CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

Ph.D. THESIS

Enis ARSLAN

LEARNING WORD-VECTOR QUANTIZATION: A STUDY IN
MORPHOLOGICAL DISAMBIGUATION OF TURKISH

DEPARTMENT OF COMPUTER ENGINEERING

ADANA-2020

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

LEARNING WORD-VECTOR QUANTIZATION: ASTUDY IN
MORPHOLOGICAL DISAMBIGUATION OF TURKISH

Enis ARSLAN
Ph.D. THESIS
DEPARTMENT OF COMPUTER ENGINEERING

We certify that the thesis titled above was reviewed and approved for the award of
degree of the Doctor of Philosophy by the board of jury on 17/12/20109.

Assoc. Prof. Dr. Umut ORHAN Prof. Dr. Selma Ayse OZEL Prof. Dr. Mutlu AVCI
SUPERVISOR MEMBER MEMBER

.................................. Asst. Prof. Dr. Ali INAN
Prof. Dr. Olcay Taner YILDIZ MEMBER
MEMBER

This Ph.D. Thesis is written at the Department of Computer Engineering, Institute
of Natural and Applied Sciences of Cukurova University.
Registration Number:

Prof. Dr. Mustafa GOK
Director
Institute of Natural and Applied Sciences

This study supported by Cukurova University Scientific Research Projects Unit.
Project No: FDK-2015-5155

Note: The usage of the presented specific declarations, tables, figures, and photographs either in
this thesis or in any other reference without citation is subject to "The law of Arts and
Intellectual Products™ number of 5846 of Turkish Republic

ABSTRACT

Ph.D. THESIS

LEARNING WORD-VECTOR QUANTIZATION: ASTUDY IN
MORPHOLOGICAL DISAMBIGUATION OF TURKISH

Enis ARSLAN

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF COMPUTER ENGINEERING

Supervisor : Assoc. Prof. Dr. Umut ORHAN
Year: 2019, Pages: 105
Jury : Assoc. Prof. Dr. Umut ORHAN
: Prof. Dr. Selma Ayse OZEL
: Prof. Dr. Mutlu AVCI
: Prof. Dr. Olcay Taner YILDIZ
. Assist. Prof. Dr. Ali INAN

Nowadays, most of the NLP applications are dependent on the accurate
morphological analysis of the basic language units: words. Root words, part-of-speech
(POS) tags and morphological features are the basic units of a word. Morphologically
complex languages like Turkish have rich feature sets. When combined with productive
inflectional and derivational morphology, thousands of words can be produced from a root
word and this leads to sparsity. Morphological analyzers are the tools that perform the
morphological analysis of a word. They can produce multiple parses for a single word
where this indicates ambiguity. Disambiguation is the removal process of ambiguity where
it is a much complicated task for morphologically complex languages like Turkish.
Although high accuracy values are obtained for the studies performed on this task, there is
still a challenge. Sparsity and insufficiency of high volume supervised data is the cause of
longer running times and accuracy loss. Recent studies for morphological disambiguation
are generally presented on neural learning models. To our best knowledge, a
disambiguation method which takes the advantage of training of words in a vector-space
has not been proposed. Motivated by this shortcoming, in this thesis, we have developed
and implemented a vector-space model that solves morphological ambiguity by locating the
correct candidates of ambiguous words near to the unambiguous neighbors. The model,
named learning word-vector quantization (LWQ), is an adaptation of a well-known learning
algorithm, learning vector quantization (LVQ). LWQ outperforms the algorithms presented
in the literature for the morphological disambiguation of Turkish.

Key Words: Morphological disambiguation, Complex morphology, Learning vector
quantization, Word vector, Ambiguity
|

0z

DOKTORA TEZi

SOZCUK VEKTORU NiCELLESTiRME OGRENMESI: TURKCE iCiN
BiCIMBIiRIMSEL BELIRSIZLIK GIDERME CALISMASI

Enis ARSLAN

CUKUROVA UNIVERSITESI
FEN BiyiMLERi ENSTIiTUSU
BIiLGiISAYAR MUHENDISLiGi ANABILIiM DALI

Danigman : Dog. Dr. Umut ORHAN
Yil: 2019, Sayfa: 105
Jiiri : Dog. Dr. Umut ORHAN

: Prof. Dr. Selma Ayse OZEL

: Prof. Dr. Mutlu AVCI

: Prof. Dr. Olcay Taner YILDIZ
: Dr. Ogr. Uyesi Ali INAN

NLP uygulamalarimin basarisi, dillerin temel birimi olan kelimelerin dogru
bicimbirimsel analizine baghdir. Kokler, kelime tiirii etiketleri ve bigimbirimsel 6zellikler,
bir kelimenin temel birimleridir. Tiirkge gibi bi¢imbirimsel olarak karmasik olan diller
zengin Ozelliklere sahiptir. Tiirkce’nin tliretimsel olarak {iretken yapist gozoniine
alindiginda, bir kok kelimeden binlerce kelime {iiretilebilmekte ve bu durum seyreklesmeye
yol agmaktadir. Bi¢imbirimsel analizorler, bir kok kelimenin bigimbirim analizini yapan
araglardir. Bi¢imbirimsel analizorler, tek bir kelime i¢in birden fazla ayristirma tiretebilir ve
bu durum ise belirsizligi gostermektedir. Belirsizlik giderme islemi, Tiirkge gibi morfolojik
olarak karmasik diller i¢in olduk¢a zor bir islemdir. Bu problemin giderilmesi i¢in sunulan
calismalarda yiiksek dogruluk degerleri elde edilmis olmasina ragmen, daha gidilecek yol
vardir. Seyreklik ve yiiksek miktarda denetimli verinin bulunmuyor olmasi, daha uzun
caligma siirelerine ve daha diisiik dogruluk degerlerine sebep olabilmektedir. Son
zamanlarda bicimbirimsel belirsizliklerin giderilmesi ¢aligmalar1 genellikle sinir 6grenme
modelleri ile yapilmaktadir. Bildigimiz kadariyla, Tiirkce icin, kelimelerin vektor uzaymda
egitilerek konumlandirilmasiyla bigimbirimsel belirsizligi gideren bir yontem heniiz
onerilmemistir. Bu eksiklikten hareketle, bu tezde, belirsiz kelimenin dogru adaylarini
belirsiz olmayan komsularin yanina yerlestirerek bigimbirimsel belirsizligi ¢ozen bir vektor
uzay modeli gelistirilmis ve uygulanmustir. S6zctik vektorii nicellestirme 6grenmesi (LWQ)
adli model, iyi bilinen bir 6grenme algoritmasi olan vektorel nicellestirme 6grenmesi
(LVQ)’nin bir tiirevidir. LWQ, literatiirde sunulan diger algoritmalara gére daha iyi basar1
oranlari elde etmektedir.

Anahtar Kelimeler: Bigimbirimsel belirsizlik giderme, Karmagik bi¢imbirim, Vektorel
nicellestirme 6grenmesi, Kelime vektori, Belirsizlik

EXPANDED ABSTRACT

Turkish is an agglutinative language which has a productive character with
inflectional and derivational morphology. In agglutinative languages, new word
forms can be easily created by using stems and affixes. Words carry semantical and
syntactical information in their internal structure. This information is valuable in
advanced natural language processing (NLP) applications and must be exposed.
Morphological analysis is a pre-processing step for NLP which identifies the
grammatical structure of words. Finite state machines (FSM) are generally the
main components of a morphological analyzer and their design varies according to
the language’s grammar. Due to the large size of dictionaries and morphological
features many analysis (parse outputs) can be provided by a morphological
analyzer. Although morphological analyzers are improved with additional
constraints, multiple parses of a word are often available for a word, which is stated
as “ambiguity”.

Especially, nearly half of the running text is ambiguous in Turkish.
Inflectional morphology and large feature sets are the main causes of sparsity.
Ambiguity is a barrier for further processing of texts in NLP applications and it
should be solved. Morphological disambiguators are the tools that singularize the
multiple parses provided by a morphological analyzer by selecting the correct parse
solution. Morphological disambiguators implement disambiguation by taking into
account the context of a target (ambiguous) word in a sentence or text. Nearly all of
the studies performed for Turkish have used context information in their models by
incorporating the neighboring information. Applying a conceptual window on the
target word to detect its corresponding neighbors, is a general approach.

Early studies on morphological disambiguation of Turkish has begun with
constraint-based (Oflazer and Kuruoz 1994; Oflazer and Tiir, 1997; Daybelge and
Cicekli, 2007) approaches and pure statistical methods (Hakkani-Tiir et al., 2002).

The main drawback of using constraints in disambiguation is difficulty to handle
i

new or unknown words with the standard rule-sets. Statistical methods collect
usage information of the data models (word n-grams) from the corpus and
determine the most probable sequence to disambiguate a sentence. In the following
years, hybrid (Kutlu and Cicekli, 2013) models have got more popular which
achieves higher success by using the constraints with statistical information. Nearly
a decade ago, machine learning methods (Sak et al., 2007; Yuret and Tiire, 2006)
has presented the state-of-the-art results. In recent years, neural network models
(Dayanik et al., 2018; Shen et al., 2016; Yildiz et al., 2016) report promising
accuracy values in morphological disambiguation. These models have the
advantage of efficient computation and flexibility of modelling the words with
context information in network layers. Nearly all of these use the same tagged
datasets in their training cycles (Yuret and Tiire, 2006). Although most of these
algorithms are so successful, any implementation of morphological disambiguation
with a classification method which applies a supervised reward-punish mechanism
in a vector-space has not been proposed, to our best knowledge.

Motivated by this shortcoming in the literature, we propose to develop, a
vector-space model named learning word-vector quantization (LWQ), which is an
adaptation of the learning vector quantization (LVQ). Although original LVQ
algorithm has been successfully applied in some NLP research fields like text
classification (Umer and Khiyal, 2007; Visa et al., 2000; Martin-Valdivia et al.,
2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016), language
identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005) and
multi-word expressions recognition (Diaz-Galiano et al., 2004), it is not
implemented on morphological disambiguation, in our knowledge. For this reason,
we have adapted this algorithm specifically for this task, by treating it as a
classification problem.

In this thesis, first, we have built the necessary tools and materials. These
are necessary to improve a morphological analyzer and prepare a tagged dataset

with a web tool. Second, we have developed the LWQ classification model and
v

trained it with this dataset to optimize the exact locations of the words in space. We
believe that words without ambiguity should reside in near locations with the
correct parse candidate of an ambiguous word. When the locations of the words are
fixed at the end of the training phase, a classification test is applied to disambiguate
the ambiguous words. To our best knowledge, this is the first implementation of
this technique.

The experimental results show that the proposed technique gives promising
accuracy values in morphological disambiguation. Although we have used a
limited dataset, training with a larger dataset can contribute to success. In the study,
accuracy results are presented with various experiments and data consistency is

additionally investigated.

GENISLETILMIS OZET

Tiirkge tiiretimsel ve ¢ekimsel bigimbirimine sahip sondan eklemeli bir
dildir. Sondan eklemeli dillerde kokler ve ekler kullanilarak kolaylikla yeni
kelimeler olusturulabilmektedir. Kelimeler i¢ yapilarinda anlamsal ve s6zdizimsel
bilgiler icermektedirler. Bu bilgiler dogal dil isleme (DDI) uygulamalarinda degerli
olmalar1 sebebiyle aciga cikartilmalidir. Bicimbirimsel analiz, sozciiklerin gramatik
yapilarinin tespit edildigi bir DDI 6n islemidir. Sonlu durum makinalar1 (SDM) bir
bicimbirimsel analizcinin temel yapitaslaridir ve tasarimlart uygulandigi dillerin
dilbilgisine gore degisiklik gdstermektedir. Bir bigimbirimsel analizci sozliiklerinin
biliyilk olmasi ve o0zellik sayisinin fazlaligi sebebiyle bir¢ok analiz ¢iktisi
olusturabilmektedir. Her ne kadar bigimbirimsel analizciler birgok kisitlayici
kurallar kullanilarak gelistirilmis olsalar da, bir kelimenin birden fazla analizi
s6zkonusu olabilmektedir ve bu duruma “belirsizlik” adi1 verilmektedir.

Neredeyse Tiirkce olarak kullanilan metinlerin yarist belirsizlik
icermektedir. Cekimsel bigcimbirim ve fazla o6zellik igeren ozellik kiimeleri
seyrekligin temel sebeplerinden biridir. Belirsizlik ileri DDI uygulamalarina
gecebilmek icin bir engeldir ve ¢oziilmesi gerekmektedir. Bicimbirimsel belirsizlik
gidericiler bir bigimbirimsel analizcinin sundugu birden fazla ¢6ziim iginden dogru
¢Oziimiin bulunmasi i¢in kullanilan araglardir. Bi¢imbirimsel belirsizlik gidericiler
bir climledeki ya da metindeki bir sozciigiin baglamin1 gézoniine alarak hedef
(belirsiz) kelimenin belirsizligini gidermektedirler. Tiirk¢e i¢in bu konuda yapilan
calismalarin neredeyse hepsi tasarimlarinda komsuluk iliskilerinin kullanildig:
baglam bilgisinden faydalanmaktadirlar. Komsulariin tespiti i¢in hedef kelimeye
kavramsal bir pencere uygulanmasi genel bir yaklasimdir.

Tirk¢e’nin bi¢imbirimsel belirsizlik gidermesi iizerinde ilk yapilan
caligmalar kural tabanli (Oflazer ve Kuruéz 1994; Oflazer ve Tiir, 1997; Daybelge
ve Cicekli, 2007) ve istatistiksel (Hakkani-Tiir vd., 2002) olarak sunulmustur.

Belirsizlik gidermede kural tabanli yaklasimlart kullanmaktaki temel sorun, yeni
VI

veya bilinmeyen kelimelerin standart kural tablolariyla tespitinin zor olmasidir.
[statistiksel yontemler veri modellerinin (n-gramlar) derlemlerdeki kullanim
bilgilerini toplayarak, ciimledeki belirsizligi gidermek i¢in en olast dizilimi
belirlemektedir. Takip eden yillarda, kural tabanli ve istatistiksel yontemleri
kullanarak yiiksek basarilar saglayan hibrid (Kutlu ve Cicekli, 2013) modeller
onem kazanmaya baglamistir. Yaklasik on yil kadar once sunulan makine
Ogrenmesi yontemleri (Sak vd., 2007; Yuret ve Tiire, 2006) en yiiksek basar
degerlerini sunmustur. Yakin zamanlarda belirsizlik giderme icin sunulan sinir ag
modelleri (Dayanik vd., 2018; Shen vd., 2016; Yildiz vd., 2016) umut verici
dogruluk degerleri sunmuslardir. Bu modeller, sinir aglarinda kelimelerin baglam
bilgisiyle beraber verimli bir sekilde modellenmesine olanak saglamaktadirlar. Bu
modellerin neredeyse hepsi ayni etiketli verisetini (Yuret ve Tiire, 2006)
kullanmaktadirlar. Bu c¢alismalarin ¢ogu oldukg¢a bagarili sonuglar sunmus
olmalarma ragmen, bildigimiz kadariyla, kelime uzayinda denetimli olarak 6diil-
ceza uygulamasi yapan bir belirsizlik giderme islemi yapilmamustir.

Literatiirde bulunan bu eksiklik gbz Oniine alnarak, bu ¢aligmada, vektor
nicellestirme &grenmesi (LVQ) algoritmasindan esinlenilerek, sozciik vektori
nicellestirme 6grenmesi (LWQ) modeli gelistirilmistir. LVQ algoritmasi, her ne
kadar metin siniflama (Umer ve Khiyal, 2007; Visa vd., 2000; Martin-Valdivia vd.,
2007; Pilevar vd., 2009), ses tamima (Haldar ve Mishra, 2016), dil tanima
(Gunawan vd., 2017), spam tespiti (Chuan et al., 2005) ve ¢oklu kelime tanima
(Diaz-Galiano vd., 2004) gibi baz1 DDI arastirma alanlarinda uygulanns olsa da
bildigimiz kadariyla bicimbirimsel belirsizlik gidermede bir uygulamasi
bulunmamaktadir. Bu sebeple, bu algoritma, belirsizlik giderme problemi i¢in bir
siniflandirma bakis agisiyla degistirilmis ve yeni bir model olarak sunulmustur.

Bu tezde, oncelikle gerekli araglar ve malzemeler hazirlanmistir. Bunlar,
bir bicimbirimsel analizcinin {izerinde gelistirme yapilmasi ve bir web araci
yardimyla etiketli veri hazirlanmasi igin gerekmektedir. Ikinci olarak, LWQ adl

smmiflama modeli gelistirilerek veriseti ile egitim yapilmg ve uzayda kelimelerin
VI

gercek konumlar optimize edilmeye ¢alisilmistir. Belirsizlik igermeyen kelimeler
belirsiz kelimenin dogru adaymin gevresinde bulunmaktadir. Egitim sonunda
kelimelerin uzaysal konumlarmin sabit hale gelmesiyle belirsiz kelimelere bir
siniflandirma testi uygulanmakta ve belirsizlik giderilmektedir. Bildigimiz
kadariyla, bu teknigin ilk uygulamasi bu calismada sunulmaktadir.

Deneysel sonuglar, ¢alismada Onerilen teknigin bicimbirimsel belirsizlik
gidermede umut verici dogruluk degerleri sagladigin1 gostermektedir. Siirli bir
veri kiimesi kullanilmis olmasina ragmen daha yiiksek veri ile egitim yapilmasi
basariy1 arttirabilecektir. Bu ¢alismada basar1 degerleri farkli deneyler ile sunulmus

ve veri tutarlilig1 ayrica arastirilmistir.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr.
Umut ORHAN for his supervision, encouragement, patience, motivations and
useful suggestions for the successful completion of this work.

I would like to thank members of the Ph.D. thesis jury, Prof. Dr. Selma
Ayse OZEL, Prof. Dr. Mutlu AVCI, Prof. Dr. Olcay Taner YILDIZ, and Assist.
Prof. Dr. Ali INAN for their valuable help, support and suggestions.

I would like to express my sincere appreciation to TUBITAK for their
financial support with the project number 215E256 in the process of my Ph.D.
education.

I am also thankful to Dr. Cagatay Neftali TULU and Erhan TURAN for
their support and motivation.

Finally, 1 would like to thank my dear brother Prof. Dr. Niyazi Arslan for
encouraging me in the Ph.D. study and his personal assistance, also to other
members of my family who have supported me throughout the entire thesis period,
both by their love and encouragement.

Xl

CONTENTS PAGE

ABSTRACT .. e rae e |
OZ oot I
EXPANDED ABSTRACT oottt Il
GENISLETILMIS OZET......coooiiiiteeeeeeee e, Vil
ACKNOWLEDGMENTS ... Xl
CONTENTS .ottt sttt nre e Xl
LIST OF TABLES ..ottt XVI
LIST OF FIGURESc ottt XV
LIST OF ABBREVIATIONS ..o XX
1. INTRODUCTIONciiiiiiiiiieiet ettt 1
1.1. The Aims and Objectives of This ThesSISccccccevveviiiieieeieiiennn 5
1.2. OUr CONLIIDULION ..o 6
1.3. ThesSiS Organization...........ccccererererenieisieiee e 6

2. RELATED WORKS ...ttt 9
2.1. Morphological Disambiguation of Turkish..............cccccccoveiieniennnn, 11
2.2. Learning Vector Quantization (LVQ) and NLP..........c.ccocvvvvienne. 17

3. MATERIALS ...t 21
3.1. LVQ (Learning Vector Quantization) Algorithm 23
3.1.1.LVQ1 Algorithm (Kohonen, 1984)ccccccovevievvcvieirienenn, 23
3.1.2.L.VQ2 Algorithm (Kohonen, 1990a; Kohonen 1990c)........... 27
3.1.3.LVQ3 Algorithm (Kohonen, 1990D)ccccocnirininniinienn 29
3.1.4.LVQ Algorithm with Penalization Mechanism (De Sieno,

1988) ..ttt 29
3.1.5.LVQ-X Algorithm (Oztemel, 1992)cccecevvvmererirrrirernans 30

Xl

3.2, DALASEL ...t 31
3.2.1. Statistics of the Datasets for Morphological Disambiguation of

TUPKISN e 32

3.2.2. Statistics of the Dataset Prepared for This Study 33

3.2.3. Dataset Preparationc.ccoevireiieieienesic e 33
3.2.4.Tagging Applicationccevviieiieie e 38

3.3. Morphological Analyzer (Yildiz et al., 2019)cocccvviiiiiiiiiiiiiene 41

A, METHODSo e eaae e 45
4.1. Proposed Morphological Disambiguation Method — LWQ.............. 45
4.2. Multi-word TOKENIZETccviiiiieiescii e 53
4.3. OOV DISCOVEIYcuveitiiiiiieeteeitesieseese e st e se st seesre e sreenresnnesrea 54

5. RESULTS AND DISCUSSIONSoooiiiiiiie e 61
5.1. Performance Metrics for the Proposed Methodccocevviiennne. 61
5.2. Experimental Results for the Proposed Method................cccceeeen. 61
5.2.1.k-fold Validity TeStS......cccovevieiiiiieiecie e 62
5.2.2.Effects of Window-Size and Word-Vector Dimension on
Accuracy and COCoceviiiiiiirieee e 63

5.2.3. Causes of Inconsistency and Incorrect-Consistency............... 68

5.2.4.The Effect of “Insufficient Equation” on Accuracy and COC 70
5.2.5.Effect of Dataset Size on Classification Accuracy and
CONSISEENCY ...ttt 73
5.2.6.Consistency Analysis for all Window-Size Values and
DIMENSIONS ...ttt e 74
5.3. Comparison Results with the Other Morphological Disambiguation

MELNOAS ... 91

B. CONCLUSIONS ...ttt 95

REFERENCES

CURRICULUM VITAE ..o 105

XV

LIST OF TABLES PAGE

Table 2.1.
Table 2.2.
Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 5.5.

