YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YER KABUĞU HAREKETLERİNİN BELİRLENMESİNDE İNTERNET TABANLI GPS SERVİSLERİNİN DOĞRULUK ANALİZİ

Merve ŞİMŞEK

YÜKSEK LİSANS TEZİ

Harita Mühendisliği Anabilim Dalı

Geomatik Programı

Danışman

Prof. Dr. Uğur DOĞAN

Temmuz, 2019

T.C.

T.C.

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

YER KABUĞU HAREKETLERİNİN BELİRLENMESİNDE İNTERNET TABANLI GPS SERVİSLERİNİN DOĞRULUK ANALİZİ

Merve ŞİMŞEK tarafından hazırlanan tez çalışması çalışması 05/07/2019 tarihinde aşağıdaki jüri tarafından Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Harita Mühendisliği Anabilim Dalı, Geomatik Programı **YÜKSEK LİSANS TEZİ** olarak kabul edilmiştir.

Prof. Dr. Uğur DOĞAN Yıldız Teknik Üniversitesi Danışman

Jüri Üyeleri

Prof. Dr. Uğur DOĞAN, Danışman Yıldız Teknik Üniversitesi Prof. Dr. Cüneyt AYDIN, Üye Yıldız Teknik Üniversitesi Doç. Dr. Serdar EROL, Üye İstanbul Teknik Üniversitesi Danışmanım Prof. Dr. Uğur DOĞAN sorumluluğunda tarafımca hazırlanan Yer Kabuğu Hareketlerinin Belirlenmesinde İnternet Tabanlı GPS Servislerinin Doğruluk Analizi başlıklı çalışmada veri toplama ve veri kullanımında gerekli yasal izinleri aldığımı, diğer kaynaklardan aldığım bilgileri ana metin ve referanslarda eksiksiz gösterdiğimi, araştırma verilerine ve sonuçlarına ilişkin çarpıtma ve/veya sahtecilik yapmadığımı, çalışmam süresince bilimsel araştırma ve etik ilkelerine uygun davrandığımı beyan ederim. Beyanımın aksinin ispatı halinde her türlü yasal sonucu kabul ederim

Merve ŞİMŞEK

Aileme

Bu tez konusunun belirlenmesinden itibaren çalışmalarımı dikkatle takip ederek bilgi ve birikimleriyle araştırmalarımı yönlendiren saygıdeğer danışman hocam Prof. Dr. Uğur DOĞAN'a, çalışmama katkılarından dolayı Arş. Gör. Seda ÖZARPACI'ya, ihtiyaç duyduğumda yardımlarını esirgemeyen arkadaşlarım Arş. Gör. Büşra SÖNMEZ ve Arş. Gör. Özge GÜNEŞ'e ve son olarak tezimin her aşamasında desteklerini esirgemeyen aileme sonsuz teşekkürlerimi sunarım.

Merve ŞİMŞEK

V

İÇİNDEKİLER

Sİ	MGE	E LİSTESİV	ΊΠ
K	ISAL	TMA LİSTESİ	.IX
ŞI	EKİL	LİSTESİ	Х
T.	ABL	O LİSTESİ	XII
Ö	ZET	Х	III
A	BSTI	RACT	XV
1	Giri	iş	1
	1.1	Literatür Özeti	1
	1.2	Tezin Amacı	4
	1.3	Hipotez	4
2	İnte	ernet Tabanlı GNSS Yazılımları	5
	2.1	AUSPOS (Online GPS Processing Service)	7
	2.2	OPUS (Online Positioning User Service)	9
	2.3	CSRS-PPP(Canadian Spatial Reference System Precise Point Positioning).	11
3	Par	ametrelerin Belirlenmesi	14
	3.1	Global Eşdeğerlik Testi	14
	3.2	Deformasyon Büyüklüklerinin Belirlenmesi	15
	3.3	Gerinim Analizi	16
4	Uygı	ulama	21
	4.1	GNSS Ölçüleri	21
	4.2	GNSS Ölçülerinin GAMIT/GLOBK Yazılımı ile Değerlendirilmesi	.23
	4.3	GNSS Ölçülerinin İnternet Tabanlı Çevrimiçi GNSS Servisleri	ile
		Değerlendirilmesi	28

4.4	İntern	net Tabanlı Çevrimiçi GNSS Servislerinin Tekrarlılık Analizi	30
	4.4.1	Deprem Öncesi İçin Tekrarlılık Analizi	30
	4.4.2	Deprem Sonrası İçin Tekrarlılık Analizi	32
4.5	İntern	net Tabanlı Çevrimiçi GNSS Servislerinin Doğruluk Analizi	34
	4.5.1	Deprem Öncesi İçin Doğruluk Analizi	35
	4.5.2	Deprem Sonrası İçin Doğruluk Analizi	37
4.6	Defor	masyon Parametrelerinin Belirlenmesi	39
	4.6.1	Deprem Anı Yerdeğiştirme Parametrelerinin Belirlenmesi	39
	4.6.2	Deprem Anı Gerinim Parametrelerinin Belirlenmesi	44
	4.6.3	Deprem Sonrası Yer Değiştirme Parametrelerinin Belirlenmesi	49
	4.6.4	Deprem Sonrası Gerinim Parametrelerinin Belirlenmesi	62
5 So	nuç ve Ö	Öneriler	67
A Za	man Sei	rileri	69
B De	prem S	onrasına İlişkin Gerinim Parametreleri	92
KAYN	AKÇA		97
TEZD	EN ÜRE	ETİLMİŞ YAYINLAR	101

- A Katsayılar matrisi
- C_{ll} Ölçülerin varyans kovaryans matrisi
- dR Dönme tensörü
- E Gerinim tensörü
- f Serbestlik derecesi
- H₀ Sıfır hipotezi
- H_k Karşıt hipotez
- k Bilinmeyenlerin kestirim değeri
- l Ölçüler vektörü
- n Ölçü sayısı
- T Test büyüklüğü
- u Bilinmeyen sayısı
- Ω Düzeltmelerin kareleri toplamı
- α Anlamlılık düzeyi
- ω Dönüklük
- ε_{max} Maksimum asal gerinim
- ϵ_{min} Minimum asal gerinim
- Q_{dd} Konum değişimi ağırlık katsayılar matrisi
- γ1 Saf kayma
- γ2 Mühendislik kayması
- φ Maksimum gerinim yönü

KISALTMA LİSTESİ

AUSPOS	Online GPS Processing Service
APPS	Automatic Precise Positioning Service
APREF	Aisa-Pasific Reference Frame
CSRS-PPP	Canadian Spatial Reference System Precise Point Positioning
GA	Geoscience Australia
GAPS	GNSS Analysis and Positioning Software
GNSS	Global Navigation Satellite Systems
GPS	Global Positioning System
GLONASS	Globalnaya Navigatsionnaya Sputnikovaya Sistema
IGS	International GNSS Service
JPL	Jet Propolsuon Labratuory
NOAA	National Oceanic and Atmospheric Administration
OPUS	Online Positioning User Service
NrCan	Natural Resources Canada
PPP	Precise Point Positioning
QZSS	Quasi-Zenith Satellite System
RINEX	Receiver Independent Exchange
SOPAC	Scripps Orbit and Permanent Array Center
Trimble RTX	Trimble CenterPoint RTX Post-Processing Service
TUSAGA	Türkiye Ulusal Sabit GNSS Ağı

ŞEKİL LİSTESİ

Şekil 2.1 AUSPOS servisinin arayüzü	8
Şekil 2.2 AUSPOS servisine air raporda gönderilen şekle dair örnek	8
Şekil 2.3 OPUS servisinin arayüzü	10
Şekil 2.4 OPUS servisinin çözüm raporu	11
Şekil 2.5 CSRS-PPP servisinin arayüzü	12
Şekil 2.6 CSRS-PPP servisine ait rapor örneği	13
Şekil 3.1 Bir bölgeye ait üçgenleme örneği	18
Şekil 3.2 İkinci yönteme ilişkin bağlantı örneği	18
Şekil 3.3 Gerinim elipsi ve asal gerinin parametreleri	20
Şekil 4.1 Kullanılan veri aralıkları	21
Şekil 4.2 Van Gölü etrafındaki 12 TUSAGA – Aktif istasyonu	22
Şekil 4.3 GAMIT yazılımının işleyişi	24
Şekil 4.4 Değerlendirmede kullanılan IGS istasyonları	27
Şekil 4.5 HINI istasyonuna ilişkin zaman serisi	27
Şekil 4.6 HINI istasyonuna ilişkinzaman serisi(AUSPOS)	
Şekil 4.7 HINI istasyonuna ilişkin zaman serisi(OPUS)	29
Şekil 4.8 HINI istasyonuna ilişkin zaman serisi(CSRS-PPP)	
Şekil 4.9 AUSPOS için deprem öncesi tekrarlılık değerleri	
Şekil 4.10 CSRS-PPP için deprem öncesi tekrarlılık değerleri	
Şekil 4.11 OPUS için deprem öncesi tekrarlılık değerleri	31
Şekil 4.12 AUSPOS için deprem sonrası tekrarlılık değerleri	
Şekil 4.13 CSRS-PPP için deprem sonrası tekrarlılık değerleri	33
Şekil 4.14 OPUS için deprem sonrası tekrarlılık değerleri	
Şekil 4.15 AUSPOS için deprem öncesi doğruluk değerleri	35
Şekil 4.16 CSRS-PPP için deprem öncesi doğruluk değerleri	
Şekil 4.17 OPUS için deprem öncesi doğruluk değerleri	
Şekil 4.18 AUSPOS için deprem sonrası doğruluk değerleri	37
Şekil 4.19 CSRS-PPP için deprem sonrası doğruluk değerleri	38
Şekil 4.20 OPUS için deprem sonrası doğruluk değerleri	
Sekil 4.21 Deprem anı icin kullanılan epoklar	

Sekil 4.23 a) OPUS ve GAMIT ile belirlenen deprem anı yatay yer değiştirme vektörleri ve hata elipsleri, b) iki çözüm arasındaki düzeltmeleri ve hata Sekil 4.24 a) CSRS ve GAMIT ile belirlenen deprem anı yatay yer değiştirme vektörleri ve hata elipsleri, b) iki çözüm arasındaki düzeltmeleri ve hata Şekil 5.25 Asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP Sekil 4.27 GAMIT/GLOBK ve AUSPOS ile deprem sonrası ilk 10 gün için hesaplanan ver değiştirme vektörleri ve hata elipsleri51 Sekil 4.28 GAMIT/GLOBK ve OPUS ile deprem sonrası ilk 10 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri52 Sekil 4.29 GAMIT/GLOBK ve CSRS-PPP ile deprem sonrası ilk 10 gün için hesaplanan Sekil 4.30 GAMIT/GLOBK ve AUSPOS ile deprem sonrası ilk 20 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri55 Şekil 4.31 GAMIT/GLOBK ve OPUS ile deprem sonrası ilk 20 gün için hesaplanan yer Sekil 4.32 GAMIT/GLOBK ve CSRS-PPP ile deprem sonrası ilk 20 gün için Şekil 4.33 GAMIT/GLOBK ve AUSPOS ile deprem sonrası ilk 30 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri59 Şekil 4.34 GAMIT/GLOBK ve OPUS ile deprem sonrası ilk 30 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri60 **Şekil 4.35** GAMIT/GLOBK ve CSRS-PPP ile deprem sonrası ilk 30 gün için hesaplanan ver değiştirme vektörleri ve hata elipsleri61 **Şekil 4.36** Deprem sonrası ilk 10 gün için hesaplanan asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri Sekil 4.37 Deprem sonrası ilk 20 gün için hesaplanan asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri süreksiz çizgiler aktif fay hatlarını göstermektedir......64 Sekil 4.38 Deprem sonrası ilk 30 gün için hesaplanan asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri süreksiz çizgiler aktif fay hatlarını göstermektedir......65

TABLO LİSTESİ

Tablo 2.1 Çevrimiçi hizmetler ve bazı özellikleri 6
Tablo 2.2 Bağıl konumlama tekniği ile çalışan servislere ilişkin bazı bilgiler
Tablo 2.3 PPP tekniği ile konum beliryen servislerin kullandıkları GNSS sistemleri7
Tablo 4.2 IGS istasyonlarına ait ITRF08 epok 2005.0 koordinatları
Tablo 4.3 Deprem öncesi ortalama tekrarlılık değerleri (mm)
Tablo 4.4 Deprem sonrası ortalama tekrarlılık değerleri (mm)
Tablo 4.5 Deprem öncesi için servislerin ortalama doğruluk değerleri(mm)37
Tablo 4.6 Deprem sonrası için servislerin ortalama doğruluk değerleri(mm)39
Tablo 4.7 Deprem anı baz değişimleri ve standart sapmaları
Tablo 4.8 GAMIT/GLOBK sonuçlarına göre hesaplanan deprem anı gerinim elemanları
Tablo 4.9 AUSPOS sonuçlarına göre hesaplanan deprem anı gerinim elemanları47
Tablo 4.10 OPUS sonuçlarına göre hesaplanan deprem anı gerinim elemanları48
Tablo 4.11 CSRS-PPP sonuçlarına göre hesaplanan deprem anı gerinim elemanları
Tablo 4.12GAMIT/GLOBK yazılımı ile servisler arasında deprem sonrası ilk 10 güniçin hesaplanan yer değiştirme farkları
Tablo 4.13GAMIT/GLOBK yazılımı ile servisler arasında deprem sonrası ilk 20 güniçin hesaplanan yer değiştirme farkları54
Tablo 4.14GAMIT/GLOBK yazılımı ile servisler arasında deprem sonrası ilk 30 güniçin hesaplanan yer değiştirme farkları
Tablo 4.15GAMIT/GLOBK ve web tabanlı çevrimiçi servisler için hesaplanan gerinim elemanları arasındaki farkların maksimum ve minimum değerleri

Yer Kabuğu Hareketlerinin Belirlenmesinde İnternet Tabanlı GPS Servislerinin Doğruluk Analizi

Merve ŞİMŞEK

Harita Mühendisliği Anabilim Dalı

Yüksek Lisans Tezi

Danışman: Prof. Dr. Uğur DOĞAN

Bu çalışmada, web tabanlı çevrimiçi GNSS değerlendirme servislerinin yer kabuğu hareketlerinin belirlenmesinde kullanılabilirliği ve doğruluk performanslarının ölçülmesi amaçlanmıştır. Bu amaç kapsamında, 23 Ekim 2011 Van depreminin deprem anı ve sonrası yatay deformasyonlarının belirlenmesi için deprem bölgesinde bulunan TUSAGA-AKTİF ağına ait 12 GNSS istasyonunun gözlem verisi web tabanlı çevrimiçi değerlendirme servislerinden AUSPOS, OPUS ve CSRS-PPP ile analiz edilmiştir. Web tabanlı çevrimiçi değerlendirme servislerinden fusilerin doğruluk performanslarını ölçmek için, aynı istasyonların verileri GAMIT/GLOBK yazılımı ile değerlendirilip deprem anı ve sonrası yatay deformasyonlar belirlenerek iki çözüm arasındaki sonuçlar karşılaştırılmıştır.

İlk olarak web tabanlı çevrimiçi GNSS servisleri ile deprem öncesi ve sonrası TUSAGA-AKTİF ağına ilişkin 12 GNSS istasyonun birer haftalık verisi değerlendirilmiş ve bu servislerin tekrarlılık ve doğruluk analizleri yapılmıştır. Tekrarlılık analiz sonucunda, AUSPOS için yatayda 1,05 mm, düşeyde 4,96 mm, OPUS için yatayda 1,62 mm, düşeyde 5,38 mm, CSRS-PPP için yatayda 1,73 mm düşeyde 3,52 mm değerlerinde standart sapmalar elde edilmiştir. İkinci olarak, Web tabanlı çevrimiçi GNNS servislerinin GAMIT/GLOBK yazılımı ile elde edilen sonuçlara göre doğruluk analizleri yapılmış ve ortalama olarak, AUSPOS için yatayda 1,95 mm, düşeyde 7,79 mm, OPUS için yatayda 3,28 mm, düşeyde 8,52 mm, CSRS-PPP için yatayda 3,01 mm düşeyde 8,12 mm değerlerinde standart sapmalar elde edilmiştir.

GAMIT/GLOBK yazılımından elde edilen deprem anı ve deprem sonrası yatay deformasyonlar ile belirtilen servislere göre elde edilen sonuçlar incelendiğinde, istasyonların yer değiştirme vektör büyüklükleri ve yönleri bakımından uyumlu olduğu, iki çözüm arasındaki yatay deformasyon farklarının istatistiksel olarak anlamsız olduğu saptanmıştır. Web tabanlı çevrimiçi GNSS değerlendirme servisleri ile GAMIT/GLOBK yazılımı arasında yatayda deprem anı için; 0,03 mm ile 7,82 mm arasında deprem sonrası için; 0,03 mm ile 8,65 mm arasında farklar bulunmuştur. Ayrıca, her iki çözüm ile elde edilen deprem anı ve deprem sonrası yatay deformasyonlar kullanılarak iki boyutlu gerinim analizi yapılmıştır. Gerinim analizi sonucunda çözümlerden elde edilen asal gerinim parametrelerinin genel olarak uyumlu oldukları ve deprem anı için asal gerinim parametreleri arasındaki farklar genellikle 0,08 µstrain değerinin altında olduğu görülmüştür.

Elde edilen sonuçlara göre, sürekli istasyonların, web tabanlı çevrimiçi değerlendirme servisleri tarafından elde edilen koordinat çözümlerinin yer kabuğu hareketlerinin belirlenmesinde kullanılabilecek düzeyde yüksek doğrulukta olduğu saptanmıştır.

Anahtar Kelimeler: Deprem Anı Deformasyonu, Deprem Sonrası Deformasyonu, GAMIT/GLOBK, Gerinim Analizi, İnternet Tabanlı GNSS Değerlendirme Servisleri

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Accuracy Analysis of Internet Based GPS Services in Determination of Crustal Movements

Merve ŞİMŞEK

Department of Geomatic Engineering

MSc Thesis

Advisor: Prof. Dr. Uğur DOĞAN

This study aims to measure usability and accuracy performances of web based online GNSS processing services in determining crustal movements. In this scope, the observation data of 12 GNSS stations of TUSAGA-Active network in the earthquake zone was analyzed with AUSPOS, OPUS, and CSRS-PPP, which are web based online processing services, to determine the horizontal deformations of Van Earthquake October 23th, 2011. In order to examine the accuracy performances of web based online processing services, the data of the same stations were processed through GAMIT/GLOBK software; the horizontal co-seismic and post-seismic deformations were calculated and the results were compared.

Firstly, one-week data of 12 GNSS stations related to TUSAGA-Active network before and after the earthquake were evaluated with web-based online GNSS services, and the repeatability and accuracy analyzes of these services were performed. As a result of the repeatability analysis, standard deviations were obtained 1.05 mm at horizontal and 4.96 mm at vertical in AUSPOS, 1.62 mm at horizontal, 5.38 mm at vertical in OPUS, 1.73 mm at horizontal and 3.52 mm at vertical in CSRS-PPP. Secondly, accuracy analysis of web-based online GNNS services were performed according to the resluts obtained through GAMIT-GLOBK software and, on average, standard deviations were obtained 1.95 mm at horizontal 7.79 at vertical in AUSPOS, 3.28 mm at horizontal 8.52 mm at vertical in OPUS, and 3.01 mm at horizontal 8.12 mm at vertical in CSRS-PPP.

