56/5

DESIGN AND IMPLEMENTATION OF

A GENERAL PURPOSE MEDIAN FILTER UNIT
IN VLSI

A THESIS
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND
ELECTRONICS ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Mustafa Karaman

October 1988

T. C.
Yiksekogretim Kurulm
Dokiimantasyon Merkez

To my family

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

digln]

Asst. Prof. Dr. Levent Omiral(Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as

a thesis for the degree of Master of Science.

AT

Assoc. Prof. Dr. Abdullah Atalar (Second supervisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as

a thesis for the degree of Master of Science.

Mook Ton

Asst. Prof. Dr. Mehmet Ali T

Approved for the Institute of Engineering and Sciences:

Mo
Prof. Dr. Mehmet Baray, Direct% of Engineering and Sciences

iii

© Copyright 1988
by

Mustafa Karaman

il

ABSTRACT

DESIGN AND IMPLEMENTATION OF
A GENERAL PURPOSE MEDIAN FILTER UNIT

IN VLSI

Mustafa Karaman
M.S. in Electrical and Electronics Engineering

Supervisors: Asst. Prof. Dr. Levent Onural
and Assoc. Prof. Dr. Abdullah Atalar
October 1988

The median of a group, containing an odd number of elements, is defined as
the middle element, when the elements of the group are sorted. A median
filter finds the median of a number of elements at its inputs. Median filters
are frequently used in many signal, and image processing applications for
smoothing of the noisy signals and images while at the same time preserving
the edge information.

The required window size, speed, and the word length of the median
filters vary depending on the applications. In order to meet these changing
demands a general purpose median filter unit conﬁguratién is proposed. The
unit consists of two single-chip median filters. One of the chips is designed
for unlimited word-length and extensibility to larger window sizes whereas
the other one is for real-time video applications. The networks of the chips
are based on the odd/even transposition sorting. The chips are implemented
in 3-pum M2CMOS by using full-custom VLSI design techniques. For physical
testing of the chips, the test vectors and the corresponding outputs of the
chips are generated by using software tools written for this purpose.

In this thesis, the algorithms, VLSI implementations, simulation results,

testing, and applications of the chips are presented.

Keywords: Median filters, signal and image processing, signal processing
hardware, VLSI implementation, VLSI testing.

v

OZET

GENEL AMAGLI BIR ORTANCA SUZGECI BIRIMININ
VLSI TASARIMI VE GERCEKLESTIRILMESI

Mustafa Karaman
Elektrik ve Elektronik Miihendisligi Yiksek Lisans

Tez Yoneticileri: Yrd. Dog. Dr. Levent Onural
ve Do¢. Dr. Abdullah Atalar
Ekim 1988

Tek sayrdaki verilerin olugturdugu bir kiimenin ortancas: (medyani), verilerin
biiyiikliiklerine gore siralanmas: ile elde edilen dizinin tam ortasindaki veri
olarak tamimlanmir. Bir ortanca silizgeci, girigindeki verilerin ortancasim bu-
lur. Ortanca slizgegleri, bir ¢ok igaret ve goriintl igleme uygulamalarinda
kullanilmaktadir. Kenar keskinliginin korunmas: ve impulsive giiriiltiilerin
iyi ayiklanmasi bu siizgeclerin en 6nemli 6zelliklerindendir.

Ortanca stizgeglerinin gereken pencere biliyiikliigli, iz ve bit uzunlugu
uygulamaya bagh olarak degigmektedir. Bu degigen gereksinimleri kargilayabil-
mek i¢in genel amagch bir ortanca siizgeci birimi énerilmigtir. Bu birim, iki tek
yonga ortanca siizgecinden olugmaktadir. Yongalardan biri, simirsiz bit uzun-
lugu ve daha biiyitk pencerelere genigletilebilecek gekilde digeri ise on-line
uygulamalarinda kullamlabilecek hizlara erigebilecek gekilde tasarlanmigtir.
Yongalarda kullamlan aglar tek/¢ift dedistirimle siralama yontemine dayalidar.
Yongalar, full-custom VLSI tasarim teknikleri kullanilarak 3-pm M2CMOS’da
gerceklegtirilmigtir. Yongalarin tiretiminden sonra yapilacak testlerinde kul-
lanilacak olan girig igaretleri ve bunlara ait gikig igaretleri bu amaglar icin
yazilmig bilgisayar programlar: yardimiyla elde edilmistir.

Bu tezde, s6z konusu yongalarin algoritmalari, VLSI gerceklegtirimleri,

simillasyon sonuglari, testleri ve uygulamalar: sunulmaktadir.

Anahtar Kelimeler: Ortanca stizgegleri, igaret ve goriintii igleme, igaret

igleme donanimi, VLSI gerceklegtirim, VLSI test.

v

ACKNOWLEDGEMENT

I would like to express my deep thanks to my thesis supervisors Asst.
Prof. Dr. Levent Onural and Assoc. Prof. Dr. Abdullah Atalar for their
supervisions, guidances, and encouragements during this research.

I am grateful to my friend I. Enis Ungan for his efforts to modify the
VLSI tools and to develop new tools, and to my friend Satilmig Topcu for his
valuable ideas on VLSI testing of the chips.

vi

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Median Filter 1
1.2 Motivation and Approach 2
1.3 On the Performance of Algorithms 3
14 Benefits e 4
1.5 Organizationof Thesis 4

2 A SURVEY OF MEDIAN FILTERING 5
2.1 Median Filtering Techniques. 5

2.1.1 Finding Root Signal 5
2.1.2 Recursive Median Filtering 6
2.1.3 Generalized Median Filtering 6
2.1.4 Separable Median Filtering 6
2.1.5 Weighted Median Filtering 7
2.2 Median Filtering Algorithms 7

3 GENERAL PURPOSE MEDIAN FILTER 10
3.1 0Odd/Even Transposition Sorting Network 10
3.2 Extensible Median Filter Network 12
3.3 Real-Time Median Filter Network e e e s 16
3.4 Feasibility of VLSI Implementation 18

4 VLSI DESIGN METHODOLOGY 21
4.1 VLSIDesign Approach 21
4.2 Circuit Technique v v vt i i it et 25
43 VLSITools 27

vii

5 VLSI IMPLEMENTATION | 29

5.1 Implementation of the Extensible Median Filter 29
5.1.1 Compare-and-Swap Unit-1 (CSU1) 31
512 DelayUnit 34
513 ClockBuffers 34
514 ChipOverallLayout 38
5.1.5 An Overview of the Extensible Median Filter Chip . . 38
5.1.6 Testing of ‘the Extensible Median Filter Chip. 44

5.2 Implementation of the Real-Time Median Filter 46
5.2.1 Compare-and-Swap Unit-2 (CSU2) 46
522 DelayUnit, 51
523 ClockBuffers 51
5.2.4 Chip Overall Layout 51
5.2.5 An Overview of the Real-Time Median Filter Chip . . 55
5.2.6 Testing of the Real-Time Median Filter Chip 55

5.3 Applicationsof the Chips. 59

6 RESULTS AND CONCLUSIONS 62

APPENDIX 70

Test Pattern Generator for the Real-Time Median Filter Chip 70

viii

3.1
3.2
3.3

3.4

3.5
3.6

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13
5.14
5.15

LIST OF FIGURES

The ordinary odd/even transposition network (w =9).
The extensible median filter network (w =9).
The compare-and-swap unit-1 (CSU1): a) block diagram, b)

state diagram, c) operations.,
Interconnections of the extensible median filter networks for
W=, i e
The real-time median filter network.

The compare-and-swap unit-2 (CSU2).
The VLSI designosteps.. oo oo v v v v oo

Thefloorplan.
The power and clock distribution scheme.
Circuit diagram of the CSU1.
Layout of the CSUL.
Timing simulation results of the CSUL.
Circuit diagram of the shift registercell.
Layout of the shift registercell.
Timing simulation results of the shift register cell.
Circuit diagrams of the clock buffers.
Layouts of the clock buffers: a) noninverting, b) inverting. . .
Timing simulation results of the clock buffers: a) for 50 MHz,
b)for20 MHz. i
Complete layout of the extensible median filter chip.
Logic simulation results of the extensible median filter chip. .
Pin configuration of the extensible median filter chip..
Timing diagrams for data load and read operations of the ex-

tensible median filter chip..

11
13

30
30
32
32
33
35
35
36
37
37

39
40
41
42

43

5.16 Interconnections of the extensible median filter chips for w = 25. 44

ix

5,17 Thefloorplan. i i i i i i it i i
5.18 The power and clock distribution scheme.
5.19 Circuit diagramof the CSU2.
5.20 Layout of the CSU2.
5.21 Timing simulation results of the CSU2.
5.22 Circuit diagrams of the delay units used at the: a) inputs, b)
internal stages of the the real-time median filter chip.
5.23 Layouts of the delay units used at the: a) inputs, b) internal
stages of the the real-time median filter chip.
5.24 Timing simulations of the delay units used at the: a) inputsr,
b) internal stages of the the real-time median filter chip. . . .
5.25 Overall layout of the real-time median filter chip.
5.26 Pin configuration of the the real-time median filter chip. . . .
5.27 Timing diagrams for the data load and read operations of the

real-time median filter chip.

47
47
49
49
50

52

52

53

54
57

5.1
5.2
5.3

5.4
5.5
5.6
5.7

6.1

LIST OF TABLES

Logic simulation results of the CSUL..
Pin labels of the extensible median filter chip.
Functions of the I/O’s in the normal mode of the extensible
median filterchip. L 0L
Logic simulation results of the CSU2.
Logic simulation results of the real-time median filter chip.

Pin labels of the the real-time median filter chip.
A sample of the test vectors and corresponding outputs. The
IKJ/OKJ:J’th input /output of the K’th block of the real-time

median filter sorting network. L. L.

Main features of the chips.

34
40

43
48
56
57

1. INTRODUCTION

1.1 Median Filter

The median of a group, containing an odd number of elements, is defined
as the middle most element, when the elements of the group are sorted.
For example, given five elements, 9, 0, 23, 145, 67, to find the median, the
numbers are sorted as 0, 9, 23, 67, 145 . Then, the median is 23 which is
the middle most element of the sorted sequence. A median filter finds the
median of a number of elements at its input.

In many signal and image processing applications, it is necessary to smooth
the noisy signals while at the same time preserving the edge information. The
most commonly used smoothing techniques are the linear filtering [1], the av-
eraging filtering [2], and the median filtering [3,4]. The linear filters smooth
the noisy signals but also the sharp edges. In addition, the impulsive noise
components can not be suppressed sufficiently by the linear filtering and the
digital implementation of the linear filters can be bulky and slow. On the
other hand, the generalized mean filters have the disadvantages of allowing
a small number of outlier points that distort the filtered output signal, and
also deleting the edge information. The median filters have been better al-

ternatives because of their some very interesting properties: they
e can smooth the transient changes in signal intensity (e.g., noise),
e are very effective for removing the impulsive noises from the signals,
e preserve the edge information in the filtered signal, and
e can be implemented by using very simple digital nonlinear operations.

Because of these properties of the median filters, they are frequently used

in various signal and image processing applications, such as seismic signal

1 T. C.
Yiksekogretim Kurulan
Dokiimaniasyon Merkez!

processing, speech processing, computerized tomography, medical imaging,
robotic vision, pattern recognition, peak detection, coding, and communica-
tion.

In the applications for standard median filtering of the signals and images,
a window of size w, where w is odd, is moved along the sampled values of
signal or image, the median ((w 4+ 1)/2’nd largest one) of the samples within
the window computed and written as the output pixel corresponding to the
location of the center of the window. The median computed at this operation
is called the running or the moving median. Since the size of the window is
constant, the number of incoming elements is equal to the number of outgoing
elements. The detailed discussion of the theoretical analysis of the median
filters and their properties can be found in [5,6,7,8,9,10,11]. The applications
of the median filters in speech processing and image processing were studied
in {12,13,14].

1.2 Motivation and Approach

The purpose of this study is to have an exercise in VLSI design By completing
a part of a project which consists of ‘the design and implementation of a
flexible VLSI image processor. For this purpose, the VLSI design of a general
purpose median filter unit is chosen since this unit can also be used in any
signal or image processors.

Different two-dimensional applications require different window sizes and
word-lengths for median filtering. The window size varies from 3 X 3 to quite
larger ones. Also, the required speed of the filtering operation varies depend-
ing on the application. A median filter which is intended as a component of
a general purpose signal or image processor must meet these changing de-
mands. For this reason, the median filter that we design should satisfy the

following constraints:
e the word-length must be unlimited,
e the filter should be extensible to larger window sizes, and

e the filter should be able to operate at real-time rate which is about
30 mega medians per second for a 1024 x 1024 frame with 25-30 frames

per second.

We propose a solution to this problem in the form of two single-chip
median filter networks which form a general purpose median filter unit. The
networks are implemented in 3-micron CMOS using the full-custom VLSI
design techniques. One of the chips is designed for unlimited word length
and extensibility for larger window sizes whereas the other one is for the
real-time median filtering applications. The chips can be selectively used in

a processor environment.

1.3 On the Performance of Algorithms

The algorithms that are efficient for software implementation minimize the
number of computations and hence the computation time. In VLSI, the cost
is determined by the modularity and the internal communication between
the modules. This is because the irregular structures and especially complex
communication interconnections increase the chip area considerably. The
computation is cheap in VLSI, because the recent developments offer design-
ers very high potential for parallel operations. Hence, a good algorithm for
VLSI implementation does not necessarily require the minimal computation

but should possess the following properties: the algorithm

e can be implemented by using only a few different simple units,

e must have a simple and regular communication and control scheme,

and
e should employ the parallelism and pipelining,.

A class of algorithms, called the systolic algorithms, have these properties.
These algorithms for various computational problems have been discussed
in [15,16,17,18,19,20]. The design cost of the special-purpose chips can be
brought down by a systolic algorithm [21]. Application of the systolic data-
flow concepts at the low level implementation of circuits such as comparison
and addition will result in pipelined regular structures, small propagation
delays and high throughput independent of the circuit size.