Morphological analysis of the word “masal1”cccccceerneeee 10
Morphological analysis of the word “dolar”ccccoevveiinnns 10
Training datasets used in morphological disambiguation of
TUIKISN .. 31
Datasets prepared for morphological disambiguation of

TUPKISN . 32
Statistics of the supervised dataset prepared for this study

(B OF TOKENS) ... e 33
Accuracy test results of the ‘Morphological Analyzer’ 41
Time performance of the ‘Morphological Analyzer’.................. 42
Statistics of TLA lemmas for semantic graph...........cccccevvennnne. 56
Node and relation labels summarized..........cccoeveiiniiiiiienenn, 58
Statistics of the semantic graph...........ccoceveveiinninineee 59
Some examples of the discovered collocations.................c......... 59
K-fold validity test results for different k values (w=14 and

The effects of window-size and word-vector dimension on
ACCUTACY (90) c.viveereeie ettt ettt sre e re e 63
The effects of window-size and word-vector dimension on
accuracy when filtered with ineffective lemma pairs (%)........... 65
Some relations of the vocabularies for different window-size
VAIUBS ...t 66
Effect of different filters on COC and accuracy for window-

SIZE 14 (0) v 67

Table 5.6. Statistics of the dataset for inconsistent and consistent-
INCOMTECT TINES ...t
Table 5.7 Effects of fine-trained candidates on CoC with parameters
window width and word-vector dimension (%)c.ccecvvevenenn
Table 5.8. The effects of the change in the amount of data on accuracy
AN COC (Y0) cvvvveereeie et
Table 5.9. Accuracy values given in related studies for morphological

diSaMBIGUALTIONovveiiiieicic e

XVII

LIST OF FIGURES

Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.
Figure 3.11.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.

Figure 4.6.
Figure 4.7.
Figure 5.1.

Figure 5.2.

Figure 5.3.

PAGE
The block diagram of the system model of the study.............. 21
LVQ network model.........c..cooveeviiiiiiiiece e 24
Nearest vector to the input VECLOrccevevieveeie e 26
Approximation of the input vector to the reference vector27
Schematic view of LVQ2 algorithm..........cccccevviiiiiiiinn, 28
“Texts” screen of the tagger toolccoeviviiiiiiiiicie 38
“Sentences” screen of the tagger toolccceeiiiiiiiiiiininn 39
“Tokens” screen of the tagger toolccccevvieiiiiieiienee, 39
Merging tokens in the tagger tool...........cccocviiiiiiininicee, 40
Tagger tool lemmatization and POS tagging screen 40
Parse output for the word "diizenlenecek"..............ccoevivennnen. 43
A sample sentence for a window-size=4cccccccvvevvenenne. 46
Distance-based classification test for a sample sentence......... 47
Rewarding steps in training for a sample sentence.................. 48
Penalization steps for the training in a sample sentence 49
Execution steps of the tokenizer function in an example
SENEENCE .ottt 54
OQV discovery System SCNeMA...........cccevverererienenineseeeennes 55
OOV discovery process flowchart.............cccocoeeeiiiiiccniennn, 60
COC analysis for different vector- dimensions on the same
WINAOW-SIZE VAIUES.......ceeeeieiieiiieie e 75
COC analysis for different word-vector dimensions on the
same window-size values with “intersection filter” 77
COC analysis for different window-size values on the same
WOrd-Vector diMENSIONScccverveeieriereeie e e eee e see e 79

XVIII

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

Figure 5.10.

Figure 5.11.

COC analysis for different window-size values on the same
vector dimensions with “intersection filter”.............cc.cccoeueee..
COC analysis for window-size=2 on different word-vector
dimension values with original and filtered datasets..............
COC analysis for window-size=6 on different word-vector
dimensions with original and filtered datasets
COC analysis for window-size=10 on different word-vector
dimensions with original and filtered datasetsc.......
COC analysis for window-size=14 on different word-vector
dimensions with original and filtered datasets
COC analysis for window-size=18 on different word-vector
dimensions with original and filtered datasets
COC analysis for window-size=22 on different word-vector
dimensions with original and filtered datasets
COC analysis for window-size=26 on different word-vector

dimensions with original and filtered datasetsc.......

XIX

LIST OF ABBREVIATIONS

AVF : Affix Validation Function
CNN : Convolutional Neural Network
COC : Consistency of Classification
CRF : Conditional Random Fields
DB : Derivational Boundary

FSM : Finite State Machine

GPA : Greedy Prepend Algorithm
HMM : Hidden Markov Model

IG . Inflectional Group

LDF : Lemma Discovery Function
LSTM : Long Short Term Memory
LVQ : Learning Vector Quantization
LWQ : Learning Word-Vector Quantization
MD : Morphological Disambiguator

MF : Morphological Feature

NER : Named Entity Recognition
NLP : Natural Language Processing
NN : Neural Network

OOV : Out-of-Vocabulary

POS : Part of Speech

SMT : Statistical Machine Translation
TLA : Turkish Language Association
Uw : Unknown Word

WSD : Word Sense Disambiguation

XX

1. INTRODUCTION Enis ARSLAN

1. INTRODUCTION

Turkish is a morphologically complex, agglutinative, free word order
language. It is possible to derive infinite number of words by using a root and any
number of morphemes (Hakkani-Tiir et al., 2002). For advanced Natural Language
Processing (NLP) applications, it is an essential task to morphologically analyze
the words in texts (Dayanik et al., 2018). Morphological analysis is composed of a
root, part-of-speech (POS) and morphological tags (i.e. morphemes).

Morphological analyzers and part-of-speech (POS) taggers are the main
tools that analyze a word morphologically. In terms of NLP, morphological
ambiguity is the case that, when there exist multiple analyses as the outputs of
these tools. Morphological ambiguities should be solved (i.e disambiguated) in
order to perform further applications in NLP. Morphological disambiguation is the
process of finding the correct parse when a word has multiple parses within the
context to which it is bound (Dayanik et al., 2018).

Morphological disambiguation can be achieved in two ways. In some
cases, it is necessary to determine the POS tag for a root word or lemma. This
process is called POS Tagging and it is helpful to determine the correct POS tag for
a lemma provided by a lemmatizer tool. The other case is, to solve ambiguities
given as output of a morphological analyzer. Morphological disambiguator tools
have been developed to solve this problem. These tools, with various methods and
perspectives, can detect the appropriate analysis, regarding the situation of the
ambiguous word in the relevant context. POS tagging and morphological
disambiguators are often used together because their output is somewhat the same.
For example, the output of the POS tagging process is “lemma + POS tag”, while
the output of the morphological analyzer is “lemma + POS + MF (Morphological
Features”. The usage areas of the outputs may show similarities or differences.
Conceptually, POS tagging and morphological disambiguation are acceptable at the

same level in an NLP pipeline (Yildiz et al. 2016). But, for morphologically
1

1. INTRODUCTION Enis ARSLAN

complex languages POS tagging may not be enough and morphological
disambiguation is performed directly on the output of a morphological analyzer.

Morphological disambiguation studies have come up with various
approaches. However, in recent studies, neural network based machine learning
methods are preferred, which encode context information on word embeddings,
instead of directly using a morphological analyzer output (Dayanik et al., 2018;
Heigold et al., 2017; Yildiz et al. 2016). As a result of this preference, higher
accuracy values are reported when compared to statistical and rule-based methods.

Context information can be implemented locally or globally on the
disambiguation process. Local application is provided by the addition of the local
features of the ambiguous word by using a conceptual window. This is useful in
enriching the information for a target word by using the local features of the
neighboring words. This kind of window can be applied in one side (left or right)
or two sides (both right and left) of the target word depending on the design. In the
global sense, it is the use of words that are semantically similar, which co-occur in
the same sentence or text.

In literature, many studies presented for morphological disambiguation of
Turkish benefit from windowing. In Yuret and Tire (2006) they use all the
information of the words which reside in a five-word window. In Gorgiin and
Yildiz (2011) and Yildiz et al. (2016), a three-word window is used which includes
the two neighboring words to the left of the target word. In Dayanik et al., (2018)’s
study one neighbor word from the left and right of the target word are used in
encoding to the neural model.

Morphological disambiguation of Turkish with classification techniques in
vector-space has not been studied yet, in our best knowledge. Motivated by this
shortcoming, in this study, we propose a classification method to solve the
morphological ambiguity problem of the Turkish language. This method is an
adaptation of the well-known machine learning algorithm called Learning Vector

Quantization (LVQ) (Kohonen, 1984). LVQ is a competitive supervised neural
2

1. INTRODUCTION Enis ARSLAN

network, which is generally used for classification tasks. Inspired from the LVQ
algorithm we have developed LWQ (by using a similar acronym) method and
applied to morphological disambiguation problem. Basically, LWQ takes
advantage of a vector-space to obtain the optimum locations of word-vectors by
using a reward-punish mechanism. As mentioned before, words without ambiguity
are helpful in determining the correct candidate of an ambiguous word (a word
with ambiguity). In the inspiration of this idea, word-vectors are trained to assure
that, unambiguous words are located near to the correct lemma candidate of an
ambiguous word in the space. This requires a supervised tagged corpus where
training datasets are prepared specially and word-vectors are obtained from the
vocabularies of these datasets. Each data line in a dataset represents a single
occurrence of an ambiguous word with its immediate unambiguous neighbors that
are all in a pre-defined window. Lemma candidates of the ambiguous word that are
in the data line are obtained from the morphological analyzer (Yildiz et al., 2019).
All these candidates can be thought of a class and they are variable in the count
because there is no limit in the distinct parses provided by a morphological
analyzer. Original LVQ algorithm enables to design a model which is not limited to
two classes. This advantage of LVQ is an inspiration used in the design of LWQ.
LVQ is a three-layer neural network that is based on Kohonen Self
Organizing maps and it is supervised. Basically, these are input, competitive
(Kohonen) and output layers. Kohonen layer includes the codebook vectors where
each of them represents a cluster in the space. The Euclidian distance of each input
sample to each code vector is calculated and the nearest codebook vector wins the
competition test. The winner codebook vector is always compared with the desired
output and the weights are modified accordingly. LVQ is advantageous than the
other classification methods in requiring fewer training examples, the ability to
handle boundary values and being faster (Umer and Khiyal, 2007). In the literature
there are several successful implementations of LVQ methods on NLP tasks such

as text classification (Umer and Khiyal, 2007; Visa et al., 2000; Martin-Valdivia et
3

1. INTRODUCTION Enis ARSLAN

al., 2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016),
language identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005)
and multi-word expressions recognition (Diaz-Galiano et al., 2004).

Our study is different from the original LVQ algorithm as follows. First of
all, we do not use a neural network model although the logic is nearly the same.
Lemma candidates of all ambiguous words in a dataset are represented as similar to
codebook vectors of LVQ. Vector-space positions of the ambiguous lemma
candidates are arranged according to the supervised knowledge in each data line of
the dataset. Each data line represents a correct ambiguous lemma candidate
together with the other candidates and their immediate neighboring. When training
begins, a calculation is made for each ambiguous lemma candidate independently
with the neighbor words (unambiguous words). The calculation with the lowest
distance value is the selection of the LWQ system. It is compared with the correct
lemma candidate (supervised), if they are consistent to be same, nothing is done.
Otherwise, word-vector of the correct lemma candidate is approximated to the
neighbor words while other candidates are departed in opposite directions. This
iteration goes on till the convergence occurs. To evaluate our results, we have used
the “accuracy” parameter in order to comply with the other studies implemented
for Turkish morphological disambiguation in the literature.

Since the proposed method can work on labelled data, there is a need for
low noise and highly accurate dataset. There is a semi-automatically disambiguated
dataset (about 1 million words) released in Turkish (Yuret and Tiire, 2006) and
most of the studies for Turkish (Sak et al. 2007; Shen et al., 2016; Yildiz et al.
2016) use this dataset. While using this dataset, some of the preceding studies
presented their work by applying various methods to reduce noise or preparing
more reliable test sets. Because of the low reliability of the presented datasets for
Turkish, we have prepared a manually disambiguated data by the help of a tagging

tool and Expert.

1. INTRODUCTION Enis ARSLAN

1.1. The Aims and Objectives of This Thesis

Morphological disambiguation is a challenging NLP problem that is more
laborious and hard for morphologically complex languages like Turkish, Hungarian
and Czech due to the richness of the tagsets and their inflectional character. When
the case is Turkish, theoretically infinite number of words can be derived from the
stems or lemmas in a dictionary. Generally, statistics of the local features of a word
are enriched with the context information and used in the disambiguation models.
This requires high volumes of training data and special data models for Turkish.
Although recent disambiguation methods (Sak et al., 2017; Shen et al., 2016;
Dayanik et al., 2018; Gorgiin and Yildiz, 2011) are quite successful, using word-
space in classification for morphological disambiguation is not well-studied.
Therefore, the aim of this study is to develop a classification technique named
Learning word-vector quantization (LWQ), which is an adaptation of the well-
known supervised machine learning algorithm, Learning vector quantization
(LVQ). To achieve the best results, we aimed to take advantage of the LVQ
algorithm which requires less training data, flexible in class numbers and function
with a reward-punish mechanism.

LWQ is similar to LVQ in optimizing the locations of word prototypes as
input vectors but differs in some way. Training in LWQ is achieved by using the
immediate neighboring of the ambiguous words (target words) which do not have
ambiguity. This is not a new idea (Viterbi, 1967), where some of the successful
studies (Hakkani-Tiir, 2002; Sak et al., 2017) have established their base models on
scoring parse sequences with disambiguated text which with words without
ambiguity. Also, we have used the reward-punish mechanism in arranging the
word prototypes in space. We believe that using this approach in morphological

disambiguation contributes to the classification accuracy.

1. INTRODUCTION Enis ARSLAN

1.2. Our Contribution

Studies covered in this thesis aim to solve the morphological ambiguity
problem of Turkish, which is a challenging task needed to focus on for further NLP
studies. Thinking of the parse candidates of a word provided by a morphological
analyzer as classes and their immediate neighbouring (which do not have
ambiguity) as input words, we have developed a classification technique which
selects the correct candidate of an ambiguous word. We name it Learning word-
vector quantization (LWQ), in the inspiration of the Learning vector quantization
(LVQ) algorithm. Basic idea is to locate all words, as prototypes, in the vector
space and train the system by considering the relationships of the parse candidates
of an ambiguous word and their immediate neighbours. LWQ inspires the reward-
punish mechanism LVQ uses. In our knowledge, there is not any study in the
literature, which uses the main ideas of LVQ in classification to solve
morphological ambiguity.

1.3. Thesis Organization

This thesis is organized as follows:

In Section 2, a literature overview of studies on morphological
disambiguation of Turkish is provided. Methodologies are explained in detail and
accuracy values are given.

In Section 3, brief information is given for the materials and tools used in
the study. Datasets presented for Turkish morphological disambiguation are
reviewed with statistics. Also, the dataset prepared for this study is given. At the
end of the section, detailed information is given about the existing and developed
tools used for the preparation of the dataset.

In Section 4, the proposed LWQ algorithm is given in detail. Multiword
tokenizer that is integrated to the morphological analyzer is explained. Out-of-

vocabulary (OOV) discovery framework is presented.

1. INTRODUCTION Enis ARSLAN

In Section 5, the experimental results of the presented algorithm are given
and they are compared with the similar methods in the literature.
Finally, in the Conclusion section, the advantages and disadvantages of the

proposed methodology are discussed following the future outlook.

1. INTRODUCTION Enis ARSLAN

2. RELATED WORKS Enis ARSLAN

2. RELATED WORKS

In this section, research on morphological disambiguation presented for
Turkish is summarized. Before the overview, it is better to focus on the
morphological ambiguity problem of Turkish.

Turkish is a morphologically complex, productive and inflectional
language. For a natural language, word-parts (i.e. Morphemes) are the smallest
meaningful units which can be a stem, a prefix or suffix. Morphologically complex
languages carry syntactical and semantical relations in morphemes. To expose this
information, a word should be analyzed by using a morphological analyzer.
Analyzers are generally based on finite state machines (FSM) and many constraints
special to the language. Morphological analyzers present all possible solutions of a
word as parse lists, by applying all possible rules without considering the context.

Due to the very large tag set of Turkish, theoretically, infinite number of
words can be derived (Hakkani-Tiir et al., 2002) and this leads to sparseness.
Multiple parse solutions of a word indicate ambiguity and nearly half of the words
in the running text in Turkish are ambiguous (Yuret and Tire, 2006).
Morphological ambiguity should be solved by morphological disambiguation, for
further NLP applications such as syntax and semantic parsing, word sense
disambiguation, text-to-speech recognition, machine translation, spell checking,
dependency parsing, text summarization, semantic role labeling, topic modeling
and named entity recognition (NER). Some well-known examples of an ambiguous

word (a word with ambiguity) are given in Table 2.1 and Table 2.2.

2. RELATED WORKS Enis ARSLAN

Table 2.1 Morphological analysis of the word “masali” (Dayanik et al., 2018)

Word Analysis output

masall masal+Noun+A3sg+Pnon+Acc
masali yaz. (write the tale.)

masal+Noun+A3sg+P3sg+Nom
babamin masali (my father’s tale)

masa+Noun+A3sg+Pnon+Nom"DB+Adj+With
mavi masall oda (room with blue table)

In Table 2.1, the first two analyses have the same roots and POS tags as
“masal” and “NOUN”, respectively. But they are different in being accusative or
nominative and this tag difference causes a change in the meaning of the word. The
third analysis has a different root as “masa” and analysis has a derivational
boundary (DB) which means that a new word can be derived from the root with a
different affix (or different tag sequence) (+With) and this new word is an
adjective.

Table 2.2. Morphological analysis of the word “dolar” (Yildiz et al., 2016)

Word Analysis output

dolar dolar +Noun +3sg +Pnon +Nominative
on milyon dolar borcu var (has a debt of ten
million dollars)

dola +Verb +Positive +Aorist +3sg
ayagina dolar (she wraps to her foot)

dol +Verb +Positive +Aorist +3sg
bardak dolar (cup fills)

do +Noun +3pl +Pnon +Nominative Multiple
muzik notasi (musical note)

In Table 2.2, analysis of the foreign word “dolar” can be seen. There are
four different roots as “dolar”, “dola”, “dol”, “do”. It is a good point to imply the
second and third analyses where they have the same tag sequence as “Verb
+Positive +Aorist +3sg”, a new word with a different meaning can be derived by

using the roots “dola” and “dol”. There is no limitation in analyze count of a
10

2. RELATED WORKS Enis ARSLAN

morphological analyzer, where derivation starts with all the possible words and
corresponding POS tags listed in the dictionary, and FSMs increase the analysis
count and sparsity by considering all the possible paths in automatas.

As mentioned before, when the morphological analyzer outputs a single
parse, the term is not ambiguous and when there is more than one candidate root
word or lemma in multiple parses, it can be said that the target word is ambiguous.
In this study “unambiguous word” term will be used for the words without
ambiguity and the “ambiguous word” term will be used for the ambiguous ones. As
an example, morphological analyzer generates one candidate lemma as “arabaci +
NOUN?” for the word “arabacim”. On the other hand, two candidate lemmas can be
produced for the ambiguous word “kalemi” as “kale + NOUN” and “kalem +
NOUN”. Morphological analyzers or lemmatizers can only produce outputs
including roots, POS tags, morphological features (tags) without considering the
context of the target word. In order to resolve this kind of ambiguities, it is
essential to incorporate neighboring words of the target word in a text. Therefore, if
we consider each word in the text as a word-vector and each word-vector as a point
in space, dividing all points into two groups as “ambiguous” and “unambiguous”
may be useful in the disambiguation analysis.

2.1. Morphological Disambiguation of Turkish

Morphological disambiguation studies on agglutinative languages are
generally examined in four categories as rule-based, statistical, hybrid and machine
learning. Recent studies have been introduced on deep learning methods and
competitive results have been obtained when compared to the previous studies.

Previous studies for the Turkish language are based on rule-based (Oflazer
and Kuru6z 1994; Oflazer and Tir, 1997; Daybelge and Cicekli, 2007) and
statistical methods (Tiir et al., 2002). Sometimes statistical methods can be used
together with machine-learning methods being called hybrid methods (Kutlu and

Cicekli, 2013). In the study, they have reported an accuracy rate of 93.4% in

11

2. RELATED WORKS Enis ARSLAN

morphological disambiguation using statistical data and handcrafted rules on a
dataset they created.

