, toryumca zengin monozit içeren sahil kumlarında doğal radyonüklit aktivite konsantrasyonlarının saptanması ve bölgenin radyolojik karakteristiklerinin ortaya koyularak HLNRA açısından değerlendirilmesi hedeflenmiştir.

2.GENEL BİLGİLER

Doğal radyoaktif materyallerden (NORM) kaynaklanan iyonize radyasyonun insanlar üzerindeki radyolojik ve epidemiyolojik etkisinin doğrudan gözlenmesini mümkün kılan yüksek seviyeli doğal radyasyon alanları (HLNRA), radyo-korunum açısından oldukça önemlidir. Dünya üzerinde birçok ülkede; Brezilya (Atlantik sahili), Hindistan (Kerala), Çin (Yangjiang), İran (Ramsar ve Mahallat), Avusturya (Badgastein), Sudan (Miri Gölü), Kanada, Almanya, İsveç ve Bolivya (yüksek rakımlı, 3900m)'da HLNRA olarak tanımlanan alanlar mevcuttur. Radyolojik incelemeler için doğal bir laboratuar olarak ele alınan bu alanlarda, toprakların jeolojik yapısı, termal kaplıcaların ve mineral kaynak sularının içerdiği yüksek radyoaktivite ve/veya teknolojik olarak zenginleşmiş doğal radyoaktivite ve kozmik ışınlar nedeni ile yüksek doğal radyasyon seviyesi gözlenmektedir.

Yüksek radyoaktivite içeren bu alanların radyo-korunum açısından önemi;

• Yüksek radyasyon seviyesi oluşturan jeolojik yapının ve buna dayalı olarak jeokimyasal olayların incelenmesi,

• Doğal radyasyon dozlarının insanlar üzerindeki etkilerinin doğrudan gözlenmesi ve insan-risk değerlerinin belirlenerek, farklı radyasyon-risk hipotezleri ile ilgili tartışmayı çözecek gerçek radyasyon-etki cevaplarının gözlenmesi,

• Gerçekçi radyasyon doz-risk tahminlerinden elde edilen doz ve doz-hızı etkin faktörlerini uygulayarak, doğrusal cevap eğrileri (eşik değeri olmayan) ile yüksek doz - düşük doz dönüşümünün yapılabilmesi (atom bombalarının etkilerinden yola çıkılarak eşik değeri olmayan doğrusal cevap eğrilerinin kullanılması birçok belirsizliğe yol açmıştır),

• Radyobiyolojik ve epidemiyolojik çalışmalardan sağlanan veriler ile insanların radyasyon fobilerinin giderilmesi (göreceli olarak düşük radyasyon dozu üreten medikal uygulamaların ve nükleer güç üretiminin açıklanabilmesi),

• Radyoaktivitenin detaylandırılması ve doğal, insan yapımı veya teknolojik olarak zenginleşmiş radyoaktivite (kömür yakıtlı termik santrallerden veya fosfat kayalarının işlenmesi ile açığa çıkan²²⁶Ra vb.) ayırımının yapılması,

• İstenmeyen radyasyon dozlarından insanların korunması ve çözüm olabilecek kalıcı önlemlerin alınabilmesi,

olarak sıralanabilir. Bu doğrultuda sunulan çalışmada, jeolojik yapısı gereği yüksek radyoaktivite içerdiği bilinen Ezine granit pluton alanında (Andaç, 1973) doğal radyasyon seviyesinin belirlenmesi ve bu jeolojik yapıya dayalı kumlarında zenginleşen doğal olarak sahil radyonüklit aktivite konsantrasyonlarının saptanması ve bölgenin radyolojik risk açısından hedeflenmistir. Ezine/Canakkale incelenmesi Bölgesinin radyolojik karakteristiklerini ortaya koyarak HLNRA (High Level Natural Radiation *Area*) açısından değerlendirilmesine yönelik bu çalışmada;

- doğal radyasyon kaynakları (NORM)
- radyasyondan korunma ve güvenliği alanında yetkili Uluslararası Organizasyonlar ve radyasyondan korunma standartları
- HLNRA tanımı ve
- *yüksek seviyeli doğal radyasyon alanları* gözden geçirilerek, aşağıda anlatılmıştır.

2.1 Doğal Radyasyon Kaynakları (NORM)

Doğal radyasyona maruz kalmanın iki temel bileşeni vardır; bunlardan ilki solunan havadaki radon gazı ve vücuda alınan radyonüklitlerin neden olduğu içsel maruz kalma, diğeri ise kozmik ışınlar, kozmojenik radyonüklitler ve karasal radyasyonun (yer kabuğunda, bina materyalinde, havada) neden olduğu dışsal maruz kalmadır (UNSCEAR, 1982; 1988). Çizelge 2.1'de doğal radyasyona içsel ve dışsal maruz kalma ile kişi başına tahmin edilen yıllık ortalama etkin doz eşdeğerleri verilmiştir.

Çizelge 2.1 Doğal Radyasyona Maruz Kalma Etkin Doz Eşdeğerleri (UNSCEAR 2000).

Doğal Radyasyon Kaynakları	Yıllık Etkin Doz Eşdeğeri (mSv)				
0	Ortalama	Tipik Aralık	Toplam		
Kozmik ışınlar					
İyonizasyon bileşeni	0.28 (0.30)*				
Nötron bileşeni	0.10 (0.08)				
Kozmojenik radyonüklitler	0.01 (0.01)	0.3-1.0			
			0.39		
Karasal Radyasyona Dışsal					
Maruz Kalma					
Bina dışı	0.07 (0.07)				
Bina içi	0.41 (0.39)	0.3-0.6			
			0.48		
Karasal Radyasyona İçsel Maruz					
Kalma (Soluma)					
²³⁸ U ve ²³² Th serileri	0.006 (0.01)				
²²² Rn (radon)	1.15 (1.2)				
²²⁰ Rn (toron)	0.10 (0.07)	0.2-10			
			1.20		
Variable in the IM			1.20		
Karasai Kaayasyona içsel Maruz					
Kaima (Diyet) 40 ₁₂	0.17(0.17)				
\mathbf{K} ²³⁸ U ²³² The application:	0.17(0.17)	0 2 0 8			
U ve In semen	0.12 (0.00)	0.2-0.8			
		1	0.29		
Toplam	2.4	1-10	-		

* Parantez içindeki değerler önceki UNSCEAR tahminleridir.

Dünya nüfusu tarafından alınan ortalama doza en büyük katkı karasal ve kozmik orijinli radyasyondan gelmektedir ve doğal kaynaklardan alınan yıllık ortalama etkin doz eşdeğeri 2.4 mSv olarak tahmin edilmektedir (UNSCEAR, 1988).

2.1.1 Kozmik Orijinli Doğal Radyasyon

Uzay ve güneş kaynaklı kozmik ışınların atmosferle etkileşmesi sonucu oluşan ikincil radyasyonun iyonizasyon ve nötron bileşeni kozmik orijinli doğal radyasyonu oluşturmaktadır. Kozmik ışınlardan kaynaklanan iyonizasyon, enlemin ve denizden yüksekliğin fonksiyonudur. Kozmik ışın dozu, yeryüzünden 12 km yüksekliğe kadar her 1500 m'de iki katına çıkmaktadır. Havadaki kozmik ışın dozu deniz seviyesinde ve herhangi bir enlemde ~30 nGyh⁻¹ iken 12 km ve daha üstünde bu değer 4000 nGyh⁻¹'a çıkmaktadır (UNSCEAR,1988). Kozmik ışınların iyonizasyon bileşeni için, binaların zırh etkisi, nüfus gruplarının yüksekliğe göre dağılımı dikkate alınarak, kozmik ışınların neden olduğu ortalama etkin doz eşdeğeri 390 µSv olarak tahmin edilmektedir (UNSCEAR, 2000).

Kozmojenik radyonüklitler, kozmik ışınların stratosfer ve üst troposferde, havadaki azot, oksijen ve argon ile reaksiyonu sonucu oluşmaktadır. Kozmojenik radyonüklitler; ³H, ^{7,10}Be, ¹⁴C, ²²Na, ²⁵Al, ³²Si, ^{32,33}P, ³⁵S, ³⁹Ar ve ⁸¹Kr'dir. Bu radyonüklitler arasında ³H, ⁷Be ve ¹⁴C çevresel radyoaktivite çalışmaları için oldukça önemli radyo izleyicilerdir. Kozmojenik radyonüklitlerden gelen doz, kozmik ışınlarla karşılaştırıldığında oldukça küçüktür. İnsanların bu kaynaktan aldığı doz (10 µSv) yaklaşık kozmik orijinli radyasyondan aldığı dozun %4'ü kadardır.

2.1.2 Karasal Orijinli Doğal Radyasyon

Karasal orijinli doğal radyasyon, yer kabuğunda bulunan ve dünyanın başlangıcından beri (4.5x10⁹ yıl) var olan primordial radyonüklitlerden kaynaklanmaktadır. Radyolojik risk açısından en önemli primordial radyonüklitler; ⁴⁰K, ²³⁸U, ²³²Th ve her iki doğal radyoaktif serinin bozunum ürünleridir. ⁸⁷Rb ve ²³⁵U ikinci derecede önemli primordial radyonüklitler olup, bunların insanların aldığı doza katkısı ihmal edilebilecek kadar azdır.

Doğal kaynaklardan alınan yıllık ortalama etkin dozun (2.4 mSv) büyük bir kısmını 238 U, 232 Th ve 40 K radyonüklitlerinden alınan içsel ve dışsal doz oluşturmaktadır (Çizelge 2.1).

Karasal gama radyasyonuna bina dışı ve bina içi ortamda dışsal maruz kalma sonucu tahmin edilen yıllık etkin doz eşdeğeri 480 μ Sv' dır (UNSCEAR, 2000). İçsel maruz kalmanın en büyük kaynağı ise radon gazının solunmasıdır (UNSCEAR, 2000). Çizelge 2.1'de görüleceği üzere radon gazının solunması ile içsel maruz kalma sonucu alınan doz, yıllık ortalama etkin dozun yaklaşık yarısıdır (1.15 mSv).

2.1.2.1 Karasal Gama Radyasyonuna Dışsal Maruz Kalma

2.1.2.1.a Bina Dışı Ortamda Dışsal Maruz Kalma

Açık alanlarda insanlar, yüzey topraklarındaki (veya yüzeyi örten diğer tabakalar) radyoaktiviteye dayalı olarak karasal radyasyona maruz kalmaktadır ve bu doğrultuda, dışsal gama doz hızı yüzey topraklarının doğal radyonüklit aktivite konsantrasyonları ölçülerek hesaplanmaktadır (UNSCEAR, 1993).

UNSCEAR 1988 Raporunda, normal alanlarda ²³⁸U ve ²³²Th'nin topraklardaki ortalama konsantrasyonları 25 Bqkg⁻¹ ve ⁴⁰K'un 370 Bqkg⁻¹ alınarak, nüfus ağırlıklı ortalama karasal gama doz hızı 55 nGyh⁻¹ olarak hesaplanmıştır. UNSCEAR 1993 Raporunda bu değer 57 nGyh⁻¹ olarak verilmekte ve normal alanlarda ²³⁸U ve ²³²Th'nin topraklardaki ortalama konsantrasyonlarının 40 Bqkg⁻¹ alınması önerilmektedir.

Çizelge 2.2'de yüzey topraklarında gözlenen doğal radyonüklit aktivite konsantrasyonları ve bina dışı ortamda dışsal maruz kalma sonucu tahmin edilen doz hızlarına ilişkin dünya ortalamaları verilmiştir. Bu çizelge, son 20 yılda dünyanın birçok ülkesinde gerçekleştirilen ve dünya nüfusunun %70'ini kapsayan ölçüm sonuçlarına dayalı olarak UNSCEAR 2000 Raporundan derlenmiştir.

Çizelge 2.2 Bina Dışı Ortamda Karasal Gama Radyasyonuna Dışsal Maruz Kalma (UNSCEAR, 2000)

Radyonüklit	TopraklardaOrtalama Radvonüklit Aktivite	Doz Dönüşüm Katsavıları	Havada	
	Konsantrasyonu	<u>b</u> /(nGyh ⁻¹ /Bqkg ⁻¹)	Edilen Gama	
	<u>a/</u> (Bqkg ⁻¹)	(yaş ağırlık)	Doz Hızları	
			<u>a/(</u> nGyh ⁻¹)	
⁴⁰ K	400(420)	0.0417 (0.0414)	17(18)	
²³⁸ U serisi	35 (33)	0.462 (0.461)	16(15)	
²³² Th serisi	30(45)	0.604 (0.623)	18(27)	
Toplam	$D(nGyh^{-1}) = 0.0417A_K + 0$	$0.462 A_{Ra} + 0.604 A_{Th}$	51(60)	

• <u>a</u>/ nüfus ağırlıklı ortalamalar parantez içinde verilmiştir.

• <u>b</u>/ UNSCEAR 1993 Doz Dönüşüm Katsayıları

Gama doz hızlarının hesaplanmasında, ²³⁸U ve ²³²Th tüm bozunum ürünleri ile dengede, toprak yoğunluğu 1.6g/cm³ ve toprak nem faktörünün 0.81 (kuru ağırlık/yaş ağırlık) varsayımı yapılmıştır.

Çizelge 2.2'den görüleceği üzere, UNSCEAR 2000 raporunda, bina dışı ortamda karasal gama radyasyonuna dışsal maruz kalma için nüfus ağırlıklı ortalama doz hızı, 60 nGyh⁻¹ olarak rapor edilmektedir. Ayrıca bu raporda, karasal gama radyasyonundan kaynaklanan doz hızlarının normal alanlarda 10- 200 nGyh⁻¹ arasında değiştiği bildirilmektedir.

Dünya üzerinde normal alanların aksine, yüksek doğal radyasyon içeren alanlar oldukça sınırlıdır ve bu bölgeler, toryum ve uranyum içeren materyallerle birlikte bulunmaktadır. Toryumca zengin *monazit* içeren mineral kumlar bunun en önemli örneğidir. Bu şekilde iyi bilinen iki alan; Kerala'da Arap Denizi sahili ve Brezilya'da Esprito Santo sahilidir. Bu sahillerde karasal gama doz hızlarının 100- 4000 nGyh⁻¹ arasında değiştiği gözlenmiştir. İran'da Ramsar ve Mahallatta termal sularda yüksek ²²⁶Ra aktivite konsantrasyonu nedeni ile bu değer 30000 nGyh⁻¹'e çıkmaktadır. Ayrıca, birçok granit alanının normal alanların çok üzerinde gama doz hızı ürettiği gözlenmiştir (UNSCEAR, 1993). Yüksek doğal radyasyon gözlenen diğer alanlar, Bölüm 2.3'de detaylandırılmıştır.