In design and implementation of a median filter in VLSI whichis a special-
purpose design work, the selection of the algorithm determines the cost and
performance. Hence, much effort to the choice of algorithm should be given.
The optimizations at circuit or layout level will play rather minor role on the

overall cost and performance.

1.4 Beneﬁts

In this study, we have followed all the steps of VLSI chip design starting
from the problem definition to the test pattern generation of the chips. As a
result, we have gained experience on VLSI design, and a median filter unit is
obtained as a versatile component of a general purpose digital signal or image
processor. Furthermore, the designed chips have significant importance since
they are two of the first three custom chips designed and implemented in

Turkey (the third one is a correlator chip designed at this university [22,23]).

1.5 Organization of Thesis

In the next chapter, a review of the median filtering techniques and algo-
rithms is given. Chapter 3 covers the algorithms of the extensible and the
real-time median filters. The VLSI design approach, circuit technique, and
the VLSI design tools are described in Chapter 4. In Chapter 5, the VLSI
implementation of the chips, their simulations, testings and possible appli-
cations are presented. Finally, the results and conclusions of this study are

discussed in Chapter 6.

2. A SURVEY OF MEDIAN FILTERING

In this chapter, we will go over some of the median filtering techniques used
in different practical applications and pass to the survey of median filtering

algorithms for hardware implementation.

2.1 Median Filtering Techniques

Median filters can be used to suppress the impulsive noises, and to preserve
the edges on images. In some applications, suppression of the noise may
be more important than preserving the edges, or vice verse. In addition,
median filter can be used to enhance the edges. Furthermore, in some cases,
the median filters may fail to provide sufficient smoothing of nonimpulsive
noise components. In order to solve these problems, various median filtering
techniques were developed to increase the performance of the median filter
for a set of particular applications. Here, we summarize the most commonly

used median filtering techniques.

2.1.1 Finding Root Signal

If a signal is not affected by passing through a median filter, this signal is
termed a root signal of that filter. Any root of a median filter with a particular
window size is also a root of any median filter with a smaller window size. In
order to remove the nonimpulsive noise components quite well, it is sufficient
to obtain the root signal [24]. ‘
One can use either an adaptive-length median filter [25] or pass the signal
from a fixed sized median filter successive times for better nonimpulsive noise
suppression. Any signal of length 5; samples is reduced to its root after at
most (S} — 2)/2 successive passes by any median filter [5]. The cascaded
median filters can be used for this purpose. Arce and Stevenson has reported

that the cascade technique is better than a larger single median filter [26].

5

The median filtering of an arbitrary discrete levels signal to its root is
equivalent to decomposing the signal into binary signals, filtering each binary
signal to a root with a median filter, and then reversing the decomposition
[27]. For application of the decomposition technique, a threshold test is
performed for each sample value such that if the sample value is greater than
the threshold value, then a 1 assigned to that sample as the new value, and
otherwise the new value is 0. The selection of the threshold value and other
details can be found in [27].

2.1.2 Recursive Median Filtering

The operation of the recursive median filter is the same as that of the standard
median filter except that, at each step, the leftmost (w — 1)/2 sample values
in the moving window are replaced with the previous (w—1)/2 output sample
values [28,29]. The most interesting property of the recursive median filter is
that any signal can be reduced to a root after the first pass. Due to this fact,
the recursive median filters are much efficient in the applications that require
the fast finding the root signals, such as peak detection and coding [12]. This
class of median filters can also be used with other median filtering techniques
such as the recursive median filtering with threshold decomposition [27] and

the recursive separable median filtering [30].

2.1.3 Generalized Median Filtering

An alternative technique to increase the efficiency of the nonimpulsive noise
reduction or/and the edge preserving is the generalized median filtering. A
generalization using linear combinations of order statistics is studied in [31].
Another generalization as a combination of a linear and median filters, in
particular a combination of L and M filters, is analyzed in [32]. In the
applications of the generalized median filtering, there is a tradeoff between
noise suppression and the edge preservation; the generalized median filters
are frequently used for edge detection [33,34,35,36]

2.1.4 Separable Median Filtering

The median filtering in two-dimensions can be performed by using a two-
dimensional median filter with a window of arbitrary shape. But the most

common windows are the square and cross-shaped windows. An alternative

6

technique is the separable median filter which consists of two one-dimensional
median filters that operate in the horizontal and vertical direction [30]. This
technique is efficient for finding the root signal in two-dimensions quickly by
using two separable recursive median filters instead of two standard median

filters [37].

2.1.5 Weighted Median Filtering

The weighted median of a group of the elements is defined as the middle
element of the sequence obtained in such a way that, the elements of the
group are first multiplied with proper weight coefficients and then sorted [38].
It is shown that the selection of the weight coefficients represents a trade-off
between the noise reduction and the preservation of the edge information.
The maximum noise reduction is achieved when all the weight coefficients
are equal, that is the same as the case of standard median filtering, whereas
when the weight coefficients decrease as we move away from the center of the
window, the preservation of edges and small details improves at the expense .
of noise suppression.

Different applications require the selection of a proper median filtering
technique. However, the standard median filtering technique is the funda-
mental one, since it is used as the basic component in the realizations of
many median filtering techniques. Due to this fact, we have considered the
design and implementation of a standard median filter rather than any other
type of median filters. For this reason, starting from the next section, we will
concentrate only on the standard median filter algorithms and implementa-

tions.

2.2 Median Filtering Algorithms

The median filtering was first proposed by Tukey in 1974 [3,4]. From that
time, there have been much efforts to develop fast off-line and on-line algo-
rithms.

In 1979, the histogram method was presented [39], [40]. In this method,
‘the median is found by sorting the grey level histogram of the window ele-
ments, and updating it as the window moves. The computation time of the
method is O(y/w) for a square window. The histogram method is an off-

line method and not practical for hardware implementation because of the

7

hardware complexity.

A real-time median filtering algorithm used for finding the running me-
dians was proposed by Ataman et al. [41]. This algorithm is based on the
binary representation of the sample values of the the window elements. For
finding the running median, the number of 1’s are counted in the most signif-
icant bits of the binary values of the elements, if that number is greater than
(w + 1)/2, then the most significant bit of the median is found as 1, else as
0. To find the second bit of the median, only the set of data whose first bits
are equal to that of the median is considered and this operation is continued
to find the other bits of the median. In order to determine the sets which
include the median at each step, an array, called the a-array, is computed and
stored. The hardware implementation of this algorithm requires 2” words of
memory (L is the word-length of an element), and an arithmetic-logic unit
for arithmetic and logic operations. The parallel implementation of the al-
gbrithm needs L logic and L memory units. The main disadvantage of this
algorithm is that its hardware irnplementation for a window size can not be
used for finding the ezact median for a larger window size.

A variation of Ataman’s algorithm is given in [42]. In this algorithm,
an m-array is computed instead of the a-array of Ataman’s algorithm. The
k’th element of the array indicates the number of the samples in the window
greater than or equal to (k — 1). It is reported that the computation time
of this algorithm is less than that of the Ataman’s algorithm since updating
the m-array is faster than that of a-array.

The most commonly used median filtering algorithms are based on sorting.
Many of the basic sorting algorithms, especially for software implementation,.
are collected and analyzed in [43]. The VLSI complexity of sorting is studied
in [44].

A sorting network for VLSI implementation is proposed in [45]. The area
and time evaluation shows a very high performance, but on the other hand
the hardware complexity, especially in the internal communication structure,
and also the extensibility to larger data groups are the remaining problems
of this network.

Two well known networks for sorting and switching are the bitonic sorting
and the shuffle exchange networks. An overview of two chips based on the
bitonic and shuffle networks is presented in [46]: the bitonic sorting network

consists of 2 x 2(logaw)(logaw + 1) switch elements (¥ elements at each row),

whereas the shuffle network has ¥ X logaw switch elements. The chips are
designed for sorting 64 elements with an unlimited word-length. Greater
number of elements can be sorted by using more than one chips. The main
disadvantages of this configuration are the low throughput (one output per
L clocks) and the increase in the area and design time of the chips due to
the internal communication. Also, since the structure is based on the binary
trees, there is some waste of area in an implementation if the number of
inputs is not an integer power of 2. For example, if w = 9, then a bitonic
sorter of size 16 will be required. The configuration may be preferable for a
large w.

A separable median filter was implemented in hardware as a component
of an image processor using the odd/even transposition sorting networks [47].
The filter consists of two pair of cascaded sorters. One of the pairs operate
in vertical direction while the other operating in the horizontal direction of
the frame. The cascaded connection is preferred to increase the efficiency of
the separable median filter. Each sorter has six 8-bit comparators to sort
three pixels. This sorter can be implemented by using the bit level systolic
approach to increase the performance.

A bit level pipelined systolic odd/even transposition sorting network with
very high throughput was proposed by Oflazer [48] for median filtering. The
network consists of L blocks of w(w — 1)/2 bitwise compare-and-swap units.
The network is a regular array of the coinpa.re—and—swa.p units, hence it has
a very modular structure with a simple internal communication scheme. The
network is implemented for w = 5 and L = 8 as a single-chip one-dimensional
median filter. The throughput of the filter is one median per clock. The clock
period is determined by the delay of a bitwise compare-and-swap unit; the
clock rate of Oflazer’s filter chip is 10 MHz. The chip is not extensible for
larger window sizes and the word-length is fixed to 8. The odd/even transpo-
sition network is not preferable for large w because the area is proportional
with w?.

There are some other median filtering algorithms presented in the liter-
ature. These algorithms are for implementation in software using high level

languages hence they are out of the focus in this study. For two of such
algorithms, reader is addressed to [49] and [50].

3. GENERAL PURPOSE MEDIAN FILTER

In this chapter, firstly, we will summarize the ordinary odd/even transposi-
tion sorting network. Then, the extensible and the real-timme median filter
networks which are based on the odd/even sorting are explained in detail.
Finally, the feasibilities of the VLSI implementations of the networks are

discussed.

3.1 0Odd/Even Transposition Sorting Network

The odd/even transposition sorting network is a pipelined modular structure
consisting of w compare-and-swap stages [43]. A compare-and-swap stage has
(w —1)/2, w is odd, full-word (L-bit) parallel compare-and-swap units and
an L-bit delay unit to delay the window element which is not compared at
that stage. Each compare-and-swap unit operate on the odd and even pairs
of the window elements alternately (Fig. 3.1). Odd pairs are in the form
of (X, Xn+1) where n is odd, whereas n is even for even pairs. Each L-bit
compare-and-swap unit compares the two L-bit elements at its inputs and
interchanges them if necessary so that the larger one of the elements will
be at the “top” and the smaller one will be at the “bottom” output. At
the output of the last stage, the input elements will be sorted such that the
largest will be at the “top” and the median will be at the middle.

If the odd/even transposition network described above is implemented in
hardware as a single chip median filter for a fixed window size, wg, then one
can not use that chip to find the ezact medians of the window elements that
is larger than wo. On the other hand, there is no flexibility on the word-
length because the compare-and-swap unit can be implemented only for a
fixed word-length in this configuration. Furthermore, the compare-and-swap
unit can complete its job after an L-bit comparison resulting in a large prop-

agation delay. Although, the throughput of the network is one L-bit median

10

L- bit delay unit L- bit compare - and- swap unit

D, , Dz, D3 + L - bit input data Sy + k™ greatest L. - bit element of X;’s.
S5 : median of { X, Xz, Xz, ..y Xs]

Figure 3.1: The ordinary odd/even transposition network (w = 9).

per clock (assuming a sequential logic implementation), it is not possible to
clock this network with a frequency required for the real-time operation rate
since the clock period will be at least the time required for a full-word com-
parison. All these results show that the odd/even transposition network in
the configuration described above can not satisfy any of the requirements
for a general purpose median filter (eztensibility in window size, unlimited
word-length, and real-time application capability).

However, the odd/even transposition network can be modified so that
resultant structure(s) can satisfy our needs. Starting from this approach,
two median filter networks are obtained. Both of these networks are bit-
level, systolic and pipelined odd/even transposition sorting networks that
employ all the advantages of the systolic algorithms and satisfy the listed
requirements for a general purpose median filter. The networks serve different
purposes: one of them designed for unlimited word-length and extensibility

to larger window sizes whereas the other one is for real-time applications.

11

3.2 Extensible Median Filter Network

The odd/even transposition network shown in Fig. 3.1 is modified such that
every operation is in the bit-serial form. We have used a bitwise compare-
and-swap unit so that data flow is reduced to flowing of bit streams which
eliminates the limit on the word-length and the large delay due to full-word
comparison. In addition, the replacement of the delay units by the compare-
and-swap units come up with extensibility in the window size. In the following
paragraphs, the resultant extensible network is described in detail.

The extensible odd/even transposition sorting network is a pipelined sys-
tolic structure consisting of w = 9 compare-and-swap stages that operate on
the consecutive pairs of window elements alternately. A compare-and-swap
stage consists of (W + 1)/2 bitwise compare-and-swap units. Each of these
units compares the two one-bit numbers at its inputs and interchanges them
if necessary so that the larger one is at the “top”. At the output of the last
stage, the data will be sorted such that the largest will be at the “top”, and
the median will be at the middle.

At each clock, one bit from each word (total of w bits) enters the network
and one bit of the median is obtained at the output. The flow is from the
most significant bits toward the least significant bits both at the input and
the output. Due to serial bitwise data flow, this structure allows arbitrary

word-length, L. The network is given in Fig. 3.2 for W = 9.

The bitwise compare-and-swap unit, CSU1, has two one-bit data inputs
A; and B;, a reset input R, and two one-bit data outputs A, and B,. It
also has two internal parameters S (1/0: swap/pass) and E (1/0: equal/not
equal) which are updated and stored in the CSU1 (Fig. 3.3). Because of the
feedbacks S and E, the best structure for the CSU1 is a finite state machine
to have a reliable timing [46]. The CSU1l compares A; and B;, and either
passes them unaltered, or swaps them. It has three legal operation states:
equal state , pass state and swap state. The present state values of S and
E shows the subresult of the bitwise comparison of the more significant bits
while the next state values indicate the new subresult.