When the co-seismic and post-seismic horizontal deformations obtained from GAMIT/GLOBK software and the results obtained from online processing services were examined, it was found that displacement vector sizes and directions of the stations were compatible and the horizontal deformation differences between two solutions were statistically insignificant. Differences between web-based online GNSS evaluation services and GAMIT/GLOBK software were 0.03 mm to 7.82 mm at horizontal before the earthquake and 0.03 mm to 8.65 mm after the earthquake. In addition, two-dimensional strain analysis was performed using co-seismic and postseismic horizontal deformations obtained by two solutions. As a result of the strain analysis, it was revealed that the principal strain parameters obtained from the solutions were generally compatible and the differences between the co-seismic principal strain parameters were below the value of 0.04 µstrain and differences between the post-seismic principal strain parameters were below 0,08 µstrain.

According to the results obtained, it was found that the coordinate solutions of the continuous stations obtained by the web-based online evaluation services were highly accurate to be used to determine crustal movements.

Keywords: Co-seismic Deformation, Post-seismic Deformation, GAMIT/GLOBK, Strain Analysis, Web Based GNSS Processing Services

YILDIZ TECHNİCAL UNIVERSİTY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

1.1 Literatür Özeti

Yer kabuğu hareketlerinin belirlenmesine yönelik çalışmalarda geleneksel yersel yöntemlerin yanı sıra GNSS (Global Navigation Satellite System) tekniği de kullanılmakta ve özellikle günümüzde GNSS ile yapılan birçok tektonik çalışma bulunmaktadır. (McClusky vd., 1999; Reilinger vd., 2000; Altıner vd., 2013; Dogan vd., 2014; Ergintav vd., 2014; Mustafar, M.A. vd., 2017.).

Günümüzde, GNSS verilerinin değerlendirilmesinde akademik ve ticari yazılımlara ek olarak olarak web tabanlı çevrimiçi GNSS servisleri de yaygın olarak kullanılmaktadır. Bu servislerin doğrulukları ve farklı uygulamalarda kullanılma durumlarına ilişkin birçok çalışma yapılmış ve yapılmaya devam edilmektedir (Ghoddousi ve Dare, 2006; Tsakiri, 2008; Subaşı ve Alkan, 2011; Ocalan, vd., 2013; Abdallah ve Schwieger, 2016; Doğru, vd., 2018).

Ghoddousi ve Dare 2006'da yaptıkları bir çalışmada, bir istasyonun bilinen koordinatları ile CSRS-PPP, Auto-GIPSY, SCOUT ve AUSPOS değerlendirme servisleri sonucunda hesaplanan koordinatları karşılaştırmış ve 10 saatlik veri seti için çift frekanslı alıcı kullanılarak güvenilir sonuçlar elde edilebileceğini belirtmişlerdir.

Tsakiri, 2008 yılında yaptığı çalışmada ise; 8 IGS (International GNSS Service) istasyonuna ait gözlem verisini, 24, 6 ve 1'er saatlik ölçme aralıklarına bölerek, farklı veri süreleriyle, OPUS, AUSPOS, SCOUT ve CSRS-PPP çevrimiçi servislerinin statik ve ayrıca CSRS-PPP'nin kinematik değerlendirme performanslarını incelemiştir. Bu çalışma sonucunda, 24 saatlik veri ile statik değerlendirmede 3-4 cm ve CSRS-PPP yardımıyla 30 saniyelik veri ile kinematik değerlendirmede 5-10 cm doğruluk sağlandığını göstermiştir.

Ebner ve Featherstone, 2008'de yaptıkları çalışmada ise, jeodezik ağ tesisi için PPP (Precise Point Positionig-Hassas Nokta Konumlama)'nin uygunluğu araştırılmıştır. Bu çalışmada PPP değerlendirmeleri bir web tabanlı GNSS değerlendirme servisi olan CSRS-PPP ile yapılmış ve sonuçlar Bernese GNSS yazılımı çözümleri ile karşılaştırılmış ve minimum 48 saatlik gözlemle CSRS-PPP çözümlerinin Bernese GNSS yazılım çözümlerinden önemli ölçüde farklı olmadığı belirlenmiştir.

Şubaşı ve Alkan 2011'de, İSKİ-UKBS (İSKİ Uydulardan Konum Belirleme Sistemi) GNSS ağına ait 6 sürekli istasyonunun 24 saatlik verisini OPUS, SCOUT ve AUSPOS servislerinde değerlendirmiş ve birkaç cm doğrulukla noktaların konum ve yüksekliklerinin belirlenebileceğini göstermiştir.

Abdallah ve Schwieger, 2016 yılında yaptıkları çalışmada Afrika'nın farklı bölgelerinde bulunan 6 istasyon için çevrimiçi PPP servislerinin (APPS-PPP, GAPS-PPP, CSRS-PPP) farklı ölçü süreleri ve farklı enlemlerdeki performanslarını karşılaştırmıştır. CSRS-PPP ve APPS-PPP servislerinin ekvatoral bölgeler için en iyi çözümü verirken, GAPS-PPP servisinin Ekvator bölgesinde kullanılmasının uygun olmadığı sonucuna varılmıştır.

Jamieson ve Gillins tarafından 2018 yılında yapılan çalışmada; 5 web tabanlı çevrimiçi değerlendirme servisinin (OPUS-S, AUSPOS, CSRS-PPP, APPS, TrimbleRTX) doğruluğu farklı ölçme sürelerindeki 490 statik GNSS dosyası üzerinden araştırılmıştır. Öncelikle 30 saniyelik dosyalarla yalnızca GPS verileri kullanılarak değerlendirme yapılmış, sonrasında GLONAS'ın dahil edilmesinin etkisi CSRS-PPP ve TrimbleRTX kullanılarak araştırılmıştır. GLONAS verilerinin dahil edilmesinin karesel ortalama hatayı belirli ölçüde azalttığı belirtilmiştir.

OPUS'un 2 saatten az olan gözlem verilerini değerlendirdiği OPUS-RS modülünün doğruluğuna ilişkin bazı çalışmalar da yapılmıştır (Doğru vd., 2018; Kashani vd., 2008). Doğru vd. 2018'de yaptıkları çalışmada ABD'deki 7 CORS istasyonun 8-118 dakikalık verileri kullanılarak OPUS-RS modülünün yatayda 5-20 mm arasında ve düşeyde 25 mm doğruluk sağladığını göstermişlerdir.

Ayrıca, çevrimiçi PPP servislerinin performanslarının karşılaştırıldığı birçok çalışma yapılmıştır (Abd-Elazeem vd., 2011; Alçay vd., 2013; Maciuk ve Skorupa, 2017; Aydın vd., 2017).

Krasuski vd. 2018'de, uçakların pozisyonlarını belirlemede çevrimiçi olarak hizmet veren CSRS-PPP ve magicPPP servislerini kullanmış ve bu servislerin uçak konumlarını belirlemede iyi bir alternatif olduğunu ortaya koymuşlardır. Aydın vd., 2017'de, 4 çevrimiçi PPP servisi (CSRS, GAPS, APPS, Magic-PPP) ile Türkiye'nin batısına ait 12 CORS istasyonun 7 günlük GNSS verisini değerlendirmiş bu verilerle yapılan çalışmada 2 boyutlu deformasyonları izlerken çevrimiçi PPP servislerinin ağ çözümlerine alternatif olduğu sonucuna varmışlardır.

Web tabanlı çevrimiçi GNSS veri değerlendirme servislerinin heyelan deformasyonlarının ve yapı sağlığının izlenmesi gibi çalışmalarda kullanılabilirliği de araştırılmıştır (Zhang vd., 2005; Wang ve Soler, 2012, 2013, 2015; Yiğit, 2016).

Zhang vd., 2005'de, AUSPOS yardımıyla deformasyon analizi için CORS (Continuously Operating Reference Stations – Sürekli Çalışan Referans İstasyonları) istasyonlarının kullanılabilirliğini incelemiştir. Elde edilen sonuçlara göre, AUSPOS tarafından 24 saatlik verilerin değerlendirilmesi ile elde edilen koordinat doğruluğu 3-5 mm olarak bildirmiş ve bu doğruluğun deformasyon analizi için uygun olduğunu belirtmişlerdir.

Wang ve Soler 2012'de, Porto Riko ve Virgin Adalarında meydana gelen heyelanları 2 yıl boyunca izlemiş; tek GPS alıcısı ve web tabanlı çevrimiçi servisi (OPUS) kullanarak heyelanların yatay doğrultuda cm doğrulukla izlenebileceğini göstermiştir.

Wang ve Soler 2013'de, düşey çökme hareketini izlemek için Houston'da kurulan CORS ağındaki GNSS verilerini OPUS ve GIPSY yazılımı ile değerlendirmişler ve OPUS'un günlük verileri değerlendirme performansının düşeyde 1 cm'lik doğruluğa ulaştığını saptamışlardır.

Wang ve Soler 2014'de ise, Texas'taki bir çökme alanı ve Porto Riko, Ponce'daki bir heyelan alanında uzun süreli GNSS gözlemlerini kullanarak arazi çökmesini gözlemlemişlerdir. Alınan GNSS verilerini GIPSY/OASIS yazılımı ve OPUS yardımıyla analiz etmiş ve uzun süreli çökmeler izlenirken, iki değerlendirme sonucu arasında anlamlı bir farklılığın olmadığını belirtmişlerdir.

1.2 Tezin Amacı

Bu çalışmada, web tabanlı çevrimiçi GNSS değerlendirme servislerinin yer kabuğu hareketlerinin belirlenmesinde kullanılabilirliği ve doğruluk performanslarının ölçülmesi amaçlanmıştır. Bu amaç kapsamında, 23 Ekim 2011 Van depreminin deprem anı (co-seismic) ve sonrası (post-seismic) yatay deformasyonlarının belirlenmesi için deprem bölgesinde bulunan TUSAGA-AKTİF ağına ait 12 GNSS istasyonunun gözlem verisi web tabanlı çevrimiçi değerlendirme servislerinden AUSPOS, OPUS ve CSRS-PPP ile analiz edilmiştir. Web tabanlı çevrimiçi değerlendirme servislerin doğruluk performanslarını ölçmek için, aynı istasyonların verileri GAMIT/GLOBK yazılımı ile değerlendirilip deprem anı ve sonrası yatay deformasyonlar belirlenerek iki çözüm arasındaki sonuçlar karşılaştırılarak; bu servislerin yer kabuğu hareketlerinin belirlenmesinde kullanılabilirliği incelenmiştir.

1.3 Hipotez

Çalışma kapsamında 2 hipotez ortaya konmuştur;

- Web tabanlı çevrimiçi GNSS değerlendirme servislerinin doğrulukları ortalama olarak yatayda 5 mm ve düşey de ise 10 mm 'nin altındadır.
- Web tabanlı çevrimiçi GNSS değerlendirme servislerinin doğruluğu yer kabuğu hareketlerinin belirlenmesine yönelik çalışmalarda kullanılabilecek doğruluk seviyesindedir.

Günümüzde, GNSS (Global Navigation Satellite System) verilerini değerlendirmek için akademik ve ticari yazılımlar mevcuttur. Ancak gelişen teknolojiye bağlı olarak GNSS veri işleme metodolojisindeki gelişmeler sayesinde konum belirleme konusunda kullanıcılara yeni kolaylıklar sunulmaktadır. Bu doğrultuda çeşitli araştırma merkezleri, üniversiteler ya da kuruluşlar tarafından web tabanlı çevrimiçi GNSS veri analizi servisleri geliştirilmiştir. Bu çevrimiçi veri değerlendirme servislerinin genellikle ücretsiz olması, kullanım için internet bağlantısı ve web tarayıcısının yeterli olması, kullanıcıdan minimum seviyede veri ve bilgi alacak şekilde tasarlanmış olması yaygın olarak kullanımlarının artmasına sebep olmaktadır (Mahmoud, 2018; Tsakiri, 2008; Subaşı, 2011). Bu servisler, personel, ekipman giderleri açısından ve tecrübe gerektirmemesi sebebiyle kullanıcılar için önemli avantajlar sağlamaktadır. Dünya genelinde kullanılan pek çok çevrimiçi GNSS değerlendirme servisi vardır. Bunların konum belirleme teknikleri, sağlayan kuruluşlar, kabul ettikleri veri formatları, kullandıkları yazılımlar Tablo 2.1 'de özetlenmiştir. Bağıl Konumlama tekniği ile çalışan servislere ilişkin bilgiler Tablo 2.2 'de ve PPP servislerinin kullandıkları uydu sistemleri 2.3'de özetlenmiştir.

Web tabanlı servislerinin bir kısmı (AUSPOS, OPUS, SCOUT) diferansiyel konum belirleme yöntemine göre çalışırlar; yani IGS veya CORS istasyonlarını referans istasyonlar olarak kabul edip bu noktalardan olan baz mesafelerini ölçerek referans noktaya göre koordinat hesaplamaktadır. Bir kısmı (CSRS-PPP, APPS-PPP, Magic-GNSS) ise; PPP tekniği ile mutlak konum belirleme yöntemine göre çalışmaktadır. Bu yöntemde; IGS, NRCan, SOPAC gibi kuruluşlar tarafından üretilen hassas uydu yörünge ve saat bilgileri kullanılarak başka bir noktayı referans almadan tek alıcı ile konum belirlenebilmektedir (Rizos vd., 2012; Mulic vd., 2013).

SERVİS	Konumla ma	Sağlayan Kuruluş	Yazılım	Göz Ver	lem ^r isi
	Tekniği	ſ			
AUSPOS	IL	GA	Bernese	Çift frekans	Statik
OPUS	AĞ	NGS	Pages	Çift frekans	Statik
SCOUT	B,	SOPAC	Gamıt	Tek/Çift	Statik
				frekans	
CSRS-PPP	_	NRCan	Csrs-ppp	Tek/Çift	Statik-
	(dd			frekans	kinematik
GAPS	Hd)	UNB	Gaps v6	Çift frekans	Statik-
	K			,	kinematik
APPS-PPP	'LA	JPL	Gipsy-	Çift frekans	Statik-
	LU	2	Oasis	,	kinematik
MAGİC-GNSS	M	GMV	Magic-	Cift frekans	Statik-
-			PPP	<u> </u>	kinematik
TRİMBLE		TRİMBLE	Trimble	Cift frekans	Statik
RTX					

Tablo 2.1 Çevrimiçi hizmetler ve bazı özellikleri

 Tablo 2.2 Bağıl konumlama tekniği ile çalışan servislere ilişkin bazı bilgiler

Parametreler	OPUS	AUSPOS	SCOUT
Referans	ITRF08	ITRF08	ITRF08
çerçeve			
Koordinat	Kartezyen/Jeodezik	Kartezyen/Jeodezik	Kartezyen/Jeodezik
formatı			
GNSS sistemi	GPS	GPS	GPS
Yazılım	PAGES	BERNESE	GAMIT
Gözlem	Çift frekans, statik	Çift frekans, statik	Tek ve Çift frekans,
verisi			statik
Sisteme Veri	Sistem arayüzü	Sistem arayüzü ve	ftp
aktarımı		ftp	
Kullanıcıya	e-posta	e-posta	e-posta
veri aktarımı			

GNSS SİSTEMİ	GPS	GLONASS	Galileo	BeiDou	QZSS
CSRS-PPP	\checkmark	\checkmark			
GAPS	\checkmark		\checkmark	\checkmark	
APPS	\checkmark				
MAGİC-GNSS	\checkmark	\checkmark	\checkmark		
TRIMBLE RTX	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Tablo 2.3 PPP tekniği ile konum belirleyen servislerin kullandıkları GNSSsistemleri

2.1 AUSPOS (Online GPS Processing Service)

Auspos, Avustralya'nın önde gelen jeoloji kuruluşlarından Geoscience Australia kuruluşu tarafından geliştirilen ücretsiz ve bağıl yöntemle konum belirleyen web tabanlı değerlendirme servisidir. Çift frekanslı RINEX formatında GNSS verileri sadece internet bağlantısı olan web tarayıcısı yardımıyla servisin arayüzü üzerinden sisteme yüklenebilir (Şekil 2.1). Bu aşamada kullanıcıdan girdi olarak istenen yalnızca anten tipi ve yüksekliğidir. Kullanıcı dilerse bir ftp servisi aracılığı ile de veri yükleyebilir.

Sistem değerlendirme yaparken Bernese yazılımını kullanır ve kullanıcı tarafından gönderilen RINEX (Receiver Independent Exchange Format) dosyası en yakın 15 IGS ve Asia-Pasific Reference Frame (APREF) istasyonunu referans olarak kullanarak gerekli hesaplamaları yapar. RINEX dosyaları sıkıştırılmış formatta (hatanaka zip gzip) da olabilir. AUSPOS yalnızca statik modda çalışır ve kinematik modda değerlendirme yapmaz. Değerlendirme yapması için en az bir saatlik veri gereklidir ve daha iyi sonuçlar için 6 saatlik veriler önerilir.

Sonuçlar işlem sırasında verilen mail adresine 10 dakika gibi kısa bir sürede pdf formatında bir rapor şeklinde gönderilir. AUSPOS'un aynı anda 20 ölçme dosyasıyla işlem yapma kapasitesi vardır, ancak dosya sayısı arttığında işleme süreci daha uzun sürecektir. Gelen bu raporda ölçü epoğunda ITRF08 datumundaki kartezyen ve jeodezik koordinatlar, standart sapmaları ve kullanılan referans istasyonlarına kadar geniş çaplı bilgi vardır. Ayrıca konumu belirlenmesi istenen noktanın ve kullanılan IGS istasyonlarının dünya üzerindeki yeri de yine bu raporda gösterilir (Şekil 2.2). Sistemle ilgili daha fazla bilgiye internet adresi üzerinden ulaşılabilir (Url 1).

Australian Government Governee Australia	AUSPOS	All I				
↑ Topic Home	Home > Earth Monitoring and Reference	e Systems 🕻	Geodesy and Global Navi	gation Systems	AUSPOS - Online GPS I	Processing
Astronomical Information						
Geodesy and Global Navigation Systems	Number of RINEX files 1 •	Submit RI	NEX using • upload •	ftp		
Basics	File Name	Height (m)	Antenna Type			
Geodetic Techniques	Dosya Seç Dosya seçîmedi Your Email Address:	0.0000	DEFAULT(NONE)	•		
Gobal Navigation Satellite System Networks	submit start over					
Geodetic Datums						
Regulation 13 Certificates	Back to the AUSPOS Online GPS Proce	essing Service	Introduction Page.			
Asia-Pacific Reference Frame						
AUSPOS - Online GPS Processing Service						
Step by Step Introduction RINEX Data How it works Understanding the Results GPS Antennas Trouble Shooting						
Geomagnetism						

Şekil 2. 1 AUSPOS servisinin arayüzü

Şekil 2.2 AUSPOS Servisine ait raporda gönderilen şekle dair örnek

2.2 OPUS (Online Positioning User Service)

Amerika Ulusal Okyanus ve Atmosfer İdaresi (NOAA) tarafından kurulmuş ücretsiz bir GNSS verisi işleme servisidir. Bağıl yöntemle konum belirleyen servis statik ve hızlı statik olmak üzere 2 modda veri analiz etmektedir. 15 dakikadan uzun 2 saate kadar olan verileri hızlı statik olarak değerlendirirken 2 saat üzerindeki verileri statik olarak değerlendirir, ancak kinematik değerlendirme seçeneği mevcut değildir.