2.1.2.1.b Bina İçi Ortamda Dışsal Maruz Kalma

Binalar dışarıdan gelen kozmik ve karasal orijinli radyasyona karşı koruyucu etkiye sahip olmalarına rağmen, bina malzemelerindeki radyonüklit içeriğine bağlı olarak bina içi radyoaktivite bina dışındaki değere göre daha fazla olabilmektedir. Çizelge 2.3'de karasal gama radyasyonuna bina içi ve bina dışı ortamda dışsal maruz kalma sonucu tahmin edilen ortalama doz hızları ve doz oranları verilmiştir (UNSCEAR, 1988; 1993; 2000).

R	Soğurulan Doz Hızı (nGyh ⁻¹)						
Bina Di		a Ortam	Bina İçi Ortam		<u>Bina İçi Doz</u> Bina Dışı Doz		
Ĩ	*Ortalama	Tipik	Ortalama Tipik		Ortalama	Tipik	
		Aralık		Aralık		Aralık	
1988	55		70		1.3		
1993	57	24-160	80	20-190	1.4	0.8-2.0	
2000	60	10-200	84	20-200	1.4	0.6-2.3	

Çizelge 2.3 Bina Dışı ve Bina İçi Ortamda Dışsal Gama Doz Hızları

*Nüfus ağırlıklı ortalamalar verilmiştir.

Çizelge 2.3 incelendiğinde <u>bina içi doz / bina dışı doz</u> oranının 1.4 ortalama ile 0.6-2.3 arasında değiştiği gözlenmektedir. UNSCEAR 2000 Raporunda, dünya nüfusunun %45'ini temsil eden verilere dayalı olarak, bina içi ortamda nüfus ağırlıklı dışsal gama doz hızı ortalaması 84 nGyh⁻¹ olarak tahmin edilmekte ve ülke ortalamalarının 20- 200 nGyh⁻¹ arasında değiştiği bildirilmektedir. Karasal gama radyasyonundan kaynaklanan doz hızının bina dışı ortamda 60 nGyh⁻¹ olarak verildiği bu rapora göre, bina içi ortamda dışsal gama doz hızının % 40 daha fazla olduğu görülmektedir.

Bina materyalleri, üretildikleri bölgenin jeolojik yapısını yansıtırlar ve genelde ham maddeden yapıldıkları için radyoaktif atık ve ürün içermezler. Ancak, bina yapımında kullanılan granit gibi magmatik kökenli doğal taşların, uranyum içeren kil taşlarının (alumshale) ve endüstri kökenli bazı malzemelerin (fosfatlı jips ve kömür külü), bina içi maruz kalmayı hızlı şekilde arttırdığı bilinmektedir (UNSCEAR, 1993). Çizelge 2.4'de farklı bina materyallerinde gözlenen doğal radyonüklit aktivite konsantrasyonları ve bu materyallerin bina içi ortamda oluşturacakları dışsal gama doz hızları, aktivite indeksleri ve materyal kullanım oranları ile birlikte verilmiştir.

Materyal	Radyonüklit Aktivitesi (Bqkg ⁻¹)			Aktivite İndeksi	Doz Hızı nGyh ⁻¹		
	²²⁶ Ra	²³² Th	⁴⁰ K	(1)	Wm		
	Ka				1	1/2	1/4
Tipik bina materyali	50	50	500	1.0	80	40	20
Granit blok	90	80	1200	1.9	140	70	35
Kömür külü içeren malzeme	150	150	400	2.4	180	90	45
Kil taşı (alumshale) tuğla	1300	67	770	9.0	680	390	170
Fosfatlı jips	600	20	60	3.9	290	145	70
Doğal jips	20	5	150	0.25	20	10	5

Çizelge 2.4 Bina Materyali ve Bina İçi Ortamda Dışsal Maruz Kalma (UNSCEAR,1993).

UNSCEAR 1993 Raporunda, tipik bina materyallerinde ortalama 226 Ra, 232 Th ve 40 K aktivite konsantrasyonları sırası ile; 50 Bqkg⁻¹, 50 Bqkg⁻¹ ve 500 Bqkg⁻¹ olarak verilmekte (Çizelge 2.4) ve bina içi ortamda havadaki karasal kaynaklar nedeniyle maruz kalınan dışsal gama doz hızı 80 nGyh⁻¹ olarak tahmin edilmektedir. Bu doğrultuda, söz konusu raporda, herhangi bir bina materyalinin bina içi ortamda oluşturacağı radyolojik risk, tipik bina materyalleri için önerilen ortalama doğal radyonüklit aktivite konsantrasyonlarına ve materyalin bina içi kullanım yüzdesine "w_m" bağlı olarak Aktivite **İndeksi** (I) ile tanımlanmaktadır.

$$I = \left(\frac{C_{Ra}}{A_{RA}} 0.461 + \frac{C_{Th}}{A_{Th}} 0.623 + \frac{C_{K}}{A_{K}} 0.0414\right) w_{m}$$
(2.1)

Bu eşitlikte; C_{Ra} , C_{Th} ve C_K : bina materyalinin doğal radyonüklit aktivite konsantrasyonu (Bqkg⁻¹), **w**_m: materyalin bina içi kullanım yüzdesi ve A_{Ra}:50 Bqkg⁻¹, A_{Th}:50 Bqkg⁻¹ ve A_K: 500 Bqkg⁻¹'dır.

Tipik bina materyali için **Aktivite İndeksi (I):** 1 kabul edilmekte ve radyolojik risk açısından, bina materyalleri aktivite indeksinin $I \le 1$ olması istenmektedir (UNSCEAR, 1993).

Bina materyallerinin spesifik aktivitelerini karşılaştırmak için tanımlanan bir diğer uluslararası ortak indeks, *Radyum Eşdeğer Aktivitesi* **Ra(eq)'dir.** Aşağıdaki eşitlik ile verilen **Ra(eq)** radyasyon zarar indeksi; 370 Bqkg⁻¹ ²²⁶Ra, 259 Bqkg⁻¹ ²³²Th ve 4810 Bqkg⁻¹ ⁴⁰K radyonüklitinin aynı miktarda gama dozu ürettiği varsayımına dayanmaktadır.

$Ra(eq) = A_{Ra} + 1.43A_{Th} + 0.077A_K$ (2.2)

Radyolojik risk açısından **Ra(eq)** aktivitesinin 370 Bqkg^{-1'}ı geçmemesi istenmektedir (UNSCEAR, 1988). Benzer şekilde, bina materyallerinde ²²⁶Ra, ²³²Th ve ⁴⁰K radyonüklitlerinden salınan gamalara bağlı dışsal maruz kalma, UNSCEAR 1982 Raporunda *Dış Zarar İndeksi* (**H**_{ex}) ile tanımlanmakta ve aşağıdaki dozimetrik ilişkiyle verilmektedir.

$H_{ex} = A_{Ra} / 370 + A_{Th} / 259 + A_K / 4180 < 1.0$ (2.3)

Bu eşitliklerde, A_{Ra} , A_{Th} ve A_K ; sırası ile bina yapı malzemesinin içerdiği ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarıdır (Bq/kg). H_{ex} indeksinin <1 olması durumunda bina içi ortamda maruz kalınan radyasyon dozunun yılda 1.5 mGy'i geçmeyeceği tahmin edilmektedir (UNSCEAR, 1982).

Sonuç olarak, bina içi ortamda radyolojik riskin değerlendirilmesine olanak tanıyan bu radyasyon zarar indeksleri, bina materyallerinde gözlenen radyoelement içeriklerine dayalı olarak hesaplanmaktadır.

2.1.2.2 Karasal Gama Radyasyonuna İçsel Maruz Kalma ve Radon

İnsan vücuduna diyet (yiyecek ve içecek) ve soluma ile alınan doğal radyonüklitler, içsel maruz kalmanın temel kaynağıdır. Radon dışında, ⁴⁰K, ²³⁸U ve ²³²Th serilerinin neden olduğu içsel maruz kalma UNSCEAR 2000 Raporunda 296 µSv (Çizelge 2.1) olarak tahmin edilmektedir.

Karasal doğal radyasyona içsel maruz kalma sonucu alınan etkin doz eşdeğerinin yaklaşık %50'sini, ²²²Rn ($t_{1/2}$ = 3.85 gün) ve alfa yayımlayıcı bozunum ürünleri oluşturmaktadır. Çizelge 2.1'de görüleceği üzere, radon gazının solunması ile maruz kalınan içsel doz eşdeğeri 1.15 mSvy⁻¹ tahmin edilmektedir (UNSCEAR, 2000).

Radyoaktif bir gaz olan radonun: ²³⁵U serisi \rightarrow ²¹⁹Rn (aktinon), ²³²Th serisi \rightarrow ²²⁰Rn (toron) ve ²³⁸U serisi \rightarrow ²²²Rn (radon) olmak üzere üç doğal izotopu bulunmaktadır. Sözü edilen üç radon izotopundan ²¹⁹Rn, seri başı ²³⁵U'in doğal izotopik bolluğunun çok düşük olması (0.07) ve çok kısa yarı ömrü nedeni ile radyolojik risk açısından değerlendirilmemektedir. Benzer şekilde, ²³²Th' in bozunum ürünü olan ²²⁰Rn, 55.35 saniyelik kısa ömrü nedeniyle daha az dikkate alınmaktadır. Bununla birlikte, bina içi etkin doz eşdeğerinin %10'una ²²⁰Rn ve ürünlerinin neden olduğu tahmin edilmektedir (UNSCEAR 2000). Toron ve ürünlerinin solunması ile akciğerlerin maruz kaldığı radyasyon etkin doz eşdeğeri 0.1 mSvy⁻¹ olarak tahmin edilmektedir.

Günümüzde ²²²Rn ve ürünlerinin solunması dünya çapında bir problem ve belirgin bir kanser riski olarak tanımlanmaktadır (UNSCEAR, 1988). Bu doğrultuda, Ulusal ve Uluslararası Kuruluşlar tarafından kapalı ortamlarda radon gazı konsantrasyonunu sınırlayan değerler belirlenmiş ve dünyanın değişik ülkelerinde geniş ölçekli sistematik çalışmalar başlatılmıştır (UNSCEAR,1988). Bu çalışmaların derlendiği UNSCEAR Raporlarında (1988; 1993; 2000), radon konsantrasyonu dünya ortalaması bina içinde 40 Bqm⁻³ ve bina dışında 10 Bqm⁻³ olarak verilmektedir. Bu anlamda, insanların zamanlarının %80'ini geçirdiği bina içi ortamda, bina dışına göre yüksek oranda radon konsantrasyonu gözlenmesi, radyum içeren bina yapı ve dekorasyon malzemelerine bağlanmaktadır. Bunun yanı sıra, yapının bağlı bulunduğu tabanın radon geçirgenliği, bina dışı havada bulunan radon konsantrasyonu seviyesi, musluk suyu ve havalandırma gibi koşulların bina içi radon konsantrasyonunu etkilediği bilinmektedir (UNSCEAR, 1993).

Radyasyon güvenliği açısından, bina içi radon konsantrasyonunun dışarıdaki kadar veya daha az olması önerilmektedir. Uluslararası Atom Enerji Ajansı Temel Güvenlik Standartları (IAEA-BSS) çerçevesinde, bina içi ortamda radon için tavsiye edilen konsantrasyon düzeyi 200-600 Bq/m^{3°} dür. ICRP ve WHO ise gelecekteki binalar için bu değerin < 100 Bq/m³ olmasını önermektedir (Yaprak, 1999). Türkiye'de müsaade edilebilir radon konsantrasyonu TAEK tarafından 400 Bq/m³ olarak belirlenmiştir (<u>www.taek.gov.tr</u>).

Radon gazı ve kısa yarı ömürlü ürünlerinin solunmasına dayalı olarak, UNSCEAR 1982 Raporunda *İç Zarar İndeksi* (H_{in}) tanımlanmıştır.

$$H_{in} = A_{Ra} / 185 + A_{Th} / 259 + A_K / 4180 < 1.0$$
(2.4)

Bu dozimetrik eşitlikte; A_{Ra} , A_{Th} ve A_K ; sırası ile bina materyalinin Bqkg⁻¹ olarak içerdiği ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarıdır. Radyolojik risk açısından <u>H_{in} radyasyon zarar indeksinin<1</u> olması durumunda bina içi ortamda maruz kalınan radyasyon dozunun yılda 1.5 mGy'i geçmeyeceği tahmin edilmektedir (UNSCEAR, 1982).

2.1.2.3 Karasal Radyasyondan Kaynaklanan Etkin Doz Eşdeğerleri

ICRP, WHO, ICRU, IRPA, IAEA, OECD-NEA gibi sağlık ve radyo-korunum ve güvenliği alanında yetkili Uluslararası Organizasyonlar tarafından tavsiye edilen radyolojik verileri yayınlanan UNSCEAR Raporlarına, (1982; 1988; 1993; 2000) dayalı olarak Çizelge 2.5'de, bina içi ve bina dışı ortamda, karasal gama radyasyonuna dışsal ve içsel maruz kalma için doz dönüşüm faktörleri verilmiştir. Yıllık etkin doz eşdeğerlerinin hesaplandığı dozimetrik bağıntılarda, insanların zamanlarının % 80'ini bina içi ortamda geçirdiği varsayımı yapılmıştır.

Çizelge 2.5 Karasal Gama Radyasyonundan Kaynaklanan Yıllık Etkin Doz Eşdeğerleri (UNSCEAR, 2000)

Karasal Gama Radyasyonu ^a	Doz Dönüşüm Katsayısı: 0.7 SvGy ⁻¹ Dozimetrik İlişki	Yıllık Etkin Doz Eşdeğeri (DE) mSvy ⁻¹
Bina Dışı Ortam	60 nGyh ⁻¹ x 0.7SvGy ⁻¹ x 8760 saat/yıl x 0.2	0.07
Bina İçi Ortam	84nGyh ⁻¹ x 0.7SvGy ⁻¹ x 8760 saat/y1l x 0.8	0.41
Toplam		0.48
Radon ^b	Doz Dönüşüm Katsayısı: 9 nSv(hBqm ⁻³)	
	Dozimetrik İlişki	
Bina İçi Ortam ^c	40Bqm ⁻³ x 0.4x 7000saat x 9.0 nSvh ⁻¹ /Bqm ⁻³	1.0
Bina Dışı Ortam ^d	10Bqm ⁻³ x 0.6x 1700saat x 9.0 nSvh ⁻¹ /Bqm ⁻³	0.095
Toplam		1.095

^a Çocuklar için bu değer %10 daha yüksektir.

^c Bina içi ortamda radon ve ürünleri arasındaki denge faktörü: 0.4 alınmıştır.

^d Bina dışı ortamda radon ve ürünleri arasındaki denge faktörü: 0.6 alınmıştır.

^b Radon için verilen etkin doz eşdeğerleri, kanda çözünen radon ve sulardan alınan radon dozlarını kapsamamaktadır. Bu ilave dozların toplamı, UNSCEAR 2000'de 0.078mSv y⁻¹ verilmektedir.