CSU1 is set to the equal state (S = 0, E = 1) by the reset signal R at
the beginning of each computation cycle. This is the instant after the least
significant bit of the previous cycle leaves and before the most significant bit
of the next cycle enters the CSUL. Thus the reset signal also flows through

12

one - bit
Xil Xoi Xi2 Xeo2 Xis Xo3 Xia Xo4 delay unit

n o

.o.df d: ftin ¢ @ @ 59 59
ves 42 d2 S: S
.l.d: d; mnad XX 1 s: s'?
bitwise
compare - and~
swop unit-1§ \ di
(csui) median
.
L] ®
eeedd d} wee ST S
Yio Yoi Yu Yoz Yiz Yo Yiz Yos Yia Yos
r, « reset input d; : 0™ bit of k™ element Xy / Xo: K" upper extension 1/0
ro: reset output S, n" bit of K" greatest element Yik 7 Yox: k" lower extension 1/0

Figure 3.2: The extensible median filter network (w = 9).

the stages of the network. For this purpose, a chain of the bitwise delay units
are used to reset the stages at appropriate time instants (see Fig. 3.2).

During the computation, the CSU1 stays in the equal state (S =0, E = 1)
and passes the input data unaltered (A, = A; and B, = B;) as long as the
two input bits are equal as they flow in. However, it locks itself into the pass
state when it first finds that 4; > B; and passes the inputs unaltered. On the
other hand, it locks itself into the swap state when it first finds that 4; < B;
and swaps the inputs, 4, = B; and B, = A;.

The extension I/O’s (zis,’s and yis,’s, see Fig. 3.2) of the extensible
median filter network are used to extend the filter to the window sizes larger
than w = 9. If the upper and lower eztension inputs (z;’s and y;’s) are
connected to logic 1’s and 0’s, respectively, so the corresponding CSUL’s
operate as delay units. This is due to fact that the CSU1 will always pass the
inputs unaltered if its inputs are 1X or X0 (4; = 1,B; = X or A; = X,B; = 0),
where X indicates don’t care (i.e, X may be 1 or 0). On the other hand, if
the network given in Fig. 3.2 is used as an array element to find the exact

medians of window elements for w > 9 by connecting them as in Fig. 3.4.

13

R: reset
L J S: swap/pass (1/0)
S A
E: equal/not equal (1/0)
E .
Aj , Bj : one-bit input data
Aj compara Ao .
and Ao, Bo : onae-bit output data
Bi swap Bo)
R
(a)
equal state
(A=z B) +R
(A<B) R
/swap state
Ok
(b)
equal state pass state swap state
(SE=01) " (SE=00) {SE=I0)

Aj Ao Aj Ao Aj | . Ao

(c)

Figure 3.3: The compare-and-swap unit-1 (CSU1): a) block diagram, b) state
diagram, c¢) operations.

14

reset

_;l" ' ?] hu 'unaﬂnunﬂnn

= “'* NINNIEN ABS RN NS
= Q»‘n\‘n —n.\‘ »’ ui’u&‘u"'u_ Q#\"’ﬂ\"’ﬂ\‘(’ '

ANGENAY NN RN I
. ‘x‘ nmm_.,xn vaf;;.,a wwmq
A0 .,_.', A J-Hr" R
in puts ¢ \‘n’)i‘-";l ';u:‘; :5&5“’ “’) —n »{’n ,‘u n\(’ median
= e
5 ‘wﬂwﬁwﬁ-f NN
r v rAa ! 7 21 _— h

N “‘..’:: Rt

- ‘ ‘ { »‘ fn-— i | 1 —n\n ’n\n ’n\n’ﬁl:‘n’-;

o{ aw&r NSRRI N

Figure 3.4: Interconnections of the extensible median filter networks for
w=09.

then these CSU1’s operate as usual except those corresponding to the upper
extension I/O’s of the upper most network and cc;rresponding to the lower
extension I/Q’s of the lowest network. In this case, the CSU1’s corresponding
to the interconnected extension I/O’s of the networks are not forced to lock
in one state by means of extension signals, but they are free to enter any
state depending on their inputs. As a result, the extensibility to indefinitely
large windows is achieved: in the normal mode, it is possible to compute
the exact median of a group of 9 elements using only one network, and for
groups of w elements where w > 9, at most [w/9]? ([.] indicates the smallest
greater integer) networks are needed with appropriate interconnections of the

extension and data I/O’s similar to the connection scheme in Fig. 3.4.

The extensible network described above generates its outputs with a
plpelme delay of w4+ L clocks and after the network is full, it finds one median
per L clocks. The network can operate at a clock rate that is determined by
the delay of one compare-and-swap unit which consists of, at least, the delay
of a few cascaded bitwise comparisons and a 2 x 1 multiplexing. Although,
the resulting speed can be sufficient for the real-time median filtering of the
512 x 512 frames with [< 5, it is less than the real-time operation rate for
the 1024 x 1024 frames with L > 1.

15

3.3 Real-Time Median Filter Network

In order to achieve a real-time operating rate for the 1024 x 1024 resolution
frames, the only way is to find a structure that has a very high throughput
capability. The only solution we have found is the odd/even transposition
sorting network configuration proposed by Oflazer [48]. In the following sec-
tion, we will describe the real-time median filter network designed for w =9
and L = 8 which is a variation of Oflazer’s network that was designed for
w=5and L=S8.

A median filter with very high throughput can be designed by intercon-
necting L number of the pipelined odd/even transposition sorter blocks in
parallel and applying the systolic concepts at the bit-level. The block dia-
gram of the overall network for w = 9 and L = 8 is shown in Fig. 3.5. In
this network, the data enter in such a way that the most significant bits go
to the first block, the second most significant bits to the second block and
so on. There are nine 8-bit input data, and one 8-bit median is obtained per
clock. At every clock, three new elements enter the network, corresponding

to the new elements of a sliding 3 x 3 window.

The bitwise compare-and-swap unit, CSU2, used in this network is slightly
different from CSU1 in such a way that the S and E parameters of CSU1 are
external parameters in CSU2. These parameters are taken as inputs S; and -
E; (the cumulative subresult of the bitwise comparison of the more significant
bits) from the upper block, used, updated and sent out as S, and E, (the
new cumulative subresult) to the lower block. Hence, CSU2 does not have
any storage or the reset input signal. The functional description of CSU2 is
given in Fig. 3.6.

During the computation, CSU2 compares the inputs A; and B; and passes
or swaps them conditionally depending on S; and E;. If E; = 1 and S; = 0,
it passes or swaps the inputs so that larger one goes to A, and the smaller
to the B,. On the other hand, if E; = 0 and S; = 1, CSU2 passes/swaps
the inputs independent to the result of the comparison of the inputs. It also
updates S; and E; and sends out as S, and E, for the comparison of the less
significant bits.

The computation at each stage of a lower block starts after the corre-
sponding stage of the upper neighborhood block completes its operation so

that the S;’s and E;’s are ready at input of that stage. As a result of this,

16

i
' 4

koot

(<]

’ 4

4 7
L 1 7 7T

X, i
IE
Y; Ny
IN[)
27 A 3
7 ﬂ1 y H
. bitwise delay unit , ~ “. .. :

|

N

]
;%%
il

X;.¥;,Z; : i bits of the inputs corresponding the new elements in a
3x 3 sliding window.

mi . i bit of the median

S, By : Test inputs for testing of the blocks individually.

-l
=

E - = -
7 ya

/I/[/'I/

Figure 3.5: The real-time median filter network.

17

Si Ej
‘ l So=5i + Ej (Aj<Bj)
Ai— compare —Ag Eo= Ej (A;j=8B;)
and swap
Bi — — Bgo Ag = if Sgthen Bj else Aj
l l Bo= if Sgthen A; else B;
So Eo

Si and E; indicate the cumulative subresult of the bitwise
comparison of more significant bits while Eg and Sg indicate
. the new cumulative subresult.

Figure 3.6: The compare-and-swap unit-2 (CSU2).

each stage of a lower block must operate one clock later compared to the
corresponding stage of the upper block. For the same rea,son; the outputs of
a lower block are ready one clock later compared to the upper neighborhood
block. In order to employ a proper timing, the pipeline delay units are used
both at the input and the output of the network such that k’¢h block from
top has (k —1) delay units at its inputs and (L — k) delay units at its output,
where k = 1,2,...L (see Fig. 3.5).

The throughput of the network is one full-word median per clock. The
clock period is determined by the delay of one CSU2. Recent VLSI technology
allows the implementation of CSU2 at a speed larger than the real-time rate
for the 1024 x 1024 frames with L = 8.

3.4 Feasibility of VLSI Implementation

Both of the extensible and real-time median filter networks are regular arrays
of bitwise compare-and-swap and delay units. Also, their internal communi-
cation schemes are simple and regular. This makes the VLSI implementations
to be easy and straightforward. Furthermore, the testing of the VLSI chip
may be easily accomplished by the functional test techniques [51], since the
operations of the cells may be selectively probed by issuing proper test vec-
tors. The testing operation includes the running of the chip with test vectors
as inputs and the comparison of the outputs with expected results. The test-

ing can be performed on-line or off-line, in any case, the comparison time

18

is reasonably short. The generation of the expected results, which are the
correct outputs, can be obtained by using a software sorter and a software
median filter.

The extensible median filter chip can be tested by using a few hundreds
test vectors. If we apply the same element to all of the inputs, then every
CSU1 will act in equal state. On the other hand, the sorted inputs will cause
all the CSU1’s operating in swa,p‘state. Consequently, a set of inputs sorted
in reverse order will make all the CSU1’s operate in swap state. By this way
the CSU1’s will be tested in all the operation states.

The real-time median filter chip can be tested by using 12,288 (8 x 3 x 2°)
test vectors. The S;’s and E;’s at the top of the network are connected to
external test control inputs, S; and E; respectively (see Fig. 3.5). These
test control signals are used to isolate the operation of each block from each
others, thus the number of test vectors reduced to 12,288. If these test inputs
are not used then the number of test vectors will be a few millions. The k’th
block can be tested individually with applying logic 1 to all of the upper
blocks’ inputs so that it receives the external S; and E, without any change.
As a result, each block can be tested by using 1,536 (3 x 2%) test vectors: all
combinations of one-bit 9 inputs times 3, where 3 comes from the legal values
of the pair S;E; (01, 00, 10).

The extensible network can be implemented with about 5 K transistors
and packaged in 28 pins with 2 x 1 I/O multiplexing whereas the real-time
median filter will consist of about 20 K transistors and has 40 pins.

One may choose to implement either the extensible median filter network
or the real-time network for a large w, but this not preferable since the area
is proportional to w?. We have chosen w = 9, because it is the minimum and
the most commonly used window size in two-dimensional median filtering
applications.

In an attempt to increase the efficiency of the silicon area use, one may
consider to design a network which utilizes the same compare-and-swap units
(CSU1 and CSU2) in both modes by altering the interconnections via the ex-
ternal select signal. Examination of this possibility did not give the desired
result: the chip area turned out to be larger because of the decreased regu-
larity and increased interconnections.

We have examined a network with real-time and unlimited word-length

operation capability which is obtained by modifying the Oflazer’s network

19

such that all of the S; and E; inputs of the upper most sorting block and S,
and E, outputs of the lowest block are used as extension I/Q’s. But VLSI
implementation of this network needs an extremely large number of I/O’s and
unfortunately there is no way to multiplex such a fast network I/0’s without
decreasing the speed. Hence, it is not feasible and we have not attempted to
implement it.

We have also examined the implementation of the two networks in the
same chip. The I/O’s of the two networks need to be multiplexed. On the
other hand, due to very long wiring paths from I/O pads to the networks’
I/O’s, the strong buffers are needed to drive the large wiring capacitive loads.
All these increase the area and decrease the throughput of the networks re-
sulting a reduced speed which makes the real-time operation critical. Also,
while one of the networks operates the other one can not be used due to mul-
tiplexed I/O’s, i.e. one of the networks will be idle at all times. However, the
implementation of the networks as two single-chips will avoid these undesired
results.

20

4. VLSI DESIGN METHODOLOGY

4.1 VLSI Design Approach

For the design of any kind of systems, a systematic approach is necessary; es-
pecially for the design of complex and large systems, the systematic approach
becomes very important. For design of a chip, starting from the problem def-
inition, a systematic way should be followed throughout the design steps. For
system design in VLSI, there are some proposed approaches in the literature
[21,46,52]. In fact, all approaches are based on dividing the task into four
main subtasks which are the problem specification, behavioral description,
circuit description, and layout description. The problem specification con-
sists of the detailed definition of the problem and well defined constraints.
The behavioral description is the algorithm found as the solution of the prob-
lem whereas the circuit and layout descriptions are the implementations of
the algorithm in circuit and layout levels. Further divisions of those main
subtasks, and their orders depend on the application and probably on the
designer.

For our design, the two main subtasks, the problem specification and the
behavioral description, are given in the previous chapters. Qur problem is to
design and implement a general purpose median filter which has the exten-
sibility, unlimited word length and real-time operation capability. We have
a solution to that problem in the form of two median filter algorithms that
satisfy the constraints. The algorithms are described in terms of the net-
work block diagram representations with functional descriptions. A testing
strategy is also determined in that step. All these complete the two main sub-
tasks. Now, the remaining parts are the circuit and layout implementations.
Since our networks are modular and have regular and simple communication
schemes, it is quite easy to divide the circuit and layout implementation in

further subparts: we can design the circuits of the units (compare-and-swap

21

unit, delay unit, and I/O cells) instead of designing the full network at a
time. Obviously, the same partitioning can be performed in the layout level.
All these point out the importance of the structured algorithms (e.g. systolic
algorithms) since the complexity and difficulty of the tasks at circuit and
layout levels are determined by the algorithm.

The flow chart given in Fig. 4.1 shows the all steps which we have followed
throughout the design of the extensible and the real-time median filter chips.
After completing the problem and behavioral description parts, it is essential
to construct a floor plan for the chip. The floor plan at this step is not
necessarily strict but it is rather flexible for modifications in layout steps.
The floor plan strongly depends on the structure of the algorithm, especially
on the data flow and control flow of the algorithm. The determination of the
hierarchical levels is to classify the groups of the cells and combinations of
them level by level such that the lowest level consists of probably the smallest
cells and the second level has the units that are the combinations of a number
of subcells and so on. Obviously, the top level in the hierarchy is the overall
chip.