In the later studies, morphological disambiguation success is improved by
using machine learning methods and better results are obtained according to the
rule-based and statistical methods. In morphological disambiguation, the results
reported in Sak et al.’s (2007) study is considered state-of-the-art for Turkish. In
the study, a multilayer perceptron method, which votes n-gram models (Hakkani-
Tiir et al., 2002) is presented with a success rate of 96.8%. When the same train
and test sets are used, this study overperformed with the value of 95.93% when
compared with the studies of Hakkani-Tiir et al. (2002) and Yuret and Tiire (2006).

Early work (Oflazer and Kuruéz, 1994; Oflazer and Tiir, 1996; Oflazer and
Tiir, 1997, Daybelge and Cicekli, 2007) on disambiguation is frequently presented
as rule-based approaches. These work rely on hand-crafted rules which generally
suffer from generality problem. Oflazer and Kuruéz, (1994)’s study is the earliest
study which uses constraint grammar approach by checking a target word’s
agreement with the syntactic and positional restrictions. Although this study
achieved reasonable results, the constraints were hand-crafted and further
improvement was impossible. In another study (Oflazer and Tiir, 1996), they have
proposed a constraint-based approach that is capable to learn rules and statistics
from the corpus in an unsupervised way. The hand-crafted rules are language
independent. The process begins by applying the standard set of choose-delete
hand-crafted rules to the untagged corpus. While this procedure provides a level of
decrease in ambiguity, additionally, a learning mechanism works to induce more
choose-delete rules specific to the target language. Following this procedure, the
disambiguation procedure is as: the standard set of rules is applied to the same
untagged corpus, some parses are deleted by using context statistics and finally, the
newly learned rules are applied. In the study, they report a 96 to 97% accuracy in
disambiguation. Voting constraints (Oflazer and Tiir, 1997) is another rule-based

approach where each rule has several constraints and a vote point. Voting is
12

2. RELATED WORKS Enis ARSLAN

achieved by giving high points to the most specific rules which have a high number
of constraints, the constraints with a high number of features, which have reference
to specific features. Rules are applied independently to all parses in the tokens of a
sentence. If a parse matches, all the constraints of a rule and the vote value is
incremented. Disambiguation is performed by selecting the highest-scoring parse
by considering the lowest scoring in a calculation.

An example of a hybrid approach (Kutlu and Cicekli, 2013) incorporates
statistics and constraints to their model in order to solve morphological ambiguity.
Their system includes two stages as training and disambiguation. Training corpus
is used to compose word and suffix tables which hold the most likely parses of the
words and suffixes according to their frequency values. All words in the training
corpus are pre-tagged by using these tables. A modified Brill tagger learns the
disambiguation rules from the corpus with many iterations by applying ten-fold
cross-validation. Disambiguation is achieved by using the statistics in word and
suffix tables, hand-crafted rules, rules learned by Brill tagger and heuristics.
Accuracy rate obtained by using this approach is given as 93.4%. When the final
IG of the word is considered, it reaches to 94.1%.

In statistical approaches, a probabilistic model is trained by using labeled
or unlabeled data and this model is used to tag a new text. The most well-known
study (Hakkani-Ttr et al., 2002) for Turkish, which has a statistical approach
presents trigram models by splitting the words into inflectional groups (IG) to
handle data sparseness problem. In the study, they have developed and tested four
models. Hidden Markov models (HMM) technique is used to model the
morphological parses in a sentence by maximizing the posterior probability to
estimate the variables. The first model assumes that the root of a word is dependent
on the roots of the previous two words and at the same time the IG of the word
depends on the final 1Gs of the previous two words. The second model is the same
as the first model, except that, the last IG of the target word is dependent on the

previous IG of the same word. The third model has the same assumptions with the
13

2. RELATED WORKS Enis ARSLAN

second one, except that, the IG of a target word is independent of the last 1Gs of the
previous words. The last model is a Naive Bayes model which assumes that the
previous two words’ IGs are independent of each other. In the training phase, two
types of probabilities are calculated independently from the training data as root
and 1G probabilities. Two trigram models are used to estimate the root and IG
probabilities, and in runtime, a combination of these models and test data is used to
estimate the best sequence by using the Viterbi algorithm (Viterbi, 1967). They
have acquired the best accuracy value for the first model (93.95%) and the worst
value for the Naive Bayes model as 88.85%. When errors of semantic features are
ignored, the accuracy increases to 95.07%.

Yuret and Tiire (2006) propose a machine learning method, which
combines the rule-based methods with statistics. They have composed 126 distinct
decision lists for every 126 morphological features. Training subsets are selected
from 1 million training instances which consist of each morphological feature at
least once in their corresponding parse. Following that, these sets are divided into
two groups (positive and negative) where one group includes the morphological
feature in the correct parse and the other would not. Training starts with an empty
decision list and a default rule. Greedy Prepend Algorithm (GPA) applies a
window of size four by centering the target word. Although they have tried bigger
window sizes, there was no significant improvement in accuracy. Rule patterns are
discovered for each target word for each morphological feature. The rules are
ordered in a way that the decision list is ordered from the most specific rule to the
most general. GPA prepends each rule with the maximum gain to the top of the
lists. Gain is defined by the correct classification ratio while the rules prepend to
the lists. Convergence happens when there is no rule to be added to the lists.
Disambiguation is achieved by the product of decision list prediction possibilities
of each tag in the parse. This methodology is advantageous to handle unknown

words as being free of a dictionary. They have overcome data sparseness problem

14

2. RELATED WORKS Enis ARSLAN

by composing a single list for each morphological feature instead of processing
many tags. Accuracy reported in this study is given as 95.82%.

Another study (Sak et al, 2007), proposes a method, a variant of the
Perceptron algorithm which is a well-known machine learning method. They
model an ambiguous word into morphemic units, which consist of the roots and the
morphosyntactic tags. Their statistical baseline model is the same as in (Hakkani-
Tiir et al., 2002). They have created various templates in this way, as the features to
be used in the perceptron algorithm. Perceptron learns weights for each instance by
estimating a parameter vector. Here, the input variables are the set of sentences
where the outputs are the parse sequences. For each input instance, the algorithm
finds the highest scoring candidate. If it is not the correct parse candidate it updates
the parameter vector by taking the difference of the correct candidate with the
highest scored one and increasing the parameter for the correct candidate. They
have split the dataset as training, development, and test where the training set is
used for parameter estimation and development test is used for feature extraction.
In the testing phase, they have used the same corpus used in (Yuret and Tiire,
2006) and they have achieved an accuracy value of 96.45% by using the same
manually disambiguated test sets in (Hakkani-Tiir et al., 2002; Yuret and Tiire,
2006).

In Gorgin and Yildiz (2011)’s study, morphological disambiguation
problem is defined as a multi-class classification problem. It is aimed to detect the
correct parse from N candidates of a word by ignoring the root words. Each distinct
parse is a class. The input set is composed of the feature sets of the two previous
neighbors and the correct class of the target word. Each feature set has 126
morphological features. The training set includes 1 million disambiguated tokens
with 50,673 sentences. Experiments are conducted for many classification
algorithms. They have achieved an accuracy value of 95.61% with the J48 tree

classifier slightly better than the baseline trigram model (Hakkani-Tiir et al., 2002).

15

2. RELATED WORKS Enis ARSLAN

As an example of neural models, Yildiz et al. (2016) proposed a general-
purpose morphological disambiguation method and presented a Convolutional
neural network (CNN) in deep learning architecture that can be used for
morphologically rich languages. The neural network consists of two input layers
and one output layer. The first input layer includes word representations as
embeddings of roots and features. The second input layer incorporates the context
knowledge obtained from an n-word window, into the first layer embeddings. The
output layer, which is a softmax layer, calculates a classification score. In the
training set, the correct parse sequences in a three-word sized window are labeled
as positive whereas others are as negative. Stochastic gradient descent is used as
the training algorithm and AdaGrad for optimization. Because the network learns
as three-word windows, in inference time, all the calculations are made on the
neural network for three-word sequences. Morphological disambiguation is
achieved by using the Viterbi algorithm to select the best parse from the sentence
sequences. They have used the same dataset with Yuret and Tiire (2006) and
manually tagged 20K of the tokens in the dataset to mitigate noise originating from
semi-supervised data. In this study, 85.18% accuracy rate was achieved for Turkish
which is higher than Sak et al. (2017) and Yuret and Tiire (2006) as, 82.13% and
83.31%, respectively. The accuracy rates of these two studies appear to be low
when compared to their own studies, although they have used the same training set.
This is because they were tested with the test set prepared specifically for the study
of Yildiz et al. (2016).

A recently introduced study (Dayanik et al., 2018), MorphNet, combines
morphological analysis with a disambiguation model by using a sequence-to-
sequence recurrent neural network. Long Short Term Memory (LSTM) encoders
are used to encode three different embeddings. The first one (word encoder)
produces character-based embeddings by modeling the root of the target word as
character sequences and the tags as single units. The second encoder (word

encoder) encodes the previous and next neighbors of the target word by using bi-
16

2. RELATED WORKS Enis ARSLAN

directional LSTM to incorporate the context information to the model. The third
LSTM encoder (output encoder) is used to produce the embeddings by using the
analysis of the previous words, ignoring their roots. Decoder has two hidden LSTM
layers where the first layer includes the context information and the second layer
encodes the word and output embeddings. The decoder uses its hidden layer and
three encoders to learn and predict the correct output for the target word. In the
study, a new dataset named TrMor2018 is presented which is 97%+ accurate. They
state that the previously presented datasets have low accuracy because of the noise.
They have tested their morphological disambiguation model with TrMor2018 and
with the previous datasets. The highest accuracy is acquired with the TrMor2018
dataset as 98.30% and the accuracy of the test with TrMor2006 was 96.86%.

Shen et al. (2016), have introduced a bi-LSTM model which produces two
kinds of embeddings. The first embedding type is produced by using two different
bi-LSTMs to separately embed the root and the morphemes. These two
embeddings are concatenated with tanh function to produce the final embedding.
Another embedding type is context embedding, it can be produced in two different
methods. The first method (local) depends on the left and right neighbors of the
target word and the second method (global) uses all words in the sequence to
embed the context information. Finally, a softmax is used to combine the word
embeddings and context embeddings. Test results for the local context model and
global context model are 96.90% and 97.24%, respectively, which is slightly
higher than the state-of-the-art (Sak et al., 2007, 96.80%).

2.2. Learning Vector Quantization (LVQ) and NLP

LVQ algorithm has been successfully applied in some NLP research fields
like text classification (Umer and Khiyal, 2007; Visa et al., 2000; Martin-Valdivia
et al., 2007; Pilevar et al., 2009), speech recognition (Haldar and Mishra, 2016),
language identification (Gunawan et al., 2017), spam detection (Chuan et al., 2005)

and multi-word expressions recognition (Diaz-Galiano et al., 2004).
17

2. RELATED WORKS Enis ARSLAN

Martin-Valdivia et al. (2007) have applied LVQ to two tasks as text
categorization and word sense disambiguation (WSD). They have used REUTERS-
21578 dataset for text categorization and SENSEVAL-3 corpus for WSD. The
Kohonen layer they use doesn’t have hidden units but the network has one input
and one output layer. When they modelled LVQ for text categorization, inputs are
represented as terms in the documents and outputs of the network are categories.
They have composed of different networks for each context. The model they have
used for WSD has outputs as word senses. Umer and Khiyal (2007) use five
different variants of LVQ to classify the texts and researched the best performing
one. The tests between the LVQ variants are evaluated as 10-fold cross-validation.
Each LVQ variant provide similar results and their training times are near. But the
variant named OLVQL1 gives the best result. Performance of OLVQ1 is measured
with different classification algorithms in 5-fold cross-validation and OLVQ1
outperforms the k-NN, C4 and Naive Bayes algorithms in both classification
accuracy and running time. In (Pilevar et al., 2009), they have used LVQ for text
classification purpose. They have used a text collection of 1050 story news as
dataset and evaluated their tests for LVQ1, OLVQ1, LVQ 2.1, LVQ3 and OLVQ3
LVQ variants. OLVQ3 was compared with KNN and SVM algorithms and they
have reported that, LVQ outperforms these two classification algorithms in both
classification and time performance.

LVQ also has research in speech-recognition. In (Mantysalo et al., 1992)
they have used LVQ method for Finnish speaker-dependent speech-recognition. In
the study, they have aimed to measure the effect of high dimensions of context
vectors which represent the phoneme set of Finnish. The context vectors were
obtained by concatenating and averaging features in a time-domain. 99% of
accuracy value was obtained when short-time feature vectors were used. Also they
have realized that using high-dimensions as codebook vectors has positive effect
on accuracy. Haldar and Mishra (2016) have used LVQ for multi-lingual speech

recognition and language identification of English and Indian languages. They
18

2. RELATED WORKS Enis ARSLAN

have acquired a recognition rate between 88% and 90%. Gunawan et al. (2017)
presented a study for language identification of Arabic, Malay and Thai languages.
LVQ was preferred for its low complexity and computational costs and trained
with spectral frequencies. They have reported the recognition rate as 73.8%. Chuan
et al. (2005) have used LVQ algorithm for identifying spam emails. In the study,
LVQ algorithm provides a recall rate between 93.58% and 96.86% with 1500 times
training. LVQ outperforms Bayes-based approach. Diaz-Galiano et al. (2004) used
LVQ for multiword expression recognition and trained LVQ with CLEF 2001

database. They have acquired high precision values for information retrieval task.

19

2. RELATED WORKS Enis ARSLAN

20

3. MATERIALS Enis ARSLAN

3. MATERIALS

In this study, a morphological disambiguation framework is prepared
which follows steps from data preparation to training and testing. This framework
is a combination of several different tasks and materials. The block diagram of this

structure is given in Figure 3.1.

Morphological

N-gram Tokenizeq

{ N-gram
\ Tokens J§

Expert Tagging Dataset Preparation Test

LWQ Training
Analysis

[wora
\ vectors |

g\
E
3R

5

[| Dataset |
Groups J §

Figure 3.1. The block diagram of the system model of the study

The morphological analyzer (Yildiz et al. 2019) is the main tool used in the
diagram shown in Figure 3.1. This analyzer uses a standard tokenizer which treats
each word as a single token. However, this kind of analysis ignores the compound
words or other multi-words in the sentences and this leads to more ambiguity by
producing redundant parses. A better solution to this problem is to develop and
integrate a “multi-word tokenizer”. In this way, words in a sentence with spaces
between them can be recognized as multi-word tokens. Moreover, the
morphological analyzer dictionary (especially in terms of non-existing n-grams,
compound words) is updated using the dictionary data of “Giincel Sozlik”
published by the Turkish Language Association (TLA) to decrease out-of-
vocabulary (OOV) rate.

Steps shown in Figure 3.1 begin with tokenization. We have developed a
multi-word tokenizer and integrated it into a morphological analyzer. A sample

sentence is given below:

“Ogrenci kalemi masasindan alarak kosar adim tahtaya dogru yiiriidii.”
21

3. MATERIALS Enis ARSLAN

After the processing of the multi-word tokenizer the tokens in the sentence
will be as:

“Ogrenci” “kalemi” “masasindan” “alarak” “kosar adim” “tahtaya”

99 ¢

“dogru” “yiiridi”
The tokens are analyzed in the morphological analyzer and parse outputs
are grouped in the output as “lemma + POS”. After this process the parse groups

will be as:

“0grenci+NOUN” (“kalem+NOUN”,”’kale+tNOUN”) “masa+NOUN”
“al+VERB” “kosar adim+ADV” “tahta+NOUN” “dogru+ADV” “yiiri+VERB”

These parse groups are stored in a NoSQL database in JSON format,
maintaining their relations in the sentences and texts. The main purpose of using a
morphological analyzer in this framework is to define which word is ambiguous
and identify its lemma candidates. The two steps are implemented as a batch job
and it can be thought of as a pre-processing step before tagging. In the third step,
these pre-analyzed sentences are introduced to an Expert with the help of a tagger
tool (which is developed in this study). After Expert tagging the disambiguated

sentence will be as:

“égrenci+NOUN” “kalem+NOUN” “masa+NOUN” “al+VERB” “ko$ar
adim+ADV” “tahtatNOUN” “dogru+ADV” “yiirii+ VERB”

Expert freely tags the tokens listed by the program. The expert can change
the lemma of the token if it is incorrectly lemmatized by the morphological
analyzer. When an ambiguous word token is considered, Expert lemmatizes it with

the correct POS tag and lemma, in this way disambiguates. All the actions of the
22

3. MATERIALS Enis ARSLAN

Expert are updated on JSON structures retrieved from the database. In the fourth
step, a special format of the dataset is prepared for each text, including a line for
each ambiguous word. In the fifth step, in order to solve ambiguities, this new
dataset is used in Learning Word-vector Quantization (LWQ) algorithm, to
compose word-vectors and train. Finally, the test accuracy of the LWQ method is
measured and interpreted by using a disambiguated dataset.

Details of the materials used in the framework are given in the following
sections. LWQ is developed in the inspiration of a well-known algorithm LVQ.
Because of that, details about the original LVVQ algorithm and its variants in the

literature are also given below.

3.1. LVQ (Learning Vector Quantization) Algorithm

LVQ algorithm is a reinforcement learning algorithm which is developed
by Kohonen (Kohonen, 1984) to solve the classification problems. There are
variations for the LVQ algorithm. These are LVQ1 (Kohonen, 1984), LVQ2
(Kohonen, 1990a; Kohonen 1990c), LVQ3 (Kohonen, 1990b), OLVQ1 (Kohonen,
1992), LVQ Algorithm with Penalization Mechanism (De Sieno, 1988) and LVQ-
X (Oztemel, 1992) Algorithm.

3.1.1. LVQ1 Algorithm (Kohonen, 1984)

The main purpose of the LVQ algorithm is to represent a set of input vectors
with a set of reference vectors. Learning process is used to decide which input
vector belongs to which reference vector class. Output values are decided in a
“winner takes all” strategy.

Learning process is implemented on an LVQ network with 3 layers. These

are.

23

3. MATERIALS Enis ARSLAN

e Input Layer: The samples used for training exist in this layer. No
processing occurs here.

e Kohonen Layer: This is the intermediate layer which keeps the
processing elements. These elements are represented by reference
vectors which consist of the weight values obtained by mapping of the
input vectors in the Input Layer

o Output Layer: This layer is used to identify the class of the input.

The topology of the LVQ network is shown in Figure 3.2.

) /)
OUTPUT LAYER ()}
/ _/
a=1 a=1
KOHONENLAVER (NN (U AR - ---------
= v % By

\ 4,/////;’ e
- OO ¢ VY
INPUT LAYER / k / 1<: l / IK / l\ /

AN A /:\
T T T T4

Figure 3.2. LVQ network model (Oztemel, 2012)

As seen in Figure 3.2, all processing elements of the input layer are
connected to the processing elements of the Kohonen layer. On the other hand,
some of the elements of the Kohonen layer are connected to a single element in the
Output layer. Each element of the Kohonen layer belongs to one class. The weight
values (o)) between the Kohonen layer and the Output layer are binary values (0,1)

and cannot be changed. In each iteration of the training processing, elements in the
24

3. MATERIALS Enis ARSLAN

Kohonen layer race each other. The procedure for the LVQ network is as (Oztemel,
1992):

Define the samples

Define the network topology

Define the network parameters, i.e. learning rate

Define the initial weight values

Take a sample from the input set and direct to the network
Find the winning processing element

Change the weight values

© N o g~ w DD PE

Repeat steps (5-7) until all the samples are classified correctly

The performance of an LVQ network is dependent on the count of the
reference vectors, starting values and the adjustment of the learning rate. These are
all defined by experience and there are no rules. Learning rate should descend till
zero. Learning rule of the LVQ network is called Kohonen learning rule. Basically,
it depends on the racing of the elements in the Kohonen layer. The race starts with
the calculation of the weight values between the input elements and racing

elements by using Euclidian distance as in (3.1).

3.1
dist; = |V, — X| = \W 3.1)
j

Where Vij and x; represent the weight vector of the reference vector and the
input vector for the value j respectively. This distance value (dist) is calculated for
all the reference vectors. The lowest value for dist represents the nearest reference

vector to the input vector. This reference vector for the processing element is the

25

3. MATERIALS Enis ARSLAN

winner and only its weight values are recalculated in the recent iteration. The

recalculation rule is as follows:

e Winner processing elements belong to the correct class. When this happens
the weight values are approximated to the input vector as in the following
formula 3.2.

V, =V, + A(X — Vp) (3.2)

e Winner processing elements belong to the incorrect class. When this happens

the weight values are approximated to the input vector as in Equation 3.3.
V=V, —AX-1) (3.3)
For both formulas in Eq. (3.2) and Eq. (3.3) A is the learning rate, Ve is the

current value of the reference vector, Vy is the next value of the reference vector

and X is the input vector. As seen in Fig 3.3 nearest reference vector to the input

V4
da \E
ds
V3
d3
L X
V2 d2

dq

vector X is Vi.