Veriler ölçme aralığı 1, 2, 5, 10, 15 ve 30 saniye olan çift frekanslı ve RINEX ya da sıkıştırılmış RINEX formatında (hatanaka, zip, gzip, pkzip) olmalıdır. Şekil 2.3'de sistem arayüzü görülmekte ve kullanıcıdan anten tipi ve yüksekliğine ilişkin bilgi girişi istenmektedir. Sistem çözümde kullanılması istenen CORS istasyonlarını seçme olanağı sağlar ve aynı şekilde kullanılmaması istenen CORS istasyonları da çözümden çıkarılabilir.

OPUS statik modda veri işlerken PAGES yazılımını kullanır. Önce gönderilen verilerden bir başlangıç koordinat grubu hesaplar daha sonra yakındaki istasyonlardan en iyi 5 istasyonu seçer. Bu istasyonlar 1 km uzaklık içinde olabilir. Sonrasında çeşitli arşivlenmiş verilerden çeşitli kontrol testleri yapmaktadır. Bu kontrol testlerinde; veri durumu, ortak zaman aralıkları, mesafe, geometrik durum redündans ve multipath etkisi gibi durumlar göz önüne alınarak en iyi 3 istasyon seçilir. Bu 3 istasyon sayesinde bağımsız baz vektörlerinden yararlanarak ortalama konum hesaplanır.

Hızlı statik modda değerlendirme yaparken ise, RDGPS yazılımını kullanır, kullanıcı verileriyle ortak uydu görünürlüğüne sahip ve çözümü istenen istasyondan en fazla 250 km uzaklıkta olacak şekilde en az 3 en fazla 9 CORS istasyonu kullanarak çözümleme yapmaktadır.

Şeki 2.3 OPUS servisinin arayüzü

Sonuçlar ölçü epoğunda ITRF08 datumunda jeodezik ve kartezyen koordinatlar, standart sapmaları, UTM koordinatları ve kullanılan CORS istasyonları gibi bilgilerin yer aldığı bir e-posta ile işlem sırasında verilmiş olan e-posta adresine gönderilir. Sonuca ilişkin bir örnek Şekil 2.4 'te verilmiştir. (Url 2) FILE: vaan2090.11d OP1521281970385

NGS OPUS SOLUTION REPORT

All computed coordinate accuracies are listed as peak-to-peak values. For additional information: <u>https://www.ngs.noaa.gov/OPUS/about.jsp#accuracy</u>

USER: mrve.smsek@gmail.com	DATE: March 17, 2018
RINEX FILE: vaan2090.11o	TIME: 10:21:10 UTC

 SOFTWARE: page5
 1603.24 master72.pl
 160321
 START: 2011/07/28
 00:00:00

 EPHEMERIS: igs16464.eph [precise]
 STOP: 2011/07/28
 23:59:00

 NAV FILE: brdc2090.11n
 OBS USED: 53860 / 55110
 98%

 ANT NAME: TRM55971.00
 TZGD
 # FIXED AMB:
 160 / 197
 81%

 ARP HEIGHT: 0.087
 OVERALL RMS: 0.016(m)

 81%

REF FRAME: IGS08 (EPOCH:2011.5712)

X: 3636155.823(m)	0.003(m)		
Y: 3424493.588(m)	0.011(m)		
Z: 3955761.447(m)	0.005(m)		
LAT: 38 33 55.26950	0.005(m)		
E LON: 43 16 58.50077	0.008(m)		
W LON: 316 43 1.49923	0.008(m)		
EL HGT: 1695.749(m)	0.007(m)		
UTM COORD	INATES		
UTM (Zone 3	8)		
Northing (Y) [meters] 4269	942.760		
Easting (X) [meters] 3504	04.347		
Convergence [degrees] -1.	07063982		
Point Scale 0.99987	7559		
Combined Factor 0.99	960962		
BASE STA	ATIONS USED		
PID DESIGNATION	LATITUDE	LONGITUDE DI: 8662.6	STANCE(m)
DI 2421 ISBS IRAO SURVIU		>	0.08080.0
CRAO	10	09863.9	800008.0
This position and the above y	ector components w	ere computed with	outany

knowledge by the National Geodetic Survey regarding the equipment or field operating procedures used.

Şekil 2.4 OPUS servisinin çözüm raporu

2.3 CSRS-PPP (Canadian Spatial Reference System Precise Point Positioning)

Kanada Ulusal Kaynaklar Kurumu (NRCan) tarafından kurulmuş hassas nokta konumlama tekniğiyle çalışan çevrimiçi veri işleme servisidir. Ücretsiz olan bu servise veri yükleyebilmek için üyelik gereklidir. Veriler tek veya çift frekanslı RINEX ya da sıkıştırılmış RINEX formatında olmalıdır. CSRS-PPP servisi hem statik hem kinematik modda konum belirleyebilir. Şekil 2.5'te sistemin arayüzü verilmektedir. Sistem kullanıcıdan sonuçların gönderileceği mail adresini girmesi, verilerin işlenmesi istenen modu ve işlenmesi istenen epoğu ayrıca düşey datumu seçmesini istemektedir. Kullanıcı isterse gelgit bilgilerini de yükleyebilir. Sonuçları üye olunan e-posta adresine .sum, pos, .pdf ve .xsls uzantılı 4 dosya gönderilir. Pdf dosyasında sonuca ilişkin görsel ve grafik veriler bulunmaktadır. Özet bilgilerin bulunduğu ".sum " uzantılı dosyadan bir örnek Şekil 2.6'da sunulmuştur. ITRF ve NAD83 sistemind jeodezik ve kartezyen ve UTM koordinatları standart sapmaları ve işleme sırasında kullanılan bazı veriler .sum uzantılı dosya içerisinde kapsamlı şekilde sunulur(Url 3).

CSRS-PPP Service	Upgrade	
The Canadian Geodetic Survey of Na transition to a new processing softwa output files is available on the <u>moden</u> familiarize yourself with the new output	Itural Resources Canada updated the CSRS-PPP service on Thursday, Augu re (SPARK) which replaced the previous software (GPSPACE). Information di <u>ized CSRS-PPP service page</u> . Sample static and kinematic solutions are als ats.	at 18th 2018. This update included the stailing the file formats for all updated o available for download to allow you to
Help for CSRS PPP (Updated 201	8-12-17)	Profile Sign out
mail for results (required)		
mive.smsek@gmail.com		
rocessing mode Static © Kinematic NAD63 ITRF		
Epoch (<u>Adopted)</u>		
ertical datum		
CGDV28(HT2_0)		
Contribute to passive control maint Authorize the Canadian Geodetic Sc Official marker station name	anance? (what is this?) avey (CGS) to anchive and publish CSRS-PPP submission and solution	
More options		
INEX observation file (required) (.zlp	a, .gzip, .gz, .Z, .??O)	
Dasya Seç Dosya seçilmedi		
Dosya Seç Dosya seçilmedi. Submit to PPP	They of Consultan Constants Research and the first sector	to the Owner Ownershall Descent

Şekil 2.5 CSRS-PPP servisinin arayüzü

The estimated coordinates NAD83(CSRS) 2011-09-25 for the AGRD2680.110 RINEX file are as follows:

Latitude N41° 02' 12.8062" ± 0.076 m (95%) Longitude E40° 29' 35.0559" ± 0.066 m (95%) Ellipsoidal Height 70.045 m ± 0.153 m (95%) [41.03689061,40.49307107,70.045]

UTM Zone 37 (North) Northing 4543926.010 m Easting 625501.512 m Scale factor (point) 0.999794 Scale factor (combined) 0.999783 [4543926.010,625501.512,70.045]

Cartesian coordinates

Orbits and Clocks Used: **IGS Final** GNSS Data: **GPS & GLONASS** GRS80 ellipsoid used for (x,y,z) to (lat,lon,h) transformation

Şekil 2.6 CSRS-PPP servisine ait rapor örneği

Yer kabuğu, tektonik yapı, su seviyesi değişimleri, toprak kayması gibi sebeplerle hem yatay hem de düşey olarak deformasyonlara maruz kalmaktadır. Bu hareketlerin güvenlik sebebiyle izlenmesi gerekmektedir. Bu hareketlerin belirlenmesi için yapılan jeodezik ölçüler "deformasyon ölçmeleri", ölçümlerin yorumlanması ise deformasyon analizi olarak tanımlanır. Deformasyon belirlenirken, zamana bağlı olmayan statik model, zamana ve konuma bağlı olan kinematik model ve harekete neden olan kuvvetin de dikkate alındığı dinamik model gibi çeşitli modeller geliştirilmiştir (Kuhlmann ve Pelzer, 1997; Ayan, 1982).

3.1 Global Eşdeğerlik Testi

Global eşdeğerlik testinin amacı incelenen iki ölçme periyodu arasında belirli bir bölgeyi gösteren noktalarda anlamlı bir konum değişimi olup olmadığını belirlemektir. Ele alınan iki periyotta geometrisi eşlenik bir ağda, t₁ ve t₂ zamanlarında yapılan ölçmeler sonucunda elde edilen ölçüler l₁ ve l₂, koordinat bilinmeyenlerinin kestirim değerleri k₁ ve k₂ ile gösterilirse,

$$Cll = \sigma_0^2 \begin{bmatrix} Q11 & 0\\ 0 & Q22 \end{bmatrix} \text{ stokastik model}$$
(3.2)

olmak üzere,

konum değişim vektörü :
$$d = k_2 \cdot k_1$$
 (3.3)

ağırlık katsayıları matrisi :
$$Q_{dd} = Q_{k1k1} + Q_{k2k2}$$
 (3.4)

olur.

Periyotlar arasında anlamlı bir değişim olmadığını ileri süren H₀ hipotezi ve buna karşıt olarak anlamlı bir değişim olduğunu söyleyen H_k hipotezleri kurulur

Ho:
$$E(d) = 0$$
 (3.5)

$$H_k: E(d) \neq 0 \tag{3.6}$$

$$R = d^{t} Q^{+}_{dd} d \tag{3.7}$$

olmak üzere, (Q^+_{dd} pseudo inversidir).

her iki periyot için ağ geometrisi aynı ise R için serbestlik derecesi olan h, Qdd matrisinin rangına eşittir.

H_o hipotezi için test büyüklüğü;

$$T = \frac{R/h}{\Omega/f} = \frac{d^{t}Q^{+}_{dd}d}{hS_{0}^{2}} \sim F(h, f)$$
(3.8)

 Ω , her iki periyot ölçü için yapılan dengeleme sonucunda bulunan düzeltmelerin kareleri toplamı olmak üzere,

F : F dağılımı

T>F_{h,f,1-a} ise deformasyon var

T<F_{h,f,1-a} ise deformasyon yok

olarak yorumlama yapılır (Ayan, 1982; Aydın, 2011).

3.2 Deformasyon Büyüklüklerinin Belirlenmesi

Konum değişimi vektörü 'd' oluşturularak deformasyon büyüklükleri belirlenir. Herhangi bir noktanın t₁ ve t₂ periyotları arasındaki yatay konum değişim vektörü,

$$d = \begin{bmatrix} x_{t2} - x_{t1} \\ y_{t2} - y_{t1} \end{bmatrix}$$
(3.9)

ve bu vektörün uzunluğu;

$$d = \sqrt{d^T d} \tag{3.10}$$

olur.

Bu hareketin anlamlı olup olmadığını belirlemek için test etmek gerekir. Bu doğrultuda H_0 hipotezi kurulur.

$$H_0:d=0$$
 (3.11)

Test büyüklüğü;

$$T = \frac{d^t Q^{-1}_{dd} d}{2S_0^2}$$
(3.12)

Bu test değeri $F_{2, f, 1-\alpha}$ ile karşılaştırılır.

Eğer T> $F_{2, f, 1-\alpha}$ ise nokta hareket etmiştir,

 $T < F_{2, f, 1-\alpha}$ ise noktada hareket yoktur (1- α güven düzeyi ile)

denilir.

3.3 Gerinim Analizi

Gerinim (strain), uzunluktaki artma ve azalmanın orijinal uzunluğa oranı olarak tanımlanabilir. Ayrıca gerinim kavramı yer değiştirme kavramıyla da ilgilidir eksenler yönündeki koordinat değişimin ilk koordinatlara oranıdır. Birimsizdir ve bir oranı ifade eder. Özetle bir cismin birim miktarında meydana gelen şekil ve hacim değişimine, birim deformasyonuna gerinim denir.

Tekrarlı jeodezik öcüler aktif fayların yakınlarındaki yer kabuğuklarında meydana gelen strain parametrelerinin belirlenmesinde kullanılabilir. (Brunner, Coleman ve Hirsch, 1981).

Yer kabuğundaki gerinimleri jeodezik yöntemlerle belirlerken;

-Jeodezik ağ noktalarının bölgeyi temsil ettiği

-bölgede meydana gelen gerinimlerin homojen olduğu

Varsayımları vardır.

Gerinim belirlemede kullanılan jeodezik yöntemler;

- Jeodezik nokta çevresinde oluşan gerilimlerin sonsuz küçük olduğu varsayımına dayanan yöntemler

-Sonlu elemanlar yöntemi

olmak üzere 2 yöntem üzerinden ilerlemektedir.

İki boyut söz konusu olduğunda bir gerinim büyüklüğü yerine gerinim tensörü vardır(Aydın, 2018). GNSS ölçüleriyle deformasyon hesabı yapılırken yükseklik bileşenindeki doğruluğun yatay bileşenlerden düşük olması sebebiyle iki boyutta tensör elemanları belirlenmektedir (Denli, 1998).

$$\mathbf{E} = \begin{bmatrix} e_{xx} & e_{xy} \\ e_{yx} & e_{yy} \end{bmatrix}$$
(3.13)

 e_{xx} = x ekseni doğrultusunda birim uzunluktaki değişme

 e_{yy} = y ekseni doğrultusunda birim uzunluktaki değişme

 e_{xy} = kesme gerilmesi

olarak ifade edilir.

Datumdan bağımsız olan gerinim parametlerini belirlemenin en uygun yolu baz uzunluğu oranını kullanmaktır (Deniz, 2007).

$$\varepsilon = \frac{s' - s}{\Delta t \cdot s} \tag{3.14}$$

S'= Değişen uzunluk

S= orijinal uzunluk

 $\Delta t =$ zaman aralığı, tanımlar.

$$\varepsilon = e_{xx} \cos^2 t + e_{xy} \sin 2t + e_{yy} \sin^2 t \tag{3.15}$$

Gerinim tensörünün elemanları bu temel eşitlikler kullanılarak hesaplanır. Bu amaçla 2 farklı uygulama vardır. İlk olarak bölge üçgenlere ayrılır (Şekil 3.1) ve üçgenin kapsadığı alan için gerinim tensörünün bileşenleri hesaplanır. İkinci yöntem ise bir noktadan diğer noktalara üçten fazla bağlantı kurularak dengeleme yöntemiyle tensör elemanlarının bulunmasıdır (Şekil 3.2).

Şekil 3.1 Bir bölgeye ait üçgenleme örneği

Şekil 3.2 İkinci yönteme ilişkin bağlantı örneği

Homojen gerinim teorisine göre bağıl konum değişim vektörü:

olarak verilmektedir (Kakkuri ve Chen, 1990).

Burada, dx= $x_{t2} - x_{t1}$ dy= $y_{t2} - y_{t1}$ t₁ ve t₂ zamanlarda ölçülen bir noktanın konum değişimlerini, $[tx ty]^t$ tüm noktalar için geçerli olan katı blok kuvveti hareketi (öteleme), E simetrik gerinim tensörü, dR ters simetrik dönme tensörü ve $[x y]^t$ ise koordinatları göstermektedir.

Dönme tensörü *dR*, ilgili koordinat eksenlerini içeren düzlemde deformasyon nedeniyle oluşan katı bloğun diferansiyel dönmesini gösterir:

$$dR = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}$$
(3.17)

Blok hareketini belirlemek için gerekli gerinim tensör parametreleri afin dönüşümüne benzer şekilde bulunabilir her nokta için eşitlikler:

$$\begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} x & y & 0 & y & 1 & 0 \\ 0 & x & y & -x & 0 & 1 \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{xy} \\ e_{yy} \\ \omega \\ tx \\ ty \end{bmatrix}$$
(3.18)

Burada; $\begin{bmatrix} dx \\ dy \end{bmatrix}$ ölçü matrisi, $\begin{bmatrix} x & y & 0 & y & 1 & 0 \\ 0 & x & y & -x & 0 & 1 \end{bmatrix}$ katsayılar matrisi olmak üzere

En küçük kareler yöntemine göre dengeleme yapılarak bilinmeyen vektörü olan $[e_{xx} e_{xy} e_{yy} \omega tx ty]$ gerinim tensör paremetreleri hesaplanır. Gerinim tensör parametreleri yardımıyla maksimum ve minimum asal gerinim parametreleri (ɛmax, ɛmin) ile maksimum gerinim yönü (φ) hesaplanabilir.

Maksimum asal gerinim (ε_{max}) :

$$[\varepsilon_{max}] = \frac{1}{2} \left[\left(e_{xx} + e_{yy} \right) + \sqrt{\left(e_{xx} - e_{yy} \right)^2 + 4e_{xy}^2} \right]$$
(3.19)

Minimum asal gerinim(ε_{min}) :

$$[\varepsilon_{min}] = \frac{1}{2} \left[\left(e_{xx} + e_{yy} \right) - \sqrt{\left(e_{xx} - e_{yy} \right)^2 + 4e_{xy}^2} \right]$$
(3.20)

Saf kayma (pure shear):

 $\gamma_1 = e_{xx-} e_{yy} \tag{3.21}$

Mühendislik kayması:

$$\gamma_2 = 2e_{xy} \tag{3.22}$$

Maksimum asal gerinim yönü:

$$\varphi = \frac{1}{2} \tan^{-1} \left(\frac{2e_{xy}}{e_{xx} - e_{yy}} \right) \text{ ya da } \varphi = \frac{1}{2} \tan^{-1} \left(\frac{\gamma_1}{\gamma_2} \right)$$
(3.23)

olarak belirlenir (Prescott vd., 1976; Brunner, 1979; Feigl, King ve Jordan, 1997).

Şekil 3.3 Gerinim elipsi ve asal gerinim parametreleri

Parametrenin pozitif olması doğrultuda meydana gelen genleşmeyi, uzamayı negatif olması ise kısalmayı büzüşmeyi göstermektedir.