2.1.3 Radyasyondan Korunma ve Güvenliği Alanında Yetkili Uluslararası Organizasyonlar ve Radyasyondan Korunma Standartları

Radyasyondan korunma ve güvenliği alanında yetkili Uluslararası Organizasyonların kısa tanımları ve radyasyondan korunma standartlarının oluşturulmasında izlenen yol (Şekil 2.1) aşağıda verilmiştir (ICRP, 1991).

Şekil 2.1 Radyasyondan korunma standartlarının oluşturulması (ICRP, 1991).

UNSCEAR (The United Nation Scientific Committe on the Effects of Atomic Radiation): Radyasyonun sağlık etkileri ile ilgili bilimsel çalışmalar yapan Uluslararası resmi bir komite olup, Birleşmiş Milletler (BM) teşkilatı tarafından 1955 yılında kurulmuştur. Bu bilimsel komite, moleküler biyoloji, radyo-epidemiyoloji ve radyobiyoloji alanındaki araştırmaları uluslararası görüş birliği ile değerlendirerek çalışmaktadır. UNSCEAR, dünyanın çeşitli bölgelerinden gelen veriler ışığında günümüzdeki ve gelecekteki iyonize radyasyon kaynakları, oluşturdukları radyasyon dozları ve etkileri hakkında hesap ve tahminlerini raporlar halinde sunmaktadır. UNSCEAR Raporları, WHO, ICRP, ICRU, IAEA gibi sağlık ve radyasyon korunma ve güvenliği alanında yetkili Uluslararası Organizasyonlar tarafından sağlık, radyasyon güvenliği ve dünya barışını koruma amacıyla yayınlanan ilgili mevzuatı ve ICRP tavsiyelerini dikkatle takip etmek zorundadır.

<u>ICRP</u> (International Committee on Radiological Protection): 1928 yılında II. Uluslararası Radyoloji Kongresinin ardından kurulmuştur. Radyasyon korunması ile ilgili temel kriterleri oluşturan bu kuruluş, resmi bir kuruluş olmayıp FAO, WHO, ILO, ICRU, OECD/NEA gibi birçok uluslararası ve büyük ulusal kuruluşla işbirliği içinde bilimsel çalışmalarını sürdürmektedir. Bugün tüm dünyada uygulanan radyasyon korunması kriterleri, ICRP tavsiyelerine dayanmaktadır.

IAEA (International Atomic Energy Agency): Birleşmiş Milletler bünyesinde faaliyet gösteren bağımsız, uluslararası bilim ve teknoloji temelli bir organizasyon olup 1957 yılında kurulmuştur. Nükleer Bilim ve Teknolojinin barışçıl amaçlarla kullanılması ve planlanmasında üye ülkelere destek sağlamaktadır. Nükleer Güvenlik Standartlarını hazırlamaktadır. Bünyesindeki denetim mekanizması ile ülkelerin taahhütlerini yerine getirmesini kontrol etmektedir.

EURATOM (European Atomic Energy Comminty): 1958 Roma Antlaşması ile Avrupa Topluluğu çerçevesinde nükleer güvenlik ve radyasyondan korunma ile ilgili yasal zemini oluşturmak üzere kurulmuştur. Bu doğrultuda yayınlanan kararlar, tüzükler, direktifler ve tavsiyeler üye ülkeler tarafından uygulanır.

<u>**TAEK</u>** (*Türkiye Atom Enerjisi Kurumu*): Ülkemizde radyo korunum ile ilgili düzenlemeleri yapmak üzere, TAEK'e bağlı Radyasyon Sağlığı ve Güvenliği Dairesi (RSGD) bulunmaktadır(<u>www.taek.gov.tr</u>).</u> Uluslararası Radyasyondan Korunma Komisyonu (ICRP), Uluslararası Atom Enerjisi Ajansı (IAEA) ve benzeri çeşitli bağımsız kuruluşlar, iyonlaştırıcı radyasyondan korunma ile ilgili olarak elli yıldan fazla bir süreden beri tavsiye niteliğinde yayınlar yapmaktadırlar. Bu tavsiyelerin yaptırım gücü olmamasına rağmen, ülkeler bu tavsiyeleri kendi koşullarına göre uyarlar ve yürürlüğe koyarlar. ICRP'nin 60 numaralı raporunda ve IAEA'nın Temel Güvenlik Standartları ismi altında yayımladığı BSS-115 No'lu yayınında radyasyon korunması ile ilgili önerilen üç temel ilke aşağıda verilmiştir (ICRP, 1991).

- <u>Uvgulamaların Gerekliliği (Justifikasyon)</u>: Işınlanmanın zararlı sonuçları göz önünde bulundurularak, net bir fayda sağlamayan hiçbir radyasyon ışınlanmasına izin verilmez.
- <u>Radyasyon Korunmasının Optimizasyonu:</u> Tedavi amaçlı tıbbi ışınlanmalar hariç, radyasyon ışınlanması gerektiren uygulamalarda, kişisel dozların büyüklüğü, ışınlanacak kişilerin sayısı, olası tüm ışınlanmalar için ekonomik ve sosyal faktörler göz önünde bulundurularak mümkün olan en düşük dozun alınması sağlanır. Bu kavram ALARA İLKESİ olarak bilinmektedir.

Radyasyondan korunma ve güvenliği alanında ICRP ve diğer Uluslararası Kuruluşların tavsiye ettiği limit değerler, mümkün olabilecek en az radyasyon dozuna maruz kalmayı ifade eden ALARA (*as low as reasonably achievable*) prensibi dikkate alınarak önerilmektedir.

 <u>Doz Sınırlaması</u>: Radyasyondan korunmanın üçüncü ilkesi ise, kişilerin ve gelecek nesillerin kabul edilemeyecek bir risk altına girmesini engelleyecek olan yaptırımdır.
Radyasyona maruz kalma sonucu oluşabilecek radyolojik risk, radyasyonun tipi ve enerjisi, radyasyon kaynağına içsel veya dışsal maruz kalma, radyasyonun insan vücudu içinde dağılımı ve radyasyona maruz kalma süresi değerlendirilerek tahmin edilmektedir. Bu doğrultuda, radyolojik risk tahmini için yaygın şekilde kullanılan ve bir önceki bölümde değinilen doz birimlerinin kısa tanımları aşağıda verilmiştir.

<u>Absorbe Edilen Doz:</u> Radyasyonla ışınlanan materyalin birim kütlesine aktarılan enerji olarak tanımlanır ve SI sistemindeki birimi Gray (1 Joule/kg =1Gy)' dir.

Doz eşdeğeri: Belirli bir radyasyonun biyolojik sistem üzerindeki etkisi, absorbe edilen doz (Gy) ve kalite faktörüne (Q) bağlı olarak SI sisteminde Sievert (Sv) ile verilir. ICPR tarafından verilen kalite faktörü Q, her bir radyasyonun iyonizasyon oluşturma kapasitesidir ve lineer enerji transferi (LET) ile ifade edilir. X, γ ve β ışınları için Q=1, α ışınları için Q= 20 verilmektedir (UNSCEAR, 1988).

<u>Etkin Doz Eşdeğeri:</u> Radyasyona duyarlı organ ve dokular için ICRP tarafından belirlenen risk tahminlerine dayanarak (vücudun bütünü için) organ ağırlık faktörlerini de içeren etkin doz eşdeğeri birimi, SI birim sisteminde Sv olarak verilir. Etkin doz eşdeğer kavramı, radyasyon tipi, enerjisi ve biyolojik hasar arasındaki ilişkiyi tanımlayan dozimetrik niceliktir.

<u>Kollektif Etkin Doz Eşdeğeri</u>: Radyasyona maruz kalan gruplar için tanımlanan ortalama etkin doz eşdeğeridir ve SI birim sisteminde birimi insan (Sv)' dir.

2.2 Yüksek Seviyeli Doğal Radyasyon Alanları (HLNRA) Tanımı

ICRP-60 Raporunda, müsaade edilebilir yıllık etkin doz esdeğeri 5 mSvv⁻¹ olarak verilmekte ve insanların doğal radyasyon kaynaklarından alacakları dozun 1 mSvy^{-1'}ı geçmemesi önerilmektedir (ICRP,1990). Genel olarak, insanların maruz kaldığı doğal radyasyon dozları değerlendirildiğinde, dünya coğrafyası ve jeolojik koşullarının normal dozlar ürettiği ve etkin doz eşdeğerinin, dünya nüfusunun %65'i için 1-3 %25'i için < 1 mSvy⁻¹ ve %10'u için \geq 3 mSvy⁻¹ olduğu $mSvv^{-1}$. gözlenmektedir (UNSCEAR, 2000). Dünya nüfusunun %90'ının yıllık etkin doz esdeğerinin $\leq 3 \text{ mSvy}^{-1}$ olduğu normal alanlarda yaşadığını ifade eden bu sonuc, radvolojik risk acısından, kalan %10 icin yüksek doğal radvasvon alanları tanımının yapılmasını gerektirmektedir. UNSCEAR 1993 Raporu, kozmik ve karasal doğal radyasyondan kaynaklanan yıllık etkin doz eşdeğerlerini, normal ve yüksek doğal radyasyonlu alanlar için Çizelge 2.6 verildiği sekilde özetlemiştir.

Çizelge 2.6 Normal ve Yüksek Doğal Radyasyonlu Alanlar İçin Yıllık Etkin Doz Eşdeğerleri (UNSCEAR, 1993).

Doğal Radyasyon	dyasyon Yıllık Etkin Doz Eşdeğeri (mSv)		
	Normal Alanlar	Yüksek Radyasyonlu Alanlar	
Dışsal Maruz Kalma			
Kozmik ışınlar	0.38	2.01	
Karasal Radyasyon	0.46	4.3	
İçsel Maruz Kalma			
Kozmojenik radyonüklitler	0.01	0.01	
Karasal radyonüklitler	0.23	0.6	
Radon	1.205	10.1	
Toron	0.07	0.1	
Toplam	2.4	17.1	

Yüksek seviyeli doğal radyasyon alanlarının (HLNRA) radyolojik risk açısından değerlendirildiği çalışmalarda, bu alanları karakterize etmek için farklı öneriler sunulmuştur. Ancak, HLNRA alanlarını tanımlamaya yönelik bu radyolojik risk kriterlerinin, genelde ICRP önerileri ve UNSCEAR Raporları doğrultusunda belirlendiği gözlenmektedir (Sohrabi, 1998). Örneğin;

Cullen ve Penna Franca (1977) aşağıdaki koşullardan en az birisine sahip olan alanları, yüksek seviyeli radyasyon alanı olarak karakterize etmiştir.

- Karasal kaynaklardan alınan dışsal gama doz hızı > 2 mGyy⁻¹
- Sindirim yoluyla alınan alfa aktivitesi >50 pCid⁻¹ (1.85 Bqd⁻¹)
- İçilebilir suyun radon konsantrasyonu $>5000 \text{ pCi l}^{-1}$ (185 kBq m⁻³)
- Atmosferde ²²²Rn ve ²²⁰Rn aktivite konsantrasyonları >1 pCil⁻¹ (37 Bq m⁻³)

Mishra (1993), yukarıdaki önerilere ve UNSCEAR sonuçlarına dayalı olarak, nüfus faktörünü de kapsayan yüksek NORM'lu alan tanımını aşağıdaki şekilde yapmıştır.

- Karasal kaynaklardan maruz kalınan etkin doz eşdeğeri > 4 mSvy⁻¹.
- Sindirim yoluyla alınan alfa aktivitesi > 2 Bqd⁻¹
- İçilebilir suyun ²²²Rn konsantrasyonu > 200 kBq m⁻³.*
- Atmosferde 222 Rn aktivite konsantrasyonu > 40 Bqm $^{-3}$

Elde edilen verilerin istatistiksel anlam taşıması için Mishra (1993), yukarıda sözü edilen radyasyon kaynaklarından birine veya birkaçına maruz kalan, nüfus sayısının > 1000 olması gerektiğini önermiştir.

^{*}İçme sularında, ortalama ²²⁶Ra konsantrasyonu 1 pCil⁻¹ (37 Bq m⁻³) ve izin verilen maksimum radon konsantrasyonu (MCL) 300pCi/l (11kBqm⁻³)'dir (USEPA; *The United State Environmental Protection Agency*, 1991; UNSCEAR, 1988).

Yüksek NORM'lu alanları tanımlamak üzere yukarıda önerilen kriterlerin yanı sıra, bazı ulusal ve uluslararası tanımlar (sıra dışı "*unusual exposure*" maruz kalma, radon eğilimli alan vb.) da yapılmıştır. Ancak, maruz kalma seviyelerini "*düşük ve yüksek*" olmak üzere, iki grup ile sınırlayan bu öneriler;

- radyobiyolojik ve epidemiyolojik çalışmalar ve bunun yanı sıra risk tahmini için, doğal radyasyon alanlarını doz sınırlama sistemine dayalı olarak sınıflandıramadığı,
- Yüksek NORM'lu alanları radon ve toronu kapsayacak şekilde standardize edemediği,
- Yüksek NORM'lu alanlarda yaşayan insanların maruz kaldığı dozu kontrol altında tutacak doz sınırlama sistemi sağlayamadığı,
- Radyolojik risk altındaki insanların korunması ve çözüm olabilecek kalıcı önlemlerin alınabilmesi için düzenleyici kurallar koyacak bir çatı oluşturamadığı,
- İnsanların radyasyon fobilerinin giderilmesi için HLNRA tanımına açıklık getiremediği,
- İnsanların içsel ve dışsal maruz kalma sonucu alacakları etkin doz eşdeğerlerini sistematik bir temele oturtamadığı ve
- Yüksek NORM'lu alanlarda, radyoaktiviteyi detaylandıracak olan, doğal ve/veya teknolojik olarak zenginleşmiş doğal radyoaktivite (kömür yakıtlı termik santrallerden veya fosfat kayalarının işlenmesi ile açığa çıkan ²²⁶Ra vb.) ayırımını yapamadığı,

gibi gerekçelere dayalı olarak Sohrabi (1998) tarafından tekrar yapılandırılmıştır.

Doğal radyasyon alanlarını, ICRP tavsiyelerine ve etkin doz eşdeğerlerinin (kozmik ve karasal orijinli doğal radyasyona içsel ve dışsal maruz kalma sonucu tahmin edilen toplam doz) sınırlandırıldığı bir sisteme dayalı olarak 4 grup altında sınıflandırarak veren bu tanım, çalışmada benimsenerek Çizelge 2.7'de verilmiştir.