V1
Figure 3.3. Nearest vector to the input vector (Oztemel, 2012)

26

3. MATERIALS Enis ARSLAN

Fig 3.4 shows the steps for the approximation of vectors X and V1. As the
learning rate decreases by the following iterations, it converges to 0. This situation

c>

/ /Jm
Figure 3.4. Approximation of the input vector to the reference vector (Oztemel,
2012)

is represented in Fig. 3.4.

When this parameter gets the O value, the network overtrains and forgets
what it learns. Also sometimes the same reference vectors over wins. There are
also problems with boundary values. These disadvantages for the standard LVQ
algorithm (LVQ1) can be overcome by different adaptations of the algorithm as
described in the following section.

3.1.2. LVQ2 Algorithm (Kohonen, 1990a; Kohonen 1990c)

LVQ2 algorithm was developed to prevent the incorrect classification
which occurs in the boundaries of the classes. The idea is to update the weight
values of the two vectors which are between the input vectors. There are two
conditions to be met. When we call V; and V; as the nearest vectors to the input

vector X;

1. V:isthe nearest vector V; is the second nearest vector and Vi belongs

to the incorrect class and V2 belongs to the correct class.
27

3. MATERIALS Enis ARSLAN

2. Xinput vector resides between V; and V2 in a window w

When these two conditions are met, the new values of V; and V; are Vi,
and Vyy respectively. The formulations for these calculations are shown in formulas
3.4 and 3.5.

Vly =Vie —AX = Vie) (3.4)

sz = VZe + A(X - VZe) (35)
where /1 is the learning rate, Vi. and V2 are the current values of the
reference vectors. To guarantee the X input vector to be between the reference

vectors, the condition in Formula 3.6 should be met.

(1-w) (3.6)
a1Q+w)

dy dp

dy’ d;

Min(>>swheres=
where d; is the distance of the vector V; and d; is the distance of the vector

V- to the input vector X and w is the window length. An example of LVVQ2, which

shows the behavior of the reference vectors is shown in Fig 3.5.

& ha. &
KV1 V2

w

A
v

Figure 3.5. Schematic view of LVQ2 algorithm (Oztemel, 2012)

28

3. MATERIALS Enis ARSLAN

In Fig 3.5, it can be seen that vector V: is going further and vector V; is
getting closer to input vector X.

3.1.3. LVQ3 Algorithm (Kohonen, 1990b)

In the LVVQ2 algorithm, vector V; differentially changes in an uncontrolled
way. To keep this vector approximate to the correct class distribution, the LVQ3
algorithm is proposed. Additional to the conditions in LVQ2, when the closest
reference vectors are in the same class, the formula for the calculation should be as

in Equation 3.7.
ka = Vke + S(X = Vke) fOT k e {1,2} (37)

where & parameter is constant and a value between 0.1 and 0.5 is proposed.
This parameter gets smaller when the window gets narrower. LVQ provides the

optimal place of the vector V.

3.1.4. LVQ Algorithm with Penalization Mechanism (De Sieno, 1988)

In the standard LVQ algorithm, some of the weight vectors win frequently
and this leads to an unbalanced network. When this happens, some of the weight
vectors are unable to be a reference vector for the input. Penalization mechanism
proposed by De Sieno (1988) solves this problem by penalizing the frequent
winner vector and prevents it to win recurrently. This mechanism runs by adding a
b value to the distance (d) of this vector with the input vector. b value is
determined by how many times the winner wins. The amount to be added to the d

for the i"™ processing unit is determined by the Equation in 3.8.

1
b= Cpi +) (38)

29

3. MATERIALS Enis ARSLAN

p”;, =p° +Bl;—r°) (3.9)

where, in Equation 3.8, C is a constant determined by the designer. N
represents the processing element count in the Kohonen layer. And p; is the
possibility of the i"™ element to win the race. The initial value of piis 1/N and it is
updated according to the rule in 3.9.

In Equation 3.9, p¥ is the new possibility, p® is the recent possibility value
in order to win the race. B is a constant value and vy; is the output value and
calculated as in 3.10.

- {1 If process element i wins (3.10)
YiT o otherwise

In each iteration, b value is calculated for each processing element and

added to the distance between this element and input reference vector as in 3.11.
dyi = dei + bi (311)

where d° is the current distance, d’ is the new value of the weight vector
calculated according to the winning possibility. Race within the Kohonen layer
occurs with the new distance values. Thus frequent winner is penalized and the

other elements have the chance to win.

3.1.5. LVQ-X Algorithm (Oztemel, 1992)

LVQ-X algorithm is another variant of the LVQ algorithm where it
changes the value of the two weight vectors in each iteration. LVQ2 also changes
two boundary vectors but this happens seldom. This algorithm is developed by
Oztemel (1992) and provides shorter learning time and increases generality. This is

achieved by determining two winning vectors in each iteration. These are:

30

3. MATERIALS Enis ARSLAN

e Global winner: Represents the nearest process element to the input
vector.
o Local winner: Represents the process element which belongs to the

correct class and nearest to the input vector.

W=V —A(X = V,) (312)
V=V, + A(X — V) (3.13)

When the global winner vector is incorrect class it gets further from the
input vector as in 3.12. At the same time, the local winner vector gets closer to the

input vector as in 3.13.

3.2. Dataset

In this section, brief information is given about the datasets used for the
morphological disambiguation of Turkish. Also, detailed information is presented
about the dataset prepared for this study. At the end of the section, details are given
about the materials which are developed and used for the preparation of the dataset.
Before going into the subsections, a summary of the training datasets used in

morphological disambiguation of Turkish are given in Table 3.1

Table 3.1. Training datasets used in morphological disambiguation of Turkish

Study Training Dataset Details
Dataset
Yuret and Tlre (2006) TrMor2006 Yuret 1 million words from
Sak et al. (2007) and Ture (2006) semi-automatically
Gérgin and Yildiz (2011) disambiguated Turkish
Yildiz et al. (2016) news text
Shen et al. (2016)
Dayanik et al. (2018) TrMor2018 460,663 words from
Dayanik et al. semi-automatically
(2018) disambiguated Turkish
news text

31

3. MATERIALS Enis ARSLAN

TrMor2006 dataset is extracted from 2,386 documents which include
50,716 sentences. On the other hand, TrMor2018 dataset is extracted from 390
documents which consist of 34,673 sentences. In our knowledge, most of the
studies have used the TrMor2006 dataset and most of the time both as training and
test datasets. Recently, TrMor2018 is presented and used in the same study

(Dayanik et al., 2018) for morphological disambiguation.

3.2.1. Statistics of the Datasets for Morphological Disambiguation of Turkish
In the literature, various datasets for morphological disambiguation of the
Turkish language are presented. The well-known datasets are TrMor2006 (Yuret
and Tiire, 2006), TrMor2016 (Yildiz et al. 2016) and TrMor2018 (Dayanik et al.,
2018) are produced and introduced as semi-supervised. TrMor2016 has the same
train set as TrMor2006. But it includes a different test set. Statistics related to these

datasets are given in Table 3.2.

Table 3.2. Datasets prepared for morphological disambiguation of Turkish

(# of tokens) Ambiguous Unambiguous Total
Train Test Train Test Train Test
TrMor2006 398,290 379 439,234 483 837,524 862

TrMor2016 398,290 9,460 439,234 9,802 837,524 19,262

TrMor2018 215,024 21,477 243,866 25,166 458,890 46,643

In Table 3.2, disambiguated Turkish datasets given in Table 3.1 are given
in more detail with ambiguity situation and the amounts used for training or test.
There is no data consistency of information regarding the datasets listed in Table
3.2. For the recently presented TrMor2018 (Dayanik et al., 2018) dataset, 2,090
sentences and 28,909 words are selected from the previous version (TrMor2006).
The data noise level was then measured and reported as 3%. This information

contributes to measurability in the studies to be carried out by using this dataset.

32

3. MATERIALS Enis ARSLAN

Since TrMor2018 has not been presented during our study, and since the previous
dataset (Yuret and Tiire, 2006) was prepared in a semi-supervised way with
reliability concerns, we have decided to create our dataset to obtain more reliable
results. Expert tagging on Turkish texts is performed to guarantee data consistency
in the production of this dataset. Details about the statistics and preparation steps

are given in the following sections.

3.2.2. Statistics of the Dataset Prepared for This Study
The statistics related to the dataset prepared and used in this study are shown
in Table 3.3.

Table 3.3. Statistics of the supervised dataset prepared for this study (# of tokens)
(Train) Ambiguous Unambiguous Total

Dataset 14,806 21,721 36,527

As seen in Table 3.3, the disambiguated dataset prepared for this study
includes 36,527 tokens and the token ambiguity rate is 40.5%. We have manually
collected Turkish news and novel texts from the Web, in order to ensure that the
dataset has a balance in context. News texts refer to the information on a certain
event in the related day. 216 news texts and 3 novel texts are collected. The total
number of sentences for the whole dataset is 5,723. 3,149 of them are news texts

and the remaining part is from novels.

3.2.3. Dataset Preparation
Dataset preparation steps include the text pre-processing and
morphological analysis steps. All texts are pre-processed and cleaned as described

below:

33

3. MATERIALS Enis ARSLAN

Split texts to sentences with Turkish NLTK Punkt (Kiss and Strunk,
2006) function.

Remove sentences with less than 20 characters (for example dialogues
in novel texts)

Remove punctuation marks and numbers.

Trim white spaces between the words in the sentences and at the start
and end of the sentence.

Insert all sentences into a MongoDB NoSQL database with their

corresponding texts.

The next step in the data preparation phase is, to use the morphological

analyzer to parse pre-processed sentences for determining the ambiguity status of a

word. The morphological analyzer (Yildiz et al., 2019) processes all sentences in

the MongoDB database and saves the outputs in the same database collections.

This is a pre-condition to be completed before Expert tagging. The parsing steps

are described below:

Select a sentence from the MongoDB database and tokenize it with
the multi-word tokenizer in morphological analyzer.

Process each token with the morphological analyzer and define its
status (ambiguous, unambiguous or OOV). If the word is ambiguous
save its correct lemma as “dummy” and save its candidates in the
database. If the word is unambiguous save its lemma and POS tag (All
data structures are in JSON format).

Goto Stepi

The morphological analyzer output is in inflectional group (IG) structure,

including the morphological tags and standard POS labels used for Turkish. In the

scope of this study, the morphological analyzer output is configured to group parse

34

3. MATERIALS Enis ARSLAN

lists as “lemma + POS”. There are three kinds of parse outputs provided by the
morphological analyzer. If there is only one distinct parse output (“lemma + POS”)
this indicates there is no ambiguity for the corresponding token. If there are more
than one parse outputs, there is ambiguity for the token. In this study, for the first
case, the “unambiguous word” term and for the second case “ambiguous word”
term will be used respectively. In case, no parse occurs, the morphological analyzer
is unable to find a lemma for the token (out-of-vocabulary) and this is out of the
scope of the study. In this case, the relevant token is ignored.

A JSON sample which represents a sentence processed by the

morphological analyzer is given below:

" id" : ObjectId("5cb2422a29101b3c3468a589"),
"Cumle" : "bir grup milletvekilinin Ingilterenin ABden
ayrilmasini onlemeye donik yasa bir oy farkla onaylanmisti”,
"IsTagged" : true,
"Text ID" : ObjectId("5cb23d87f30c8c3d380f60b4™),
"Tokens" : [
{
"UserId" : ObjectId("5c028e2c9ccc334b60414dbo™),
"TaggedTokens" : [

{
"token" : "bir",
"lemma" : "bir",
"tag" : "ADJ",
"flag" : "1#bir+DET#bir+NOUN"
s
{
"token" : "grup",
"lemma" : "grup",
"tag" : "NOUN",
"flag" : "oO#grup+NOUN"
s
{
"token" : "milletvekilinin",
"lemma" : "milletvekili",
"tag" : "NOUN",
"flag" : "o#milletvekil+NOUN"
}s

35

3. MATERIALS

Enis ARSLAN

1

"token"
"lemma"
"tag
"flag"

"token"
"lemma"
"tag"
"flag"

"token"
"lemma"
"tag"
"flag"

"token"
"lemma"
"tag
"flag"

"token"
"lemma"
"tag" :
"flag"

"token"
"lemma"
lltagll
"flag"

"token"
"lemma"
"tag
"flag"

"token"
"lemma"

: "ingilterenin",
"ingiltere",

"NOUN",
"@#ingiltere+NOUN"

"abden",
: "ab",
"NOUN",
"@#ab+NOUN"

: "ayrilmasini",

"ayril",
"VERB",
"1#ayri1l+VERB#ayrilma+NOUN#ay1ir+VERB"

"Onlemeye",
"Onle",
"VERB",
"o#onle+VERB"

"ddniik",
"déniik",
IIADJ ",
"@#ddniik+NOUN"

"yasa",
"yasa",
"NOUN",
"O#tyasa+NOUN"

"bir",
"bir",
"PUNC",
"1#bir+DET#bir+NOUN"

lloyll,

oy
36

3. MATERIALS Enis ARSLAN

"tag" : "NOUN",
"flag" : "1#oy+NOUN#oy+VERB"
s
{
"token" : "farkla",
"lemma" : "fark",
"tag" : "NOUN",
"flag" : "O#fark+NOUN"
s
{
"token" : "onaylanmisti",
"lemma" : "onayla",
"tag" : "VERB",
"flag" : "1l#onay+NOUN#onayla+VERB"
}

This JSON tagged sentence example is taken from the MongoDB database.
The “token” field is the output of the tokenizer which is a function of the
morphological analyzer. The “lemma”, “tag” and “flag” fields include the parts of
the parse lists. When the “flag” field starts with “0”, this indicates there is only one
lemma candidate for the token and token is unambiguous. If the “flag” field starts
with “1”, the following part of the field includes the lemma candidates of an
ambiguous word. Sometimes the “flag” field starts with “2”. This represents the
case where the token is unknown due to being an OOV. It is impossible for the
morphological analyzer to select the correct candidate for ambiguous words from
the parse options. Because of this, in the beginning, “dummy” is written for the
“lemma” and “tag” fields. During tagging, these fields are filled by the Expert. For
example, the last token of the sentence is “onaylanmisti”. Morphological analyzer
parse produces two lemma candidates as “onay + NOUN” and “onayla + VERB”.
The initial values of “lemma” and “tag” fields are “dummy”. After tagging, these
fields are filled by the correct candidate as “onayla” and “VERB” as seen in the

JSON example.

37

3. MATERIALS Enis ARSLAN

3.2.4. Tagging Application

The main purpose of the expert tagging process is to select the correct
lemmas of ambiguous words with human knowledge. Analyzing the condition of
the ambiguous word in the sentence helps in selecting the correct lemma from the
candidates. In the beginning, the data preparation phase should be completed in
order to start the tagging process. The tagging process is achieved by using a tagger
tool to label each ambiguous token. For this purpose, we have prepared a web-
based tagger tool in .NET C#. The tagging tool presents the texts and their
corresponding sentences in the MongoDB database to the Expert. The Expert
selects the correct lemma candidates and POS tags of the ambiguous words and
these selections are saved to the database. An example screen of the tagger tool is
shown in Figure 3.6.

Metin Listesi

Metin Kaynak

Bu sefer “Giince"mi her zamanki gibi degil, uzun bir dyku biciminde yazdigim icin Roman,
okurlarimdan beni bagislamalarini dilerim. Ancak oykuyd bitirmek igi ... Uysal Kiz,
Dostoyevski

Figure 3.6. “Texts” screen of the tagger tool

Figure 3.6 shows a screen for the texts stored in the MongoDB database.
“Climleler” button lists all the corresponding sentences of the text. “Etiketli
Cuimleler” lists the sentences of this text which are tagged by the Expert. Figure 3.7

shows the Sentences screen when the “Ciimleler” button is clicked.

38

3. MATERIALS Enis ARSLAN

Citimleler

Metin Metin ID

Bilmecemsi olmak icin belki de bu aptallig 5ca7572b9216644e3cc62508 Eeth Sl
yaptim

Fazla zorlamaya gerek kalmadan sistem 5ca7572b9216644e3cc62508 Etiketle Gincelle
kendiliginden oturdu

Sistem diye bir gercek yok muydu 5ca7572b9216644e3cc62508 Etiketle Giincelle
Baglamak ¢ok zor insan kendini hakli 5ca7572b9216644e3cc62508 Etiketle Giincelle
gostermeye kalkisinca isi zorlasiyor

Gozlerini faltasi gibi agiyor dinliyor bakiyor 5ca7572b9216644e3cc62508 Etiketle Giincelle
susuyor

Figure 3.7. “Sentences” screen of the tagger tool

In Figure 3.7, tagging starts by clicking the “Etiketle” button. By clicking
the “Etiketle Glincelle” button Expert can update the lemma and tag information of

the tokens in a pre-tagged sentence. Figure 3.8 shows “tokens” view before

tagging.

Ciimle Etiketle

D« ©

Figure 3.8. “Tokens” screen of the tagger tool

The database stores the tokens as single units provided by the
morphological analyzer. In some cases, the lemma of a compound word may not
available in the dictionary, so tokens are shown as separate tokens on the screen.
For example, the “faltas1”, “gibi” and “a¢” tokens are a part of a phrase and seen in
Figure 3.8 will be shown to Expert as a single unit if it exists in the dictionary of
the morphological analyzer as “faltasi gibi a¢” which is the lemma of the inflected

word “faltasi gibi agiyor”. However, since the compound verb “faltas1 gibi agmak”

39

3. MATERIALS Enis ARSLAN

is not present in the dictionary, the Expert is expected to combine these tokens on
the screen. The merging of the units by the expert is shown in Figure 3.9.

Ciimle Etiketle

D OO O D e

Figure 3.9. Merging tokens in the tagger tool

The tokens shown in Figure 3.8 can be combined any time to form new
compound words. These compound words can be added to the morphological
analyzer dictionary after Expert control. Thus, the dictionary can be enriched.
Following the tokenization step, lemmatization and POS tagging begin as shown in
Figure 3.10.

Ciimle Etiketle

sifat fiil postp noktalama
Gozlerini Géz PRON AD] NUM INTER] DET ADV PERCENT VERB CON) POSTP m DUP PUNC
- P Al EF E ADV 3 U

fa.\[a?\ falta5| glhla(; RON DJ NUM INTER] DET D PERCENT m CONJ POSTP NOUN DUP PUNC

gibi

aglyor

dinliyor dinle PRON AD] NUM INTER] DET ADV PERCENT m CON] POSTP NOUN DUP PUNC
bakiyor bak PRON AD] NUM INTER] DET ADV PERCENT m CON]J POSTP NOUN DUP PUNC

a
susuyor sus| PRON AD] NUM INTER] DET ADV PERCENT m CON]J POSTP NOUN DUP PUNC

Figure 3.10. Tagger tool lemmatization and POS tagging screen

In Figure 3.10, the lemma and POS tag are selected by the Expert. The
Expert does not know about the lemma candidates of a word stored in the database.
The POS tag types listed here are exactly the same as the POS tag types used by
the morphological analyzer to provide consistency.
40

3. MATERIALS Enis ARSLAN

3.3. Morphological Analyzer (Yildiz et al., 2019)

A morphological analyzer, which was recently presented by Yildiz et al.
(2019), is used in this study. When the codes of morphological analyzer were
examined in detail, it was observed that the Finite State Machines (FSM) presented
for Turkish by Oflazer (1994) was modified and used in the morphological
analyzer. Additional gates are added to the verbal FSMs, specifically to match
certain flags in the dictionary. Also, it can be seen that a detailed dictionary has
been prepared for the morphological analyzer Yildiz et al. (2019). Accuracy tests
are performed for morphological analyzer as its original version and the results are
presented in Table 3.4.

Table 3.4. Accuracy test results of the “Morphological Analyzer’
Word count 28,863
Correctly lemmatized with the 22.640
exact result
Incorrect lemmatization 95
Ambiguous words 6,128
Lemmatization Accuracy 99.6% *

*When ambiguity is ignored

In Table 3.4 we provide the accuracy results of the morphological analyzer
tested with a supervised dataset. The words used for lemmatization are provided
from a dataset presented by Tahiroglu B.T. (2014). This dataset is in <word,
lemma> format. where “word” is any word and “lemma” denotes its lemma
defined by the Expert who prepares the dataset. In Table 3.4, “Correctly
lemmatized with exact result” shows the results when the “word” in <word,
lemma> is given as input and the output of the morphological analyzer exactly

matches with the “lemma” in the tuple. Ambiguity is ignored with removing the

41

3. MATERIALS Enis ARSLAN

6,128 words from the 28,863 total. In this case, 22,640 unambiguous words are
correctly lemmatized and lemmatization accuracy was 99.6%.

The running time performance of the morphological analyzer is also
measured and the results are given in Table 3.5 as its original version. The dataset
used for the test is acquired from (Sezer T, 2017) which consists of Turkish news
data.

Table 3.5. Time performance of the ‘Morphological Analyzer’

Token count 22,785,894
Sentence count 1,552,495
Total parse time 125 seconds

As seen in Table 3.5, the morphological analyzer can parse nearly 22
million tokens approximately in 2 minutes.