Gerinim elipsi çizilirken önce azimuta göre en büyük gerilme doğrultusu çizilir. Bu doğrultuda, nokta merkez olacak biçimde buna dik olacak şekilde en küçük gerilme miktarı, çizilecek gerinim elipsi oluşturulur.
4.1 GNSS Ölçüleri

Bu çalışmada, web tabanlı online veri değerlendirme servislerinin tektonik çalışmalarda kullanılabilirliğini ve doğruluk performanslarını ölçmek için 23 Ekim 2011 (Mw = 7.2) Van Depremi (2011 yılı 296. GNSS günü) sonucu bölgede meydana gelen deprem anı ve deprem sonrası deformasyonların ve gerinim parametrelerinin belirlenmesi örnek uygulama olarak seçilmiştir. Bu amaç kapsamında Van İli ve çevresinde bulunan TUSAGA-Aktif ağına ilişkin 12 GNSS istasyonuna (Şekil 4.2) ait RINEX verilerinin depremden 7 gün öncesi ve depremden 30 gün sonrasına ait olanları web tabanlı çevrimiçi servisler ve GAMIT/GLOBK yazılımı kullanılarak değerlendirilmiştir (Şekil 4.1).

Şekil 4.1 Kullanılan veri aralıkları

Şekil 4.2 Van Gölü etrafındaki 12 TUSAGA – Aktif istasyonu . Siyah süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre ve diğ., 2013).

	-			
İstasyon	Enlem (o)	Boylam (o)	h (m)	-
AGRD	39.717563	43.032877	1672.6042	-
BASK	38.043445	44.017306	2312.2684	
НАКК	37.574317	43.739130	1758.0513	
HINI	39.368789	41.695789	1742.6306	
HORS	40.041648	42.167329	1592.3447	
IGIR	39.929202	44.018254	884.3067	
MALZ	39.143162	42.530805	1547.5892	
MURA	38.990102	43.763121	1736.4126	
OZAL	38.657314	43.988681	2037.2666	
SIRN	37.525028	42.456845	1459.3270	
SIRT	37.931909	41.935571	916.6129	
TVAN	38.529494	42.290462	1717.4972	

Tablo 4.1 GNSS istasyonlarına ilişkin jeodezik koordinatlar

4.2 GNSS Ölçülerinin GAMIT/GLOBK Yazılımı ile Değerlendirilmesi

GNSS verilerinin değerlendirilmesi aşamasında Massachusetts Institute of Technology (kısaca MIT)'nin geliştirdiği, GAMIT/GLOBK (GPS At MIT /Global Kalman Filter) v10.6 kullanılmıştır.

GAMIT/GLOBK yazılımı birkaç alt bileşenden oluşmakta ve bu alt bileşenlerin en önemli kısmı GAMIT yazılımıdır. GAMIT yazılımı da kendi içerisinde bazı alt programları içermektedir (Şekil 4.3). Bu alt programlardan MAKEXP ve MAKEX programlarına girdi olarak RINEX gözlem verileri, ölçme yapılan istasyon ve noktalardaki anten ve alıcı bilgileri, bu istasyon ve noktalara ait yaklaşık koordinatlar, gözlem yapılan uydu numaraları ve saat bilgileri verilerek, X ve K dosya çıktıları oluşturulmaktadır. X dosyaları, gözlem dosyalarının K dosyaları ise alıcı saat bilgilerinin GAMIT yazılımı tarafından kullanılabilecek halini oluşturmaktadır.

Bu iki dosya, bir sonraki aşama olan FIXDRV yazılımının girdilerini oluştururlar ve program çalışmaya devam eder. FIXDRV yazılımının çıktı dosyaları ise, ölçme yapılan istasyon ve noktalardaki saat farklarını ve oranları veren I dosyasi ile sürekli kontrol sağlayacak B dosyalarıdır. MODEL programı ise düzeltme (residual) olarak tanımlanan gözlenen değerler ile hesaplanan değerler arasındaki farkları bularak, gözlem dosyalarını yeniler ve C dosyalarını oluşturmaktadır. AUTCLN ise otomatik bir temizleme programıdır ve C dosyaları yardımıyla verilerdeki faz kesikliklerini, kaba hatalı ölçüleri çift fark yöntemiyle temizlemektedir. Güncellenmiş C dosyaları ile SOLVE programı istasyon ve nokta koordinatlarına ve uydu yörüngelerine ait tüm parametreleri en küçük kareler yöntemi ile dengeleyerek ilk değerlere düzeltmeler getirmektedir. MODEL, AUTCLN ve SOLVE programları iteratif bir şekilde çalışarak son değerlere ulaşmaktadır (Çakmak, 2010).

Şekil 4.3 GAMIT yazılımının işleyişi

GAMIT, istasyon konumunu ve uydu yörünge parametrelerini kestirebilmek için ağırlıklı en küçük kareler algoritması içerir; öncelikle konstrain uygulanmış (nominal olarak 0.05 metre düzeyinde) öncül istasyon konumlarını kullanarak faz belirsizlik çözümlemesine yardımcı olur ve daha sonra zayıf konstrain uygulanmış istasyon konumlarını (100 metre düzeyinde) kullanarak daha sonradan GLOBK yazılımına girdi olarak verilecek konum ve kovaryans çözümlerini üretmektedir (Herring vd., 2016). Bu işlemler sırasında, troposferik, iyonosferik gecikmeleri, uydu ve yörünge parametrelerine gelecek etkileri de hesaplamak gerekmektedir. Bundan dolayı, GAMIT çeşitli model ve stratejiler kullanmakta olup, bu çalışmada seçilen parametre ve modeller aşağıda gibi göz önüne alınmıştır:

- Hassas yörünge bilgisi, IGS duyarlı yörünge bilgisi, Standard Ürün 3 (Standard Product 3 – SP3) olarak Scripps Institution of Oceanography (SIO) üzerinden Scripps Orbit and Permanent Array Center (SOPAC)'a ait ftp://garner.ucsd.edu/pub/products web adresinden alınmıştır.
- Yer dönme parametreleri (EOPS-Earth Orientation Parameters), USNO bull_b (United States Naval Observatory bulletin_b) değerlerinden alınmıştır.
- Tüm IGS istasyonlarının GNSS verileri SOPAC arşivinden; ftp://garner.ucsd.edu/pub/rinex yapısı içinden indirilmiştir.
- Referans sistemi tanımlamada ITRF2008 koordinat çözümü kullanılmıştır. (Web tabanlı çevrimiçi değerlendirme servisleriyle aynı sistem kullanılmıştır.)
- Zenit gecikme bilinmeyenleri Saastamoinen öncül standart troposfer modeline dayalı olarak 2 saatlik aralıklarla hesaplanmıştır.
- Atmosferin kuru ve ıslak kısımları için GMF (Global Mapping Function) uygulanmıştır.
- Mapping function, eğim açısına bağlı olarak değişen sinyal yolu eğriliği için zenit gecikme değerlerinin modellenmesi için kullanılmıştır.
- Değerlendirmede L1 ve L2 taşıyıcı dalga fazlarının iyonosferden bağımsız LC (L3) doğrusal lineer kombinasyonu kullanılmıştır (Herring vd., 2016)

GAMIT sonucunda Q ve H adı verilen iki adet sonuç dosyası elde edilmektedir. Qdosyasında, tam sayı belirsizliklerinin çözümü ve sonuçların hataları bulunur. Bu dosya sayesinde veri işlemin nasıl gerçekleştirildiği adım adım incelenebilmektedir. H-dosyalarında ise dengeleme sonrası türetilmiş ölçüler ve kovaryans matrisleri bulunmaktadır. Bu dosyalar veri işlemin diğer bir kısmı olan GLOBK için girdi oluşturmaktadır.

Veri işlemenin GLOBK aşamasında ise, GAMIT ile her bir oturum için elde edilen Hdosyaları, küresel çözümlerle birleştirmek için genel veri merkezlerince oluşturulmuş günlük H-dosyaları ile beraber analiz edilmekte ve her bir istasyon için zaman serileri oluşturulmaktadır. Elde edilen zaman serileri yardımıyla her bir istasyonun kuzey-güney, doğu-batı ve düşey koordinat bileşenlerinin ve gerektiğinde baz bileşenlerinin zamana bağımlı değişimleri incelenebilmektedir (Herring vd., 2016).

GNSS ölçüleri için datum tanımlama 10 IGS istasyonuna göre yapılmıştır (Şekil 4.4). IGS istasyonları seçilirken dikkat edilenlen faktörler şu şekildedir;

- IGS istasyonlarının bölgede homojen bir şekilde dağılması,
- IGS istasyonlarının zaman serilerinin herhangi bir nedenle kesilmemiş, sürekli olması,
- IGS istasyonlarının deprem gibi afetlerden etkilenmemiş olması.

Yukarıda açıklanan maddeler göz önüne alınarak, zaman serileri incelenerek olabildiğince bölgeyi en iyi kapsayan ve kesintiye uğramamış IGS istasyonları tercih edilmeye çalışılmıştır. Şekil 4.4 'de kullanılan 10 IGS istasyonunun konumu ve Tablo 4.2'de bu istasyonlara ait koordinat verileri görülmektedir.

İstasyon Adı	X (m)	Y (m)	Z (m)	vx (m/y)	vy (m/y)	vz (m/y)
WSRT	3828735.86300	443304.95700	5064884.71200	-0.0153	0.0160	0.0096
YEBE	4848724.70603	-261632.20981	4123094.15416	-0.00903	0.01941	0.01300
ZECK	3451174.70393	3060335.43600	4391955.65079	-0.02219	0.01438	0.00925
KABR	4377283.06619	3081551.60647	3456136.88448	-0.02110	0.01188	0.01705
RAMO	4514721.85318	3133507.83971	3228024.71042	-0.02047	0.01411	0.01773
NICO	4359415.70950	2874117.06545	3650777.82517	-0.01768	0.01101	0.01271
GLSV	3512888.95355	2068979.88146	4888903.20075	-0.01992	0.01421	0.00821
BUCU	4093760.86468	2007793.8087	4445129.97453	-0.01630	0.01788	0.01073
GRAZ WT7R	4194423.81333 4075580 54730	1162702.69073 931853 79758	4647245.41214 4801568 13018	-0.01656 -0.01605	0.01802	0.01103

Tablo 4.2 IGS istasyonlarına ait ITRF08 epok 2005.0 koordinatları

GAMIT yazılımı ile gerçekleştirilen analiz sonuçlarından HINI istasyonuna ait koordinat zaman serisi örnek olarak Şekil 4.5'de verilmiştir. Diğer istasyonlara ait zaman serileri de EK-A'de sunulmuştur.

Şekil 4.4 Değerlendirmede kullanılan IGS istasyonları

Şekil 4.5 HINI istasyonuna ilişkin zaman serisi

4.3 GNSS Ölçülerinin İnternet Tabanlı Çevrimiçi GNSS Servisleri ile Değerlendirilmesi

Bu çalışmada bağıl konumlama tekniği ile değerlendirme yapan AUSPOS ve OPUS-S servisler ile PPP tekniği ile çalışan CSRS-PPP servisi kullanılarak 12 istasyona ait deprem öncesi 7 gün ve deprem sonrası 30 günlük veri değerlendirilmiştir. TUSAGA-AKTİF istasyonlarından elde edilen RINEX formatında veriler 2. Bölümde detaylıca anlatılan servis arayüzleri üzerinden sisteme yüklenmiş ve sonrasında yükleme sırasında verilen e-posta adresi üzerinden koordinat çözümleri elde edilmiştir. Elde edilen koordinat çözümleri kullanılarak zaman serileri oluşturulmuştur. HINI noktasına ait zaman serileri örnek olarak Şekil 4.6 ile 4.8 arasında gösterilmiş olup diğer istasyonlara ilişkin zaman serileri de EK A'da sunulmuştur.

Şekil 4.6 HINI istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil 4.7 HINI istasyonuna ilişkin zaman serisi (OPUS)

Şekil 4.8 HINI istasyonuna ilişkin zaman serisi (CSRS-PPP)

4.4 İnternet Tabanlı Çevrimiçi GNSS Servislerinin Tekrarlılık Analizi

4.4.1 Deprem Öncesi İçin Tekrarlılık Analizi

GAMIT/GLOBK yazılımı ve çevrimiçi servislere ait günlük çözümler haftalık çözümlere birleştirilerek 7 günlük tekrarlılık değerleri deprem öncesi için hesaplanmış ve Şekil 4.9- Şekil 4.11'de gösterilmektedir.

AUSPOS servisinin değerlendirme sonuçlarına (Şekil 4.9) göre tekrarlılık değerleri yatay bileşenlerde 0,42 mm ile 2,86 mm arasında, düşeyde ise 2,37 mm ile 10,10 mm arasında değişmektedir. Yatayda en yüksek tekrarlılık değeri 1,51 mm HORS istasyonunda ve en düşük tekrarlılık değeri 3,8 mm TVAN istasyonunda belirlenmiştir.

Sekil 4.9 AUSPOS için deprem öncesi tekrarlılık değerleri

CSRS-PPP servisinden elde edilen sonuçlara göre yatay bileşenlerde 1,05 mm – 3,88 mm tekrarlılık, düşeyde 2,40 mm- 5,18 mm arasında tekrarlılık değerleri hesaplanmıştır. Yatayda en yüksek tekrarlılık değeri 2,33 mm SIRN istasyonunda, en düşük tekrarlılık değeri 6,78 mm de BASK istasyonunda belirlenmiştir (Şekil 4.10).

Şekil 4.10 CSRS-PPP için deprem öncesi tekrarlılık değerleri

OPUS servisinin değerlendirme sonuçları Şekil 4.11 ile gösterilmektedir. Yatay bileşenler için tekrarlılık değerleri 0,63 mm ile 4,93 mm arasında, düşey bileşen için 3,09 mm ile 13,42 mm arasında değişmektedir. CSRS-PPP servisinde olduğu gibi BASK istasyonuna ilişkin tekrarlılık değeri diğer istasyonlara göre daha düşüktür. En yüksek tekrarlılık değeri ise AGRD istasyonunda hesaplanmıştır.

Şekil 4.11 OPUS için deprem öncesi tekrarlılık değerleri

Deprem öncesi servislerden hesaplanan her bir bileşen için ayrı ayrı ortalama tekrarlılık değerleri Tablo 4.3'de verilmiştir. Tablo 4.3'e göre, kuzey-güney bileşeninde en yüksek tekrarlılık AUSPOS sonuçlarından ortalama 1,06 mm iken, en

düşük tekrarlılık ise CSRS-PPP sonuçlarından ortalama 2,00 mm olarak belirlenmiştir. Doğu-batı bileşeninde en yüksek tekrarlılık AUSPOS sonuçlarından ortalama 1,28 mm, en düşük tekrarlılık ise OPUS sonuçlarından ortalama 2,00 mm olarak elde edilmiştir. Yükseklik bileşeninde ise, en yüksek tekrarlılık CSRS-PPP sonuçlarından ortalama 4,40 mm iken, en düşük tekrarlılık ise OPUS sonuçlarından ortalama 6,52 mm olarak belirlenmiştir.

			****1 1111
	Kuzey-Güney	Doğu-Batı	Yükseklik
AUSPOS	1,06	1,28	5,68
OPUS	1,65	2,00	6,52
CSRS-PPP	2,00	1,35	4,40

Tablo 4.3 Deprem Öncesi ortalama tekrarlılık değerleri (mm)

4.4.2 Deprem Sonrası İçin Tekrarlılık Analizi

GAMIT/GLOBK yazılımı ve çevrimiçi servislere ait günlük çözümler haftalık çözümlere birleştirilerek 7 günlük tekrarlılık değerleri deprem sonrası için hesaplanmış ve Şekil 4.12- Şekil 4.14'de gösterilmiştir.

AUSPOS servisi verilerinden elde edilen tekrarlılıklar yatayda 0,32- 2,60 mm, düşeyde 2,10-5,77 mm arasında değerler almaktadır (Şekil 4.12). AUSPOS sonuçlarına göre yatayda en yüksek tekrarlılık değeri HINI istasyonunda elde edilmiştir.

OPUS servisi için ise; yatayda 0,59- 2,5 mm arasında, düşeyde 2,16- 7,15 mm arasındadır. OPUS sonuçlarına göre en yüksek tekrarlılık değeri yine HINI istasyonunda belirlenmiştir (Şekil 4.14). CSRS-PPP sonuçlarına göre, yatayda; 0,76- 3,13 mm ve düşeyde 1,77- 5,99 mm arasında değişmekte; en yüksek tekrarlılık değeri HORS istasyonunda elde edilmiştir (Şekil 4.13).

Şekil 4.12 AUSPOS için deprem sonrası tekrarlılık değerleri

Şekil 4.13 CSRS-PPP için deprem sonrası tekrarlılık değerleri

Şekil 4.14 OPUS için deprem sonrası tekrarlılık değerleri

Tablo 4.4 Deprem sonrası için ortalama tekrarlılık değerleri (n	nm))
--	-----	---

	Kuzey-Güney	Doğu-Batı	Yükseklik
AUSPOS	0,89	0,96	3,51
OPUS	1,29	1,54	4,24
CSRS-PPP	1,93	1,63	2,65

Deprem sonrası servislerden hesaplanan her bir bileşen için ayrı ayrı ortalama tekrarlılık değerleri Tablo 4.4'de verilmiştir. Tablo 4.4'e göre, kuzey-güney bileşeninde en yüksek tekrarlılık AUSPOS sonuçlarından ortalama 0,89 mm iken, en düşük tekrarlılık ise CSRS-PPP sonuçlarından ortalama 1,93 mm olarak belirlenmiştir. Doğu-batı bileşeninde en yüksek tekrarlılık AUSPOS sonuçlarından ortalama 0,96 mm iken, en düşük tekrarlılık ise CSRS-PPP sonuçlarından ortalama 1,63 mm olarak belirlenmiştir. Yükseklik bileşeninde ise, en yüksek tekrarlılık CSRS-PPP sonuçlarından ortalama 2,65 mm iken, en düşük tekrarlılık ise OPUS sonuçlarından ortalama 4,24 mm olarak belirlenmiştir. Deprem sonrası için hesaplanan tekrarlılık değerleri deprem öncesine göre daha yüksek doğrulukta elde edilmiştir.

4.5 İnternet Tabanlı Çevrimiçi GNSS Servislerinin Doğruluk Analizi

GAMIT/GLOBK yazılımıyla hesaplanan koordinatları doğru (gerçek) koordinatlar kabul edilerek; diğer web tabanlı çevrimiçi GNSS servislerinden elde edilen koordinatlar ile farklar hesaplanmıştır. Bu farklardan herbiri için doğruluk analizleri yapılmıştır.

Örneğin i istasyonunun kuzey-güney bileşeni için;

$$\varepsilon_i = n_{(gamit)} - n_{(servis)}$$
 (gerçek düzeltme) (4.1)

olmak üzere;

$$\sigma_n = \sqrt{\frac{\varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_n^2}{n}}$$
(n: ölçü sayısı) (4.2)

standart sapma değeri elde edilir.