The next step in the approach is the logic design of cells. If the cells
are standard gates or consisting of a few them, then the logic expressions of
the cell parameters and their representations in terms of gates need to be
determined so that, in the circuit design, the only task will be to replace
the gates with their known equivalent circuits. However, if the cells consist
of rather large number of gates, then the cell parameters must be expressed
as logical functions but the gate representation is not essential because the
circuit implementations in transistor level of such cells may be simpler than
doing that in gate level. The designer must consider the testing of the chip at
this step so that the extra logic circuits are included for testing if necessary.

For the circuit implementation of cells, the designer should choose a cir-
cuit design technique in a particular technology (e.g, NMOS or CMOS) which
shows the best performance for his application. Each technology offers some
circuit techniques employing different properties. The performance of the
technologies and circuit techniques vary depending on the design criteria.
For example, CMOS is preferable for the designs requiring a low power con-
sumption. We will discuss the selection of a suitable circuit design technique

in detail in the next section.

22

PROBLEM
ALGORITHM
BLOCK DIAGRAM & FUNCTIONAL DESCRIBTION
DATA & CONTROL FLOW
(INTERNAL COMMUNICATION)
FLOOlt PLAN J
HIERARCHI‘CAL LEVELS
CELL LOGICS
CELL C‘IRCUITS
CELL STICKS
CELL LAYOUTS
TIMING & LOGIC SIMUL@
LAYOUTS OF UPPER LEVELS
((CELL COMBINATIONS)
TIMING & LOGIC SIMULATIO9
< CHIP OVERALL LAYOUT
TIMING & LOGIC SIMULATIONS
CIF OR GDS CODES
TEST PATTERN GENERATION
FABRICATION

TESTING

Figure 4.1: The VLSI design steps.

23

The cell circuits can be mapped into layout either directly or after rep-
resenting them in stick forms. For a well organized layout, the sticks may
be helpful especially to match the constructed floor plan. But in general,
the circuits can be directly converted to layout forms by experience. In any
way, during the generation of cell layouts, one should care about the physical
behavior of the layout (transistor sizes, the resistive and capacitive effects,
coupling, etc.). Furthermore, the cell boundaries for cell combinations, the
data and control flow between them, and the floor plan must be also consid-
ered.

After the generation of cell layouts, the next step is the simulation. The
circuits corresponding to the layouts are first extracted and then simulated
by using software simulators. The simulation can be performed in two steps:
timing analysis and logic analysis. But these two steps can be handled in a
single step if there are a few cell parameters. For example, an OR gate can
be simulated in a single step, since the parameters are two or three inputs
and one output, so that the timing analysis can include also the logic test. If
there are reasonably many cell parameters, timing and logic simulations must
be performed separately by a timing simulator and a logic simulator, since
the logic test with timing simulator will be costly in terms of simulator run-
time. According to our experience, the mostly used feedback loop is the cell
simulations to cell layouts because the most of the optimizations (speed, area,
power, etc.) are performed at the cell level since it is the lowest hierarchical
level. }

After the cell layouts, the following design step is the layouts of upper
hierarchical levels. The simulation at these levels are not essential because
all subcells are simulated at the lowest (or lower) level. But if the designer
worries about the operation of cells when they are combined, he must per-
form the necessary simulations. However, if the simulations at lower levels
are performed with consideration of the combinations (e.g., some extra ca-
pacitances may be need to add to the output capacitances of the cell being
simulated), simulations at upper levels are not necessary.

As a last step of the layout level, the overall chip layout is obtained
including the I/O cells (buffers, pad drivers, pads, etc.) Finally, a timing and
a logic simulation of the chip must be performed. If the simulator run-time
is feasible, the logic simulation can be performed by using the test vectors
which will be used at the physical testing of the chip. But in general, the

24

number of test vectors is too large so that the simulation by using them
is not possible. In fact, since all the voltages and currents within the chip
are observable in the simulation, the simulation with test vectors are not so
essential. Consequently, if the test vectors will be used in the simulations,
they are generated at that step.

The last two tasks are the generation of the CIF or GDS-II codes and
the test patterns (test vectors). The CIF or GDS-II codes are generated
by the layout editor automatically. The test vectors can be obtained by
either a test pattern generator or manually. In general, the test vectors are
generated manually since a general purpose test pattern generator is a very
expensive tool. However, one can write a software program to generate the
test vectors for his own purpose. The chip testing can be performed either
by the manufacturer or by the designer. If the chip will be tested by the

manufacturer, the test vectors must be generated before the fabrication.

4.2 Circuit Technique

In integrated circuit design, especially for digital applications, NMOS tech-
nology has been used with a growing potential since early of 1960’s. Due to
the increase in density of devices on chips, the power dissipation and com-
plexity of chips have become a serious problem. Since the late 1960’s, CMOS
technology is being used to overcome these problems by possessing a reason-
able low power consumption, a rather easy design and a comparable speed
with NMOS [55]. Also, the noise immunity of the CMOS is better than that
of NMOS. For these reasons, we have implemented the median filter chips in
CMOS technology. In particular, it is a 3-micron double metal double poly
n-well process.

During the implementation of circuits in CMOS, one should consider
the latchup, the charge sharing, the body effect, and the noise margins.
[46,56,53,54]. Note that, these problems except the latchup are also present
in circuits implemented in any technology (e.g. NMOS).

The latchup problem is caused by the improperlyvbiased parasitic bipolar
transistors formed within the CMOS structure. In some cases, these parasitic
transistors are biased in such a way that Vdd and Vss (positive and negative
power sources) are shorted resulting in destruction of the chip due to excessive

current flow. In order to overcome this problem, one should bias the parasitic

25

transistors so that they do not cause to the short circuit. In practice, one
can reduce the chances of the latchup in n-well CMOS by a proper number
of connections from the p-substrate to Vdd and from the n-well to Vss, and
increasing the distance between n-well and n-diffusion.

If the output capacitance of a subcircuit, say a gate, is not comparable
with the load capacitance (sum of input capacitances of the gates derived by
that gate) then a charge sharing occurs between the capacitances resulting in
that the output voltage of the gate oscillates before settling in its final value.
On the other hand, the asynchronized inputs of a gate can cause the charge
sharing at the output of the gate. In other words, the charge sharing creates
some glitches which may cause wrong logical output. However, the charge
sharing problem can be avoided by making the output capacitance and load
capacitance to be comparable, and synchronizing the input signals by means
of weak buffers.

If the source voltage of a p/n-transistor is not equal to Vdd/Vss, then
the threshold voltage of that transistor changes depending on the source
voltage since the threshold voltage is a function of the source to substrate
voltage. In many circuits, some transistors are cascoded so that the source of
every transistor is not connected to Vss. This causes the change of expected
results especially in timing, due to the body effect. The only precaution for
that problem is to increase the Vss connections, and to decrease the internal
node capacitances as much as possible. Furthermore, in timing simulations,
a worst case approach is essential.

The noise margin parameter is a measure of allowable noise voltage on the
input of a circuit such that the output is not affected. In general the high and
low noise margins are equalized by the equal low and high going transition
times. Also, the selection of the logic style is important to maximize the noise
margins.

In CMOS technology, there are some circuit implementation techniques
called logic styles. These are complementary (standard) CMOS logic, pseudo
NMOS logic, dynamic CMOS logic, clocked CMOS logic, CMOS domino
logic, cascade voltage switch logic (CSVL), and pass transistor logic [46,53,54].
Each logic style possesses some different properties‘. In other words, the
optimization of the cost function (speed, area, power, complexity, etc.) is
different. For example, dynamic CMOS logic is the choice for fast circuits

but its timing is critical. Hence, the designer must choose the best style for

26

his particular application. In our design, the standard CMOS logic style is
used since this logic style possesses a more reliable timing, a rather easier
mapping in layout, a lower power consumption, and a better noise immunity
compé,red to the other styles. Furthermore, its area and speed performances

are comparable with the other styles.

4.3 VLSI Tools

At the layout step of a VLSI design, it is necessary to use some software tools
in order to edit the layout of a chip which consists of thousands of transistors,
and to perform its simulations. In our design, we have used the Berkeley CAD
Tools of University of California and VLSI Tools of University of Washington
[57,58] running under the Unix operating system on SUN workstations. For
editing of layouts, we have used MAGIC which is an interactive editor that
can make on-line design rule check by using information in the design rule
file. Thus the designer must provide the design rules that are prescribed
by the manufacturer. Unfortunately, MAGIC can not realign the symbolic
layers if the design rule file is changed, so the layout must be reedited or
modified according to the new design rules. MAGIC allows editing the layouts
hierarchically, and extracting the circuit of the layout.

In order to perform simulation of a cell, first the circuit of the cell is ex-
tracted, and then it is further processed by some intermediate tools [57,58].
There are three simulators: SPICE, RNL, and ESIM. SPICE can be used
for the timing simulations with a high accuracy. Before running SPICE,
extracted circuit must be processed by EXT2SIM and SIM2SPICE tools to
convert the extracted circuit to SPICE format. In addition, the model pa-
rameters of the transistors, and the timing commands should be entered into
the SPICE input file. The results of SPICE simulations are either observed
on the screen by using SPCVIEW and SPICE2SUMMARY tools or plotted
by SPCPLOT tool. RNL is used for logic simulations with approximate tim-
ing. In order to use RNL, extracted circuit is processed by PRESIM. If RNL
is used in interactive mode, the control and timing commands are entered
interactively, otherwise RNL needs a control file consisting of control com-
mands, and a time commands file consisting of input signals ordered in time.
One can us¢ GEN_TIME and GEN_CONTROL to generate the control and

timing command files, respectively. ESIM is used for logic simulations of

27

only combinational circuits, but it is very fast since it performs switch-level
simulation. The results of simulations with RNL and ESIM are stored in
ordinary files, thus user can read and analyze the results from these files.

After completing the layout editing and simulation tasks, the final layout
is converted to CIF or GDS-II codes by using MAGIC. These codes are used
to generate the masks of the layers for fabrication of the chip. If it is required,
one can plot the masks from codes by using CIFPLOT tool, and convert the
codes back to layout format by using MAGIC.

28

5. VLSI IMPLEMENTATION

5.1 Implementation of the Extensible Median Filter

In the description of the algorithm of the extensible median filter, it is pro-
posed to multiplex the I/O’s of the extensible median filter chip to reduce the
pin number from 40 to 28. However, in the layout implementation of the chip,
it is observed that there is no increase in the area when 40 pads are used.
This is due to fact that there are empty spaces between the pads when the
28 pads are placed. For this reason, we have used 40 pads in the extensible
median filter chip. Since there is no multiplexing in this case, the speed of
the chip is increased by about 30 percent, and the data loading and reading
operations are simplified. The only disadvantage is increased package size in
the case of “dip” package. In this section, the implementation of the 40 pin
extensible median filter chip with no multiplexing is described. Here, let’s
point that one can easily add multiplexers around the network and reduce
the pin number to 28. :

As the first step, the floor plan of the chip is designed (Fig. 5.1). Then,
the power distribution scheme of the chip is determined. A clock distribution
scheme is selected such that the lengths of the paths that the clock signals
propagate are equal and small enough so that the clock skew is not a serious
problem. Hence, a single clock buffer is used for each clock phase, instead of
a distributed clock buffering scheme [59]. The power and clock distribution
scheme is shown in Fig. 5.2.

In the following subsections, logic expression(s), the circuit and layout
descriptions, and the timing and/or logic simulations will be described for
each unit of the chip. The complete layout and the logic simulation results
of the chip will be given. Finally, an overview of the chip and its testing will

be presented.

29

HENEEENEEEEEEENEEEE

De(uyunits[:l D D D D D D Dr | —> Buffers

1N

I

TTTTIIT]
I

—» CSU1’'s

IHIRIRIRIRRRIREN
HEEERRERE J/

OOl

IR EENENEENEEEnE!

Figure 5.1: The floor plan.
5 VDD

| |
| |
| |
| |
| : I
| |
| |
| |
| i
l I
| i

i VSS

¥

T 1 1T -

CLOCK

~ Figure 5.2: The power and clock distribution scheme.

30

5.1.1 Compare-and-Swap Unit-1 (CSU1)

The logic expressions of the CSU1 are obtained from the state diagram given
in Fig. 3.3. They are minimized by using the carnough-map method [60]. The
resultant logic expressions and the circuit diagram of the CSU1 are given in
Fig. 5.3. In this circuit, inputs enter the cell during ¢; (¢ =1, ¢~ = 0). The
computation of the outputs starts as soon as the inputs are latched. When
the outputs are computed, they are latched at the outputs of the inverters
during ¢~. In the circuit, the weak buffers are used to prevent the charge
sharing. The inverters at the output of the circuit are necessary to latch the
outputs. These inverters are dynamic latches so they can not hold data more
than about 1 millisecond without refreshing [21]. This means that the clock
frequency can not be less than 1 KHz.

The circuit of the CSU1 is converted to the layout by considering its ge-
ometry in the floor plan. After the equivalent circuit of the layout is extracted
and simulated, the layout is modified to increase the speed, to prevent the
charge sharing and to have equal rise and fall times by resizing the proper
transistors. The maximum average current is about 0.7 mA. The power lines
of the layout are wide enough so that the metal migration does not take place
(the allowable maximum current density of each layer is determined by the
manufacturer). The final form of the layout of the CSU1 is shown in Fig.

5.4. This layout consists of 39 p-channel and 39 n-channel transistors.

The timing simulations of the CSU1 are performed with different clock
frequencies and with different rise and fall times by using SPICE. Here, we
give the input and the output waveforms for 40 MHz clock which is the
maximum clock frequency (Fig. 5.5). In these waveforms, the rise and fall
times of the clock, inputs, and outputs are about 5 nsec. However, the rise
and fall times may be larger than 5 nsec for low operation frequencies if it
is desired. The ripples on the waveforms are less than 1 V, thus they are
negligible. The logic simulation of the CSU1 is performed by using RNL for
all possible inputs. As an example, the results of the logic simulation for
three different 4-bit input words are given in Table. 5.1. For the sake of the
clearness, the clocks and time steps are not shown. As a result, the timing
and the logic simulations show that the CSU1 with the given layout functions

correctly.