Alan Tanımları	Doğal Radyasyona Maruz Kalma Sonucu	Kalıcı
	Tahmin Edilen Etkin Doz Eşdeğeri	Önlem
	Kriterleri	
LLNRA	\leq 2.4 mSvy ⁻¹ x 2 \approx 5 mSv y ⁻¹	\odot
Normal Seviyeli Doğal	2.4 mSvy ⁻¹ : etkin doz eşdeğeri dünya	
Radyasyon Alanları	ortalaması	
MLNRA	>5 mSv y ⁻¹ \leq 20	5 yıl ^a
Orta Seviyeli Doğal	20 mSv y ⁻¹ : ICRP'nin radyasyon işçileri için	
Radyasyon Alanları	belirlediği limit	
HLNRA	$> 20 \text{ mSv y}^{-1} \le 50 \text{ mSv y}^{-1}$	1 yıl ^b
Yüksek Seviyeli Doğal	50 mSv y ⁻¹ : ICRP'nin radyasyon işçileri için	
Radyasyon Alanları	belirlediği bir önceki limit	
VHLNRA	>50 mSv y ⁻¹	() ()
Çok Yüksek Seviyeli		1
Doğal Radyasyon		Acıl
Alanları		

Cizelge 2.7 Doğal Radyasyon Alanlarının Sınıflandırılması (Sohrabi, 1998)

^a ICRP, radyasyon işçilerine 20 mSvy⁻¹'ı 5 yıl (5x20 mSvy⁻¹= 100 mSvy⁻¹) ^b 50 mSvy⁻¹ ise sadece ve bir kez 1 yıl için önermektedir.

2.3 Dünya Üzerinde Yüksek Seviyeli Doğal Radyasyon Alanları

Normal alanlarda, toplam yıllık etkin doz eşdeğerinin ¹/₃'ünü dışsal maruz kalma, ²/₃'ünü ise içsel maruz kalma oluşturmaktadır (Çizelge 2.6). Ancak bu eğilim, HLNRA alanlarında yüksek radyoaktivite üreten doğal radyasyon kaynaklarına bağlı olarak değişebilmektedir. Örneğin; dışsal maruz kalma, yüzey topraklarının jeolojik yapısına (granit yapılar, volkanik alanlar, monozit içeren sahil kumları, vb.), içsel maruz kalma, Ra-Rn içeren sıcak veya soğuk kaynak suları ve/veya bina materyallerine dayalı olarak artarken, kozmik ışın dozları, deniz seviyesinden yüksekliğe bağlı olarak yüksek değerler göstermektedir. Bu doğrultuda, dünya üzerindeki yüksek seviyeli doğal radyasyon alanları, yüksek rakımlı alanları içerecek şekilde radyasyon kaynaklarına göre;

- yüzey topraklarının jeolojik yapısı,
- termal kaplıcaların ve mineral kaynak sularının içerdiği Ra-Rn konsantasyonu ve
- bina içi radon

olmak üzere Çizelge 2.8- 2.11 altında özetlenmiştir (UNSCEAR, 2000; Sohrabi, 1998).

Kozmik ışınlardan alınan etkin doz eşdeğeri dünya ortalaması UNSCEAR 1993 Raporunda, 380 μ Svy⁻¹ verilmektedir. Bu değer deniz seviyesinde 270 μ Svy⁻¹ olarak tahmin edilmektedir. Ancak, denizden yüksekliğin fonksiyonu olarak artan kozmik radyasyonun, New Mexico (2240 m'de 17.3 milyon nüfus) ve Quito, Ekvator (2840 m'de 11 milyon nüfus) ve La Paz, Bolivya (3900 m'de 1 milyon nüfus) gibi yüksek rakımlı büyük şehirlerde, deniz seviyesine göre 3-8 kat daha fazla kozmik ışın dozu ürettiği gözlenmektedir (Çizelge 2.8).

Yüksek Rakımlı Alanlar	Nüfus (milyon)	Yükseklik (m)	Toplam Etkin Doz Eşdeğeri (µSv)
La Paz, Bolivya	1.0	3900	2020
Lhasa, Çin	0.3	3600	1710
Quito, Ekvador	11.0	2840	1130
Mexico City, Mexico	17.3	2240	820
Nairobi, Kenya	1.2	1660	580
Denver, ABD	1.6	1610	570
Tahran, İran	7.5	1180	440
Deniz seviyesi			270
Dünya ortalaması			380

Çizelge 2.8 Yüksek Rakımlı Alanlarda Kozmik Işın Yıllık Etkin Doz Eşdeğerleri (UNSCEAR, 1993)

Dünya üzerinde yüksek seviyeli doğal radyasyon alanlarının büyük bir kısmı, toryumca zengin monazit içeren ağır mineral kumlar, uranyum ve toryum içeren granitler, çeşitli volkanik ve tortul kayaçlar, kum taşları, kil taşları (alum shale), kireç taşları ve benzeri jeolojik yapılar üzerine yer almaktadır. Genel olarak, jeolojik yapı veya bu yapıya dayalı olarak, çevredeki karasal radyonüklitlerin jeokimyasal olaylarla taşınarak birikmesi sonucu oluşan bu alanlar Çizelge 2.9'de özetlenmiştir. Normal alanların 100 katı ve üzerinde karasal gama doz hızları ürettiği gözlenen bu alanlarda (UNSCEAR, 2000; Sohrabi, 1998), ayrıca yerel jeolojik malzemenin bina materyali olarak kullanılması, bina içi ortamda içsel ve dışsal maruz kalmanın (Ramsar; 0.6-360 mGyy⁻¹) önemli derecede artmasına neden olmuştur.

Ülke	Bölge	Bölgenin Özellikleri	Doz hızları (nGvh ⁻¹)			
	Guarapari	Monazitli sahil kumları	90–90000			
-	Meaipe	Monazitli sahil kumları	20000*			
Brezily	Mineas Gerais ve Goias	Volkanik sokulumlar	340*			
	Pocos de Caldas Araxa	ocos de Caldas Volkanik sokulumlar Araxa				
Çin	Yangjiang ve Quangdong	Monazitli topraklar	370*			
Mısır	Nil Deltası	Monazitli kumlar	20–400			
Sa	Orta (merkez) Bölge	Granitik, şistik alanlar	20-400			
Fran	Güneybatı	Uranyum Mineralleri	10-10000			
u	Kerala ve Madras	Monazitli sahil kumları (200 km uzunluğunda ve 0.5 km	200–4 000 1800*			
ndista	genişliğinde sahil) Ganj Deltası Monazitli kumlar		260-440			
Hii	Chinavilai Köyü,Tamil Nadu	Monazitli sahil kumları	2283–4566			
	Ramsar	Radyum içeren doğal kaynak suları	70–17000			
İran	Mahallat	Radyum içeren doğal kaynak suları	800–4000			
		Uranyum içeren çeşitli volkanik ve tortul kayaçlar	0.092-0.457			
	Lazio		180*			
B/	Campania	Volkanik topraklar	200*			
İtaly	Orvieto Kasabası	v orkanik toprakiai	560*			
	Güney Toscana		150-200			

Çizelge 2.9 Dünya Üzerinde Yüksek Seviyeli Doğal Radyasyon Alanları (UNSCEAR, 2000; Sohrabi, 1998)

Ülke	Bölge	Bölgenin Özellikleri	Doz hızları (<i>nGyh</i> - ¹)
Yeni Zelanda	Pasifik	Volkanik topraklar	1100 (max)
İsviçre	Tessin, Alpler, Jura	²²⁶ Ra içeren karstik topraklar	100–200
Sudan	Miri Gölü		31311*

Çizelge 2.9 devam ediyor

* Ortalama değerleri göstermektedir.

İçme sularında, ortalama ²²⁶Ra konsantrasyonu 37 Bqm⁻³ rapor edilirken, izin verilen maksimum radon konsantrasyonu (MCL) 11 kBqm⁻³ olarak bildirilmektedir (USEPA, 1991; UNSCEAR, 1988). Bu anlamda, yüksek seviyeli doğal radyasyon alanı oluşturan termal kaplıcaların ve mineral kaynak sularının içerdiği ²²⁶Ra ve ²²²Rn konsantasyonları Çizelge 2.10'da verilmiştir.

		Radyonüklit Aktivite Konsantrasyonu (kBq m ⁻³)			
Ülke	N*				
		²²⁶ Ra	²²² Rn		
Badgestein/Avusturya	20	0.04-4.9 (1)	20-4500 (555)		
Ramsar/İran	9	1-146 (31)	1-160 (64.3)		
Mahallat/İran	5	0.48-1.35 (1.02)	145-2731 (710)		
Slovenya	-	0.01-0.6	1.0-63		
Tuwa/Hindistan	25	0.4-0.9	4-40		
Rudas/Macaristan	9	-	≤7.15		
Batı Java/Endonezya	3	1.11-49.25	44.4-820.9		

Çizelge 2.10 HLNRA Olarak Tanımlanan Termal Kaplıcaların ve Mineral Kaynak Sularının İçerdiği ²²⁶Ra ve ²²²Rn Konsantasyonları (Sohrabi, 1998)

* Radyolojik inceleme yapılan kaplıca sayısı

Radyolojik risk açısından ICRP, insanların zamanlarının %80'ini gecirdiği bina ici ortamda, 222 Rn aktivite konsantasyonunun < 100 Bq/m³ olmasını önermektedir (Yaprak, 1999). Ancak, dünya nüfusunun ¹/₃'ünü kapsayan bazı ülkelerde, bina içi radon üzerine yapılan geniş ölçekli radvolojik gözlem sonucları değerlendirildiğinde (UNSCEAR, 1993; 2000), yukarıda sözü edilen alanların yanı sıra (Sohrabi, 1998), yüksek 226 Ra konsantrasyonlarda içeren bina materyallerinin kullanıldığı mekânlarda, bina içi radon konsantrasyonlarının ICRP limitinin üzerinde olduğu gözlenmektedir. Bu anlamda, yüksek seviyeli doğal radyasyon alanlarında ve yüksek 226Ra içeren bina materyallerinin kullanıldığı mekânlarda ölçülen radon konsantrasyonları, konuyu tamamlamak adına Çizelge 2.11'de verilmiştir.

Ülke	Bölge	N*	²²² Rn (kBq m ⁻³)	Radyasyon Kaynağı	
Hindistan	Tuwa	-	420	Termal sular	
İran	Talesh Mahalleh, Ramsar Chaparsar Ramsar (okullar) Ramak Ramsar (merkez) Sadat Mahalleh ve Katalom Tonekabon Talesh Mahalleh, Katalom Eski Ramsar Oteli Yeni Ramsar Oteli	352	0.615 0.326 0.258 0.246 0.111 0.050 0.049 0.027 0.090 0.050	Termal Sular	
Almanya	Saxony Schneeberg ve Schlema Schneeberg	- 60	0.300 10-80	Bina materyalı Toprak gaz radon Bina materyalleri	
Avusturya	Badgastein Batı Tyrol	- 346	0.037-0.555 20-210000	Termal sular Toprak gazı radon	
ABD	Florida, Grand Junction, Colorado Arizona	-	0.074-0.740 >410	Toprak gazı radon Kuyu suları	
İsveç		105 -	0.020-20 700	Bina materyalleri (granit) (fosfat ve şist)	

Çizelge 2.11 Bina İçi Ortamda Gözlenen Yüksek Radon Konsantrasyonları

* Radyolojik inceleme yapılan bina sayısı

Г

Yüksek seviyeli radyasyon alanlarında yapılan radyobiyolojik ve epidemiyolojik araştırmalar uzun süredir devam etmesine rağmen, elde edilen veriler, bu alanların normal alanların üzerinde önemli bir sağlık riski oluşturduğunu henüz ortaya koyamamıştır. Bu nedenle, radyasyon korunmasında kabul edilen seviyeler ile mevcut literatürlerdeki değerler arasında gözlenen farklılığı gidermek ve gerçek radyasyon risk kriterlerinin kesinleşmesi için veri eksikliğini tamamlayacak radyolojik incelemelerin farklı HLNRA alanlarında sürdürülmesi önerilmektedir. Bu doğrultuda sunulan tez çalışmasında, jeolojik yapısı gereği yüksek radyoaktivite içerdiği bilinen Ezine/Çanakkale granit pluton alanında (Andaç, 1973), doğal radyasyon seviyesinin belirlenmesi ve bu jeolojik yapıya dayalı olarak monazit içeren sahil kumlarında (Bölüm 3.2) doğal radyonüklit aktivite konsantrasyonlarının saptanması ve bölgenin radyolojik karakteristiklerinin ortaya koyulması hedeflenmiştir.

3. MATERYAL VE YÖNTEM

Bu çalışmada, jeolojik yapısı gereği yüksek radyoaktivite içerdiği bilinen Ezine Pluton alanında (Andaç, 1973) doğal radyasyon seviyesinin belirlenmesi ve bu jeolojik yapıya dayalı olarak sahil kumlarında zenginleşen doğal radyonüklit aktivite konsantrasyonlarının saptanması ve bölgenin radyolojik risk açısından incelenmesi hedeflenmiştir. Bu doğrultuda, planlanan ve yürütülen radyolojik gözlem çalışması, aşağıdaki adımlardan oluşmuştur.

- Genel jeolojik yapının değerlendirilmesi
- Ezine Plüton alanında sistematik örnekleme
 - *♦* granit kayaçlar
 - sahil kumları
 - * yüzey toprakları
- Radyonüklit analizleri
- Dağılımların haritalanması ve veri analizi

3.1 Çalışılan Bölgenin Genel Jeolojik Yapısı

Ezine granit/siyenit masifi Biga yarımadasında, Ezine ilçesinin batısında, Ege sahillerinden 2-3 km içeride, kuzey-güney doğrultusunda uzanan ve 143 km²'yi kaplayan bir plutondur (Şekil 3.1).

Kestanbol Plutonu Alt Paleozoik yaşlı metamorfik kayaçlardan yapılı temel içerisine sokulmuştur. Neojen yaşlı volkanitler ve onları üzerleyen Pliyosen yaşlı kırıntılı tortul kayalar ve Kuvaterner yaşlı alüvyon bölgede geniş yer kaplamaktadır (Andaç, 1973). Bölgedeki diğer bir birim ise Triyas yaşlı ophiyolitik kayalar (serpantinit) dır. Bu kaya türlerinden türeme güncel plaj kumları sahil boyunca uzanmaktadır. Bölgedeki volkanitler riyolit, riyodasit, dasit, andezit ve trakiandezitik piroklastiklerden yapılıdır. Neojen yaşlı karasal / gölsel tortul kayalar plutonun batı kesiminde yer almaktadır. Plüton, aplit, pegmatit, lamprofir ve latit porfir bileşimli damar kayaları tarafından kesilmektedir. Damar kayalarının genişliği 1-2 cm'den 1-2 m'ye kadar değişmektedir.

Şekil 3.1 Ezine granit plüton alanı (Örgün et.al., 2006'dan uyarlanmıştır.)