4.5.1 Deprem Öncesi İçin Doğruluk Analizi

Deprem öncesi 7 günlük GNSS verileri ile belirlenen ve GAMIT/GLOBK sonuçları doğru kabul edilerek diğer servislere ilişkin doğrıluk analiz sonuçları Şekil 4.15-4.17'te verilmektedir. AUSPOS için, yatayda 0,83 – 4,37 mm, düşeyde 3,71-12,57 mm (Şekil 4.15); CSRS-PPP için yatayda 0,95-7,58 mm, düşeyde 5,31-12,00 mm (Şekil 4.16) ; OPUS için ise, yatayda 1,07 – 6,54 mm, düşeyde 3,6 – 15,34 mm (Şekil 4.17) arasında değişen doğruluk değerleri elde edilmiştir.

Şekil 4.15 AUSPOS için deprem öncesi doğruluk değerleri

Şekil 4.16 CSRS-PPP için deprem öncesi doğruluk değerleri

Şekil 4.17 OPUS için deprem öncesi doğruluk değerleri

Deprem öncesi servislerden hesaplanan her bir bileşen için ayrı ayrı ortalama doğruluk değerleri Tablo 4.5'de verilmiştir. Tablo 4,5'e göre, kuzey-güney bileşeninde en yüksek doğruluk AUSPOS sonuçlarından ortalama 1,54 mm iken, en düşük doğruluk ise OPUS sonuçlarından ortalama 4,38 mm olarak belirlenmiştir. Doğu-batı bileşeninde en yüksek doğruluk AUSPOS sonuçlarından ortalama 2,27 mm iken, en düşük doğruluk ise CSRS-PPP sonuçlarından ortalama 2,62 mm olarak hesaplanmıştır. Yükseklik bileşeninde ise, en yüksek doğruluk AUSPOS sonuçlarından ortalama 7,98 mm iken, en düşük tekrarlılık ise OPUS sonuçlarından ortalama 8,60 mm olarak belirlenmiştir.

Servis Adı	Kuzey-Güney	Doğu-Batı	Yükseklik
AUSPOS	1,54	2,27	7,98
OPUS	4,38	2,31	8,60
CSRS-PPP	3,75	2,62	8,08

Tablo 4.5 Deprem öncesi için servislerin ortalama doğruluk değerleri(mm)

4.5.2 Deprem Sonrası İçin Doğruluk Analizi

Deprem sonrası ilk 7 günlük GNSS verileri ile belirlenen ve GAMIT/GLOBK sonuçları doğru kabul edilerek diğer servislere ilişkin doğruluk analizi sonuçları Şekil 4.18-4.20'de verilmektedir. AUSPOS için, yatayda 0,88- 3,48 mm, düşeyde 4,77-10,14 mm; CSRS-PPP için yatayda 0,86 – 7,79 mm, düşeyde 3,79-12,67 mm; OPUS için ise yatayda 1,74 - 5,87 mm ve düşeyde 3,07 – 17,54 mm arasında değişen doğruluk değerleri elde edilmiştir.

Şekil 4.18 AUSPOS için deprem sonrası doğruluk değerleri

Şekil 4.19 CSRS-PPP için deprem sonrası doğruluk değerleri

Şekil 4.20 OPUS için deprem sonrası doğruluk değerleri

Deprem sonrası servislerden hesaplanan her bir bileşen için ayrı ayrı ortalama doğruluk değerleri Tablo 4.6'da verilmiştir. Tablo 4.6'ya göre, kuzey-güney bileşeninde en yüksek doğruluk AUSPOS sonuçlarından ortalama 1,30 mm iken, en düşük doğruluk ise CSRS-PPP sonuçlarından ortalama 3,76 mm olarak belirlenmiştir. Doğu-batı bileşeninde en yüksek doğruluk CSRS-PPP sonuçlarından ortalama 1,91 mm iken, en düşük doğruluk ise AUSPOS sonuçlarından ortalama 2,70 mm olarak hesaplanmıştır. Yükseklik bileşeninde ise, en yüksek doğruluk AUSPOS sonuçlarından ortalama 7,59 mm iken, en düşük tekrarlılık ise CSRS-PPP sonuçlarından ortalama 8,43 mm olarak belirlenmiştir.

Servis Adı	Kuzey-Güney	Doğu-Batı	Yükseklik
AUSPOS	1,30	2,70	7,59
OPUS	2,70	2,40	8,18
CSRS-PPP	3,76	1,91	8,43

Tablo 4.6 Deprem sonrası için servislerin ortalama doğruluk değerleri(mm)

4.6 Deformasyon Parametrelerinin Belirlenmesi

4.6.1 Deprem Anı Yerdeğiştirme Parametrelerinin Belirlenmesi

Değerlendirmeler sonucu elde edilen bir i istasyonuna ilişkin kuzey-güzey (x_i) ve doğu batı (y_i) koordinat çözümleri arasındaki farklar:

$$dxi = x_{(t2)} - x_{(t1)}$$

$$dyi = y_{(t2)} - y_{(t1)}$$
(4.3)

olarak hesaplanıp bu istasyona ait deprem anı (co-seismic) yatay yer değiştirmeler bulunmuştur. Burada t_1 ve t_2 deprem öncesi ve sonrası zamanları göstermektedir. Deprem anı için burada t_2 : 2011 yılı 297. GNSS günü ve t_1 : 2011 yılı 295. GNSS günüdür. Deprem 23 Ekim 2011 tarihinde yılın 296. GNSS gününde meydana gelmiştir (Şekil 4.21).

Şekil 4.21 Deprem anı için kullanılan epoklar

GAMIT/GLOBK yazılımına göre yapılan değerlendirme sonuçlarına göre (Şekil 4.22) kuzey-güney doğrultusunda -56,02 \pm 4,05 mm, doğu batı doğrultusunda -21,83 \pm 4,19 mm olmak üzere en büyük yatay deformasyonun MURA noktasında meydana geldiği görülmektedir. Depremin oluştuğu bölgeden (Şekil 4.2'de görülen yeşil yıldız depremin odak noktasının yerini göstermektedir) uzaklaştıkça deformasyon büyüklüğünün azaldığı görülmektedir. Örneğin, HINI noktasında kuzey-güney bileşeninde -5,41 \pm 3,29 mm, doğu-batı bileşeninde 0,63 \pm 3,75 mm yer değiştirme belirlenmiştir. Aynı şekilde HORS noktasında kuzey-güney bileşende -5,55 \pm 3,58 mm ve doğu- batı bileşende 0,55 \pm 3,85 mm yer değiştirme saptanmıştır.

Düşey bileşende en büyük deformayon sırasıyla -13,09 \pm 12,84 mm ve -12,95 \pm 15,05 mm olmak üzere HINI ve sonrasında MURA noktalarında meydana gelmiştir. En küçük yer değiştirme miktarı ise 0,31 \pm 12,40 mm ile IGIR noktasında meydana gelmiştir.

GAMIT/GLOBK yazılımı ile gerçekleştirilen değerlendirme sonucunda elde edilen deprem anı yatay deformasyonları doğru kabul edilerek, web tabanlı çevrimiçi GNSS değerlendirme servisleri kullanılarak elde edilen sonuçlar bu büyüklüklerle karşılaştırılmıştır (Şimşek vd., 2019a, 2019b).

Öncelikle, GNSS istasyonlarına ait veriler AUSPOS web tabanlı değerlendirme servisi ile değerlendirilmiş ve sonuçlar GAMIT/GLOBK sonuçlarıyla karşılaştırılmıştır (Şekil 4.22). Her iki çözümden elde edilen sonuçlar incelendiğinde, istasyonların yer değiştirme vektör büyüklükleri ve yönleri bakımından uyumlu olduğu ancak MURA, AGRD, OZAL gibi bazı noktalarda küçük dönüklükler olduğu görülmektedir (Şekil 4.22a). Bu dönüklüklerin iki çözüm arasındaki datum etkisinden kaynaklandığı düşünülmektedir.

Şekil 4.22 a) AUSPOS ve GAMIT ile belirlenen deprem anı yatay yer değiştirme vektörleri ve hata elipsleri, b) iki çözüm arasındaki düzeltmeleri ve hata elipslerini, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

Ayrıca, AUSPOS ve GAMIT/GLOBK çözümlerinden elde edilen deformasyon büyüklüklerinin farkları da Şekil 4.22b'de verilmiştir. Şekil 4.22b'ye göre, iki farklı çözümden elde edilen yatay deformasyon büyüklüklerinin kuzey-güney bileşeninde 0,29 – 6,21 mm, doğu-batı bileşeninde 0,78 – 4,00 mm arasında değiştiği görülmektedir. İki çözüm arasındaki en büyük fark kuzey-güney doğrultusunda 6,21 mm ve doğu-batı doğrultusunda 1,46 mm HORS noktasında iken en küçük fark kuzey-güney doğrultusunda 0,76 mm ve doğu-batı doğrultusunda 0,78 mm olarak BASK noktasında hesaplanmıştır. Belirlenen farkların istatistiksel olarak anlamsız olduğu görülmektedir.

İkinci olarak, GNSS istasyonlarına ait veriler OPUS çevrimiçi veri değerlendirme servisi ile analiz edilerek istasyonlara ilişkin deprem anı yatay yer değiştirme değerleri belirlenmiş ve GAMIT/GLOBK yazılımı ile yapılan değerlendirme sonuçlarıyla karşılaştırılmıştır (Şekil 4.23). Her iki çözümden elde edilen sonuçlar incelendiğinde, istasyonların yer değiştirme vektör büyüklükleri ve yönleri bakımından uyumlu olduğu, (SIRN istasyonu hariç) vektörler arasında herhangi bir dönüklük olmadığı da görülmektedir (Şekil 4.23a).

Şekil 4.23 a) OPUS ve GAMIT ile belirlenen deprem anı yatay yer değiştirme vektörleri ve hata elipsleri, b) iki çözüm arasındaki düzeltmeleri ve hata elipslerini, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

OPUS ve GAMIT/GLOBK çözümlerinden elde edilen deformasyon büyüklüklerinin farkları da Şekil 4.23b'de verilmiştir. Şekil 4.23b'ye göre, iki farklı çözümden elde edilen deformasyon büyüklükleri arasında kuzey-güney bileşeninde 0,61 – 7,92 mm, doğu-batı bileşeninde 0,03 – 3,15 mm arasında farklar bulunmuştur. İki çözüm arasında elde edilen en büyük fark kuzey-güney doğrultusunda 7,92 mm ve doğubatı doğrultusunda -1,39 mm olarak SIRT noktasında iken en küçük fark doğu-batı doğrultusunda -0,03 mm ve kuzey-güney doğrultusunda -0,61 mm olarak IGIR noktasında hesaplanmıştır. Şekil 4.23b'de görüleceği üzere bu farklar istatistiksel olarak anlamsızdır.

Son olarak, aynı veriler CSRS-PPP web tabanlı değerlendirme servisinden elde edilen koordinatlar yardımıyla hesaplanan yatay deformasyon miktarları GAMIT/GLOBK yazımından hesaplananla karşılaştırılmıştır (Şekil 4.24). Her iki çözümden elde edilen sonuçlar incelendiğinde, istasyonların yer değiştirme vektör büyüklükleri ve yönleri bakımından (OZAL, MURA ve AGRD dışında) uyumlu olduğu görülmektedir (Şekil 4.24a).

CSRS-PPP ve GAMIT/GLOBK çözümleri ile belirlenen yatay deformasyon büyüklükleri arasındaki farklar Şekil 4.24b'de verilmiştir. İki farklı çözümden elde edilen deformasyon büyüklükleri karşılaştırıldığında kuzey-güney bileşende 0,04 – 2,61 mm, doğu-batı bileşende 0,44 – 6,19 mm arasında farklar bulunmuştur. İki çözüm arasında elde edilen en büyük fark kuzey-güney doğrultusunda -1,94 mm, doğu-batı doğrultusunda 6,19 mm olmak üzere TVAN noktasında iken en küçük fark kuzey-güney doğrultusunda 0,37 mm ve doğu-batı doğrultusunda 0,44 mm olarak HINI noktasında meydana gelmiştir. Şekil 4.24b'de görüldüğü üzere aradaki farklar anlamsızdır.

Şekil 4.24 a) CSRS ve GAMIT ile belirlenen deprem anı yatay yer değiştirme vektörleri ve hata elipsleri, b) iki çözüm arasındaki düzeltmeleri ve hata elipslerini, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

Koordinatlar seçilen datuma göre belirlendiği için datumdan bağımsız bir parametre olarak baz vektör uzunluğunun değişimi incelenmiştir. Her bir yazılım için depremden bir gün öncesi ve depremden bir gün sonrasına ilişkin koordinatlar yardımıyla değişim analiz edilmek istenmiş bu analiz için çalışma bölgesine göre konumu ve veri kalitesi gibi etkenler göz önüne alınarak IGS istasyonlarından biri olan ZECK (Url 4) istasyonu seçilmiştir.

ZECK istasyonu ve diğer istasyonlar arasındaki bazların depremden bir gün önce (2011, 295. GNSS günü) ve depremden bir gün sonra (2011, 297. GNSS günü) elde edilen değerleri arasındaki farklar hesaplanarak her bir yazılım için ayrı ayrı Tablo 4.7' de verilmektedir.

Bazlar	Baz o	leğişimleri ve stan	dart sapmaları (mı	n)
	GAMIT/GLOBK	AUSPOS	OPUS	CSRS-PPP
ZECK – AGRD	24,17 ± 2,7	24,96 ± 3,1	26,49 ± 3.4	25,49 ± 3,2
ZECK – BASK	-25,11 ± 3,8	-25,42 ± 4,2	-2,.95 ± 4.8	-28,14 ± 4,9
ZECK – HAKK	-16,29 ± 3,2	-15,46 ± 4,2	-1,.83 ± 3.8	-15,31 ± 3,5
ZECK – HINI	4,89 ± 2,6	1,28 ± 3,2	2,31 ± 3.9	4,90 ± 3,7
ZECK – HORS	5,37 ± 2,7	7,06 ± 3,2	7,09 ± 3.9	6,55 ± 3,8
ZECK – IGIR	8,15 ± 2,4	8,86 ± 3,5	9,04 ± 3.7	8,70 ± 3,4
ZECK – MAZL	10,83 ± 2,4	12,07 ± 2,9	$10,98 \pm 4.2$	11,59 ± 4,0
ZECK – MURA	45,54 ± 2,7	48,13 ± 4,1	43,74 ± 4.5	46,40 ± 4,2
ZECK – OZAL	-8,87 ± 2,7	-7,48 ± 3,4	-7,37 ± 4.2	-5,93 ± 2,9
ZECK – SIRN	-7,63 ± 3,1	-5,74 ± 3,6	-11,44 ± 4.7	-7,18 ± 3,4
ZECK – SIRT	-0,06 ± 4,3	$-1,00 \pm 4,2$	-9,16 ± 5.3	0,45 ± 3,9
ZECK – TVAN	1,36 ± 3,0	1,80 ± 4,4	-2,35 ± 5.1	1,41 ± 3,4

Tablo 4.7 Deprem anı baz değişimleri ve standart sapmaları

Tablo 4.7 'ye göre; GAMIT/GLOBK ile AUSPOS çözümlerinden elde edilen deformasyon büyüklükleri arasında en fazla 3.61 mm fark, GAMIT/GLOBK ile OPUS çözümlerinden elde edilen deformasyon büyüklükleri arasında maksimum 9,10 mm fark ve GAMIT/GLOBK ile CSRS-PPP çözümlerinden elde edilen deformasyon büyüklükleri arasında maksimum 3,03 mm fark bulunmuştur. AUSPOS ile CSRS-PPP çözümünden elde edilen baz değişimleri arasındaki farkların genel olarak GAMIT/GLOBK yazılımından elde edilenlerle daha uyumlu olduğu gözlenmektedir.

4.6.2 Deprem Anı Gerinim Parametrelerinin Belirlenmesi

Çalışmada kullanılan TUSAGA-Aktif istasyonlarına ait GNSS verileri web tabanlı veri değerlendirme servisleri OPUS, AUSPOS ve CSRS-PPP yardımıyla değerlendirilerilmesiyle hesaplanan deprem anı yatay deformasyon değerleriyle 2 boyutlu gerinim analizi yapılmıştır. Bu analizlerden elde edilen gerinim parametreleri GAMIT/ GLOBK yazılımından elde edilen gerinim parametreleri ile karşılaştırarak web tabanlı çevrimiçi GNSS değerlendirme servislerinin doğruluğuna ilişkin çıkarımlar yapılmıştır.

Bölgeye ilişkin 2-boyutlu gerinim analizi için, çalışma kapsamında ele alınan istasyonların deprem anı deformasyonları ve doğruluk ölçütleri kullanılarak, delaunay yöntemine göre oluşturulan üçgenlerin ağırlık merkezi koordinatları yerel koordinat sistemine (kuzey-güney, doğu-batı) dönüştürülmüş ve gerinim parametreleri hesaplanmıştır (Şimşek vd., 2019b).

Gerinim parametrelerinden formül 3.19, 3.20, 3.21, 3.22 ve 3.23 yardımıyla asal gerinim büyüklükleri hesaplanarak Şekil 4.25'de verilmiştir.

Şekil 4.25'e göre, ana faya yakın kısımlarda sıkışmanın arttığı, faydan uzaklaştıkça gerinimin azaldığı görülmektedir. Minimum asal gerinim HINI-HORS-MALZ noktalarında oluşan üçgen üzerinde gözlenirken ($\epsilon max = 0,05670 \mu strain, \epsilon min = -0,01794 \mu strain$), ana faya daha yakın bulunan MURA-OZAL-SIRN üçgeninde maksimum asal gerinim ($\epsilon max = 0,41122 \mu strain, \epsilon min = -1,23651 \mu strain$) görülmektedir (Tablo 4.8).

Ayrıca, en büyük maksimum asal gerinim MALZ-IGIR-MURA noktalarından oluşan üçgeninde 0,5133 µstrain, en küçük maksimum asal gerinim SIRN-SIRT-TVAN üçgeninde-0,0531 µstrain olarak hesaplanmıştır. En büyük minimum asal gerinim MURA-OZAL-SIRN noktalarından oluşan üçgen üzerinde -1,2365 µstrain ve en küçük minimum asal gerinim SIRN-SIRT-TVAN noktalarından oluşan üçgen üzerinde -0,0691 µstrain olarak hesaplanmıştır (Tablo 4.8 ve Şekil 4.25).

