

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

Ph.D. THESIS

Enis ARSLAN

LEARNING WORD-VECTOR QUANTIZATION: A STUDY IN

MORPHOLOGICAL DISAMBIGUATION OF TURKISH

DEPARTMENT OF COMPUTER ENGINEERING

ADANA-2020

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

LEARNING WORD-VECTOR QUANTIZATION: A STUDY IN

MORPHOLOGICAL DISAMBIGUATION OF TURKISH

Enis ARSLAN

Ph.D. THESIS

DEPARTMENT OF COMPUTER ENGINEERING

We certify that the thesis titled above was reviewed and approved for the award of

degree of the Doctor of Philosophy by the board of jury on 17/12/2019.

……………………………….…

Assoc. Prof. Dr. Umut ORHAN

SUPERVISOR

.……………..….………

Prof. Dr. Selma Ayşe ÖZEL

MEMBER

…………..….…......

Prof. Dr. Mutlu AVCI

MEMBER

…………………..…….….

Prof. Dr. Olcay Taner YILDIZ

MEMBER

……………………..

Asst. Prof. Dr. Ali İNAN

MEMBER

This Ph.D. Thesis is written at the Department of Computer Engineering, Institute

of Natural and Applied Sciences of Çukurova University.

Registration Number:

 Prof. Dr. Mustafa GÖK

 Director

 Institute of Natural and Applied Sciences

This study supported by Çukurova University Scientific Research Projects Unit.

Project No: FDK-2015-5155

Note: The usage of the presented specific declarations, tables, figures, and photographs either in

this thesis or in any other reference without citation is subject to "The law of Arts and

Intellectual Products" number of 5846 of Turkish Republic

I

ABSTRACT

Ph.D. THESIS

LEARNING WORD-VECTOR QUANTIZATION: A STUDY IN

MORPHOLOGICAL DISAMBIGUATION OF TURKISH

Enis ARSLAN

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

Supervisor : Assoc. Prof. Dr. Umut ORHAN

 Year: 2019, Pages: 105

Jury : Assoc. Prof. Dr. Umut ORHAN

 : Prof. Dr. Selma Ayşe ÖZEL

 : Prof. Dr. Mutlu AVCI

: Prof. Dr. Olcay Taner YILDIZ

: Assist. Prof. Dr. Ali İNAN

Nowadays, most of the NLP applications are dependent on the accurate

morphological analysis of the basic language units: words. Root words, part-of-speech

(POS) tags and morphological features are the basic units of a word. Morphologically

complex languages like Turkish have rich feature sets. When combined with productive

inflectional and derivational morphology, thousands of words can be produced from a root

word and this leads to sparsity. Morphological analyzers are the tools that perform the

morphological analysis of a word. They can produce multiple parses for a single word

where this indicates ambiguity. Disambiguation is the removal process of ambiguity where

it is a much complicated task for morphologically complex languages like Turkish.

Although high accuracy values are obtained for the studies performed on this task, there is

still a challenge. Sparsity and insufficiency of high volume supervised data is the cause of

longer running times and accuracy loss. Recent studies for morphological disambiguation

are generally presented on neural learning models. To our best knowledge, a

disambiguation method which takes the advantage of training of words in a vector-space

has not been proposed. Motivated by this shortcoming, in this thesis, we have developed

and implemented a vector-space model that solves morphological ambiguity by locating the

correct candidates of ambiguous words near to the unambiguous neighbors. The model,

named learning word-vector quantization (LWQ), is an adaptation of a well-known learning

algorithm, learning vector quantization (LVQ). LWQ outperforms the algorithms presented

in the literature for the morphological disambiguation of Turkish.

Key Words: Morphological disambiguation, Complex morphology, Learning vector

quantization, Word vector, Ambiguity

II

ÖZ

DOKTORA TEZİ

SÖZCÜK VEKTÖRÜ NİCELLEŞTİRME ÖĞRENMESİ: TÜRKÇE İÇİN

BİÇİMBİRİMSEL BELİRSİZLİK GİDERME ÇALIŞMASI

Enis ARSLAN

ÇUKUROVA ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

Danışman : Doç. Dr. Umut ORHAN

 Yıl: 2019, Sayfa: 105

Jüri : Doç. Dr. Umut ORHAN

 : Prof. Dr. Selma Ayşe ÖZEL

 : Prof. Dr. Mutlu AVCI

: Prof. Dr. Olcay Taner YILDIZ

: Dr. Öğr. Üyesi Ali İNAN

NLP uygulamalarının başarısı, dillerin temel birimi olan kelimelerin doğru

biçimbirimsel analizine bağlıdır. Kökler, kelime türü etiketleri ve biçimbirimsel özellikler,

bir kelimenin temel birimleridir. Türkçe gibi biçimbirimsel olarak karmaşık olan diller

zengin özelliklere sahiptir. Türkçe’nin türetimsel olarak üretken yapısı gözönüne

alındığında, bir kök kelimeden binlerce kelime üretilebilmekte ve bu durum seyrekleşmeye

yol açmaktadır. Biçimbirimsel analizörler, bir kök kelimenin biçimbirim analizini yapan

araçlardır. Biçimbirimsel analizörler, tek bir kelime için birden fazla ayrıştırma üretebilir ve

bu durum ise belirsizliği göstermektedir. Belirsizlik giderme işlemi, Türkçe gibi morfolojik

olarak karmaşık diller için oldukça zor bir işlemdir. Bu problemin giderilmesi için sunulan

çalışmalarda yüksek doğruluk değerleri elde edilmiş olmasına rağmen, daha gidilecek yol

vardır. Seyreklik ve yüksek miktarda denetimli verinin bulunmuyor olması, daha uzun

çalışma sürelerine ve daha düşük doğruluk değerlerine sebep olabilmektedir. Son

zamanlarda biçimbirimsel belirsizliklerin giderilmesi çalışmaları genellikle sinir öğrenme

modelleri ile yapılmaktadır. Bildiğimiz kadarıyla, Türkçe için, kelimelerin vektör uzayında

eğitilerek konumlandırılmasıyla biçimbirimsel belirsizliği gideren bir yöntem henüz

önerilmemiştir. Bu eksiklikten hareketle, bu tezde, belirsiz kelimenin doğru adaylarını

belirsiz olmayan komşuların yanına yerleştirerek biçimbirimsel belirsizliği çözen bir vektör

uzay modeli geliştirilmiş ve uygulanmıştır. Sözcük vektörü nicelleştirme öğrenmesi (LWQ)

adlı model, iyi bilinen bir öğrenme algoritması olan vektörel nicelleştirme öğrenmesi

(LVQ)’nin bir türevidir. LWQ, literatürde sunulan diğer algoritmalara göre daha iyi başarı

oranları elde etmektedir.

Anahtar Kelimeler: Biçimbirimsel belirsizlik giderme, Karmaşık biçimbirim, Vektörel

nicelleştirme öğrenmesi, Kelime vektörü, Belirsizlik

III

EXPANDED ABSTRACT

Turkish is an agglutinative language which has a productive character with

inflectional and derivational morphology. In agglutinative languages, new word

forms can be easily created by using stems and affixes. Words carry semantical and

syntactical information in their internal structure. This information is valuable in

advanced natural language processing (NLP) applications and must be exposed.

Morphological analysis is a pre-processing step for NLP which identifies the

grammatical structure of words. Finite state machines (FSM) are generally the

main components of a morphological analyzer and their design varies according to

the language’s grammar. Due to the large size of dictionaries and morphological

features many analysis (parse outputs) can be provided by a morphological

analyzer. Although morphological analyzers are improved with additional

constraints, multiple parses of a word are often available for a word, which is stated

as “ambiguity”.

Especially, nearly half of the running text is ambiguous in Turkish.

Inflectional morphology and large feature sets are the main causes of sparsity.

Ambiguity is a barrier for further processing of texts in NLP applications and it

should be solved. Morphological disambiguators are the tools that singularize the

multiple parses provided by a morphological analyzer by selecting the correct parse

solution. Morphological disambiguators implement disambiguation by taking into

account the context of a target (ambiguous) word in a sentence or text. Nearly all of

the studies performed for Turkish have used context information in their models by

incorporating the neighboring information. Applying a conceptual window on the

target word to detect its corresponding neighbors, is a general approach.

Early studies on morphological disambiguation of Turkish has begun with

constraint-based (Oflazer and Kuruöz 1994; Oflazer and Tür, 1997; Daybelge and

Cicekli, 2007) approaches and pure statistical methods (Hakkani-Tür et al., 2002).

The main drawback of using constraints in disambiguation is difficulty to handle

IV

new or unknown words with the standard rule-sets. Statistical methods collect

usage information of the data models (word n-grams) from the corpus and

determine the most probable sequence to disambiguate a sentence. In the following

years, hybrid (Kutlu and Cicekli, 2013) models have got more popular which

achieves higher success by using the constraints with statistical information. Nearly

a decade ago, machine learning methods (Sak et al., 2007; Yuret and Türe, 2006)

has presented the state-of-the-art results. In recent years, neural network models

(Dayanık et al., 2018; Shen et al., 2016; Yildiz et al., 2016) report promising

accuracy values in morphological disambiguation. These models have the

advantage of efficient computation and flexibility of modelling the words with

context information in network layers. Nearly all of these use the same tagged

datasets in their training cycles (Yuret and Türe, 2006). Although most of these

algorithms are so successful, any implementation of morphological disambiguation

with a classification method which applies a supervised reward-punish mechanism

in a vector-space has not been proposed, to our best knowledge.

Motivated by this shortcoming in the literature, we propose to develop, a

vector-space model named learning word-vector quantization (LWQ), which is an

adaptation of the learning vector quantization (LVQ). Although original LVQ

algorithm has been successfully applied in some NLP research fields like text

classification (Umer and Khiyal, 2007; Visa et al., 2000; Martín-Valdivia et al.,

2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016), language

identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005) and

multi-word expressions recognition (Diaz-Galiano et al., 2004), it is not

implemented on morphological disambiguation, in our knowledge. For this reason,

we have adapted this algorithm specifically for this task, by treating it as a

classification problem.

In this thesis, first, we have built the necessary tools and materials. These

are necessary to improve a morphological analyzer and prepare a tagged dataset

with a web tool. Second, we have developed the LWQ classification model and

V

trained it with this dataset to optimize the exact locations of the words in space. We

believe that words without ambiguity should reside in near locations with the

correct parse candidate of an ambiguous word. When the locations of the words are

fixed at the end of the training phase, a classification test is applied to disambiguate

the ambiguous words. To our best knowledge, this is the first implementation of

this technique.

The experimental results show that the proposed technique gives promising

accuracy values in morphological disambiguation. Although we have used a

limited dataset, training with a larger dataset can contribute to success. In the study,

accuracy results are presented with various experiments and data consistency is

additionally investigated.

VI

VII

GENİŞLETİLMİŞ ÖZET

Türkçe türetimsel ve çekimsel biçimbirimine sahip sondan eklemeli bir

dildir. Sondan eklemeli dillerde kökler ve ekler kullanılarak kolaylıkla yeni

kelimeler oluşturulabilmektedir. Kelimeler iç yapılarında anlamsal ve sözdizimsel

bilgiler içermektedirler. Bu bilgiler doğal dil işleme (DDİ) uygulamalarında değerli

olmaları sebebiyle açığa çıkartılmalıdır. Biçimbirimsel analiz, sözcüklerin gramatik

yapılarının tespit edildiği bir DDİ ön işlemidir. Sonlu durum makinaları (SDM) bir

biçimbirimsel analizcinin temel yapıtaşlarıdır ve tasarımları uygulandığı dillerin

dilbilgisine göre değişiklik göstermektedir. Bir biçimbirimsel analizci sözlüklerinin

büyük olması ve özellik sayısının fazlalığı sebebiyle birçok analiz çıktısı

oluşturabilmektedir. Her ne kadar biçimbirimsel analizciler birçok kısıtlayıcı

kurallar kullanılarak geliştirilmiş olsalar da, bir kelimenin birden fazla analizi

sözkonusu olabilmektedir ve bu duruma “belirsizlik” adı verilmektedir.

Neredeyse Türkçe olarak kullanılan metinlerin yarısı belirsizlik

içermektedir. Çekimsel biçimbirim ve fazla özellik içeren özellik kümeleri

seyrekliğin temel sebeplerinden biridir. Belirsizlik ileri DDİ uygulamalarına

geçebilmek için bir engeldir ve çözülmesi gerekmektedir. Biçimbirimsel belirsizlik

gidericiler bir biçimbirimsel analizcinin sunduğu birden fazla çözüm içinden doğru

çözümün bulunması için kullanılan araçlardır. Biçimbirimsel belirsizlik gidericiler

bir cümledeki ya da metindeki bir sözcüğün bağlamını gözönüne alarak hedef

(belirsiz) kelimenin belirsizliğini gidermektedirler. Türkçe için bu konuda yapılan

çalışmaların neredeyse hepsi tasarımlarında komşuluk ilişkilerinin kullanıldığı

bağlam bilgisinden faydalanmaktadırlar. Komşularının tespiti için hedef kelimeye

kavramsal bir pencere uygulanması genel bir yaklaşımdır.

Türkçe’nin biçimbirimsel belirsizlik gidermesi üzerinde ilk yapılan

çalışmalar kural tabanlı (Oflazer ve Kuruöz 1994; Oflazer ve Tür, 1997; Daybelge

ve Cicekli, 2007) ve istatistiksel (Hakkani-Tür vd., 2002) olarak sunulmuştur.

Belirsizlik gidermede kural tabanlı yaklaşımları kullanmaktaki temel sorun, yeni

VIII

veya bilinmeyen kelimelerin standart kural tablolarıyla tespitinin zor olmasıdır.

İstatistiksel yöntemler veri modellerinin (n-gramlar) derlemlerdeki kullanım

bilgilerini toplayarak, cümledeki belirsizliği gidermek için en olası dizilimi

belirlemektedir. Takip eden yıllarda, kural tabanlı ve istatistiksel yöntemleri

kullanarak yüksek başarılar sağlayan hibrid (Kutlu ve Cicekli, 2013) modeller

önem kazanmaya başlamıştır. Yaklaşık on yıl kadar önce sunulan makine

öğrenmesi yöntemleri (Sak vd., 2007; Yuret ve Türe, 2006) en yüksek başarı

değerlerini sunmuştur. Yakın zamanlarda belirsizlik giderme için sunulan sinir ağ

modelleri (Dayanık vd., 2018; Shen vd., 2016; Yildiz vd., 2016) umut verici

doğruluk değerleri sunmuşlardır. Bu modeller, sinir ağlarında kelimelerin bağlam

bilgisiyle beraber verimli bir şekilde modellenmesine olanak sağlamaktadırlar. Bu

modellerin neredeyse hepsi aynı etiketli verisetini (Yuret ve Türe, 2006)

kullanmaktadırlar. Bu çalışmaların çoğu oldukça başarılı sonuçlar sunmuş

olmalarına rağmen, bildiğimiz kadarıyla, kelime uzayında denetimli olarak ödül-

ceza uygulaması yapan bir belirsizlik giderme işlemi yapılmamıştır.

Literatürde bulunan bu eksiklik göz önüne alınarak, bu çalışmada, vektör

nicelleştirme öğrenmesi (LVQ) algoritmasından esinlenilerek, sözcük vektörü

nicelleştirme öğrenmesi (LWQ) modeli geliştirilmiştir. LVQ algoritması, her ne

kadar metin sınıflama (Umer ve Khiyal, 2007; Visa vd., 2000; Martín-Valdivia vd.,

2007; Pilevar vd., 2009), ses tanıma (Haldar ve Mishra, 2016), dil tanıma

(Gunawan vd., 2017), spam tespiti (Chuan et al., 2005) ve çoklu kelime tanıma

(Diaz-Galiano vd., 2004) gibi bazı DDİ araştırma alanlarında uygulanmış olsa da

bildiğimiz kadarıyla biçimbirimsel belirsizlik gidermede bir uygulaması

bulunmamaktadır. Bu sebeple, bu algoritma, belirsizlik giderme problemi için bir

sınıflandırma bakış açısıyla değiştirilmiş ve yeni bir model olarak sunulmuştur.

Bu tezde, öncelikle gerekli araçlar ve malzemeler hazırlanmıştır. Bunlar,

bir biçimbirimsel analizcinin üzerinde geliştirme yapılması ve bir web aracı

yardımıyla etiketli veri hazırlanması için gerekmektedir. İkinci olarak, LWQ adlı

sınıflama modeli geliştirilerek veriseti ile eğitim yapılmış ve uzayda kelimelerin

IX

gerçek konumları optimize edilmeye çalışılmıştır. Belirsizlik içermeyen kelimeler

belirsiz kelimenin doğru adayının çevresinde bulunmaktadır. Eğitim sonunda

kelimelerin uzaysal konumlarının sabit hale gelmesiyle belirsiz kelimelere bir

sınıflandırma testi uygulanmakta ve belirsizlik giderilmektedir. Bildiğimiz

kadarıyla, bu tekniğin ilk uygulaması bu çalışmada sunulmaktadır.

Deneysel sonuçlar, çalışmada önerilen tekniğin biçimbirimsel belirsizlik

gidermede umut verici doğruluk değerleri sağladığını göstermektedir. Sınırlı bir

veri kümesi kullanılmış olmasına rağmen daha yüksek veri ile eğitim yapılması

başarıyı arttırabilecektir. Bu çalışmada başarı değerleri farklı deneyler ile sunulmuş

ve veri tutarlılığı ayrıca araştırılmıştır.

X

XI

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr.

Umut ORHAN for his supervision, encouragement, patience, motivations and

useful suggestions for the successful completion of this work.

I would like to thank members of the Ph.D. thesis jury, Prof. Dr. Selma

Ayşe ÖZEL, Prof. Dr. Mutlu AVCI, Prof. Dr. Olcay Taner YILDIZ, and Assist.

Prof. Dr. Ali İNAN for their valuable help, support and suggestions.

I would like to express my sincere appreciation to TUBİTAK for their

financial support with the project number 215E256 in the process of my Ph.D.

education.

I am also thankful to Dr. Çağatay Neftali TÜLÜ and Erhan TURAN for

their support and motivation.

Finally, I would like to thank my dear brother Prof. Dr. Niyazi Arslan for

encouraging me in the Ph.D. study and his personal assistance, also to other

members of my family who have supported me throughout the entire thesis period,

both by their love and encouragement.