Çalışma alanının ortalama yükseltisi 70-100 m dir. Granit / siyenitin ayrışması nedeniyle çalışma alanında yükselti farkları oldukça düşüktür ve

güneydoğudaki Kocadağ (478 m) bölgedeki en yüksek topografyayı oluşturmaktadır (Şekil 3.2). Bölgenin kuzeyinde radyoaktif anomali sahasına adını veren Aladağ 320 m yüksekliğindedir ve mermerlerden yapılıdır (Andaç, 1973). Çalışma alanında büyük akarsular yoktur, ancak 4 büyük dere doğudan batıya doğru akarak Ege Denizi'ne ulaşmaktadır. Ağır minerallerin denize ulaşmasında ana unsur olan bu dereler; kuzeyden güneye doğru sırası ile Geyikli deresi, Derebağlar deresi, Ilıca deresi ve Arap deresidir. Bu dere yataklarında çökelen opak mineralce zengin kumlar ve graniti kesen aplit damarlarının yakın çevresi yüksek radyoaktivite içermektedir. Benzer şekilde, granit/siyenit kütlesinin kuzeybatısında yer alan geniş bir koyun iç kesimindeki Hantepe plajında (sahil kumlarında) yüksek radyoaktivite gözlenmiştir (Andaç, 1973; Örgün et al., 2006). Kıyı dalgalarının etki alanındaki sahil kumlarında, dalgaların güncel etkileri nedeniyle oluşan opak minerallerce zengin ince kabukta radyoaktivitenin oldukça yüksek değerler aldığı gözlenmiştir. Gerek granit/siyenit masifinin iç kesimlerinde, gerekse sahil kumlarında, opak mineral konsantrasyonları ile radyoaktif anomalilerin pozitif korelasyon gösterdiği belirlenmiştir (Andaç, 1973).

Buna göre, granit/siyenit içindeki radyoaktivite içeren ağır mineraller güncel derelerle denize taşınmış ve yerinde dalga işlevleriyle yeniden konsantre edilmiştir. Granitin radyoaktif minerallerce zengin oluşu, akaçlama ağı ve güncel ağır mineral zenginleşme bölgelerinin birbirleri ile uyumu bu gözlemi desteklemektedir. Ana kaynağı oluşturan granitin yanı sıra bölgedeki metamorfik temel ve Miyosen volkanitlerinden de ağır/radyoaktif mineral katılımlarının da gerçekleştiği düşünülmektedir. Andaç (1973), sahil kumlarında gözlenen ağır/radyoaktif minerallerin; *monazit, zirkon, torit, uranotorianit, ve apatit'* den yapılı olduğunu belirlemiştir.

Şekil 3.2 Çalışma alanının topografya haritası

3.2 Ezine Plüton Alanında Örnekleme ve Örnek Hazırlama

Bu radyolojik incelemede, yukarı verilen genel jeolojik yapıya dayalı olarak, granit kayaçlar, yüzey toprakları ve sahil kumları örneklenmiştir.

3.2.1 Örnekleme

Ezine Plütonunu kapsayan çalışma bölgesinde, bu alana temel teşkil eden granit kayaçlar, granit/siyenit masifini temsil edecek şekilde 10 örnekleme noktasından alınmıştır. Yaklaşık 3-5 kg olacak şekilde örneklenen granit kayaçlar, DEÜ. Jeoloji Mühendisliği Bölümünde radyometrik ölçümler için hazırlanmıştır.

İnceleme altındaki bölgede yaşayan insanların maruz kaldığı karasal gama dozlarının saptamak üzere, yüzey toprakları örneklenmiştir. Granit masif baz alınarak yapılan karelajla (3x3 km) sistematik olarak belirlenen yaklaşık 50 noktadan toprak örneği alınmıştır.

Şekil 3.3 Örnekleme Noktaları

Ezine'nin yaklaşık 12 km batısında, genişlikleri yaklaşık 3-200 m arasında değişen ve toryumca zengin monazit minerali içerdiği bilinen birkaç plaj yer almaktadır. Çalışmada, bu doğrultuda Geyikli iskelesinden başlayarak, yüksek radyoaktivite gözlenen Hantepe plajı ve diğer plajlardan 14 sahil kumu örneklenmiştir.

Koordinatları GPS (Garmin 12XL) ile belirlenen her bir örnekleme noktasında (Şekil 3.3), yerinde yüzey gama ölçümleri (cps) yapılmıştır. Bu ölçümler, radyolojik açıdan çalışma alanının değerlendirilmesine olanak sağlamıştır. Şekil 3.4'de, örnekleme alanının ve doğal radyasyon kaynağının tanımlanmasına yönelik olarak elde edilen radyoaktivite dağılım haritası verilmiştir.

Şekil 3.4 Çalışma alanı yüzey radyoaktivite dağılım haritası

3.2.2 Örnek Hazırlama

Ezine Plüton alanından sağlanan granit kayaçlar, DEÜ Jeoloji Mühendisliği Bölümünde çeneli kırıcıdan geçirilip öğütülerek inceltilmiştir. Bu materyaller ve yanı sıra, toprak ve sahil kumları, etüvde 105°C'de sabit ağırlığa ulaşıncaya kadar (24-48 saat) kurutulduktan sonra, gama spektrometrik analiz için 1 l'lik Marinelli kaplara (yoğunluğuna bağlı olarak 1.4 ~2.7 kg) yerleştirilmiştir. Radyum (²²⁶Ra) ve radon (²²²Rn) arasındaki radyoaktif dengenin oluşması için kapatılan materyaller, ölçümlerden önce 4 hafta süre ile bekletilmiştir.

3.3 HPGe Gama Spektrometre Sistemi ile Doğal Radyonüklit Analizi

Herhangi bir örnekteki radyoaktif elementlerin yayımladığı gama ışınlarını enerjilerine ayırarak algılama esasına dayanan gama spektroskopisi, radyonüklit kimliklerinin belirlenmesinde ve kantitatif tayininde birçok analitik ve nükleer tekniğe tercih edilerek kullanılan çok yönlü, tahripkar olmayan, basit, hızlı ve pratik bir radyometrik tekniktir.

1950' li yılların başlarında sintilasyon materyali olarak talyumla aktive edilmiş sodyum iyodür "NaI(Tl)" kristalinin geliştirilmesi ve Hofstadter tarafından bu kristalin gama radyasyonunun algılanılmasında kullanılması modern gama spektroskopisi çağını başlatmıştır (Yaprak, 1995).

Birçok alana değişik amaçlarla uygulanan sintilasyon gama spektroskopisi, uzun yıllar yaygın şekilde radyoaktif mineral keşfinde ve bünyesinde radyoaktif mineral bulunduran jeolojik örneklerin radyonüklit içeriğinin saptanmasında kullanılmıştır.

Radyometrik tekniklerin bütün avantajlarına sahip olan gama spektroskopisiyle jeolojik örneklerin U, Th içeriğinin belirlenmesinde genelde çalışmalar her iki radyoaktif serinin gama verici ürün nüklitleri üzerine kurulmuştur. Çünkü ²³⁸U ve ²³²Th'nin gama spektrometrik ölçümlerde doğrudan dedekte edilecek kendilerine ait karakteristik gamaları yoktur, ancak bozunum zincirlerindeki birçok ürün gama vericidir (Yaprak,1995).

1958 yılında J.A. Adams'ın öngörüsüyle ²³⁸U serisinde ²¹⁴Bi' ün 1.76 MeV, ²³²Th serisinde ²⁰⁸Tl'in 2.6 MeV ve ⁴⁰K' ın 1.46 MeV yüksek enerjili gamaları üzerine yoğunlaşan bu çalışmalarda, uranyum ve toryumun

bozunum ürünleri ile radyoaktif dengede olduğu varsayımı yapılmıştır. Daha sonra açıklanacağı üzere, radyoaktif denge kısaca; ürün nüklitlerin yarı ömrünün ana nüklide göre çok kısa olduğu durumda, belli bir süre sonra ürün aktivitesinin ana aktivitesine eşit olmasıdır.

Ürün aktivitesi kullanılarak kantitatif analiz yapılan bu yöntemde bulunan U ve Th konsantrasyonları eşdeğer uranyum *(eU)* ve eşdeğer toryum *(eTh)* olarak ifade edilir. Ölçümlerde ⁴⁰K'ın kendi karakteristik gaması (1460.75 keV) kullanıldığından bulunan %K konsantrasyonu doğrudan potasyum içeriğini vermektedir (Yener ve Yaprak, 1988; Yaprak, 1995).

Herhangi bir jeolojik örnek matrisi içinde genelde U, Th, K radyoelementleri değişik konsantrasyonlarda ve bir arada bulunurlar. NaI(Tl) sintilasyon dedektörlerinin sınırlı ayırma gücü nedeniyle, bu primordial radyonüklitler için seçilen gama enerjileri (2.6 MeV, 1.76 MeV, 1.46 MeV), sintilasyon gama spektroskopisiyle yapılan ölçümlerde konsantrasyon hesabında doğrudan kullanılamazlar. Böyle bir örneğin sintilasyon gama spektrumunda, bu radyonüklitlerin birbirlerine olan katkılarının uygun faktörlerle çıkartılması gerekmektedir. Bu katkı oranlarını geometriye ve spektometrenin çeşitli ayarlarına bağlı olarak veren Sivirma (Stripping) Oranlarinin ve net savimlardan K (%), U (ppm), Th (ppm) olarak konsantrasyona geçmeyi sağlayan Duyarlılık (Sensitivite) Faktörleri'nin nasıl saptanacağına ilişkin yöntem, Yener ve Yaprak (1988) ve Yaprak (1995)'de detayları ile geniş şekilde verilmiştir. Çalışmada, jeolojik materyallerdeki U, Th ve K radyoelement içerikleri HPGe gama spektrometre sistemi ile belirlendiğinden bu klasik yöntemin detaylarına yer verilmemiştir.

NaI(Tl) sintilasyon detektörleri, gama spektrometrelerinin kalitesini arttıran yarı iletken katı hal gama detektörleri (Ge(Li), HPGe) geliştirilinceye kadar gama spektrometrik sistemlerde kullanılan en önemli detektör olmuştur.

NaI(Tl)' a göre 10-15 kat daha iyi enerji ayırma gücüne sahip olan HPGe detektörlerinin çevresel örneklerdeki doğal radyonüklit tayini için kullanılması beraberinde bazı avantajları da getirmiştir. Bunlardan ilki, ²³⁸U ve ²³²Th bozunum serilerinde ürün nüklitlerden yayımlanan çoğu gama enerjisinden (²¹⁴Pb; 242, 295 ve 352 keV, ²¹⁴Bi; 609, 1120 ve 1764 keV, ²¹²Pb; 238 keV, ²²⁸Ac; 911 keV, ²⁰⁸Tl; 583 ve 2615 keV vb.) yararlanılması, diğeri ise NaI(Tl) gama spektrometre sistemlerinin aksine (NaI(Tl) sintilasyon dedektörlerinin sınırlı ayırma gücü nedeniyle), bu gama spektrometre sistemlerinin yüksek ayırma gücü nedeniyle) örnek matrisinden kaynaklanan herhangi bir katkının olmamasıdır.

3.3.1 Radyoaktif Denge

Bir bozunum zincirinde ana çekirdek ömrünün, ürüne göre ($\tau_1 \gg \tau_2, \tau_3, ..., \tau_n$ veya $\lambda_1 \ll \lambda_2, \lambda_3, ..., \lambda_n$) çok uzun olması durumunda, belli bir süre sonunda bir ürünün radyoaktif parçalanma ile kayıp hızı oluşum hızına eşit olmaktadır. Aşağıdaki eşitlikle verilen bu durum, radyoaktif bozunum serileri için daimi denge koşuludur.

$$\lambda_1 \cdot N_1 = \lambda_2 \cdot N_2 = \lambda_3 \cdot N_3 = \dots = \lambda_n \cdot N_n \tag{3.1}$$

Bu bağıntı göz önüne alınan bozunum zincirinde, ürün aktivitesini ölçerek ana aktivitesinin bulunabileceğini ifade eder. Ancak böyle bir ölçmenin yapılabilmesi için gerekli koşul daimi dengenin bozulmamış olmasıdır. Ana atomun veya ürünlerin bir veya birden fazlasının radyoaktif parçalanma dışında herhangi bir yolla kaybedilmesi durumunda yukarıdaki eşitlik geçersiz olur ve radyoaktif dengesizlik oluşur. Eğer bir nüklit kısa yarı ömrü ile ortamdan uzaklaşırsa denge hızla yenilenebilir, fakat uzun yarı ömürlü bir nüklit ortamdan kalkarsa, bozunum zincirinde bütün üyeler arasında dengenin tamamlanıp yenilenmesi, ürünlerin yarı ömürlerine bağlı olarak milyonlarca yıla kadar varan çok uzun süreler alabilmektedir (Yaprak ve Yener, 1990; Yaprak, 1995).

Bir radyoaktif seride, denge bozulmuş ise, ana ile ürün arasında radyoaktif dengenin yeniden sağlanması için gereken süre, o serinin en uzun yarı ömürlü ürününün yarı ömrüne bağlıdır ve bu süre yaklaşık 6-7 yarı ömür (τ) kadardır.

Uranyumun, bozunum zincirindeki üyeleri ile arasındaki radyoaktif denge, serideki iki uzun yarı ömürlü nüklit ²³⁴U (t_{1/2}= 250000 yıl) ve ²³⁰Th (t_{1/2}= 80000 yıl) nedeniyle 10⁶ yıldan daha fazla zaman alırken, ²³²Th ile bozunum ürünleri arasındaki radyometrik denge yaklaşık 40-50 yılda kurulur. Bunun nedeni toryum serisindeki ürünlerin ²³⁸U serisindeki ürünlere göre çok daha kısa yarı ömürlü olmalarıdır (Yaprak ve Yener, 1990). Toryum serisinde en uzun yarı ömürlü ürün (t_{1/2}= 6.7 yıl) ile ²²⁸Ra' dir. Bu yüzden çoğu jeolojik örnekte toryum serisinin dengede olduğu varsayılır. Herhangi bir metamorfik olay ile seri dağılmış olsa bile bu geçici bir dengesizlikle sonuçlanır ve seri jeolojik olarak hemen denge durumuna döner (Yaprak ve Yener,1990; Yaprak, 1995).

Toryum serisinin aksine, ²³⁸U serisinde radyometrik dengesizliğin çok yaygın olduğu bilinmektedir. Uranyum ve bozunum ürünlerinin jeolojik olarak bile uzun sayılan yarı ömürleri ile aynı ortamda farklı fiziksel ve kimyasal davranışlar sergilemesi bu dengesizliğin en önemli nedenidir. Bu yüzden radyoaktif bozunum dışında ürünlerden birinin veya birkaçının kaybedilmesi ile sonuçlanan dağınıklıkta denge kolay tamir edilemez ve radyometrik dengesizlik oluşur.

Uranyum bozunum zinciri denge yönünden 5 ayrı grupta incelenebilir (Şekil 3.5). Her bir gruptaki ürünler, kendi gruplarının ana radyonükliti ile dengede kalmak eğilimindeyken, her bir grubun başındaki radyonüklit serinin ana izotopu ile dengede olmayabilir.

Şekil 3.5 Radyoaktif denge durumuna göre ²³⁸U serisinin gruplandırılması (Yaprak,1995).

Uranyum bozunum zincirinde, uranyum grubunun ilk üç üyesi arasında (²³⁸U_²³⁴Th_^{234m}Pa) radyoaktif denge bir yıldan az sürede kurulur. ²³⁴U ile ²³⁸U aynı kimyasal özelliklere sahip olduğundan, genelde doğada uranyum grubunun ilk dört üyesi arasında radyoaktif dengenin sürdüğü varsayılır.