31

2,

Ent!

2,

S
1)

weak
N
l/‘
eak
l/"

~~
=
=3
[=
w
+
c
wn
Nt
n
X
wn
o a4
* ted
»n 1IN
+ +
<
x ked
[@0
n 1
[+
< o

Sn+1 = { Sp +EnA; B R

Ena = En(AiBi‘ A;B)+R

Figure 5.3: Circuit diagram of the CSUL.

A7 777

Ll

278x370
$4

z 7Y, 7 277 T \\\\\\:ﬂ\ull
. : T
) - R 3 91 Blak
.x;n.wh ... 3 NS
W X,
N £ 2
MN ’ %% T
. N N
4 LSS SIS, \M\ T 7777777 R
TR 77772 R0 77777777 z 777777 77
ALY, RV AR 7777 77 777772707 7
N N N N
7
N N
W $ m =+ i 7 ;

. A 7 m 312
m/A B /)
7B Bre

ErE 1
7 Z 10 0
% i Rl m. % A
4 - M .Mw i Y =N J

=] % % M~ .

e % \/ = 7
0 7 Z:

B F

Figure 5.4: Layout of the CSU1.

32

L)

* .
Q

=8

L LR » L T]

atl T T | BRI Y T T T Y Y ™1 :
0.00 28.00 58.00 73.00 100.00 123.00 150.00 175.00 200.00 225.00 250.00

Time (ns)

S WA A

o T y - T ¥ T T T T T T ¥ T T Y]
0.00 25.00 50.00 75.00 100.00 128.00 150.00 175.00 200.00 223.00 250.00 °

Time (ns)
Bi
3
v
-t
-]
>8
-%J¥ T L3 Ll 11 LY R 1) B T 13 13] LI L] 1] L] T L3 B D)
0.00 25.00 50.00 73.00 100.00 125.00 150.00 175.00 200.00 225.00 250.00
Time (ns)

8
]
-y
-]
=8

o7 T 1 ¥ T T =T T 4

0.00 25.00 50.00 73.00 100.00 = 125.00 150.00 173.06 200.00 223.00 250.00

Time (ns)

o T 1 T T T T T Y T T 1§ T T R .Y T 1
0.00 28.00 3000 75.00 3100.00 128.00 150.00 175.00 200.00 223.00 250.00
Time (ns)
As
g
bl
-po
o
>3
al \iJd 3 L) 1 4 ¥ T T T T T Ly -y L T T - B ¥ L)
.00 25.00 50.00 75.00 100.00 125.00 130.00 175.00 200.00 225.00 230.00
Time (ns) '
Bo
0
-t
-]
>8 ,
v T ~T T T T T T T 5. T LB T 1
QU.W 25.00 $0.00 75.00 \&.00 128.& 150.00 175.00 200.00 228.00 230.00
Time (ns)

Figure 5.5: Timing simulation results of the CSUL.

33

©.
.
(s}
o

HOOCOHRHOODOHOOOW
OHOFRORORKFORON
HOKHKHKFEOROROR Oy
HORHOFRORKHOROK
OHORHOMROKOK Oy

Table 5.1: Logic simulation results of the CSUL.

5.1.2 Delay Unit

Since the reset signal must propagate through the delay units one stage per
cycle, a shift register cell can be used as the delay unit. The static D-type
master-slave flip-flop is chosen as the delay unit in order to have a reliable
shift operation [60,53]. The circuit diagram and the layout of the shift register
cell are shown in Fig. 5.6 and Fig. 5.7. In this circuit, the input is latched
at the output of the master flip-flop during ¢ = 1. The master flip-flop is
disabled when ¢ is low. The input is latched at the output of the slave flip-
flop during ¢~ = 1. The output of the master flip-flop is buffered and sent
to the compare-and-swap stage as the complement of the reset signal. The

results of the timing simulations of the cell are given in Fig. 5.8.

5.1.3 Clock Buffers

The total capacitive load of ¢ and ¢~ lines are about 15 pF and 20 pF
respectively. Four buffers are used to drive these loads with 100 percent
tolerances: two oninverting buffers for ¢, and two inverting buffers for ¢-.
The noninverting buffer can drive a 15 pF load with the 2.5 nsec rise and fall
times whereas the inverting buffer can drive a 20 pF load with the 2.5 nsec
rise and fall times. In order to minimize the delay of the buffers, the number
of stages and their ratios are calculated [61,20]: the noninverting buffer has 4

stages with 3.6 stage ratio while the inverting buffer has the 5 stages with 2.9

34

o 4o D

2,

Y @ 5

Q

(to the compare - and-swap stage)

Figure 5.6: Circuit diagram of the shift register cell.

ANNAN \\ ‘g . R,

2 S S i
X = S %

NN =

—i

77
H

111383
*

Figure 5.7: Layout of the shift register cell.

35

1 4 L ¥ L §] L) 1 L L2 1 8 ¥ L4 L | 1
B.00 15.00 30.00 48.00 60.00 P3.00 90.00 108.00 120.00 135.00 150.00
Time (ns)

| ‘/\/\/\

T 1 L] + LB 1 | S
%.00 18.00 30.00 45.00 = 60.00 = 75.00 105.00 120.00 135.00 150.00
Time {ns)

:>

)
4 B
B

T T] LS ¥ LB [3 1
%.00 = 15.00 48.00 oo 78.00 90.00 = 103.00 120.00 133.00 150.00
Time (ns)
Q
)
-
-]
>3 Z
°l ¥ ROl ¥ T Ly ¥ 1] 4 B
.00 18.00 30.00 = 48.00 " 73.00 = $0.06 108.00 120.00 135.00 150.00
Tlna {ns)

Volts
00 8.
-1
.
y

%frr ¥ LS ¥ ¥ R} L3

.00 185.00 30.00 48.00 60.00 75.00 " 105.00 120.00 135.00 150.00
Tima (na)

Figure 5.8: Timing simulation results of the shift register cell.

36

885/270

224/68

58/18

W, /W, 17/5

11807360

135/39 392/119

W, 16/5 46/14
o> {>o %D?—E

/

D

(b)

Figure 5.9: Circuit diagrams of the clock buffers.

AN

MIMITITRNaS

g
Hi

Hen
i3

A

r]

N

7

2]

74

\ N

\,m

e

bbbyt by a4

] jeitint ittt

tct.a

m%&%%ﬁ‘\\\

ITITHT YIS
:w;x::;x::u:

LR fr feiectitiiing !B.-LT

QAN

SN

: »ms%gwm*\\\\ \\ \\\\ﬁw

R

N

=

®

=5

\\\\\\ 7777778

WP Eu&m

_

e

&\\\\\

&
NN

QAN

NN\

MR

N\
12exe12

i
AN

..
i
N

N,
Sy

Tk
&

*

Figure 5.10: Layouts of the clock buffers: a) noninverting, b) inverting.

37

stage ratio. The circuit diagrams and the transistor ratios of each stage of the
buffers are given in Fig. 5.9, and their layouts are shown in Fig. 5.10. The
timing simulations of the buffers with their loads are performed for 50 MHz
and 20 MHz (Fig. 5.11). According to the timing simulations, the delay of

each buffer is about 7.5 nsec with a clock skew about 0.5 nsec between ¢ and

b

5.1.4 Chip Overall Layout

After completing the layouts and simulations of the cells (CSU1L, one bit
register, and clock buffers), the cells are combined hierarchically to form the
overall layout of the network: the first and second stages of the network are
obtained by combining five CSU1’s for each. These two stages are used to
form the sorter which consists of nine stages. The nine bit shift register is
obtained as an array of one bit shift register cells. Finally, the clock buffers
are placed at two sides of the network, and 40 pad cells are placed around
the network. The pad cells are supported by the manufacturer as black box
standard cells with given I/O connection schemes and parameters (size, delay,

etc.). The complete layout of the chip is shown in Fig. 5.12.

The logic simulations of the chip are performed with the test vectors which
will be also used for the physical testing of the chip after fabrication. The test
vectors, which consists of the sorted, reverse sorted and equal set of elements,
are applied to the inputs of the chip, and the generated outputs are found to
be matching to the expected results. The outputs of the chip corresponding
to the inputs which enter at k’th clock cycle are ready at the output pads at
end of the k + 8’th clock cycle. The logic simulation results are given in Fig.
5.13 (also see Fig. 5.14 for signal labels).

5.1.5 An Overview of the Extensible Median Filter
Chip

In this section, we will give the information about how the chip can be used.
The extensible median filter chip has 40 pins: the pin configuration is shown
in Fig. 5.14. The pin labels are given in Table. 5.2.

The timing diagrams of the data load and read operations for the exten-

sible median filter chip are given in Fig. 5.15. The input data must be ready

38

lte

V\f\f\f\/\

%00 = 10.00 = 20.00 = 30.00 40.00 850.00 _ 80.00
Time (ns)
g
e
>3
%.00 10,00 20.00 30.00 40.00 850,00 60.00 70.00 80.00 90.00 100.00
— Tims {ns)
4
g
=8
.00 60.00 70.00 80.00 wo.oo
Tlnc (ns)
(a)

T\F\ﬂf\ﬂ

100.00 125.00 150.00 173.00 = 200.00 225.00 250.00
Time {ns)

"y
e
33
.00 25.00 “350.00 75.00 '100.00 125.00 “150.00 175.00 ~200.00 225.00 ~250.00
7 Time {ns)
g
Bw
v
>3
.00 25.00 50.00 73.00 100,00 125.00 150.00 175.00 200.00 225.00 250.00
Time (ns)
(b)

Figure 5.11: Timing simulation results of the clock buffers: a) for 50 MHaz,
b) for 20 MHz.

39

Figure 5.12: Complete layout of the extensible median filter chip.

| LABEL | FUNCTION
RI RESET INPUT
DI1-DI10 | DATA INPUTS
DO1-DO10 | DATA OUTPUTS
UIl-4 UPPER EXTENSION INPUTS
UO1-4 UPPER EXTENSION OUTPUTS
LI1-4 LOWER EXTENSION INPUTS
LO1-4 LOWER EXTENSION OUTPUTS
CLK CLOCK INPUT
VSS 0 V POWER SUPPLY
VDD 5 V POWER SUPPLY

Table 5.2: Pin labels of the extensible median filter chip.

40

RI DI1-10 UI1-234 L11-234 O1-10 UO1-234 LO1-234

1 0000000000 1111 0000 1111111101 1111 0111
0 0000000010 1111 0000 1111111101 0111 0111
0 0000000110 1111 0000 1111110101 1111 0011
0 0000001110 1111 0000 1111110101 1011 0011
0 0000011110 1111 0000 1111010101 1111 0001
00000111110 1111 0000 1111010101 1101 0001
00001111110 1111 0000 1101010101 1111 0000
00011111110 1111 0000 1101010101 1110 0000
00111111110 1111 0000 00000000060 1111 0000
01111111110 1111 0000 1000000000 1111 0000
1 0000000000 1111 0000 1100000000 1111 0000
0 1000000000 1111 0000 1110000000 1111 0000
0 1100000000 1111 0000 1111000000 1111 0000
0 1110000000 1111 0000 1111100000 1111 0000
0 1111000000 1111 0000 1111110000 1111 0000
0 1111100000 1111 0000 1111111000 1111 0000
01111110000 1111 0000 1111111100 1111 0000
01111111000 1111 0000 1111111110 1111 0000
01111111100 1111 0000 0000000000 1111 0000
01111111110 1111 0000 1000000000 1111 0000
1 0600000000 1111 0000 1100000000 1111 0000
0 0000000000 1111 0000 1110000000 1111 0000
01111111110 1111 0000 1111000000 1111 0000
01111111110 1111 0000 1111100000 1111 0000
0 0000000000 1111 0000 1111110000 1111 0000
01111111110 1111 0000 1111111000 1111 0000
0 0000000000 1111 0000 1111111100 1111 0000
0 0000000000 1111 0000 1111111110 1111 0000
01111111110 1111 06000 0000000000 1111 0000
01111111110 1111 0000 0000000000 1111 0000
1 0000000000 0000 0000 1111111110 0000 0000
00000000000 0000 0000 1111111110 0000 0000
0 0000000001 1111 1111 0000000001 1111 0111
0 0000000001 1111 1111 1111111111 1111 0011
0 0060000000 0000 0000 00000060000 0000 0000
01111111110 0000 0000 0000000000 0000 1000
01111111111 33111 1111 1111111111 1111 1001
01111111111 1111 11331 1111111111 1111 1100
01111111110 0000 6000 0000000000 0000 1100
01111111110 0000 0000 0010001000 0000 1110
1 0000000001 1111 1111 1000100010 1111 0110
0 0000000001 1111 1111 1000100010 1111 0111
0 0000000000 0000 0000 0010001000 0000 0011
0 0000000000 0000 0000 0111011101 0000 0011
00000000001 1111 1111 1101110111 1111 0001
01111111111 1311 1111 1101110111 1111 1001
01111111110 0000 0000 0111011101 0000 1000
01111111110 0000 0000 0111011101 0000 1100
01111111111 1111 1111 1000100010 1111 1100
01111111111 1111 1111 1000100010 1111 1110

Figure 5.13: Logic simulation results of the extensible median filter chip.