XII

CONTENTS PAGE

ABSTRACT .. I

ÖZ ... II

EXPANDED ABSTRACT .. III

GENİŞLETİLMİŞ ÖZET.. VII

ACKNOWLEDGMENTS ... XI

CONTENTS .. XII

LIST OF TABLES .. XVI

LIST OF FIGURES ... XVIII

LIST OF ABBREVIATIONS .. XX

1. INTRODUCTION ... 1

1.1. The Aims and Objectives of This Thesis ... 5

1.2. Our Contribution .. 6

1.3. Thesis Organization .. 6

2. RELATED WORKS ... 9

2.1. Morphological Disambiguation of Turkish 11

2.2. Learning Vector Quantization (LVQ) and NLP 17

3. MATERIALS .. 21

3.1. LVQ (Learning Vector Quantization) Algorithm 23

3.1.1. LVQ1 Algorithm (Kohonen, 1984) .. 23

3.1.2. LVQ2 Algorithm (Kohonen, 1990a; Kohonen 1990c) 27

3.1.3. LVQ3 Algorithm (Kohonen, 1990b) 29

3.1.4. LVQ Algorithm with Penalization Mechanism (De Sieno,

1988) ... 29

3.1.5. LVQ-X Algorithm (Öztemel, 1992) 30

XIII

3.2. Dataset .. 31

3.2.1. Statistics of the Datasets for Morphological Disambiguation of

Turkish .. 32

3.2.2. Statistics of the Dataset Prepared for This Study 33

3.2.3. Dataset Preparation ... 33

3.2.4. Tagging Application ... 38

3.3. Morphological Analyzer (Yıldız et al., 2019) 41

4. METHODS .. 45

4.1. Proposed Morphological Disambiguation Method – LWQ 45

4.2. Multi-word Tokenizer .. 53

4.3. OOV Discovery .. 54

5. RESULTS AND DISCUSSIONS ... 61

5.1. Performance Metrics for the Proposed Method 61

5.2. Experimental Results for the Proposed Method 61

5.2.1. k-fold Validity Tests ... 62

5.2.2. Effects of Window-Size and Word-Vector Dimension on

Accuracy and COC ... 63

5.2.3. Causes of Inconsistency and Incorrect-Consistency 68

5.2.4. The Effect of “Insufficient Equation” on Accuracy and COC 70

5.2.5. Effect of Dataset Size on Classification Accuracy and

Consistency ... 73

5.2.6. Consistency Analysis for all Window-Size Values and

Dimensions ... 74

5.3. Comparison Results with the Other Morphological Disambiguation

Methods .. 91

6. CONCLUSIONS ... 95

XIV

REFERENCES ... 97

CURRICULUM VITAE .. 105

XV

XVI

LIST OF TABLES

PAGE

Table 2.1. Morphological analysis of the word “masalı” 10

Table 2.2. Morphological analysis of the word “dolar” 10

Table 3.1. Training datasets used in morphological disambiguation of

Turkish ... 31

Table 3.2. Datasets prepared for morphological disambiguation of

Turkish ... 32

Table 3.3. Statistics of the supervised dataset prepared for this study

(# of tokens) ... 33

Table 3.4. Accuracy test results of the ‘Morphological Analyzer’ 41

Table 3.5. Time performance of the ‘Morphological Analyzer’ 42

Table 4.1. Statistics of TLA lemmas for semantic graph 56

Table 4.2. Node and relation labels summarized ... 58

Table 4.3. Statistics of the semantic graph ... 59

Table 4.4. Some examples of the discovered collocations........................... 59

Table 5.1. K-fold validity test results for different k values (w=14 and

N=200) ... 62

Table 5.2. The effects of window-size and word-vector dimension on

accuracy (%) .. 63

Table 5.3. The effects of window-size and word-vector dimension on

accuracy when filtered with ineffective lemma pairs (%) 65

Table 5.4. Some relations of the vocabularies for different window-size

values ... 66

Table 5.5. Effect of different filters on COC and accuracy for window-

size 14 (%) ... 67

XVII

Table 5.6. Statistics of the dataset for inconsistent and consistent-

incorrect lines .. 68

Table 5.7 Effects of fine-trained candidates on CoC with parameters

window width and word-vector dimension (%) 71

Table 5.8. The effects of the change in the amount of data on accuracy

and CoC (%) .. 73

Table 5.9. Accuracy values given in related studies for morphological

disambiguation .. 91

XVIII

LIST OF FIGURES

PAGE

Figure 3.1. The block diagram of the system model of the study 21

Figure 3.2. LVQ network model .. 24

Figure 3.3. Nearest vector to the input vector .. 26

Figure 3.4. Approximation of the input vector to the reference vector 27

Figure 3.5. Schematic view of LVQ2 algorithm .. 28

Figure 3.6. “Texts” screen of the tagger tool ... 38

Figure 3.7. “Sentences” screen of the tagger tool 39

Figure 3.8. “Tokens” screen of the tagger tool .. 39

Figure 3.9. Merging tokens in the tagger tool .. 40

Figure 3.10. Tagger tool lemmatization and POS tagging screen 40

Figure 3.11. Parse output for the word "düzenlenecek" 43

Figure 4.1. A sample sentence for a window-size=4 46

Figure 4.2. Distance-based classification test for a sample sentence 47

Figure 4.3. Rewarding steps in training for a sample sentence.................. 48

Figure 4.4. Penalization steps for the training in a sample sentence 49

Figure 4.5. Execution steps of the tokenizer function in an example

sentence ... 54

Figure 4.6. OOV discovery system schema ... 55

Figure 4.7. OOV discovery process flowchart ... 60

Figure 5.1. COC analysis for different vector- dimensions on the same

window-size values.. 75

Figure 5.2. COC analysis for different word-vector dimensions on the

same window-size values with “intersection filter” 77

Figure 5.3. COC analysis for different window-size values on the same

word-vector dimensions .. 79

XIX

Figure 5.4. COC analysis for different window-size values on the same

vector dimensions with “intersection filter” 81

Figure 5.5. COC analysis for window-size=2 on different word-vector

dimension values with original and filtered datasets 82

Figure 5.6. COC analysis for window-size=6 on different word-vector

dimensions with original and filtered datasets 83

Figure 5.7. COC analysis for window-size=10 on different word-vector

dimensions with original and filtered datasets 85

Figure 5.8. COC analysis for window-size=14 on different word-vector

dimensions with original and filtered datasets 86

Figure 5.9. COC analysis for window-size=18 on different word-vector

dimensions with original and filtered datasets 87

Figure 5.10. COC analysis for window-size=22 on different word-vector

dimensions with original and filtered datasets 88

Figure 5.11. COC analysis for window-size=26 on different word-vector

dimensions with original and filtered datasets 90

XX

LIST OF ABBREVIATIONS

AVF : Affix Validation Function

CNN : Convolutional Neural Network

COC : Consistency of Classification

CRF : Conditional Random Fields

DB : Derivational Boundary

FSM : Finite State Machine

GPA : Greedy Prepend Algorithm

HMM : Hidden Markov Model

IG : Inflectional Group

LDF : Lemma Discovery Function

LSTM : Long Short Term Memory

LVQ : Learning Vector Quantization

LWQ : Learning Word-Vector Quantization

MD : Morphological Disambiguator

MF : Morphological Feature

NER : Named Entity Recognition

NLP : Natural Language Processing

NN : Neural Network

OOV : Out-of-Vocabulary

POS : Part of Speech

SMT : Statistical Machine Translation

TLA : Turkish Language Association

UW : Unknown Word

WSD : Word Sense Disambiguation

XXI

1. INTRODUCTION Enis ARSLAN

1

1. INTRODUCTION

Turkish is a morphologically complex, agglutinative, free word order

language. It is possible to derive infinite number of words by using a root and any

number of morphemes (Hakkani-Tür et al., 2002). For advanced Natural Language

Processing (NLP) applications, it is an essential task to morphologically analyze

the words in texts (Dayanık et al., 2018). Morphological analysis is composed of a

root, part-of-speech (POS) and morphological tags (i.e. morphemes).

Morphological analyzers and part-of-speech (POS) taggers are the main

tools that analyze a word morphologically. In terms of NLP, morphological

ambiguity is the case that, when there exist multiple analyses as the outputs of

these tools. Morphological ambiguities should be solved (i.e disambiguated) in

order to perform further applications in NLP. Morphological disambiguation is the

process of finding the correct parse when a word has multiple parses within the

context to which it is bound (Dayanık et al., 2018).

Morphological disambiguation can be achieved in two ways. In some

cases, it is necessary to determine the POS tag for a root word or lemma. This

process is called POS Tagging and it is helpful to determine the correct POS tag for

a lemma provided by a lemmatizer tool. The other case is, to solve ambiguities

given as output of a morphological analyzer. Morphological disambiguator tools

have been developed to solve this problem. These tools, with various methods and

perspectives, can detect the appropriate analysis, regarding the situation of the

ambiguous word in the relevant context. POS tagging and morphological

disambiguators are often used together because their output is somewhat the same.

For example, the output of the POS tagging process is “lemma + POS tag”, while

the output of the morphological analyzer is “lemma + POS + MF (Morphological

Features”. The usage areas of the outputs may show similarities or differences.

Conceptually, POS tagging and morphological disambiguation are acceptable at the

same level in an NLP pipeline (Yildiz et al. 2016). But, for morphologically

1. INTRODUCTION Enis ARSLAN

2

complex languages POS tagging may not be enough and morphological

disambiguation is performed directly on the output of a morphological analyzer.

Morphological disambiguation studies have come up with various

approaches. However, in recent studies, neural network based machine learning

methods are preferred, which encode context information on word embeddings,

instead of directly using a morphological analyzer output (Dayanık et al., 2018;

Heigold et al., 2017; Yıldız et al. 2016). As a result of this preference, higher

accuracy values are reported when compared to statistical and rule-based methods.

Context information can be implemented locally or globally on the

disambiguation process. Local application is provided by the addition of the local

features of the ambiguous word by using a conceptual window. This is useful in

enriching the information for a target word by using the local features of the

neighboring words. This kind of window can be applied in one side (left or right)

or two sides (both right and left) of the target word depending on the design. In the

global sense, it is the use of words that are semantically similar, which co-occur in

the same sentence or text.

In literature, many studies presented for morphological disambiguation of

Turkish benefit from windowing. In Yuret and Türe (2006) they use all the

information of the words which reside in a five-word window. In Görgün and

Yıldız (2011) and Yildiz et al. (2016), a three-word window is used which includes

the two neighboring words to the left of the target word. In Dayanık et al., (2018)’s

study one neighbor word from the left and right of the target word are used in

encoding to the neural model.

Morphological disambiguation of Turkish with classification techniques in

vector-space has not been studied yet, in our best knowledge. Motivated by this

shortcoming, in this study, we propose a classification method to solve the

morphological ambiguity problem of the Turkish language. This method is an

adaptation of the well-known machine learning algorithm called Learning Vector

Quantization (LVQ) (Kohonen, 1984). LVQ is a competitive supervised neural

1. INTRODUCTION Enis ARSLAN

3

network, which is generally used for classification tasks. Inspired from the LVQ

algorithm we have developed LWQ (by using a similar acronym) method and

applied to morphological disambiguation problem. Basically, LWQ takes

advantage of a vector-space to obtain the optimum locations of word-vectors by

using a reward-punish mechanism. As mentioned before, words without ambiguity

are helpful in determining the correct candidate of an ambiguous word (a word

with ambiguity). In the inspiration of this idea, word-vectors are trained to assure

that, unambiguous words are located near to the correct lemma candidate of an

ambiguous word in the space. This requires a supervised tagged corpus where

training datasets are prepared specially and word-vectors are obtained from the

vocabularies of these datasets. Each data line in a dataset represents a single

occurrence of an ambiguous word with its immediate unambiguous neighbors that

are all in a pre-defined window. Lemma candidates of the ambiguous word that are

in the data line are obtained from the morphological analyzer (Yıldız et al., 2019).

All these candidates can be thought of a class and they are variable in the count

because there is no limit in the distinct parses provided by a morphological

analyzer. Original LVQ algorithm enables to design a model which is not limited to

two classes. This advantage of LVQ is an inspiration used in the design of LWQ.

LVQ is a three-layer neural network that is based on Kohonen Self

Organizing maps and it is supervised. Basically, these are input, competitive

(Kohonen) and output layers. Kohonen layer includes the codebook vectors where

each of them represents a cluster in the space. The Euclidian distance of each input

sample to each code vector is calculated and the nearest codebook vector wins the

competition test. The winner codebook vector is always compared with the desired

output and the weights are modified accordingly. LVQ is advantageous than the

other classification methods in requiring fewer training examples, the ability to

handle boundary values and being faster (Umer and Khiyal, 2007). In the literature

there are several successful implementations of LVQ methods on NLP tasks such

as text classification (Umer and Khiyal, 2007; Visa et al., 2000; Martín-Valdivia et

1. INTRODUCTION Enis ARSLAN

4

al., 2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016),

language identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005)

and multi-word expressions recognition (Diaz-Galiano et al., 2004).

Our study is different from the original LVQ algorithm as follows. First of

all, we do not use a neural network model although the logic is nearly the same.

Lemma candidates of all ambiguous words in a dataset are represented as similar to

codebook vectors of LVQ. Vector-space positions of the ambiguous lemma

candidates are arranged according to the supervised knowledge in each data line of

the dataset. Each data line represents a correct ambiguous lemma candidate

together with the other candidates and their immediate neighboring. When training

begins, a calculation is made for each ambiguous lemma candidate independently

with the neighbor words (unambiguous words). The calculation with the lowest

distance value is the selection of the LWQ system. It is compared with the correct

lemma candidate (supervised), if they are consistent to be same, nothing is done.

Otherwise, word-vector of the correct lemma candidate is approximated to the

neighbor words while other candidates are departed in opposite directions. This

iteration goes on till the convergence occurs. To evaluate our results, we have used

the “accuracy” parameter in order to comply with the other studies implemented

for Turkish morphological disambiguation in the literature.

Since the proposed method can work on labelled data, there is a need for

low noise and highly accurate dataset. There is a semi-automatically disambiguated

dataset (about 1 million words) released in Turkish (Yuret and Türe, 2006) and

most of the studies for Turkish (Sak et al. 2007; Shen et al., 2016; Yildiz et al.

2016) use this dataset. While using this dataset, some of the preceding studies

presented their work by applying various methods to reduce noise or preparing

more reliable test sets. Because of the low reliability of the presented datasets for

Turkish, we have prepared a manually disambiguated data by the help of a tagging

tool and Expert.

1. INTRODUCTION Enis ARSLAN

5

1.1. The Aims and Objectives of This Thesis

Morphological disambiguation is a challenging NLP problem that is more

laborious and hard for morphologically complex languages like Turkish, Hungarian

and Czech due to the richness of the tagsets and their inflectional character. When

the case is Turkish, theoretically infinite number of words can be derived from the

stems or lemmas in a dictionary. Generally, statistics of the local features of a word

are enriched with the context information and used in the disambiguation models.

This requires high volumes of training data and special data models for Turkish.

Although recent disambiguation methods (Sak et al., 2017; Shen et al., 2016;

Dayanık et al., 2018; Görgün and Yıldız, 2011) are quite successful, using word-

space in classification for morphological disambiguation is not well-studied.

Therefore, the aim of this study is to develop a classification technique named

Learning word-vector quantization (LWQ), which is an adaptation of the well-

known supervised machine learning algorithm, Learning vector quantization

(LVQ). To achieve the best results, we aimed to take advantage of the LVQ

algorithm which requires less training data, flexible in class numbers and function

with a reward-punish mechanism.

LWQ is similar to LVQ in optimizing the locations of word prototypes as

input vectors but differs in some way. Training in LWQ is achieved by using the

immediate neighboring of the ambiguous words (target words) which do not have

ambiguity. This is not a new idea (Viterbi, 1967), where some of the successful

studies (Hakkani-Tür, 2002; Sak et al., 2017) have established their base models on

scoring parse sequences with disambiguated text which with words without

ambiguity. Also, we have used the reward-punish mechanism in arranging the

word prototypes in space. We believe that using this approach in morphological

disambiguation contributes to the classification accuracy.

1. INTRODUCTION Enis ARSLAN

6

1.2. Our Contribution

Studies covered in this thesis aim to solve the morphological ambiguity

problem of Turkish, which is a challenging task needed to focus on for further NLP

studies. Thinking of the parse candidates of a word provided by a morphological

analyzer as classes and their immediate neighbouring (which do not have

ambiguity) as input words, we have developed a classification technique which

selects the correct candidate of an ambiguous word. We name it Learning word-

vector quantization (LWQ), in the inspiration of the Learning vector quantization

(LVQ) algorithm. Basic idea is to locate all words, as prototypes, in the vector

space and train the system by considering the relationships of the parse candidates

of an ambiguous word and their immediate neighbours. LWQ inspires the reward-

punish mechanism LVQ uses. In our knowledge, there is not any study in the

literature, which uses the main ideas of LVQ in classification to solve

morphological ambiguity.

1.3. Thesis Organization

This thesis is organized as follows:

In Section 2, a literature overview of studies on morphological

disambiguation of Turkish is provided. Methodologies are explained in detail and

accuracy values are given.

In Section 3, brief information is given for the materials and tools used in

the study. Datasets presented for Turkish morphological disambiguation are

reviewed with statistics. Also, the dataset prepared for this study is given. At the

end of the section, detailed information is given about the existing and developed

tools used for the preparation of the dataset.

In Section 4, the proposed LWQ algorithm is given in detail. Multiword

tokenizer that is integrated to the morphological analyzer is explained. Out-of-

vocabulary (OOV) discovery framework is presented.

1. INTRODUCTION Enis ARSLAN

7

In Section 5, the experimental results of the presented algorithm are given

and they are compared with the similar methods in the literature.

Finally, in the Conclusion section, the advantages and disadvantages of the

proposed methodology are discussed following the future outlook.

1. INTRODUCTION Enis ARSLAN

8

2. RELATED WORKS Enis ARSLAN

9

2. RELATED WORKS

In this section, research on morphological disambiguation presented for

Turkish is summarized. Before the overview, it is better to focus on the

morphological ambiguity problem of Turkish.

Turkish is a morphologically complex, productive and inflectional

language. For a natural language, word-parts (i.e. Morphemes) are the smallest

meaningful units which can be a stem, a prefix or suffix. Morphologically complex

languages carry syntactical and semantical relations in morphemes. To expose this

information, a word should be analyzed by using a morphological analyzer.

Analyzers are generally based on finite state machines (FSM) and many constraints

special to the language. Morphological analyzers present all possible solutions of a

word as parse lists, by applying all possible rules without considering the context.

Due to the very large tag set of Turkish, theoretically, infinite number of

words can be derived (Hakkani-Tür et al., 2002) and this leads to sparseness.

Multiple parse solutions of a word indicate ambiguity and nearly half of the words

in the running text in Turkish are ambiguous (Yuret and Türe, 2006).

Morphological ambiguity should be solved by morphological disambiguation, for

further NLP applications such as syntax and semantic parsing, word sense

disambiguation, text-to-speech recognition, machine translation, spell checking,

dependency parsing, text summarization, semantic role labeling, topic modeling

and named entity recognition (NER). Some well-known examples of an ambiguous

word (a word with ambiguity) are given in Table 2.1 and Table 2.2.