Şekil 4.25 Asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

Üçgen noktaları	ϵ_{max}	ϵ_{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,0569	-0,1250	139.8172
hını-hors-malz	0,0567	-0,0179	78.68553
hors-malz-agrd	0,1394	-0,1250	97.97181
malz-agrd-ıgır	-0,0207	-0,4880	162.3803
malz-ıgır-mura	0,5133	-0,1870	140,.379
malz-mura-tvan	0,0221	-0,2310	161.8493
mura-ozal-sırn	0,4112	-1,2370	58.04982
ozal-sırn-bask	0,0099	-0,3230	76.58298
bask-sırn-hakk	0,1473	-0,0410	39.24249
sırn-tvan-mura	0,1574	-0,3320	93.48945
sırn-sırt-tvan	-0,0531	-0,0690	38.38100
sırt-tvan-hını	-0,0288	-0,2400	40.57372

Tablo 4.8 GAMIT/GLOBK sonuçlarına göre hesaplanan deprem anı gerinimelemanları

Tablo 4.9 AUSPOS sonuçlarına göre hesaplanan deprem anı gerinim elemanları

Üçgen noktaları	ε _{max}	ε _{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,0955	-0,0860	129.6726
hını-hors-malz	0,0985	-0,0420	99.3740
hors-malz-agrd	0,1443	-0,1140	100.2138
malz-agrd-ıgır	-0,0207	-0,4890	163.9773
malz-ıgır-mura	0,5311	-0,1830	140.6394
malz-mura-tvan	0,0476	-0,2260	160.6519
mura-ozal-sırn	0,4374	-1,2600	57.8797
ozal-sırn-bask	0,0128	-0,3710	80.5762
bask-sırn-hakk	0,1502	-0,0340	44.8792
sırn-tvan-mura	0,1537	-0,3287	94.4007
sırn-sırt-tvan	-0,0215	-0,0940	101.0178
sırt-tvan-hını	-0,0154	-0,2030	59.6906

AUSPOS servisi sonuçlarından hesaplanan gerinim elemanları ile GAMIT yazımı çözümlerinden hesaplanan gerinim elemanları kıyaslandığında maksimum asal gerinim için 0,0002 µstrain ile 0,04 µstrain arasında değişen farklar bulunmuştur. En büyük fark 0,04 µstrain ile HINI-TVAN -MALZ üçgeninde meydana gelirken en küçük fark 0,0002 µstrain ile MALZ-AGRD-IGIR üçgeninde meydana gelmiştir. Minimum asal gerinimde ise 0,001-0,04 µstrain arasında değişen farklar mevcuttur, en büyük fark OZAL-SIRN-BASK üçgeninde en küçük fark MALZ-AGRD-IGIR üçgeninde meydana gelmiştir (Tablo 4.9, Şekil 4.25c). OPUS servisi sonuçlarına göre hesaplanan parametreler Tablo 4.10 ve Şekil 4.25b'de sunulmuştur. Bunlar GAMIT sonuçlarıyla karşılaştırıldığında; maksimum asal gerinim arasındaki farklar 0,001-0,125 µstrain arasında değişmektedir. En büyük fark BASK-SIRN-HAKK üçgeninde meydana gelirken en yakın sonuç MURA-OZAL-SIRN üçgeni için hesaplanmıştır. Minimum asal gerinimdeyse; 0,002-0,07 µstrain arasında değişen farklılar vardır. En yakın sonuç HINI-TVAN-MALZ üçgeninde hesaplanırken en fazla fark MURA-OZAL-SIRN üçgeninde hesaplanmıştır.

Üçgen noktaları	ε _{max}	€ _{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,0819	-0,1230	136.6681
hını-hors-malz	0,0671	-0,0340	98.8967
hors-malz-agrd	0,1292	-0,1510	98.8657
malz-agrd-ıgır	-0,0309	-0,5510	161.9264
malz-ıgır-mura	0,4791	-0,1990	139.6797
malz-mura-tvan	-0,0081	-0,2250	158.9209
mura-ozal-sırn	0,4122	-1,1660	56.1996
ozal-sırn-bask	-0,0264	-0,3050	81.5118
bask-sırn-hakk	0,0225	-0,0740	32.5123
sırn-tvan-mura	0,1541	-0,3450	96.0873
sırn-sırt-tvan	0,0428	-0,1330	110.5004
sırt-tvan-hını	-0,0678	-0,2300	59.2827

Tablo 4.10 OPUS servisi sonuçlarından hesaplanan asal gerinim elemanları

Son olarak CSRS-PPP çevrimiçi GNSS veri değerlendirme servisi sonuçlarından hesaplanan gerinim parametreleri Tablo 4.11'de ve Şekil 4.25d'de sunulmaktadır. GAMIT sonuçlarıyla kıyaslandığında maksimum asal gerinim için 0,0002 µstrain ile 0,05 µstrain arasında, minimum asal gerinim içinse 0,005 µstrain ile 0,11 µstrain arasında farklar bulunmuştur. Maksimum asal gerinim için en küçük fark SIRT-TVAN-HINI üçgeninde en büyük fark ise SIRN-TVAN-MURA üçgeninde tespit edilmiştir. Minimum asal gerinim içinse; en küçük fark HINI-HORS-MALZ üçgeninde, en büyük fark OZAL-SIRN-BASK üçgeninde görülmektedir.

Üçgen noktaları	ε _{max}	ε _{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,0433	-0,1053	125.9615
hını-hors-malz	0,0570	-0,0129	86.3911
hors-malz-agrd	0,1504	-0,0982	103.1461
malz-agrd-ıgır	-0,0248	-0,5359	168.3562
malz-ıgır-mura	0,5010	-0,1721	141.1071
malz-mura-tvan	0,0656	-0,2496	164.8109
mura-ozal-sırn	0,4407	-1,1974	57.0532
ozal-sırn-bask	0,0093	-0,4358	81.5334
bask-sırn-hakk	0,1893	-0,0317	59.4208
sırn-tvan-mura	0,1021	-0,3251	92.6455
sırn-sırt-tvan	-0,0520	-0,0900	179.8319
sırt-tvan-hını	-0.0290	-0.1410	49.8297

Tablo 4.11CSRS-PPP sonuçlarına göre hesaplanan deprem anı gerinim
elemanları

Tüm bu sonuçlar incelendiğinde; Asal gerinim parametrelerinde OPUS sonuçlarında BASK-SIRN-HAKK ve SIRN-SIRT-TVAN üçgenleri için hesaplanan maksimum asal gerinim ve CSRS-PPP sonuçlarında OZAL-SIRN-BASK ve SIRT-TVAN-HINI üçgenleri için hesaplanan minimum asal gerinim değeri dışında parametreler arasında 0,04 µstrain altında farklar bulunmuştur. AUSPOS sonuçları ile GAMIT sonuçları oldukça tutarlıdır değerler arasındaki farklar çok küçüktür.

4.6.3 Deprem Sonrası Yer Değiştirme Parametrelerinin Belirlenmesi

Deprem sonrası (post-seismic) yatay yer değiştirme deformasyon değerleri hesaplanırken eşitlik (4.3) 'de t₁ zamanı olarak depremden bir gün sonrası yani 297. GNSS günü baz alınırken t₂ zamanı olarak depremden 10 gün sonrası olan 306. GNSS günü, 20 gün sonrası olan 316. GNSS günü ve 30 gün sonrası olan 326. GNSS günü alınarak hesaplamalar yapılmıştır (Şekil 4.26).

Şekil 4.26 Deprem sonrası kullanılan periyotlar

4.6.3.1 Deprem Sonrası İlk 10 Gün İçin Deformasyon Parametrelerinin Belirlenmesi

Depremden sonra ilk 10 gün içerisinde bölgede oluşan deprem sonrası deformasyonların belirlenmesi amacıyla, 306. GNSS günü ve 297. GNSS günü arasındaki GAMIT/GLOBK yazılımıyla yapılan değerlendirme sonuçlarından elde edilen deformasyon hesaplarına göre en büyük yatay deformasyonun kuzey-güney bileşende $-5,95\pm 8,74$ mm ve doğu-batı bileşende $7,24\pm3,24$ MURA noktasında meydana geldiği görülmektedir. En küçük deformasyon kuzey-güney bileşende $0,48\pm 7,09$ mm ve doğu-batı $2,02\pm2,81$ mm olarak HINI noktasında meydana gelmiştir (Şekil 4.35).

Ayrıca, çevrimiçi GNSS değerlendirme servisleri ile elde edilen koordinat çözümleriyle ilk 10 gün için hesaplanan deprem sonrası yer değiştirmelerin GAMIT/GLOBK yazılımından farkları Tablo 4.12'de verilmekte ve Şekil 4.27- 4.30' da yer değiştirme vektörleri ve hata elipsleri gösterilmektedir.

İSTASYON ADI	GAMIT-AUSPOS		GAMIT-OPUS		GAMIT-CSRS	
	kuzey-	doğu-batı	kuzey-	doğu-batı	kuzey-güney	doğu-batı
	guney (mm)	(mm)	guney (mm)	(mm)	(mm)	(mm)
AGRD	-0,81 ±1,11	1,65 ±0,67	-1,58±1,32	1,65±0,88	-0,21±1,41	2,29±1,51
BASK	0,4 ±1,66	-0,43±2,7	0,47 ±1,79	1,87±2,62	0,08 ±1,88	2,4 ±2,96
HAKK	-0,71 ±1,40	$1,12 \pm 1,04$	3,3 ±1,83	-0,32±0,97	0,47 ±1,54	0,81±1,13
HINI	-0,03 ±1,00	$0,87 \pm 0,54$	0,49 ±0,94	1,03±0,8	$-1,47\pm1,50$	$4,02\pm1,03$
HORS	-0,9 ±0,62	1,34 ±1,25	-2,13±0,87	0,67±1,55	-1,17±0,78	2,59±1,42
IGIR	-0,21 ±0,93	1,76 ±0,49	-0,69±1,15	-0,35±0,84	0,71 ±0,95	1,66±1,03
MALZ	-0,43 ±0,87	2,00 ±0,97	-0,32±1,12	1,94±0,81	-1,06±1,44	2,71±1,26
MURA	-1,35 ±1,45	2,18 ±1,52	-0,1 ±1,51	1,46±2,02	-0,65±2,12	3,78±1,97
OZAL	0,35 ±1,61	2,22 ±0,71	-0,03±2,12	0,71±0,91	-0,92±1,96	3,79±1,1
SIRN	-0,59 <u>+</u> 0,98	1,61 ±0,84	0,37 ±1,72	2,89±1,32	-0,3 ±1,48	3,22±1,77
SIRT	-2,25 ±0,64	0,42 ±1,03	1,44 ±1,24	0,26±1,5	-2,71±1,07	6,8 ±2,07
TVAN	-4,28 ±1,04	$1,68 \pm 0,71$	-0,53±1,22	2,69±0,67	-2,46±1,19	6,09±1,48

Tablo 4.12 GAMIT/GLOBK yazılımı ile servisler arasında deprem sonrası ilk 10 güniçin hesaplanan yer değiştirme farkları

Şekil 4.27 GAMIT/GLOBK ve AUSPOS ile deprem sonrası ilk 10 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Şekil 4.27'ye göre, iki çözümde de AGRD, MALZ, MURA, TVAN, OZAL, BASK ve SIRT istasyonlarda istatistiksel olarak anlamlı deformasyonlar belirlenirken, diğer istasyonlardaki deformasyonların ise istatistiksel olarak anlamsız oldukları görülmektedir. Ayrıca OZAL ve TVAN istasyonlarda iki çözüm arasında küçük dönüklük elde edilmiştir.

Tablo 4.12'de, iki çözüm arasında, kuzey-güney bileşende 0,03 mm ile 4,8 mm arasında değişen farklar, doğu-batı bileşende 0,42 mm ile 2,22 mm arasında değişen farklar bulunmuştur. İki çözüm arasında en büyük fark TVAN istasyonunda görülürken, en küçük fark ise HINI istasyonunda belirlenmiştir. TVAN istasyonunda meydana gelen fark her iki bileşen içinde hata sınırını aşmıştır (Tablo 4.12).

Şekil 4.28 GAMIT/GLOBK ve OPUS ile deprem sonrası ilk 10 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Tablo 4.12'e göre; iki çözüm arasında kuzey-güney bileşende 0,03 mm ile 3,30 mm arasında değişen farklar ve doğu-batı bileşende 0,26 mm ve 2,89 mm arasında değişen farklar hesaplanmıştır. İki çözüm arasında en büyük fark HAKK istasyonunda görülürken, en küçük fark ise OZAL istasyonunda belirlenmiştir. Şekil 4.28'e göre, iki çözümde de AGRD, MALZ, MURA, TVAN, OZAL ve BASK ve istasyonlarda istatistiksel olarak anlamlı deformasyonlar belirlenirken, diğer istasyonlarda ise istatistiksel olarak anlamsız oldukları görülmektedir.

Şekil 4.29 GAMIT/GLOBK ve CSRS-PPP ile deprem sonrası ilk 10 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Tablo 4.12'ye göre, iki çözüm arasında kuzey-güney bileşende 0,08 mm ile 2,71 mm arasında, doğu-batı bileşende ise 0,81 mm ile 6,80 mm arasında değişen farklar belirlenmiştir. İki çözüm arasında en büyük fark SIRT ve TVAN istasyonlarında hesaplanmıştır. Şekil 4.29'a göre, iki çözümde de AGRD, MALZ, MURA, TVAN, OZAL, BASK ve SIRT istasyonlarda istatistiksel olarak anlamlı deformasyonlar belirlenirken, diğer istasyonlarda ise istatistiksel olarak anlamsız oldukları

görülmektedir. Ayrıca OZAL istasyonunda iki çözüm arasında küçük bir dönüklük elde edilmiştir (Şekil 4.29).

4.6.3.2 Deprem Sonrası İlk 20 Gün İçin Deformasyon Parametrelerinin Belirlenmesi

Depremden sonra ilk 20 gün içerisinde bölgede oluşan deprem sonrası deformasyonların belirlenmesi amacıyla; 316. GNSS günü ile 297. GNSS günü arasındaki deprem sonrası deformasyon hesaplarına göre kuzey-güney ve doğu-batı bileşende en büyük deformasyon BASK istasyonunda meydana gelmiştir. Depremin gerçekleştiği noktaya daha yakın olan MURA, OZAL gibi istasyonlarda deformasyon azalarak devam etmektedir (Şekil 4.30).

Ayrıca, çevrimiçi GNSS değerlendirme servisleri ile elde edilen koordinat çözümleriyle ilk 20 gün için hesaplanan deprem sonrası deformasyonların GAMIT/GLOBK yazılımından farkları Tablo 4.13'de verilmekte ve Şekil 4.30- 4.32' de yer değiştirme vektörleri ve hata elipsleri gösterilmektedir.

	GAMIT-AUSPOS		GAMIT-OPUS		GAMIT-CSRS	
İSTASYON	kuzey-güney	doğu-batı	kuzey-	doğu-batı	kuzey-	doğu-batı
ADI	(mm)	(mm)	güney(mm)	(mm)	güney	(mm)
					(mm)	
AGRD	1,09±2,04	0,52±1,41	-3,83±2,21	1,2±2,13	-1,32±2,00	1,98±1,59
BASK	2,07±2,04	0,64±2,32	-1,87±3,5	-1,37±2,67	-1,68±2,67	0,55±2,7
HAKK	-0,6±1,4	0,92±1,52	-1,31±1,88	2,3±1,86	-2,98±1,56	1,54±1,56
HINI	1,43±1,32	0,78±1,79	1,9±2,05	1,44±1,61	-1,86±1,47	3,7±1,78
HORS	-0,62±1,00	2,37±1,64	-3,25±1,70	2,16±1,75	-1,98±1,2	1,82±1,89
IGIR	0,73±1,36	0,88±1,34	-1,26±1,46	0,19±1,29	-2,34±1,5	1,99±1,04
MALZ	0,41±1,98	1,46±2,12	-2,03±2,25	0,59±1,79	-2,93±2,08	1,88±2,22
MURA	-0,93±2,23	1,35±2,07	0,34±2,43	0,01±2,62	-2,98±2,3	2,11±2,35
OZAL	1,28±2,02	2,72±1,15	-2,64±2,41	1,3±1,36	-5,46±2,54	2,64±1,39
SIRN	0,36±1,29	2,44±1,03	-1,22±2,07	2,08±1,20	-0,78±1,5	1,13±1,72
SIRT	-0,65±1,41	-0,22±1,37	4,12±2,40	0,8±1,64	-3,04±1,5	6,08±1,83
TVAN	-1,34±1,71	1,46±0,91	-1,9 <u>+</u> 2,22	0,31±1,26	-4,76±1,85	5,51±1,33

Tablo 4.13 GAMIT/GLOBK yazılımı ile servisler arasında deprem sonrası ilk 20 gün için hesaplanan yer değiştirme farkları

GAMIT sonuçları online servislerden hesaplanan deformasyon sonuçları ile karşılaştırılmış aradaki farklar Tablo 4.13 'de, Şekil 4.30, Şekil 4.31 ve Şekil 4.32'de verilmiştir.

Şekil 4.30 GAMIT/GLOBK ve AUSPOS ile deprem sonrası ilk 20 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Tablo 4.13'e göre, GAMIT/GLOBK ile AUSPOS çözümleri arasında kuzey-güney bileşende 0,36-2,07 mm ve doğu-batı bileşende 0,22-2,72 mm arasında değişen farklar hesaplanmıştır. GAMIT/GLOBK ile OPUS çözümleri arasında kuzey-güney ve doğu-batı bileşende sırasıyla; 0,34 – 4,12 mm ve 0,01 – 2,30 mm arasında farklar bulunmuştur. GAMIT/GLOBK ile CSRS-PPP çözümleri arasındaki farklar ise, kuzey-güney ve doğu-batı bileşende sırasıyla 0,78 – 5,46 mm ve 0,55 – 6,08 mm arasında değişmektedir (Tablo 4.13). Ayrıca, deprem sonrası 20 gün için, IGIR istasyonu hariç diğer istasyonlarda istatistiksel olarak anlamlı deformasyonlar belirlenmiştir (Şekil

4.30-4.32). GAMIT/GLOBK çözümüne göre, OPUS ve CSRS-PPP çözümlerinin bazı istasyonlarında (BASK, OZAL, HINI) dönüklükler meydana geldiği görülmüştür (Şekil 4.31-4.32).

Şekil 4.31 GAMIT/GLOBK ve OPUS ile deprem sonrası ilk 20 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Şekil 4.32 GAMIT/GLOBK ve CSRS-PPP ile deprem sonrası ilk 20 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

4.6.3.3 Deprem Sonrası İlk 30 Gün İçin Deformasyon Parametrelerinin Belirlenmesi

Depremden sonra ilk 30 gün içerisinde bölgede oluşan deprem sonrası deformasyonlar hesaplanmıştır. Buna göre MURA ve OZAL gibi depremin gerçekleştiği noktaya yakın istasyonlarda deformasyonun sürdüğü görülmektedir. En büyük yatay deformasyon MURA ve OZAL gibi depremin merkez üssü noktasına yakın istasyonlarda görülmeye devam etmektedir (Şekil 4.33).