Uranyum bozunum zincirinde ilk kırılma ²³⁰Th' dan kaynaklanır. U-Th kimyasındaki farklılık ve ²³⁰Th'un uzun yarı ömrü ($t_{1/2} = 80000$ yıl) bu dengesizliğin en büyük nedenidir.

Bozunum zincirindeki ikinci önemli kırılmayı ise 1600 yıl yarıömürlü ve toprak alkalilere benzer kimyası ile ²²⁶Ra ve bozunum ürünü ²²²Rn oluşturur. Radon, 3.85 gün yarı ömürlü asal bir gazdır ve gözenekli ortamda 1.6 m olan difüzyon uzunluğu ile sistemden kaçma olasılığı çok yüksektir (Yaprak, 1995).

Son grubun ilk üyesi olan ²¹⁰Pb' a 22 yıl yarı ömrü ve önünde yer alan ²²²Rn hareketliliği jeokimyasal bağımsızlık kazandırmaktadır.

3.3.2 Radyometrik Uranyum ve Toryum Tayini

Gama spektroskopisiyle radyometrik uranyum tayininde dikkate alınan ürün gamalarının çoğu ²¹⁴Pb ve ²¹⁴Bi tarafından yayımlanmaktadır. Bu radyonüklitler, ²³⁸U serisinde son uzun yarı ömürlü ($t_{1/2} = 1600$ yıl) ürün olan ²²⁶Ra'nın bozunumu sonucu oluşurlar (Şekil 3.5).

Uranyum bozunum zincirinde ²²⁶Ra'nın önünde ²³⁰Th, ²³⁴U, ²³⁴Pa ve ²³⁴ Th radyonüklitleri yer almaktadır. ²³⁴Th ($t_{1/2} = 24.1$ gün) ve ^{234m}Pa ($t_{1/2}=1.17$ dak.) sadece uranyumun bozunum ürünleridir ve kısa ömürleri nedeniyle uranyumla daima dengededir. Bu nedenle, ²³⁴Pa ve ²³⁴ Th aktiviteleri ölçülerek doğrudan uranyum konsantrasyon tayini yapılabilmektedir (Yaprak,1995). ²³⁴Th'ün 63.3 keV (%3.9) ve 92.6 keV (%5.6) enerjili gamaları uranyumun gama spektrumunda 200 keV'in altında gözlenirken, ^{234m}Pa'ün 258 keV, 743 keV, 766 keV ve 1001 keV gamaları 200 keV'in üzerindeki bölgede gözlenmektedir. ^{234m}Pa'ün bu dört gamasından 1001 keV'in dışında olanlar uranyumun diğer bozunum ürünleri tarafından maskelenir (258 ve 743 keV; ²¹⁴Bi'ün 1.764 ve 1281 keV enerjili gamalarının oluşturduğu çift kaçak pik ile maskelenir, ayrıca ²¹⁴Pb'ün 259 keV piki →258 keV'e, ve yine Bi-214'ün 768 keV'i → ^{234m}Pa'ün 766 keV fotopikine girişimde bulunmaktadır.

Örnek kalınlığı ve matrisinden kaynaklanan foton self absorpsiyon etkisi orta ve yüksek gama enerjilerinde göz ardı edilebilirken, düşük gama enerjilerinde(< 200 KeV) önemli bir problem olarak ortaya çıkmaktadır (Yaprak,1995). Bu nedenle, gama spektrometrik uranyum ve toryum ölçümlerinde, genelde her iki serinin yüksek enerjili ve intensiteli ürün gamaları kullanılmaktadır (Çizelge 3.1).

Jizelge 3.1 Radyometrik U ve 1n Tayininde Kunannan Gama Enerjiteri
--

Bozunum	Radyonüklit	Gama Enerjisi	Gama İntensitesi
Serisi		(keV)	(%)
²³⁸ U	²¹⁴ Bi	609.312	43.3
	²¹⁴ Bi	1120.287	15.7
	²¹⁴ Bi	1764.494	17
²³² Th	²⁰⁸ Tl	583.139	26.84
	²²⁸ Ac	911.070	26.35
	²⁰⁸ T1	2614.533	35.85

Radyum ile bozunum ürünleri arasında radyometrik dengenin kurulması, ²¹⁰Pb'nun 22.3 yıl yarı ömrü nedeniyle 100 yıldan fazla zaman almaktadır. Ancak, ²¹⁰Pb (γ =46.5 keV) ve bozunma ürünleri önemli gama ışını üretmezler ve uranyumun yüksek enerji gama spektrumunda yer almazlar. Bu nedenle ²²⁶Ra ve bozunma ürünlerinin dengeye gelmesi için gerekli süre öncelikle bir gaz olan ²²²Rn (t_{1/2}= 3.85 gün) ile kontrol edilir (Yaprak,1995). ²²²Rn ile ²¹⁰Pb arasındaki ürün radyonüklitlerin yarı ömürleri oldukça kısadır, ²¹⁸Po; $t_{1/2} = 3.05$ dak, ²¹⁴Pb; $t_{1/2} = 26.8$ dak, ²¹⁴Bi; $t_{1/2} = 19.8$ dak, ²¹⁴Po; $t_{1/2} = 1.6 \times 10^{-4}$ sn ve *Ra-Rn dengesi* standart ve örneklerin kapalı kaplarda bir ay süreyle bekletilmesiyle sağlanmaktadır.

Sonuç olarak, gama spektrometrik U tayinlerinde, gerçekte ölçülen ²²⁶Ra aktivitesidir. Bu doğrultuda örneklerde U-Ra dengesi varsayılarak bulunan konsantrasyonlarının eşdeğer uranyum konsantrasyonu (eU) veya ²²⁶R aktivitesi olarak ifade edilmesi gerekmektedir. Uranyum serisinin aksine, ²³²Th serisinde radyometrik dengesizlik çok yaygın olmadığından, ürün aktivitesi ölçülerek bulunan konsantrasyonların ²³²Th aktivitesi olarak ifade edilmesi sorun yaratmamaktadır.

3.3.3 Çalışmada Kullanılan Radyometrik Standartlar

Mutlak aktivite ölçümleri, dedektör verimi ve geometri hesapları kullanılarak yapılmaktadır. Ancak, doğal örneklerin düşük spesifik aktiviteleri nedeni ile çoğunlukla, maksimum sayım hızı için büyük hacimli örnek ve yakın sayım geometrisi tercih edildiğinden geometri ve verim hesaplarında temel fiziksel parametrelerin tam olarak bilinmesi güçleşmektedir. Bu doğrultuda, daha gerçekçi bir yaklaşım, ilgili her bir geometri icin sertifikalı materyallerden hazırlanan standartların kullanılmasıdır (Yaprak, 1995). Bu çalışmada, 1Litre Marinelli geometrisi icin E.Ü. Nükleer Bilimler Enstitüsünde mevcut U (108±10ppm: IAEA sertifikalı S-7), Th (155 \pm 16 ppm: IAEA sertifikalı "S-7) ve K (%5.2 \pm 0.05: Merck markalı KC1) radyometrik standartları kullanılmıştır.

3.3.4 Çalışmada Kullanılan Gama Spektrometre Sistemi

İncelenen örneklerde; 238 U (234m Pa;1001 keV), 226 Ra (214 Bi; 1764 keV), 232 Th (208 Tl; 2614 keV) ve 40 K (1461 keV) içeriklerinin

saptanmasında kullanılan gama spektrometre sistemi, 184 cc HPGe coaksial dedektör (dedektör verimi: %25, ⁶⁰Co'ın 1.33 MeV gama enerjisi için (Full Width at Half Maximum) FWHM: 1.83 keV ve pik/compton oranı: 57:1), Ortec Model-671 spektroskopi amplifikatörü ve Canberra PC bazlı MCA (8 K) Wilkinson ADC'den oluşmuş ve 100 mm kurşun ile zırhlanmıştır.

Çalışmada kullanılan gama spektrometre sisteminin ölçebileceği en düşük aktiviteler (MDA), *Currıe* kriterlerine (iyi bilinen art-ortam) dayalı olarak, aşağıdaki eşitlik yardımıyla hesaplanmıştır (Yaprak, 1998).

$$\mathbf{MDA} = \frac{2.71 + 3.29\sqrt{\mu_B}}{K}$$
(3.2)

Bu eşitlikte; μ_B : background sayım hızı ve K: kullanılan gama spektrometre sisteminde, sayımlardan Bqkg⁻¹ olarak aktiviteye geçmeyi sağlayan kalibrasyon faktörleridir (K_{Ra}, K_{Th} ve K_K).

Currie(1968) kriterlerine dayalı olarak, gama spektrometre sisteminin 10000s'de ölçebileceği minumum dedekte edilebilen aktiviteler (MDA); ²²⁶Ra ve ²³²Th için 2 Bqkg⁻¹ ve ⁴⁰K için 4 Bqkg⁻¹ olarak hesaplanmıştır. Radyometrik sayım hatasının, granit ve sahil kumlarında <%1 olduğu, toprak örneklerinde ise % 10'u aşmadığı gözlenmiştir.

Çalışma alanından sağlanan *Aladağ* granit örneğininin 5000s süre ile alınan gama spektrumu ve aktivite hesaplarında kullanılan gama enerjileri* Şekil 3.6'da gösterilmiştir.

3.4 Dağılımların Haritalanması ve Veri Analizi

Çalışma alanındaki doğal radyonüklit ve karasal doz dağılımları Surfer 8.0 programı kullanılarak oluşturulmuştur. Çalışmaya ilişkin istatistik analizler SPSS 13.0 programı ile yapılmıştır

^{*} Gama spektrometresinin enerji kalibrasyonu referans nokta gama kaynakları (Amersham gama kaynağı kiti, 1992) ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs, ⁵⁴Mn, ²²Na ve ⁶⁰Co kullanılarak yapılmıştır.

kullanılan gama enerjileri.

4. DENEYSEL BULGULAR VE TARTIŞMA

Jeolojik yapısı ve bu yapıya dayalı olarak, çevredeki karasal radyonüklitlerin ağır mineral içeren sahil kumlarında zenginleştiği bilinen Ezine/Çanakkale granit Plüton alanında sürdürülen bu geniş kapsamlı radyolojik gözlem çalışmasında;

- granit/siyenit masif alanını temsil eden granit kayaçlarda, sahil kumlarında ve yüzey topraklarında doğal radyonüklit aktivite konsantrasyonları; ²²⁶Ra, ²³²Th ve ⁴⁰K saptanmış,
- doğal radyasyondan kaynaklanan karasal gama doz hızları hesaplanarak, doz dağılımları haritalanmış,
- * karasal kaynaklardan alınan etkin doz eşdeğerleri hesaplanmış,
- * bölgeye ilişkin radyolojik karakteristikler incelenmiştir.

4.1 Ezine/Çanakkale Plüton Alanında Doğal Radyasyon Seviyesi

Bu radyolojik incelemede, Ezine Plüton alanının doğal radyasyon seviyesi, granit/siyenit masif alanını temsil eden granit kayaçlarda, sahil kumlarında ve yüzey topraklarında doğal radyonüklit aktivite konsantrasyonları ölçülerek saptanmış, elde edilen bulgular aşağıdaki başlıklar altında toplanmıştır.

4.1.1 Granit Kayaçların Doğal Radyonüklit Aktivite İçeriği

Bölgenin genel jeolojik yapısını oluşturan granit kayaçlarda, gama spektrometrik olarak saptanan doğal radyonüklit aktivite konsantrasyonları Şekil 4.1 ve Çizelge 4.1'de örnek kodları ile birlikte verilmiştir.

Şekil 4.1 Granit Örneklerinde Gözlenen ²²⁶Ra, ²³²Th ve ⁴⁰K Aktivite Konsantrasyonları

Çizelge 4	I .1	Granit	Örneklerinde	Gözlenen	²²⁶ Ra,	²³² Th	ve	⁴⁰ K	Aktivite
Konsantra	asyc	onları							

Örnek	Doğal Radyonüklit Aktivite Konsantrasyonları (Bqkg ⁻¹)							
	²²⁶ Ra ²³² Th ⁴⁰ K							
G1	146±5	188 ± 3	1272 ± 13					
G2	215±6	206±3	1278 ± 13					
G3	152 ± 5	141 ± 3	1159±13					
G4	134 ± 5	193±3	1186±13					
G5	531±9	601 ± 6	1527 ± 16					
G6	292 ± 6	229±4	1484 ± 15					
G7	78 ± 4	158 ± 3	1163 ± 13					
G8	139±5	148 ± 3	1151±13					
G 9	181±5	171 ± 3	1192±13					
G10	95±4	120±3	1074 ± 12					

Çizelge (4.1) ve Şekil (4.1) incelendiğinde, granit kayaçlarda, ²²⁶Ra'nın 78-531 Bqkg⁻¹, ²³²Th'un 120-601 Bqkg⁻¹ ve ⁴⁰K aktivitesinin 1074-1527 Bqkg⁻¹ arasında değiştiği ve en yüksek aktivite değerlerinin Aladağ granitine (G5) ait olduğu gözlenmektedir.

Genel olarak, magmatik kökenli asidik bir kayaç olan granitlerde, ortalama U konsantrasyonu 5 ppm [(~60 Bq/kg); 1ppmU= 12.353 Bqkg⁻¹], Th konsantrasyonu 15 ppm [($\sim 60 \text{ Bq/kg}$); 1ppmTh= 4.074 Bqkg⁻¹] ve K iceriği %4 (%1K = 309.34 Bgkg^{-1 40}K) olarak rapor edilmektedir (IAEA, 1979). Ancak, zirkon ve monazit mineral içeriğine bağlı olarak, granit kayaçlarda doğal radyonüklit aktivite konsantrasyonlarının arttığı bilinmektedir. Bu doğrultuda, UNSCEAR 1993 Raporunda, uranyum ve toryumca zengin granitlerde, ²²⁶Ra 100-500 Bgkg⁻¹, ²³²Th 40-350 Bgkg⁻¹ ve ⁴⁰K aktivitesi 1200-1800 Bgkg⁻¹ olarak rapor edilmektedir. Çalışma alanının genel jeolojik yapısı dikkate alındığında elde edilen doğal radyonüklit aktivite konsantrasyonlarının beklentiler doğrultusunda geliştiği gözlenmektedir.

Granit örneklerinin doğal radyonüklit aktivite içeriklerine ilişkin basit istatistik SPSS 13.0 istatistik programı kullanılarak yapılmıştır. Granitlerde gözlenen doğal radyonüklit içeriklerinin aritmetik ortalaması, medyanı, geometrik ortalaması, minimum ve maksimum değerleri, standart sapmaları ve dağılım fonksiyonları Çizelge 4.2'de verilmiştir. Bu kapsamlı radyolojik gözlem çalışmasını daha anlamlı kılmak için, granit örneklerinde saptanan ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarına ilişkin frekans dağılımları (Sekil 4.2) elde edilmis ve bu histogramların normal ve lognormal dağılım fonksiyonları ile uygunluğu tartışılmıştır. Frekans dağılımlarının normal ve log-normal dağılım fonksiyonları ile karşılaştırılmasında Kolmogorov-Smirnov normalite testi yanında kullanılan daha basit bir yöntem, dağılımların aritmetik ortalama, medyan ve geometrik ortalama değerlerinin karşılaştırılmasıdır.