2. RELATED WORKS Enis ARSLAN

10

Table 2.1 Morphological analysis of the word “masalı” (Dayanık et al., 2018)
Word Analysis output

masalı masal+Noun+A3sg+Pnon+Acc
masalı yaz. (write the tale.)

masal+Noun+A3sg+P3sg+Nom
babamın masalı (my father’s tale)

masa+Noun+A3sg+Pnon+NomˆDB+Adj+With
mavi masalı oda (room with blue table)

In Table 2.1, the first two analyses have the same roots and POS tags as

“masal” and “NOUN”, respectively. But they are different in being accusative or

nominative and this tag difference causes a change in the meaning of the word. The

third analysis has a different root as “masa” and analysis has a derivational

boundary (DB) which means that a new word can be derived from the root with a

different affix (or different tag sequence) (+With) and this new word is an

adjective.

Table 2.2. Morphological analysis of the word “dolar” (Yildiz et al., 2016)
Word Analysis output

dolar dolar +Noun +3sg +Pnon +Nominative
on milyon dolar borcu var (has a debt of ten
million dollars)

dola +Verb +Positive +Aorist +3sg
ayağına dolar (she wraps to her foot)

dol +Verb +Positive +Aorist +3sg
bardak dolar (cup fills)

do +Noun +3pl +Pnon +Nominative Multiple
müzik notası (musical note)

In Table 2.2, analysis of the foreign word “dolar” can be seen. There are

four different roots as “dolar”, “dola”, “dol”, “do”. It is a good point to imply the

second and third analyses where they have the same tag sequence as “Verb

+Positive +Aorist +3sg”, a new word with a different meaning can be derived by

using the roots “dola” and “dol”. There is no limitation in analyze count of a

2. RELATED WORKS Enis ARSLAN

11

morphological analyzer, where derivation starts with all the possible words and

corresponding POS tags listed in the dictionary, and FSMs increase the analysis

count and sparsity by considering all the possible paths in automatas.

As mentioned before, when the morphological analyzer outputs a single

parse, the term is not ambiguous and when there is more than one candidate root

word or lemma in multiple parses, it can be said that the target word is ambiguous.

In this study “unambiguous word” term will be used for the words without

ambiguity and the “ambiguous word” term will be used for the ambiguous ones. As

an example, morphological analyzer generates one candidate lemma as “arabacı +

NOUN” for the word “arabacım”. On the other hand, two candidate lemmas can be

produced for the ambiguous word “kalemi” as “kale + NOUN” and “kalem +

NOUN”. Morphological analyzers or lemmatizers can only produce outputs

including roots, POS tags, morphological features (tags) without considering the

context of the target word. In order to resolve this kind of ambiguities, it is

essential to incorporate neighboring words of the target word in a text. Therefore, if

we consider each word in the text as a word-vector and each word-vector as a point

in space, dividing all points into two groups as “ambiguous” and “unambiguous”

may be useful in the disambiguation analysis.

2.1. Morphological Disambiguation of Turkish

Morphological disambiguation studies on agglutinative languages are

generally examined in four categories as rule-based, statistical, hybrid and machine

learning. Recent studies have been introduced on deep learning methods and

competitive results have been obtained when compared to the previous studies.

Previous studies for the Turkish language are based on rule-based (Oflazer

and Kuruöz 1994; Oflazer and Tür, 1997; Daybelge and Cicekli, 2007) and

statistical methods (Tür et al., 2002). Sometimes statistical methods can be used

together with machine-learning methods being called hybrid methods (Kutlu and

Cicekli, 2013). In the study, they have reported an accuracy rate of 93.4% in

2. RELATED WORKS Enis ARSLAN

12

morphological disambiguation using statistical data and handcrafted rules on a

dataset they created.

In the later studies, morphological disambiguation success is improved by

using machine learning methods and better results are obtained according to the

rule-based and statistical methods. In morphological disambiguation, the results

reported in Sak et al.’s (2007) study is considered state-of-the-art for Turkish. In

the study, a multilayer perceptron method, which votes n-gram models (Hakkani-

Tür et al., 2002) is presented with a success rate of 96.8%. When the same train

and test sets are used, this study overperformed with the value of 95.93% when

compared with the studies of Hakkani-Tür et al. (2002) and Yuret and Türe (2006).

Early work (Oflazer and Kuruöz, 1994; Oflazer and Tür, 1996; Oflazer and

Tür, 1997, Daybelge and Cicekli, 2007) on disambiguation is frequently presented

as rule-based approaches. These work rely on hand-crafted rules which generally

suffer from generality problem. Oflazer and Kuruöz, (1994)’s study is the earliest

study which uses constraint grammar approach by checking a target word’s

agreement with the syntactic and positional restrictions. Although this study

achieved reasonable results, the constraints were hand-crafted and further

improvement was impossible. In another study (Oflazer and Tür, 1996), they have

proposed a constraint-based approach that is capable to learn rules and statistics

from the corpus in an unsupervised way. The hand-crafted rules are language

independent. The process begins by applying the standard set of choose-delete

hand-crafted rules to the untagged corpus. While this procedure provides a level of

decrease in ambiguity, additionally, a learning mechanism works to induce more

choose-delete rules specific to the target language. Following this procedure, the

disambiguation procedure is as: the standard set of rules is applied to the same

untagged corpus, some parses are deleted by using context statistics and finally, the

newly learned rules are applied. In the study, they report a 96 to 97% accuracy in

disambiguation. Voting constraints (Oflazer and Tür, 1997) is another rule-based

approach where each rule has several constraints and a vote point. Voting is

2. RELATED WORKS Enis ARSLAN

13

achieved by giving high points to the most specific rules which have a high number

of constraints, the constraints with a high number of features, which have reference

to specific features. Rules are applied independently to all parses in the tokens of a

sentence. If a parse matches, all the constraints of a rule and the vote value is

incremented. Disambiguation is performed by selecting the highest-scoring parse

by considering the lowest scoring in a calculation.

An example of a hybrid approach (Kutlu and Cicekli, 2013) incorporates

statistics and constraints to their model in order to solve morphological ambiguity.

Their system includes two stages as training and disambiguation. Training corpus

is used to compose word and suffix tables which hold the most likely parses of the

words and suffixes according to their frequency values. All words in the training

corpus are pre-tagged by using these tables. A modified Brill tagger learns the

disambiguation rules from the corpus with many iterations by applying ten-fold

cross-validation. Disambiguation is achieved by using the statistics in word and

suffix tables, hand-crafted rules, rules learned by Brill tagger and heuristics.

Accuracy rate obtained by using this approach is given as 93.4%. When the final

IG of the word is considered, it reaches to 94.1%.

In statistical approaches, a probabilistic model is trained by using labeled

or unlabeled data and this model is used to tag a new text. The most well-known

study (Hakkani-Tür et al., 2002) for Turkish, which has a statistical approach

presents trigram models by splitting the words into inflectional groups (IG) to

handle data sparseness problem. In the study, they have developed and tested four

models. Hidden Markov models (HMM) technique is used to model the

morphological parses in a sentence by maximizing the posterior probability to

estimate the variables. The first model assumes that the root of a word is dependent

on the roots of the previous two words and at the same time the IG of the word

depends on the final IGs of the previous two words. The second model is the same

as the first model, except that, the last IG of the target word is dependent on the

previous IG of the same word. The third model has the same assumptions with the

2. RELATED WORKS Enis ARSLAN

14

second one, except that, the IG of a target word is independent of the last IGs of the

previous words. The last model is a Naïve Bayes model which assumes that the

previous two words’ IGs are independent of each other. In the training phase, two

types of probabilities are calculated independently from the training data as root

and IG probabilities. Two trigram models are used to estimate the root and IG

probabilities, and in runtime, a combination of these models and test data is used to

estimate the best sequence by using the Viterbi algorithm (Viterbi, 1967). They

have acquired the best accuracy value for the first model (93.95%) and the worst

value for the Naïve Bayes model as 88.85%. When errors of semantic features are

ignored, the accuracy increases to 95.07%.

Yuret and Türe (2006) propose a machine learning method, which

combines the rule-based methods with statistics. They have composed 126 distinct

decision lists for every 126 morphological features. Training subsets are selected

from 1 million training instances which consist of each morphological feature at

least once in their corresponding parse. Following that, these sets are divided into

two groups (positive and negative) where one group includes the morphological

feature in the correct parse and the other would not. Training starts with an empty

decision list and a default rule. Greedy Prepend Algorithm (GPA) applies a

window of size four by centering the target word. Although they have tried bigger

window sizes, there was no significant improvement in accuracy. Rule patterns are

discovered for each target word for each morphological feature. The rules are

ordered in a way that the decision list is ordered from the most specific rule to the

most general. GPA prepends each rule with the maximum gain to the top of the

lists. Gain is defined by the correct classification ratio while the rules prepend to

the lists. Convergence happens when there is no rule to be added to the lists.

Disambiguation is achieved by the product of decision list prediction possibilities

of each tag in the parse. This methodology is advantageous to handle unknown

words as being free of a dictionary. They have overcome data sparseness problem

2. RELATED WORKS Enis ARSLAN

15

by composing a single list for each morphological feature instead of processing

many tags. Accuracy reported in this study is given as 95.82%.

Another study (Sak et al, 2007), proposes a method, a variant of the

Perceptron algorithm which is a well-known machine learning method. They

model an ambiguous word into morphemic units, which consist of the roots and the

morphosyntactic tags. Their statistical baseline model is the same as in (Hakkani-

Tür et al., 2002). They have created various templates in this way, as the features to

be used in the perceptron algorithm. Perceptron learns weights for each instance by

estimating a parameter vector. Here, the input variables are the set of sentences

where the outputs are the parse sequences. For each input instance, the algorithm

finds the highest scoring candidate. If it is not the correct parse candidate it updates

the parameter vector by taking the difference of the correct candidate with the

highest scored one and increasing the parameter for the correct candidate. They

have split the dataset as training, development, and test where the training set is

used for parameter estimation and development test is used for feature extraction.

In the testing phase, they have used the same corpus used in (Yuret and Türe,

2006) and they have achieved an accuracy value of 96.45% by using the same

manually disambiguated test sets in (Hakkani-Tür et al., 2002; Yuret and Türe,

2006).

In Görgün and Yıldız (2011)’s study, morphological disambiguation

problem is defined as a multi-class classification problem. It is aimed to detect the

correct parse from N candidates of a word by ignoring the root words. Each distinct

parse is a class. The input set is composed of the feature sets of the two previous

neighbors and the correct class of the target word. Each feature set has 126

morphological features. The training set includes 1 million disambiguated tokens

with 50,673 sentences. Experiments are conducted for many classification

algorithms. They have achieved an accuracy value of 95.61% with the J48 tree

classifier slightly better than the baseline trigram model (Hakkani-Tür et al., 2002).

2. RELATED WORKS Enis ARSLAN

16

As an example of neural models, Yıldız et al. (2016) proposed a general-

purpose morphological disambiguation method and presented a Convolutional

neural network (CNN) in deep learning architecture that can be used for

morphologically rich languages. The neural network consists of two input layers

and one output layer. The first input layer includes word representations as

embeddings of roots and features. The second input layer incorporates the context

knowledge obtained from an n-word window, into the first layer embeddings. The

output layer, which is a softmax layer, calculates a classification score. In the

training set, the correct parse sequences in a three-word sized window are labeled

as positive whereas others are as negative. Stochastic gradient descent is used as

the training algorithm and AdaGrad for optimization. Because the network learns

as three-word windows, in inference time, all the calculations are made on the

neural network for three-word sequences. Morphological disambiguation is

achieved by using the Viterbi algorithm to select the best parse from the sentence

sequences. They have used the same dataset with Yuret and Türe (2006) and

manually tagged 20K of the tokens in the dataset to mitigate noise originating from

semi-supervised data. In this study, 85.18% accuracy rate was achieved for Turkish

which is higher than Sak et al. (2017) and Yuret and Türe (2006) as, 82.13% and

83.31%, respectively. The accuracy rates of these two studies appear to be low

when compared to their own studies, although they have used the same training set.

This is because they were tested with the test set prepared specifically for the study

of Yıldız et al. (2016).

A recently introduced study (Dayanık et al., 2018), MorphNet, combines

morphological analysis with a disambiguation model by using a sequence-to-

sequence recurrent neural network. Long Short Term Memory (LSTM) encoders

are used to encode three different embeddings. The first one (word encoder)

produces character-based embeddings by modeling the root of the target word as

character sequences and the tags as single units. The second encoder (word

encoder) encodes the previous and next neighbors of the target word by using bi-

2. RELATED WORKS Enis ARSLAN

17

directional LSTM to incorporate the context information to the model. The third

LSTM encoder (output encoder) is used to produce the embeddings by using the

analysis of the previous words, ignoring their roots. Decoder has two hidden LSTM

layers where the first layer includes the context information and the second layer

encodes the word and output embeddings. The decoder uses its hidden layer and

three encoders to learn and predict the correct output for the target word. In the

study, a new dataset named TrMor2018 is presented which is 97%+ accurate. They

state that the previously presented datasets have low accuracy because of the noise.

They have tested their morphological disambiguation model with TrMor2018 and

with the previous datasets. The highest accuracy is acquired with the TrMor2018

dataset as 98.30% and the accuracy of the test with TrMor2006 was 96.86%.

Shen et al. (2016), have introduced a bi-LSTM model which produces two

kinds of embeddings. The first embedding type is produced by using two different

bi-LSTMs to separately embed the root and the morphemes. These two

embeddings are concatenated with tanh function to produce the final embedding.

Another embedding type is context embedding, it can be produced in two different

methods. The first method (local) depends on the left and right neighbors of the

target word and the second method (global) uses all words in the sequence to

embed the context information. Finally, a softmax is used to combine the word

embeddings and context embeddings. Test results for the local context model and

global context model are 96.90% and 97.24%, respectively, which is slightly

higher than the state-of-the-art (Sak et al., 2007, 96.80%).

2.2. Learning Vector Quantization (LVQ) and NLP

LVQ algorithm has been successfully applied in some NLP research fields

like text classification (Umer and Khiyal, 2007; Visa et al., 2000; Martín-Valdivia

et al., 2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016),

language identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005)

and multi-word expressions recognition (Diaz-Galiano et al., 2004).

2. RELATED WORKS Enis ARSLAN

18

Martín-Valdivia et al. (2007) have applied LVQ to two tasks as text

categorization and word sense disambiguation (WSD). They have used REUTERS-

21578 dataset for text categorization and SENSEVAL-3 corpus for WSD. The

Kohonen layer they use doesn’t have hidden units but the network has one input

and one output layer. When they modelled LVQ for text categorization, inputs are

represented as terms in the documents and outputs of the network are categories.

They have composed of different networks for each context. The model they have

used for WSD has outputs as word senses. Umer and Khiyal (2007) use five

different variants of LVQ to classify the texts and researched the best performing

one. The tests between the LVQ variants are evaluated as 10-fold cross-validation.

Each LVQ variant provide similar results and their training times are near. But the

variant named OLVQ1 gives the best result. Performance of OLVQ1 is measured

with different classification algorithms in 5-fold cross-validation and OLVQ1

outperforms the k-NN, C4 and Naive Bayes algorithms in both classification

accuracy and running time. In (Pilevar et al., 2009), they have used LVQ for text

classification purpose. They have used a text collection of 1050 story news as

dataset and evaluated their tests for LVQ1, OLVQ1, LVQ 2.1, LVQ3 and OLVQ3

LVQ variants. OLVQ3 was compared with KNN and SVM algorithms and they

have reported that, LVQ outperforms these two classification algorithms in both

classification and time performance.

LVQ also has research in speech-recognition. In (Mantysalo et al., 1992)

they have used LVQ method for Finnish speaker-dependent speech-recognition. In

the study, they have aimed to measure the effect of high dimensions of context

vectors which represent the phoneme set of Finnish. The context vectors were

obtained by concatenating and averaging features in a time-domain. 99% of

accuracy value was obtained when short-time feature vectors were used. Also they

have realized that using high-dimensions as codebook vectors has positive effect

on accuracy. Haldar and Mishra (2016) have used LVQ for multi-lingual speech

recognition and language identification of English and Indian languages. They

2. RELATED WORKS Enis ARSLAN

19

have acquired a recognition rate between 88% and 90%. Gunawan et al. (2017)

presented a study for language identification of Arabic, Malay and Thai languages.

LVQ was preferred for its low complexity and computational costs and trained

with spectral frequencies. They have reported the recognition rate as 73.8%. Chuan

et al. (2005) have used LVQ algorithm for identifying spam emails. In the study,

LVQ algorithm provides a recall rate between 93.58% and 96.86% with 1500 times

training. LVQ outperforms Bayes-based approach. Diaz-Galiano et al. (2004) used

LVQ for multiword expression recognition and trained LVQ with CLEF 2001

database. They have acquired high precision values for information retrieval task.

2. RELATED WORKS Enis ARSLAN

20

3. MATERIALS Enis ARSLAN

21

3. MATERIALS

In this study, a morphological disambiguation framework is prepared

which follows steps from data preparation to training and testing. This framework

is a combination of several different tasks and materials. The block diagram of this

structure is given in Figure 3.1.

Figure 3.1. The block diagram of the system model of the study

The morphological analyzer (Yıldız et al. 2019) is the main tool used in the

diagram shown in Figure 3.1. This analyzer uses a standard tokenizer which treats

each word as a single token. However, this kind of analysis ignores the compound

words or other multi-words in the sentences and this leads to more ambiguity by

producing redundant parses. A better solution to this problem is to develop and

integrate a “multi-word tokenizer”. In this way, words in a sentence with spaces

between them can be recognized as multi-word tokens. Moreover, the

morphological analyzer dictionary (especially in terms of non-existing n-grams,

compound words) is updated using the dictionary data of “Güncel Sözlük”

published by the Turkish Language Association (TLA) to decrease out-of-

vocabulary (OOV) rate.

Steps shown in Figure 3.1 begin with tokenization. We have developed a

multi-word tokenizer and integrated it into a morphological analyzer. A sample

sentence is given below:

“Öğrenci kalemi masasından alarak koşar adım tahtaya doğru yürüdü.”