Ayrıca, çevrimiçi GNSS değerlendirme servisleri ile elde edilen koordinat çözümleriyle ilk 30 gün için hesaplanan deprem sonrası deformasyonların GAMIT/GLOBK yazılımından farkları Tablo 4.14'de verilmekte ve Şekil 4.33- 4.35' de yer değiştirme vektörleri ve hata elipsleri gösterilmektedir.

için hesaplanan yer değiştirme farkları						
İSTASYON	GAMIT-A	USPOS	GAMIT-	OPUS	GAMI	Γ-CSRS
ADI	kuzey-güney	doğu-batı	kuzey-güney	doğu-batı	kuzey-	doğu-batı
	(mm)	(mm)	(mm)	(mm)	güney	(mm)
					(mm)	

 $-0,1\pm 2,25$

 $-7,46\pm3,84$

 $-1,07\pm 2,17$

1,66±1,81

 $-2,49\pm2,02$

 $0,52\pm1,33$

 $-0,34\pm2,43$

 $0,27\pm 2,61$

 $0,9\pm 2,64$

 $-0,29\pm1,99$

 $1,35\pm 2,36$

 $0,53\pm 2,07$

 $2,11\pm 2,25$

 $-1,76\pm 2,80$

 $-0,21\pm1,70$

 $2,63\pm1,58$

 $-0,1\pm 3,28$

 $-0,08\pm1,46$

0,78±2,50

1,57±3,05

 $0,45 \pm 1,30$

 $0,31\pm1,70$

 $0,7\pm 1,77$

-1,4±1,33

 $-0,47\pm1,90$

 $-3,71\pm2,74$

 $-0,89\pm1,67$

 $-1,38\pm1,53$

 $-2,58\pm1,38$

 $0,08 \pm 1,44$

 $-2,67\pm2,25$

 $-1,78\pm2,40$

-2,18±2,75

 $-0,36\pm1,63$

 $-5,68\pm1,63$

-2,95±1,84

 $-0,04\pm1,70$

 $1,5\pm 3,01$

 $-3,27\pm1,7$

 $4,25\pm1,85$

2,44±1,61

2,24±1,33

 $1,44\pm 2,69$

 $1,92\pm2,84$

 $1,51\pm1,36$

 $0,33\pm1,90$

8,65±1,91

6,22±1,50

AGRD

BASK

HAKK

HINI

HORS

IGIR

MALZ

MURA

OZAL

SIRN

SIRT

TVAN

 $-0,17\pm1,85$

 $-1,67\pm 2,03$

 $0,62\pm1,45$

 $-0,48\pm1,14$

 $-1,35\pm1,03$

 $0,37\pm1,21$

 $-0,77\pm2,33$

 $-1,81\pm2,4$

 $0,58\pm 2,19$

 $-0,64\pm1,31$

 $-1,83\pm1,45$

 $-2,81\pm1,69$

 $1,28\pm1,30$

 $1,00\pm 2,60$

1,17±1,52

 $2,05\pm1,40$

 $2,58\pm1,42$

 $2,01\pm1,1$

 $2,43\pm 2,63$

 $2,33\pm 2,78$

 $2,55\pm1,12$

 $0,98 \pm 1,39$

 $1,83\pm1,41$

 $2,16\pm1,01$

Tablo 4.14 GAMIT/GLOBK yazılımı ile servisler arasında deprem sonrası ilk 30 gün için hesaplanan yer değiştirme farkları

Tablo 4.14'e göre, GAMIT/GLOBK ile AUSPOS çözümleri arasında kuzey-güney bileşende 0,17 – 2,81 mm ve doğu-batı bileşende 0,98 – 2,58 mm arasında değişen farklar hesaplanmıştır. GAMIT/GLOBK ile OPUS çözümleri arasında kuzey-güney ve doğu-batı bileşende sırasıyla; 0,10 – 7,46 mm ve 0,10 – 2,63 mm arasında farklar bulunmuştur. GAMIT/GLOBK ile CSRS-PPP çözümleri arasında ise, kuzey-güney ve doğu-batı bileşende sırasıyla 0,08 – 5,68 mm ve 0,04 – 8,65 mm arasında farklar değişmektedir (Tablo 4.14). Ayrıca, deprem sonrası 30 gün için, IGIR istasyonu hariç diğer istasyonlarda istatistiksel olarak anlamlı deformasyonlar belirlenmiştir (Şekil 4.33-4.35). GAMIT/GLOBK çözümüne göre, CSRS-PPP çözümlerinde bazı istasyonlarda (MALZ, HINI, SIRT) dönüklükler meydana geldiği görülürken; TVAN istasyonundan ters yönde bir yer değiştirme vektörü belirlenmiştir (Şekil 4.35).

Şekil 4.33 GAMIT/GLOBK ve AUSPOS ile deprem sonrası ilk 30 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Şekil 4.34 GAMIT/GLOBK ve OPUS ile deprem sonrası ilk 30 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

Şekil 4.35 GAMIT/GLOBK ve CSRS-PPP ile deprem sonrası ilk 30 gün için hesaplanan yer değiştirme vektörleri ve hata elipsleri

4.6.4 Deprem Sonrası Gerinim Parametrelerinin Belirlenmesi

Web tabanlı çevrimiçi GNSS değerlendirme servisleri AUSPOS, OPUS ve CSRS-PPP yardımıyla hesaplanan deprem sonrası yatay deformasyonlar ile 2- boyutlu gerinim analizi yapılmıştır. Ayrıca, GAMIT/GLOBK yazılımındanhesaplanan deprem sonrası yatay deformasyonlar ile yapılan gerinim analizi sonuçları ile karşılaştırılmıştır.

Deprem sonrasına ilişkin 3 epok (ilk 10, 20 ve 30 gün) için gerinim parametleri sonuçları EK-B'de sunulmuştur. Ayrıca, 3 epok için görsel olarak çizimler Şekil 4.36-4.38'de verilmektedir.

İlk olarak depremden sonra 30 gün boyunca, en büyük emax değeri MALZ-IGIR-MURA ve MALZ-MURA-TVAN üçgenlerinde sırasıyla 0,0942 µstrain ve 0,0868 µstrain olarak hesaplanmış (Şekil 4.36-4.38) ve sonrasında artarak 0,1734 µstrain ve 0,1734 µstrain'e çıkmıştır. En küçük emax değeri ise, SIRN-SIRT-TVAN üçgeninde hesaplanmış ve azalmaya devam etmiştir (Şekil 4.36 – 4.38). En büyük emin değerleri depremin gerçekleştiği noktaya daha yakın olan MURA-OZAL-SIRN üçgeninde hesaplanmış 30 gün sonunda -0,4687 µstrain'e ulaşmıştır. En küçük emin değeri HORS-MALZ-AGRD üçgeninde hesaplanmış ve azalarak 30 gün sonunda -0,0166 µstrain değerini almıştır (Şekil 4.36 – 4.38).

Şekil 4.36 Deprem sonrası ilk 10 gün için hesaplanan asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

Şekil 4.37 Deprem sonrası ilk 20 gün için hesaplanan asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

Şekil 4.38 Deprem sonrası ilk 30 gün için hesaplanan asal gerinim büyüklükleri. a) GAMIT b) OPUS c) AUSPOS ve d) CSRS-PPP ile elde edilen sonuçları, gri süreksiz çizgiler aktif fay hatlarını göstermektedir (Emre vd., 2013).

GAMIT/GLOBK ve web tabanlı çevrimiçi servisler için hesaplanan gerinim elemanları arasındaki farkların maksimum ve minimum değerleri Tablo 4.15'de verilmiştir. Tablo 4.15'e göre, AUSPOS çözümü için 0,05- 0,04 µstrain'lik farklar sadece iki üçgenin emax parametresinde bulunmuş bunun dışında 0,03 µstrain'in altında farklar hesaplanmıştır. OPUS çözümü için ise, maksimum 0,08 µstrainlik fark bulunmuş olup bu fark yalnızca 3. epokta (depremden sonra 30 gün) hesaplanan BASK-SIRN-HAKK üçgeni için geçerli olup; bunun dışında 0,06 µstrain altında farklar bulunmuştur. CSRS-PPP çözümünden elde edilen verilerden hareketle 3. epokta SIRN-SIRT-TVAN ve BASK-SIRN-HAKK üçgenlerindeki parametrelerde sırasıyla 0,16 ve 0,10 µstrain'lik farklar bulunmuş bunun dışında 0,08 µstrain değerinin altında farklar elde edilmiştir.

Epok	Gerinim	AUSPOS	OPUS	CSRS-PPP
	Elemanı	(µstrain)	(µstrain)	(µstrain)
	Emax	0,002-0,03	0,004-0,05	0-0,06
1	ε _{min}	0,002-0,05	0,001-0,05	0,002-0,02
2	ϵ_{max}	0,002-0.03	0,002-0,06	0,002-0,05
	€ _{min}	0,004-0,04	0,002-0,05	0,001-0,05
3	ϵ_{max}	0,002-0,03	0,002-0,08	0,002-0,16
	ϵ_{min}	0,006-0,04	0,001-0,04	0,001-0,06

Tablo 4.15 GAMIT/GLOBK ve web tabanlı çevrimiçi servisler için hesaplanan gerinim elemanları arasındaki farkların maksimum ve minimum değerleri

5 Sonuç ve Öneriler

İnternet tabanlı çevrimiçi GNSS değerlendirme servislerinin yer kabuğu hareketlerini belirleme çalışmalarında kullanılabilirliğini ölçmek amacıyla 23 Ekim 2011 Van depremi sonucu olan deprem anı (co-seismic) ve deprem sonrası (postseismic) deformasyonları ve bunlardan hareketle 2-boyutlu gerinim parametreleri hesaplanmıştır. Bu hesaplamalar bölgedeki 12 TUSAGA-AKTİF istasyonuna ait veriler hem GAMIT/GLOBK hem de çevrimiçi servisler kullanılarak değerlendirilmiş ve servislerin deformasyon belirlemedeki performansları analiz edilmiştir.

Kullanılan 12 TUSAGA-AKTİF istasyonun herbir Web tabanlı çevrimiçi hizmet için tekrarlılık ve doğruluk analizlari yapılmıştır. Tekrarlılık analiz sonucunda, AUSPOS için yatayda 1,05 mm, düşeyde 4,96 mm, OPUS için yatayda 1,62 mm, düşeyde 5,38 mm, CSRS-PPP için yatayda 1,73 mm düşeyde 3,52 mm değerlerinde standart sapmalar elde edilmiştir. İkinci olarak, Web tabanlı çevrimiçi GNNS servislerinin GAMIT/GLOBK yazılımı ile elde edilen sonuçlara göre doğruluk analizleri yapılmış ve ortalama olarak, AUSPOS için yatayda 1,95 mm, düşeyde 7,79 mm, OPUS için yatayda 3,28 mm, düşeyde 8,52 mm, CSRS-PPP için yatayda 3,01 mm düşeyde 8,12 mm değerlerinde standart sapmalar elde edilmiştir.

Deprem anı için en büyük yatay deformasyon (kuzey-güney doğrultusunda $56,02 \pm 4,05$ mm, doğu batı doğrultusunda $-21,83 \pm 4,9$ mm) MURA noktasında hesaplanmış ve deprem merkezinden uzaklaştıkça deformasyon büyüklüklerinin azaldığı görülmüştür. Web tabanlı çevrimiçi GNSS değerlendirme servislerinden elde edilen sonuçlar ile GAMIT/GLOBK yazılımından elde edilen sonuçlar birlikte incelendiğinde, GAMIT/GLOBK ve çevrimiçi GNSS değerlendirme servisleri arasında 0,03 mm ile 7,82 mm arasında değişen farklar hesaplanmış, istasyonların yer değiştirme vektör büyüklükleri ve yönleri bakımından uyumlu olduğu belirlenmiştir. Servislerden ve GAMIT/GLOBK çözümlerinden elde edilen saplanmıştır.

Deprem sonrası yakın dönem için hesaplanan deformasyonlarda yine en büyük deformasyon MURA istasyonunda hesaplanmıştır. Depram sonrası deformasyon değerleri karşılaştırıldığında; web tabanlı çevrimiçi GNSS değerlendirme servisleri ile GAMIT/ GLOBK yazılımı arasında yatayda 0,03 mm ile 8,65 mm arasında farklar hesaplanmıştır ve deprem sonrası ilk 10 gün için GAMIT/GLOBK çözümüne göre AUSPOS çözümü en yakın sonuçları vermiştir. Deprem sonrası ilk 30 gün için GAMIT/GLOBK çözümüne göre ise OPUS çözümünün daha yakın değerler verdiği tespit edilmiştir. OPUS çözümleri ile özellikle depremin gerçekleştiği noktaya yakın istasyonlarda daha iyi sonuçlar elde edilmiştir.

CSRS-PPP çözümü ise, SIRT ve TVAN istasyonlarında daha büyük farklar göstermiş diğer istasyonlar için daha yüksek doğruluklu sonuçlar vermiştir. Ayrıca CSRS-PPP servisinin deprem anı deformasyonlarını deprem sonrası deformasyonlara göre daha yüksek doğrulukla belirlediği görülmüştür.

GAMİT/GLOBK yazılımı ve çevrimiçi değerlendirme servisleri ile elde edilen gerinim değerleri incelendiğinde asal gerinim elemanları arasında maksimum 0,04 µstrain farklar bulunmuş (OPUS çözümünde BASK-SIRN-HAKK, SIRN-SIRT-TVAN üçgenleri, CSRS-PPP çözümünde SIRT-TVAN-HINI ve OZAL-SIRN-BASK üçgenleri hariç) ve GAMIT/GLOBK ile hesaplanan deprem anı gerinim değerlerine en yakın sonuçlar AUSPOS verilerinden elde edilmiştir.

Deprem sonrası hesaplanan gerinim parametrelerine göre AUSPOS en yüksek doğruluklu sonuçları vermiş, ayrıca OPUS çözümü deprem anı değerlere göre daha yüksek doğruluk göstermiştir. CSRS-PPP'nin yatay deformasyonları belirlerken SIRT ve TVAN gibi istasyonlarda bulduğu büyük farklılıkların gerinim elemanlarına da yansımış olduğu belirlenmiştir.

Genel olarak deprem anı ve sonrasında belirlenen deformasyon parametreleri için web tabanlı çevrimiçi GNSS değerlendirme servisleri ve GAMIT/GLOBK yazılımı arasındaki farkların istatistiksel olarak anlamsız olduğu tespit edilmiştir. Elde edilen sonuçlara göre, sürekli istasyonların, internet tabanlı çevrimiçi değerlendirme servisleri tarafından elde edilen koordinat çözümlerinin, yer kabuğu hareketlerinin belirlenmesi uygulamalarında kullanılabilecek yeterli doğruluğa sahip olduğu gösterilmiştir.

Şekil A.1 AGRD istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.2 AGRD istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.3 AGRD istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.4 AGRD istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.5 BASK istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.6 BASK istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.7 BASK istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.9 HAKK istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.11 HAKK istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.12 HAKK istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.13 HORS istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.14 HORS istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.15 HORS istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.16 HORS istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.17 IGIR istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.19 IGIR istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.20 IGIR istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.21 MALZ istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.22 MALZ istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.23 MALZ istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.25 MURA istasyonuna ilişkin zaman serisi (GAMIT-GLOBK)

Şekil A.26 MURA istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.27 MURA istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.28 MURA istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.29 OZAL istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.30 OZAL istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.31 OZAL istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.32 OZAL istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.33 SIRN istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.35 SIRN istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.36 SIRN istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.37 SIRT istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.38 SIRT istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.39 SIRT istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.40 SIRT istasyonuna ilişkin zaman serisi (CSRS-PPP)

Şekil A.41 TVAN istasyonuna ilişkin zaman serisi (GAMIT/GLOBK)

Şekil A.42 TVAN istasyonuna ilişkin zaman serisi (AUSPOS)

Şekil A.43 TVAN istasyonuna ilişkin zaman serisi (OPUS)

Şekil A.44 TVAN istasyonuna ilişkin zaman serisi (CSRS-PPP)

Üçgen noktaları	ε _{max}	ϵ_{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,,0295	-0,0975	146.437094
hını-hors-malz	0,0150	-0,0420	158.650347
hors-malz-agrd	0,0279	0,0096	40.0283107
malz-agrd-ıgır	0,0321	-0,0903	45.3926385
malz-ıgır-mura	0,0942	0,0189	126.039691
malz-mura-tvan	0,0868	-0,0480	113.234161
mura-ozal-sırn	0,0181	-0,2745	52.9884025
ozal-sırn-bask	0,0511	-0,1339	20.5388071
bask-sırn-hakk	0,0578	-0,0632	135.628368
sırn-tvan-mura	0,0297	-0,0237	94.2010497
sırn-sırt-tvan	0,0139	-0,0216	79.6074121
sırt-tvan-hını	0,0389	-0,0110	123.970216

Tablo B.1 Deprem sonrası ilk 10 gün için GAMIT/GLOBK ile hesaplanan gerinimelemanları

Tablo B.2 Deprem sonrası ilk 20 gün için GAMIT/GLOBK	ile hesaplanan gerinim
elemanları	

Üçgen noktaları	ε _{max}	٤ _{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,0316	-0,2110	151.1265
hını-hors-malz	0,0150	-0,1038	171.8068
hors-malz-agrd	0,0785	-0,0307	33.7071
malz-agrd-ıgır	0,0785	-0,0850	35.2508
malz-ıgır-mura	0,1177	0,0316	112.8763
malz-mura-tvan	0,1277	-0,0970	113.9812
mura-ozal-sırn	0,0380	-0,2617	61.58937
ozal-sırn-bask	0,0428	-0,2161	29.00335
bask-sırn-hakk	0,0947	-0,0563	158.9059
sırn-tvan-mura	0,0241	-0,0394	93.3693
sırn-sırt-tvan	-0,0137	-0,0431	109.2827
sırt-tvan-hını	0,0385	-0,0534	134.8376
Tablo B.3 Deprem sonrası ilk 30 gün için GAMIT/GLOBK ile hesaplanan gerinim			

elemanları			

Üçgen noktaları	ϵ_{max}	ϵ_{min}	Mak. Gerinim Yönü (°)
1	0.04 = 0	0.05((140 (0011
hini-tvan-malz	0,0173	-0,2566	149.62811
hını-hors-malz	0,0200	-0,1308	172.30357
hors-malz-agrd	0,1165	-0,0166	42.922108
malz-agrd-ıgır	0,1137	-0,1617	35.421553
malz-ıgır-mura	0,1734	0,0452	115.28356
malz-mura-tvan	0,1764	-0,1327	110.89462
mura-ozal-sırn	0,0292	-0,4687	53.998346
ozal-sırn-bask	0,0815	-0,1013	11.870939
bask-sırn-hakk	0,0245	-0,0589	130.56000
sırn-tvan-mura	0,0610	-0,0451	98.115641
sırn-sırt-tvan	-0,0138	-0,0431	56.428002
sırt-tvan-hını	0,0172	-0,0422	150.86187

Tablo B.4 Deprem sonrası ilk 10 gün için AUSPOS ile hesaplanan gerinimelemanları

Üçgen noktaları	ε _{max}	ϵ_{min}	Mak. Gerinim Yönü (°)
hını-tvan-malz	-0,0034	-0,1330	137.6603044
hını-hors-malz	0,0178	-0,0525	167.8777043
hors-malz-agrd	0,0343	0,0071	34.84789413
malz-agrd-ıgır	0,0361	-0,0845	41.45380710
malz-ıgır-mura	0,0848	0,0149	120.1807586
malz-mura-tvan	0,0795	-0,0995	107.3917542
mura-ozal-sırn	0,0099	-0,2418	50.56924123
ozal-sırn-bask	0,0407	-0,0922	17.48084797
bask-sırn-hakk	0,0341	-0,0589	127.8911877
sırn-tvan-mura	0,0396	-0,0083	122.2556740
sırn-sırt-tvan	0,0123	-0,0182	3.246410109
sırt-tvan-hını	0,0096	-0,0129	39.66138796