We have realized that compound words are missed in the dictionary used
by the morphological analyzer. Because of that, units (words) of a compound word
are treated as separate tokens in tokenization and this contributes to overall
ambiguity. In order to prevent this kind of ambiguity, 29,829 compound words in
the TLA dictionary are added to the morphological analyzer dictionary and
analyzer is used in this way.

The FSMs embedded in the morphological analyzer include derivational
affixes with the inflectional affixes in their designs. Like many other
morphological analyzers, while composing the parse outputs, they use both types
of affixes together. Because of that, more parse candidates are produced by
including the root forms of the lemmas in the same parse. This is sometimes one of
the causes of ambiguity originated by the morphological analyzer. An example of

this case is given in Figure 3.11.

42

3. MATERIALS Enis ARSLAN

parselLists

v 0 = {FsmParseli

+VERB+POS*DB+NOUN+PRESPART+A35G+PNON+NOM~DB+VERB+ACQUIRE+POS+FUT+A35G\ndiiz+VERB+POS*DB+NOUN+PRESPART +/

size =2

duz+VERB+POS*DB+NOUN+PRESPART +A35G+PNON+NOM*DB+VERB+ACQUIRE+POS+FUT+A35G"

> 1 = {FsmPars diiz+VERB+POSADB+NOUN+PRESPART +A35G+PNON+NOM*DB+VERB + ACQUIRE+POS~DB+NOUN+FUTPART +A35G +PNON +NOM"
n+NOUN+A35G+PNON+NOM " DB+VERB+ACQUIRE+POS+FUT+A35G\ndizen+NOUN+A35G+PNON+NOM"DB+VERB+ACQUIRE+POS DB +
size =2

en+NOUN+A35G+PNON+NOM*DB+VERB+ACQUIRE +POS+FUT+A35G"
uzen+NOUN+A35G+PNON+NOM*DB+VERB+ACQUIRE +POS* DB+NOUN+FUTPART + A35G+PNON +NOM"
enle+VERB*DB+VERB+PASS+POS+FUT+A35G\ndizenle+VERB*DB+VERB+PASS+POSADB+NOUN+FUTPART +A35G+PNON+NOM\nd(izenle

v f fsmParses =

v 1 = {FsmParseL

f fsmParses

size =4

uzenle+VERB*DB+VERB+PASS+POS+FUT+A35G"
lizenle+VERB*DB+VERB+PASS+POSADB+NOUN+FUTPART+A3SG+PNON+NOM"
diizenle+VERB”DB+VERB+REFLEX+POS+FUT+A35G"

uzenle+VERB*DB+VERB+REFLEX+POS* DB+NOUN+FUTPART +A35G +PNON+NOM"
VERB+POS+FUT +A35G\ndlizenlen+VERB+POS*DB+NOUN+FUTPART +A35G +PNON + NOM\n"
) size =2

uzenlen+VERB+POS+FUT+A35G"

izenlen+VERB+POS*DB+NOUN+FUTPART +A35G+PNON+NOM"

Figure 3.11. Parse output for the word "diizenlenecek"

Figure 3.11 shows the analysis made by morphological analyzer for the
word “diizenlenecek”. As a result of the fact that FSMs processed the “-n”
derivational suffix with passivity there can be seen many lemma root words like
“diizenle”, “diizen” and “diiz” in the parse outputs; which causes ambiguity. The
parse output should be one instead of many and should contain the correct lemma
as “diizenlen” with the corresponding POS tag (VERB).

43

3. MATERIALS Enis ARSLAN

44

4. METHODS Enis ARSLAN

4. METHODS

In this section, we give the details of the proposed classification algorithm,
Learning Word-vector quantization (LWQ), which is an adaptation of the well-
known classification algorithm Learning Vector Quantization (LVQ). Also, the
multi-word tokenizer we that we have developed is explained with an example.

Finally, our approach to the identification of OOV words in texts is given.

4.1. Proposed Morphological Disambiguation Method — LWQ

We have developed LWQ, in inspiration of the LVQ method, to solve the
morphological disambiguation problem. The relations of word-vectors that belong
to different classes are modeled by adjusting their positions in a vector space with a
reward-or-penalize strategy.

The data model is prepared by dividing a sentence or text into segments by
applying a window of width w to an ambiguous word. The idea is, to collect w/2
unambiguous neighboring words from both the right and left sides of the target
word (ambiguous word). Lemmas of each unambiguous word that enter the
window compose “motion pairs” with the lemma candidates of the ambiguous
word. Figure 4.1 illustrates how a window with a size of 4 is applied to an example

sentence.

45

4. METHODS Enis ARSLAN

Karayollarn trafige kapandi

Figure 4.1. A sample sentence for a window-size=4

In Figure 4.1, B: and B; represent unambiguous words within the window,
and G; and G represent the lemma candidates of the ambiguous word. The
application of a window in the study is applied by selecting an equal number of
unambiguous words from the right and left of the target ambiguous word. Since
each text in the corpus is evaluated separately (not all sentences of the texts are
consecutively linked), the window implementation in the last sentence of each text
is performed as in Figure 4.1.

Once the dataset is prepared, two distinct vocabularies for the ambiguous
and unambiguous word lemmas are created. Word-elements in these vocabularies
are randomly located in a vector-space. Vector size is defined by the user. After
that, the training steps begin with a distance-based classification test. This test is
performed separately for each row in the dataset. In the dataset row, the ambiguous

word’s lemma candidate (G;), whose sum of the distances to w unambiguous words

(By) is closest, wins the test. Mathematically, alrgmin(Z?’=1||Gi — Bj||) calculates
<ism

all the candidates’ distances for each ambiguous word. If the winner is the correct
candidate, training passes to the next row of the dataset without updating.
Otherwise, the candidate who is required to win is subject to approximation and

other candidates are subject to departure in vector space. All the possible

46

4. METHODS Enis ARSLAN

relationships that can be established for the example sentence given above can be
modeled on a complete bipartite graph when unambiguous word lemmas are
represented as one set and ambiguous word lemmas as the other set. The elements
of each set only establish relations with the elements of the other group as (B1, Ga),
(B1, G2), (B2, Gi), (B2, G2), in the form of “motion pairs”. The distance-based
classification tests for each ambiguous candidate are shown as “motion pairs” as in
Figure 4.2.

Figure 4.2. Distance-based classification test for a sample sentence

In Figure 4.2, blue circles represent the unambiguous (B: and B) and green
circles represent the ambiguous lemma candidates of a word as (G: and G).
According to the distance-based classification test, the candidate G; is more distant
than the G, candidate (D11+D12>D21+D2;). Therefore, G, (kapan+NOUN) is chosen
as the solution to the ambiguity. However, according to the example sentence, for
the ambiguous word “kapandi”, the correct lemma candidate must be G: (kapan +
VERB). Reward-or-Penalize step is applied to related word-vectors to solve this
error. Accordingly, the LWQ algorithm tends to move each word-vectors of the
(B1, G1) ve (B2, G1) pairs closer and (B1, Gz2) ve (B2, G2) pairs further. In terms of

ease of representation, in the study, approximating “motion pairs” and departing

47

4. METHODS Enis ARSLAN

“motion pairs” are shown as (Bi, Gi, +1), (B1, Gz, -1) respectively. Figure 4.3

shows the reward mechanism for the sample sentence.

O S
o_

~
~Q

Figure 4.3. Rewarding steps in training for a sample sentence

The rewarding phase shown in Figure 4.3 depicts the approximation of the
correct lemma candidate (G1) (selected by the Expert) to the unambiguous lemmas
(B1 and By). This amount of approximation is determined by the learning ratio (7)
and gradually reduced until convergence occurs. The mathematical representation

of this rewarding movement is represented as (4.1).

By(t+1) = B;(t) — n(B1(t) — G, (D))
(4.1)
Gi(t+1) = G.(8) + (B (1) — G, (1))

Similarly, the LWQ also has a penalization phase, and this step is shown in

Figure 4.4 for the example sentence.

48

4. METHODS Enis ARSLAN

Figure 4.4. Penalization steps for the training in a sample sentence

In the penalization phase shown in Figure 4.4, lemma candidates (G.)
which are not the correct lemma candidate and unambiguous word lemmas (B1 and
B,) are departed from each other. Process calculations are shown in (4.2), which
are obtained by changing the direction of the signs in (4.1).

By(t + 1) = B;(t) + n(By(t) — G,(1))
(4.2)

G2 (t+1) = G,(t) — (B, () — G2(1))
Using directional distances between motion pairs, both vectors take a step
toward each other in n (eta) value. Convergence control is performed with the
script given below.

if S(t) <S(t-1) {
cnt=cnt+1;
eta=eta/2;
if cnt > 5 break;

49

4. METHODS Enis ARSLAN

S(t) is the last obtained success (correct classification ratio) in training, S(t-
1) is the previous one. The lack of improvement in training achievement in
convergence control is compensated by dividing the learning rate into two. If this
repeats five times, training is terminated.

When all “motion pairs” in the prepared training datasets are listed
separately, it is observed that some pairs consistently approximate or depart.
Suppose that, the unambiguous word Bx and the ambiguous word lemma candidate
Gy should pass together on two different rows of the train set. In the first row, Gy is
the correct candidate and in the second row, it is the incorrect candidate.
Accordingly, one of the “motion pairs” prepared for the first row of the train
dataset will be (Bx, Gy, +1) and for the second row, it will be (Bx, Gv, -1).
Considering the characteristic training logic of the LWQ algorithm, it can be said
that these two motion pairs will create instability. Because they neutralize each
other, these type of “motion pairs” are called “ineffective motion pairs” in this
study. These pairs are excluded from training datasets by considering that they
could not contribute to training. For this purpose, a simple training dataset is
prepared by selecting w=2 since a maximum number of “motion pairs” from the
training dataset can be obtained. “Ineffective motion pairs” are determined by
using this dataset. The lemmas constituting these pairs are collected from the
“motion pair” data structure and saved in a list called “ineffective lemma list”. L¢
term is used for “ineffective lemma list”. Then, when training datasets are
prepared, these ineffective lemmas are used to filter unambiguous words’ lemmas.
Thus, it is ensured that no ineffective lemmas are present which behave as stop-list
in LWQ training.

The processing steps of the proposed system (data preparation, LWQ

training) are given below.

1. Request window width (w) as input.

50

4. METHODS Enis ARSLAN

2. Select two unambiguous words around the target ambiguous word for
the given window width (by ignoring the unambiguous words in the
filter list (L¢)). Add them into the dataset as a new row. The added
row will be in (B1,Bz,...Bw : G1,Ga,...,Gn). Here, the terms B; are
unambiguous word lemmas (lemma+PQOS) entering the window, and
Gi are the lemma candidates (lemma+PQOS) of the ambiguous word
produced by the morphological analyzer. The value of m may vary in
each row, depending on the number of candidates of each ambiguous
word.

3. Prepare a vocabulary V = Vy U V¢, which includes all unambiguous
words’ lemmas and candidates in the dataset.

4. Request vector size (N) as input.

5. Divide the dataset into two as train and test. Define a random initial
point in the N dimension for each lemma in V.

6. For each row in the train set, calculate argmin(X'.,||G; — B;||) and

1<ism

select the winning candidate. If it is not correct, update the word
vectors positions.

7. If convergence is not achieved, go to Step 6, otherwise, stop.

Considering that each lemma constituting a “motion pair” is represented by
a vector, each “motion pair’ can be considered as an equation. With these
equations, vectors behave like two magnets that attract or repel each other. As the
width of the window sliding over the sentences increases, the number of properties
in the dataset and hence the number of “motion pairs” (equations) increases. In
statistical studies, it is known that as the number of equations increases for a given
number of variables, the probability of solving the problem increases. Therefore,
defining a wider window can mean getting more equations and finding more

reasonable solutions. Nevertheless, from the training datasets, for an absolute

51

4. METHODS Enis ARSLAN

solution, a sufficient count of equations may not be obtained. This is exactly like
trying to solve a system of two unknowns with one equation. In this way, the
problem of “insufficient equations” can cause the system to propose different
results each time as inconsistent outputs. The only thing that can be done is to
increase the number of equations, both to ensure consistency and to improve
accuracy. In fact, it can be said that there is a need for equations (relationship
definition) which provides all possible word relations between Vg and V¢ that can
be established as a complete bipartite graph. Although we have generated complete
bi-partite relationships on each row of the train set, it is not possible to achieve this
for the entire vocabulary. Therefore, it would be more accurate to focus on the
determination rather than ensuring consistency.

Both the problem of “insufficient equations” described above and the fact
that word vectors start training in random positions raises concerns about the
consistency of classification (COC). In order to evaluate this situation, the most
commonly used approach in the literature is to examine the outcomes by repeating
the training at different times. The proposed LWQ algorithm is repeated 100 times
in all experiments, on each training dataset and the variability of the classified
outputs by the algorithm is analyzed. Accordingly, LWQ estimates some
ambiguities in the train dataset consistent-correct (always correct), only a small
part consistent- incorrect (sometimes correct and sometimes incorrect), and the rest
as inconsistent (sometimes correct, sometimes incorrect). The effect of the
window-size and the size of the Euclidian space defined for the word-vectors to the
COC and accuracy are presented and interpreted below.

LWQ algorithm shows some similarities with the original LVQ algorithm.
Both use supervised datasets. But they also differ in some way. At first, the models
are different. LWQ uses unambiguous word lemmas as inputs and ambiguous word
lemma candidates are prototypes. Given a data row, each prototype belongs to a
single class as “correct” and “incorrect”. VVocabularies of the input and prototype

words are coded as vectors and represented in the same space with random
52

4. METHODS Enis ARSLAN

locations. LVVQ algorithm is a pure NN (Neural Network) where, there are mainly
three layers as input, Kohonen and output. Kohonen layer consists of prototypes
which are represented as reference vectors. Reference vectors are a subset of input
vectors and their classes are assigned randomly, not as supervised in LWQ. Only
input vectors’ classes are known. In each iteration, a Euclidian distance calculation
is done for each input vector to all the reference vectors in the model
independently. But in LWQ, training is limited to a row (which represents an
ambiguous word) regarding its candidates and the unambiguous word lemmas. In
LVQ, all reference vectors are used in Euclidian distance calculation of an input
vector, but in LWQ, only the ones in the same line, dependently. Porotypes of LVQ
use a weight matrix where LWQ does not benefit from a weight matrix.

These two algorithms differ also in method. LVQ aims to assign a class to
an input vector by using the information of the reference vectors. But LWQ
calculates the optimum locations of the input and reference vectors by using the
class information. Reward steps are similar in logic, but implementation is
different. In LWQ, limited to a data row, each input vector’s distance to the
prototypes (i.e. candidates of ambiguous word) are calculated separately. If the
prototype with the correct class is more near than the other prototypes (in the same
row) to the input vectors (in the same row) no action is taken, otherwise, the
correct prototype and these input vectors approximate (reward) to each other while
the other prototypes and same input vectors depart (punish) each other. In LVQ the
nearest prototype vectors are calculated for a given input vector and the nearest
prototypes are departed or approximated according to being in the different class or

not.

4.2. Multi-word Tokenizer
As mentioned before, all the texts in the dataset are split into sentences and
each sentence is tokenized. Original codes of morphological analyzer include a

basic tokenizer that tokenizes sentences word by word in its normal operation.
53

4. METHODS Enis ARSLAN

Compound words can exist in sentences in their simple or inflected forms. In order
to identify these multiple word strings, we have developed a tokenizer function and
replaced it with the original one.

This tokenizer iteratively examines each word and the following words in
the sentence and detects the possible multi-words according to their presence in the
dictionary. When the detected word group exists as a compound word in the
dictionary, it is defined as a token. The tokenization process continues until the end
of the sentence iteratively by assigning the last word of the recently detected word
group as the start point. The possibility that a word group is an inflected form of a
compound word, is analyzed by searching similar words in the dictionary by
subtracting two and three letters from the end. Tokenizer function execution steps

for an example sentence is presented in Figure 3.12.

End of Alternative form

Existsin |Sentence Exists in

Dictionary? |? Alternative (-1,-2,-3) Dictionary? Token Result
cocuk okula FALSE ¢ocuk okul FALSE
cocuk okula kosa FALSE cocuk okula kos FALSE
cocuk okula kosa koga FALSE cocuk okula kosa kos FALSE
cocuk okula kosa kosa geldi FALSE TRUE cocuk okula kosa koga geld |FALSE cocuk
okula kosa FALSE okula kos FALSE
okula kosa kosa FALSE okula kosa kos FALSE
okula kosa kosa geldi FALSE TRUE okula kosa kosa geld FALSE okula
kosa koga FALSE kosa kog FALSE
kosa kosa geldi FALSE TRUE kosa koga gel TRUE kosa kosa geldi

Figure 4.5 Execution steps of the tokenizer function in an example sentence

4.3. OOV Discovery

Morphological analyzers are mostly dependent on their static dictionaries.
OOV words cause ineffective operation of the morphological analyzer by causing
many unknown words. In this section, we share the details of a system (Arslan and
Orhan, 2019) that can discover OOV words in a semantical graph. This system is

also capable of discovering collocations.

54

4. METHODS Enis ARSLAN

This graph system is composed of four phases and is shown in Figure 4.6.

1 2 3 4
Corpus lemma co-
occurrence Collocation .
TLA lemmas relationships discovery Erinig

established

lemma 1 4

lemma ¢ relationship
lemma.lemCand

h&mantical Graph Network | lemCand

Figure 4.6 OQV discovery system schema

In the first phase, lemmas of the TLA dictionary (from Giincel Sozliik) are
added as nodes. In the second phase sentences which are parts of news texts
(Tahiroglu B.T., 2014) are tokenized and lemmatized (details will be given later).
When lemmas are obtained, co-occurrence information is created as graph relations
for each of them. In the third phase, collocations are discovered. In the fourth
phase, discovered lemma candidates are pruned by deleting the unnecessary ones.

As a dataset, 50,000 sentences are used which were retrieved from
Cukurova University Turkoloji Corpus (Tahiroglu B.T., 2014). Sentences are
processed and for every 1,000 sentence, collocation discovery and candidate
pruning were applied.

In the beginning, all the TLA lemmas are added as nodes to a graph
database (Neo4J). Statistics of the TLA lemmas are given in Table 4.1.

55

4. METHODS Enis ARSLAN

Table 4.1. Statistics of TLA lemmas for semantic graph

Verb Noun Total
Lemma count 12,706 66,658 79,364
Lemma count with 535
double POS tags

Since there are some lemmas with both Noun and Verb POS tags, distinct
nodes are created for each and each may have different graph relations.

Tokenization simply tokenizes each word in the sentence regarding the
spaces between them. But also tokenization is capable to detect compound words
in the sentence. Each token phrase is searched in the graph to be a TLA lemma
compound with the same name. Possible compound TLA candidates are retrieved
as candidates and checked if the surface form (token phrase in the sentence) can be
an inflected form of these candidates with affix validation function (AVF) function
(Arslan and Orhan, 2017). If one candidate is possible, and it has n words,
tokenizer goes to the (n+1)" word in the sentence.

For example, for the sentence: “Cocuk okula kosa kosa gitti” the tokenizer
will detect the TLA lemma “kosa kosa git” as Verb from the graph, and the tokens
will be as: “Cocuk”, “okula”, “kosa kosa gitti”.

After tokenization, Lemmatization starts. It searches for all similar forms
of the token in the graph. If there is one, node frequency increases by 1. Otherwise,
lemma candidates (similar words) of the token are retrieved from the graph and
they are checked with AVF function. When this function returns true, the detected
(checked) candidates’ node frequencies are incremented by 1. A node will be
created for the token (i.e. inflected word) with “Word” tag and it establishes
relations (MORPH) with the lemmas. If no candidate returns, this is an unknown
word (UW) and lemma discovery function (LDF) runs.

UW’s are the input to the LDF function. LDF simply removes a character

from the UW and behaves each substring as a possible lemma. All possible lemma

56

4. METHODS Enis ARSLAN

candidates are collected in this way. These candidates are validated with AVF
function. If the validation returns true, the substring is a new node with the
“LemCand” label. The newly created LemCand nodes are connected to the UW
node with MORPH relation type and the node and relation frequencies are

increased by 1. The pseudo-code of the LDF function is as follows:

N =LEN(X)-1

Xeand = LEFT(X, N)

WHILE (N >1)

checkVal = AVF (Xcand, X, “noun’)

IF (checkVal)

CREATE Node {name:Xcand, postag:“noun”}
checkVal = AVF (Xcand, X, “verb”)

IF (checkVal)

CREATE Node {name:Xcand, postag:“verb”}
N=N-1

Xeand = LEFT(Xcang,N)

END WHILE

where N is the number of characters of the UW, Xcand is the substring to be
checked. Function named “LEFT” takes the left N characters from the X string as a
new substring. Two nodes are created with Noun and Verb POS tags, some of them
will be eliminated in the pruning phase.

When all possible lemmas and lemma candidates (LemCands) in a
sentence are detected, a n-to-n neighboring relation is established within each other
with the “COOCCUR” label. If this relation exists before it is incremented,
otherwise, a 1 value is given for the relation.