3. MATERIALS Enis ARSLAN

22

After the processing of the multi-word tokenizer the tokens in the sentence

will be as:

“Öğrenci” “kalemi” “masasından” “alarak” “koşar adım” “tahtaya”

“doğru” “yürüdü”

The tokens are analyzed in the morphological analyzer and parse outputs

are grouped in the output as “lemma + POS”. After this process the parse groups

will be as:

“öğrenci+NOUN” (“kalem+NOUN”,”kale+NOUN”) “masa+NOUN”

“al+VERB” “koşar adım+ADV” “tahta+NOUN” “doğru+ADV” “yürü+VERB”

These parse groups are stored in a NoSQL database in JSON format,

maintaining their relations in the sentences and texts. The main purpose of using a

morphological analyzer in this framework is to define which word is ambiguous

and identify its lemma candidates. The two steps are implemented as a batch job

and it can be thought of as a pre-processing step before tagging. In the third step,

these pre-analyzed sentences are introduced to an Expert with the help of a tagger

tool (which is developed in this study). After Expert tagging the disambiguated

sentence will be as:

“öğrenci+NOUN” “kalem+NOUN” “masa+NOUN” “al+VERB” “koşar

adım+ADV” “tahta+NOUN” “doğru+ADV” “yürü+VERB”

Expert freely tags the tokens listed by the program. The expert can change

the lemma of the token if it is incorrectly lemmatized by the morphological

analyzer. When an ambiguous word token is considered, Expert lemmatizes it with

the correct POS tag and lemma, in this way disambiguates. All the actions of the

3. MATERIALS Enis ARSLAN

23

Expert are updated on JSON structures retrieved from the database. In the fourth

step, a special format of the dataset is prepared for each text, including a line for

each ambiguous word. In the fifth step, in order to solve ambiguities, this new

dataset is used in Learning Word-vector Quantization (LWQ) algorithm, to

compose word-vectors and train. Finally, the test accuracy of the LWQ method is

measured and interpreted by using a disambiguated dataset.

Details of the materials used in the framework are given in the following

sections. LWQ is developed in the inspiration of a well-known algorithm LVQ.

Because of that, details about the original LVQ algorithm and its variants in the

literature are also given below.

3.1. LVQ (Learning Vector Quantization) Algorithm

LVQ algorithm is a reinforcement learning algorithm which is developed

by Kohonen (Kohonen, 1984) to solve the classification problems. There are

variations for the LVQ algorithm. These are LVQ1 (Kohonen, 1984), LVQ2

(Kohonen, 1990a; Kohonen 1990c), LVQ3 (Kohonen, 1990b), OLVQ1 (Kohonen,

1992), LVQ Algorithm with Penalization Mechanism (De Sieno, 1988) and LVQ-

X (Öztemel, 1992) Algorithm.

3.1.1. LVQ1 Algorithm (Kohonen, 1984)

The main purpose of the LVQ algorithm is to represent a set of input vectors

with a set of reference vectors. Learning process is used to decide which input

vector belongs to which reference vector class. Output values are decided in a

“winner takes all” strategy.

Learning process is implemented on an LVQ network with 3 layers. These

are:

3. MATERIALS Enis ARSLAN

24

 Input Layer: The samples used for training exist in this layer. No

processing occurs here.

 Kohonen Layer: This is the intermediate layer which keeps the

processing elements. These elements are represented by reference

vectors which consist of the weight values obtained by mapping of the

input vectors in the Input Layer

 Output Layer: This layer is used to identify the class of the input.

 The topology of the LVQ network is shown in Figure 3.2.

Figure 3.2. LVQ network model (Öztemel, 2012)

As seen in Figure 3.2, all processing elements of the input layer are

connected to the processing elements of the Kohonen layer. On the other hand,

some of the elements of the Kohonen layer are connected to a single element in the

Output layer. Each element of the Kohonen layer belongs to one class. The weight

values (α) between the Kohonen layer and the Output layer are binary values (0,1)

and cannot be changed. In each iteration of the training processing, elements in the

3. MATERIALS Enis ARSLAN

25

Kohonen layer race each other. The procedure for the LVQ network is as (Öztemel,

1992):

1. Define the samples

2. Define the network topology

3. Define the network parameters, i.e. learning rate

4. Define the initial weight values

5. Take a sample from the input set and direct to the network

6. Find the winning processing element

7. Change the weight values

8. Repeat steps (5-7) until all the samples are classified correctly

The performance of an LVQ network is dependent on the count of the

reference vectors, starting values and the adjustment of the learning rate. These are

all defined by experience and there are no rules. Learning rate should descend till

zero. Learning rule of the LVQ network is called Kohonen learning rule. Basically,

it depends on the racing of the elements in the Kohonen layer. The race starts with

the calculation of the weight values between the input elements and racing

elements by using Euclidian distance as in (3.1).

𝑑𝑖𝑠𝑡𝑖 = |𝑉𝑖 − 𝑋| = √∑(𝑉𝑖𝑗 − 𝑥𝑗)
2

𝑗

(3.1)

Where Vij and xj represent the weight vector of the reference vector and the

input vector for the value j respectively. This distance value (dist) is calculated for

all the reference vectors. The lowest value for dist represents the nearest reference

vector to the input vector. This reference vector for the processing element is the

3. MATERIALS Enis ARSLAN

26

winner and only its weight values are recalculated in the recent iteration. The

recalculation rule is as follows:

 Winner processing elements belong to the correct class. When this happens

the weight values are approximated to the input vector as in the following

formula 3.2.

𝑉𝑦 = 𝑉𝑒 + 𝜆(𝑋 − 𝑉𝑒) (3.2)

 Winner processing elements belong to the incorrect class. When this happens

the weight values are approximated to the input vector as in Equation 3.3.

𝑉𝑦 = 𝑉𝑒 − 𝜆(𝑋 − 𝑉𝑒) (3.3)

For both formulas in Eq. (3.2) and Eq. (3.3) λ is the learning rate, Ve is the

current value of the reference vector, Vy is the next value of the reference vector

and X is the input vector. As seen in Fig 3.3 nearest reference vector to the input

vector X is V1.

Figure 3.3. Nearest vector to the input vector (Öztemel, 2012)

3. MATERIALS Enis ARSLAN

27

Fig 3.4 shows the steps for the approximation of vectors X and V1. As the

learning rate decreases by the following iterations, it converges to 0. This situation

is represented in Fig. 3.4.

Figure 3.4. Approximation of the input vector to the reference vector (Öztemel,

2012)

When this parameter gets the 0 value, the network overtrains and forgets

what it learns. Also sometimes the same reference vectors over wins. There are

also problems with boundary values. These disadvantages for the standard LVQ

algorithm (LVQ1) can be overcome by different adaptations of the algorithm as

described in the following section.

3.1.2. LVQ2 Algorithm (Kohonen, 1990a; Kohonen 1990c)

LVQ2 algorithm was developed to prevent the incorrect classification

which occurs in the boundaries of the classes. The idea is to update the weight

values of the two vectors which are between the input vectors. There are two

conditions to be met. When we call V1 and V2 as the nearest vectors to the input

vector X;

1. V1 is the nearest vector V2 is the second nearest vector and V1 belongs

to the incorrect class and V2 belongs to the correct class.

3. MATERIALS Enis ARSLAN

28

2. X input vector resides between V1 and V2 in a window w

When these two conditions are met, the new values of V1 and V2 are V1y

and V2y respectively. The formulations for these calculations are shown in formulas

3.4 and 3.5.

𝑉1𝑦 = 𝑉1𝑒 − 𝜆(𝑋 − 𝑉1𝑒) (3.4)

𝑉2𝑦 = 𝑉2𝑒 + 𝜆(𝑋 − 𝑉2𝑒) (3.5)

where λ is the learning rate, V1e and V2e are the current values of the

reference vectors. To guarantee the X input vector to be between the reference

vectors, the condition in Formula 3.6 should be met.

𝑀𝑖𝑛 (
𝑑1

𝑑2
,
𝑑2

𝑑1
) > 𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠 =

(1 − 𝑤)

(1 + 𝑤)

(3.6)

where d1 is the distance of the vector V1 and d2 is the distance of the vector

V2 to the input vector X and w is the window length. An example of LVQ2, which

shows the behavior of the reference vectors is shown in Fig 3.5.

Figure 3.5. Schematic view of LVQ2 algorithm (Öztemel, 2012)

3. MATERIALS Enis ARSLAN

29

In Fig 3.5, it can be seen that vector V1 is going further and vector V2 is

getting closer to input vector X.

3.1.3. LVQ3 Algorithm (Kohonen, 1990b)

In the LVQ2 algorithm, vector V1 differentially changes in an uncontrolled

way. To keep this vector approximate to the correct class distribution, the LVQ3

algorithm is proposed. Additional to the conditions in LVQ2, when the closest

reference vectors are in the same class, the formula for the calculation should be as

in Equation 3.7.

𝑉𝑘𝑦 = 𝑉𝑘𝑒 + 𝜀(𝑋 − 𝑉𝑘𝑒) 𝑓𝑜𝑟 𝑘 ∈ {1,2} (3.7)

where 𝜀 parameter is constant and a value between 0.1 and 0.5 is proposed.

This parameter gets smaller when the window gets narrower. LVQ provides the

optimal place of the vector V1.

3.1.4. LVQ Algorithm with Penalization Mechanism (De Sieno, 1988)

In the standard LVQ algorithm, some of the weight vectors win frequently

and this leads to an unbalanced network. When this happens, some of the weight

vectors are unable to be a reference vector for the input. Penalization mechanism

proposed by De Sieno (1988) solves this problem by penalizing the frequent

winner vector and prevents it to win recurrently. This mechanism runs by adding a

b value to the distance (d) of this vector with the input vector. b value is

determined by how many times the winner wins. The amount to be added to the d

for the ith processing unit is determined by the Equation in 3.8.

𝑏𝑖 = 𝐶(𝑝𝑖 +
1

𝑁
)

(3.8)

3. MATERIALS Enis ARSLAN

30

𝑝𝑦
𝑖 = 𝑝𝑒

𝑖 + 𝐵(𝑦𝑖 − 𝑝𝑒
𝑖) (3.9)

where, in Equation 3.8, C is a constant determined by the designer. N

represents the processing element count in the Kohonen layer. And pi is the

possibility of the ith element to win the race. The initial value of pi is 1/N and it is

updated according to the rule in 3.9.

In Equation 3.9, py is the new possibility, pe is the recent possibility value

in order to win the race. B is a constant value and yi is the output value and

calculated as in 3.10.

𝑦𝑖 = {
1 𝐼𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑤𝑖𝑛𝑠
𝑂 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.10)

In each iteration, b value is calculated for each processing element and

added to the distance between this element and input reference vector as in 3.11.

𝑑𝑦
𝑖 = 𝑑𝑒

𝑖 + 𝑏𝑖 (3.11)

where de is the current distance, dy is the new value of the weight vector

calculated according to the winning possibility. Race within the Kohonen layer

occurs with the new distance values. Thus frequent winner is penalized and the

other elements have the chance to win.

3.1.5. LVQ-X Algorithm (Öztemel, 1992)

LVQ-X algorithm is another variant of the LVQ algorithm where it

changes the value of the two weight vectors in each iteration. LVQ2 also changes

two boundary vectors but this happens seldom. This algorithm is developed by

Öztemel (1992) and provides shorter learning time and increases generality. This is

achieved by determining two winning vectors in each iteration. These are:

3. MATERIALS Enis ARSLAN

31

 Global winner: Represents the nearest process element to the input

vector.

 Local winner: Represents the process element which belongs to the

correct class and nearest to the input vector.

𝑉𝑦 = 𝑉𝑒 − 𝜆(𝑋 − 𝑉𝑒) (3.12)

𝑉𝑦 = 𝑉𝑒 + 𝜆(𝑋 − 𝑉𝑒) (3.13)

When the global winner vector is incorrect class it gets further from the

input vector as in 3.12. At the same time, the local winner vector gets closer to the

input vector as in 3.13.

3.2. Dataset

In this section, brief information is given about the datasets used for the

morphological disambiguation of Turkish. Also, detailed information is presented

about the dataset prepared for this study. At the end of the section, details are given

about the materials which are developed and used for the preparation of the dataset.

Before going into the subsections, a summary of the training datasets used in

morphological disambiguation of Turkish are given in Table 3.1

Table 3.1. Training datasets used in morphological disambiguation of Turkish
Study Training

Dataset
Dataset Details

Yuret and Türe (2006) TrMor2006 Yuret
and Türe (2006)

1 million words from
semi-automatically

disambiguated Turkish
news text

Sak et al. (2007)

Görgün and Yıldız (2011)

Yildiz et al. (2016)

Shen et al. (2016)

Dayanık et al. (2018) TrMor2018
Dayanık et al.

(2018)

460,663 words from
semi-automatically

disambiguated Turkish
news text

3. MATERIALS Enis ARSLAN

32

TrMor2006 dataset is extracted from 2,386 documents which include

50,716 sentences. On the other hand, TrMor2018 dataset is extracted from 390

documents which consist of 34,673 sentences. In our knowledge, most of the

studies have used the TrMor2006 dataset and most of the time both as training and

test datasets. Recently, TrMor2018 is presented and used in the same study

(Dayanık et al., 2018) for morphological disambiguation.

3.2.1. Statistics of the Datasets for Morphological Disambiguation of Turkish

In the literature, various datasets for morphological disambiguation of the

Turkish language are presented. The well-known datasets are TrMor2006 (Yuret

and Türe, 2006), TrMor2016 (Yildiz et al. 2016) and TrMor2018 (Dayanık et al.,

2018) are produced and introduced as semi-supervised. TrMor2016 has the same

train set as TrMor2006. But it includes a different test set. Statistics related to these

datasets are given in Table 3.2.

Table 3.2. Datasets prepared for morphological disambiguation of Turkish
 (# of tokens) Ambiguous Unambiguous Total

Train Test Train Test Train Test

 TrMor2006  398,290  379  439,234  483  837,524  862

 TrMor2016  398,290  9,460  439,234  9,802  837,524  19,262

 TrMor2018  215,024  21,477  243,866  25,166  458,890  46,643

In Table 3.2, disambiguated Turkish datasets given in Table 3.1 are given

in more detail with ambiguity situation and the amounts used for training or test.

There is no data consistency of information regarding the datasets listed in Table

3.2. For the recently presented TrMor2018 (Dayanık et al., 2018) dataset, 2,090

sentences and 28,909 words are selected from the previous version (TrMor2006).

The data noise level was then measured and reported as 3%. This information

contributes to measurability in the studies to be carried out by using this dataset.

3. MATERIALS Enis ARSLAN

33

Since TrMor2018 has not been presented during our study, and since the previous

dataset (Yuret and Türe, 2006) was prepared in a semi-supervised way with

reliability concerns, we have decided to create our dataset to obtain more reliable

results. Expert tagging on Turkish texts is performed to guarantee data consistency

in the production of this dataset. Details about the statistics and preparation steps

are given in the following sections.

3.2.2. Statistics of the Dataset Prepared for This Study

The statistics related to the dataset prepared and used in this study are shown

in Table 3.3.

Table 3.3. Statistics of the supervised dataset prepared for this study (# of tokens)

 (Train)  Ambiguous  Unambiguous  Total

 Dataset  14,806  21,721  36,527

As seen in Table 3.3, the disambiguated dataset prepared for this study

includes 36,527 tokens and the token ambiguity rate is 40.5%. We have manually

collected Turkish news and novel texts from the Web, in order to ensure that the

dataset has a balance in context. News texts refer to the information on a certain

event in the related day. 216 news texts and 3 novel texts are collected. The total

number of sentences for the whole dataset is 5,723. 3,149 of them are news texts

and the remaining part is from novels.

3.2.3. Dataset Preparation

Dataset preparation steps include the text pre-processing and

morphological analysis steps. All texts are pre-processed and cleaned as described

below:

3. MATERIALS Enis ARSLAN

34

i. Split texts to sentences with Turkish NLTK Punkt (Kiss and Strunk,

2006) function.

ii. Remove sentences with less than 20 characters (for example dialogues

in novel texts)

iii. Remove punctuation marks and numbers.

iv. Trim white spaces between the words in the sentences and at the start

and end of the sentence.

v. Insert all sentences into a MongoDB NoSQL database with their

corresponding texts.

The next step in the data preparation phase is, to use the morphological

analyzer to parse pre-processed sentences for determining the ambiguity status of a

word. The morphological analyzer (Yıldız et al., 2019) processes all sentences in

the MongoDB database and saves the outputs in the same database collections.

This is a pre-condition to be completed before Expert tagging. The parsing steps

are described below:

i. Select a sentence from the MongoDB database and tokenize it with

the multi-word tokenizer in morphological analyzer.

ii. Process each token with the morphological analyzer and define its

status (ambiguous, unambiguous or OOV). If the word is ambiguous

save its correct lemma as “dummy” and save its candidates in the

database. If the word is unambiguous save its lemma and POS tag (All

data structures are in JSON format).

iii. Go to Step i

The morphological analyzer output is in inflectional group (IG) structure,

including the morphological tags and standard POS labels used for Turkish. In the

scope of this study, the morphological analyzer output is configured to group parse

3. MATERIALS Enis ARSLAN

35

lists as “lemma + POS”. There are three kinds of parse outputs provided by the

morphological analyzer. If there is only one distinct parse output (“lemma + POS”)

this indicates there is no ambiguity for the corresponding token. If there are more

than one parse outputs, there is ambiguity for the token. In this study, for the first

case, the “unambiguous word” term and for the second case “ambiguous word”

term will be used respectively. In case, no parse occurs, the morphological analyzer

is unable to find a lemma for the token (out-of-vocabulary) and this is out of the

scope of the study. In this case, the relevant token is ignored.

A JSON sample which represents a sentence processed by the

morphological analyzer is given below:

{
 "_id" : ObjectId("5cb2422a29101b3c3468a589"),
 "Cumle" : "bir grup milletvekilinin İngilterenin ABden
ayrılmasını önlemeye dönük yasa bir oy farkla onaylanmıştı",
 "IsTagged" : true,
 "Text_ID" : ObjectId("5cb23d87f30c8c3d380f60b4"),
 "Tokens" : [
 {
 "UserId" : ObjectId("5c028e2c9ccc334b60414db0"),
 "TaggedTokens" : [
 {
 "token" : "bir",
 "lemma" : "bir",
 "tag" : "ADJ",
 "flag" : "1#bir+DET#bir+NOUN"
 },
 {
 "token" : "grup",
 "lemma" : "grup",
 "tag" : "NOUN",
 "flag" : "0#grup+NOUN"
 },
 {
 "token" : "milletvekilinin",
 "lemma" : "milletvekili",
 "tag" : "NOUN",
 "flag" : "0#milletvekil+NOUN"
 },

3. MATERIALS Enis ARSLAN

36

 {
 "token" : "ingilterenin",
 "lemma" : "ingiltere",
 "tag" : "NOUN",
 "flag" : "0#ingiltere+NOUN"
 },
 {
 "token" : "abden",
 "lemma" : "ab",
 "tag" : "NOUN",
 "flag" : "0#ab+NOUN"
 },

 {
 "token" : "ayrılmasını",
 "lemma" : "ayrıl",
 "tag" : "VERB",
 "flag" : "1#ayrıl+VERB#ayrılma+NOUN#ayır+VERB"
 },
 {
 "token" : "önlemeye",
 "lemma" : "önle",
 "tag" : "VERB",
 "flag" : "0#önle+VERB"
 },
 {
 "token" : "dönük",
 "lemma" : "dönük",
 "tag" : "ADJ",
 "flag" : "0#dönük+NOUN"
 },
 {
 "token" : "yasa",
 "lemma" : "yasa",
 "tag" : "NOUN",
 "flag" : "0#yasa+NOUN"
 },
 {
 "token" : "bir",
 "lemma" : "bir",
 "tag" : "PUNC",
 "flag" : "1#bir+DET#bir+NOUN"
 },
 {
 "token" : "oy",
 "lemma" : "oy",

3. MATERIALS Enis ARSLAN

37

 "tag" : "NOUN",
 "flag" : "1#oy+NOUN#oy+VERB"
 },
 {
 "token" : "farkla",
 "lemma" : "fark",
 "tag" : "NOUN",
 "flag" : "0#fark+NOUN"
 },
 {
 "token" : "onaylanmıştı",
 "lemma" : "onayla",
 "tag" : "VERB",
 "flag" : "1#onay+NOUN#onayla+VERB"
 }
]
 }

]

This JSON tagged sentence example is taken from the MongoDB database.