Tablo B.5 Deprem sonrası ilk 20 gün için AUSPOS ile hesaplanan gerinimelemanları

Üçgen noktaları	Emax	Emin	Mak. Gerinim
	- max		Yönü (°)
hını-tvan-malz	0,0057	-0,2208	149.63043
hını-hors-malz	0,0305	-0,1166	174.60464
hors-malz-agrd	0,0783	-0,0030	37.212833
malz-agrd-ıgır	0,0787	-0,1118	37.711683
malz-ıgır-mura	0,1130	0,0199	105.47895
malz-mura-tvan	0,1218	-0,1182	110.77211
mura-ozal-sırn	0,0216	-0,2325	56.825064
ozal-sırn-bask	0,0376	-0,1741	27.331002
bask-sırn-hakk	0,0475	-0,0525	147.18339
sırn-tvan-mura	0,0217	-0,0253	94.767697
sırn-sırt-tvan	-0,0225	-0,0773	166.29325
sırt-tvan-hını	0,0062	-0,0610	145.18949

Üçgen noktaları	ϵ_{max}	ϵ_{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	-0,0015	-0,2720	147.16617
hını-hors-malz	0,0274	-0,1366	173.49149
hors-malz-agrd	0,1215	-0,0001	47.063691
malz-agrd-ıgır	0,1157	-0,1864	35.283518
malz-ıgır-mura	0,1680	0,0296	110.29242
malz-mura-tvan	0,1728	-0,1603	109.03387
mura-ozal-sırn	0,0138	-0,4251	51.742632
ozal-sırn-bask	0,0511	-0,0940	14.954904
bask-sırn-hakk	0,0573	-0,0429	146.69102
sırn-tvan-mura	0,0696	-0,0332	106.08956
sırn-sırt-tvan	-0,0095	-0,0194	52.056447
sırt-tvan-hını	0,0011	-0,0355	168.98333

Tablo B.6 Deprem sonrası ilk 30 gün için AUSPOS ile hesaplanan gerinimelemanları

Tablo B.7 Deprem sonrası ilk 10 gün için OPUS ile hesaplanan gerinim elemanları

Üçgen noktaları	ε _{max}	€ _{min}	Mak. Gerinim Yönü (°)
hını-tvan-malz	0,0127	-0,0947	149.3136
hını-hors-malz	0,0322	-0,0440	176.3927
hors-malz-agrd	0,0452	0,0028	22.31273
malz-agrd-ıgır	0,0456	-0,0437	43.65022
malz-ıgır-mura	0,0939	0,0321	123.3850
malz-mura-tvan	0,0892	-0,0468	110.9837
mura-ozal-sırn	0,0311	-0,2616	55.18105
ozal-sırn-bask	0,0505	-0,0759	20.12760
bask-sırn-hakk	0,1159	-0,0246	143.9821
sırn-tvan-mura	0,0385	-0,0167	95.83910
sırn-sırt-tvan	0,0008	-0,0602	21.85415
sırt-tvan-hını	0,0176	-0,0317	169.0777

Tablo B.8 Deprem sonrası ilk 20 gün için OPUS ile hesaplanan gerinim elemanları

Üçgen noktaları	ϵ_{max}	ϵ_{min}	Mak. Gerinim Yönü (°)
hını-tvan-malz	0,0055	-0,1889	151.64970
hını-hors-malz	0,0463	-0,0948	3.6797196
hors-malz-agrd	0,0935	-0,0222	31.350155
malz-agrd-ıgır	0,1003	-0,0295	20.886798
malz-ıgır-mura	0,1344	0,0393	120.69001
malz-mura-tvan	0,1431	-0,0995	116.39384
mura-ozal-sırn	0,0477	-0,3394	60.217621
ozal-sırn-bask	0,0452	-0,1659	29.736171
bask-sırn-hakk	0,0873	-0,0438	173.93967
sırn-tvan-mura	0,0206	-0,0360	95.566899
sırn-sırt-tvan	0,0461	-0,0926	41.668517
sırt-tvan-hını	0,0360	-0,0009	36.129026

Üçgen noktaları	ϵ_{max}	ϵ_{min}	Mak. Gerinim Yönü (°)
hını-tvan-malz	0,0270	0,2489	148.39578
hını-hors-malz	0,0519	-0,0968	3.4558758
hors-malz-agrd	0,1016	-0,0177	31.840811
malz-agrd-ıgır	0,1020	-0,1104	37.677421
malz-ıgır-mura	0,1651	0,0476	114.23682
malz-mura-tvan	0,1798	-0,1341	114.64003
mura-ozal-sırn	0,0265	-0,4396	55.293116
ozal-sırn-bask	0,0179	-0,1285	41.155046
bask-sırn-hakk	0,1057	-0,0137	166.83657
sırn-tvan-mura	0,0316	-0,0502	94.625723
sırn-sırt-tvan	0,0284	-0,0611	58.890557
sırt-tvan-hını	0,0499	-0,0003	107.67923

Tablo B.9 Deprem sonrası ilk 30 gün için OPUS ile hesaplanan gerinim elemanları

Tablo B.10 Deprem sonrası ilk 10 gün için CSRS-PPP ile hesaplanan gerinimelemanları

Üçgen noktaları	ε _{max}	E min	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,1727	-0,0710	135.2868786
hını-hors-malz	0,1751	-0,0247	149.5840602
hors-malz-agrd	0,2401	0,0153	65.48192708
malz-agrd-ıgır	0,2897	-0,0876	48.90597538
malz-ıgır-mura	0,7854	0,0161	121.3909682
malz-mura-tvan	0,7014	-0,0519	103.1783333
mura-ozal-sırn	0,1806	-0,2807	62.06020344
ozal-sırn-bask	0,5670	-0,1108	16.81873738
bask-sırn-hakk	0,9991	-0,0706	133.3285501
sırn-tvan-mura	0,6537	-0,0157	109.4772870
sırn-sırt-tvan	0,7983	-0,0118	104.4485824
sırt-tvan-hını	0,1841	-0,0089	119.3747281

Tablo B.11 Deprem sonrası ilk 20 gün için CSRS-PPP ile hesaplanan gerinimelemanları

Üçgen noktaları	ε _{max}	ϵ_{min}	Mak. Gerinim
			Yönü (°)
hını-tvan-malz	0,0006	-0,1696	145.69612
hını-hors-malz	0,0075	-0,0735	176.10211
hors-malz-agrd	0,0605	-0,0295	35.430800
malz-agrd-ıgır	0,0643	-0,1114	42.840956
malz-ıgır-mura	0,1148	0,0265	111.66657
malz-mura-tvan	0,1144	-0,1033	106.57060
mura-ozal-sırn	0,0480	-0,3206	59.595452
ozal-sırn-bask	0,0725	-0,1738	22.306930
bask-sırn-hakk	0,0494	-0,0509	162.11927
sırn-tvan-mura	0,0779	-0,0206	112.01281
sırn-sırt-tvan	0,0762	-0,0186	111.21405
sırt-tvan-hını	0,0006	-0,0252	147.18493

Ücgen noktaları	Eman	Emin	Mak. Gerinim
e ygen nontalai i	Cmax	Cmin	Vänä (9)
			Yonu (*)
hını-tvan-malz	-0,0036	-0,1880	145.95612
hını-hors-malz	0,0233	-0,0893	175.40936
hors-malz-agrd	0,1137	0,0079	54.688159
malz-agrd-ıgır	0,1015	-0,2267	36.707888
malz-ıgır-mura	0,1716	0,0266	115.24304
malz-mura-tvan	0,1641	-0,1156	105.76586
mura-ozal-sırn	0,0316	-0,4725	54.088822
ozal-sırn-bask	0,0691	-0,1187	17.324910
bask-sırn-hakk	0,1235	-0,0668	135.46649
sırn-tvan-mura	0,1257	-0,0367	107.56835
sırn-sırt-tvan	0,1470	-0,0440	108.43686
sırt-tvan-hını	0,0030	-0,0434	126.35957

 Tablo B.12 Deprem sonrası ilk 30 gün için CSRS-PPP ile hesaplanan gerinim elemanları

Abd-Elazeem, M., Farah, A. ve Farrag, F. (2011). Assessment study of using online (CSRS) GPS-PPP Service for mapping applications in Egypt. *Journal of Geodetic Science*, *1*(3), 233-239.

Abdallah, A., Schwieger, V. (2016). Static GNSS precise point positioning using free online services for Africa. Survey review, 48 (306), 61–77.

Altıner, Y., Söhne, W., Güney, C., Perlt, J., Wang, R. ve Muzli, M., (2013). A geodetic study of the 23 October 2011 Van, Turkey earthquake, Tectonophysics, 588, 118-134.

ALÇAY, S., YİĞİT, C. Ö. ve CEYLAN, A. (2013). CSRS-PPP, MagicGNSS ve APPS Web Tabanlı Yazılımların Statik PPP Modüllerinin Karşılaştırılması. *Harita Teknolojileri Elektronik Dergisi*, *5*(1), 1-12.

Ayan, T. (1983). Jeodezik Ağlarda Deformasyon Analizine Genel Bakış. ITU Dergisi, 40(1).

Aydin, C. (2011). Power of global test in deformation analysis. *Journal of surveying engineering*, *138*(2), 51-56.

Aydın C., Uygur S.Ö., Çetin S., Özdemir A. ve Doğan U. (2017). Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution. Survey Review. doi: 10.1080/00396265.2017.1415664

Aydın, C., (2018). Geodetic Deformation Analysis, YTÜ Lisansüstü Ders Notu, İstanbul.

Bahadur, B., Üstün, A. (2014). İnternet tabanlı Gnss veri değerlendirme servisleri. Harita Dergisi, 80(152), 40-50.

Brunner, F.K. (1979). On the analysis of geodetic network for the determination of the incremental strain tensor. Survey Review, 25, 56-67.

Brunner, F. K., Coleman, R. ve Hirsch, B. (1981). A comparison of computation methods for crustal strains from geodetic measurements. In *Developments in Geotectonics* (Vol. 16, pp. 281-298). Elsevier.

Çakmak, R. (2009). *Jeodezik Çalışmalarla Marmara Bölgesinde Deprem Döngüsünün Belirlenmesi Ve Modellerle Açıklanması* (Doctoral dissertation, Fen Bilimleri Enstitüsü).

Dach, R., Lutz, S., Walser, P. ve Fridez, P. (2015). Bernese GNSS software version 5.2. User manual. Bern: Astronomical Institude, University of Bern, Bern Open Publishing. doi:10.7892/boris.72297; ISBN: 978-3-906813-05-9.

Deniz, İ., Ozener, H. (2007). Determination of velocity field and strain accumulation of densification network in Marmara Region. In *Bogazici University*.

Denli, H. H. (1998). *GPS ile Marmara Bölgesindeki yer kabuğu hareketlerinin belirlenmesi* (Doctoral dissertation, Fen Bilimleri Enstitüsü).

Doğru, A.D., Duman, H., Şanli D.U., Berber M.M. (2018). Efficiency of OPUS-RS solutions. Survey Review, doi.org/10.1080/00396265.2017.1405495.

Dogan, U., Demir, D., Cakır, Z., Ergintav, S., Ozener, H., Akoğlu, A.M., Nalbant, S.S. ve Reilinger, R. (2014). Postseismic deformation following the Mw 7.2 October 23, 2011 Van earthquake (Turkey): evidence for aseismic fault reactivation. Geophys. Res. Lett., 41(7), 2334–2341.

Ebner, R. ve Featherstone, W. E. (2008). How well can online GPS PPP postprocessing services be used to establish geodetic survey control networks? *Journal of Applied Geodesy*, *2*(3), 149-157.

Elliott, J. R., Copley, A. C., Holley, R., Scharer, K. ve Parsons, B. (2013). The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. Journal of Geophysical Research, 118 (4), 1619-1637.

Emre, Ö., Duman, S. Ozalp, F. Tokay, Kuşçu, I. (2013). Active fault map of Turkey with explanatory text Rep. General Directorate of Mineral Research and Exploration, Ankara, Turkey.

Feigl, K.N., King, R.W., Jordan, T.H. (1997). Geodetic Measurements of Tectonic Deformation in the Santa Maria Fault and Thrust Belt, Califoria, JGR, 95, 2679-2699.

F., Mugnier, J. L., Pandey, M. R., Gamond, J. F., Le Fort, P., Serrurier, L., ...ve Avouac, J. P. (1999). Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. *Geophysical Research Letters*, *26*(13), 1933-1936.

Ghoddousi-Fard, R., Dare, P. (2006). Online GPS processing services: an initial study, GPS Solutions, 10(1), 12-20.

Herring, T. A., King, R. W., Floyd, M. A., McClusky, S. C. (2015). GAMIT/GLOBK Reference Manual, Release 10.6.

Jamieson, M., ve Gillins, D. T. (2018). Comparative Analysis of Online Static GNSS Postprocessing Services. Journal of Surveying Engineering, 144(4), 05018002.

Kashani, I., Wielgosz, P., GREJNER-BRZEZINSKA, D. A., ve Mader, G. L. (2008). A New Network-Based Rapid-Static Module for the NGS Online Positioning User Service–OPUS-RS. *Navigation*, *55*(3), 225-234.

Kakkuri, J. ve Chen, R. (1990). Four dimensional adjustment of the finnish first order triangulation: results of a test computation. Lecture Notes in Earth Sciences, 29, Springer Verlag.

Krasuski, K., Wierzbicki, D. ve Jafernik, H. (2018). Utilization PPP method in aircraft positioning in post-processing mode. *Aircraft Engineering and Aerospace Technology*, *90*(1), 202-209.

Kuhlmann, H., Pelzer, H. (1997). Models of Deformation Analysis., Second Turkish German Joint Geodetic Days, Berlin.

Maciuk, K. ve Skorupa, B. (2017). Test of GNSS Online Service PPP Kinematic Solutions. *Geomatics and Environmental Engineering*, *11*.

Mahmoud, K. (2018). Accuracy assessment of free web-based online GPS processing services and relative GPS solution software. Journal of Geomatics, 12(1), 82-88.

McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., ve Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions. *Geophysical Journal International*, *155*(1), 126-138. Jouanne,

Mulic, M., Krdzalic, D., Donlagic, E., ve Bilajbegovic, A. (2013) Possibilities and benefit of the online GNSS PPP free services for GNSS applications the accuracy and reliability. United Nations/Croatia Workshop on the Applications of Global Navigation Satellite Systems, Baska, Krk Island, Croatia.

Mustafar, M. A., Simons, W. J., Tongkul, F., Satirapod, C., Omar, K. M. ve Visser, P. N. (2017). Quantifying deformation in North Borneo with GPS. *Journal of Geodesy*, *91*(10), 1241-1259.

Ocalan, T., Erdogan, B., ve Tunalioglu, N. (2013). Analysis of web-based online services for GPS vd. Relative and Precise Point Positioning techniques. Boletim De CienciasGeodesicas, 19(2), 191-207.

Prescott, W.H. (1976). An extension of Frank's Method for obtaining crustal shear strains from survey data. Bull. Seismol. Soc. Amer., 66, 1847-1853.

Reilinger, R. E., Ergintav, S., Bürgmann, R., McClusky, S., Lenk, O., Barka, A., ... ve Aktug, B. (2000). Coseismic and postseismic fault slip for the 17 August 1999, M= 7.5, Izmit, Turkey.

Rizos, C., Janssen, V., Roberts, C. ve Grinter, T. (2012). PPP versus DGNSS. *Geomatics world*, *20*(6), 18-20. earthquake. *Science*, *289*(5484), 1519-1524.

Subaşı, K., Alkan R.M. (2011). İnternet ¬Tabanlı GPS Değerlendirme Servislerinin Doğruluk Analizi: İstanbul Örneği, 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, 18-22 Nisan 2011, Ankara.

Subaşı, H.K. (2011). İnternet-tabanlı gps değerlendirme servislerinin doğruluk ve performans analizi: İstanbul Örneği. (Yüksek Lisans Tezi). İTÜ Fen Bilimleri Enstitüsü, İstanbul.

Şimşek, M., Özarpacı, S., Doğan, U.(2019). Yer Kabuğu Hareketlerinin Belirlenmesinde Web Tabanlı Çevrimiçi GNSS Servislerinin Performans Analizi. *Geomatik, 4 (2), 147-159.* DOI: 10.29128/geomatik.511758.

Şimşek M., Özarpaci S., Doğan U., Erkoç M.H., "Investigation of Web-Based Online GNSS Services Performances for Monitoring Crustal Deformations ", Europian Geosciences Union (EGU) General Assembly, Viyana, AVUSTURYA, 7-12 Nisan 2019, pp.1-1.

Tiryakioglu, İ., Yavasoglu H., Uğur, M. A., Ozkaymak, C., Yılmaz M., Kocaoglu , H., Turgut. (2016). B.Analysis of October 23 (Mw 7.2) and November 9 (Mw 5.6), 2011 Van Earthquakes Using Long-Term GNSS Time Series. Earth Sciences Research Journal, 21(3), 147-156.

Tsakiri, M. (2008). GPS Processing Using Online Services. Journal of Surveying Engineering, 134(4), 115-125.

Url 1 <u>http://www.ga.gov.au/bin/gps.pl</u>

Url 2 https://www.ngs.noaa.gov/OPUS

Url 3 <u>https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en</u>

Url 4 https://sideshow.jpl.nasa.gov/post/links/ ZECK.html

Wang, G., Soler, T. (2012). OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto Rico and Virgin Islands region. Journal of Surveying Engineering, 138 (3), 143-153.

Wang, G., Soler, T. (2013). Using opus for measuring vertical displacements in Houston, Texas, Journal of Surveying Engineering, 139 (3), 126-134.

Wang, C., Ding, X., Li, Q., Shan, X., Zhu, W., Guo, B. ve Liu, P. (2015). Coseismic and postseismic slip models of the 2011 Van earthquake, Turkey, from InSAR, offset-tracking, MAI, and GPS observations. Journal of Geodynamics, 91, 39–50.

Wang, G., Soler, T. (2014). measuring land subsidence using GPS: ellipsoid height versus orthometric height. Journal of Surveying Engineering, 141 (2), 05014004.

Wessel, P., Smith, W. H., Scharroo, R., Luis, J. ve Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409-410.

Yigit, CO. (2016). Experimental assessment of post processed kinematic precise point positioning method for structural health monitoring. Geomat Nat Hazards Risk, 7, 363-380.

Zhang, K., Hu, Y., Liu, G., Wu, F. ve Deakin, R. (2005). Deformation monitoring and analysis using victorian regional CORS data. Journal of Global Positioning Systems, 4(1+2), 129-138.

İletişim Bilgisi: mrve.smsek@gmail.com

Makaleler

1. Şimşek, M., Özarpacı, S., Doğan, U.(2019). Yer Kabuğu Hareketlerinin Belirlenmesinde Web Tabanlı Çevrimiçi GNSS Servislerinin Performans Analizi. *Geomatik, 4 (2), 147-159*. DOI: 10.29128/geomatik.511758

Konferans Bildirileri

1. Şimşek M., Özarpaci S., Doğan U., Erkoç M.H., "Investigation of Web-Based Online GNSS Services Performances for Monitoring Crustal Deformations ", Europian Geosciences Union (EGU) General Assembly, Viyana, AVUSTURYA, 7-12 Nisan 2019, pp.1-1