A summary of the created nodes and relationships in the semantic graph

are given in Table 4.2
57

4. METHODS Enis ARSLAN

Table 4.2. Node and relation labels summarized

Label Type Description
Word Node | Inflected word
Lemma Node | Lemma originates from TLA Dictionary
LemCand Node | Lemma candidate discovered by LDF
VerLemCand Node | Verified Lemma candidates selected after pruning
CollCand Node | Collocation candidates discovered

) Relations established between Lemmas and
COOCCUR Relation
LemCands

) Relations established between Lemmas
MORPH Relation
(LemCands, VerLemCands) and Inflected Word

Collocation discovery is achieved by using the frequency statistics of the

node pairs with a simple formula:

IF (R.neighFreqg/R.relFreq)>0.86 AND (r.neighFreg>10)
THEN CONCATENATE n,m

where neighFreq denotes the frequency of token lemmas that cooccur
together. relFreq denotes the general frequency value to be neighbor in any
distance. The threshold values of 0.86 and 10 are defined empirically. The pairs
consistent with the formula are concatenated as a new word (collocation) and a
node created with the label “CollCand”.

Statistics of the semantic graph when all sentences in the dataset are

processed is given in Table 4.3.

58

4. METHODS Enis ARSLAN
Table 4.3. Statistics of the semantic graph
Description Label Count
Lemma node Lemma 79,364
Lemma candidate node LemCand 47,979
Verified Lemma candidate node VerLemCand 4,312

Nodes with Lemcand labels are mostly meaningless. But of course, there

are real discoveries. After the processing of each 1000 sentence, a pruning job

starts and cleans the unnecessary LemCands. The remaining ones change the label

as “VerLemCand” as being verified. This job is also responsible to execute the

collocation discovery. Some examples of the collocation discovery are given in

Table 4.4.

Table 4.4. Some examples of the discovered collocations

Discovered word Frequency value
basta olmak 93
konu olmak 59
daha fazla 26
Uzerinde bulunmak 22
mag¢ oynamak 21
bayram gunu 21
diye diisiinmek 17

The lemma discovery flowchart is given in Figure 4.7.

5

9

4. METHODS Enis ARSLAN

Sentence

¢ word

Tokenization <

h

¢ token

token exists as
alemma in
the graph

Y

. search and validate
increment node freq.

add lemma to LIST DOSSlF)!f lemmas
with AVF

F 3

'

are there FALSE
possible
lemmas? Uw
) 4
| LDF |

l lemCand
add lemCand in LIST

last token
from
sentence?

link all lemmas and
lemCands in LIST with
COOCCUR relation

!

get the next
sentence

Figure 4.7 OQV discovery process flowchart

60

5. RESULTS AND DISCUSSIONS Enis ARSLAN

5. RESULTS AND DISCUSSIONS

In this section, experimental results are explained in detail. Comparison
results are given with the related studies performed for the morphological
disambiguation of Turkish.

The experiments were run on a PC which has a Windows 10 Pro operating
system, 64 GB of RAM, Intel Core i7-8700 3.2 GHz double-core processor. The
processing load is handled by 2 GeForce GTX 1080 GPU units.

5.1. Performance Metrics for the Proposed Method
In this study, accuracy parameter is used to measure the success of the
LWQ classification because it is the well-known and most used metric in

morphological disambiguation literature.

Accuracy = % (5.1)

where accuracy denotes the correct prediction ratio, Camp represents the
correctly predicted (by LWQ) ambiguous word count (one data line consists of

only one ambiguous word) and N is the data line count in a dataset.

5.2. Experimental Results for the Proposed Method

This section includes k-fold validity tests and the results obtained by
examining the window-size (w) and vector space size on accuracy and consistency
of classification (COC). Also, the causes of inconsistency in classification are

analyzed.

61

5. RESULTS AND DISCUSSIONS Enis ARSLAN

5.2.1. k-fold Validity Tests

In order to measure test accuracy as accuracy, and to measure validity, the
k-fold approach was used. Here, various experiments have been performed for the
values of k between 2 and 10, where this interval is commonly used in the
literature. In a study (Altintas et al., 2005), which implements windowing, they
have acquired the highest accuracy value with window-size 14. For this reason, we
have selected window-size as 14. Our study has similarities with Glove
(Pennington et al., 2014) and they have used the word-vector dimension as 300 for
the best results. In this inspiration, we have chosen a close value as 200, for the
word-vector dimension. accuracy and processing time values for different k-fold
values regarding the parameters as the window-size (w) 14 and word-vector

dimension (N) 200 are presented in Table 5.1.

Table 5.1. K-fold validity test results for different k values (w=14 and N=200)

2 3 4 5 6 7 8 9 10
Accuracy
%) 85.14 | 85.27 | 85.60 | 85.02 | 85.64 | 85.34 | 85.01 | 84.96 | 85.55
0
Time
(min) 103 157 191 236 241 293 325 358 361
min

According to Table 5.1, it has been determined that different k values affect
accuracy at a minor level. For k values 2 and 3, although accuracy values are close,
the system spends 1.5 times more processing time. Similarly, when the algorithm
runs for k=6, which provides the best accuracy value, it spends nearly 2 times
processing time when compared to k=2. It can be seen that; different k values affect
success at a minor level with low running time. When a large number of
experiments are planned it is considerable to select the optimum k value as 2.
Because of this, k=2 value is used in the tests as 2-fold cross-validation where 50%

of the dataset is used as train and other 50% as test datasets.

62

5. RESULTS AND DISCUSSIONS Enis ARSLAN

After the determination of the validity requirement and accuracy definition
requirements, it is better to optimize the parameters which affect the results of the
study. In this consideration, the effects of two important parameters (window-size
(w) and word-vector dimension (N)), which could directly affect the results, are

examined in the following experiments.

5.2.2. Effects of Window-Size and Word-Vector Dimension on Accuracy and
cocC

This section includes experiments to measure accuracy for different word-
vector dimension values, on different train datasets which are prepared by changing
the window-size. The preparation of the train datasets requires changing the
window-size by using the windowing method, while the adjustment of the word-
vector dimension requires the retraining of the LWQ algorithm. Table 5.2 shows
the results of some experiments conducted on different values of these two
parameters. The experiments are repeated 100 times to measure the consistency
(COC) of the accuracy. Training success is between 97% and 100%.

Table 5.2. The effects of window-size and word-vector dimension on accuracy (%)

Word-vector dimension (N)

2 20 200 2000 5000

(w) Si Sz Ss3 S: Sz Ss3 S1 Sz Ss3 S: Sz Ss3 S: Sz Ss

2 66.1 0.9 | 84.0 | 743 58 | 96.1 | 75.9 9.7 | 974 | 79.0 | 223 | 979 | 80.8 | 30.1 | 97.9

6 73.7 43 | 976 | 79.2 | 145 | 980 | 814 | 288 | 975 | 848 | 46.0 | 97.1 | 858 | 53.0 | 96.7

10 75.1 6.3 | 978 | 80.7 | 203 | 98.2 | 836 | 375 | 97.7 | 86.3 | 545 | 96.7 | 86.9 | 60.6 | 96.3

14 75.6 73 | 977 | 815 | 240 | 98.0 | 846 | 441 | 975 | 86.8 | 59.0 | 96.4 | 87.1 | 629 | 96.2

18 76.1 81 | 976 | 821 | 265 | 98.1 | 851 | 47.0 | 97.3 | 86.6 | 59.8 | 96.3 | 86.9 | 63.2 | 95.9

22 75.9 82 | 975 | 821 | 288 | 979 | 851 | 480 | 97.1 | 865 | 59.6 | 96.1 | 86.6 | 628 | 95.8

26 75.0 83 | 970 | 821 | 30.0 | 974 | 849 | 47.7 | 968 | 859 | 585 | 959 | 86.0 | 60.6 | 95.6

The terms used in Table 5.2 are as follows: S is the average value of the

accuracy when the training is applied for 100 times (average accuracy). S; is the

63

5. RESULTS AND DISCUSSIONS Enis ARSLAN

average value of the ambiguous terms, which are classified as always correct or
always incorrect in all 100 training cycles (COC ratio). Ss is the average value of
the correctly classified terms in consistent data rows for all of the training cycles
(consistent accuracy). According to Table 5.2, both average accuracy (S:1) and
COC ratio (Sy) values increase for the parameters N and w in direct proportion.
However, the rate of increase in accuracy is decreased, when the window-size
exceeds 14. Likewise, when the word-vector dimension is greater than 200, there
are little increases in the values of Si, Sz, and Ss. Interestingly, Ss isn’t too much
affected by the change in parameters N and w, except for w=2. In experiments,
word-vector dimension starts by the value N=2 and increments with a factor of 10.
Because of the limitation of the GPU-card memory, a maximum dimension of 5000
is used.

When test results are considered, standard deviation values are lowest and
very near for window-size values 10 and 14 for N=2000 as 0.247 and 0.250,
respectively. For the same windows-size values when the test is applied for n=200,
the values are 0.27 and 0.31 and for N=5000, the values are 0.21 and 0.26,
respectively. Standard deviation values are very high for low window-size (w=26)
as 1.42 and values change between 0.68 and 1.42 for all dimensions.

In order to measure the effect of the “ineffective lemma pairs” in accuracy,
filtered datasets are also trained by LWQ. accuracy values provided by these
filtered datasets are presented in Table 5.3.

64

5. RESULTS AND DISCUSSIONS Enis ARSLAN

Table 5.3. The effects of window-size and word-vector dimension on accuracy
when filtered with ineffective lemma pairs (%)

Word-vector dimension (N)

2 20 200 2000 5000

W) | Si| S2| Ss| S1| S2| Ss| S| S2| Ss| S1| S2| Ss| Si| S2| Ss

2 66.3 0.7 | 885 | 745 53 | 971 | 76.1 93 | 983 | 793 | 225 | 983 | 811 | 318 | 982

6 74.1 40 | 975 | 793 | 136 | 98,2 | 818 | 284 | 979 | 852 | 478 | 974 | 86.3 | 55.2 | 97.0

10 75.5 65 | 979 | 809 | 194 | 979 | 839 | 376 | 98.0 | 86.7 | 57.3 | 97.0 | 87.2 | 619 | 96.6

14 76.1 74 | 981 | 81.6 | 237 | 983 | 848 | 440 | 978 | 87.0 | 60.3 | 96.6 | 87.3 | 646 | 96.3

18 76.5 85 | 98.0 | 82.0 | 263 | 983 | 853 | 471 | 975 | 87.0 | 61.8 | 963 | 87.2 | 652 | 96.0

22 76.6 91 | 980 | 823 | 283 | 980 | 854 | 488 | 972 | 86.8 | 623 | 96.1 | 87.0 | 652 | 958

26 76.7 92 | 98.0 | 826 | 30.1 | 976 | 855 | 496 | 972 | 86.7 | 621 | 96.1 | 86.8 | 651 | 959

When the experiment results in Table 5.3 are compared with Table 5.2, it
can be seen that accuracy is increased in [3..5]% with the usage of the datasets,
which discards the “ineffective lemma pairs” (filtering). All remaining values are
in accordance with each other. While window-size values w=10 (Yuret and Tiire,
2006; Ilgen et al., 2013) and w=14 (Altintas et al.,2005) provide the best accuracy
values for Turkish, this complies with the experiment results given in Table 5.2 and
5.3.

Standard deviation values for the tests with filtered data are lowest and
very near for window-size values 10 and 14 for N=2000 as 0.22 and 0.25,
respectively. For the same windows-size values when the test is applied for n=200,
the values are 0.29 and 0.28 and for N=5000, the values are 0.23 and 0.25,
respectively. Standard deviation values are very high for low window-size (w=2) as
1.32 and values change between 0.66 and 1.32 for all dimensions.

In another analysis, it was identified that intersection values of the
vocabulary list of the words (“lemma + POS”) used in the input (unambiguous
word lemmas-Vg) and the output (ambiguous word lemmas- V) parts of the

datasets were very high and they have included the filtered “ineffective lemmas”.

65

5. RESULTS AND DISCUSSIONS Enis ARSLAN

Table 5.4 presents the numbers of elements in intersection and union of the
vocabularies (V¢ and Vg) (used in the datasets of experiments given in Table 5.2
and Table 5.3) for different window widths.

Table 5.4. Some relations of the vocabularies for different window-size values

Window-size (w)
2 6 10 14 18 22 26
Ve N Vs 989 1,146 1,170 1,166 1,158 1,142 1,123
Ve U Ve 7,398 | 8,699 | 8,953 | 8,984 | 8,962 | 8,890 | 8,820
Ve N Vg * 930 1,052 1,059 1,047 1,032 1,010 977
Ve U Vg * 7,641 8,795 8,946 8,919 8,839 8,750 8,610

*: datasets filtered with the “ineffective lemmas”

Table 5.4 shows that using “ineffective lemmas” in a filter, has decreased
the intersections and unions. When the experiments shown in Tables 5.2 and 5.3
are considered together with Table 5.4, it can be stated that using this filter
increases accuracy by decreasing the intersection of vocabularies. This supports the
highlighted idea at the beginning of the study: “the vocabulary of the dataset can be
modeled by splitting it into two vocabularies of ambiguous and unambiguous
words lemmas”. To assure this claim, in another experiment, intersection of the
vocabularies (in other words, words exist in the dataset in both ambiguous and
unambiguous form) of ambiguous and unambiguous words (VsNVg) is used as
another filter (intersection filter). By using this filter, the relationship between the
input and output parts of the dataset represents a bipartite graph. It can be said that
only unambiguous words can be used to detect the correct candidate for the
ambiguous word. The experiment results obtained by using the datasets prepared

by using the defined filters are given in Table 5.5.

66

5. RESULTS AND DISCUSSIONS Enis ARSLAN

Table 5.5. Effect of different filters on COC and accuracy for window-size 14 (%)

Word-vector dimension (N)

2 20 200 2000 5000

(w) Si Sz Ss3 Si Sz S3 S1 S S S1 S Ss S: S Ss

N 75.6 73 | 977 | 815 | 240 | 98.0 | 846 | 441 | 975 | 86.8 | 59.0 | 96.4 | 87.1 | 629 | 96.2

F-1 76.1 74 | 981 | 816 | 23.7 | 983 | 848 | 440 | 978 | 87.0 | 60.3 | 96.6 | 87.3 | 64.6 | 96.3

F-2 76.1 71| 979 | 814 | 208 | 98.7 | 850 | 40.8 | 984 | 876 | 60.0 | 97.2 | 88.0 | 652 | 96.9

N: Normal, F-1: Filter-1, F-2: Filter-2

In Table 5.5, the first line (Normal) represents the experiment results for
accuracy and COC, when no filter is applied, the second line, when “ineffective
lemma” filter (Filter-1) is applied and the third line, when “intersection filter”
(Filter-2) is applied to the datasets. According to Table 5.5, the highest accuracy
values are obtained when the dataset is prepared as Ve N Vs = @ (Filter-2). With
these results, it was determined that, LWQ system is negatively affected by the use
of unambiguous forms of lemmas in the input parts of the datasets, which of them
can sometimes be ambiguous (intersects), For example, morphological analyzer
produces “ev+NOUN” as the lemma form of the inflected word “evde”. Although,
another inflected form of its lemma enables the derivation of the inflected word
“evini” which is ambiguous. The morphological analyzer can produce the lemma
candidates as “ev+tNOUN” and “evintNOUN” for the word “evini”. When
“Intersection filter” is applied to the datasets, such lemmas like “ev+NOUN” will
not occur in both the input and output sides of the dataset at the same time.
Limitation on the intersection of vocabularies of both ambiguous and unambiguous
words with this filter makes a positive impact on the accuracy. But for the short
texts which consist of a little count of unambiguous lemmas, this filter may not be
applicable.

LWQ system’s full training plan is based on using the approximating and
departing equations to locate the word-vectors. Word-vectors are semi-trained

when only approximating or departing equations are used for the location
67

5. RESULTS AND DISCUSSIONS Enis ARSLAN

positioning. For this reason, types of equations are divided into two: 1) EQ+ for
approximating, 2) EQ- for departing. In the study, the word-vectors trained only
with EQ+ or EQ- type equations are considered to be semi-trained. Word-vectors
start training in random starting points, very distant from each other, with high
dimension sizes as 2000 or 5000. When high dimensions are considered, only EQ-
type equations can be sufficient and these vectors in the training behave as EQ+
type. This can be the interpretation of why a dataset with a high “insufficient
equation” problem can achieve the highest accuracy in high dimensions. But the
opposite (EQ+ type word-vectors trained in the low-space size with EQ- type
equations only) of this idea isn’t always true. Word-vectors trained in the low
dimension size may cause undesirable approximations and EQ+ type training
cannot be simulated. Following these claims, it is necessary to examine the

sentences to determine the causes of inconsistency and incorrect-consistent results.

5.2.3. Causes of Inconsistency and Incorrect-Consistency

In this experiment, consistent-incorrect (incorrectly classified in all tests)
and inconsistently (sometimes correctly sometimes incorrectly classified) classified
data lines obtained for w=14 and N=5000 parameters (which achieve the highest
accuracy value in the preceding experiments) are examined by visually. Statistics

of data lines used in this analysis are given in Table 5.6.

Table 5.6 Statistics of the dataset for inconsistent and consistent-incorrect lines

Class Count Ratio (%)
. Noise 137 56
Consistent-Incorrect
Normal 108 44
) Noise 2,551 57
Inconsistent
Normal 1,928 43

68

5. RESULTS AND DISCUSSIONS Enis ARSLAN

As seen in Table 5.6, analysis is applied in two groups: “Noise” and
“Normal” for consistent-incorrect and inconsistent classifications. “Noise” labeled
data lines consist of incorrect lemmatization performed by the morphological
analyzer or incorrect tagging applied by the Expert. There can be two reasons for
the incorrect lemmatization of the morphological analyzer. First reason is the
outdated dictionary that morphological analyzer uses. This can lead to too many
unnecessary (i.e redundant) lemma candidates in the parse outputs. The second
reason is the parse lists provided by the morphological analyzer which include the
roots and their corresponding lemma forms at the same time. This situation
increases ambiguity. It can be frequently seen in the noun-to-noun and noun-to-
adverb derivations. For the first case, to give an example, “hava + NOUN” and
“haval1 + NOUN” parse candidates both have the same root and “hava” root is
affixed by “-I1” derivational suffix. The morphological analyzer does not have any
functionality to prevent the listing of the root when its lemma form exists as
“havali + NOUN” and “hava + NOUN” is also listed as a parse option. An example
of the noun-to-adverb derivation is: “sabah + NOUN” and its adverb form can be
given as “sabahleyin+tNOUN”. They can both listed in the same parse output. For
the “Noise” group, expert tagging errors can also be seen in the analysis outputs
caused by fast data entry.

In Table 5.6, the “Normal” group consists of the data lines in which
morphological analyzer lists the correct parse candidates as lemmas and the expert
tags the correct lemma with the correct POS tag. The consistent-incorrect data
lines in the “Normal” group represent the words with the same lemma and different
POS tags. Correctly tagging of these kinds of words is sometimes very hard for
even a native speaker of Turkish. For example, the word morphological analyzer
lists “ilging + NOUN” ve “ilging + ADJ” lemma candidates for the word “ilgingti”.
On the other hand, the “insufficient equation” problem is the main cause of

inconsistent data lines in the “Normal” group.

69

5. RESULTS AND DISCUSSIONS Enis ARSLAN

5.2.4. The Effect of “Insufficient Equation” on Accuracy and COC

In this experiment, the “insufficient equation” problem is analyzed, which
is the main cause of inconsistency. Our observation is that the candidates which
can be sometimes EQ+ or EQ- are consistent. Therefore, two different vocabulary
lists are prepared, which consist of the correct and incorrect candidates in data lines
calculated as their intersection. Common candidate count value is nearly 17%
(which move two-way as EQ+ or EQ-) where the remaining 83% (37% are EQ+,
46% are EQ-) are one-way. Some of the candidates which are in one-way equations
also can be consistent. Thus we can introduce a hypothesize as “consistency can be
guaranteed by candidates trained with a sufficient number of equations”. In the
study, these kinds of candidates are mentioned as “fine-trained” candidates. To
define these candidates and their positive effect on COC values, two parameters are
created: the number of equations required to define a fine-trained candidate (#E),
and the number of fine-trained candidates in the same equation (#Cx). Table 5.7
gives the analysis results for the effects of four parameters (N, w, #E#, and #Cx) on
COC.