The “token” field is the output of the tokenizer which is a function of the

morphological analyzer. The “lemma”, “tag” and “flag” fields include the parts of

the parse lists. When the “flag” field starts with “0”, this indicates there is only one

lemma candidate for the token and token is unambiguous. If the “flag” field starts

with “1”, the following part of the field includes the lemma candidates of an

ambiguous word. Sometimes the “flag” field starts with “2”. This represents the

case where the token is unknown due to being an OOV. It is impossible for the

morphological analyzer to select the correct candidate for ambiguous words from

the parse options. Because of this, in the beginning, “dummy” is written for the

“lemma” and “tag” fields. During tagging, these fields are filled by the Expert. For

example, the last token of the sentence is “onaylanmıştı”. Morphological analyzer

parse produces two lemma candidates as “onay + NOUN” and “onayla + VERB”.

The initial values of “lemma” and “tag” fields are “dummy”. After tagging, these

fields are filled by the correct candidate as “onayla” and “VERB” as seen in the

JSON example.

3. MATERIALS Enis ARSLAN

38

3.2.4. Tagging Application

The main purpose of the expert tagging process is to select the correct

lemmas of ambiguous words with human knowledge. Analyzing the condition of

the ambiguous word in the sentence helps in selecting the correct lemma from the

candidates. In the beginning, the data preparation phase should be completed in

order to start the tagging process. The tagging process is achieved by using a tagger

tool to label each ambiguous token. For this purpose, we have prepared a web-

based tagger tool in .NET C#. The tagging tool presents the texts and their

corresponding sentences in the MongoDB database to the Expert. The Expert

selects the correct lemma candidates and POS tags of the ambiguous words and

these selections are saved to the database. An example screen of the tagger tool is

shown in Figure 3.6.

Figure 3.6. “Texts” screen of the tagger tool

Figure 3.6 shows a screen for the texts stored in the MongoDB database.

“Cümleler” button lists all the corresponding sentences of the text. “Etiketli

Cümleler” lists the sentences of this text which are tagged by the Expert. Figure 3.7

shows the Sentences screen when the “Cümleler” button is clicked.

3. MATERIALS Enis ARSLAN

39

Figure 3.7. “Sentences” screen of the tagger tool

In Figure 3.7, tagging starts by clicking the “Etiketle” button. By clicking

the “Etiketle Güncelle” button Expert can update the lemma and tag information of

the tokens in a pre-tagged sentence. Figure 3.8 shows “tokens” view before

tagging.

Figure 3.8. “Tokens” screen of the tagger tool

The database stores the tokens as single units provided by the

morphological analyzer. In some cases, the lemma of a compound word may not

available in the dictionary, so tokens are shown as separate tokens on the screen.

For example, the “faltaşı”, “gibi” and “aç” tokens are a part of a phrase and seen in

Figure 3.8 will be shown to Expert as a single unit if it exists in the dictionary of

the morphological analyzer as “faltaşı gibi aç” which is the lemma of the inflected

word “faltaşı gibi açıyor”. However, since the compound verb “faltaşı gibi açmak”

3. MATERIALS Enis ARSLAN

40

is not present in the dictionary, the Expert is expected to combine these tokens on

the screen. The merging of the units by the expert is shown in Figure 3.9.

Figure 3.9. Merging tokens in the tagger tool

The tokens shown in Figure 3.8 can be combined any time to form new

compound words. These compound words can be added to the morphological

analyzer dictionary after Expert control. Thus, the dictionary can be enriched.

Following the tokenization step, lemmatization and POS tagging begin as shown in

Figure 3.10.

Figure 3.10. Tagger tool lemmatization and POS tagging screen

In Figure 3.10, the lemma and POS tag are selected by the Expert. The

Expert does not know about the lemma candidates of a word stored in the database.

The POS tag types listed here are exactly the same as the POS tag types used by

the morphological analyzer to provide consistency.

3. MATERIALS Enis ARSLAN

41

3.3. Morphological Analyzer (Yıldız et al., 2019)

A morphological analyzer, which was recently presented by Yıldız et al.

(2019), is used in this study. When the codes of morphological analyzer were

examined in detail, it was observed that the Finite State Machines (FSM) presented

for Turkish by Oflazer (1994) was modified and used in the morphological

analyzer. Additional gates are added to the verbal FSMs, specifically to match

certain flags in the dictionary. Also, it can be seen that a detailed dictionary has

been prepared for the morphological analyzer Yıldız et al. (2019). Accuracy tests

are performed for morphological analyzer as its original version and the results are

presented in Table 3.4.

Table 3.4. Accuracy test results of the ‘Morphological Analyzer’

Word count 28,863

Correctly lemmatized with the
exact result

22,640

Incorrect lemmatization 95

Ambiguous words 6,128

Lemmatization Accuracy 99.6% *

*When ambiguity is ignored

In Table 3.4 we provide the accuracy results of the morphological analyzer

tested with a supervised dataset. The words used for lemmatization are provided

from a dataset presented by Tahiroğlu B.T. (2014). This dataset is in <word,

lemma> format. where “word” is any word and “lemma” denotes its lemma

defined by the Expert who prepares the dataset. In Table 3.4, “Correctly

lemmatized with exact result” shows the results when the “word” in <word,

lemma> is given as input and the output of the morphological analyzer exactly

matches with the “lemma” in the tuple. Ambiguity is ignored with removing the

3. MATERIALS Enis ARSLAN

42

6,128 words from the 28,863 total. In this case, 22,640 unambiguous words are

correctly lemmatized and lemmatization accuracy was 99.6%.

The running time performance of the morphological analyzer is also

measured and the results are given in Table 3.5 as its original version. The dataset

used for the test is acquired from (Sezer T, 2017) which consists of Turkish news

data.

Table 3.5. Time performance of the ‘Morphological Analyzer’

Token count 22,785,894

Sentence count 1,552,495

Total parse time 125 seconds

As seen in Table 3.5, the morphological analyzer can parse nearly 22

million tokens approximately in 2 minutes.

We have realized that compound words are missed in the dictionary used

by the morphological analyzer. Because of that, units (words) of a compound word

are treated as separate tokens in tokenization and this contributes to overall

ambiguity. In order to prevent this kind of ambiguity, 29,829 compound words in

the TLA dictionary are added to the morphological analyzer dictionary and

analyzer is used in this way.

The FSMs embedded in the morphological analyzer include derivational

affixes with the inflectional affixes in their designs. Like many other

morphological analyzers, while composing the parse outputs, they use both types

of affixes together. Because of that, more parse candidates are produced by

including the root forms of the lemmas in the same parse. This is sometimes one of

the causes of ambiguity originated by the morphological analyzer. An example of

this case is given in Figure 3.11.

3. MATERIALS Enis ARSLAN

43

Figure 3.11. Parse output for the word "düzenlenecek"

Figure 3.11 shows the analysis made by morphological analyzer for the

word “düzenlenecek”. As a result of the fact that FSMs processed the “-n”

derivational suffix with passivity there can be seen many lemma root words like

“düzenle”, “düzen” and “düz” in the parse outputs; which causes ambiguity. The

parse output should be one instead of many and should contain the correct lemma

as “düzenlen” with the corresponding POS tag (VERB).

3. MATERIALS Enis ARSLAN

44

4. METHODS Enis ARSLAN

45

4. METHODS

In this section, we give the details of the proposed classification algorithm,

Learning Word-vector quantization (LWQ), which is an adaptation of the well-

known classification algorithm Learning Vector Quantization (LVQ). Also, the

multi-word tokenizer we that we have developed is explained with an example.

Finally, our approach to the identification of OOV words in texts is given.

4.1. Proposed Morphological Disambiguation Method – LWQ

We have developed LWQ, in inspiration of the LVQ method, to solve the

morphological disambiguation problem. The relations of word-vectors that belong

to different classes are modeled by adjusting their positions in a vector space with a

reward-or-penalize strategy.

The data model is prepared by dividing a sentence or text into segments by

applying a window of width w to an ambiguous word. The idea is, to collect w/2

unambiguous neighboring words from both the right and left sides of the target

word (ambiguous word). Lemmas of each unambiguous word that enter the

window compose “motion pairs” with the lemma candidates of the ambiguous

word. Figure 4.1 illustrates how a window with a size of 4 is applied to an example

sentence.

4. METHODS Enis ARSLAN

46

Figure 4.1. A sample sentence for a window-size=4

In Figure 4.1, B1 and B2 represent unambiguous words within the window,

and G1 and G2 represent the lemma candidates of the ambiguous word. The

application of a window in the study is applied by selecting an equal number of

unambiguous words from the right and left of the target ambiguous word. Since

each text in the corpus is evaluated separately (not all sentences of the texts are

consecutively linked), the window implementation in the last sentence of each text

is performed as in Figure 4.1.

Once the dataset is prepared, two distinct vocabularies for the ambiguous

and unambiguous word lemmas are created. Word-elements in these vocabularies

are randomly located in a vector-space. Vector size is defined by the user. After

that, the training steps begin with a distance-based classification test. This test is

performed separately for each row in the dataset. In the dataset row, the ambiguous

word’s lemma candidate (Gi), whose sum of the distances to w unambiguous words

(Bj) is closest, wins the test. Mathematically, argmin
1≤𝑖≤𝑚

(∑ ‖𝐺𝑖 − 𝐵𝑗‖𝑤
𝑗=1) calculates

all the candidates’ distances for each ambiguous word. If the winner is the correct

candidate, training passes to the next row of the dataset without updating.

Otherwise, the candidate who is required to win is subject to approximation and

other candidates are subject to departure in vector space. All the possible

4. METHODS Enis ARSLAN

47

relationships that can be established for the example sentence given above can be

modeled on a complete bipartite graph when unambiguous word lemmas are

represented as one set and ambiguous word lemmas as the other set. The elements

of each set only establish relations with the elements of the other group as (B1, G1),

(B1, G2), (B2, G1), (B2, G2), in the form of “motion pairs”. The distance-based

classification tests for each ambiguous candidate are shown as “motion pairs” as in

Figure 4.2.

Figure 4.2. Distance-based classification test for a sample sentence

In Figure 4.2, blue circles represent the unambiguous (B1 and B2) and green

circles represent the ambiguous lemma candidates of a word as (G1 and G2).

According to the distance-based classification test, the candidate G1 is more distant

than the G2 candidate (D11+D12>D21+D22). Therefore, G2 (kapan+NOUN) is chosen

as the solution to the ambiguity. However, according to the example sentence, for

the ambiguous word “kapandı”, the correct lemma candidate must be G1 (kapan +

VERB). Reward-or-Penalize step is applied to related word-vectors to solve this

error. Accordingly, the LWQ algorithm tends to move each word-vectors of the

(B1, G1) ve (B2, G1) pairs closer and (B1, G2) ve (B2, G2) pairs further. In terms of

ease of representation, in the study, approximating “motion pairs” and departing

4. METHODS Enis ARSLAN

48

“motion pairs” are shown as (B1, G1, +1), (B1, G2, -1) respectively. Figure 4.3

shows the reward mechanism for the sample sentence.

Figure 4.3. Rewarding steps in training for a sample sentence

The rewarding phase shown in Figure 4.3 depicts the approximation of the

correct lemma candidate (G1) (selected by the Expert) to the unambiguous lemmas

(B1 and B2). This amount of approximation is determined by the learning ratio ()

and gradually reduced until convergence occurs. The mathematical representation

of this rewarding movement is represented as (4.1).

𝐵1(𝑡 + 1) = 𝐵1(𝑡) − 𝜂(𝐵1(𝑡) − 𝐺1(𝑡))

 (4.1)

 𝐺1(𝑡 + 1) = 𝐺1(𝑡) + 𝜂(𝐵1(𝑡) − 𝐺1(𝑡))

Similarly, the LWQ also has a penalization phase, and this step is shown in

Figure 4.4 for the example sentence.

4. METHODS Enis ARSLAN

49

Figure 4.4. Penalization steps for the training in a sample sentence

In the penalization phase shown in Figure 4.4, lemma candidates (G2)

which are not the correct lemma candidate and unambiguous word lemmas (B1 and

B2) are departed from each other. Process calculations are shown in (4.2), which

are obtained by changing the direction of the signs in (4.1).

𝐵1(𝑡 + 1) = 𝐵1(𝑡) + 𝜂(𝐵1(𝑡) − 𝐺2(𝑡))

 (4.2)

 𝐺2(𝑡 + 1) = 𝐺2(𝑡) − 𝜂(𝐵1(𝑡) − 𝐺2(𝑡))

Using directional distances between motion pairs, both vectors take a step

toward each other in  (eta) value. Convergence control is performed with the

script given below.

if S(t)  S(t-1) {

 cnt = cnt + 1;

 eta = eta / 2;

 if cnt > 5 break;

 }

4. METHODS Enis ARSLAN

50

S(t) is the last obtained success (correct classification ratio) in training, S(t-

1) is the previous one. The lack of improvement in training achievement in

convergence control is compensated by dividing the learning rate into two. If this

repeats five times, training is terminated.

When all “motion pairs” in the prepared training datasets are listed

separately, it is observed that some pairs consistently approximate or depart.

Suppose that, the unambiguous word BX and the ambiguous word lemma candidate

GY should pass together on two different rows of the train set. In the first row, GY is

the correct candidate and in the second row, it is the incorrect candidate.

Accordingly, one of the “motion pairs” prepared for the first row of the train

dataset will be (BX, GY, +1) and for the second row, it will be (BX, GY, -1).

Considering the characteristic training logic of the LWQ algorithm, it can be said

that these two motion pairs will create instability. Because they neutralize each

other, these type of “motion pairs” are called “ineffective motion pairs” in this

study. These pairs are excluded from training datasets by considering that they

could not contribute to training. For this purpose, a simple training dataset is

prepared by selecting w=2 since a maximum number of “motion pairs” from the

training dataset can be obtained. “Ineffective motion pairs” are determined by

using this dataset. The lemmas constituting these pairs are collected from the

“motion pair” data structure and saved in a list called “ineffective lemma list”. LF

term is used for “ineffective lemma list”. Then, when training datasets are

prepared, these ineffective lemmas are used to filter unambiguous words’ lemmas.

Thus, it is ensured that no ineffective lemmas are present which behave as stop-list

in LWQ training.

The processing steps of the proposed system (data preparation, LWQ

training) are given below.

1. Request window width (w) as input.

4. METHODS Enis ARSLAN

51

2. Select two unambiguous words around the target ambiguous word for

the given window width (by ignoring the unambiguous words in the

filter list (LF)). Add them into the dataset as a new row. The added

row will be in (B1,B2,...Bw : G1,G2,...,Gm). Here, the terms Bi are

unambiguous word lemmas (lemma+POS) entering the window, and

Gi are the lemma candidates (lemma+POS) of the ambiguous word

produced by the morphological analyzer. The value of m may vary in

each row, depending on the number of candidates of each ambiguous

word.

3. Prepare a vocabulary V = VU  VC, which includes all unambiguous

words’ lemmas and candidates in the dataset.

4. Request vector size (N) as input.

5. Divide the dataset into two as train and test. Define a random initial

point in the N dimension for each lemma in V.

6. For each row in the train set, calculate argmin
1≤𝑖≤𝑚

(∑ ‖𝐺𝑖 − 𝐵𝑗‖𝑤
𝑗=1) and

select the winning candidate. If it is not correct, update the word

vectors positions.

7. If convergence is not achieved, go to Step 6, otherwise, stop.

Considering that each lemma constituting a “motion pair” is represented by

a vector, each “motion pair” can be considered as an equation. With these

equations, vectors behave like two magnets that attract or repel each other. As the

width of the window sliding over the sentences increases, the number of properties

in the dataset and hence the number of “motion pairs” (equations) increases. In

statistical studies, it is known that as the number of equations increases for a given

number of variables, the probability of solving the problem increases. Therefore,

defining a wider window can mean getting more equations and finding more

reasonable solutions. Nevertheless, from the training datasets, for an absolute

4. METHODS Enis ARSLAN

52

solution, a sufficient count of equations may not be obtained. This is exactly like

trying to solve a system of two unknowns with one equation. In this way, the

problem of “insufficient equations” can cause the system to propose different

results each time as inconsistent outputs. The only thing that can be done is to

increase the number of equations, both to ensure consistency and to improve

accuracy. In fact, it can be said that there is a need for equations (relationship

definition) which provides all possible word relations between VB and VG that can

be established as a complete bipartite graph. Although we have generated complete

bi-partite relationships on each row of the train set, it is not possible to achieve this

for the entire vocabulary. Therefore, it would be more accurate to focus on the

determination rather than ensuring consistency.

Both the problem of “insufficient equations” described above and the fact

that word vectors start training in random positions raises concerns about the

consistency of classification (COC). In order to evaluate this situation, the most

commonly used approach in the literature is to examine the outcomes by repeating

the training at different times. The proposed LWQ algorithm is repeated 100 times

in all experiments, on each training dataset and the variability of the classified

outputs by the algorithm is analyzed. Accordingly, LWQ estimates some

ambiguities in the train dataset consistent-correct (always correct), only a small

part consistent- incorrect (sometimes correct and sometimes incorrect), and the rest

as inconsistent (sometimes correct, sometimes incorrect). The effect of the

window-size and the size of the Euclidian space defined for the word-vectors to the

COC and accuracy are presented and interpreted below.

LWQ algorithm shows some similarities with the original LVQ algorithm.