Normal dağılım fonksiyonunda, aritmetik ortalama ile medyan benzer iken, log-normal dağılım fonksiyonunda geometrik ortalama ile medyan birbirine benzer olmaktadır. Bu doğrultuda, normal dağılımların, aritmetik ortalama ve log-normal dağılımların medyan değeri ile ifade edilmesi önerilmektedir (Blagoeva and Zikovssky, 1995).

Çizelge 4.2 Granitlerde Gözlenen Doğal Radyonüklit Aktivite Konsantrasyonlarının İstatistik Analizi

Radyonüklit	Ν		Dağılım					
		Aritmetik	Aritmetik Medyan Geometrik Standart Min.Max.					
		Ortalama		Ortalama	Sapma		-	
²²⁶ Ra	9	159	146	148	64	78-292	Log-Normal	
²³² Th	9	173	171	170	35	120-229	Normal	
⁴⁰ K	9	1218	1186	1213	118	1074-1484	Normal	

* G5 kodlu örnek istatistik dışında tutulmuştur.

Şekil 4.2 Granit örneklerinde gözlenen ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonları frekans dağılımları.

Granit örneklerinde saptanan doğal radvonüklit aktivite konsantrasyonları dağılımına uygulanan normalite testi ve gözlenen aritmetik ortalama, medvan ve geometrik ortalama değerleri ²²⁶Ra histogramının log-normal, ²³²Th ve ⁴⁰K histogramlarının ise normal dağılıma uyduğunu göstermiştir. Bu dağılımlara göre, granit örneklerinde saptanan doğal radyonüklit aktivite konsantrasyonlarının ortalaması;²²⁶Ra icin 146 Bakg⁻¹ (U=11.8 ppm), ²³²Th icin 173 Bakg⁻¹ (Th= 42.5 ppm) ve ⁴⁰K için 1218 Bqkg⁻¹ (%3.9)'dir. Bu doğrultuda, granitlerde saptanan U ve Th konsantrasyonlarının, IAEA, 1979'da rapor edilen ortalama U (5 ppm) ve Th (15 ppm) konsantrasyonlarının üzerinde olduğu, K içeriğinin ise aynı raporda verilen K içeriğine (% 4) yakın bir değere sahip olduğu görülmektedir.

4.1.2 Sahil Kumlarının Doğal Radyonüklit Aktivite İçeriği

Granit, volkanik ve metamorfik kayaçların aşınarak (hava ve su etkisiyle) mekanik yolla kıyıya taşınması sonucu oluşan plaj kumları, dalgalara ve akıntılara karşı direnç gösteren mineral birikintileridir ve plaj kumlarının mineralojik özelliklerinin jeolojik kökeninin yanı sıra jeolojik taşınma ve ayırma işlemlerini yansıttığı öne sürülmektedir (Meijer, 2001; Kannan, 2002; Veiga, 2006). Bu amaçla Ezine granit masifinin batısında yer alan sahiller boyunca 14 adet plaj kumu örneklenmiştir. Bu örneklerde gama spektroskopik olarak ölçülen karasal radyonüklit aktivite konsantrasyonları Şekil 4.3 ve Çizelge 4.3'de verilmiştir.

Şekil 4.3 Plaj Kumu Örneklerinde Gözlenen ²²⁶Ra, ²³²Th ve ⁴⁰K Aktivite Konsantrasyonları

Çizelge 4.3 Plaj Kumu	Örneklerinde Gözlenen	²²⁶ Ra,	²³² Th ve	$e^{40}K$	Aktivite
Konsantrasyonları					

Örnekleme	Örnek	Doğal Radyonüklit Aktivite Konsantrasyonları (Bqkg ⁻¹)			
Bölgesi		²²⁶ Ra	²³² Th	⁴⁰ K	
Geyikli İskele	S11	465±9	459±6	2570 ± 21	
	S7	127±5	142 ± 3	2905 ± 22	
Hantepe Plajı	S8	835 ± 12	959 ± 8	872 ± 15	
	S9	216±6	208 ± 4	2559 ± 21	
	S10	6048 ± 32	12537 ± 25	1847 ± 31	
	S36	215±6	268 ± 4	1245±15	
Dalyan Sahil	S39	66±3	72 ± 2	1521 ± 16	
	S41	369 ± 8	566 ± 1	1123 ± 14	
	S42	77±4	108 ± 3	1347±15	
	S37/1	440 ± 9	510±6	1039 ± 14	
Diğer Plajlar	S37/2	118±5	121 ± 3	1396±15	
	S44	131±5	210 ± 4	1279±15	
	S46	127±5	124 ± 3	1055 ± 13	
	S48	106 ± 4	99±3	1132 ± 14	

Çizelge 4.3'de görüleceği üzere, inceleme altındaki plaj kumlarında doğal radyonüklit aktivite konsantrasyonları; ²²⁶Ra için 66-6048 Bqkg⁻¹, ²³²Th için 72-12537 Bqkg⁻¹ ve ⁴⁰K için 872-2905 Bqkg⁻¹'dır. Genel olarak yüksek radyoaktivite gözlenen plaj kumlarının zirkon, monazit, rutil, ilmenit gibi ağır mineraller içerdiği bilinmektedir (Alam, 1999; Freitas, 2004; Vassas, 2006). UNSCEAR 1993 Raporunda, monazit mineralinde uranyum konsantrasyonu %0.1-0.3 ve toryum konsantrasyonu %5-7 olarak rapor edilmektedir (Çizelge 4.4). Bu doğrultuda, toryumca zengin monazit içerdiği bilinen Hantepe plaj kumlarında yüksek doğal radyonüklit aktivite konsantrasyonlarının gözlenmesi önceki saptamalarla örtüşmektedir (Andaç, 1973; Örgün ve ark., 2007).

Mineral	Radyonüklit konsantrasyonu (Bqkg ⁻¹)			
	²³² Th	²²⁶ Ra		
Ağır mineraller	1000-1300	<100		
İlmenit	600-6000	<100-400		
Lokoksen	1000-9000	250-600		
Rutil	<600-4000	<100-250		
Zirkon	2000-3000	200-400		
Monazit	600000-900000	10000-40000		
Ksenotim	180000	50000		
Toprak ve kayaçlar	40	40		

Çizelge 4.4 Ağır Mineral Kumlarında ²³²Th ve ²²⁶Ra Aktivite Konsantrasyonları (UNSCEAR, 1993)

Kıyı şeritleri boyunca yüksek doğal radyasyon alanlarına neden olan plaserleri taşıyan plaj kumlarındaki radyoaktif/ağır minerallerin, gerçek konsantrasyonlarının zaman ve konuma bağlı olarak hızla değiştiği öne sürülmektedir (Meijer, 2001; Vassas, 2006). Bu gözlem, plaj kumlarında (Hantepe plajı S10 ve S7) dikkat çekici şekilde farklılaşan doğal radyonüklit aktivite konsantrasyonlarını açıklar niteliktedir.

Plaj kumlarının içerdiği doğal radyonüklit aktivite konsantrasyonlarına ilişkin temel istatistik Çizelge 4.5'de verilmiştir.

Çizelge 4.5 Plaj Kumlarında Gözlenen Doğal Radyonüklit Aktivite Konsantrasyonlarının İstatistik Analizi

Radyonüklit	Ν	Radyonüklit Aktivite Konsantrasyonu (Bqkg ⁻¹)				Dağılım	
		Aritmetik	Medyan	Geometrik	Standart	Min.Max.	Fonksiyonu
		Ortalama		Ortalama	Sapma		
²²⁶ Ra	13	253	131	189	221	66-835	Log-Normal
²³² Th	13	296	208	218	260	72-959	Log-Normal
⁴⁰ K	13	1542	1279	1431	674	872-2905	Log-Normal

** Anomali gösteren S10 kodlu örnek istatistik dışında bırakılmıştır.

Şekil 4.4 Plaj kumu örneklerinde saptanan ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarının frekans dağılımları.

Plaj kumu örneklerinin içerdiği ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarının frekans dağılımları Şekil 4.4'de gösterilmiştir. Yapılan
normalite testi ve ilgili çizelgedeki veriler, ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonları frekans dağılımlarının log-normal dağılıma uyduğunu göstermiştir. Bu doğrultuda, plaj kumlarında saptanan ortalama ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonları sırası ile, 131 Bqkg⁻¹, 208 Bqkg⁻¹ ve 1279 Bqkg⁻¹'dır. Gözlenen bu değerler, Brezilya ve Fransa'da yapılan çalışmalarla benzerlik sunmaktadır. (Veiga, 2006; Vassas, 2006)

4.1.3 Yüzey Topraklarının Doğal Radyonüklit Aktivite İçeriği

Granit masifi kapsayacak şekilde sistematik olarak belirlenen 46 noktadan alınan toprak örneklerinde saptanan doğal radyonüklit aktivite konsantrasyonları Şekil 4.5 ve Çizelge 4.6'da verilmiştir.

Şekil 4.5 Toprak Örneklerinde Gözlenen ²²⁶Ra, ²³²Th ve ⁴⁰K Aktivite Konsantrasyonları

Örnek	Doğal Radvonüklit Aktivite		te Konsantrasvonları (Bokg ⁻¹)			
	²²⁶ Ra	²³² Th	⁴⁰ K			
6	163±7	63±3	709±14			
12	181±7	314±6	2100±22			
13	214±5	196±3	1024±11			
14	81±3	67±2	402±2			
15	434±10	499±7	2363±23			
16	144±2	158±2	1600±11			
17	227±7	256±4	3181±24			
18	116±4	275±3	1503±11			
19	108±3	156±2	1157±10			
20	322±7	383±5	2380±20			
21	149±4	165±2	1287±11			
23	349±5	193±3	1006±9			
24	97±4	211±3	1482±12			
25	168±4	201±3	1614±12			
26	74±3	128±2	762±8			
27	138±4	146±2	1208±11			
28	123±4	168±3	1162±11			
29	51±2	58±2	515±7			
30	155±4	165±2	1369±11			
31	63±3	143±2	1218±11			
32	174±4	203±3	1218±10			
33	331±8	390±6	1094±16			
34	81±4	89±3	1364±6			
35	43±3	50±2	602±11			
40	87±5	91±3	771±13			
43	69±4	125±3	1200±16			
45	55±4	98±3	974±14			
47	84±4	123±3	1192±16			
49	77±4	98±3	804±13			
50	57±4	67±3	587±12			
51	138±6	193±4	1553±18			
52	141±6	175±4	1254±17			
53	46±3	60±2	651±12			
54	83±5	155±4	1123±15			
55	41±3	71±3	674±12			
56	17±2	25±2	315±8			
57	22±2	21±1	377±9			
58	32±3	11±1	126±6			
59	32±3	30±2	405±9			
60	129±5	151±4	971±15			
61	34±3	41±2	640±12			
62	92±5	107±3	790±13			
63	36±3	51±2	749±13			
64	141±5	167±4	1364±16			
65	30±3	56±2	602±12			
66	45±4	64±3	730±14			

Çizelge 4.6 Toprak Örneklerinde Gözlenen ²²⁶Ra, ²³²Th ve ⁴⁰K Aktivite Konsantrasyonları

Şekil 4.5 ve Çizelge 4.6 incelendiğinde, bölge topraklarında doğal radyonüklit aktivite konsantrasyonlarının ²²⁶Ra için 17-434 Bqkg⁻¹, ²³²Th için 11-499 Bqkg⁻¹ ve ⁴⁰K için 126-3181 Bqkg⁻¹ arasında değiştiği gözlenmektedir.

Örnekleme bölgesinde yüzey topraklarında ve plaj kumlarında gözlenen doğal radyonüklit (226 Ra, 232 Th ve 40 K) aktivite konsantrasyonları dağılım haritaları Surfer 8.0 programı kullanılarak çizilmiştir. Şekil 4.6, 4.7 ve 4.8'de verilen haritalar incelendiğinde, 226 Ra ve 232 Th aktivite konsantrasyonları dağılımlarının, başlangıçtaki öngörüye uygun olarak, granit/siyenit masifin batısında kalan sahil bölgesinde yoğunlaştığı gözlenmektedir. Bu doğrultuda, yüzey toprakları ve plaj kumlarında saptanan en yüksek 226 Ra, 232 Th ve 40 K aktivite konsantrasyonları, sırası ile, 6048 ± 32 Bqkg⁻¹, 12537 ± 25 Bqkg⁻¹ ve 3181 ± 24 Bqkg⁻¹'dir.

Şekil 4.6 Yüzey topraklarında ve plaj kumlarında ²²⁶Ra aktivite dağılımı

Şekil 4.7 Yüzey topraklarında ve plaj kumlarında ²³²Th aktivite dağılımı

Şekil 4.8 Yüzey topraklarında ve plaj kumlarında ⁴⁰K aktivite dağılımı

Ezine granit plutonundan sağlanan 46 toprak örneğinde ölçülen doğal radyonüklit aktivite konsantrasyonlarına ilişkin temel istatistik Çizelge 4.7'de verilirken, aktivite konsantrasyonları frekans dağılımları Şekil 4.9'da gösterilmiştir.

Çizelge 4.7 Yüzey Topraklarında Gözlenen Doğal Radyonüklit Aktivite Konsantrasyonlarının İstatistik Analizi

Radyonüklit	Ν		Dağılım					
		Aritmetik	Medyan	Geometrik	Standart	Min.Max.	Fonksiyonu	
		Ortalama		Ortalama	Sapma			
²²⁶ Ra	46	119	89	91	92	17-434	Log-Normal	
²³² Th	46	145	136	111	103	11-499	Log-Normal	
⁴⁰ K	46	1091	1059	941	588	126-3181	Log-Normal	

Şekil 4.9 Toprak örneklerinde gözlenen ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonları frekans dağılımları.

Yapılan normalite testi ve ilgili çizelgedeki veriler, ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonları frekans dağılımlarının log-normal dağılıma uyduğunu göstermiştir. Bu doğrultuda, yüzey topraklarında saptanan ortalama ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonları sırası ile, 89 Bqkg⁻¹,

136 Bqkg⁻¹ ve 1059 Bqkg⁻¹'dır. Bu değerler, UNSCEAR 2000'de normal topraklar için verilen doğal radyonüklit aktivite konsantrasyonlarının üzerinde [²²⁶Ra: 35(17-60)Bqkg⁻¹, ²³²Th:30(11-64) Bqkg⁻¹ve⁴⁰K: 400(140-850) Bqkg⁻¹], ancak tipik aralıklar ile karşılaştırılabilir düzeydedir.