70

5. RESULTS AND DISCUSSIONS Enis ARSLAN

Table 5.7. Effects of fine-trained candidates on CoC with parameters window
width and word-vector dimension (%)

w 2 10 14 18
N Err 1 10 100 1 10 100 1 10 100 1 10 100
Crr
0 0.7 0.8 0.5 0 0 2.2 0 0 3 0 0 3.9
1 0.5 0.6 0.7 0.6 1.6 7.3 0.6 2.2 8.5 1.2 2.4 8.3
2 2 0.7 0.6 1.9 6 8 235 7.2 9.8 27.4 8 109 | 309
3 0.6 0.5 0.8 11.7 | 163 | 844 | 121 | 171 | 79.2 14.7 209 | 87.9
4 0.5 0.4 0 1.8 2.3 2.7 3.4 4.4 4.6 4.9 7 7.9
0 0.7 0.8 1.6 0.4 0.8 13.1 0 0.8 17.8 0 1.1 20.5
1 1.7 1.8 4.4 2.3 46 18.9 2.9 5.9 233 36 8.5 27.6
20 2 5 6.4 221 | 198 | 26.4 | 517 | 248 | 338 | 536 28 38 54.7
3 9 12 42 25 343 | 100 | 29.4 | 40.8 | 100 317 441 | 100
4 1.6 18 2.6 18.8 25 589 | 206 | 27.5 63 22.2 30.2 | 653
0 0.7 0.8 42 34 5.1 315 35 8.2 38 2.2 105 | 415
1 1.2 2.1 4.2 8.7 152 | 39.9 12 232 | 481 | 1054 | 297 | 515
200 2 8.6 11.3 33 408 | 524 | 675 | 482 | 614 | 718 52.3 655 | 73.8
3 16.6 22 729 | 408 | 537 | 100 46 60 100 48.4 62.1 | 100
4 2.9 35 6.1 295 | 381 | 804 | 345 | 367 | 86.1 38.3 46.1 | 90.1
0 0.7 0.8 15.1 5.2 15 51.1 6.2 215 | 556 6.8 275 | 579
1 38 41 16.1 | 189 | 375 | 636 | 234 | 449 | 629 24.1 491 | 63.1
2000 2 239 | 320 | 687 | 623 | 765 | 8.2 | 657 | 788 | 83.9 67.9 79.1 | 816
3 295 | 39.2 80 59 717 | 100 | 621 | 739 | 100 62.8 739 | 100
4 24.6 31 939 | 492 | 571 | 100 | 509 | 585 | 100 50.6 55.4 | 100

In Table 5.7, the optimum windows-sizes (w=10 and w=14) are used with

a minimum (w=2) and maximum (w=18) values. It can be seen that the window-

71

5. RESULTS AND DISCUSSIONS Enis ARSLAN

size is ineffective on COC values for window-sizes bigger than 10. This is also
valid for low word-vector dimensions. But when high-number of equations (like
#Ex>100) are used with high-dimension values (i.e. N=2000), fine-trained
candidate count (#Cx) is proportional to COC values. This relation supports the
idea that one-way candidates can be fine-trained in high-dimensions. But,
sometimes, in some data-lines, fine-trained candidates may not exist and this leads
to very low COC as 0.5% (and sometimes 0). This situation shows the positive
effect of fine-trained candidates on consistency.

When we examine the counts of data rows involved in training with Eg and
Cr parameters we have seen that, for #Cx=0 and #Cx=1 data row count increases
with the increase of Ex (1,10 and 100). Surprisingly, this is opposite for #Cs=2 and
#Cr=3 and #Cr=4. Although data row counts decrease for these Cr values, COC
values are higher when compared to #Cr=0 and #Cr=1. Another case is, when the
values of Cq=2 and #Cx=3 or Cs=4, for window-sizes 10,14 and 18, the data row
counts decrease but COC values increase. This shows that fine-trained candidate
counts which are high quality for classification can be obtained in window-sizes
bigger than 10 even there are lower count of data rows. Also for high dimensions
(such as 2000) low Cs values as 0 and 1 acquire higher COC values even when Ex
gets higher, but their COC values cannot exceed 57.9% and 63.6%, respectively.

Generally, low COC values can be seen for even high-dimensions provided
with a high number of equations (#E#>100). But it is important to have a higher
number of equations that are greater than 100 (#E#>100) to define a fine-trained
candidate.

As a result, when high word-vector dimension, optimum window-size and
a high number of equations are used, high COC can be obtained with data lines that

have 3 or 4 fine-trained candidates.

72

5. RESULTS AND DISCUSSIONS Enis ARSLAN

5.2.5. Effect of Dataset Size on Classification Accuracy and Consistency

Due to the nature of languages, one ambiguous word can co-occur
randomly with an unambiguous word in a sentence. It can be claimed that the
“insufficient equation” problem can be overcome by enlarging the dataset. In order
to test this hypothesis, the existing dataset is decreased randomly to simulate the
dataset expansion. In this experiment, 5 subsets of data are created (including the
main dataset) by using the “intersection filter” with a window-size 14. The train-
test cycle is applied for 100 repetitions and the accuracy and COC are examined.

The results are given in Table 5.8.

Table 5.8. The effects of the change in the amount of data on accuracy and CoC

%)
Corpus Vocabulary
No accuracyavg | CoCq
(#Sentences) | (#Words)
1 2,401 6,069 76.8 20.0
2 4,802 7,181 81.5 37.9
3 7,203 7,787 84.4 47.9
4 9,604 8,300 84.9 51.9
5 12,009 8,656 85.0 69.0

Dataset versions given in Table 5.8 are obtained by randomly subtracting
sentences from the novel and news texts to save the balance in the count and these
are given in ascending order as word counts. For training and tests, N=200 word-
vector dimension and w=14 are used for their representative power on
classification. Although it is hard to find common accuracy and COC values,
#Ew>34 and #C=2 values are defined as optimums by searching #E in [1..100]
and #Crin [1..4].

73

5. RESULTS AND DISCUSSIONS Enis ARSLAN

According to Table 5.8, it can be seen that when sentence count increases,
COC+# (which represents COC calculated only with fine-trained candidates)
increases in accordance with the vocabulary. On the other hand, the increase in
accuracyavg (Ss) decreases. For this reason, it can be expected that, when the tagged
dataset (more novel and more news text) is enlarged until full consistency is

provided, higher accuracy values can be obtained.

5.2.6. Consistency Analysis for all Window-Size Values and Dimensions

In this section, the effect of parameters “window-size” and “word-vector
dimension” on COC (S) are given in graphical representations.

Figure 5.1, shows the analysis results for the effect of the word-vector
dimension on COC (S;) considering all window-size values used in the

experiments.

74

5. RESULTS AND DISCUSSIONS Enis ARSLAN

. Consi: of original for dil size=2 ; Consistency of original datasets for dimension size=20
-—--2
09 0.9 —3
—-==10
08 0.8 14
——-18
807 o 07 22
© ® | 26
[i4
© 06 S 06
3 ©
o o
E 0.5 € 0.5
2 2
5 04 2 04
=3 c
o o
O3 o

o
w

02

o
~

01 N eI T 0.1
0 e f— 0 A Y i < J
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 920 100
The Number of Repetitions The Number of Repetitions
Consistency of original datasets for dimension size=200 Consistency of original d for di i i 0
1

---2
—s
—==10
14
——-1

0.9

=)
©

08

o
@

07

2 22 2

3 v 26 ®
14

s 06! x o7
& e
5 o}

« 05 0.6
= -

@ =
Boal £
2 »

3 gos
O3 o

o
=

02

=3
w

ail et e naes

o
o
N

0 10 20 30 40 5 60 70 8 9% 100 0 10 20 30 40 50 60 70 8 90 100
The Number of Repetitions The Number of Repetitions

Consi: of original d. for di

o
=)

0.7

0.6

Consistent Data Ratio

0.5

04

03

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Figure 5.1. COC analysis for different vector- dimensions on the same window-
size values

As seen in Figure 5.1, COC values are low for the lower window-sizes.

When word-vector sizes increase gradually, consistency value increases for all
75

5. RESULTS AND DISCUSSIONS Enis ARSLAN

window-size values. When the word-vector dimension is 2, the system acquires the
worst COC results for all windows. The sharpest increase in COC is obtained by
the experiments applied for the dimension range [20..200]. The COC value
increase goes by the dimension range [200..2000]. Although the increase continues
with the dimension value range [2000..5000], it can be seen that convergence
occurs in this range.

Figure 5.2 shows the similar results given in Figure 5.1, differently when

the dataset is filtered with the “intersection filter”.

76

5. RESULTS AND DISCUSSIONS Enis ARSLAN

Consi of filtered d; for di ion size=2 Consi of filtered for di T ch e
P Y
09
08
£ 207
[i4 @
s c 0.6
5 2
o 3
= « 05
2 5
2 ot
e » 04
S S
9 O3
02
0.1
0 10 20 30 40 50 60 70 80 90 100 Do 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
o 16 of filtered d. for di ion size=200 , . Consistency of filtered datasets for dimension size=2000
——— —=2
09 —
8 09 e
—==10
I 14
08 mim={f
2 ° ! 22
o] ® \
¢ & o7},
-] o
g 8 |
E E 06
k]]
o o
04
.
03 i
0 02
0 10 2 30 40 50 60 70 8 %0 100 0 10 20 30 40 5 60 70 8 90 100
The Number of Repetitions The Number of Repetitions
4 Consi: of filtered d for di ion size=5000
0.9
08
5
14
£ao7
[a]
5
® 0.6
®
c
5
©os
04
03

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Figure 5.2. COC analysis for different word-vector dimensions on the same
window-size values with “intersection filter”

77

5. RESULTS AND DISCUSSIONS Enis ARSLAN

In Figure 5.2, comments made for the Figure 5.1 are valid, except, filtered
data provides little increase for all word-vector dimension values on different
window-size values. Results are given in Figure 5.3 when the experiments are

repeated for each window-size values for all word dimensions through [2..5000].

78

5. RESULTS AND DISCUSSIONS

Enis ARSLAN

Consistency of original datasets for window size=2

2
=120

- 200
—+=-=2000

Consistency of original datasets for window size=6

2

—-—-20
200

—-=-=2000

207 °
& &
£06 s
3 8
2705 £
2 2
3 04 2
2 2
s S
Sos S
02
0.1
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
Consistency of original datasets for window size=10 Consistency of original datasets for window size=14
2 2
09 ———20 0.9 1 ——-20
4 200 I e 200
0.8 FE N —-=-=2000 0.8 1Y —+=-=2000
g 07 207
14 o
= 06 = 06
a8 3
=05 =05
2 2
5 04 5 04
s S
Co3 Co3
02 02
01 0.1
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
" C of original for size=18 Consistency of original datasets for window size=22
2 2
0918 ——=-20 iy -
A\ 200 - 200
08> ~ 2000 —-=-=2000
' 5000
s 07 °
o] 2
S 5
=06 4
8 05 g
2 H %
I 2 S
8 04 % 04} e
S S e
O3 Ofgak v T T E s i
02 0.2
01 01
0 0
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 Q0 100
The Number of Repetitions The Number of Repetitions
Ci of filtered for size=26
-3
é
s 06
S \
o
« 05 2
s g
S 04 v
S i FeOE
3 e
O o3 -
02
01
0
0 10 20 30 40 50 60 70 80 90 100

The Number of Repetitions

Figure 5.3. COC analysis for different window-size values on the same word-

vector dimensions

79

5. RESULTS AND DISCUSSIONS Enis ARSLAN

In Figure 5.3, for all word-vector dimensions, COC increases gradually till
the window-size is 18. The COC value increase is sharp from w=2 to w=6. And
from w=6 to w=18 increase is in a fixed ratio. From window-size w=18 to window-
size values w=22 and w=26, consistency slightly increases.

When the datasets prepared and used for the tests in Figure 5.3 are filtered

with “intersection filter”, results for the same experiments are given in Figure 5.4.

’ Consi: of filtered d. for window size=2 1 Consi y of filtered for window size=6
2 2
0.9 ——=-20 0.9 —=—=-20
200 f w200
08 —-=-=2000 0.8 '\ —-=+=2000
——5000 Y ——5000
207 g 07" "
T T
14 o
© 06 ® 06
a a
e 05T £ 05
2 2
% 04 2 04
2 2
S S
o3 O3
02 02 SR
0.1 S 01
0 0 -
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
. Consi of filtered for window size=10 i Consi: of filtered for window size=14
2 2
0.9 ———20 0.9 14 ——= 20
200 13 200
08t =+=+=2000 081, —+=-=2000
——5000 M ——5000
S 07} 2 07!
® T \
o [i4 \
® 06 - © 06
8,1\ &, N\ T
OS5 L e o N
£ e | LN e i
04 St e, g 04 S~
~ 2 L
S S
©o03 ©o03
02 e 02
0.1 0.1
(]

20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions

)
a

80

5. RESULTS AND DISCUSSIONS

Enis ARSLAN

" Consi of filtered d for wi size=18 .
2
0.9 1) —— 20 09
i 200
0.8 ! —=-=2000 08
5000
207 g 07
© w
[i4 - [i4
BOSLLYN e © 06
3 NG e 3
= 05f N s £ 05
2 2
504l 504}
2 2
S S
O3 ———— - ©'03
02 02
0.1 0.1
0 ; 0
0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions
Consi: y of filtered

Consi of filtered d

for window size=22

2
wemir 20

200
=-=-=2000

5000

Consistent Data Ratio

0.5 P

10 20 30 40 50 60 70 80 90
The Number of Repetitions

100

for window size=26

2
-—-20
200
=-=-=2000
——5000

0 10 20 30 40 50
The Number of Repetitions

60 70 80 90

100

Figure 5.4. COC analysis for different window-size values on the same vector
dimensions with “intersection filter”

In Figure 5.4, filtered datasets provide better results, when compared to the

results given in Figure 5.3. COC values are near for window sizes 18, 22 and 26

but there are little achievements.

In order to visualize the effect of filtered datasets with “intersection filter”

on the system, experiments are performed for all combinations of window-size and

word-vector dimensions. In Figure 5.5, for all word-vector dimensions, results are

given when the filtered and original datasets are prepared for window-size 2.

81

5. RESULTS AND DISCUSSIONS Enis ARSLAN

; Consistency of filtered and original datasets for N=2 and W=2 Consi of filtered and original d for N=20 and W=2
T T T T T T T T 1 T T T T T
filtered filtered
original 09 original
08
2 207
& &
£ = 06
©
a8 8
E g 05
5 2
2 é 04
S S
9 03
0.2
01
0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
1(:tmsis(em:y of filtered and original datasets for N=200 and W=2 1Consis(em:y of filtered and original datasets for N=2000 and W=2
—filtered —filtered
09 original 09 original| |
08
o 07 o
T T
14 14
g0 8
a a
= 05 €
z 2
G 04f z
2 2
S S
O3 o
02
01
0 ;
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
1Cv. i y of filtered and original datasets for N=5000 and W=2
T T T T T T T T T
filtered
original
0.9 H 1
o 081
®
14
Sort
a]
-
5
@ 06
7]
c
3
05
04
03

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Figure 5.5. COC analysis for window-size=2 on different word-vector dimension
values with original and filtered datasets

In Figure 5.5, although there is little increase in COC values for the
dimensions N=2, N=20, and N=200, these cannot be distinguished in graphics.

82

5. RESULTS AND DISCUSSIONS Enis ARSLAN

However, the increase in COC with the usage of the filter can be seen easily for the
dimensions N=200 and N=5000.
In Figure 5.6, for all word-vector dimensions, results are given, when the

filtered and original datasets are prepared for window-size = 6.

1 LONSISIency Or THierea ana original aatasets 101 IN=<£ ana vw=o Ci i of filtered and origina| datasets for N=20 and W=6
y == = - - 1 T
filtered filtered
0.9 original 0.9 original
08
S 3
& g
s £
g &80
3 €
% % 05
] @
2
8 o4
03
0.2
01
0 0 20 30 40 50 6 70 8 9% 100 0 10 20 30 40 5 60 70 8 9 100
The Number of Repetitions The Number of Repetitions
Consi: of filtered and original datasets for N=200 and W=6 lConsistem:y of filtered and original datasets for N=2000 and W=6
1 T -
filtered —filtered
09 H original original
09
g S
b T 08
« o
© s
8 8
£ W07
2 2
i]
@]
5 S 06
8 o
05
02 04
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions

1uon5|stency Or Tiiterea ana original aatasets ror N=dUUU ana w=b
T T T T T T T T T

filtered
original

Consistent Data Ratio

o o o o
o % e Z¢ e 2 e o
> & 3 8 = & o &

=
o
o

o
o

o
=
N
S

30 40 50 60 70 80 90 100
The Number of Repetitions

Figure 5.6. COC analysis for window-size=6 on different word-vector dimensions
with original and filtered datasets

83

5. RESULTS AND DISCUSSIONS Enis ARSLAN

In Figure 5.6, although there is little increase in COC values for the
dimensions N=2, N=20, and N=200, these again cannot be distinguished in
graphics. For N=20 the increase in the last repetitions can be seen. However, the
increase in COC with the usage of the filter can be seen easily for the dimensions
N=200 and N=5000.

In Figure 5.7, for all word-vector dimensions, results are given when the

filtered and original datasets are prepared for window-size = 10.

84

. RESULTS AND DISCUSSIONS

Enis ARSLAN

’ Consistencywof fil(?red and original s for N'=2 and' W=10 ‘r\ " of filtered and origsnal for N=20 and W=10
filtered filtered
09 original 0.9 original

Consistent Data Ratio

0 10 20 30 40 50 60 70 80
The Number of Repetitions

1(:onsistom:y of filtered and original for N=200 and W=10

0 10 20 30 40 50 60 70 80 20 100
The Number of Repetitions

Consistent Data Ratio

filtered
original

0 10 20 30 40 50 60 70 80
The Number of Repetitions

1Consistency of filtered and original datasets for N=5000 and W=10

Consi of filtered and original for N=2000 and W=10

—filtered
original

Consistent Data Ratio
o o

S o S e
& N8 =

o
o

=)
ey
o

o
P

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Consistent Data Ratio
o) o
= = o 2) 2
= S ® & © &

o
o
&

o
o

——filtered
original

0 10 20 30

40 50

60 70 80 90 100

The Number of Repetitions
Figure 5.7. COC analysis for window-size=10 on different word-vector dimensions
with original and filtered datasets

In Figure 5.7, for N=20 and N=200, an increase in consistency is more

evident when compared to the previous window-size values. The increase in COC,

85

5. RESULTS AND DISCUSSIONS

Enis ARSLAN

with the usage of the filter, can be seen easily for the dimensions N=200 and

N=5000.

In Figure 5.8, for all word-vector dimensions, COC results are given when

the filtered and original datasets are prepared for window-size = 14.

for N=2 and W=14

" Consistency of filtered and original

Consistent Data Ratio

filtered
original

30 40 50 60 70
The Number of Repetitions

of filtered and original datasets for N=200 and W=14

Consistent Data Ratio

filtered
original

30 40 50 60
The Number of Repetitions

095

08

o
e =
@ 3

Consistent Data Ratio

o
by
S

70

of filtered and original data:

for N=20 and W=14

filtered
original| |

30 40 50 60
The Number of Repetitions

70

l;‘ of filtered and original for N=2000 and W=14
——filtered
095 original | 4

30 40 50 60
Tha Numhar nf Renstiinne

$onslsnncy of filtered and original datasets for N=5000 and W=14

filtered

0 10 20

Figure 5.8. COC analysis for window-size=14 on different word-vector dimensions

30 40 50

60 70 80 90 100

The Number of Repetitions

with original and filtered datasets

86

70

5. RESULTS AND DISCUSSIONS Enis ARSLAN

In Figure 5.8, for N=2, in the first repetitions, the increase in COC is
evident. Dimensions N=20 and N=200 are not too much effective for this window-
size to increase COC. Surprisingly, the increase in COC, for the highest dimension
size N=5000 is very little.

In Figure 5.9, for all word-vector dimensions, results are given when the

filtered and original datasets are prepared for window-size = 18.

4 Consistency of filtered and original for N=2 and W=18 ‘p " of filtered and original for N=20 and W=18
filtered Titered
09 original s original
08|
207 o
& k]
= 06 ¢
© g
S]
Cos a
£ 5
s B
2 04 g
S 2
803 3
02
01
% 0 2 3 4 s e 7 w0 s 10 02
s 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
‘Consistency of filtered and original datasets for N=200 and W=18 Consi of filtered and original for N=2000 and W=18
1
filtered ——filtered
original 0.95 original
09 1
2 0s 3
& &
£ ..}
S 07 8
o °
£ g
g 06 8
05
04 5 i 055
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions
\onsistency of Tiiterea and originai Gatasets Tor N=ouvy ana wW=1s
filtered
0.95 original
09
3
w
085
@
8
£ 08
s
°
2075
S
o
07
0.65
06

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Figure 5.9. COC analysis for window-size=18 on different word-vector dimensions
with original and filtered datasets

87

5. RESULTS AND DISCUSSIONS

Enis ARSLAN

In Figure 5.9, results are similar to the results given for window-size 14

except, for N=5000 the increase in COC is evident. In Figure 5.10, for all word-

vector dimensions, results are given when the filtered and original datasets are

prepared for window-size = 22.