Both use supervised datasets. But they also differ in some way. At first, the models

are different. LWQ uses unambiguous word lemmas as inputs and ambiguous word

lemma candidates are prototypes. Given a data row, each prototype belongs to a

single class as “correct” and “incorrect”. Vocabularies of the input and prototype

words are coded as vectors and represented in the same space with random

4. METHODS Enis ARSLAN

53

locations. LVQ algorithm is a pure NN (Neural Network) where, there are mainly

three layers as input, Kohonen and output. Kohonen layer consists of prototypes

which are represented as reference vectors. Reference vectors are a subset of input

vectors and their classes are assigned randomly, not as supervised in LWQ. Only

input vectors’ classes are known. In each iteration, a Euclidian distance calculation

is done for each input vector to all the reference vectors in the model

independently. But in LWQ, training is limited to a row (which represents an

ambiguous word) regarding its candidates and the unambiguous word lemmas. In

LVQ, all reference vectors are used in Euclidian distance calculation of an input

vector, but in LWQ, only the ones in the same line, dependently. Porotypes of LVQ

use a weight matrix where LWQ does not benefit from a weight matrix.

These two algorithms differ also in method. LVQ aims to assign a class to

an input vector by using the information of the reference vectors. But LWQ

calculates the optimum locations of the input and reference vectors by using the

class information. Reward steps are similar in logic, but implementation is

different. In LWQ, limited to a data row, each input vector’s distance to the

prototypes (i.e. candidates of ambiguous word) are calculated separately. If the

prototype with the correct class is more near than the other prototypes (in the same

row) to the input vectors (in the same row) no action is taken, otherwise, the

correct prototype and these input vectors approximate (reward) to each other while

the other prototypes and same input vectors depart (punish) each other. In LVQ the

nearest prototype vectors are calculated for a given input vector and the nearest

prototypes are departed or approximated according to being in the different class or

not.

4.2. Multi-word Tokenizer

As mentioned before, all the texts in the dataset are split into sentences and

each sentence is tokenized. Original codes of morphological analyzer include a

basic tokenizer that tokenizes sentences word by word in its normal operation.

4. METHODS Enis ARSLAN

54

Compound words can exist in sentences in their simple or inflected forms. In order

to identify these multiple word strings, we have developed a tokenizer function and

replaced it with the original one.

This tokenizer iteratively examines each word and the following words in

the sentence and detects the possible multi-words according to their presence in the

dictionary. When the detected word group exists as a compound word in the

dictionary, it is defined as a token. The tokenization process continues until the end

of the sentence iteratively by assigning the last word of the recently detected word

group as the start point. The possibility that a word group is an inflected form of a

compound word, is analyzed by searching similar words in the dictionary by

subtracting two and three letters from the end. Tokenizer function execution steps

for an example sentence is presented in Figure 3.12.

Figure 4.5 Execution steps of the tokenizer function in an example sentence

4.3. OOV Discovery

Morphological analyzers are mostly dependent on their static dictionaries.

OOV words cause ineffective operation of the morphological analyzer by causing

many unknown words. In this section, we share the details of a system (Arslan and

Orhan, 2019) that can discover OOV words in a semantical graph. This system is

also capable of discovering collocations.

4. METHODS Enis ARSLAN

55

This graph system is composed of four phases and is shown in Figure 4.6.

Figure 4.6 OOV discovery system schema

In the first phase, lemmas of the TLA dictionary (from Güncel Sözlük) are

added as nodes. In the second phase sentences which are parts of news texts

(Tahiroğlu B.T., 2014) are tokenized and lemmatized (details will be given later).

When lemmas are obtained, co-occurrence information is created as graph relations

for each of them. In the third phase, collocations are discovered. In the fourth

phase, discovered lemma candidates are pruned by deleting the unnecessary ones.

As a dataset, 50,000 sentences are used which were retrieved from

Cukurova University Turkoloji Corpus (Tahiroğlu B.T., 2014). Sentences are

processed and for every 1,000 sentence, collocation discovery and candidate

pruning were applied.

In the beginning, all the TLA lemmas are added as nodes to a graph

database (Neo4J). Statistics of the TLA lemmas are given in Table 4.1.

4. METHODS Enis ARSLAN

56

Table 4.1. Statistics of TLA lemmas for semantic graph

 Verb Noun Total

Lemma count 12,706 66,658 79,364

Lemma count with
double POS tags

 535

Since there are some lemmas with both Noun and Verb POS tags, distinct

nodes are created for each and each may have different graph relations.

Tokenization simply tokenizes each word in the sentence regarding the

spaces between them. But also tokenization is capable to detect compound words

in the sentence. Each token phrase is searched in the graph to be a TLA lemma

compound with the same name. Possible compound TLA candidates are retrieved

as candidates and checked if the surface form (token phrase in the sentence) can be

an inflected form of these candidates with affix validation function (AVF) function

(Arslan and Orhan, 2017). If one candidate is possible, and it has n words,

tokenizer goes to the (n+1)th word in the sentence.

For example, for the sentence: “Çocuk okula koşa koşa gitti” the tokenizer

will detect the TLA lemma “koşa koşa git” as Verb from the graph, and the tokens

will be as: “Çocuk”, “okula”, “koşa koşa gitti”.

After tokenization, Lemmatization starts. It searches for all similar forms

of the token in the graph. If there is one, node frequency increases by 1. Otherwise,

lemma candidates (similar words) of the token are retrieved from the graph and

they are checked with AVF function. When this function returns true, the detected

(checked) candidates’ node frequencies are incremented by 1. A node will be

created for the token (i.e. inflected word) with “Word” tag and it establishes

relations (MORPH) with the lemmas. If no candidate returns, this is an unknown

word (UW) and lemma discovery function (LDF) runs.

 UW’s are the input to the LDF function. LDF simply removes a character

from the UW and behaves each substring as a possible lemma. All possible lemma

4. METHODS Enis ARSLAN

57

candidates are collected in this way. These candidates are validated with AVF

function. If the validation returns true, the substring is a new node with the

“LemCand” label. The newly created LemCand nodes are connected to the UW

node with MORPH relation type and the node and relation frequencies are

increased by 1. The pseudo-code of the LDF function is as follows:

N = LEN(X) - 1

Xcand = LEFT(X, N)

WHILE (N >1)

checkVal = AVF (Xcand, X, “noun”)

IF (checkVal)

CREATE Node {name:Xcand, postag:“noun”}

checkVal = AVF (Xcand, X, “verb”)

IF (checkVal)

CREATE Node {name:Xcand, postag:“verb”}

N = N – 1

Xcand = LEFT(Xcand,N)

END WHILE

where N is the number of characters of the UW, Xcand is the substring to be

checked. Function named “LEFT” takes the left N characters from the X string as a

new substring. Two nodes are created with Noun and Verb POS tags, some of them

will be eliminated in the pruning phase.

When all possible lemmas and lemma candidates (LemCands) in a

sentence are detected, a n-to-n neighboring relation is established within each other

with the “COOCCUR” label. If this relation exists before it is incremented,

otherwise, a 1 value is given for the relation.

A summary of the created nodes and relationships in the semantic graph

are given in Table 4.2

4. METHODS Enis ARSLAN

58

Table 4.2. Node and relation labels summarized

Label Type Description

Word Node Inflected word

Lemma Node Lemma originates from TLA Dictionary

LemCand Node Lemma candidate discovered by LDF

VerLemCand Node Verified Lemma candidates selected after pruning

CollCand Node Collocation candidates discovered

COOCCUR Relation
Relations established between Lemmas and

LemCands

MORPH Relation
Relations established between Lemmas

(LemCands, VerLemCands) and Inflected Word

Collocation discovery is achieved by using the frequency statistics of the

node pairs with a simple formula:

IF (R.neighFreq/R.relFreq)>0.86 AND (r.neighFreq>10)

THEN CONCATENATE n,m

where neighFreq denotes the frequency of token lemmas that cooccur

together. relFreq denotes the general frequency value to be neighbor in any

distance. The threshold values of 0.86 and 10 are defined empirically. The pairs

consistent with the formula are concatenated as a new word (collocation) and a

node created with the label “CollCand”.

Statistics of the semantic graph when all sentences in the dataset are

processed is given in Table 4.3.

4. METHODS Enis ARSLAN

59

Table 4.3. Statistics of the semantic graph

Description Label Count

Lemma node Lemma 79,364

Lemma candidate node LemCand 47,979

Verified Lemma candidate node VerLemCand 4,312

Nodes with Lemcand labels are mostly meaningless. But of course, there

are real discoveries. After the processing of each 1000 sentence, a pruning job

starts and cleans the unnecessary LemCands. The remaining ones change the label

as “VerLemCand” as being verified. This job is also responsible to execute the

collocation discovery. Some examples of the collocation discovery are given in

Table 4.4.

Table 4.4. Some examples of the discovered collocations

Discovered word Frequency value

başta olmak 93

konu olmak 59

daha fazla 26

üzerinde bulunmak 22

maç oynamak 21

bayram günü 21

diye düşünmek 17

The lemma discovery flowchart is given in Figure 4.7.

4. METHODS Enis ARSLAN

60

Figure 4.7 OOV discovery process flowchart

5. RESULTS AND DISCUSSIONS Enis ARSLAN

61

5. RESULTS AND DISCUSSIONS

In this section, experimental results are explained in detail. Comparison

results are given with the related studies performed for the morphological

disambiguation of Turkish.

The experiments were run on a PC which has a Windows 10 Pro operating

system, 64 GB of RAM, Intel Core i7-8700 3.2 GHz double-core processor. The

processing load is handled by 2 GeForce GTX 1080 GPU units.

5.1. Performance Metrics for the Proposed Method

In this study, accuracy parameter is used to measure the success of the

LWQ classification because it is the well-known and most used metric in

morphological disambiguation literature.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑎𝑚𝑏

𝑁
 (5.1)

where accuracy denotes the correct prediction ratio, Camb represents the

correctly predicted (by LWQ) ambiguous word count (one data line consists of

only one ambiguous word) and N is the data line count in a dataset.

5.2. Experimental Results for the Proposed Method

This section includes k-fold validity tests and the results obtained by

examining the window-size (w) and vector space size on accuracy and consistency

of classification (COC). Also, the causes of inconsistency in classification are

analyzed.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

62

5.2.1. k-fold Validity Tests

In order to measure test accuracy as accuracy, and to measure validity, the

k-fold approach was used. Here, various experiments have been performed for the

values of k between 2 and 10, where this interval is commonly used in the

literature. In a study (Altintas et al., 2005), which implements windowing, they

have acquired the highest accuracy value with window-size 14. For this reason, we

have selected window-size as 14. Our study has similarities with Glove

(Pennington et al., 2014) and they have used the word-vector dimension as 300 for

the best results. In this inspiration, we have chosen a close value as 200, for the

word-vector dimension. accuracy and processing time values for different k-fold

values regarding the parameters as the window-size (w) 14 and word-vector

dimension (N) 200 are presented in Table 5.1.

Table 5.1. K-fold validity test results for different k values (w=14 and N=200)
 2 3 4 5 6 7 8 9 10

Accuracy

(%)
85.14 85.27 85.60 85.02 85.64 85.34 85.01 84.96 85.55

Time

(min)
103 157 191 236 241 293 325 358 361

According to Table 5.1, it has been determined that different k values affect

accuracy at a minor level. For k values 2 and 3, although accuracy values are close,

the system spends 1.5 times more processing time. Similarly, when the algorithm

runs for k=6, which provides the best accuracy value, it spends nearly 2 times

processing time when compared to k=2. It can be seen that; different k values affect

success at a minor level with low running time. When a large number of

experiments are planned it is considerable to select the optimum k value as 2.

Because of this, k=2 value is used in the tests as 2-fold cross-validation where 50%

of the dataset is used as train and other 50% as test datasets.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

63

After the determination of the validity requirement and accuracy definition

requirements, it is better to optimize the parameters which affect the results of the

study. In this consideration, the effects of two important parameters (window-size

(w) and word-vector dimension (N)), which could directly affect the results, are

examined in the following experiments.

5.2.2. Effects of Window-Size and Word-Vector Dimension on Accuracy and

COC

This section includes experiments to measure accuracy for different word-

vector dimension values, on different train datasets which are prepared by changing

the window-size. The preparation of the train datasets requires changing the

window-size by using the windowing method, while the adjustment of the word-

vector dimension requires the retraining of the LWQ algorithm. Table 5.2 shows

the results of some experiments conducted on different values of these two

parameters. The experiments are repeated 100 times to measure the consistency

(COC) of the accuracy. Training success is between 97% and 100%.

Table 5.2. The effects of window-size and word-vector dimension on accuracy (%)
Word-vector dimension (N)

 2 20 200 2000 5000

(w) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

2 66.1 0.9 84.0 74.3 5.8 96.1 75.9 9.7 97.4 79.0 22.3 97.9 80.8 30.1 97.9

6 73.7 4.3 97.6 79.2 14.5 98.0 81.4 28.8 97.5 84.8 46.0 97.1 85.8 53.0 96.7

10 75.1 6.3 97.8 80.7 20.3 98.2 83.6 37.5 97.7 86.3 54.5 96.7 86.9 60.6 96.3

14 75.6 7.3 97.7 81.5 24.0 98.0 84.6 44.1 97.5 86.8 59.0 96.4 87.1 62.9 96.2

18 76.1 8.1 97.6 82.1 26.5 98.1 85.1 47.0 97.3 86.6 59.8 96.3 86.9 63.2 95.9

22 75.9 8.2 97.5 82.1 28.8 97.9 85.1 48.0 97.1 86.5 59.6 96.1 86.6 62.8 95.8

26 75.0 8.3 97.0 82.1 30.0 97.4 84.9 47.7 96.8 85.9 58.5 95.9 86.0 60.6 95.6

The terms used in Table 5.2 are as follows: S1 is the average value of the

accuracy when the training is applied for 100 times (average accuracy). S2 is the

5. RESULTS AND DISCUSSIONS Enis ARSLAN

64

average value of the ambiguous terms, which are classified as always correct or

always incorrect in all 100 training cycles (COC ratio). S3 is the average value of

the correctly classified terms in consistent data rows for all of the training cycles

(consistent accuracy). According to Table 5.2, both average accuracy (S1) and

COC ratio (S2) values increase for the parameters N and w in direct proportion.

However, the rate of increase in accuracy is decreased, when the window-size

exceeds 14. Likewise, when the word-vector dimension is greater than 200, there

are little increases in the values of S1, S2, and S3. Interestingly, S3 isn’t too much

affected by the change in parameters N and w, except for w=2. In experiments,

word-vector dimension starts by the value N=2 and increments with a factor of 10.

Because of the limitation of the GPU-card memory, a maximum dimension of 5000

is used.

When test results are considered, standard deviation values are lowest and

very near for window-size values 10 and 14 for N=2000 as 0.247 and 0.250,

respectively. For the same windows-size values when the test is applied for n=200,

the values are 0.27 and 0.31 and for N=5000, the values are 0.21 and 0.26,

respectively. Standard deviation values are very high for low window-size (w=26)

as 1.42 and values change between 0.68 and 1.42 for all dimensions.

In order to measure the effect of the “ineffective lemma pairs” in accuracy,

filtered datasets are also trained by LWQ. accuracy values provided by these

filtered datasets are presented in Table 5.3.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

65

Table 5.3. The effects of window-size and word-vector dimension on accuracy

when filtered with ineffective lemma pairs (%)

Word-vector dimension (N)

 2 20 200 2000 5000

(w) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

2 66.3 0.7 88.5 74.5 5.3 97.1 76.1 9.3 98.3 79.3 22.5 98.3 81.1 31.8 98.2

6 74.1 4.0 97.5 79.3 13.6 98,2 81.8 28.4 97.9 85.2 47.8 97.4 86.3 55.2 97.0

10 75.5 6.5 97.9 80.9 19.4 97.9 83.9 37.6 98.0 86.7 57.3 97.0 87.2 61.9 96.6

14 76.1 7.4 98.1 81.6 23.7 98.3 84.8 44.0 97.8 87.0 60.3 96.6 87.3 64.6 96.3

18 76.5 8.5 98.0 82.0 26.3 98.3 85.3 47.1 97.5 87.0 61.8 96.3 87.2 65.2 96.0

22 76.6 9.1 98.0 82.3 28.3 98.0 85.4 48.8 97.2 86.8 62.3 96.1 87.0 65.2 95.8

26 76.7 9.2 98.0 82.6 30.1 97.6 85.5 49.6 97.2 86.7 62.1 96.1 86.8 65.1 95.9

When the experiment results in Table 5.3 are compared with Table 5.2, it

can be seen that accuracy is increased in [3..5]% with the usage of the datasets,

which discards the “ineffective lemma pairs” (filtering). All remaining values are

in accordance with each other. While window-size values w=10 (Yuret and Türe,

2006; İlgen et al., 2013) and w=14 (Altintas et al.,2005) provide the best accuracy

values for Turkish, this complies with the experiment results given in Table 5.2 and

5.3.

Standard deviation values for the tests with filtered data are lowest and

very near for window-size values 10 and 14 for N=2000 as 0.22 and 0.25,

respectively. For the same windows-size values when the test is applied for n=200,

the values are 0.29 and 0.28 and for N=5000, the values are 0.23 and 0.25,

respectively. Standard deviation values are very high for low window-size (w=2) as

1.32 and values change between 0.66 and 1.32 for all dimensions.

In another analysis, it was identified that intersection values of the

vocabulary list of the words (“lemma + POS”) used in the input (unambiguous

word lemmas-VB) and the output (ambiguous word lemmas- VG) parts of the

datasets were very high and they have included the filtered “ineffective lemmas”.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

66

Table 5.4 presents the numbers of elements in intersection and union of the

vocabularies (VG and VB) (used in the datasets of experiments given in Table 5.2

and Table 5.3) for different window widths.