41

55 B4 B B [[[6 [[[

RI UI1 Vo1 UI2 Qo2 ¥pp UI3 VO3 UI4 Ul4

- [28{p11 pu1 15
[2__11312 poz 14
28013 EXTENSIBLE MEDIAN o3 (13
29|D14 po4 [12]
E“‘ FILTER CHIP os [14
[31]p1s pos (10
[s2/p17 (MF9EE) pat [3]
33/ p1s pos 8]
34| p19 pos [7]
25| D110 pate|§]

Lel L1 1o2 LI2 @ Y¥SS Lp3 LI3 pro4 LI4

b [b Bo B [L] o] 4 5

Figure 5.14: Pin configuration of the extensible median filter chip.

at the input pins while the clock is rising. Since there is an extra 7.5 nsec
delay at clock signals due to delay of the clock buffers, input data signals
may rise/fall while the clock is rising. But, the input signals must not change
before the clock falls to logic low. The reset input signal, RI, must be at
logic 1 during the last clock cycle of every word, and at logic 0 during the
other clock cycles. For example, if the word length is 4-bit, then RI will be
the sequence, 000100010.... At the beginning of running of the chip, the chip
must be reset by entering logic 1 to RI for at least one clock cycle. The
outputs are ready at the end of the clock cycle, and they do not change until
the end of the next clock cycle. |

The Normal Operation Mode

If the extensible median filter chip is used to find the medians of 9 elements,
which is the normal operation mode, the input data are loaded from the first
nine data inputs (DI1, DI2,..., DI9) (Table. 5.3). The upper extension inputs
(UI1, UI2, UI3, and UI4) must be connected to logic 1’s whereas the lower
extension inputs (LI1, LI2, LI3, and LI4) and the lowest data input (DI10)
must be connected to logic 0’s. In this mode, the reset input signal (RI) is
used such that logic 1 is entered at the end of the every word (together with

42

th
k cycle

i (k#S)‘hcycle i
1
!

e /NN VNN

D11-10 X (ast bits x tirst bits X

Rl — \

DO1-10 :>(X

X

T, > 5 nsec

T, > 10 nsec

0.1 msec>T, > 25 nsec

™~

N

. X tirst bits x '

T
!
~={15 nsecl—-

Figure 5.15: Timing diagrams for data load and read operations of the ex-
tensible median filter chip.

the last bit of the word). The input data are sorted at the data outputs in
such a way that DO1 is the largest, DO5 is the median, and the DO9 is the
smallest input. DO10 and the extension outputs have garbage data in this

mode.

The Extension Mode

If the extensible median filter chip is used to find the exact median of w

elements for w > 9, at most [w/9]? chips must be used. In this mode, the

[DATA INPUTS | HIGH INPUTS | LOW INPUTS | MEDIAN |

DIl
DI2

DI9

UIl
UI2
UI3
Ul4

DI10

LIl
LI2
LI3
LI3

DO5

Table 5.3: Functions of the I/O’s in the normal mode of the extensible median

filter chip.

43

MF9EE ’ —
(= :{A m—)
Inputs J — Sorted
(1-25) — —— —> ¢ outputs
Logic 0 (= —>) > =
T T 71
LI1-4 =0

Figure 5.16: Interconnections of the extensible median filter chips for w = 25.

chips must be connected in such a way that they form an array of size w X w
(i.e. the array has w chips in one row and w chips in one column). For the
simplicity of description, we will show the connections of the chips for w = 25
which requires 9 chips (see Fig. 5.16). In this configuration, 20 ones of the
the input data are applied to DI1-DI10’s of the first chips at the first and
second rows, and the remaining 5 data are applied to DI1-DI5 of the first
chip at the third row. The upper extension inputs of the chips at the first
row must be at logic 1’s, and the lower extension inputs of the chips at the
third row must be at logic 0’s. The extension and the data I/O’s of the chips
must be interconnected as in Fig. 5.16. The reset input of the chips at the
second and third columns must be delayed by 9 and 18 clock cycles from that
of the reset input of the chips at the first column. The inputs are sorted at
the outputs so that the median is DO3 of the last chip at the second Tow.

5.1.6 Testing of the Extensible Median Filter Chip.

The extensible median filter chip will be tested by using the functional testing
method: the predetermined inputs will be applied to the chip and the outputs

44

will be compared with the expected results. The test vectors are three set
of input data. Each one of these input data sets causes all the CSUL’s to

operate at one of the equal, pass, and swap states: if inputs are

1. equal (DI1 = DI2 = ... = DI9) then all the CSU1’s operate in equal

state,

2. sorted (DI1 > DI2 > ... > DI9) then all the CSU1’s operate in pass

state, and

3. reverse-sorted (DI1 < DI2 < ... < DI9) then all the CSU1’s operate

in swap state.

Thus, the CSUL’s are tested at all possible legal operation states. In ad-
dition, in order to test whether there is any stuck-at zero/one fault at the
extension I/Q’s, two set of test vectors are generated. The logic simulations
are performed by using all of the test vectors so that the test vectors and the
expected outputs of the chip are the input and the output data given in Fig.
5.13. The total number of the test vectors is 500. As a result, the testing

time of the extensible median filter chip is reasonably small.

45

5.2 Implementation of the Real-Time Median Filter

At the beginning of the implementation of the real-time median filter, a floor
plan of the chip is designed, Fig. 5.17. The floor plan has an architecture
similar to the block diagram of the network. The size and placement of the
delay units at the inputs and outputs of the network are adjusted such that
the unused space due to unequal numbers of the delay units at each block is
as much as small. The clock distribution scheme has clock signal paths which
are all equal. The power and clock distribution scheme of the chip is given in
Fig. 5.18. A distributed clock buffering is preferred to avoid the clock skew
and the large delay of the clock buffers driving large capacitive clock loads.

Hence, 8 clock buffers are used for each clock phase.

In order to enable the outputs of the chip, one pin is required as the chip
enable signal input. But there is no unused pin in the 40 pin package. For
this reason, the test input signals S; and E; (see Fig. 3.5) are used for that
purpose. In normal operation of the chip, S;E; will be 01 whereas S, E; will
be 01,00, and 10 for testing operation. Note that S;E; pair does not take the
value of 11 at these operations. This combination can be used as the chip
enable signal. Hence, the test inputs, S; and E; are NAND’ed and buffered
to be used as the chip enable signal; in order to disable the chip outputs, S;
and E; are held at logic 1’s.

In the following subsections, the circuits, layouts, and simulation results
of the cells, CSU2 and delay unit, are described. The complete layout of the
chip and logic simulations are given. Finally, an overview of the chip and its

testing will be presented.

5.2.1 Compare-and-Swap Unit-2 (CSU2)

The functional description of the CSU2 given in Fig. 3.6 is transformed to
the logic expressions. A sequential circuit design is performed. The logic
expressions and the circuit of the CSU2 are shown in Fig. 5.19. This circuit
consists of four main parts: input switch elements to latch the inputs during
é1, logic gates to compute S, and E,, 2 x 1 multiplexers to pass or swap
the inputs to the outputs, and the output switch elements and buffers to
latch the computed outputs during ¢,. Weak buffers are used to delay the
data inputs to prevent the charge sharing at the multiplexing stage. The
latches at the input and output are dynamic that can not hold the data

46

| HEERREA LT'LI INNEREEN

= — 1™ Buffers
— Delay unitsE J}_ ﬁJ ,..J
m ‘L] - A
0\ E =
] —
0 B = F
u —— 1
| ——n [
E - :
. ==
u ==l
u =0
: B | —

F— T~ CSU2's
C . |
e et tF tr rrtvefli
Figure 5.17: The floor plan.
YV 3 v v v
if s

VDD 1] 1§
VsS: b1 i1

$ i ff
¢2 é I ZL& é j} _f/é 2[5 $

Figure 5.18: The power and clock distribution scheme.

47

S;|E; |4 | B; | S, | E, | 4, | B,
o411 (110 (1 |1 |1
o(1 (0 (1 (1 }0 |1 |0
of{1 (1 {0 |0 |0 |1 |0
6|1 |0 |0 O (|1 |0 (O
oj(1 (|1 (1 |0 }1 J]1 11
of1 (0 (1 (1 (0 |1 |O
0111 (0 |0 |0 |1 |O
01 10 10 {0 |1 0 |0
1 (1 (1 |1 |1 {1 (1 |1
111 |0 1 |1 |0 {1 |0
1+{1 {110 {1 |0 (0 |1
11110 |0 {1 (1 |0 |O
111 1 |1 |1 {1 |1 |1
1 (1 [0 |1 |1 {0 (1 (O
1 (1 (1 {0 |1 |0 {0 |1
11110 |0 {1 (1 |0 |O

Table 5.4: Logic simulation results of the CSU2.

longer than 0.1 msec. Hence, the minimum clock frequency is 10 KHz for
correct operation.

In order to have a square shaped chip area, the geometry of the CSU2 need
to be a thin rectangle. Keeping this in mind, the circuit diagram of the CSU2
is mapped to the layout by using standard CMOS logic style. The equivalent
circuit of the layout is extracted and simulated by using the SPICE. The
layout of the CSU2 is modified many times (i.e. the proper transistors are
resized) in order to clock the CSU2 at least at the real time rate. The final
layout of the CSU2 is shown in Fig. 5.20. This layout consists of 34 p-channel
and 34 n-channel transistors.

The timing simulations of the CSU2 are performed for different clock
frequencies with different rise and fall times. The CSU2 functions correctly
up to 50 MHz clock frequency with 2.5 nsec rise and fall time of the clock
signals at that frequency (Fig. 5.21. The maximum current for which all
outputs make transition from either low to high or high to low is about 0.7 sec.
The logic simulations of the CSU2 are performed for all combinations of the
inputs, Table. 5.4.

48

m
v
!
=
=l
=

;

weak % A
H e —to
] .
o L{>: - %FD"“—BO
B — l weak l :
So = Sj+EjA;Bj Ao = SoAj+ SoBj Eo So
Eo = E;(A;B;+ A;Bj) Bo = SoA;j+ SoB;

Figure 5.19: Circuit diagram of the CSU2.

0

Lt ot

Figure 5.20: Layout of the CSU2.

49

aiaiatala LU

[T
-
-—
~3
.00 38.00 70.00 105.00 140.00 173.00 $10.08
Time (na)
8.'
w
-—
=8 ‘ J \
.00 35.00 " 105,00 140.00 175.00 210,00 245.00 280.00 313.00 350.08
Ttma tna)
»d
- -
=8 ‘ \ ‘
.00 3500 70.00 = 103.00 143.00 = 173.00 = 210.00 = 248.00 200.00 315.00 350.00
Time (na)
———pi— ' —
8
®n
-t
-
=3 \ i
L] T T B T L3 1] 13 T ¥ T LY LY R B
70.00 = 103.00 140.00 175.00 210.00 = 245.00 280.00 315.00 330.00
Time {ns)

140.00 . 175.00 10.080

" 105.00
Time (ns)

e

Volil

33.00

7\/\ UANNINAAARANAN,

70.00

140.00

-»

-
o
=

" e

3

" 108.00
Time {ns)

n.“

%00

" A75.00 310,00 245.00 280.00

L]
=3
9,00 35.00 | F0.00 | 103.00 140.00
Time (ns)
As
: \ ﬂ /—\ /—
=8
00 | 3%.00 | 70.00 = 108.00 @ 140.00 nn.oo 210,00 - 208.00 200.00 313.00 350.00
Time (ns)
Bs
4 \ J \ /—
-
.00 35.00 | 70.00 = 108.00 = 140.00 @ 173.00 | 210.00 @ 248.00 @ 200.00 @ 315.00 = 350.00
Time (ns)

Figure 5.21: Timing simulation results of the CSU2

50

The timing and the logic simulations show that the CSU2 operates cor-

rectly even if a single clock is used with its complement.

5.2.2 Delay Unit

The size of the delay units at the inputs of the network is desired to be a
square shaped whereas that of the delay units used at the internal stages of
the network is a thin rectangle to match the floor plan geometry to minimize
the unused area. For that reason, two types of dynamic delay units are used.
The delay unit shown Fig. 5.22.a is used at the inputs while the other one
shown in Fig. 5.22.b is used at the internal stages of the network. Both
of them are D-type dynamic master-slave shift register cells. They read the
input during ¢;, and shift it out during ¢,. The layouts of the delay units
are shown in Fig. 5.23. The timing simulation results of the delay units are
shown in Fig. 5.24.

-5.2.3 Clock Buffers

The total capacitive load of each of ¢; and ¢, is about 30 pF whereas that
of each of their complements is about 40 pF'. For each of the clocks and their
phases, 4 clock buffers are used. These buffers are the same clock buffers
which are used in the the extensible median filter chip; the inverting and
noninverting clock buffers can drive 20 pF and 15 pF loads respectively with
2.5 nsec rise and fall times. Thus, there is 100 percent tolerance for the
clock loads that allow the buffers to drive the loads with the rise and fall
times faster than 2.5 nsec. Since the design and the simulation results of the
clock buffers are given in the section of the implementation of the extensible

median filter chip, they are not repeated here.

5.2.4 Chip Overall Layout

The basic cells, CSU2’s and the delay units, are combined hierarchically to
form the complete layout of the real-time median filter chip. The clock buffers
and the pads are placed around the network. The final overall layout of the
chip is shown in Fig. 5.25

The switch-level simulation of the chip is performed by using the ESIM
to detect the stack-at 0 and stack-at 1 faults. It is not possible to use the test

51

vDD

t
D ""‘_4 ——4 5,1 52
51 __4 62—4
Q D Q
2, —1 2,—
Lr L 2, 2,
1
VSS
(a) (b)

Figure 5.22: Circuit diagrams of the delay units used at the: a) inputs, b)
internal stages of the the real-time median filter chip.

r47744)

2237272

|77

(a)

(b)

Figure 5.23: Layouts of the delay units used at the: a) inputs, b) internal
stages of the the real-time median filter chip.

52

'V_\ [\ [\

%.00 20.00 40.00 60.00 = §0.00 = 100.00 = 120,00 140.00 = 160.00 = 180.00 200.00
Time (ns)
.00 20.00 = 40.00 | " $0.00 = 100.00 120.00 = 140.00 183.00 180.00 200.00
Time (ns)
"1 \/ \/ \/ \/ VAVAVAY]
o
-8
%.00 £0.00 = 60.00 100.00 = 120.00 140.00 = 380.00 = 180.00 200.00
Tlne (ns)
:6
=8 N
%.00 = 20.00 = 40.00 ~—¥0.00 = 80.00 — 100.00 120.00~ 140.085 180.00 180.00 200.00
Time (ns)
D
2
.:a
§3.l \ / \ / \
%.00 = 20.00 = 40.00 " 100.00 120.00 140.00 180.00 = 180.00 200.00
T ime (ns)
7 40.00 " $0.00 © 100.00 120.00 140,00 180,00 180.00 200.00
Time (ns)

J\j\f YaVatatatata

60.“ N-N 100 00 120 o0 NO 00 100-00 no 00 200-00

Time (ns)

g

0w

=)

o3 l) l J \

LB L) R 4 L] hatt Band 1 L]

.00 20.00 40.00 = 60.00 = 80.00 ~ 100.00 = 120.00 140.00 1860.00 180.00 200.00
Time (na)

(b)

Figure 5.24: Timing simulations of the delay units used at the: a) inputs, b)
internal stages of the the real-time median filter chip.