Consi: of filtered and original for N=2 and W=22

filtered
original

o
>

Consistent Data Ratio

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Consi: of filtered and original for N=200 and W=22

fitered
original

09

o
@

Consistent Data Ratio
P
S

o
»

05

04
0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Consistent Data Ratio

Consistent Data Ratio

0.95

=)
©

o
o
a

08

1Consistem:y of filtered and original datasets for N=20 and W=22

?onsistency of filtered and original datasets for N=2000 and W=22

filtered
original| |

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

g:onsistency of filtered and original datasets for N=5000 and W=22

Consistent Data Ratio

—filtered
original
0 0 20 30 40 50 60 70 80 90 100
The Number of Repetitions
—filtered
original | |

0 10 20 30 40 50
The Number of Repetitions

Figure 5.10 COC analysis for window-size=22 on different word-vector
dimensions with original and filtered datasets

60

88

70 80 90 100

5. RESULTS AND DISCUSSIONS Enis ARSLAN

In Figure 5.10, for the first time, the lowest dimension N=2 shows
distinctly the increase in COC for w=22. For N=20 and w=22 the filtered data
effect is very little. On the other hand, in the last repetitions for N=200, the increase
is evident and for N=2000 and N=5000 results are similar to the results given for
window-size 18.

In Figure 5.12, for all word-vector dimensions, results are given when the

filtered and original datasets are prepared for window-size = 26.

89

5. RESULTS AND DISCUSSIONS Enis ARSLAN

1 C 'Y '°' ﬂlt?red a’}d orig'ina| JY > for Nf2 andY W=26 1Consistem:y of filtered and original datasets for N=20 and W=26
filtered filtered
0.9 original original
09 1
2 o 08
é &
o
8 § 07
= ros
& £
k4 206t
] 4
2 @
S 2
o 8

o
w

04

0 03

¢ 1 20 30 40 50 60, 700 ‘80: 90 100 0 10 20 30 40 50 60 70 8 90 100
The Number of Repetitions The Number of Repetitions
1(:ansis(em:y of filtered and original datasets for N=200 and W=26 s:onsistency of filtered and original datasets for N=2000 and W=26
filtered —filtered
original 095 original

Consistent Data Ratio
Consistent Data Ratio

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions The Number of Repetitions

ﬁ:onsistency of filtered and original datasets for N=5000 and W=26

—filtered
original| |

Consistent Data Ratio
o))
bt -~ bad =] bed w0
= G =3 a © &

o
=
o

o
=S

0 10 20 30 40 50 60 70 80 90 100
The Number of Repetitions

Figure 5.11 COC analysis for window-size=26 on different word-vector
dimensions with original and filtered datasets

In Figure 5.11, for N=200, N=2000 and N=5000 the highest gain for
filtered datasets can be seen. But for these dimensions, it is clear that convergence

slope is sharp.

90

5. RESULTS AND DISCUSSIONS Enis ARSLAN

5.3. Comparison Results with the Other Morphological Disambiguation
Methods

When preceding experiments are considered, it can be claimed that it is
advantageous to use fine-trained candidates in training cycles. Because of this, the
LWQ system is trained with data lines which include the fine-trained candidates.
For comparison, accuracy results of this study in morphological disambiguation
and the other studies that exist in literature with the highest achievements for

Turkish language and similar languages are given in Table 5.9.

Table 5.9. Accuracy values given in related studies for morphological
disambiguation

Method p-curag Language
(%)

Orosz and Novak (2013) 95.81 Cz

Muller and Schutze (2015) 96.83 Hu

Hakkani-Tur et al. (2002) 95.07

Yuret and Ture (2006) 95.82

Sak et al. (2007) 96.80

GOorgiin and Yildiz (2011) 96.28 o

Kutlu and Cicekli (2013) 93.40

Yildiz et al. (2016) 96.28

Shen et al. (2016) 97.24

Dayanik et al. (2018) 96.86

This Study 98.40

Table 5.9 provides the accuracy values obtained in Turkish and
morphologically similar languages like Hungarian and Czech. The values provided

for Hungarian and Czech are selected from the highest values in the literature.

91

5. RESULTS AND DISCUSSIONS Enis ARSLAN

In early work in morphological disambiguation of Czech, Spoustova et al.
(2007) have reported a 95.68% accuracy value by using the statistical methods
combined with rule-based methods. Orosz and Novak (2013) present PurePOS
which is a stochastic tagger and by using PurePOS they report 96.48% accuracy
value. When they have used an input filter accuracy increases to 96.63%. Although
this filter limits some input data, as we applied in this study, there does not exist
any detailed analysis of its effect on accuracy. In Hungarian, most of the research
uses the term “morphological tagging” instead of “morphological disambiguation™.
One of these (Muller et al., 2013) provides the highest accuracy value by using the
stochastic tagger named MarMot. They use second-order pruned CRFs and obtain a
accuracy value of 96.57%. In their later study (Muller and Schutze, 2015), they
have outperformed their previous study with a accuracy value of 96.83% by using
the output of a morphological analyzer to reduce the lattice. This study also reports
94.48% accuracy value for Czech. In Tkachenko and Sirts's (2018) study, they
have proposed a multi-class neural model which again uses MarMot as tagger and
they achieve the highest accuracy value for Czech as 95.81%, while 84.12% for
Hungarian.

Early studies on Turkish morphological disambiguation are mostly based
on rule-based, statistical and hybrid models (Hakkani-Tiir et al., 2002; Kutlu and
Cicekli, 2013). The most prominent study (Hakkani-Tir et al., 2002) presents
different n-gram models and trains these models with statistical information. The
highest accuracy value reported in this study is 95.07% which is very near to the
recent neural models’ achievements.

According to Table 5.6, it can be seen that the state of the art accuracy
values for Turkish are near to similar languages, Hungarian and Czech. For
example, Yildiz et al. (2016) reach 96.28%, and Dayanik et al. (2018) obtain
96.86%. Neural models are flexible and successful by presenting various
embedding models and designs, but the necessity for large amounts of training data

for the model and optimal parameter selection is a hard problem. One challenge in
92

5. RESULTS AND DISCUSSIONS Enis ARSLAN

the morphological disambiguation task of Turkish is to obtain fully supervised
training datasets. The most successful studies (Yuret and Ture, 2006; Sak et al.,
2007; Yildiz et al., 2016) presented for Turkish use semi-supervised datasets
without discussing the datasets’ quality. According to Table 5.6, the highest value
ever reported for Turkish (and also for similar languages) is reported by Shen et al.
(2016) as 97.24%. Our study has outperformed this study by 98.40% accuracy
value when the “intersection filter” is used in the dataset with training parameters
w=14 and N=200. Theoretically, when the noise level given in Table 5.6 is
considered, if morphological analyzer and user errors are corrected, this accuracy
value can be increased to 99.3% by a simple calculation (98.40% + 56% x 1.60%.).

93

5. RESULTS AND DISCUSSIONS Enis ARSLAN

94

6. CONCLUSIONS Enis ARSLAN

6. CONCLUSIONS

Morphological disambiguation is an important natural language processing
(NLP) task for morphologically complex languages like Turkish. Although many
studies present successful results by using various methods, dataset reliability and
amount of data needed is a major concern. Using classification techniques in a
vector-space for morphological disambiguation has not been studied in the
literature, to our best knowledge.

Motivated by this, in this thesis, we have focused on morphological
disambiguation task by using a new classification method named Learning Word-
vector Quantization (LWQ). LWQ method is an adaptation of Learning Vector
Quantization (LVQ) which is a well-known competitive machine learning
algorithm. LVQ has been applied in many research fields. Although some of them
are mainly on NLP problems, in our best knowledge, it has not been applied to any
of the disambiguation tasks. Basically, LWQ locates the words as vectors in
Euclidian space and optimizes the word-vectors with many training cycles. This
optimization is provided by using a reward-or-penalize mechanism that is inspired
by the original LVQ algorithm. In the study, the dataset is prepared from a
standpoint that, “an ambiguous word in a text can be disambiguated by considering
the neighbor words without ambiguity”. Datasets are prepared in a special format
to separate the ambiguous words form unambiguous ones in two distinct
vocabularies. Relationships between these vocabularies are used as equations
which are used in approximating and departing the positions of the word-vectors.

In the study, many experiments are performed to investigate the effect of
the parameters: window-size and vector-space dimension on accuracy and
consistency of classification. Also, in an experiment, it has been identified that
increasing the dataset size increases the system consistency and classification
accuracy by contributing to the count of fully-trained word-vectors. On the other

hand, tagging errors are defined and proposals are made for the improvement of the
95

6. CONCLUSIONS Enis ARSLAN

morphological analyzer. Finally, classification accuracy results are compared with
similar studies in the literature presented for morphological disambiguation of
Turkish.

LWQ method handles the morphological disambiguation problem as a
classification problem in order to identify the correct parse candidate of an
ambiguous word in a text. This method is directly dependent on the quality of the
data which should be tagged correctly by an expert. Also, a larger tagged dataset
provides more accurate classification rates by providing more equations for
training. It is obvious that accuracy value can be increased in future studies by
conducting a significant number of experiments. LWQ method is language-
independent when the task is morphological disambiguation. We believe that it can
be successful in less sparse languages other than complex languages with a low
amount of data. On the other hand, it is applicable to word sense disambiguation
(WSD) problem by taking advantage of the Euclidian space by mapping semantic
information. It is thought that the LWQ method, introduced as a new method to
the literature, will give a different perspective to natural language processing
(NLP) studies with different adaptations.

96

REFERENCES

Altintas, E., Karsligil, E., and Coskun, V., 2005. The effect of windowing in word
sense disambiguation. In International Symposium on Computer and
Information Sciences(pp. 626-635). Springer, Berlin, Heidelberg.

Arslan, E, and Orhan, U., 2017. Using Graphs in Construction of a Lemmatization
Model for Turkish, International Mediterranean Science and Engineering
Congress, IMSEC.

Arslan, E., and Orhan, U., 2019. Identification of OOV words in Turkish
texts. Gaziosmanpasa Bilimsel Arastirma Dergisi, 8(2), 35-48.

Bohnet, B., McDonald, R., Simoes, G., Andor, D., Pitler, E., and Maynez, J., 2018.
Morphosyntactic tagging with a meta-bilstm model over context sensitive
token encodings. arXiv preprint arXiv:1805.08237.

Brants, T., 2000. TnT: a statistical part-of-speech tagger. In Proceedings of the
sixth conference on Applied natural language processing (pp. 224-231).
Association for Computational Linguistics.

Chuan, Z., Xianliang, L., Mengshu, H., and Xu, Z., 2005. A LVQ-based neural
network anti-spam email approach. ACM SIGOPS Operating Systems
Review, 39(1), 34-39.

Church, K. W., 1989. A stochastic parts program and noun phrase parser for
unrestricted text. In International Conference on Acoustics, Speech, and
Signal Processing, (pp. 695-698). IEEE.

Dayanik, E., Akyiirek, E., and Yuret, D., 2018. Morphnet: A sequence-to-sequence
model that combines morphological analysis and disambiguation”. arXiv
preprint arXiv:1805.07946.

Daybelge, T., and Cicekli, I., 2007. A rule-based morphological disambiguator for
Turkish. In Proceedings of Recent Advances in Natural Language
Processing (pp. 145-149).

97

DeSieno, D., 1988. Adding a conscience to competitive learning. In IEEE
international conference on neural networks (Vol. 1, No. 6, pp. 117-124).
New York: Institute of Electrical and Electronics Engineers

Diaz-Galiano, M. C., Martin-Valdivia, M. T., Martinez-Santiago, F., and Urena-
Lépez, L. A., 2004. Multi-word expressions recognition with the LVQ
algorithm. Proceedings of Methodologies and Evaluation of Multiword
Unit in Real-world Applications, LREC, 2004.

Ehsani, R., Alper, M. E., Eryigit, G., and Adali, E., 2012. Disambiguating main
POS tags for Turkish. In Proceedings of the 24th Conference on
Computational Linguistics and Speech Processing (ROCLING 2012) (pp.
202-213).

Ezeiza, N., Alegria, 1., Arriola, J. M., Urizar, R., and Aduriz, 1., 1998. Combining
stochastic and rule-based methods for disambiguation in agglutinative
languages. In Proceedings of the 17th international conference on
Computational linguistics-Volume 1 (pp. 380-384). Association for
Computational Linguistics.

Gorgiin, O., and Yildiz, O. T., 2011. A novel approach to morphological
disambiguation for Turkish. In Computer and Information Sciences Il (pp.
77-83). London: Springer.

Gorgiin, O., and Yildiz, O. T., 2012. Using morphology in English-Turkish
statistical machine translation. In 2012 20th Signal Processing and
Communications Applications Conference (SIU) (pp. 1-4).

Gunawan, T. S., Kartiwi, M., and Ardzemi, N. H., 2017. Development of Language
Identification using Line Spectral Frequencies and Learning Vector
Quantization Networks. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), 9(3-7), 21-27.

Hakkani-Tiir, D. Z., Oflazer, K., and Tir, G., 2002. Statistical morphological
disambiguation for agglutinative languages. Computers and the

Humanities, 36(4), 381-410.
98

Hakkani-Tiir, D. Z., Saraclar, M., Tiir, G., Oflazer, K., and Yuret, D., 2018.
Morphological Disambiguation for Turkish. In Turkish Natural Language
Processing (pp. 53-67). Springer, Cham.

Halacsy, P., Kornai, A., Oravecz, C., Vikto, T., and Varga, D., 2006. Using a
morphological analyzer in high precision POS tagging of Hungarian.

Haldar, R., and Mishra, P. K. (2016). Learning Vector Quantization (LVQ) Neural
Network Approach for Multilingual Speech Recognition. Int. Res. J. Eng.
Technol, 3, 2863-2869.

Heigold, G., Neumann, G., and van Genabith, J., 2017. An extensive empirical
evaluation of character-based morphological tagging for 14 languages.
In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers (pp.
505-513).

flgen, B., Adali, E., and Tantug, A. C., 2013. A comparative study to determine the
effective window size of Turkish word sense disambiguation systems.
In Information Sciences and Systems 2013 (pp. 169-176). Springer, Cham.

Kiss, T., and Strunk, J., 2006. Unsupervised multilingual sentence boundary
detection. Computational Linguistics, 32(4), 485-525.

Kohonen, T., 1984. Self-organization and associative memory, Springer Verlag,
New York

Kohonen, T., 1990a. Improved versions of learning vector quantization. In 1990
IJCNN International Joint Conference on Neural Networks (pp. 545-550).
IEEE.

Kohonen, T., 1990b. The self-organizing map. Proceedings of the IEEE, 78(9),
1464-1480.

Kohonen, T. 1990c. Statistical pattern recognition revisited. In Advanced neural
computers (pp. 137-144). North-Holland.

99

Kohonen, T. 1992. New developments of learning vector quantization and the self-
organizing map. In Symposium on Neural Networks; Alliances and
Perspectives in Senri 1992 (SYNAPSE'92) Japan. Osaka.

Kutlu, M., and Cicekli, 1., 2013. A hybrid morphological disambiguation system
for Turkish. In Proceedings of the Sixth International Joint Conference on
Natural Language Processing (pp. 1230-1236).

Labeau, M., Loser, K., and Allauzen, A., 2015. Non-lexical neural architecture for
fine-grained pos tagging. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 232—-237.

Lafferty, J., McCallum, A., and Pereira, F. C., 2001. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data.

Laki, L. J., and Orosz, G., 2014. An efficient language independent toolkit for
complete morphological disambiguation. In LREC (pp. 1625-1630).

Ma, X, and Hovy, E, 2016. End-to-end sequence labeling via bi-directional Istm-
cnns-crf. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, volume 1, pages 1064-1074.

Mantysalo, J., Torkkola, K., & Kohonen, T. 1992. LVQ-based speech recognition
with high-dimensional context vectors. In Second International Conference
on Spoken Language Processing.

Martin-Valdivia, M. T., Urefia-Lopez, L. A., and Garcia-Vega, M. (2007). The
learning vector quantization algorithm applied to automatic text
classification tasks. Neural Networks, 20(6), 748-756.

Muller, T., Schmid, H., and Schutze, H., 2013, Efficient higher-order CRFs for
morphological tagging. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing (pp. 322-332).

Muller, T., and Schutze, H., 2015. Robust morphological tagging with word
representations. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics:

Human Language Technologies (pp. 526-536).
100

Nguyen, D. Q., Pham, D. D., and Pham, S. B., 2016. A robust transformation-based
learning approach using ripple down rules for part-of-speech tagging. Al
Communications, 29(3), 409-422.

Oflazer, K., 1994. Two-level description of Turkish morphology. Literary and
linguistic computing 9.2, 137-148.

Oflazer, K., and Tir, G., 1996. Combining hand-crafted rules and unsupervised
learning in constraint-based morphological disambiguation. arXiv preprint
cmp-1g/9604001.

Oflazer, K., and Tir, G., 1997. Morphological disambiguation by voting
constraints. In Proceedings of the 35th Annual Meeting of the Association
for Computational Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Linguistics (pp. 222-229).
Association for Computational Linguistics.

Orosz, G., and Novak, A., 2013. PurePos 2.0: a hybrid tool for morphological
disambiguation. In Proceedings of the International Conference Recent
Advances in Natural Language Processing RANLP 2013 (pp. 539-545).

Oztemel, E., 1992. Integrating expert systems and neural networks for intelligent
on-line statistical process control.

Oztemel, E., 2012. Yapay sinir aglar1. Papatya Yayincilik Egitim, Istanbul, 232s.

Pennington, J., Socher, R., and Manning, C., 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP) (pp. 1532-1543).

Pilevar, M. T., Feili, H., and Soltani, M. (2009, September). Classification of
Persian textual documents using learning vector quantization. In 2009
International Conference on Natural Language Processing and Knowledge
Engineering (pp. 1-6). IEEE.

Sak, H., Giingér, T., and Saraglar, M., 2007. Morphological disambiguation of

Turkish text with perceptron algorithm. In International Conference on

101

Intelligent Text Processing and Computational Linguistics (pp. 107-118).
Springer, Berlin, Heidelberg.

Sezer, T., 2017. TS Corpus Project: An online Turkish Dictionary and TS DIY
Corpus. European Journal of Language and Literature, 9(1), 18-24.

Shen, Q., Clothiaux, D., Tagtow, E., Littell, P., and Dyer, C., 2016. The role of
context in neural morphological disambiguation. In Proceedings of
COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers (pp. 181-191).

Silfverberg, M., Ruokolainen, T., Lindén, K., and Kurimo, M., 2016. FinnPos: an
open-source morphological tagging and lemmatization toolkit for
Finnish. Language Resources and Evaluation, 50(4), 863-878.

Strakova, J., Straka, M., and Hajic¢, J., 2014. Open-source tools for morphology,
lemmatization, POS tagging and named entity recognition. In Proceedings
of 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations (pp. 13-18).

Tahiroglu, B.T., 2014. Tiirkce Cevrim I¢ci Haber Metinlerinde Yeni Sozlerin
(Neolojizm) Otomatik Cikarimi. Derlem Dilbilim Uygulamalari, Ozkan,
B., Tahiroglu, B. Tahir ve Ozkan Ayse Eda (Ed.), Karahan Kitabevi
Yayinlari, Adana, ss.1-22.

Tkachenko, A., and Sirts, K., 2018. Modeling composite labels for neural
morphological tagging. arXiv preprint arXiv:1810.08815.

TLA http://www.tdk.gov.tr/index.php?option=com_content&id=198:Kisaltmalar,
Access Date:2018

Umer, M. F., and Khiyal, M. S. H. (2007). Classification of textual documents
using learning vector quantization. Information Technology Journal, 6(1),
154-1509.

Visa, A. J.,, Toivanen, J., Back, B., and Vanharanta, H. (2000, April). Toward text

understanding: Classification of text documents by word map. In Data

102

http://journals.euser.org/files/articles/ejls_sep_dec_17/Taner.pdf
http://journals.euser.org/files/articles/ejls_sep_dec_17/Taner.pdf

Mining and Knowledge Discovery: Theory, Tools, and Technology Il (Vol.
4057, pp. 299-305). International Society for Optics and Photonics.

Viterbi, A., 1967. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm, IEEE transactions on Information Theory,
13(2), 260-269.

Yildiz, O. T., Avar, B., and Ercan, G, 2019. An Open, Extendible, and Fast Turkish
Morphological Analyzer.

Yildiz, E., Tirkaz, C., Sahin, H. B., Eren, M. T., and Sonmez, O. O., 2016. A
morphology-aware network for morphological disambiguation. In Thirtieth
AAAI Conference on Artificial Intelligence.

Yuret, D., and Tiire, F., 2006. Learning morphological disambiguation rules for
Turkish. In Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association
of Computational Linguistics (pp. 328-334). Association for Computational
Linguistics.

103

CURRICULUM VITAE

Enis ARSLAN was born in Zonguldak, in 1976. He received a Bachelor's
degree in Computer Engineering from Y1ldiz Technical University (YTU) in 2000,
M.Sc. degree in Computer Engineering from Dogus University in 2012. He also
has an MBA degree from Beykent University. Following the graduation from
university as an engineer, he had worked on several job titles as System Analyst,
Business Analyst, Senior Database Operation Engineer and Project Manager in
different sectors, especially Medical and Telecommunications. During the Ph.D.
study at Cukurova University, he had worked as Project Assistant for the Tiibitak
Project with the number 215E256.

105