Table 5.4. Some relations of the vocabularies for different window-size values

 Window-size (w)

2 6 10 14 18 22 26

VG ∩ VB 989 1,146 1,170 1,166 1,158 1,142 1,123

VG ∪ VB 7,398 8,699 8,953 8,984 8,962 8,890 8,820

VG ∩ VB * 930 1,052 1,059 1,047 1,032 1,010 977

VG ∪ VB * 7,641 8,795 8,946 8,919 8,839 8,750 8,610

*: datasets filtered with the “ineffective lemmas”

Table 5.4 shows that using “ineffective lemmas” in a filter, has decreased

the intersections and unions. When the experiments shown in Tables 5.2 and 5.3

are considered together with Table 5.4, it can be stated that using this filter

increases accuracy by decreasing the intersection of vocabularies. This supports the

highlighted idea at the beginning of the study: “the vocabulary of the dataset can be

modeled by splitting it into two vocabularies of ambiguous and unambiguous

words lemmas”. To assure this claim, in another experiment, intersection of the

vocabularies (in other words, words exist in the dataset in both ambiguous and

unambiguous form) of ambiguous and unambiguous words (VB∩VG) is used as

another filter (intersection filter). By using this filter, the relationship between the

input and output parts of the dataset represents a bipartite graph. It can be said that

only unambiguous words can be used to detect the correct candidate for the

ambiguous word. The experiment results obtained by using the datasets prepared

by using the defined filters are given in Table 5.5.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

67

Table 5.5. Effect of different filters on COC and accuracy for window-size 14 (%)
Word-vector dimension (N)

 2 20 200 2000 5000

(w) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

N 75.6 7.3 97.7 81.5 24.0 98.0 84.6 44.1 97.5 86.8 59.0 96.4 87.1 62.9 96.2

F-1 76.1 7.4 98.1 81.6 23.7 98.3 84.8 44.0 97.8 87.0 60.3 96.6 87.3 64.6 96.3

F-2 76.1 7.1 97.9 81.4 20.8 98.7 85.0 40.8 98.4 87.6 60.0 97.2 88.0 65.2 96.9

N: Normal, F-1: Filter-1, F-2: Filter-2

In Table 5.5, the first line (Normal) represents the experiment results for

accuracy and COC, when no filter is applied, the second line, when “ineffective

lemma” filter (Filter-1) is applied and the third line, when “intersection filter”

(Filter-2) is applied to the datasets. According to Table 5.5, the highest accuracy

values are obtained when the dataset is prepared as VG ∩ VB = ∅ (Filter-2). With

these results, it was determined that, LWQ system is negatively affected by the use

of unambiguous forms of lemmas in the input parts of the datasets, which of them

can sometimes be ambiguous (intersects), For example, morphological analyzer

produces “ev+NOUN” as the lemma form of the inflected word “evde”. Although,

another inflected form of its lemma enables the derivation of the inflected word

“evini” which is ambiguous. The morphological analyzer can produce the lemma

candidates as “ev+NOUN” and “evin+NOUN” for the word “evini”. When

“intersection filter” is applied to the datasets, such lemmas like “ev+NOUN” will

not occur in both the input and output sides of the dataset at the same time.

Limitation on the intersection of vocabularies of both ambiguous and unambiguous

words with this filter makes a positive impact on the accuracy. But for the short

texts which consist of a little count of unambiguous lemmas, this filter may not be

applicable.

LWQ system’s full training plan is based on using the approximating and

departing equations to locate the word-vectors. Word-vectors are semi-trained

when only approximating or departing equations are used for the location

5. RESULTS AND DISCUSSIONS Enis ARSLAN

68

positioning. For this reason, types of equations are divided into two: 1) EQ+ for

approximating, 2) EQ- for departing. In the study, the word-vectors trained only

with EQ+ or EQ- type equations are considered to be semi-trained. Word-vectors

start training in random starting points, very distant from each other, with high

dimension sizes as 2000 or 5000. When high dimensions are considered, only EQ-

type equations can be sufficient and these vectors in the training behave as EQ+

type. This can be the interpretation of why a dataset with a high “insufficient

equation” problem can achieve the highest accuracy in high dimensions. But the

opposite (EQ+ type word-vectors trained in the low-space size with EQ- type

equations only) of this idea isn’t always true. Word-vectors trained in the low

dimension size may cause undesirable approximations and EQ+ type training

cannot be simulated. Following these claims, it is necessary to examine the

sentences to determine the causes of inconsistency and incorrect-consistent results.

5.2.3. Causes of Inconsistency and Incorrect-Consistency

In this experiment, consistent-incorrect (incorrectly classified in all tests)

and inconsistently (sometimes correctly sometimes incorrectly classified) classified

data lines obtained for w=14 and N=5000 parameters (which achieve the highest

accuracy value in the preceding experiments) are examined by visually. Statistics

of data lines used in this analysis are given in Table 5.6.

Table 5.6 Statistics of the dataset for inconsistent and consistent-incorrect lines
Class Count Ratio (%)

Consistent-Incorrect
Noise 137 56

Normal 108 44

Inconsistent
Noise 2,551 57

Normal 1,928 43

5. RESULTS AND DISCUSSIONS Enis ARSLAN

69

As seen in Table 5.6, analysis is applied in two groups: “Noise” and

“Normal” for consistent-incorrect and inconsistent classifications. “Noise” labeled

data lines consist of incorrect lemmatization performed by the morphological

analyzer or incorrect tagging applied by the Expert. There can be two reasons for

the incorrect lemmatization of the morphological analyzer. First reason is the

outdated dictionary that morphological analyzer uses. This can lead to too many

unnecessary (i.e redundant) lemma candidates in the parse outputs. The second

reason is the parse lists provided by the morphological analyzer which include the

roots and their corresponding lemma forms at the same time. This situation

increases ambiguity. It can be frequently seen in the noun-to-noun and noun-to-

adverb derivations. For the first case, to give an example, “hava + NOUN” and

“havalı + NOUN” parse candidates both have the same root and “hava” root is

affixed by “-lı” derivational suffix. The morphological analyzer does not have any

functionality to prevent the listing of the root when its lemma form exists as

“havalı + NOUN” and “hava + NOUN” is also listed as a parse option. An example

of the noun-to-adverb derivation is: “sabah + NOUN” and its adverb form can be

given as “sabahleyin+NOUN”. They can both listed in the same parse output. For

the “Noise” group, expert tagging errors can also be seen in the analysis outputs

caused by fast data entry.

In Table 5.6, the “Normal” group consists of the data lines in which

morphological analyzer lists the correct parse candidates as lemmas and the expert

tags the correct lemma with the correct POS tag. The consistent-incorrect data

lines in the “Normal” group represent the words with the same lemma and different

POS tags. Correctly tagging of these kinds of words is sometimes very hard for

even a native speaker of Turkish. For example, the word morphological analyzer

lists “ilginç + NOUN” ve “ilginç + ADJ” lemma candidates for the word “ilginçti”.

On the other hand, the “insufficient equation” problem is the main cause of

inconsistent data lines in the “Normal” group.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

70

5.2.4. The Effect of “Insufficient Equation” on Accuracy and COC

In this experiment, the “insufficient equation” problem is analyzed, which

is the main cause of inconsistency. Our observation is that the candidates which

can be sometimes EQ+ or EQ- are consistent. Therefore, two different vocabulary

lists are prepared, which consist of the correct and incorrect candidates in data lines

calculated as their intersection. Common candidate count value is nearly 17%

(which move two-way as EQ+ or EQ-) where the remaining 83% (37% are EQ+,

46% are EQ-) are one-way. Some of the candidates which are in one-way equations

also can be consistent. Thus we can introduce a hypothesize as “consistency can be

guaranteed by candidates trained with a sufficient number of equations”. In the

study, these kinds of candidates are mentioned as “fine-trained” candidates. To

define these candidates and their positive effect on COC values, two parameters are

created: the number of equations required to define a fine-trained candidate (#Eft),

and the number of fine-trained candidates in the same equation (#Cft). Table 5.7

gives the analysis results for the effects of four parameters (N, w, #Eft, and #Cft) on

COC.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

71

Table 5.7. Effects of fine-trained candidates on CoC with parameters window

width and word-vector dimension (%)

 w 2 10 14 18

N

EFT

CFT

1 10 100 1 10 100 1 10 100 1 10 100

2

0 0.7 0.8 0.5 0 0 2.2 0 0 3 0 0 3.9

1 0.5 0.6 0.7 0.6 1.6 7.3 0.6 2.2 8.5 1.2 2.4 8.3

2 0.7 0.6 1.9 6 8 23.5 7.2 9.8 27.4 8 10.9 30.9

3 0.6 0.5 0.8 11.7 16.3 84.4 12.1 17.1 79.2 14.7 20.9 87.9

4 0.5 0.4 0 1.8 2.3 2.7 3.4 4.4 4.6 4.9 7 7.9

20

0 0.7 0.8 1.6 0.4 0.8 13.1 0 0.8 17.8 0 1.1 20.5

1 1.7 1.8 4.4 2.3 4.6 18.9 2.9 5.9 23.3 3.6 8.5 27.6

2 5 6.4 22.1 19.8 26.4 51.7 24.8 33.8 53.6 28 38 54.7

3 9 12 42 25 34.3 100 29.4 40.8 100 31.7 44.1 100

4 1.6 1.8 2.6 18.8 25 58.9 20.6 27.5 63 22.2 30.2 65.3

200

0 0.7 0.8 4.2 3.4 5.1 31.5 3.5 8.2 38 2.2 10.5 41.5

1 1.2 2.1 4.2 8.7 15.2 39.9 12 23.2 48.1 10.54 29.7 51.5

2 8.6 11.3 33 40.8 52.4 67.5 48.2 61.4 71.8 52.3 65.5 73.8

3 16.6 22 72.9 40.8 53.7 100 46 60 100 48.4 62.1 100

4 2.9 3.5 6.1 29.5 38.1 80.4 34.5 36.7 86.1 38.3 46.1 90.1

2000

0 0.7 0.8 15.1 5.2 15 51.1 6.2 21.5 55.6 6.8 27.5 57.9

1 3.8 4.1 16.1 18.9 37.5 63.6 23.4 44.9 62.9 24.1 49.1 63.1

2 23.9 32.0 68.7 62.3 76.5 86.2 65.7 78.8 83.9 67.9 79.1 81.6

3 29.5 39.2 80 59 71.7 100 62.1 73.9 100 62.8 73.9 100

4 24.6 31 93.9 49.2 57.1 100 50.9 58.5 100 50.6 55.4 100

In Table 5.7, the optimum windows-sizes (w=10 and w=14) are used with

a minimum (w=2) and maximum (w=18) values. It can be seen that the window-

5. RESULTS AND DISCUSSIONS Enis ARSLAN

72

size is ineffective on COC values for window-sizes bigger than 10. This is also

valid for low word-vector dimensions. But when high-number of equations (like

#Eft>100) are used with high-dimension values (i.e. N=2000), fine-trained

candidate count (#Cft) is proportional to COC values. This relation supports the

idea that one-way candidates can be fine-trained in high-dimensions. But,

sometimes, in some data-lines, fine-trained candidates may not exist and this leads

to very low COC as 0.5% (and sometimes 0). This situation shows the positive

effect of fine-trained candidates on consistency.

When we examine the counts of data rows involved in training with Eft and

Cft parameters we have seen that, for #Cft=0 and #Cft=1 data row count increases

with the increase of Eft (1,10 and 100). Surprisingly, this is opposite for #Cft=2 and

#Cft=3 and #Cft=4. Although data row counts decrease for these Cft values, COC

values are higher when compared to #Cft=0 and #Cft=1. Another case is, when the

values of Cft=2 and #Cft=3 or Cft=4, for window-sizes 10,14 and 18, the data row

counts decrease but COC values increase. This shows that fine-trained candidate

counts which are high quality for classification can be obtained in window-sizes

bigger than 10 even there are lower count of data rows. Also for high dimensions

(such as 2000) low Cft values as 0 and 1 acquire higher COC values even when Eft

gets higher, but their COC values cannot exceed 57.9% and 63.6%, respectively.

Generally, low COC values can be seen for even high-dimensions provided

with a high number of equations (#Eft>100). But it is important to have a higher

number of equations that are greater than 100 (#Eft>100) to define a fine-trained

candidate.

As a result, when high word-vector dimension, optimum window-size and

a high number of equations are used, high COC can be obtained with data lines that

have 3 or 4 fine-trained candidates.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

73

5.2.5. Effect of Dataset Size on Classification Accuracy and Consistency

Due to the nature of languages, one ambiguous word can co-occur

randomly with an unambiguous word in a sentence. It can be claimed that the

“insufficient equation” problem can be overcome by enlarging the dataset. In order

to test this hypothesis, the existing dataset is decreased randomly to simulate the

dataset expansion. In this experiment, 5 subsets of data are created (including the

main dataset) by using the “intersection filter” with a window-size 14. The train-

test cycle is applied for 100 repetitions and the accuracy and COC are examined.

The results are given in Table 5.8.

Table 5.8. The effects of the change in the amount of data on accuracy and CoC

(%)

No
Corpus

(#Sentences)

Vocabulary

(#Words)
accuracyavg CoCft

1 2,401 6,069 76.8 20.0

2 4,802 7,181 81.5 37.9

3 7,203 7,787 84.4 47.9

4 9,604 8,300 84.9 51.9

5 12,009 8,656 85.0 69.0

Dataset versions given in Table 5.8 are obtained by randomly subtracting

sentences from the novel and news texts to save the balance in the count and these

are given in ascending order as word counts. For training and tests, N=200 word-

vector dimension and w=14 are used for their representative power on

classification. Although it is hard to find common accuracy and COC values,

#Eft>34 and #Cft=2 values are defined as optimums by searching #Eft in [1..100]

and #Cft in [1..4].

5. RESULTS AND DISCUSSIONS Enis ARSLAN

74

According to Table 5.8, it can be seen that when sentence count increases,

COCft (which represents COC calculated only with fine-trained candidates)

increases in accordance with the vocabulary. On the other hand, the increase in

accuracyavg (S3) decreases. For this reason, it can be expected that, when the tagged

dataset (more novel and more news text) is enlarged until full consistency is

provided, higher accuracy values can be obtained.

5.2.6. Consistency Analysis for all Window-Size Values and Dimensions

In this section, the effect of parameters “window-size” and “word-vector

dimension” on COC (S2) are given in graphical representations.

Figure 5.1, shows the analysis results for the effect of the word-vector

dimension on COC (S2) considering all window-size values used in the

experiments.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

75

Figure 5.1. COC analysis for different vector- dimensions on the same window-

size values

As seen in Figure 5.1, COC values are low for the lower window-sizes.

When word-vector sizes increase gradually, consistency value increases for all

5. RESULTS AND DISCUSSIONS Enis ARSLAN

76

window-size values. When the word-vector dimension is 2, the system acquires the

worst COC results for all windows. The sharpest increase in COC is obtained by

the experiments applied for the dimension range [20..200]. The COC value

increase goes by the dimension range [200..2000]. Although the increase continues

with the dimension value range [2000..5000], it can be seen that convergence

occurs in this range.

Figure 5.2 shows the similar results given in Figure 5.1, differently when

the dataset is filtered with the “intersection filter”.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

77

Figure 5.2. COC analysis for different word-vector dimensions on the same

window-size values with “intersection filter”

5. RESULTS AND DISCUSSIONS Enis ARSLAN

78

In Figure 5.2, comments made for the Figure 5.1 are valid, except, filtered

data provides little increase for all word-vector dimension values on different

window-size values. Results are given in Figure 5.3 when the experiments are

repeated for each window-size values for all word dimensions through [2..5000].

5. RESULTS AND DISCUSSIONS Enis ARSLAN

79

Figure 5.3. COC analysis for different window-size values on the same word-

vector dimensions

5. RESULTS AND DISCUSSIONS Enis ARSLAN

80

 In Figure 5.3, for all word-vector dimensions, COC increases gradually till

the window-size is 18. The COC value increase is sharp from w=2 to w=6. And

from w=6 to w=18 increase is in a fixed ratio. From window-size w=18 to window-

size values w=22 and w=26, consistency slightly increases.

When the datasets prepared and used for the tests in Figure 5.3 are filtered

with “intersection filter”, results for the same experiments are given in Figure 5.4.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

81

Figure 5.4. COC analysis for different window-size values on the same vector

dimensions with “intersection filter”

 In Figure 5.4, filtered datasets provide better results, when compared to the

results given in Figure 5.3. COC values are near for window sizes 18, 22 and 26

but there are little achievements.

 In order to visualize the effect of filtered datasets with “intersection filter”

on the system, experiments are performed for all combinations of window-size and

word-vector dimensions. In Figure 5.5, for all word-vector dimensions, results are

given when the filtered and original datasets are prepared for window-size 2.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

82

Figure 5.5. COC analysis for window-size=2 on different word-vector dimension

values with original and filtered datasets

In Figure 5.5, although there is little increase in COC values for the

dimensions N=2, N=20, and N=200, these cannot be distinguished in graphics.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

83

However, the increase in COC with the usage of the filter can be seen easily for the

dimensions N=200 and N=5000.

In Figure 5.6, for all word-vector dimensions, results are given, when the

filtered and original datasets are prepared for window-size = 6.

Figure 5.6. COC analysis for window-size=6 on different word-vector dimensions

with original and filtered datasets

5. RESULTS AND DISCUSSIONS Enis ARSLAN

84

In Figure 5.6, although there is little increase in COC values for the

dimensions N=2, N=20, and N=200, these again cannot be distinguished in

graphics. For N=20 the increase in the last repetitions can be seen. However, the

increase in COC with the usage of the filter can be seen easily for the dimensions

N=200 and N=5000.

In Figure 5.7, for all word-vector dimensions, results are given when the

filtered and original datasets are prepared for window-size = 10.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

85

Figure 5.7. COC analysis for window-size=10 on different word-vector dimensions

with original and filtered datasets

In Figure 5.7, for N=20 and N=200, an increase in consistency is more

evident when compared to the previous window-size values. The increase in COC,

5. RESULTS AND DISCUSSIONS Enis ARSLAN

86

with the usage of the filter, can be seen easily for the dimensions N=200 and

N=5000.

 In Figure 5.8, for all word-vector dimensions, COC results are given when

the filtered and original datasets are prepared for window-size = 14.

Figure 5.8. COC analysis for window-size=14 on different word-vector dimensions

with original and filtered datasets

5. RESULTS AND DISCUSSIONS Enis ARSLAN

87

In Figure 5.8, for N=2, in the first repetitions, the increase in COC is

evident. Dimensions N=20 and N=200 are not too much effective for this window-

size to increase COC. Surprisingly, the increase in COC, for the highest dimension

size N=5000 is very little.

In Figure 5.9, for all word-vector dimensions, results are given when the

filtered and original datasets are prepared for window-size = 18.

Figure 5.9. COC analysis for window-size=18 on different word-vector dimensions

with original and filtered datasets

5. RESULTS AND DISCUSSIONS Enis ARSLAN

88

In Figure 5.9, results are similar to the results given for window-size 14

except, for N=5000 the increase in COC is evident. In Figure 5.10, for all word-

vector dimensions, results are given when the filtered and original datasets are

prepared for window-size = 22.

Figure 5.10 COC analysis for window-size=22 on different word-vector

dimensions with original and filtered datasets

5. RESULTS AND DISCUSSIONS Enis ARSLAN

89

In Figure 5.10, for the first time, the lowest dimension N=2 shows

distinctly the increase in COC for w=22. For N=20 and w=22 the filtered data

effect is very little. On the other hand, in the last repetitions for N=200, the increase

is evident and for N=2000 and N=5000 results are similar to the results given for

window-size 18.

In Figure 5.12, for all word-vector dimensions, results are given when the

filtered and original datasets are prepared for window-size = 26.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

90

Figure 5.11 COC analysis for window-size=26 on different word-vector

dimensions with original and filtered datasets

In Figure 5.11, for N=200, N=2000 and N=5000 the highest gain for

filtered datasets can be seen. But for these dimensions, it is clear that convergence

slope is sharp.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

91

5.3. Comparison Results with the Other Morphological Disambiguation

Methods

When preceding experiments are considered, it can be claimed that it is

advantageous to use fine-trained candidates in training cycles. Because of this, the

LWQ system is trained with data lines which include the fine-trained candidates.