53

Figure 5.25: Overall layout of the real-time median filter chip.

54

vectors of the chip for logic simulation by RNL because the run time of only
one clock cycle is about 5 minutes due to large number of transistors. Hence,
the logic simulations are performed dsing some random inputs, Table 5.5. In
this table, the median of the first 9 numbers which are 0, 0, 0, 5, 14, 11,
35, 24, and 22, is ready at the output 15 step (clock cycle) later. Similarly,

median of any consecutive 9 inputs is ready at the output 15 clock later.

5.2.5 An Overview of the Real-Time Median Filter
Chip

The real-time median filter chip has 40 pins; 24 pins are used for data inputs,
8 pins for data outputs, 2 pins for test control signals, 2 pins for two clock
inputs, and 4 pins for the power supplies. The pin configuration is shown in
Fig. 5.26. The pin labels are given in Table 5.6.

The the real-time median filter chip is used to find the median of the
elements of a window which moves on a frame. At each position of the
window, three 8-bit samples are discarded from the window and three new
samples are taken in. Thus, at each clock cycle of the chip, three 8-bit samples
enter the chip via the data inputs, and one 8-bit median is generated. The
chip outputs 8-bit median of the samples in the window 15 clock cycles later.
The input data are loaded to the chip while ¢, is rising, and the medians are
ready at the outputs of the chip during ¢, is high.There is a delay due to
pads for each input and output signal. In addition, there is an extra 7.5 nsec
delay for the clock signals due to the clock buffers. The timings for data load

and read operations are shown in Fig. 5.27.

The the real-time median filter chip functions properly even if the sin-
gle clock is used such that ¢, is the complement of ¢;. But for reliability,
two nonoverlapping clocks are preferred. The maximum clock frequency is
50 MHz with 5 nsec rise and fall times. The clocks must stay at least 7.5 nsec
at high level and 7.5 nsec at the low level. The test input signals, ST and
ET, must be connected to 0 and 1 for normal operation. To disable the chip,
ST and ET must be 1 and 1.

5.2.6 Testing of the Real-Time Median Filter Chip

The real-time median filter chip will be tested by using functional test method.
Each sorter block of the network will be tested individually by isolating it

55

INPUTS OUTPUTS
111-118 121-I128 131-I38 | O1-O8
0 0 0 252
5 14 11 248
35 24 22 240
30 36 74 224
38 32 44 192
23 32 55 128
67 32 66 0
70 64 77 0
129 129 129 0
129 129 129 0
129 129 255 0
129 129 255 0
129 129 255 0
255 255 255 0
255 255 0 0
255 255 0 0
0 255 0 0
0 0 3 0
0 3 3 11
0 3 3 24
0 3 3 35
] 14 11 36
35 24 22 38
30 36 74 64
38 32 44 70
23 32 55 129
67 32 66 129
70 64 7 129
129 129 129 129
129 129 129 255
129 129 255 255
129 129 255 255
129 129 255 255
255 255 255 0
255 255 0 0
255 255 0 3
0 255 0 3
0 0 3 3
0 3 3 11
0 3 3 24
0 3 3 35

Table 5.5: Logic simulation results of the real-time median filter chip.
56

DI17T DI16 pri5 DIl4 ypp ¥DD DI13 DI12 DI1l 01
DI18 ST

bI21 EY
D122 . po1

p123 REAL-TIME MEDIAN poz

DI24 pa3

DI25 FILTER CHIP ’ D04

DI2S6 (MFQSR)__ Dos

D127 Dos

DI28 Dot

DI31 DﬁS
DI32 DI33 DI34 DI35S YSS YSS DI36 DI3T DI3S

UMUMT_II_IIZIUTJU

ELtJMI:Jl_:»‘Jl;JEJIEIEE

Figure 5.26: Pin configuration of the the real-time median filter chip.

y

[LABEL | FUNCTION]

I11-I118 | DATA INPUTS FOR FIRST

8-BIT WORD (MSB TO I11)
1121-128 | DATA INPUTS FOR SECOND
8-BIT WORD (MSB TO 121)

131-138 | DATA INPUTS FOR

THIRD 8-BIT WORD (MSB TO 131)
01-08 | MEDIAN (MSB IS 01)

ST TEST INPUTS (01,00,10)
ET CHIP DISABLE (11)
CLK1 | CLOCK INPUTS

CLK2

VDD POWER SUPPLY 5 V
V5SS oV

Table 5.6: Pin labels of the the real-time median filter chip.

57

r kth
|

; (kﬂS)‘hcycle !

cycle

CLK 1 _/_\ /_\ /_ : i/_\
CLK 2 M"'____/ \ / N\

DIn-18 :>(

XX

DI21-28 D<

T GE— G &

DI31-38 X

R GR— G

DO1-8 X

My

b

De

o~
r

b=~ 15ns;

-

Ty
; t Ty, » 5 nsec
CLK1

CLK2

7'.&."&_ T, » 0 nsec
i
] i

Figure 5.27:

Tl g 01 msec » T, > 20nsec
]
T3 !

Timing diagrams for the data load and read operations of the

real-time median filter chip.

58

from the other blocks by means of the test input signal ST and ET. When
STET pair is 01, all the CSU2’s in that sorter block pass the inputs which
are equal or lower one is less, or swaps the inputs else. For STET=00, the
CSU2’s pass their inputs independent on the inputs. If the STET=10, then
the CSU2’s swaps the their inputs unconditionally. Thus, the CSU2’s can be
tested for all possible operations.

In order to test k’th block, the inputs of the upper blocks must all be
0 or all be 1, so that the ST and ET arrive this block without any change
(the inputs of the lower blocks are don’t care). For each values of the test
control input signals (01,00,10), three 521-bit input sequence enter the inputs
of that block successively one bit at a clock. This sequence generates all of
the possible data flow combinations through that block. The output of that
block is compared with the expected results. The same procedure is repeated
for each of the 8-blocks. The test vectors and the corresponding outputs
are generated by a program written in FORTRANTY7 for this purpose. This
program is given in the appendix. Since length of the sequence is 518 rows,
here, we give a sample output which contains the first and the last parts of
the sequences (Table 5.7). The total number of test inputs and testing clock
cycles is 518 x 3 x 8 = 12,412.

5.3 Applications of the Chips

The extensible and the real-time median filter chips can be selectively used
in a general purpose digital image or signal processor environment by means
of the chip enable signal that each chip has [47]. The exact medians of the
elements, in a window size w = 9 with arbitrary word length L, can be found
by using only one extensible median filter chip. For w > 9 with arbitrary L, at
most [[w/9]]? chips are required to find the exact medians by interconnecting
the chips similar to the configuration shown in Fig. 5.16. The real-time
median filter chip can find the exact running medians of the elements in a
window of a fixed size w = 9 with fixed word length L = 8 at the real-time
rate. Furthermore, the extensible and/or real-time median filter can be used

for the realizations of many median filtering techniques:

o The extensible median filter is a favorable choice to realize the adaptive-
length median filters [25,62], since one can change the window size from

3 to indefinitely large ones by using the extensible median filter chip(s)

59

INPUTS | OUTPUTS
TK1 IK2 IK3 | OK(SE=01) OK(SE=00) OK(SE=10)

X X X

o et O e OO
H RO MEEFREBHFEH 9 N MM 4 OO0 o000
HHEEEMEPRERRRPRP OO0 C0CO0CO00O
e e e B o T e e S e Bl e B e Sl e Bl e RV
H O FEEBEEBERFRRRREMBMOOOO O X
=R e o e e e e i = = S e W e R S0

oo OCOoOoOoRLOo
OO RO O
P OOoOCOkkOOoO:
DO O COOoOCO
OO OCOCCOO "
[Nl ool oBel 5

Table 5.7: A sample of the test vectors and corresponding outputs. The
IKJ/OKJ:J’th input/output of the K’th block of the real-time median filter

sorting network.

60

by applying logic 0’s or 1’s to unused inputs of the chip(s) appropriately.

For the realizations of the weighted median filters [38], the extensible
median filter can be used with a pipelined multiplier to multiply the
input data with the weight coefficients. Since all input data of the
chip are entered to the chip directly at each move of the window, one
can realize an adaptive weighted median filter by changing the weight

coefficients at each position of the window on the frame.

A pair of the extensible or the real-time median filter chips can be used
as a selective median filter [36] together with an external control logic

consisting of two full-word subtractors and a full-word comparator.

Either the extensible or the real-time median filter chip can be used as
a line-recursive median filter [25] by loading the window elements from

the frame appropriately.

The extensible median filter chips can be used for the realizations of
the multi-level median filters [29] together with an reasonable external

hardware.

The chips can be used for the realizations of the separable median filters

[30] without any external hardware.

61

6. RESULTS AND CONCLUSIONS

An extensible median filter and a real-time median filter are designed and
implemented to form a general purpose median filter unit. The network of
the extensible median filter is obtained by modifying the ordinary odd/even
transposition sorting network. The real-time median filter network is a varia-
tion of the Oflazer’s network [48]. Both of the networks are pipelined systolic
structures that are modular and have simple communication schemes. This
makes their VLSI implementation to be simple and straightforward. Both
of the networks are not preferable to be implemented at larger window sizes
since the area is proportional to the w?. We have implemented the networks
for w = 9 because this is the minimum and the most commonly used window
size in two dimensional median filtering applications.

The networks are implemented in 3-micron double-metal standard CMOS
by using full-custom VLSI design techniques. The timing and logic simula-
tions of the chips are performed by using software tools. The test vectors and
the corresponding outputs of the chips are generated. The testing times of
the chips will be reasonably small since the numbers of test vectors are small.

The exact medians of the elements, in a window size w = 9 with arbitrary
word length L, can be found by using only one extensible median filter chip.
For w > 9 with arbitrary L, at most [[w/9]]? chips are required to find the
exact medians. The real-time median filter chip can find the exact running
medians of the elements in a window of a fixed size w = 9 with fixed word
length L = 8 at the real-time rate. The main features of the chips are
summarized in Table 6.1. These features of the chips are comparable with
that of the chips in the literature, for example [63].

62

PARAMETER THE EXTENSIBLE THE REAL-TIME
Die size 2.77 x 4.59mm? 7.19 X 6.95 mm?
Transistor count 5,000 22,000
Transistors/mm? 400 440

Max. clock frequency |40 MHz 50 MHz

Max. throughput 30/L mega medians/sec | 50 mega medians/sec
Pin number 40 40

Max. power dissipation | 2560 mW 800 mW

Table 6.1: Main features of the chips.

The main contributions of this study are the architecture of the extensible

median filter and its VLSI implementation. Another achievement of this

study is the implementation of the real-time median filter which is the first

single-chip median filter in this area that can operate at the real-time rate

for the 1024 x 1024 resolution frames. The extensible and real-time median

filter chips together with a reasonable external hardware can be used for

the realizations of many median filtering techniques. As a result, after the

fabrication of the chips, they can be used in various full-scale general purpose

digital signal and image processors.

63

REFERENCES

[1]

[2]

[5]

[6]

[7]

8]

[9]

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Engle-
wood Cliffs, N.J.: Prentice-Hall, 1975.

A. Kundu, S. K. Mitra, and P. P. Vaidyanathan, “Application of two-
dimensional generalized mean filtering for removal of impulse noises
from images,” IEEE Trans. Acoustic, Speech, and Signal Processing, vol.
ASSP-32, NO. 3, pp. 600-609, Jun. 1984.

J. W. Tukey, “Nonlinear (nonsuperposable) methods for smoothing
data,” in Conf. Rec., p. 673, EASCON 1974.

N. C. Gallagher, Jr., “Median filters: a tutorial,” Proc. IEEE Symp. on
Cir. Sys. pp. 1737-1744, Finland, 1988.

N. C. Gallagher, Jr., and G. L. Wise, “A theoretical analysis of the
properties of median filters,” IEEE Trans. Acoustic, Speech, and Signal
Processing, vol. ASSP-29, pp. 1136-1141, Dec. 1981.

T. A. Nodes and N. C. Gallagher, JR., “Median filters: some modifica-
tions and their properties,” IEEE Trans. Acoustic, Speech, and Signal
Processing, vol. ASSP-30, NO. 5, pp. 739-746, Oct. 1082. '

E. Ataman, V. K. Aatre, and K. M. Wrong, “Some statistical properties

of median filters,” IEEE Trans. Acoustic, Speech, and Signal Processing,
vol. ASSP-29, pp.1073-1075, Oct. 1981.

T. A. Nodes and N. C. Gallagher, Jr., “The output distribution of me-
dian type filters,” IEEE Trans. Commun., vol. COM-32, pp. 532-541,
May 1984.

J. Neejarvi, P. Heinonen, and Y. Neuvo, “Sine wave responses of median
filters,” Proc. IEEE Symp. on Cir. Sys., pp. 1503-1506, Finland, 1988.

64

[10] J. Astola, P. Haavisto, P. Heinonen, and Y. Neuvo, “ Median type filters
for color signals,” Proc. IEEE Symp. on Cir. Sys., pp. 1753, Finland,
1988.

[11] J. S. Jimmy Li and W. H. Holmes, “Analog implementation of median
filters for real-time signal processing,” IEEE Trans. Circuits and Sys-
tems, vol. 35, pp. 1032-1033, Aug. 1988.

[12] L. R. Rabiner, M. R. Sambur, and C. E. Schmidt, “Applications of
a nonlinear smoothing algorithm to speech processing,” IEEE Trans.
Acoustic, Speech, and Signal Processing, vol. ASSP-23, pp. 552-557, Dec.
1975.