4.2 Doğal Radyasyondan Kaynaklanan Karasal Gama Doz Hızları

Ezine Plüton alanının radyolojik risk açısından değerlendirildiği bu çalışmada, doğal radyasyondan kaynaklanan karasal gama doz hızları, yüzey topraklarında ve plaj kumlarında ölçülen ²²⁶Ra, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarından yararlanılarak oluşturulmuş ve haritalanarak Şekil 4.10'da verilmiştir.

Şekil 4.10 Doğal Radyasyondan Kaynaklanan Karasal Gama Doz Dağılımı

Normal alanlarda karasal gama doz hızları, UNSCEAR 2000 Raporunda 60(20-200) nGy h⁻¹ olarak tahmin edilmektedir. Ancak, Şekil 4.10 incelendiğinde, Ezine masifinde karasal radyasyondan kaynaklanan doz hızlarının 50-650 nGyh⁻¹ arasında değiştiği ve normal alanların üzerinde olduğu gözlenmektedir. Genel olarak, çalışma alanının batısında yer alan sahillerde çok küçük alanlarda gözlenen bu anomalileri gerçekçi kılmak için, doz hızlarının frekans dağılımı (Şekil 4.11) elde edilmiş ve bu histogramın normal ve log-normal dağılım fonksiyonları ile uygunluğu Çizelge 4.8 doğrultusunda tartışılmıştır.

Çizelge 4.8 Karasal Doz Dağılımlarının İstatistik Analizi

Ν		Dağılım					
	Aritmetik Medyan		Geometrik	Standart	Min.Max	Fonksiyonu	
	Ortalama		Ortalama	Sapma			
57	216	179	172	147	27-633	Log-Normal	

** Anomali gösteren S10 kodlu örnek istatistik dışında bırakılmıştır.

Şekil 4.11 Doz Hızlarının Frekans Dağılımı

Çizelge 4.8 ve Simirnov testi, log-normal dağılım fonksiyonu ile ifade edilen karasal gama doz hızı ortalaması 179 nGy h⁻¹ ve bu değer UNSCEAR 2000 raporunda verilen doz hızları ile karşılaştırılabilir düzeydedir (Çizelge 2.3).

4.3 Karasal Kaynaklardan Alınan Etkin Doz Eşdeğerleri

Ezine granit/siyenit masifinde insanların doğal radyasyon kaynaklarından alacakları etkin doz eşdeğerleri Şekil 4.12'de haritalanmıştır.

Şekil 4.12 Doğal Radyasyon Kaynaklarından Alınan Etkin Doz Eşdeğeri Dağılımı

Şekil 4.12'de incelendiğinde, Ezine granit/siyenit masifinde karasal radyasyondan kaynaklanan etkin doz eşdeğerlerinin 0.05 ve 0.85 mSvy⁻¹ arasında değiştiği gözlenmektedir. Normal alanlarda, doğal karasal radyasyondan kaynaklarından alınan yıllık etkin doz eşdeğeri dünya ortalaması UNSCEAR 1993 Raporunda 0.46 mSvy⁻¹ olarak tahmin edilmektedir. Bu doğrultuda, çalışma bölgesinde karasal radyasyona maruz kalma sonucu tahmin edilen yıllık etkin doz eşdeğerleri, normal alanların üzerinde, ancak, yüksek seviyeli radyasyon alanları için öngörülen sınırın çok altında (4.3 mSvy⁻¹) olduğu görülmektedir (Çizelge 2.6).

Sonuç olarak, elde edilen radyolojik risk kriterleri ve doz dağılım haritaları, Ezine granit/siyenit masifinde yüksek radyoaktivite içeren ve radyolojik risk oluşturabilecek alanların değerlendirilmesine olanak sağlayacak önemli bir veri tabanı üretmiştir.

5. SONUÇLAR VE ÖNERİLER

Doğal radyoaktif materyallerden (NORM) kaynaklanan iyonize radyasyonun insanlar üzerindeki radyolojik ve epidemiyolojik etkisinin doğrudan gözlenmesini mümkün kılan yüksek seviyeli doğal radyasyon alanları (HLNRA), radyo-korunum açısından oldukça önemlidir. Bu doğrultuda sunulan tez çalışmasında, jeolojik yapısı gereği yüksek radyoaktivite içerdiği bilinen Ezine granit masifi radyolojik risk yönünden incelenmis ve bölge HLNRA (High Level Natural Radiation Area) açısından değerlendirilmiştir. Bu kapsamda, granit kayaçlarda, plaj kumlarında ve yüzey topraklarında gözlenen doğal radyonüklit aktivite konsantrasyonları, ve bu aktivitelere dayalı olarak hesaplanan radyolojik risk kriterleri; Ra(eq) aktivitesi, Hex ve Hin zarar indeksleri, karasal gama doz hızları (D) ve etkin doz eşdeğerleri (DE) Çizelge 5.1 altında detaylandırılmıştır. Genellikle bina materyalleri için önerilen radyolojik zarar indeksleri (Ra(eq), Hex ve Hin), yerel jeolojik malzemenin bina materyali olarak kullanılması durumunda oluşabilecek radyolojik riski değerlendirmek üzere ilgili çizelgeye eklenmiştir.

Yüksek seviyeli doğal radyasyon alanlarının (HLNRA) radyolojik risk açısından değerlendirildiği çalışmalarda, bu alanları karakterize etmek için farklı öneriler sunulmaktadır. Bu anlamda, sunulan çalışmada, doğal radyasyon alanlarını, ICRP tavsiyelerine ve etkin doz eşdeğerlerinin (kozmik ve karasal orijinli doğal radyasyona içsel ve dışsal maruz kalma sonucu tahmin edilen toplam doz) sınırlandırıldığı bir sisteme dayalı olarak 4 grup altında veren HLNRA tanımı benimsenmiştir (Sohrabi, 1998). Benimsenen bu tanım (Çizelge 2.7), doğal radyasyona maruz kalma sonucu tahmin edilen etkin doz eşdeğerinin;

```
≈ 5 mSv y<sup>-1</sup> → LLNRA
>5 mSv y<sup>-1</sup> ≤ 20 → MLNRA
> 20 mSv y<sup>-1</sup> ≤ 50 mSv y<sup>-1</sup> → HLNRA
>50 mSv y<sup>-1</sup> → VHLNRA
```

olarak tanımlanmaktadır. Bu tanım ve diğer öneriler doğrultusunda Çizelge 5.1 değerlendirildiğinde, Ezine/Çanakkale granit masif alanının radyolojik risk açısından önlem alınacak düzeyde radyoaktivite içermediği, buna karşın, UNSCEAR 1993'de normal alanlar için önerilen 0.46 mSvy⁻¹ üzerinde doz eşdeğeri ürettiği görülmektedir.

Sonuç olarak, bu radyolojik incelemede elde edilen bulgular, çalışma alanının HLNRA sınırı olan 5 mSvy⁻¹'ı aşmadığını ve bölgenin yüksek seviyeli radyasyon alanı olarak karakterize edilemeyeceğini ortaya koymuştur.

	Materyal		Granit	Plaj	Yüzey	
	-		Kayaçlar	Kumları	Toprakları	
nu	²²⁶ Ra	Ortalama	146	131	89	
klit e		Min-Max	78-292	66-835	17-434	
nnü ivit ras xg ⁻¹	²³² Th	Ortalama	173	208	136	
dyc Akti ant Bql		Min-Max	120-229	72-959	11-499	
Rae A ons	⁴⁰ K	Ortalama	1186	1279	1059	
K		Min-Max	1074-1484	872-2905	126-3181	
Ra (eq)		Ortalama	485	527	365	
Bqkg ⁻¹		Min-Max	332-734	236-2430	42-1393	
H _{ex}		Ortalama	1.35	1.46	1.02	
		Min-Max	0.93-2.03	0.66-6.65	0,12-3,86	
H _{in}		Ortalama	1.74	1.82	1.26	
		Min-Max	1.14-2.82	0.84-8.91	0.16-5.03	
Doz Hizi		Ortalama	221	239	167	
nGyh ⁻¹		Min-Max	153-335 110-1086		20-635	
Doz Eşdeğeri		Ortalama	0.27	0,29	0,21	
mSvy ⁻¹		Min-Max	0.19-0.41	0.14-1.33	0,02-0,78	

								••				••	
(Çize	elge 5.	1	Granit,	Kum	ve T	oprak	Örnel	clerinin	Rady	/olojik	Özelli	kleri
										- 1			

*S10 kodlu örnek, tek bir noktada ve çok küçük bir alanda anomali gösterdiğinden, genel değerlendirme dışında tutulmuştur.

KAYNAKLAR DİZİNİ

- Alam, M.N., Chowdhury, M.I., Kamal, M., Ghose, S., Islam, M.N., Mustafa, M.N., Miah, M.M.H., Ansary, M.M., 1999, The ²²⁶Ra, ²³²Th and ⁴⁰K activities in beach sand minerals and beach soils of Cox's Bazar, Bangladesh, Journal of Environmental Radioactivity, Vol. 46, pp. 243-250.
- Alencar, A.S., Freitas, A.C., 2005, Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region, Radiation Measurements, Vol. 40, pp. 76 – 83.
- Andaç, M., 1973, Biga Yarımadasında Ezine Siyenit Masifi ile Civarındaki Kayaçların Petrografisi ve Bu Kayaçlardan Meydana Gelen Radyoaktif Sahil Plazer Maden Yatağının Etüdü, Doçentlik Tezi.
- Blagoeva, R., Zikovsky, L., 1995, Geographic and vertical disribution of Cs-137 in soils in Canada, Journal of Environmental Radioactivity, Vol. 27(3), pp. 269-274.
- Chiozzi, P., Pasquale, V., Verdoya, M., 2002, Naturally occurring radioactivity at the Alps–Apennines transition, Radiation Measurements, Vol. 35, pp. 147 – 154
- Clark, S.P., Peterman, Z.E., Heier, K.S., 1996, Abundance of uranium, thorium and potassium. In: Handbook of Physical Constant, Vol. 97, Geo. Soc. AM. Mem., pp:521-541.

- **De Meijer, R.J., James, I.R., Jennings, P.J., Koeyers, J.E.,** 2001, Cluster analysis of radionuclide concentrations in beach sand, Applied Radiation and Isotopes, Vol. 54, pp. 535-542.
- Freitas, A.C., Alencar, A.S., 2004, Gamma dose rates and distribution of natural radionuclides in sand beaches—Ilha Grande, Southeastern Brazil, Journal of Environmental Radioactivity, Vol. 75, pp. 211–223.
- IAEA (1979), Gama-Ray Surveys in Uranium Exploration, Technical Reports Series, No. 186 (IAEA, 1979, Vienna)
- ICRP (1991), 1990 Recommendations of the International Commission on Radiological Protection, Publication 60, Ann. Pergamon Press, Oxford. International Commission of Radiological Protection.
- Kannan, V., Rajan, M.P., Iyengar, M.A.R., Ramesh, R., 2002, Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry, Applied Radiation and Isotopes, Vol. 57, pp. 109-119.
- Kathren, R. L., 1998, NORM Sources and Their Origins, App. Radiat. Isot., Vol. 49, N0.3, pp. 149-168.

- Mohanty, A.K., Sengupta, D., Das, S.K., Saha, S.K., Van, K.V., 2004, Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India, Journal of Environmenal Radioactivity, Vol. 75, pp. 15-33.
- Örgün, Y., Altınsoy, N., Şahin, S.Y., Güngör, Y., Gültekin, A.H., Karahan, G., Karacık, Z., 2007, Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey, Applied Radiation and Isotopes, Vol. 65, pp. 739-747.
- Sohrabi, M., 1998, The State-of-the-art on Worldwide Studies in some Environments with Elevated Naturally Occurring Radioactive Materials (NORM), Appl. Radiat. Isot., Vol. 49, No. 3, pp. 169-188.
- United Nations Scientific Committee on the Effects of Atomic Radiation, 1982, Ionizing Radiation: Sources and Biological Effects, United Nations, New York.
- United Nations Scientific Committee on the Effects of Atomic Radiation, 1988, Sources, Effects and Risks of Ionizing Radiation, United Nations, New York.

- United Nations Scientific Committee on the Effects of Atomic Radiation, 1993, Sources and Effects of Ionizing Radiation, United Nations, New York.
- United Nations Scientific Committee on the Effects of Atomic Radiation, 2000, Sources and Effects of Ionizing Radiation, United Nations, New York.
- Vassas, C., Pourcelot, L., Vella, C., Carpéna, J., Pupin, J.-P., Bouisset,
 P., Guillot, L., 2006, Mechanisms of enrichment of natural radioactivity along the beaches of the Camargue, France, Journal of Environmental Radioactivity Vol. 91,pp. 146-159.
- Veiga, R., Sanches, N., Anjos, R.M., Macario, K., Bastos, J., Iguatemy, M., Aguiar, J.G., Santos, A.M.A., Mosquera, B., Carvalho, C., Baptista Filho, M., Umisedo, N.K., 2006, Measurement of natural radioactivity in Brazilian beach sands, Radiation Measurements, Vol. 41, pp. 189-196.

www.taek.gov.tr

Yaprak, G., Yener, G., 1988, Granit ve Granodiyorit Kayaçlarda ve Erozyon Bölgelerindeki Topraklarda Gama Spektroskopisi ile Uranyum ve Toryum Analizleri, Ege Üniversitesi Rektörlüğü Araştırma Fonu, Proje No. 004/1985.

- Yaprak, G., Yener, G., 1990, Bergama Sarıcaoğlu Bölgesindeki Toprak ve Kayaçlarda Uranyum ile Ürünleri Arasındaki Radyoaktif Dengenin Saptanması, Ege Üniversitesi Rektörlüğü Araştırma Fonu, Proje No: 1986 NBE 005.
- Yaprak, G., 1995, Radyoaktif Mineral İçeren Örneklerin Gama Spektroskopik Analizlerinde Matris Etkisi ve Self Absorpsiyon İçin Bir Düzeltme Yönteminin Geliştirilmesi, Doktora Tezi, Ege Üniversitesi Nükleer Bilimler Enstitüsü.
- Yaprak, G., 1999, Indoor ²²²Rn Concentrations in the vicinity o a Turkish Coal-Fired Power Plant, Journal of Environmental Radioactivity, Vol. 46, pp. 131-135.

ÖZGEÇMİŞ

14.09.1981 tarihinde Polatlı'da doğmuştur. T.C. vatandaşıdır. İlk öğrenimini Sakarya İlkokulu'nda, orta öğrenimini Cumhuriyet Orta Okulu'nda, lise öğrenimini ise Polatlı Yabancı Dil Ağırlıklı Lisesi'nde tamamlamıştır. 2004 yılında Ege Üniversitesi Fen Fakültesi Fizik Bölümü'nden mezun olmuştur. Aynı yıl bu bölümün Nükleer Fizik Bilim Dalı'nda Yüksek Lisans Öğrencisi olarak çalışmalarına başlamıştır.