For comparison, accuracy results of this study in morphological disambiguation

and the other studies that exist in literature with the highest achievements for

Turkish language and similar languages are given in Table 5.9.

Table 5.9. Accuracy values given in related studies for morphological

disambiguation

Method
Accuracy

(%)
Language

Orosz and Novák (2013) 95.81 Cz

Muller and Schutze (2015) 96.83 Hu

Hakkani-Tür et al. (2002) 95.07

Tr

Yuret and Ture (2006) 95.82

Sak et al. (2007) 96.80

Görgün and Yıldız (2011) 96.28

Kutlu and Cicekli (2013) 93.40

Yildiz et al. (2016) 96.28

Shen et al. (2016) 97.24

Dayanik et al. (2018) 96.86

This Study 98.40

Table 5.9 provides the accuracy values obtained in Turkish and

morphologically similar languages like Hungarian and Czech. The values provided

for Hungarian and Czech are selected from the highest values in the literature.

5. RESULTS AND DISCUSSIONS Enis ARSLAN

92

In early work in morphological disambiguation of Czech, Spoustová et al.

(2007) have reported a 95.68% accuracy value by using the statistical methods

combined with rule-based methods. Orosz and Novák (2013) present PurePOS

which is a stochastic tagger and by using PurePOS they report 96.48% accuracy

value. When they have used an input filter accuracy increases to 96.63%. Although

this filter limits some input data, as we applied in this study, there does not exist

any detailed analysis of its effect on accuracy. In Hungarian, most of the research

uses the term “morphological tagging” instead of “morphological disambiguation”.

One of these (Muller et al., 2013) provides the highest accuracy value by using the

stochastic tagger named MarMot. They use second-order pruned CRFs and obtain a

accuracy value of 96.57%. In their later study (Muller and Schutze, 2015), they

have outperformed their previous study with a accuracy value of 96.83% by using

the output of a morphological analyzer to reduce the lattice. This study also reports

94.48% accuracy value for Czech. In Tkachenko and Sirts's (2018) study, they

have proposed a multi-class neural model which again uses MarMot as tagger and

they achieve the highest accuracy value for Czech as 95.81%, while 84.12% for

Hungarian.

Early studies on Turkish morphological disambiguation are mostly based

on rule-based, statistical and hybrid models (Hakkani-Tür et al., 2002; Kutlu and

Cicekli, 2013). The most prominent study (Hakkani-Tür et al., 2002) presents

different n-gram models and trains these models with statistical information. The

highest accuracy value reported in this study is 95.07% which is very near to the

recent neural models’ achievements.

According to Table 5.6, it can be seen that the state of the art accuracy

values for Turkish are near to similar languages, Hungarian and Czech. For

example, Yildiz et al. (2016) reach 96.28%, and Dayanik et al. (2018) obtain

96.86%. Neural models are flexible and successful by presenting various

embedding models and designs, but the necessity for large amounts of training data

for the model and optimal parameter selection is a hard problem. One challenge in

5. RESULTS AND DISCUSSIONS Enis ARSLAN

93

the morphological disambiguation task of Turkish is to obtain fully supervised

training datasets. The most successful studies (Yuret and Ture, 2006; Sak et al.,

2007; Yildiz et al., 2016) presented for Turkish use semi-supervised datasets

without discussing the datasets’ quality. According to Table 5.6, the highest value

ever reported for Turkish (and also for similar languages) is reported by Shen et al.

(2016) as 97.24%. Our study has outperformed this study by 98.40% accuracy

value when the “intersection filter” is used in the dataset with training parameters

w=14 and N=200. Theoretically, when the noise level given in Table 5.6 is

considered, if morphological analyzer and user errors are corrected, this accuracy

value can be increased to 99.3% by a simple calculation (98.40% + 56% x 1.60%.).

5. RESULTS AND DISCUSSIONS Enis ARSLAN

94

6. CONCLUSIONS Enis ARSLAN

95

6. CONCLUSIONS

Morphological disambiguation is an important natural language processing

(NLP) task for morphologically complex languages like Turkish. Although many

studies present successful results by using various methods, dataset reliability and

amount of data needed is a major concern. Using classification techniques in a

vector-space for morphological disambiguation has not been studied in the

literature, to our best knowledge.

Motivated by this, in this thesis, we have focused on morphological

disambiguation task by using a new classification method named Learning Word-

vector Quantization (LWQ). LWQ method is an adaptation of Learning Vector

Quantization (LVQ) which is a well-known competitive machine learning

algorithm. LVQ has been applied in many research fields. Although some of them

are mainly on NLP problems, in our best knowledge, it has not been applied to any

of the disambiguation tasks. Basically, LWQ locates the words as vectors in

Euclidian space and optimizes the word-vectors with many training cycles. This

optimization is provided by using a reward-or-penalize mechanism that is inspired

by the original LVQ algorithm. In the study, the dataset is prepared from a

standpoint that, “an ambiguous word in a text can be disambiguated by considering

the neighbor words without ambiguity”. Datasets are prepared in a special format

to separate the ambiguous words form unambiguous ones in two distinct

vocabularies. Relationships between these vocabularies are used as equations

which are used in approximating and departing the positions of the word-vectors.

In the study, many experiments are performed to investigate the effect of

the parameters: window-size and vector-space dimension on accuracy and

consistency of classification. Also, in an experiment, it has been identified that

increasing the dataset size increases the system consistency and classification

accuracy by contributing to the count of fully-trained word-vectors. On the other

hand, tagging errors are defined and proposals are made for the improvement of the

6. CONCLUSIONS Enis ARSLAN

96

morphological analyzer. Finally, classification accuracy results are compared with

similar studies in the literature presented for morphological disambiguation of

Turkish.

LWQ method handles the morphological disambiguation problem as a

classification problem in order to identify the correct parse candidate of an

ambiguous word in a text. This method is directly dependent on the quality of the

data which should be tagged correctly by an expert. Also, a larger tagged dataset

provides more accurate classification rates by providing more equations for

training. It is obvious that accuracy value can be increased in future studies by

conducting a significant number of experiments. LWQ method is language-

independent when the task is morphological disambiguation. We believe that it can

be successful in less sparse languages other than complex languages with a low

amount of data. On the other hand, it is applicable to word sense disambiguation

(WSD) problem by taking advantage of the Euclidian space by mapping semantic

information. It is thought that the LWQ method, introduced as a new method to

the literature, will give a different perspective to natural language processing

(NLP) studies with different adaptations.

97

 REFERENCES

Altintas, E., Karsligil, E., and Coskun, V., 2005. The effect of windowing in word

sense disambiguation. In International Symposium on Computer and

Information Sciences(pp. 626-635). Springer, Berlin, Heidelberg.

Arslan, E, and Orhan, U., 2017. Using Graphs in Construction of a Lemmatization

Model for Turkish, International Mediterranean Science and Engineering

Congress, IMSEC.

Arslan, E., and Orhan, U., 2019. Identification of OOV words in Turkish

texts. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 8(2), 35-48.

Bohnet, B., McDonald, R., Simoes, G., Andor, D., Pitler, E., and Maynez, J., 2018.

Morphosyntactic tagging with a meta-bilstm model over context sensitive

token encodings. arXiv preprint arXiv:1805.08237.

Brants, T., 2000. TnT: a statistical part-of-speech tagger. In Proceedings of the

sixth conference on Applied natural language processing (pp. 224-231).

Association for Computational Linguistics.

Chuan, Z., Xianliang, L., Mengshu, H., and Xu, Z., 2005. A LVQ-based neural

network anti-spam email approach. ACM SIGOPS Operating Systems

Review, 39(1), 34-39.

Church, K. W., 1989. A stochastic parts program and noun phrase parser for

unrestricted text. In International Conference on Acoustics, Speech, and

Signal Processing, (pp. 695-698). IEEE.

Dayanık, E., Akyürek, E., and Yuret, D., 2018. Morphnet: A sequence-to-sequence

model that combines morphological analysis and disambiguation”. arXiv

preprint arXiv:1805.07946.

Daybelge, T., and Cicekli, I., 2007. A rule-based morphological disambiguator for

Turkish. In Proceedings of Recent Advances in Natural Language

Processing (pp. 145-149).

98

DeSieno, D., 1988. Adding a conscience to competitive learning. In IEEE

international conference on neural networks (Vol. 1, No. 6, pp. 117-124).

New York: Institute of Electrical and Electronics Engineers

Diaz-Galiano, M. C., Martin-Valdivia, M. T., Martinez-Santiago, F., and Ureña-

López, L. A., 2004. Multi-word expressions recognition with the LVQ

algorithm. Proceedings of Methodologies and Evaluation of Multiword

Unit in Real-world Applications, LREC, 2004.

Ehsani, R., Alper, M. E., Eryigit, G., and Adali, E., 2012. Disambiguating main

POS tags for Turkish. In Proceedings of the 24th Conference on

Computational Linguistics and Speech Processing (ROCLING 2012) (pp.

202-213).

Ezeiza, N., Alegria, I., Arriola, J. M., Urizar, R., and Aduriz, I., 1998. Combining

stochastic and rule-based methods for disambiguation in agglutinative

languages. In Proceedings of the 17th international conference on

Computational linguistics-Volume 1 (pp. 380-384). Association for

Computational Linguistics.

Görgün, O., and Yıldız, O. T., 2011. A novel approach to morphological

disambiguation for Turkish. In Computer and Information Sciences II (pp.

77-83). London: Springer.

Görgün, O., and Yıldız, O. T., 2012. Using morphology in English-Turkish

statistical machine translation. In 2012 20th Signal Processing and

Communications Applications Conference (SIU) (pp. 1-4).

Gunawan, T. S., Kartiwi, M., and Ardzemi, N. H., 2017. Development of Language

Identification using Line Spectral Frequencies and Learning Vector

Quantization Networks. Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), 9(3-7), 21-27.

Hakkani-Tür, D. Z., Oflazer, K., and Tür, G., 2002. Statistical morphological

disambiguation for agglutinative languages. Computers and the

Humanities, 36(4), 381-410.

99

Hakkani-Tür, D. Z., Saraçlar, M., Tür, G., Oflazer, K., and Yuret, D., 2018.

Morphological Disambiguation for Turkish. In Turkish Natural Language

Processing (pp. 53-67). Springer, Cham.

Halácsy, P., Kornai, A., Oravecz, C., Vikto, T., and Varga, D., 2006. Using a

morphological analyzer in high precision POS tagging of Hungarian.

Haldar, R., and Mishra, P. K. (2016). Learning Vector Quantization (LVQ) Neural

Network Approach for Multilingual Speech Recognition. Int. Res. J. Eng.

Technol, 3, 2863-2869.

Heigold, G., Neumann, G., and van Genabith, J., 2017. An extensive empirical

evaluation of character-based morphological tagging for 14 languages.

In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume 1, Long Papers (pp.

505-513).

İlgen, B., Adalı, E., and Tantuğ, A. C., 2013. A comparative study to determine the

effective window size of Turkish word sense disambiguation systems.

In Information Sciences and Systems 2013 (pp. 169-176). Springer, Cham.

Kiss, T., and Strunk, J., 2006. Unsupervised multilingual sentence boundary

detection. Computational Linguistics, 32(4), 485-525.

Kohonen, T., 1984. Self-organization and associative memory, Springer Verlag,

New York

Kohonen, T., 1990a. Improved versions of learning vector quantization. In 1990

IJCNN International Joint Conference on Neural Networks (pp. 545-550).

IEEE.

Kohonen, T., 1990b. The self-organizing map. Proceedings of the IEEE, 78(9),

1464-1480.

Kohonen, T. 1990c. Statistical pattern recognition revisited. In Advanced neural

computers (pp. 137-144). North-Holland.

100

Kohonen, T. 1992. New developments of learning vector quantization and the self-

organizing map. In Symposium on Neural Networks; Alliances and

Perspectives in Senri l992 (SYNAPSE'92) Japan. Osaka.

Kutlu, M., and Cicekli, I., 2013. A hybrid morphological disambiguation system

for Turkish. In Proceedings of the Sixth International Joint Conference on

Natural Language Processing (pp. 1230-1236).

Labeau, M., Löser, K., and Allauzen, A., 2015. Non-lexical neural architecture for

fine-grained pos tagging. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 232–237.

Lafferty, J., McCallum, A., and Pereira, F. C., 2001. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data.

Laki, L. J., and Orosz, G., 2014. An efficient language independent toolkit for

complete morphological disambiguation. In LREC (pp. 1625-1630).

Ma, X, and Hovy, E, 2016. End-to-end sequence labeling via bi-directional lstm-

cnns-crf. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, volume 1, pages 1064–1074.

Mantysalo, J., Torkkola, K., & Kohonen, T. 1992. LVQ-based speech recognition

with high-dimensional context vectors. In Second International Conference

on Spoken Language Processing.

Martín-Valdivia, M. T., Ureña-López, L. A., and García-Vega, M. (2007). The

learning vector quantization algorithm applied to automatic text

classification tasks. Neural Networks, 20(6), 748-756.

Muller, T., Schmid, H., and Schutze, H., 2013, Efficient higher-order CRFs for

morphological tagging. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing (pp. 322-332).

Muller, T., and Schutze, H., 2015. Robust morphological tagging with word

representations. In Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies (pp. 526-536).

101

Nguyen, D. Q., Pham, D. D., and Pham, S. B., 2016. A robust transformation-based

learning approach using ripple down rules for part-of-speech tagging. AI

Communications, 29(3), 409-422.

Oflazer, K., 1994. Two-level description of Turkish morphology. Literary and

linguistic computing 9.2, 137-148.

Oflazer, K., and Tür, G., 1996. Combining hand-crafted rules and unsupervised

learning in constraint-based morphological disambiguation. arXiv preprint

cmp-lg/9604001.

Oflazer, K., and Tür, G., 1997. Morphological disambiguation by voting

constraints. In Proceedings of the 35th Annual Meeting of the Association

for Computational Linguistics and Eighth Conference of the European

Chapter of the Association for Computational Linguistics (pp. 222-229).

Association for Computational Linguistics.

Orosz, G., and Novák, A., 2013. PurePos 2.0: a hybrid tool for morphological

disambiguation. In Proceedings of the International Conference Recent

Advances in Natural Language Processing RANLP 2013 (pp. 539-545).

Öztemel, E., 1992. Integrating expert systems and neural networks for intelligent

on-line statistical process control.

Öztemel, E., 2012. Yapay sinir ağları. Papatya Yayıncılık Eğitim, İstanbul, 232s.

Pennington, J., Socher, R., and Manning, C., 2014. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP) (pp. 1532-1543).

Pilevar, M. T., Feili, H., and Soltani, M. (2009, September). Classification of

Persian textual documents using learning vector quantization. In 2009

International Conference on Natural Language Processing and Knowledge

Engineering (pp. 1-6). IEEE.

Sak, H., Güngör, T., and Saraçlar, M., 2007. Morphological disambiguation of

Turkish text with perceptron algorithm. In International Conference on

102

Intelligent Text Processing and Computational Linguistics (pp. 107-118).

Springer, Berlin, Heidelberg.

Sezer, T., 2017. TS Corpus Project: An online Turkish Dictionary and TS DIY

Corpus. European Journal of Language and Literature, 9(1), 18-24.

Shen, Q., Clothiaux, D., Tagtow, E., Littell, P., and Dyer, C., 2016. The role of

context in neural morphological disambiguation. In Proceedings of

COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers (pp. 181-191).

Silfverberg, M., Ruokolainen, T., Lindén, K., and Kurimo, M., 2016. FinnPos: an

open-source morphological tagging and lemmatization toolkit for

Finnish. Language Resources and Evaluation, 50(4), 863-878.

Straková, J., Straka, M., and Hajič, J., 2014. Open-source tools for morphology,

lemmatization, POS tagging and named entity recognition. In Proceedings

of 52nd Annual Meeting of the Association for Computational Linguistics:

System Demonstrations (pp. 13-18).

Tahiroğlu, B.T., 2014. Türkçe Çevrim İçi Haber Metinlerinde Yeni Sözlerin

(Neolojizm) Otomatik Çıkarımı. Derlem Dilbilim Uygulamaları, Özkan,

B., Tahiroğlu, B. Tahir ve Özkan Ayşe Eda (Ed.), Karahan Kitabevi

Yayınları, Adana, ss.1-22.

Tkachenko, A., and Sirts, K., 2018. Modeling composite labels for neural

morphological tagging. arXiv preprint arXiv:1810.08815.

TLA,http://www.tdk.gov.tr/index.php?option=com_content&id=198:Kisaltmalar,

Access Date:2018

Umer, M. F., and Khiyal, M. S. H. (2007). Classification of textual documents

using learning vector quantization. Information Technology Journal, 6(1),

154-159.

Visa, A. J., Toivanen, J., Back, B., and Vanharanta, H. (2000, April). Toward text

understanding: Classification of text documents by word map. In Data

http://journals.euser.org/files/articles/ejls_sep_dec_17/Taner.pdf
http://journals.euser.org/files/articles/ejls_sep_dec_17/Taner.pdf

103

Mining and Knowledge Discovery: Theory, Tools, and Technology II (Vol.

4057, pp. 299-305). International Society for Optics and Photonics.

Viterbi, A., 1967. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm, IEEE transactions on Information Theory,

13(2), 260-269.

Yıldız, O. T., Avar, B., and Ercan, G, 2019. An Open, Extendible, and Fast Turkish

Morphological Analyzer.

Yildiz, E., Tirkaz, C., Sahin, H. B., Eren, M. T., and Sonmez, O. O., 2016. A

morphology-aware network for morphological disambiguation. In Thirtieth

AAAI Conference on Artificial Intelligence.

Yuret, D., and Türe, F., 2006. Learning morphological disambiguation rules for

Turkish. In Proceedings of the main conference on Human Language

Technology Conference of the North American Chapter of the Association

of Computational Linguistics (pp. 328-334). Association for Computational

Linguistics.

104

105

CURRICULUM VITAE

Enis ARSLAN was born in Zonguldak, in 1976. He received a Bachelor's

degree in Computer Engineering from Yıldız Technical University (YTÜ) in 2000,

M.Sc. degree in Computer Engineering from Doğuş University in 2012. He also

has an MBA degree from Beykent University. Following the graduation from

university as an engineer, he had worked on several job titles as System Analyst,

Business Analyst, Senior Database Operation Engineer and Project Manager in

different sectors, especially Medical and Telecommunications. During the Ph.D.

study at Çukurova University, he had worked as Project Assistant for the Tübitak

Project with the number 215E256.