[13] E. Ataman and E. Alparslan, “Application of median filtering algorithm
to images,” Electronics Division, Marmara Research Institute, Gebze,
Turkey, Tech. Rep. UI 78/10, Sep. 1978.

[14] A. C. Bovik, “Streaking in median filtered images,” IEEE Trans. Acous-
tic, Speech, and Signal Processing, vol. ASSP-35, pp. 493-503, Apr.1987.

[15] H. T. Kung, “Let’s design algorithms for VLSI systems,” Technical Re-
port, Dep. of Comp. Science, Carnegie-Mellon Unv., Jan. 1979.

[16] H. T. Kung, “Why systolic architectures?,” IEEE Computer, pp. 37-46,
Jan. 1982,

[17] S. Y. Kung, H. J. Whitehouse, and T. Kailath, Eds., VLSI and Modern
Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

[18] D. I. Moldovan, “On the design of algorithms for VLSI systolic arrays,”
IEEE Proc., vol. 71, pp. 113-120, Jan. 1983.

[19] G. Li and B. W. Wah, “The design of optimal systolic arrays,” IEEE
Trans. Computers, vol. C-34, pp. 66-77, Jan. 1985.

[20] C. Mead and L. Conway, Introduction to VLSI Systems. Reading, MA:
Addison-Wesley, 1980.

[21] M. J. Foster and H. T. Kung, “The design of special purpose VLSI chips,
“IEEE Computer, pp. 26-40, Jan. 1980.

65

[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

S. Topcu, 1. E. Ungan, S. Toygar, and A. Atalar, “Design and testing of
a microprocessor compatible 128-bit correlator,” in Proc. of Third Inter.

Symp. on Comp. Infor. Sci., Cesme, Izmir, Turkey, 1988.

I. E. Ungan, S. Topcu, and A. Atalar, “ VLSI implementation of a
microprocessor compatible 128-bit programmable correlator,” in Proc.
of Third Inter. Symp. on Comp. Infor. Sci., Cesme, Izmir, Turkey, 1988.

G. R. Arce and N. C. Gallagher, Jr., “State description for root-signal set
of median filters,” IEEE Trans. Acoustic, Speech, and Signal Processing,
vol. ASSP-30, pp. 894-902, Dec. 1982.

H. M. Lin and N. Willson, Jr., “Adaptive-length median filters for image
processing,” Proc. IEEE Symp. on Cir. Sys., pp. 2557-2560, Finland,
1988.

G. R. Arce and R. L. Stevenson, “ On the synthesis of median filter
systems,” IEEE Trans. Circuits and Systems, vol. CAS-34, pp.420-429,
Apr. 1987.

J. P. Fitch, E. J. Coyle, and N. C. Gallagher, JR., “ Median filtering
by threshold decomposition,” IEEE Trans. Acoustic, Speech, and Signal
Processing, vol. ASSP-32, pp. 1183-1188, Dec. 1984.

C. G. Boncelet, Jr., “Recursive algorithms and VLSI implementations
for median filtering,” Proc. IEEE Symp. on Cir. Sys., pp. 1745-1747,
Finland, 1988.

G. R. Arce, P. J. Warter, and R. E. Foster, “Theory and VLSI imple-
mentation of multilevel median filters,” Proc. IEEE Symp. on Cir. Sys.,
pp. 2795-2798, Finland, 1988.

M. P. McLoughlin and G. R. Arce, “Deterministic properties of the recur-
sive separable median filter,” IEEE Trans. Acoustic, Speech, and Signal
Processing, vol. ASSP-35, pp.98-106, Jan. 1987.

A. C. Bovik, T. S. Huang, and D. C. Munson, JR., “ A generalization
of median filtering using linear combinations of order statistics,” IEEE
Trans. Acoustic, Speech, and Signal Processing, vol. ASSP-31, pp.1342-
1349, Dec. 1983.

66

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Y. H. Lee and S. A. Kassam, “Generalized median filtering and related
nonlinear filtering techniques,” IEEFE Trans. Acoustic, Speech, and Sig-
nal Processing, vol. ASSP-33, pp. 672-683, Jun. 1985.

A. C. Bovik, T. S. Huang, and D. C. Munson, Jr., “ The effect of median
filtering on edge estimation and detection,” IEEE Trans. Pattern Analy.
Mach. Intell., vol. PAMI-9, Mar. 1987.

A. Niemien, P. Heinonen, and Y. Neuvo, “A new class of detail-
preserving for image processing,” IEEE Trans. Pattern Analy. Mach.
Intell., vol. PAMI-9, pp. 74-90, Jan. 1987.

Y. Neuvo, P. Heinonen, and I. Defee, “Linear-median hybrid edge detec-
tors,” IEEE Trans. Circuits and Systems, vol. CAS-34, pp. 1337-1343,
Nov. 1987.

S. J. Ko, Y. H. Lee, and A. T. Fam, “Selective median filters,” Proc.
IEEE Symp. on Cir. Sys., pp. 1495-1498, Finland, 1988.

T. A. Nodes and N. C. Gallagher, Jr., “T'wo-dimensional root structures
and convergence properties of the separable median filter,” IEEE Trans.
Acoustic, Speech, and Signal Processing, vol. ASSP-31, pp. 1350-1365,
Dec. 1983.

T. Loupas, W. N. McDicken, and P. L. Allan, “ Noise reduction in
ultrasonic images by digital filtering, “ The British Journal of Radiology,
vol. 60, pp.389-392, Apr. 1987.

G. Garibotto and L. Lambarelli, “Fast on-line implementation of two-
dimensional median filtering,” Electronics Letters, vol. 15, pp.24-45, Jan.
1979.

T.S. Huang, G. J. Yangand G. Y. Tang, “A fast two-dimensional median
filtering algorithm,” IEEE Trans. Acoustic, Speech, and Signal Process-
ing, vol. ASSP-27, pp. 13-18, Feb. 1979.

E. Ataman, V. K. Aatre, a,nd K. M. Wong, “A fast method for real-time
median filtering,” IEEE Trans. Acoustic, Speech, and Signal Processing,
vol. ASSP-28, pp. 415-421, Aug. 1980.

67

[42] V. V. B. Rao and K. S. Rao, “A new algorithm for real-time median
filtering,” IEEE Trans. Acoustic, Speech, and Signal Processing, vol.
ASSP-34, pp. 1674-1675, Dec. 1986

[43] D. L. Knuth, The Art of Computer Programming- Searching and Sorting,
vol. 3. Reading MA: Addison-Wesley, 1973.

[44] C. D. Thompson, “The VLSI complexity of sorting,” IEEE Trans. Com-
puters, vol. C-32, pp. 1171-1184, Dec. 1983.

[45] G. Bilardi and F. P. Preparata, “ A minimum area VLSI network for
O(log n) time sorting,” IEEE Trans. Computers, vol. C-34, pp. 336-343,
Apr. 1985.

[46] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Reading
MA: Addison-Wesley, 1985.

[47] P. A. Ruetz and R. W. Brodersen, “Architectures and design techniques
for real-time image-processing IC’s,” IEEE J. Solid-State Cir., vol. SC-
22, pp.233-250, Apr. 1987.

[48] K. Oflazer, “Design and implementation of a single-chip 1-D median
filter,” IEEE Trans. Acoustic, Speech and Signal Processing, vol. ASSP-
31, pp. 1164-1168, Oct. 1983.

[49] M. O. Ahmad and D. Sundararajan, “A fast algorithm for two- dimen-
sional median filtering,” IEEE Trans. Circuits and Systems, vol.CAS-34,
pp. 1364-1374, Nov. 1987.

[50] U. E. Ruttimann and R. L. Webber, “Fast computing median filters on
general-purpose image processing systems,” Optical Engineering, vol. 25,
Sep. 1986.

[61] J. A. Abraham and W. K. Fuchs, “Fault and error models for VLSI,”
IEEE Proc., vol. 74, pp. 639-654, May 1986.

[52] F. Guterl, “In pursuit of the one-month chip,” IEEE Spectrum, pp. 28-
46, Sep. 1984.

[63] L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI
Circuits Addison-Wesley, 1985.

68

[54] A. Mukherjee, Introduction to nMOS and CMOS VLSI System Design,
Prentice-Hall, 1986.)

[55] R.D. Davis, “The case for CMOS,” IEEE Spectrum, pp.26-32, Oct. 1983.

[56] G. J. Hu, “A better understanding of CMOS latch-up,” IEEE Trans.
Electron Dewices, vol. ED-31, pp.62-67, Jan. 1984.

[57] Berkeley CAD Tools User’s Manual, EECS Dep., University of California
at Berkeley, 1986.

[68] VLSI Tools Reference Manual, TR#87-02-01, Release 3.1, NW Lab. Int.
Sys., Dep. Computer Sci., University of Washington, Feb.1987.

[59] M. Hatamian and G. L. Cash, “Parallel bit-level pipelined VLSI designs
for high-speed signal processing,” Proc. IEEE, vol. 75, pp. 1192-1202,
Sep. 1987.

[60] M. M. Mano, Digital Design, Prentice-Hall, 1979.

[61] N. Hedenstierna and K. O. Jeppson, “CMOS circuit speed and buffer
optimization,” IEEE Trans. Computer-Aided Design, vol. CAD-6, pp.
270-280, Mar. 1987.

[62] W. J.Song and W. A. Pearlman, “Edge-preserving noise filtering based
on adaptive windowing,” IEEE Trans. Circuits and Systems, vol. 35, pp.
1048-1054, Aug. 1988.

[63] T. Denayer, E. Vanzieleghem, and P. G. A. Jespers, “ A class of multi-
processors for real-time image and multidimensional signal processing,”

IEEE J. Solid-State Cir., vol. SC-23, pp.630-638, Jun. 1988.

69

APPENDIX

Test Pattern Generator for the Real-Time Median
Filter Chip

* ok
* THIS PROGRAM GENERATES THREE SEQUENCES OF BINARY
+ NUMBERS (1 OR 0). PROGRAM HAS NO INPUT ENTRY.
* IT MUST BE COMPILED IN FORTRANTT (% f77 testgen.f testgen).
* THE OUTPUTS ARE SENT TO THE SCREEN. IF ONE NEEDS
* TO WRITE THE OUTPUTS IN A FILE, SAY INTO
* vec.out, THEN THE PROGRAM MUST BE EXECUTED AS:
* % testgen >vec.out.
INTEGER W(9,513),R(9),51(527),52(527),53(527),Z,NC,
INTEGER OUTO1(527),0UT00(527),0UT10(527)
DO 11 I=1,513
DO 11 J=1,9
11 W(L,3)=8
* % x INITTALIZATION
DO 12 I=1,9
12 R(I)=0
NC=1
CALL LOAD(R,W,NC)
* * + ASSUME LOGIC 1
101 Z=1
CALL SHIFT(Z,R)
CALL COMP(R,W,NC,IE)
IF(IE.EQ.0) GOTO 13
IS=NC+9
S1(IS)=2%

70

NC=NC+1
CALL LOAD(R,W,NC)

IF(NC.EQ.512) GOTO 1234

CALL CONV(R,IH)

GOTO 101

+ %% THE BIT IS LOGIC 0

13 Z=0

222 CALL LOADB(W,R,NC)

CALL SHIFT(Z,R)

CALL COMP(R,W,NC,IE)

IF(IE.EQ.0) GOTO 14

IS=NC+9

S1(IS)=2%

NC=NC+1

CALL LOAD(R,W,NC)

IF(NC.EQ.512) GOTO 1234

CALL CONV(R,IH)

GOTO 101

% % * SEARCH RECURSIVELY

14 NC=NC-1

PRINT * ’ERROR! LINEAR VECTORS !’
IF(NC.EQ.0) GOTO 15

CALL LOADB(R,W,NC)
IF(S1(NC).EQ.1) GOTO 13

Z=1

GOTO 222

15 PRINT *’! ONLY 512 VECTORS POSSIBLE’
skx COMPUTE OUTPUTS: OUTO01(I) (SE=01), OUT10(I) (SE=10), OUT10(I)
(SE=00)

1234 DO 55 J=1,512
OUTO00(J+8)=W(5,J)
OUT10(J+8)=W(5,J)

IW=0

DO 44 1=1,9

44 TW=IW+W(L,J)

IF(IW.LT.5) OUT01(J+8)=0

71

IF(IW.GE.5) OUT01(J+8)=1

55 CONTINUE

+ * %+ GENERATE THE SEQUENCES 52,53

DO 1122 I=1,512

S2(1+3)=S1()

S3(1+6)=S1(T)

1122 CONTINUE

%% PRINT OUTPUTS

PRINT *,INPUTS OUTPUTS’

PRINT *,IK1 IK2 IK3 OK(SE=01) OK(SE=00) OK(SE=10)’
DO 321 I=1,518

PRINT *,51(1),52(I),S3(I),’ *,0UT01(I),0UT00(I),0UT10(T)
321 CONTINUE

STOP

END

SUBROUTINE LOAD(N,M,K)
INTEGER M(9,513),N(9),K
DO 91 I=1,9
91 M(LK)=N(I)
RETURN
END

SUBROUTINE SHIFT(K,N)
INTEGER N(9),K
DO 92 1=0,8
IX=9-
92 N(IX)=N(IX-1)
N(1)=K
RETURN
END

SUBROUTINE COMP(N,M,K,IC)
INTEGER M(9,513),N(9),K
DO 93 J=1K
DO 94 I=1,9

72

IF(N(I).NE.M(L,J)) GOTO 93
94 CONTINUE

IC=0

GOTO 95

93 CONTINUE

IC=1

95 RETURN

END

SUBROUTINE LOADB(M,N,K)
INTEGER M(9,513),N(9),K
DO 96 I=1,9
96 N(I)=M(L,K)
RETURN
END

SUBROUTINE CONV(N,IV)
INTEGER N(9)
IV=0
DO 99 I=1,9
99 TV=IV+N(I)*2**(9-T)
RETURN
END

73

D

T. C.

Yﬁksek@@retjm Kuruly

Okiimantasyon Merkezf

